

1 Molecular and Anatomical Characterization of Parabrachial 2 Neurons and Their Axonal Projections

3
4 **Jordan L. Pauli^{1*}, Jane Y. Chen^{1*}, Marcus L. Basiri^{2,3*}, Sekun Park¹, Matthew E.
5 Carter¹, Elisendra Sanz³, G. Stanley McKnight³, Garret D. Stuber^{2,3} and Richard D.
6 Palmiter¹**

7 1. Howard Hughes Medical Institute and Department of Biochemistry, University of
8 Washington, Seattle WA 98195

9 2. Center for the Neurobiology of Addiction, Pain, and Emotion, Department of
10 Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195

11 3. Department of Pharmacology, University of Washington, Seattle, WA 98195

12 * Co-first authors

13

14 **Abstract**

15 The parabrachial nucleus (PBN) is a major hub that receives sensory information from
16 both internal and external environments. Specific populations of PBN neurons are
17 involved in behaviors including food and water intake, pain sensation, breathing
18 regulation, as well as learning and responding appropriately to threatening stimuli.
19 However, it is unclear how many PBN neuron populations exist and how different
20 behaviors may be encoded by unique signaling molecules or receptors. Here we
21 provide a repository of data on the molecular identity, spatial location, and projection
22 patterns on dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we
23 identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed *in*
24 *situ* hybridization showed many of these subclusters are localized to distinct PBN
25 subregions. We also describe two major ascending pathways that innervate distinct
26 brain regions by analyzing axonal projections in 21 Cre-driver lines of mice. These
27 results are all publicly available for download and provide a foundation for further
28 interrogation of PBN functions and connections.

29 **Introduction**

30 The parabrachial nucleus (PBN), located at the junction of the midbrain and pons,
31 relays sensory information from the periphery primarily to the forebrain, thereby playing
32 a major role in informing the brain of both the internal state (interoception) and external
33 conditions (exteroception) to facilitate responses to adverse conditions and help
34 maintain homeostasis.

35 The inputs and outputs of the PBN have been studied extensively using
36 anterograde and retrograde methods (Fulwiler and Saper, 1984, Gauriau and Bernard,
37 2002, Krout and Loewy, 2000, Moga et al., 1990, Norgren and Leonard, 1971, Tokita et
38 al., 2009). More recently, these studies have been supplemented using genetically
39 engineered mice and stereotaxic delivery of viruses encoding fluorescent proteins to
40 analyze the afferents and efferent projections of selected subsets of PBN neurons. The
41 vagus transmits signals from internal organs including the gastrointestinal system to the
42 caudal nucleus tractus solitarius (NTS), which then projects to the PBN; thus, detection
43 of visceral signals related to food and malaise depend on this circuit. Other internal
44 organs, muscle, and bone transmit nociceptive signals via intermediary ganglia to the
45 spinal cord and then directly to the PBN. Ascending fibers from the spinal cord relay
46 peripheral temperature and pain signals directly to the PBN, while trigeminal neurons
47 relay these signals from the face. In addition, blood-borne threats to homeostasis are
48 detected by the area postrema and transmitted to the PBN (Zhang et al., 2021). Taste is
49 transmitted from the tongue and palate via branches of the facial, petrosal,
50 glossopharyngeal nerves to the rostral NTS and from there to the PBN. Additionally,
51 calcium imaging and Fos-induction studies show that most sensory systems can
52 activate neurons in the PBN (Campos et al., 2018, Carter et al., 2013, Kang et al.,
53 2020), although the neuronal circuits involved are not established. Thus, the PBN is a
54 hub activated by a wide variety of sensory signals, which then reports the state of the
55 body to the other brain regions to elicit appropriate responses. All of these afferent
56 signals to the PBN are excitatory (glutamatergic), but there are also inhibitory,
57 GABAergic inputs including those from arcuate nucleus, bed nucleus of stria terminalis
58 (BNST) and central nucleus of the amygdala (CEA). The PBN projects axons to the

59 periaqueductal grey (PAG), extended amygdala (including the BNST, CEA, substantia
60 innominata, SI), the cortex (primarily the insula), thalamus, parasubthalamic nucleus
61 (PSTN), hypothalamus, and medulla.

62 Pioneering neuroanatomical studies encouraged functional studies (lesions,
63 pharmacological and viral/genetic interventions), which have substantiated the
64 predictions that the PBN is important for responding to internal and external stimuli and
65 maintaining homeostasis. Examples include taste, thermal sensation, visceral malaise,
66 pain, itch, hypercapnia, breathing, cardiovascular control, arousal, hunger/satiety, thirst,
67 sodium appetite, and alarm (review, Palmiter, 2018). The response of the PBN to these
68 sensory modalities raises multiple questions: How many different neuron populations
69 are there? Are specific neurons or subsets of neurons involved in transmitting each
70 signal? Is there integration of sensory signals (crosstalk between neurons) within the
71 PBN? Do individual neurons project axons to one target region or send collaterals to
72 many brain regions? A topographical map of the different neuronal populations in the
73 PBN will help address these questions.

74 The PBN is bisected by a fiber tract, the superior cerebellar peduncle (scp)
75 resulting in subregions that are lateral or medial to the scp in primates. In rodents, the
76 scp is rotated relative to that in primates such that so-called lateral regions are more
77 dorsal to the scp and medial regions are more ventral. The Kölliker-Fuse (KF) subregion
78 is considered part of the PBN, while the cuneiform nucleus (CUN), mesencephalic
79 trigeminal nucleus (MEV), and locus coeruleus (LC) are adjacent to it (Fulwiler and
80 Saper, 1984, Paxinos and Franklin, 2019). *In situ* hybridization and
81 immunohistochemistry studies have revealed that the PBN is primarily glutamatergic
82 and expresses an abundance of different neuropeptides and neuropeptide receptors.
83 These observations led to the creation of Cre-driver lines of transgenic mice that have
84 been used to activate virally delivered, Cre-dependent genes to manipulate neuron
85 activity and to visualize their axonal projections.

86 To define PBN cell types and gain insight unique expression of signaling
87 molecules and receptors, we adopted the single-cell, RNA sequencing (scRNA-Seq)
88 approach (Hashikawa et al., 2020, Macosko et al., 2015), which revealed 12 transcript-

89 defined neuron types within the PB N proper – 90% of which are glutamatergic. We
90 then used *in situ* hybridization to anatomically locate the neurons within the PBN and
91 used Cre-driver lines of mice with viral expression of fluorescent proteins to establish
92 the axonal projection patterns from many unique cell types.

93

94 **Results**

95 **Single-cell RNA sequencing analysis of cell types in the PBN**

96 To classify cell types in the mammalian PBN according to their transcriptional profiles,
97 we harvested brain tissue from 10 adult male and female C57BL/6J mice, excised the
98 PBN along its rostral-caudal extension (**Figure 1A**), and prepared cellular suspensions
99 for high-throughput scRNA-Seq using a commercial droplet protocol (10X Genomics).
100 After preprocessing the data to remove low-quality cells from the analysis (Rossi et al.,
101 2021, Stuart et al., 2019), we retained a total of 39,649 single cell transcriptomes that
102 were sequenced to a median depth of 47,177 reads per cell. A total of 17,038 genes
103 were considered in the analysis, with a median of 1,740 expressed genes detected per
104 cell (**Figure 1 – figure supplement 1**).

105 To identify resident cell types of PBN tissue, cells were clustered on principal
106 components and visualized in Uniform Manifold Approximation and Projection (UMAP)
107 space (McInnes et al., 2018) (**Figure 1B**). We then applied a likelihood ratio test to
108 identify features that were differentially expressed between clusters (Hafemeister and
109 Satija, 2019, Macosko et al., 2015, McDavid et al., 2013), and classified cells according
110 to the specificity of canonical marker genes within each cluster (**Methods, Figure 1B-E,**
111 **and Supplementary File 1**). Low resolution clustering identified 7 transcriptionally
112 distinct populations of neurons, glia, and stromal cells within the PBN (**Figure 1B-E**). Of
113 these, neurons represented the largest proportion of cells at 57.2% (**Figure 1C**).
114 Oligodendrocytes, marked by *Mag* and *Opalin*, were detected at 24.1% of total cells and
115 oligodendrocyte precursor cells (OPCs, 4.3% of total cells), were distinguished by their
116 expression of *Pdgfra* and *Gpr17* (**Figure 1C-D**). The large number of oligodendrocytes
117 and precursors is not surprising because the PBN is bisected by a large fiber tract, the

118 superior cerebellar peduncle (scp). We detected a population of astrocytes representing
119 8.1% of cells that were labeled by robust expression of *Agt* and *Slc4a4*, as well as a
120 smaller population of microglia (2.6%) that were specifically labeled by *Cx3cr1* and
121 *Tmem119* (**Figure 1C-D**). Additionally, we identified two distinct populations of cells
122 marked by stromal markers; one of these populations was characterized by its selective
123 expression of *Tagln* and *Acta2* (3.2%), while another rare population of vascular
124 leptomeningeal cells (VLMCs) was marked by *Dcn* and *Slc6a13* (0.26% of total cells).
125 Although known canonical markers were used for the biased identification of broad
126 classes of resident cells within PBN tissue (**Figure 1B and D**), each of these cellular
127 classes was marked by a robust profile of unique transcriptional features (**Figure 1E**
128 and **Supplementary File 1**).

