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Abstract
Background: Epigenetic clocks are promising tools for the study of aging in humans.
The clocks quantify biological aging above and beyond chronological age, demonstrate
systematic associations with risk factors that accelerate aging, and predict age-related
morbidity and mortality. There is interest in using them as surrogate endpoints in
intervention studies. However, the large number of clocks, decentralized publication
and explosive popularity in the last decade has made for poor accessibility and
standardization. This has hampered the abilities of new researchers to conduct truly
hypothesis driven research—whether by not knowing about the best available clocks for
a given question, or by systematically testing many or all as they become available.
Results: We report a centralized R package which can be installed and run locally on
the user’'s machine, and provides a standardized syntax for epigenetic clock calculation.
The package includes a set of helper functions to assist with navigating clock literature

and selecting clocks for analysis, as well as affording the user with the details of clock
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calculation. We describe each clock’s resilience to missing CpG information, combined
with functionality to assess the need for imputation in the user’s own data. Furthermore,
we demonstrate that while CpGs may not be shared among clocks with similar outputs,
many clocks have highly correlated outputs.

Conclusions: Due to the previous decentralization of epigenetic clocks, gathering code
and performing systematic analysis, particularly in protected datasets, has required
significant information gathering effort. Here, we offer an R package with standardized
implementation and potential for future growth and clock incorporation to assist with
hypothesis driven investigation of aging as measured by epigenetic clocks. We show
the potential of this package to drive the user to think globally about signals captured by
epigenetic clocks, as well as to properly identify the potential and limitations of each
clock in their current research.

Keywords

Background

Epigenetic clocks are promising tools, often discussed as future surrogate
biomarkers for studies of aging and longevity. These clocks have been extensively
reviewed; for their phenotypic associations [1, 2]; to understand the mechanisms of
epigenetic aging [3, 4]; [5]1[6] Our current intent is to instead provide a practical
overview of the categories, training methods, and applications of existing epigenetic
clocks. As epigenetic clock research gathers further momentum in the study of aging, it
is increasingly clear that a centralized toolkit to introduce the epigenetic clocks is

essential. Such a toolkit must satisfy, in our estimation, a handful of requirements: It
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must (1) organize thematically and systematically the existing epigenetic clocks to
minimize the risks of multiple testing and publication bias; (2) provide functionality to
allow the researcher to perform not only pro forma analyses, implicating epigenetic
clocks in a disease or dataset of interest, but push researchers to glean further
biological insight as to the associations found; (3) be complete in its access of
epigenetic clocks, while still giving editorial insight such as to make use of them
navigable; (4) be sufficiently flexible so as to allow future advances to be made equally
accessible.

Because of the relative ease of training epigenetic clocks and of DNA
methylation (DNAm) collection, as well as the numerous age-related CpGs in the
genome, there are currently numerous human epigenetic clocks available in the
literature (Figure 1). The earliest such clocks utilize 1-10 highly age-associated CpGs in
regression models, and these remain useful as low-cost assays [7-11]. However, the
advent of large scale, streamlined collection of DNA methylation data on Illlumina
Beadchip methylation array technologies, as well as the adoption of elastic-net
penalized regression to the training method, led to a new generation of clocks that can
capture genome-wide aging signals. The first of these were trained to predict
chronological age with high accuracy, including the Hannum blood [12] and Horvath
multi-tissue [13] clocks, and have since expanded to include additional clocks [14-17].
For those studying development and gestation, significant effort has been spent to
create reliable gestational and pediatric age clocks [18-22]. Similar approaches led to
the generation of mitotic clocks, so-called for their presumed ability to track the rate of

mitotic divisions and project cancer risk [23-25]. The telomere length estimator
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DNAMTL, which is highly correlated with cellular replication rate, can be included in this
category as well [26].

In addition to clocks that predict discretely measurable aspects of age and cell
turnover, efforts have been made to capture heterogeneity in aging as meaningful
biological signal. These [27][28], and DunedinPACE[29] are trained to predict
individuals; degree or rate of biological change with time, especially those changes that
contribute to age-related morbidity and mortality risk. It has also been found that DNAmM
can be used to predict various traits, lifestyles or exposures that are not necessarily
related to aging [30].