129 Next, we sought to identify distinct subclasses of neurons within the PBN.
130 Subclasses of cells within a terminally differentiated cell-type share a similar
131 transcriptional landscape, and as a result, statistically discriminating subclasses through
132 clustering analysis requires the presence of a small set of high-confidence, high-
133 variance features. To enable high-resolution subclustering of PBN neurons, we first
134 applied a more stringent quality threshold to the neuronal population isolated in the
135 initial analysis (**Figure 2 – figure supplement 1A-E**) resulting in a smaller set
136 comprised of 7,635 neurons (**Figure 2A-B**). These cells were sequenced to a much
137 higher median of 99,583 reads per cell with each cell containing a median of 3,189
138 genes and 7,823 transcripts (**Figure 2 – figure supplement 1F-O**). We used a
139 clustering approach like that applied for all cells and discriminated 21 unique
140 subclusters of neurons (**N1-N21**) according to their expression of differential feature
141 sets (**Methods, Figure 2, and Figure 2 – figure supplement 1P-Q**). We first classified
142 neuronal subclusters as GABAergic or glutamatergic; we designated **N1-N19** as
143 glutamatergic with **N1, N2** being enriched in vesicular transporter *Slc17a7* (Vglut1),
144 while **N3-N19** are enriched in vesicular transporter *Slc17a6* (Vglut2); the latter account
145 for 90% of all neurons sequenced (**Figure 2C-E**). The remaining two subclusters **N20,**
146 **21** are GABAergic based on expression of the biosynthetic enzymes, *Gad1*, *Gad2*, and
147 *Slc32a1* (Vgat) (**Figure 2C-E**).

148 We sought to further define these 21 neuronal subclusters and identified three
149 major clades that could be distinguished by their expression of transcription factors
150 (**Figure 2F-G**). We found one major clade represented by *Lhx2*, *Lhx9*, *Meis2* and *Nrf1*,
151 which are abundantly expressed in **N3-N12**. This clade probably descends from
152 neurons that express *Atoh1* during development (Karthik et al., 2022). This group also
153 includes nuclear receptors, *Nr2f1*, *Nr2f2*, *Nr4a*; zinc-finger protein, *Tshz1*; homeobox-
154 containing transcription factors, *Barx2* and *Evx2*; and forkhead-box factor, *Foxp2*. *Nr4a2*
155 and *Foxp2* represent a subgroup of this clade being expressed prominently in 5 of the
156 10 subclusters. The expression pattern of *Foxp2* in the PBN and its axonal projections
157 via the ventral pathway to the hypothalamus have been described in detail (Huang et
158 al., 2021a).

159 Another major clade includes **N15-N19** (**Figure 2F-G**) is represented by
160 expression of a group of homeobox-containing transcription factors, *Pou2f2*, *Pou6f2*,
161 *Lmx1a*, *Lmx1b*, *En1*, *Tlx3*, *Onecut2* along with a member of the retinoic acid family
162 (*Rorb*), the AP2 factor (*Tfap2b*) and co-repressor (*Tle4*). *Satb2* (**N17**) and *Phox2b* (**N19**)
163 represent individual subclusters within this clade.

164 The neuron subclusters that express *Slc17a7* (**N1 and N2**) and *Slc32a1* (**N20**,
165 **21**) are enriched in expression of basic helix-loop-helix proteins (*Neurod1*, *Neurod2*,
166 *Bhlhe22*), *Nfib*, *Nfix* and *Lhx1os*, a long non-coding RNA transcribed from the *Lhx1*
167 opposite strand (**Figure 2F-G**).

168 Within these three major clades, we also found that the 21 neuronal subclusters
169 could be further delineated based on preferential expression of specific transcriptional
170 features (**Figure 3A**). Although our analysis identified multiple known subclasses of
171 PBN neurons, we also identified novel neuronal subclusters and their corresponding
172 transcriptional markers. Thus, this analysis provides a representation of PBN neuronal
173 diversity at a higher-resolution than has been previously appreciated (**Figure 3A-B**). A
174 summary file listing the average expression of each gene per cluster, fraction of cells
175 expressing each gene within a cluster, and the differential expression p-value per
176 cluster is provided for all genes in the dataset (**Supplementary File 2**).

177 **Expression of neuropeptides and G-protein coupled receptors in the**
178 **PBN**

179 Neuropeptides are valuable markers for selected subpopulations of neurons in many
180 brain regions. Some of these neuropeptide mRNAs are uniquely and robustly expressed
181 in one or two subclusters, e.g., *Calca*, *Ghrh*, *Nps*, *Npy*, *Pdyn*, *Pnoc*, while others are
182 expressed in multiple subclusters, e.g., *Adcyap1*, *Cck*, *Crh*, *Gal*, *Gpr*, *Nmb*, *Nts*, *Penk*,
183 *Tac1*, *Vgf* (**Figure 3 – table supplement 1, Supplementary File 3**). Like the
184 neuropeptide group, the genes encoding G-protein-coupled receptors (GPCRs) are
185 genetically useful because they are likely to be expressed in neurons that receive
186 aminergic or neuropeptide input; thus, making them desirable for circuit mapping
187 (**Supplementary File 4**). Indeed, Cre-driver lines of mice have been generated for
188 many GPCR genes. GPCRs are also of interest because they are viable targets for
189 drugs that could potentially modify the function of select neurons and circuitry in the
190 PBN. The expression of GPCR genes is generally much lower than that of
191 neuropeptides, making them difficult to detect by immunohistochemistry or *in situ*
192 hybridization. Consequently, scRNA-Seq data provide a much-needed resource for
193 identifying the GPCRs expressed by distinct PBN neurons. GPCRs with relatively
194 restricted expression are listed in **Figure 3 – table supplement 1**.

195 **Locating neuronal populations by *in situ* hybridization**

196 To determine if different neuron subclusters are located in distinct PBN subdivisions, we
197 performed fluorescent *in situ* hybridization on coronal sections of the PBN spanning the
198 rostral-caudal axis from Bregma -5.0 to -5.4 mm. Representative probes for each
199 neuronal subcluster (**N1 to N21**) were chosen based on the distinguishing genes in
200 each subcluster (**Figure 4A**). A composite image of each PBN section was generated
201 and PBN subdivisions were drawn using a combination of probe expression and the
202 Allen Mouse Brain Atlas (AMBA) as a guide (**Figure 4B**). We localized several neuron
203 subclusters within major AMBA subdivisions of the PBN (**Figure 4C** and **Figure 4 –**
204 **figure supplement 1**) and qualitatively scored the expression of each probe within a
205 specific PBN subregion (**Figure 5A**) or neighboring regions (**Figure 5 – figure**

206 **supplement 1)** based on the number of transcripts (signal intensity) and number of
207 cells (**Figure 5B**). The discussion below is derived from **Supplementary File 5**, which
208 includes results for all HiPlex probes at 5 Bregma levels throughout the PBN.
209 RNAscope experiments were also used to resolve co-expression issues as indicated
210 below.

211 **N1 and N2:** *Slc17a7* (Vglut 1) and the transcription factors, *Neurod1*, *Neurod2*
212 and *Meis1* are expressed robustly in the Cb granular layer; some of these non-PBN
213 cells were included in the tissue punch and probably represent **N1**; however, there are
214 also few *Slc17a7*-positive neurons scattered throughout the PBN, especially in PBId.
215 *Piezo2*, a marker for **N2**, is robustly co-expressed with *Slc17a7* in mesencephalic
216 trigeminal neurons (MEV). Note that both of these clusters represent <2% of PBN
217 neurons (**Figure 2B**).

218 **N3, N4:** *Mylk* and *Fn1* were chosen to represent **N3** and **N4**, respectively;
219 however, *Fn1*, and to a lesser extent *Mylk*, had weak signals throughout the sections in
220 what appear to be blood vessels. In a repeat experiment, they were replaced with *Nfib*
221 (**N3**) and *Pappa* (**N4**). *Nfib* probe had a weak signal in several regions outside the PBN
222 (PSV, CB and LDT). *Pappa* was also expressed outside the PBN (MEV, B, CB) with
223 weak expression in caudal PBId sections that overlap with *Pdyn*, *Crh*, and *Pnoc* (**N10**).
224 These clusters also represent <2% of PBN neurons (**Figure 2B**).

225 **N5:** *Th*, *Ghrh* and *Pnoc* were chosen to represent **N5** although they are not
226 uniquely expressed in **N5**. There is a group of *Th*-positive cells in rostral PBId that do
227 not express *Pdyn* that could be **N5**; however, they do not express *Ghrh* or *Pnoc* as
228 predicted by scRNA-Seq. TH protein expression in lateral PBN was documented (Milner
229 et al., 1986) and *Th* mRNA is expressed in lateral PBN based on AMBA; it is also
230 expressed in LC, as expected. *Pnoc* expression is scattered throughout PBN and
231 neighboring nuclei and its expression overlaps with *Slc32a1* in some GABAergic cells
232 (**N21**).