Finally, there has been recent interest in “bespoke” clocks designed for particular
tissues, diseases, data types, or applications. For example, one ongoing challenge for
epigenetic clocks is that most human clocks were trained using primarily whole blood[2].
Multi-tissue clocks[13]s conserved across tissues and may ignore tissue-specific aging
changes [6]. Thus, tissue-specific, bespoke clocks have been developed, including for
skin-and-blood [16], brain cortex [31], skin [32], and the scAge framework for predicting
epigenetic age from single cell methylation [33] have been reported. Also, since clocks
are often trained in large aging cohorts, it is possible they may miss aging patterms that
occur in small subsets of the population, as in the context of rare diseases. Due to the
increasing abundance of non-blood tissue DNAmM, new methods for collection [34],
additional approaches to clock-training [35, 36], and emerging age-related diseases, we
predict that the number of bespoke clocks will see a dramatic increase in the next few

years.
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95 Yet the challenge remains: Which clock should be used? The variety of
96 epigenetic clocks can be useful for investigating many different aspects of aging. But
97 selecting the appropriate clock(s) for a study requires navigating a decentralized body of
98 nuanced literature. The choice of clock may be impacted by the phenotype that they
99 were trained to predict or the context they were trained for. However, the differences
100 between clocks can be subtle, amounting to differences in training data composition or
101  procedure, such as age ranges [22], or preselection of CpGs [23].
102 This clock selection problem creates concerns regarding the integrity and
103 interpretability of aging studies. In particular, there are two consequences we would
104 hope to avoid. The first is exclusive, repeated testing of the best cited and most
105 reported aging clocks—namely the Horvath multi-tissue, Hannum, Levine PhenoAge
106  and GrimAge DNA methylation clocks. [1]. This aligns well with the plethora of
107  publications reporting the associations of acceleration of the Horvath multi-issue,
108 PhenoAge, and GrimAge predictors with biological changes[37-39], and disease risk or
109  mortality[40-45]. While this produces some standardization in the field, these clocks are
110 not necessarily the optimal choice in all cases. If a researcher instead has all available
111  clocks at their disposal and then applies a hypothesis-driven selection of clocks, an
112  alternative, lesser-known clock may indeed be the optimal choice. The second
113  unintended consequence could be that individuals test many clocks as clocks are
114  published or the researcher becomes aware of them, and only significant results tend to
115 be noted and published.
116 The variety of clocks and their decentralized distribution also creates practical

117 obstacles for aging research. Researchers wishing to apply epigenetic clocks must first
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mine the literature for their options, identify one (or multiple) clocks to test, locate and
download the data to do so, and ensure that the calculation is properly performed
across their samples. This process creates substantial logistical barriers for
researchers. Clocks that are published along with public code and data should be
applauded. Furthermore, a few existing platforms can calculate multiple clocks. These
include the online Horvath calculator (http://dnamage.genetics.ucla.edu) and EstimAge
(https://estimage.iac.rm.cnr.it). However, these require data to be uploaded to a third
party server, which is prohibited for protected datasets and limits researchers’ access to
the underlying details of calculation. There also exists the methylclock Bioconductor
package, which is currently limited to chronological age clocks, gestational age clocks,
DNAmMTL and PhenoAge. In summary, the sheer number and variety of clocks creates
two primary challenges that impede use by the broader scientific community: (1) the
selection of the most appropriate clock(s) for the scientific question or hypothesis at
hand; (2) access to the many clocks. We address this by providing a centralized
resource in which individuals can explore, investigate, and calculate any and all clock(s)
appropriate for a research question from a project’s inception. This is a necessary
improvement for the field, as it allows for systematic study of epigenetic clocks, which in
turn advances future understanding of their underlying relationships and biological
significance.

There is currently no true standard format or resource for the researcher to
publish and distribute clocks. Here we present a consolidated resource that applies a
standardized format to the calculation of epigenetic clocks, establishes a repository for

the fitted values of existing clocks, and provides a few helper functions for the


https://doi.org/10.1101/2022.07.13.499978
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499978; this version posted July 16, 2022. The copyright holder for this preprint (which

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exploration of appropriate clocks, their CpGs, and inter-clock correlations. Further, this
package can be installed and run on a local machine, eliminating the need for uploading
of potentially protected data, and affords near-immediate results to the researcher,
regardless of the number or identity of clocks they choose to select. To further facilitate
accessibility of the epigenetic clocks, we have also provided a thorough tutorial walking
through use of the package and questions to be addressed on the github page for this

package (github.com/MorganLevineLab/methylCIPHER).

Implementation
This should include a description of the overall architecture of the software
implementation, along with details of any critical issues and how they were addressed.
The current package is implemented using the R programming language and

distributed via installation from Github (github.com/MorganLevineLab/methylCIPHER).

This distribution allows us to provide a flexible, regularly updated, and community driven
package. Not only can we push regular updates to users as new clocks are added, but
the research community can rapidly suggest new clocks, helper functions, or
improvements to code. Users wishing to generate their own independent Github R
packages during the publication process of novel clocks can be imported by this
package, or be referred to in the online Github based wiki and tutorial. The functions of
this package are represented in the schema in Figure 2.

To calculate epigenetic clocks in methylCIPHER (functions of the form calc[Clock-
Name]), the user provides a labeled data matrix of pre-processed methylation Beta
values obtained via the lllumina HumanMethylation450 Beadchip or Infinium

MethylationEPIC kit from Illumina (San Diego, CA). These are commonly referred to as
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450k and EPIC arrays respectively. Preprocessing and normalization of methylation
data is typically performed within R using the minfi [46], wateRmelon [47], or SeSAMe
[48] packages, however methylCIPHER functions regardless of normalization protocol.
For more details regarding the effects of choice of normalization, refer to Ori et al. [49].
The user must simply have an object of matrix or data frame class, with named columns
corresponding to the lllumina CpG names, and cells containing methylation beta ratios
between 0 and 1.

We recommend that the methylation data object have named rows corresponding to
unique sample identifiers. Most analyses will benefit from a corresponding “phenotype”
data frame with sample identifiers; sample metadata; demographics; health outcomes;
age; sex; and other traits of interest. While optional for individual clock calculations, this
typically assists the researcher with downstream analyses. Without this data frame,
clocks can be computed using only a single function at a time, with output to a vector
object. However, the “pheno” dataframe provides a central location to append multiple
clocks to if using the multi-clock wrapper functions calcUserClocks or calcCoreClocks.

Of note, for some analyses (for example, calculation of IEAA or EEAA [50])
estimates of blood cell composition are necessary. To obtain such estimates, individuals
may want to use the Houseman method [51] of cell-type deconvolution from the minfi
package. However, local methods for predicting cell composition of blood can be
effectively run only when preprocessing occurs from raw methylation files (i.e. IDAT). If
access is limited to preprocessed methylation beta values, as in some publicly available
datasets, the Horvath Online calculator can predict blood component proportions. We

hope to provide users with this convenient functionality in the future. However, we have
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provided a formatting function formatHorvathOnline which allows the user to quickly
generate the input files for the Horvath Online calculator. This allows for both calculation
of blood composition estimates and GrimAge [28].

The current version of the R/methylCIPHER package has been tested on both
Windows and Mac computer systems, running R v3.6+. It can run on most modern
personal computers, requiring less than 16 GB of RAM (and in many cases less than 8
GB) for methylation datasets containing hundreds of samples at once. The functions run
efficiently and will provide near-immediate results within seconds or minutes.

Results & Discussion

The R package methylCIPHER provides both seasoned and casual users of
epigenetic clocks with the tools necessary for thorough, hypothesis-driven research
using existing epigenetic clocks. We provide a comprehensive listing of human
epigenetic clocks that use; (1) linear approaches; and (2) CpGs found in the commonly
utilized lllumina 450k and EPIC arrays. This broad set of clocks can be searched
through the function getClockOptions(), which allows users to explore their options. We
have also provided convenient referencing of the source papers for each of the clock
calculation functions, using citeMyClocks. This accepts a group or list of functions at
once, which in turn allows readers to quickly refer to the original clock papers and
understand the underlying principles of their training. This process of information
gathering is shown graphically in the top right region of Figure 2.