233 **N6:** *Crh*, *Npnt* and *Gal* were chosen to locate **N6**. *Crh* and *Npnt* are co-
234 expressed in many cells in the sublaterodorsal nucleus (SLD) that is adjacent to the
235 PBN in rostral sections, but *Gal* is not co-expressed with *Crh* in SLD. *Crh* is also

236 expressed in PBle, where it is co-expressed with *Calca* (**N15,16**), as well as in PBiv,
237 PBld, B and LC regions.

238 **N7:** *Stk32b* was chosen to localize **N7**. It is expressed widely throughout the
239 PBN and neighboring brain regions. Its expression overlaps with other markers, e.g.,
240 some *Calca* and *Pdyn* neurons; however, there is a *Stk32b* cluster in rostral PBld that
241 does not overlap with other markers that could represent **N7**. *Cck* and *Nps* are predicted
242 to be robustly expressed in **N5** and **N7** (**Figure 5A**) but they were not chosen for HiPlex;
243 *Cck* is widely expressed in other clusters as well.

244 **N8, N9, N10:** scRNA-Seq clustering analysis suggested that *Pdyn* would be co-
245 expressed with *Stk32b* and *Calcr* in **N8**, which was confirmed by HiPlex analysis. This
246 cluster is closer to the scp in the rostral PBiv region. In addition, **N10** is represented by
247 *Pdyn*, *Ghrh*, *Pnoc*, *Npnt* and *Th*, which was confirmed by HiPlex; these neurons are in
248 more caudal PBld regions. *Npnt* without *Pdyn* was chosen to represent **N9**, but the few
249 cells of this type also express *Crh* (**N6**); thus, the location of **N9** is uncertain. Although
250 tyrosine hydroxylase (*Th*) mRNA is expressed in many *Pdyn* neurons, it is unlikely that
251 they are catecholaminergic because the protein levels are very low compared to LC
252 (Karthik et al., 2022) and other genes required for catecholamine synthesis, vesicular
253 transport and re-uptake were not detected. Transduction of *Pdyn*^{Cre} mice with AAV
254 carrying Cre-dependent effector genes has been used to assess their functions, which
255 include temperature regulation, nocifensive behaviors and feeding (Chiang et al., 2020,
256 Geerling et al., 2016, Kim et al., 2020, Norris et al., 2021, Yang et al., 2021). It will be
257 important to learn whether the two clusters of *Pdyn* neurons have distinct functions.

258 **N11, N12:** The transcription factor *Pax5* was chosen as a marker for **N11** and
259 **N12**. There is a distinct group of *Pax5*-positive cells in the rostral PBiv close to scp that
260 does not overlap with *Pdyn* that could represent **N11**. *Brs3* and *Tacr1* are co-expressed
261 and represent a subset of *Pax5* neurons in rostral PBlc and PBls as **N12**. Expression of
262 *Tacr1* and *Pax5* and expression is more widespread than *Brs3*, extending into PBls and
263 PBmm in caudal sections. The *Pax5* signal is more diffuse than other probes as if it is
264 not restricted to the cell body. Studies using *Tacr1*^{Cre} mice revealed that they play

265 important roles in nocifensive behaviors (Barik et al., 2021, Deng et al., 2020, Huang et
266 al., 2019).

267 **N13, N14:** *Nmu* was chosen for **N13**. A small number of *Nmu*-expressing
268 neurons was observed in the mid-PBN sections that are scattered within the scp or
269 adjacent PBmm, in agreement with location of cell bodies after injecting *Nmu*^{Cre} mice
270 with a Cre-dependent fluorescent reporter (Jarvie and Knight, personal communication).
271 *Pla2g2f* was chosen to locate **N14**; there is a small cluster of weakly expressing cells in
272 the PBmm of mid-PBN sections. Note that the transcription factor *Ebf1* is robustly
273 expressed in **N14** and that this cluster is represented by only ~2.5% of neurons (**Figure**
274 **2B, F**).

275 **N15, N16:** *Calca* is a defining gene of PBle as revealed by AMBA, our Hiplex
276 analysis, immunohistochemistry (Shimada et al., 1985), viral expression of reporter
277 genes activated by injection into the PBN of *Calca*^{Cre} mice (Bowen et al., 2020, Chen et
278 al., 2018, Huang et al., 2021b, Kaur et al., 2017). *Calca*^{Cre} mice have been used
279 extensively to examine the role of these neurons in nocifensive behaviors, appetite, and
280 arousal (Palmiter, 2018). It was unexpected that the scRNA-Seq analysis would reveal
281 *Calca* expression in 2 clusters. **N15** neurons are 3-fold more abundant than **N16**
282 neurons (**Figure 2B**). *Calca* is expressed robustly in PBle, but a few *Calca*-expressing
283 cells are scattered throughout the lateral and medial PBN, which is especially prominent
284 in rostral sections. *Calca* expression extends into the KF where it is intermingled with
285 *Slc32a1*-expressing neurons. It is also expressed in the LC, especially in caudal
286 sections. To distinguish between the two clusters, we used RNAScope with probes for
287 *Calca* and *Gda* (**N15** enriched). *Calca* cells with strong expression in PBle almost
288 entirely overlap with *Gda* along with both strongly and weakly expressing *Calca* cells in
289 other sub-regions, indicating **N15**. There are *Calca* cells without *Gda* scattered sparsely
290 throughout the PBN and there is a small group of *Calca* cells that do not express *Gda* in
291 the lateral ventral PBle that extend partially into the KF that likely represent **N16**.
292 (**Figure 5 – figure supplement 2**).

293 Most of the *Calca*-expressing neurons within PBle form a tight cluster without
294 other neurons interspersed. RNAScope *in situ* hybridization with probes for *Calca* and

295 *Slc17a6* reveal co-expression with no *Slc17a6*-only signal within the core of PBle, but
296 there is some intermixing of neurons bordering the PBle (**Figure 5 – figure supplement**
297 **3**). This arrangement was also more apparent when *Slc17a6* expression was
298 inactivated using a virus expressing Cas9 and two guide RNAs targeted to *Slc17a6*; in
299 that case the *Slc17a6* signal was uniformly weak in the PBle. Importantly, no *Slc17a6*-
300 expressing cells were interspersed among *Calca*-expressing neurons (data not shown).
301 There are no GABAergic neurons in the core of PBle either (compare *Calca* and
302 *Slc32a1* in **Supplementary File 5**).

303 Both the *Calca* and *Calcb* genes encode calcitonin gene-related peptide (CGRP),
304 but *Calcb* is only weakly expressed in cluster **N15** based on scRNA-Seq, although the
305 AMBA shows robust expression of *Calcb* perhaps because their probe hybridized to
306 both genes. The weak expression of *Calcb* was confirmed by immunohistochemistry
307 experiments since *Calca*-null mice express negligible CGRP in the PBN (Chen et al.,
308 2018, Zajdel et al., 2021).

309 The co-expression of several neuropeptides along with CGRP was verified by
310 immunoprecipitation of polysomes from *Calca*^{Cre} mice expressing *Rpl22*^{HA} (RiboTag)
311 followed by microarray analysis of mRNAs (Sanz et al., 2009), which revealed
312 enrichment of *Crh*, *Nts*, *Tac1*, *Adcyap1* and *Vgf* (**Figure 5 – table supplement 5**); these
313 results were confirmed by scRNA-Seq, which also identified several more
314 neuropeptides expressed in these neurons (**Supplementary File 3**). Expression of two
315 GPCR mRNAs (*Avpr1a* and *Galr1*) is restricted to **N15** and *Cckar* is restricted to **N16**
316 (**Figure 3 – table supplement 1**). Several other GPCRs, including *Oprm1* which plays
317 an important role in opioid-induced respiratory depression (Liu et al., 2021), are
318 expressed along with *Calca*, but also in other clusters (**Supplementary File 4**).
319 Unexpectedly, *Chat* (encodes acetylcholine biosynthetic enzyme) is expressed in **N15**
320 (as well as **N6**), a result consistent with location fluorescent protein expression after
321 viral transduction of *Chat*^{Cre} mice with AAV-DIO-YFP (see below) and
322 immunohistochemistry (Garfield et al., 2015). *Slc18a3*, the vesicular transporter for
323 acetylcholine, is selectively expressed in **N15**, suggesting that this *Calca* neuron
324 population is both glutamatergic and cholinergic.

325 **N17:** *Satb2*, which encodes a transcription factor, is a defining gene for this
326 cluster. These neurons are scattered in the PBlv, and PBmm and scp in the caudal PBN
327 based on Hi-Plex results and reporter gene expression from *Satb2*^{Cre} mice. RNA-Seq
328 experiments predicted that *Satb2* neurons co-express *Tac1*, which was confirmed by an
329 RNAScope experiment in which *Tac1*, *Satb2* and *Calca* probes were combined (**Figure**
330 **4 – figure supplement 4**). This experiment revealed co-expression of *Tac1* and *Calca*
331 as well as *Tac1* and *Satb2*, but there were also abundant *Tac1* cells without expression
332 of either *Satb2* or *Calca*, especially in PBlv and PBlc. *Satb2*^{Cre} mice have been used to
333 show that these PBN neurons relay taste signals to the thalamus (Fu et al., 2019, Jarvie
334 et al., 2021).