Due to the variable performance of experimental designs, and a multitude of
existing pipelines for quality control, users may find missing probes or DNAm values in

their data. This can be seen as missing probe columns in the final normalized beta
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value matrix, columns of NA values, or sporadic NA values in sample/ probe pairs. If the
probes are missing entirely from the beta value matrix, this can impact the decision to
implement specific clocks. Therefore, getClockProbes provides the user with a table to
determine what portion of probes are available for the various clock options, so that a
clearly informed decision can be made. Alternatively, they may find columns of all NA
values, which can be removed using removeNAcol. Sporadic missing values for select
probe/sample pairs can either be mean imputed across the matrix samples (using
function meanimpute), or imputation can be done later within the clock calculation
functions if a mean vector is provided as a reference containing the necessary CpGs.
However, most clocks can be calculated without imputation by simply ignoring those
CpGs in the resultant weighted regression values for such samples. The effect of doing
so varies by clock.

In figure 3 we visualize the degree of information contained in individual CpGs.
The model contribution of each CpG was estimated by multiplying the absolute
regression value in each clock for each site by its standard deviation in the Framingham
Heart Study (FHS) offspring cohort [52], and plotted against the standard deviation
alone. These results are shown for the Hannum (Figure 3A), Horvath Multi-Tissue
(Figure 3B), and PhenoAge (Figure 3C) clocks (additional clocks in supplemental
materials, figures S1-S2). With the CpGs plotted in this manner, we can see that each
CpG in the Hannum clock tends to have higher weight, evident from the higher mean
contribution represented by the blue horizontal dashed line. Further, PhenoAge employs
CpGs with higher standard deviation than the other clocks, but due to lower weight in

the clock regression, these tend to have dampened model contributions. These plots

10
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help to conceptualize the effect of using mean imputation on model CpGs, as utilizing
mean imputation removes signal in individual samples that may reflect meaningful inter-
individual differences.

To functionalize this effect, we simulated the effects of increasing amounts of
missing array methylation probes for a given sample. We performed 1000 iterations
each of randomly drawing 0.01, 5, 10, and 20% of CpGs within each clock. Then, we
found the distribution of Clock Years information contained within each potentially
missing sample. Because we are approximating information lost, the Clock Years
measurement is defined by the absolute value of the sampled CpGs’ clock regression
coefficient, multiplied by the standard deviation of these CpGs. The result is an
approximation of the information in years of measurement lost for a sample or set of
samples for which that proportion of CpGs’s methylation is unavailable. We note that
because Clock Years is defined as absolute values for each CpG, oppositely weighted
CpGs in a clock do not counteract each other. Thus, the information lost may reflect a
larger difference than the shift in actual clock value. As each clock selected is of varying
size, the percentage of missing CpGs varies in the absolute number lost. Here, we
demonstrate that Clock Years information lost appears strongly associated with clock
size: Bigger clocks show a larger amount of information lost, despite removal of the
same proportion of sites (Figure 3D-F). However, as is demonstrated in the disparate
axis scaling between clocks, there must be far more CpGs missing to exert a similar
effect on the larger clocks than Hannum.

The user can choose, based on what is most appropriate for their hypothesis and

data available, a set of CpG-based DNA methylation clocks to calculate. Then, either

11
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256  using the manual functions of the form calc[Clock-Name], or a user-specific character
257  vector list of clocks, input to calcUserClocks, the appropriate values can be generated.
258 These are ideally output by binding to an existing “phenotype” data frame supplied by
259  the user containing relevant sample metadata.

260 To calculate each clock, an RData object is accessed containing CpG identity
261 and weight information as supplied by the original authors. Each of these objects can be

262 accessed using data(“[Clock-Name] CpG(s)”). A central repository where these data

263  objects are readily accessible has two advantages. First, it makes the details of clock
264  calculation transparent to the user. Second, it facilitates studies of clock CpG identities
265 and their biological underpinnings.

266 For example, methylCIPHER allowed us to quantify the overlapping CpG

267 identities of clocks within some of the categories identified in Figure 1. It is often

268  discussed within the field that CpGs—at least those on the Illumina array

269 technologies— change in a concerted, multi-collinear manner with age. This has

270 motivated some of our prior approaches to clustering clock CpGs to ascertain

271 underlying biological signals or changes [53, 54]. We find that the vast majority of CpGs
272  selected by clocks do tend to be unique to those clocks, though a small subset of

273  methylation sites are common across many clocks within categories (Figure 4A-B).

274  Other observatons, such as the fact that EpiTOC2 is a subset of the original EpiTOC
275 sites, or that DNAMTL is entirely unique in its CpG selections, are immediately obvious
276  from this analysis (Figure 4B). However, despite sparse overlap in clock CpGs, it

277  remains that these clocks’ sex-adjusted age accelerations (i.e., residuals of regressing

278 clock values onto sample age and sex) are typically quite correlated (Figure 4C).

12


https://doi.org/10.1101/2022.07.13.499978
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499978; this version posted July 16, 2022. The copyright holder for this preprint (which

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In fact, it was recently reported that numerous combinations of CpGs can be
used to train epigenetic clocks across the epigenome, a concept which arises primarily
from this noted redundancy [55]. To further investigate the CpG identities of the clocks
as distributed by the original authors in our data files, we repetitively retrained multiple
well known epigenetic clocks. We performed this analysis in both a chronological aging
clock (Hannum) and a tissue specific aging clock (Horvath Skin & Blood). We first
generated an experimental design matrix (Figure 5A), which consists of 19x200 sample
cells. Each cell is the result of one of 19 bootstrapped samples of the training data
individuals drawn with replacement (for up to 6 draws of the same individual), and 1 of
200 versions of 10,000 CpGs drawn without replacement from the available probes on
the 450K array. The concept of bootstrapped samples for model training was inspired
by the original Hannum training method [12]. We used the original Hannum training
dataset [12], and the publicly available training datasets (supplemental materials, table
1A) from the original Horvath Skin & Blood clock publication.

Given each experimental matrix cell, we retrain the epigenetic clocks in the
sampled data, by applying elastic net penalized regression on chronological age. Elastic
net regression was performed with 10-fold cross validation and a 0.5 ratio of LASSO
and Ridge regression. All models were subsequently evaluated in an independent test
dataset consisting of either whole blood methylation data [56] or skin and fibroblast
datasets (supplemental materials, table 1B).

This analysis enabled comparison across randomly selected subsets of
individuals and/or CpGs on retrained clocks. The correlations of predicted age and true

age measures were visualized as density plots organized by sample bootstrap, for both

13
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Hannum (Figure 5B) and Horvath Skin & Blood (Figure 5C). Training sample
correlations were verified normal distributions with high degree of correlation, while
independent test sample correlations for these models retained relatively high
correlations. Medians of each density plot (small vertical bars) are compared to the
original clock’s correlation to age in the test dataset (large vertical bar). As is
demonstrated in the case of Hannum, while some CpG subsets produce models that
have correlation as low as 0.89 with chronological age, this is still a relatively high
correlation. Thus, while access to some CpGs improves model performance, the
improvement is modest. Furthermore, even when lists of CpGs are partially overlapped,
the degree of overlap in selected CpGs is lower than expected (Figure 3D). Therefore,
while some CpGs may contain relatively important information for age prediction, there
may be significant redundancy in DNA methylation, allowing high model correlation and
performance even with low shared identity of CpGs. It is also important to note that the
original Hannum methylation age clock used CpG preselection [12] whereas here we
are performing unsupervised selection. This may account for the overall slightly reduced
performance. However, we find it more promising that the spread of resultant
correlations in test data is relatively small, retaining correlations above 0.8 for the vast
majority of models. This high redundancy amongst CpGs may largely explain why
different clocks trained to predict the same outcome can have such sparse overlap in
their composition.