355 **N18:** *Shisal2b* and *Sostdc1* were chosen to represent **N18**. Weakly expressing
356 *Sostdc1* cells were scattered throughout caudal PBN sections. No *Shisal2b* signal was
357 detected in any section examined.

388 **N19:** The transcription factor *Phox2b* was chosen as a distinct marker for **N19**;
389 there is sparse expression of *Phox2b* in PBmm within and around the Scp. There is
390 more abundant expression of *Phox2b* on the medial side of the PBN and extending into
391 the neighboring LC and KF in agreement with (Karthik et al., 2022).

342 **N20, N21:** The vesicular transporter for GABA (Vgat) encoded by the *Slc32a1*
343 gene is expressed along with the GABA biosynthetic enzymes, *Gad1* and *Gad2*, in
344 neurons scattered throughout the PBN, with some small clusters of *Slc32a1*-positive
345 neurons in PBls, PBmm and KF. GABA neurons within the PBN can inhibit local
346 glutamatergic neurons (Sun et al., 2020). RNA-Seq analysis indicated that *Pnoc* is
347 expressed in **N21** but not **N20**. Most *Slc32a1*-expressing cells in KF do not express
348 *Pnoc*. Some GABAergic cells scattered throughout the rest of the PBN express *Pnoc*
349 while others do not; thus, **N20** and **N21** appear to be intermingled throughout the PBN
350 and KF.

351 In summary, of the neuron subclusters identified by scRNA-Seq, some are in
352 brain regions that are adjacent to the PBN including **N1, 2, 3, 4 and 6**; some clusters,
353 e.g., the GABAergic clusters, are sparse and scattered throughout the PBN (**N9, 18, 20**,

354 **21**); leaving twelve clusters (**N5, 7-8, 10-17, 19**) that can be placed into one of the
355 AMBA sub-regions (**Figure 4C**).

356

357 **Mapping PBN expression and axonal projections with Cre-driver lines
358 of mice**

359 Expression of fluorescent proteins from AAV injected into the PBN of Cre-driver lines of
360 mice provides an independent means of locating the cell bodies; it also allows one to
361 visualize the axonal projections. We injected AAV1-Ef1a-DIO-YFP and AAV1-Ef1a-DIO-
362 synaptophysin:mCherry into the PBN or surrounding region of 21 Cre-driver lines to
363 visualize cell bodies and processes within the PBN (YFP) and synapses (mCherry)
364 throughout the entire brain. Cre-expressing cells in the PBN were categorized by their
365 location within large PBN subdivisions and surrounding regions (**Figure 6A-E**). In
366 addition to the 21 Cre-driver lines described here, PBN expression from additional Cre-
367 driver lines has been reported (**Figure 6, table supplement 1**), not including those
368 described in the Allen Institute Connectome project. *Slc17a6*^{Cre} (Vglut2), which is
369 expressed in most of the clusters, reveals the overall distribution of glutamatergic
370 projections from the PBN (Huang et al., 2019). As expected, the location(s) of
371 fluorescent cell bodies in the PBN of the Cre-driver lines of mice is consistent with *in*
372 *situ* hybridization results, although the promoter in the virus and multiple viral particles
373 per cell can provide more robust expression than the endogenous gene, e.g., many
374 GPCRs where the *in situ* signal in the AMBA is undetectable.

375 We also mapped the expression of *Calca* in mice with tdTomato targeted to the
376 *Calca* locus (*Calca*^{tdT}, **Figure 6F**). Fluorescence from *Calca*^{tdT} mice reveals that in
377 addition to robust expression in PBle, a few *Calca*-expressing cells are scattered
378 throughout the lateral and medial PBN, which is especially prominent in rostral sections
379 in agreement with the *in situ* experiments above. This approach also reveals tdTomato
380 fluorescence that extends into the KF. The LC, trigeminal and facial nuclei also express
381 *Calca*, in agreement with AMBA. Note that a genetic cross of *Calca*^{Cre} mice with Cre-
382 dependent reporter line, e.g., Gt(ROSA)26Sor^{sl-tdTomato} (Ai14) results in widespread

383 fluorescence throughout the brain due to developmental expression (Carter et al.,
384 2013).

385 For each of the 21 Cre-driver lines that we analyzed and the *Calca*^{tdT} line, images
386 were taken from every 3rd coronal, 35- m section, stitched together and registered to
387 generate a TIFF stack that can be manipulated to view expression of YFP and mCherry
388 throughout the brain using ImageJ. All images are available to view and download from
389 Zenodo (DOI: 10.5281/zenodo.6707404); an example video of *Calca* cell expression is
390 included here (**Video 1**).

391 Cell populations in the PBN can conceptually be divided into two major groups
392 based on overall projection patterns (**Figure 7A**). The relatively dense cluster of cells in
393 the PBle generally follows the central tegmental tract (CTT) and the cells in the dorsal
394 regions (PBld/ls/lc) tend to follow the ventral pathway (VP). Both populations also
395 project along the descending pathway into the brainstem, but the projections to the
396 brainstem from the cells in the dorsal regions tend to be weaker than those from the
397 PBle (**Figure 7B**). Cells that reside in the PBmm do not appear to have a unique
398 projection pathway, but rather offer variations in projection strength along the two major
399 pathways.

400 For Cre-driver lines that are expressed almost exclusively in the PBle (*Calca*,
401 *Crhr1*, *Nts*, *Chat*), or strongly in the PBle along with other regions (*Crh*, *Adcyap1*,
402 *Adcyap1r1*, *Tac1*, *Mc4r*, *Oprm1*) the axon terminals with the brightest signal are in the
403 BNST and CEA. Although expression is generally spread throughout these subregions,
404 the oval and ventral regions of the BNST and the capsular region of the CEA have the
405 strongest fluorescence. It is likely that the PBle cells are responsible for most of the
406 oval/ventral BNST and capsular CEA staining density, while other neurons in the dorsal
407 PBN project to adjacent regions. Although there is some variation, the next brightest
408 regions are the IC, DMH, SI, VPMpc, and PSTN. There are no lines that have
409 expression in the PBle that do not have at least some amount of synaptophysin in the
410 above listed regions. Other areas that are often innervated are the LS, CM, LHA, RE,
411 IMD, PAG, DR, RN, and NTS. Many of the Cre-driver lines that have most of their
412 expression in PBle still have cells scattered throughout other subregions in the PBN,

413 which may explain the expression in areas that have been associated with the ventral
414 tract, such as the DMH and LHA.

415 Cre-driver lines that mainly have expression in the dorsal regions (*Pdyn*, *Tacr1*,
416 *Brs3*, *Cbln4*, *Ptger3*) tend to target ventral brain regions such as the MEPO and DMH.
417 The cell groups in the dorsal areas do not always overlap with the PBle groups; the
418 intensity of projection sites can vary in areas like the MEPO from very strong (*Cbln4*) to
419 very weak (*Pdyn*). Cre-driver lines with smaller cell populations (*Pdyn*, *Brs3*) innervate
420 fewer regions with weaker signal such as PVH, LHA, DMH, and PAG, than lines with
421 more cells (*Tacr1*, *Ptger3*). Cre-driver lines that include some expression in PBle weakly
422 innervate areas associated with the CTT such as BNST and CEA.

423 Some Cre-driver lines have strong cellular expression across most of the lateral
424 PBN. For lines like this (*Adcyap1*, *Adcyap1r1*, *Oprm1*, *Crh*), there is often strong
425 innervation in areas associated with the CTT such as the BNST/CEA and areas
426 associated with the VP such as the MEPO. Overall, their projections are a combination
427 of areas seen in the other groups.

428 The cells that reside in the PBmm do not appear to have a separate innervation
429 profile. There was no line examined that had its expression limited to the PBmm
430 exclusively. However, in one example (*Tac1*), the cells were transduced in PBmm on
431 only one side, allowing for a comparison of projections between hemispheres. The
432 result was a slightly brighter synaptophysin signal in the common projection targets of
433 IC, BNST, and CEA, and a much brighter signal in the cortical amygdala on the side
434 with the PBmm expression. In another example (*Phox2b*), most of the cells transduced
435 were in the PBmm, with some cells in the PBlc and PBls. This line showed a unique
436 projection to the SH, which likely originated from cells in the PBlc and PBls rather than
437 PBmm because we did not see the same SH projection from the *Tac1* cells in the
438 PBmm (*Phox2b* and *Tac1* whole brain expression available on Zenodo, DOI:
439 10.5281/zenodo.6707404).

440 A few Cre-driver lines reveal unique projection patterns. *Satb2* is a population
441 that resides mainly in PBlv, scp, and PBmm. Although only partially expressed in PBle,
442 the projection pathway still largely follows the CTT with connections to areas typically

443 associated with PBle such as BNST and CEA, but with weaker projections to the oval
444 and capsular subregions typical of PBle lines. The axon terminals from *Satb2*^{Cre}- and
445 *Calca*^{Cre}-driver lines in the BNST and CEA reveal that they are distinct (**Figure 8A-B**).
446 *Ntsr1* is another population that does not match the others. Its cell bodies are dorsal to
447 the rostral PBN in the nucleus of the lateral lemniscus (NLL). The main projection target
448 is the VMH (**Figure 8C**). All other lines that have projections to the VMH (*Crhr1*, *Nts*,
449 *Adcyap1*, *Adcyap1r1*, *Tacr1*, *Oprm1*) also have cell bodies in the same region as *Ntsr1*,
450 which suggests that projections to VMH likely come from viral transduction of cells in the
451 NLL rather than the PBN.

452 Many of the genes of interest are widely expressed in regions surrounding the
453 PBN, which made restricting the transduction of cells within the PBN nearly impossible.
454 *Gad2* and *Slc32a1*, the two GABAergic genes, are only sparsely expressed within the
455 PBN compared to adjacent areas; consequently, we were unable to determine whether
456 they function as interneurons or as projection neurons. *Gad2* is expressed more widely
457 and without *Slc32a1* in PBN glutamatergic cells, e.g., *Calca* neurons, so using that Cre-
458 driver line to examine inhibitory projections outside of the PBN could be misleading. To
459 explore the projection pathways that may arise from common off-target transduction of
460 cells around the PBN, a line with broad expression (*Adcyap1*) was injected in the
461 regions dorsal and rostral to the PBN (**Figure 8D-E**). This resulted in widespread
462 expression in the CUN, ICe, ICc, and NLL, with only a few cells in the rostral PBIs. The
463 result was strong expression in the VMH, geniculate nucleus, and PAG (particularly the
464 dorsal lateral PAG). There were also weak projections to the LS, MPO/LPO region,
465 PVH, AD, CM, RE, LHA, much of the hypothalamic regions, DMH, medial amygdala,
466 PF, ZI, VTA, RPA, MARN, RN, and NTS. Consequently, care must be taken to closely
467 examine transduction of cells outside the PBN to avoid misinterpretation of results.

468

469 **DISCUSSION**

470 The goals of this project were to establish a catalog of neuronal cell types within the
471 PBN and characterize their transcriptional profiles, determine their location within the

472 PBN, and map their axonal projections to facilitate studies of their functions in
473 responding to and relaying interoceptive and exteroceptive signals. As expected, the
474 round tissue punches used to isolate the PBN included some adjacent regions;
475 consequently, 5 of the 21 clusters are not in the PBN. About 90% (6855/7635) of the
476 PBN neurons are glutamatergic and most of them have discrete locations within the
477 PBN, whereas the GABAergic neurons are scattered throughout. Some of the excitatory
478 neurons (e.g., *Calca*, *Pdyn*, *Tacr1*) were already known to occupy distinct locations
479 within the PBN and have distinct functions. Twelve of the PBN glutamatergic clusters
480 have discrete locations. Our results reveal that most of the PBN neurons express
481 multiple neuropeptides and GPCR receptors; the co-expressed transcription factors
482 may play an important role in their cell-specific gene expression. Many of neuropeptides
483 expressed in the PBN, e.g., cholecystokinin, substance P, calcitonin gene-related
484 peptide, somatostatin, prodynorphin, neuropeptid Y, where known to be expressed in the
485 PBN based on immunohistochemistry studies and confirmed by *in situ* hybridization
486 (Hermanson et al., 1998, Saleh and Cechetto, 1996, Shimada et al., 1985) The overall
487 axonal projections of the PBN neurons were established using anterograde tracers and
488 confirmed using *Slc17a6*^{Cre} mice and injections of AAV carrying Cre-dependent
489 fluorescent genes (Huang et al., 2021a). We provide detailed projection profiles from
490 the PBN for many additional Cre-driver lines of mice that may generate ideas for testing
491 their functions. The current data set provides a baseline for examining how the PBN
492 changes during development and in response to environmental threats ranging from
493 acute noxious events to chronic adverse conditions.

494 The PBN was classically divided into 10 sub-regions based on morphological
495 criteria, anterograde and retrograde mapping strategies. While most studies agree with
496 the relative location of these subregions their precise boundaries are not established; it
497 is unfortunate that the names of the subregions and their abbreviations are inconsistent.
498 We used the AMBA nomenclature because it is readily available, and frequently used.
499 Gene expression patterns can help refine the boundaries of these sub-regions as
500 shown in **Figure 4**. We identified genes that are primarily restricted to each of the PBN
501 subregions except the PBme. Despite the tight clustering of some mRNAs, e.g., *Calca*,
502 in specific sub-regions of the PBN, nearly all of them are also expressed more sparsely

503 in neighboring regions. Furthermore, what was once considered to be a unique
504 population turns out to be more complex, e.g., both the *Calca* and *Pdyn* neurons are
505 represented by two clusters based on scRNA-Seq analysis. Whether these closely
506 related clusters have distinct projections and functions needs to be established, e.g.,
507 are distinct *Pdyn* neurons involved in conveying temperature, nocifensive behaviors and
508 feeding responses? The significance of the tight clustering of *Calca* neurons, with few if
509 any interspersed neurons, is not known; it is unlikely that these neurons are connected
510 by gap junctions to allow simultaneous activation because *Calca* neurons are not
511 activated synchronously when GCaMP signals of individual neurons were analyzed
512 (Chen et al., 2018).

513 Most PBN glutamatergic neurons are primarily restricted to a subregion with a
514 few neurons scattered in other regions. In contrast, GABAergic neurons are rare (~10%
515 of total) and they are dispersed throughout the PBN, in agreement with 12% inhibitory
516 neurons in rat PBN (Raver et al., 2020). Although GABAergic neurons in the KF project
517 axons to the brainstem (Geerling et al., 2017), it is not known whether other PBN
518 neurons project outside the PBN. Chemogenetic or optogenetic activation of
519 GABAergic neurons in the PBN can inhibit the function of local *Slc17a6* neurons (Sun et
520 al., 2020) and we have shown using electrophysiology techniques that their activation
521 can inhibit *Calca*^{tdT} neurons (unpublished).

522 There are several limitations to the conclusions reached in this study. The choice
523 of parameters used for clustering of scRNA-Seq data can affect the number of clusters
524 and sequencing depth can influence the reliability of co-expression for low-abundance
525 transcripts. For example, the number of cells in a neuronal subcluster expressing a
526 particular GPCR mRNA (e.g., *Oprm1*) was low based on scRNA-Seq analysis, whereas
527 the signal from the Cre-driver line revealed many cells. We obtained ~100,000 reads
528 per neuron which is close to the number of mRNA molecules/cell. A higher number of
529 reads is necessary to capture rare transcripts since a single transcript can maintain
530 ~10,000 proteins with a half-life of 1 day, which may be enough for many regulatory
531 proteins. There was good, low-resolution correspondence among HiPlex, AMBA, and
532 fluorescent protein expression from Cre-driver lines when transcripts were abundant,

533 but *in situ* failed for some probes. When the distinguishing transcripts were of low
534 abundance/cell, we were unable to detect any neuronal signal by *in situ* hybridization
535 (e.g., *Fn1*, *Mylk*, *Slc35d3*, *Shisa12b*); this could be due to poor quality probes or
536 expression levels that were too low to detect. In some cases, the probes were good but
537 there was little signal in the PBN (e.g., *Nfib*, *Pappa*). There were also cases where
538 predictions of transcript co-expression were not supported by HiPlex analysis. Cre-
539 driver lines are superior for locating some neurons with low levels of gene expression
540 (e.g., *Ntsr1*, *Chat*, *Avpr1a*) because, in principle, the action of a pair of Cre recombinase
541 molecules is sufficient to activate robust expression from AAV carrying a Cre-dependent
542 gene. When genes are expressed in the PBN as well as neighboring regions, restricting
543 AAV transduction to the PBN is challenging. Interpretation of the axonal projections
544 requires analysis of multiple injected mice and knowledge of where neighboring neurons
545 project their axons.