Similar results are found for a tissue specific aging clock, Horvath Skin & Blood
(Figure 3C,E). Here, we see that despite training and testing with half the sample size of

the original clock, more than 50% of the models outperform the original clock’s
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prediction in the test dataset. It has been demonstrated that there are measurable
differences in age related DNA methylation changes between tissues [57, 58].
Consequently, there may exist particular sets of CpGs which are essential to the
function of for tissue specific aging clocks [49]. However, our results suggest that the
majority of the CpGs have significant redundancy even for use in a tissue specific age
predictor. Again, the selected CpGs do not have significant overlap between lists,
despite them having significant overlap within a list across sample bootstraps (Figure
5E). Therefore, there may be many CpGs to select from for age prediction in tissue-
specific contexts, though given the limitations of the current training method, they may
not be truly tissue-specific merely single-tissue trained.

Beyond enabling characterization and investigation of the existing epigenetic
clocks’ mechanics, the current package enables efficient comparison of desired clocks
with important biological phenotypes, biomarker data, or other sample metadata (Figure
6). Due to the rapid calculation of DNAm-based clocks in new data with automatic
appending of results to existing phenotype/ sample metadata, researchers can quickly
search for associations between outcomes or biomarkers, and clock scores.

Typically, the user will want to residualize the clock scores rather than using raw
scores, to assess the effects of age acceleration. We have left this step up to the user,
as details of correction for batch, sex, race, or other features tend to be dataset, and
use specific. For instructions on how to approach calculating age residuals, please refer
to the included tutorial or wiki on our GitHub distribution repository.

We find that we can rapidly uncover interesting results, such as univariate

associations between the cluster of accelerated mitotic clocks and cardiovascular
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outcomes in the Framingham heart study (FHS) data (Figure 6A). Alternatively, we find
that the acceleration of BMI and Alcohol clocks by McCartney et al. [30] well surpass
the univariate associations found by other clock accelerations to cancer types and
stages in a subset of TCGA data (Figure 6B).

In nearly all cases, we do not recommend that the user calculate all clocks
available to them, as this introduces significant multiple testing. We have previously
shown that clocks can be driven by similar information content [53], highlighting the
potential utility of clustered-clock approaches. Typically the researcher would be best
served by selecting a hypothesis-driven subset of clocks: This would look like a single
clock tested from within a cluster (e.g. one mitotic clock) or calculating and reporting all
clocks and their agreement. However, we aim to show the ease with which few or all
clocks can be assessed using the methylCIPHER package, as well as to provide
resources to guide those decisions according to the high degree of correlation between
clocks, particularly relative to those of the traits of interest.

Conclusions

The current software is an important compendium of clocks currently distributed
through a wide variety of means. This reduces impediments to users, both in gathering
the data for calculation, and ensuring reproducible and accurate calculation. Further,
prior decentralized reporting and distribution of epigenetic clocks has led to the potential
for researchers to inadvertently conduct significant multiple testing, potentially without
proper correction: This can even occur throughout the course of a project in which the

researcher becomes aware of, and iteratively tests, additional epigenetic clocks.
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Through the provision of standardized clock calculation functions, and tools to
rapidly investigate options available to the user, we aim to improve uptake of epigenetic
clocks while enhancing the reproducibility of DNAm clock-based studies in the future.
Further, as the current package is installed locally to one’s personal computer or
computing cluster, it is possible to rapidly calculate several epigenetic clocks, even in
protected data. We intend to expand the clocks contained in this package in the future:
(1) The addition of future human DNAm (regression) based clocks to the present
researcher’s toolkit will be essential; (2) Availability of mammalian arrays [34] will spur
the use of similarly implemented epigenetic clocks for nonhuman vertebrates, and
should also be included here; (3) The online tutorial provided in the currently discussed
Github repository will be further expanded according to developing practice and user
suggestions for standard features of epigenetic clock-based disease and trait analysis.
Due to their different operating requirements and less standardized implementation,
other forthcoming methods of epigenetic clock calculation are unlikely to be housed
within this package, but we will direct users to their own sources using our wiki and
tutorial pages. These include, but are not limited to, deep learning-based clock
approaches [35, 59], the next generation of low-noise clocks referred to as PC Clocks

[36], and single cell epigenetic clocks approaches [33].