546 The last decade has seen extensive use of Cre-driver lines of mice and AAV
547 carrying Cre-dependent effector genes to interrogate the functions of PBN neurons.
548 One strategy uses Cre-drivers with restricted expression. For example, numerous
549 studies with *Calca*^{Cre}, *Pdyn*^{Cre}, and *Tacr1*^{Cre} mice have revealed their activation by a
550 wide variety of real and potential threats, while their optogenetic or chemogenetic
551 activation is generally aversive and their inactivation ameliorates aversive responses to
552 threats (references are included in Results, under **N10**, **N15**, **N17**). An alternative
553 strategy uses Cre-driver mice with widespread expression in the PBN, e.g., *Slc17a6*^{Cre},
554 *Cck*^{Cre}, *Oprm1*^{Cre}, and *Tac1*^{Cre}, to assess behavioral/physiological consequences of
555 their activation or inhibition (Barik et al., 2018, Cheng et al., 2020, Chiang et al., 2020,
556 Liu et al., 2022, Sun et al., 2020). A problem with these Cre-drivers is the difficulty in
557 restricting viral transduction to the PBN. Both approaches have flaws because it is rare
558 for threats to activate only one cell type and all the cells represented by the more widely
559 expressed genes are rarely engaged by specific threats. Furthermore, activation of
560 some PBN neurons can suppress the activity of others, e.g., activation of *Tac1* neurons
561 counteracts the outcomes of activating *Calca* neurons even though *Tac1* and *Calca* are
562 extensively co-expressed (Arthurs and Bertsch, to be submitted). This possibility
563 complicates interpretation of results when groups of neurons are artificially manipulated.

564 One solution to this problem is tagging and manipulating of groups of neurons that are
565 normally engaged by specific threats, e.g., by using FosTrap, CANE or similar
566 strategies (DeNardo and Luo, 2017, Sakurai et al., 2016), a technique that has been
567 used to trap PBN neurons activated by pain and aversive odors (Liu et al., 2022,
568 Rodriguez et al., 2017).

569 The broad outlines of axonal projections from the PBN were established decades
570 ago by anterograde tracing studies (Fulwiler and Saper, 1984, Gauriau and Bernard,
571 2002, Krout and Loewy, 2000, Moga et al., 1990, Norgren and Leonard, 1971, Tokita et
572 al., 2009) and confirmed by using broadly expressed *Slc17a6*^{Cre} mice and injection of
573 AAV expressing Cre-dependent fluorescent markers (Chiang et al., 2020, Huang et al.,
574 2021a). The axonal tracts to the forebrain follow two main paths as they leave the PBN.
575 The CTT pathway travels to the forebrain via the ventral thalamus, to the extended
576 amygdala and cortex. The VP travels through the ventral tegmental area to the
577 hypothalamus, with a periventricular branch passing through the periaqueductal grey
578 and more dorsal thalamus. A descending pathway innervates parts of the hindbrain
579 including the nucleus of the solitary tract (NTS), pre-Bötzinger and reticular regions.
580 *Calca* neurons have axon collaterals that go to more than one brain region (Bowen et
581 al., 2020). Most of the Cre-driver lines tested here resemble either the *Calca* neurons or
582 the *Pdyn* neurons in their axonal projections; however, there are distinct differences in
583 their innervation of forebrain targets that is revealed by synaptophysin staining. We
584 identified two unique projections: one from *Phox2b* cells in the PBlc and PBIs that
585 innervate the SH and another from *Ntsr1* cells just outside the PBN in the NLL that
586 innervate the VMH. As expected, reporter expression from Cre-driver lines with
587 expression in several PBN clusters have composite projection patterns.

588 The axonal inputs to specific clusters of PBN neurons are beginning to be
589 established, either by retrograde rabies virus tracing studies starting with specific Cre-
590 drivers, e.g., *Calca*^{Cre} (Liu et al., 2022, Rodriguez et al., 2017) or by candidate
591 approaches starting with expression AAV-DIO-ChR2 into distal sites of Cre-driver lines
592 of mice and recording photoactivated currents in specific PBN neurons, e.g., input from
593 *Cck* or *Dbh* neurons in the NTS to *Calca* neurons in the PBN (Roman et al., 2016), *Oxt*

594 neurons in pre-optic area to *Oxtr* neurons in PBN (Ryan et al., 2017), *Slc17a6* or
595 *Slc32a1* inputs from BNST to *Pdyn* and *Calca* neurons in PBN (Luskin et al., 2021).
596 Many other molecularly defined inputs to different subregions of the lateral PBN have
597 been described, e.g., *Tacr1* and *Gpr83* from spinal cord (Choi et al., 2020), *Gfral*, *Glp1r*
598 from area postrema (Zhang et al., 2021), *Calcr* from NTS (Cheng et al., 2020),
599 *Slc17a6/Dbh* from LC (Yang et al., 2021), *Slc6a3* from ventral tegmental area (Han et
600 al., 2021), *Slc32a1* from substantia nigra reticulata, *Npy/Slc32a1* from arcuate nucleus
601 (Alhadeff et al., 2018, Wu et al., 2009); *Mc4r* from the PVN (Garfield et al., 2015), *Htr2a*,
602 *Prkcd*, or *Sst/Pdyn/Crh* from CEA (Cai et al., 2014, Douglass et al., 2017, Raver et al.,
603 2020). In each of these cases, knowing the locations and identity of PBN clusters that
604 they innervate would refine connectivity maps and provide greater insight into potential
605 functions.

606 Our study highlights the diversity of cell types in the PBN, many of which reside
607 in distinct subregions that align with prior anatomical tracing studies. We also mapped
608 the PBN cell distribution and detailed brain-wide projections of 21 Cre-driver mouse
609 lines. All these data are publicly available for download and most of the mice have
610 already been deposited at The Jackson Laboratory. We hope that this rich resource will
611 continue to inspire future studies on the role and neurocircuitry of the PBN.

612

613 MATERIALS AND METHODS

614 Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Strain, strain background (<i>Mus musculus</i>)	Refer to Figure 6 – table supplement 1 for sources of all Cre-driver lines of mice.			
Strain, strain background (AAV1)	pAAV1-Ef1 \square -DIO-YFP	Karl Deisseroth	Addgene Plasmid #27056 RRID:Addgene_27056	

Strain, strain background (AAV1)	pAAV1-Ef1 \square -DIO-Synaptophysin-mCherry	(Roman et al., 2016)		
Antibody	Anti-GFP (chicken polyclonal)	Abcam	Cat#: ab13970 RRID:AB_300798	1:10,000
Antibody	Anti-dsRed (rabbit monoclonal)	Takara	Cat#: 632496 RRID:AB_10013483	1:1,000
Antibody	Alexa Fluor 488 anti-chicken (donkey monoclonal)	Jackson ImmunoResearch	Cat#: 703-545-155 RRID:AB_2340375	1:500
Antibody	Alexa Fluor 494 anti-rabbit (donkey monoclonal)	Jackson ImmunoResearch	Cat#: 711-585-152 RRID:AB_2340621	1:500
Commercial assay or kit	RNAscope HiPlex12 Reagents Kit (488, 550, 647)	Advanced Cell Diagnostics	Cat No. 324108	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Pla2g2f-O1-T1	Advanced Cell Diagnostics	Cat No. 1006331-T1	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Brs3-T2	Advanced Cell Diagnostics	Cat No. 454111-T2	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Slc17a7-T3	Advanced Cell Diagnostics	Cat No. 416631-T3	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Fn1-T4	Advanced Cell Diagnostics	Cat No. 316951-T4	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Nmu-T5	Advanced Cell Diagnostics	Cat No. 446831-T5	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Calcr-T6	Advanced Cell Diagnostics	Cat No. 494071-T6	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Pdyn-T7	Advanced Cell Diagnostics	Cat No. 318771-T7	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Slc32a1-T8	Advanced Cell Diagnostics	Cat No. 319191-T8	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Th-T9	Advanced Cell Diagnostics	Cat No. 317621-T9	

Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Satb2-T10	Advanced Cell Diagnostics	Cat No. 413261-T10	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Stk32b-T11	Advanced Cell Diagnostics	Cat No. 564841-T11	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Piezo2-O1-T12	Advanced Cell Diagnostics	Cat No. 500501-T12	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Slc32a1-T1	Advanced Cell Diagnostics	Cat No. 319191-T1	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Pnoc-T2	Advanced Cell Diagnostics	Cat No. 437881-T2	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Ghrh-T3	Advanced Cell Diagnostics	Cat No. 470991-T3	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Nfib-T4	Advanced Cell Diagnostics	Cat No. 586511-T4	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Pappa-T5	Advanced Cell Diagnostics	Cat No. 443921-T5	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Pax5-T6	Advanced Cell Diagnostics	Cat No. 541761-T6	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Gal-T8	Advanced Cell Diagnostics	Cat No. 400961-T8	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Crh-T9	Advanced Cell Diagnostics	Cat No. 316091-T9	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Npnt-T11	Advanced Cell Diagnostics	Cat No. 316771-T11	
Commercial assay or kit	RNAscope® HiPlex Probe- Mm-Sostdc1-T12	Advanced Cell Diagnostics	Cat No. 313151-T12	
Commercial assay or kit	RNAscope® HiPlexUp Reagent	Advanced Cell Diagnostics	Cat No. 324190	
Commercial assay or kit	RNAscope® Probe - Mm-Calca-alltv-C2	Advanced Cell Diagnostics	Cat No. 417961-C2	
Commercial assay or kit	RNAscope® Probe - Mm-Gda-C3	Advanced Cell Diagnostics	Cat No. 520531-C3	
Commercial assay or	RNAscope® Probe -	Advanced Cell	Cat No. 319171	

kit	Mm-Slc17a6	Diagnostics		
Commercial assay or kit	RNAscope® Probe-Mm-Pdyn-C3	Advanced Cell Diagnostics	Cat No. 318771-C3	
Commercial assay or kit	RNAscope® Probe-Mm-Satb2	Advanced Cell Diagnostics	Cat No. 413261	
Commercial assay or kit	RNAscope® Probe-Mm-Tac1-C3	Advanced Cell Diagnostics	Cat No. 410351-C3	
Commercial assay or kit	RNAscope® Fluorescent Multiplex Reagent Kit	Advanced Cell Diagnostics	Cat No. 320850	
Commercial assay or kit	Chromium Single Cell Controller & Accessory Kit	10X Genomics	Cat # 120263	
Commercial assay or kit	Chromium Single Cell 3' Library and Gel Bead Kit v2	10X Genomics	Cat # 120267	
Commercial assay or kit	Chromium Single Cell A Chip Kit	10X Genomics	Cat # 120236	
Commercial assay or kit	Chromium i7 Multiplex Kit	10X Genomics	Cat # 120262	
Commercial assay or kit	Dead Cell Removal Kit	Miltenyi Biotec	Cat # 130-090-101	
Commercial assay or kit	Illumina HiSeq	Genewiz		
Commercial assay or kit	SPRIselect	Beckman Coulter	Product No: B23317	
Commercial assay or kit	4200 TapeStation	Agilent	G2991AA	
Commercial assay or kit	High Sensitivity D5000 ScreenTape	Agilent	Part Number: 5067-5592	
Other	Normal donkey serum	Jackson ImmunoResearch	Cat#:017-000-121 RRID:AB_2337258	
Software, algorithm	RNAscope HiPlex Image Registration Software	Advanced Cell Diagnostics	Cat # 300065	

Software, algorithm	FIJI	ImageJ	RRID: SCR_002285	
Software, algorithm	NeuroInfo	MBF Bioscience		
Software, algorithm	R	r-project.org ; RRID: SCR_001905		
Software, algorithm	Seurat v3.1.2	https://Github.com/JonathanShor/DoubletDetection ; RRID: N/A		
Software, algorithm	bcl2fastq v2.18.0.12	Illumina.com; RRID: SCR_015058		
Software, algorithm	Cell Ranger v3.1.0	10X Genomics; RRID: SCR_017344		
Software, algorithm	SAMtools v1.10	Htslib.org; RRID: SCR_002105		
Software, algorithm	Python	Python.org ; RRID: SCR_008394		

615

616 **Animals**

617 All experiments were approved by the Institutional Animals Care and Use
618 Committee at the University of Washington. Animals were group-housed with littermates
619 on a 12-h light cycle at ~22°C with food and water available *ad libitum*. Male and female
620 mice from the same litter were used, but no formal comparisons were done between
621 sex.

622 **Single-Cell Library Preparation and Sequencing**

623 Live single cell suspensions were prepared as previously described (Rossi et al.,
624 2021, Rossi et al., 2019) and tissue was harvested approximately 6 h after the onset of
625 the dark cycle (Zeitgeber time ~18:00). Briefly, mice were transcardially perfused with a
626 cold artificial CSF solution containing NMDG (NMDG-aCSF), modified from (Ting et al.,
627 2018). All steps were performed under continuous oxygenation and CO₂ buffering using
628 95%/5% O₂/CO₂. Brains were rapidly dissected, and coronal slices (200 µm) spanning
629 the PBN were prepared using a vibrating microtome (VT1200, Leica Biosystems). Slices
630 were allowed to recover in NMDG-aCSF containing 500 nM TTX, 10 µM AP-V, 10 µM

631 DNQX (NMDG-aCSF-R) for 20 min and the PBN was subsequently isolated using
632 tissue punches (500-750 μ m). The isolated tissue was enzymatically digested using 1
633 mg/mL Pronase (Roche) for 50 min, and enzymatic digestion was quenched with 0.05%
634 BSA. Cells were mechanically dissociated using a fire-polished glass pipet with an
635 internal diameter of 200-300 μ m, filtered through a 40 μ m strainer, washed, and
636 depleted of dead cellular fragments using a commercial kit (Miltenyi Biotec, Bergisch
637 Gladbach, Germany). The remaining cells were resuspended in PBS containing 0.05%
638 BSA at a concentration of 1,000 cells/ μ L.

639 Single-cell RNA libraries were generated using Chromium Single-Cell 3' v2
640 chemistry (10X Genomics, Pleasanton, CA) following the standard manufacturer
641 protocol. A pool of ~17,000 cells harvested from 5 mice were loaded per reaction, with
642 the first pool run on a single reaction and the second pool spread across three reactions
643 (**Figure 1 – figure supplement 1H-I**).

644 For each library, cDNA amplification was performed using 12 cycles and indexing
645 was performed using 11 cycles. Library size distribution and concentration was
646 determined using a Qubit HS DNA Assay (Invitrogen, Waltham, MA) or High Sensitivity
647 D5000 ScreenTape (Agilent Technologies, Santa Clara, CA). Each reaction library was
648 sequenced on two lanes of an Illumina HiSeq 4000 using 2x150 chemistry by Genewiz,
649 Inc (South Plainfield, NJ) following the standard 10X Genomics v2 paired-end
650 configuration. Approximately 875 million reads were generated per lane with a mean
651 sequencing saturation of 82.6%. Sequences were aligned to the mm10-3.0.0 genome,
652 and digital expression matrices were created using 10X Genomics Cell Ranger v3.1.0
653 with 128 GB of memory on 24 cores.

654 **Single-Cell Clustering Analysis and Feature Discovery**

655 Clustering was performed using Seurat v3.1.2 (Stuart et al., 2019) and custom
656 code in R v3.6.1 as described (Rossi et al., 2021). Briefly, to remove low-quality cells,
657 total input cells were first filtered using a threshold for genes and fraction mitochondrial
658 reads, and doublets were subsequently removed using DoubletDetection v2.5.4 under
659 default parameters on Python 3.7 via Reticulate v1.14 (Gayoso and Shor, 2022). Cells
660 containing \leq 800 genes and \geq 10 percent mitochondrial reads were removed from the

661 primary analysis (**Figure 1** and **Figure 1 – figure supplement 1**). Within the analysis of
662 all cells, one subcluster was unable to be mapped to any specific features and was
663 excluded from analysis (**Figure 1B, gray**). Following these filters, a total of 39,649 cells
664 were retained with a median of 1,740 genes and 3,366 transcripts represented across a
665 median of 47,177 reads per cell (**Figure 1** and **Figure 1 – figure supplement 1A-E**).
666 The neuronal cluster identified in the initial analysis of all cells (**Figure 1B**) was then
667 isolated and subjected to a more stringent quality threshold where only cells containing
668 ≤ 2 percent mitochondrial reads were retained to enable high-confidence, high-
669 resolution sub-clustering (**Figure 2 – figure supplement 2C** and **H**). Within the
670 neurons, two subclusters were unable to be mapped to any specific features and were
671 excluded from the analysis (**Figure 2A, gray**). This resulted in a final analysis of 7,635
672 neurons containing a median of 3,189 genes, 7,823 transcripts, and 99,583 reads per
673 cell (**Figure 2** and **Figure 2 – figure supplement 1A-J**).

674 Regression and integration of samples was performed using a regularized
675 negative binomial regression (Hafemeister and Satija, 2019, Stuart et al., 2019) and
676 canonical correlation analysis (Butler et al., 2018, Stuart et al., 2019) as described
677 (Rossi et al., 2021) (**Figure 1 – figure supplement 1F-G** and **Figure 2 – figure**
678 **supplement 1K-M**). Principal components were calculated on all genes, and cells were
679 plotted in UMAP space using iteratively tuned parameters to optimize for visualization
680 (McInnes et al., 2018) (**Figure 1 – figure supplement 1J** and **Figure 2 – figure**
681 **supplement 1O**). Clustering was performed using the Louvain algorithm with multilevel
682 refinement (Rodriguez and Laio, 2014) with a K parameter of 25 and resolution of 0.04
683 (all cells) (**Figure 1**), or a K parameter of 15 and resolution of 0.25 (neurons) (**Figure 2**).
684 Feature discovery for cell-type assignment was performed on Pearson residuals using a
685 likelihood-ratio test for single-cell data as implemented in Seurat (Hafemeister and
686 Satija, 2019, Macosko et al., 2015, McDavid et al., 2013).

687 Prepossessing, regression, integration, dimensionality reduction, clustering, and
688 feature discovery were run on a Dell blade-based cluster at the University of North
689 Carolina at Chapel Hill running Linux RedHat Enterprise 7.7. All other steps were
690 performed on an Apple MacBook Pro running macOS 11.4.0.

691 Raw and processed data for the scRNA-seq experiment has been deposited at the
692 National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO),
693 accession number GSE207708;
694 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207708>). The code used in
695 this analysis is available at a Github repository affiliated with the Stuber Laboratory
696 group (<https://github.com/stuberlab/Pauli-Chen-Basiri-et-al-2022>).