Availability and Requirements
Project name: methylCIPHER
Project home page: github.com/MorganLevineLab/methylCIPHER

Operating system(s): tested on Mac OS 11+, with and without M1 chip, Windows
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577  organized into key categories, and (B) individual clocks categorized and highlighted along a timeline.

578  Note that years with multiple clocks are colored in blocks from top to bottom according to the alphabetical
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581 Figure 2: methylCIPHER Function Schema. A representational schematic of the functionality contained
582  within methylCIPHER. Data is connected as inputs with dashed lines. User inputs are colored in yellow,
583  with objects required to be supplied by the user highlighted with “!". Orange rectangles indicate functions
584  exported by methylCIPHER for the user to run. Blue pentagonal boxes indicate outputs, with green

585 checkmarks as endpoints. Green cylindrical objects are RData objects stored and accessible from within

586 the package.
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Figure 3: Impacts of Missing CpG Imputation on Key Clocks. Three representative clocks, Hannum
(A, D), Horvath Multi-Tissue (B, E), and PhenoAge (C, F), were selected to assess the effects of
imputation. Relative model contribution was calculated according to the absolute CpG weight in the
regression model, multiplied by the standard deviation of the CpG in the Framingham Heart Study
dataset. The model contributions of each CpG were plotted against the standard deviation of the CpGs,
with the mean of each axis plotted as a blue crosshatch (A-C). Imputation of CpGs in the top right
guadrant, with high standard deviation and high model contribution, will have a greater impact than CpGs
in the other quadrants. Further, clocks whose CpGs extend further into this region will be more impacted

by mean imputation effects. We repeatedly tested and plotted the effects of mean imputation on 0.1%,
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597 5%, 10% and 20% of CpGs selected at random (D-F). Due to varying sizes of the clocks, these

598 percentages represent varying numbers of missing CpGs for each of the clocks.
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599

600  Figure 4: Shared Signal Does Not Arise From Shared CpGs. Epigenetic clocks were selected from the
601 categories of highly accurate chronological age clocks (A) and cancer & mitotic rate clocks (B) as defined
602 in Figure 1. Selection of CpG identity overlap was limited to 4 clocks per category, and in the case of

603 mitotic clocks hypoClock was not included as it was designed to select different CpGs from EpiTOC2. (C)

604 Sex-adjusted clock residuals were found in FHS and correlated according to biweight midcorrelation

27


https://doi.org/10.1101/2022.07.13.499978
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499978; this version posted July 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

605 (thresholded at >0.2). While clock residuals can capture well-correlated information, their CpG overlaps

606  within a cluster can be quite low.
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Figure 5: Bootstrapping Methylation Data Demonstrates Methylation Redundancy. The
experimental design matrix (A) demonstrates how both samples (19x) and CpGs (200 x 10k CpGs) were
selected with random amounts of overlap in their sampled dimensions. Each sampling cell was used to
retrain an elastic net regression model of the Hannum (B) or the Horvath Skin & Blood (C) clocks. The
large vertical lines demonstrate the correlation of the originally developed clock in the whole test dataset.
Smaller vertical lines in the purple density plots indicate the median age correlation of the within-sample
bootstrap elastic net trials. As each experiment is allowed to overlap in CpGs to an extent, we use the p-
value and Jaccard indices of modified gene set overlap tests to determine whether CpGs are repeatedly
selected across bootstrapped CpG lists and within a given list across sampling sets, for both Hannum (D)

and Horvath Skin & Blood (E).
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618

619 Figure 6: Clock Univariate Associations Capture Key Signal In Diverse Datasets. The available

620  epigenetic clocks’ simple age regression (regression of clock onto just age) were converted to z-scores
621  across each dataset, as were samples metadata such as age, BMI, or sex. Additional sample traits were
622  left as original variables as z-scores aren't realistic. The univariate associations were then described as
623  the absolute biweight midcorrelation between the z-scored clock residuals and sample metadata. (A) In
624  FHS data, there is clear associations between traits of interest and a cluster of mitotic clocks, whereas (B)
625  in afew cancers in TCGA data, McCartney lifestyle/ trait predictors of Alcohol and BMI show the strongest

626 correlations to traits of interest.
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