697 **RiboTag Analysis of Transcripts Enriched in *Calca* Neurons**

698 The *Calca*^{Cre} mice were used to identify mRNAs that were selectively being
699 translated in neurons that express the *Calca* gene by injecting a virus expressing a Cre-
700 dependent hemagglutinin (HA)-tagged ribosomal protein 22 (AAV-DIO-Rpl22-HA) (Sanz
701 et al., 2015) into the PBN of 8 adult mice. After several weeks to allow incorporation of
702 the tagged ribosomal protein into ribosomes, tissue punches (two pools of bilateral
703 punches from 4 mice) were collected, total cell extract was prepared and then
704 polyribosomes were precipitated with an antibody against the HA-tagged ribosomes
705 (Sanz et al., 2019, Sanz et al., 2009). For microarray analysis, 10 ng of total RNA was
706 amplified and biotin-labeled using the Ovation Pico SL WTA system with the EncoreLL
707 biotinilation module (NuGEN), and 750 ng of the labeled cDNA was hybridized to a
708 MouseRef-8v2.0 gene expression BeadChip (Illumina). Signal was detected using the
709 BeadArray Reader (Illumina) and analyzed using the GenomeStudio software (Illumina).
710 Average normalization and the Illumina custom error model were applied to the
711 analysis. Only transcripts with a differential score of >13 (p < 0.05) were considered.

712 Raw and normalized RiboTag data have been deposited in the NCBI GEO
713 (accession number GSE207153;
714 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207153>). In some cases, the
715 microarray included more than one probe for the same gene and the absolute values
716 could differ greatly; thus, the relative enrichment is more reliable.

717 **Mice**

718 The *Calca-tdTomato* mice have been described (Jarvie et al., 2021). All the Cre-
719 driver lines of mice used in this study are listed in **Figure 6 – table supplement 1**.
720 Most of them have been described previously and/or deposited at Jackson labs, where
721 details can be found. All mice were on a C57BL/6J genetic background. The generation
722 of 4 new lines are described below. The *Cbln4*, *Ntsr1*, and *Tacr1* Cre-driver lines were
723 made by inserting IRES-Cre:GFP just beyond the termination codon of these genes,
724 whereas the *Pdyn* line was made by inserting Cre:GFP just 5' of the initiation codon.
725 The 5' and 3' arms (5 to 8 kb) were amplified from a C57BL/6 BAC clone by PCR using
726 Q5 polymerase (New England Biolabs) and inserted into a cloning vector that contains
727 frt-flanked SV-Neo for positive selection and *Pgk*-DTA and HSV-TK genes for negative
728 selection (Jarvie et al., 2021). The linearized construct was electroporated in G4 ES
729 cells (129 x BL6). About 80 G418-resistant clones were picked and expanded for
730 Southern blot analysis using a 32P-labeled probe located just beyond either the 5' or 3'
731 arm. Correctly targeted clones were injected into blastocysts and transferred to recipient
732 female mice. Germline transmission of the targeted allele was determined by 3-primer
733 PCR (2 primers flanking the termination codon region and 1 reverse primer in the
734 IRES). A single insert was confirmed by Southern blot. Mice were bred with *Rosa26-*
735 *FLPe* mice to remove the SV-Neo gene and then bred with C57BL/6 mice for at least 6
736 generations.

737 **Stereotaxic Surgery and Axon-Projection Tracing**

738 Mice were anesthetized with isoflurane and placed on a robotic stereotaxic frame
739 (Neurostar GmbH, Tübingen, Germany) and AAV-1EF1a-DIO-YFP and AAV1-EF1a-
740 DIOsynaptophysin:mCherry were injected bilaterally into the PBN (AP -4.8 mm, ML +/-
741 1.4 mm, DV 3.5 mm) at a rate of 0.1 µl/min for 2 min. At least 3 weeks after virus
742 injection, mice were deeply anesthetized with sodium pentobarbital and phenytoin
743 sodium (0.2 ml, i.p.) and intracardially perfused with ice-cold PBS followed by 4% PFA.
744 Brains were post-fixed overnight in 4% PFA at 4 °C, cryoprotected in 30% sucrose,
745 frozen in OCT compound, and stored at -80 °C. Coronal sections (35 µm) spanning the
746 brain (Bregma 2.0 mm to -8.0 mm) were cut on a cryostat and collected in
747 cryoprotectant for long-term storage at -20°C.

748 Sections were washed two times in PBS and incubated in a blocking solution
749 (3% normal donkey serum and 0.2% Triton X-100 in PBS) for 1 h at room temperature.
750 Sections were incubated overnight at 4°C in blocking solution with primary antibodies
751 including: chicken-anti-GFP (1:10000), and rabbit-anti-dsRed (1:2000). After 3 washes
752 in PBS, sections were incubated for 1 h in PBS with secondary antibodies: Alexa Fluor
753 488 donkey anti-chicken and Alexa Fluor 594 donkey anti-rabbit, (1:500). Tissue was
754 washed 3 times in PBS, mounted onto glass slides, and coverslipped with Fluoromount-
755 G with DAPI (Southern Biotech).

756 Whole-slide fluorescent images were acquired using a Keyence BZ-X710
757 microscope and higher magnification images using an Olympus FV-1200 confocal
758 microscope and minimally processed using Fiji to enhance brightness and contrast for
759 optimal representation of the data. For TIFF stacks, images were aligned using the
760 BrainMaker workflow in NeuroInfo (MBF Bioscience).

761 **RNAscope Multiplex/HiPlex FISH**

762 Mice were deeply anesthetized with sodium pentobarbital and phenytoin sodium
763 (0.2 ml, i.p.), decapitated, and brains rapidly frozen on crushed dry ice. Coronal sections
764 (15 µm) were cut on a cryostat, mounted onto SuperFrost Plus slides, and stored at -80
765 °C. RNAscope HiPlex Assay or RNAscope Fluorescent Multiplex Assay were performed
766 following the manufacturer's protocol.

767 Images centered on the scp in the PBN were acquired in a 3x3 grid at 20x using
768 a Keyence BZ-X710 microscope and stitched together 4 sets of in 4 channel stacks
769 using Fiji. Images of the probe staining within the 4-channel sets were subtracted from
770 one another using Fiji's image calculator function to remove background
771 autofluorescence. The Dapi images from each of the 4 sets of images were registered
772 using the HiPlex Image Registration Software (ACDBio) and then used to register all the
773 probe images. This process was repeated for a second HiPlex experiment. Colors were
774 assigned using the registration software.

775 **Evaluation of Gene Expression and Projection Density**

776 Registered HiPlex probe images were combined into 5 stacks for each bregma
777 level for both experiments. PBN and surrounding subregions of interest (ROIs) were
778 drawn based on the AMBA designations and distinct probe locations. Using these ROIs,
779 each probe was scored based on an estimation of the number of transcripts present per
780 cell and number of cells labeled per region. Projection regions were evaluated based on
781 density by matching the brain sections in the TIFF stacks as closely to the AMBA as
782 possible.

783

784 **Data Availability**

785 Raw and preprocessed data for scRNA-seq: NCBI GEO accession number
786 GSE207708; <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207708>

787 Code for analysis of scRNA-Seq data: <https://github.com/stuberlab/Pauli-Chen-Basiri-et-al-2022>

789 Raw and normalized data for RiboTag: NCBI GEO accession number GSE207153;
790 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207153>

791 Images from RNAscope and all tracing experiments: Zenodo DOI:
792 10.5281/zenodo.6707404; <https://doi.org/10.5281/zenodo.6707404>

793

794 **Author Contributions**

795 Conceptualization: RDP

796 Investigation: JLP, JYC, MLB, SP, MEC, ES

797 Data Curation: JLP, JYC, MLB

798 Writing – Original Draft: RDP

799 Writing – Review & Editing: JLP, JYC, MLB, SP, ES, GDS, RDP

800 Visualization: JLP, JYC, MLB

801 Supervision: RDP, GDS, GSM

802 Project Administration: JYC, RDP

803 Funding Acquisition: RDP, GDS, GSM

804

805 **Acknowledgments**

806 We thank Susan Phelps for maintaining the mouse lines used in these studies. This
807 work was supported in part by grants from the National Institutes of Health, R01-
808 DA24908 (R.D.P), R01-DA032750 and R01-DA038168 (G.D.S).

809

810 **Competing Interests**

811 All authors declare no conflicts of interest

812 **REFERENCES**

813 Allen Reference Atlas - Mouse Brain.

814 ALHADEF, A. L., SU, Z., HERNANDEZ, E., KLIMA, M. L., PHILLIPS, S. Z., HOLLAND, R. A., GUO, C.,
815 HANTMAN, A. W., DE JONGHE, B. C. & BETLEY, J. N. 2018. A Neural Circuit for the Suppression of
816 Pain by a Competing Need State. *Cell*, 173, 140-152 e15.

817 BARIK, A., SATHYAMURTHY, A., THOMPSON, J., SELTZER, M., LEVINE, A. & CHESLER, A. 2021. A
818 spinoparabrachial circuit defined by Tacr1 expression drives pain. *Elife*, 10.

819 BARIK, A., THOMPSON, J. H., SELTZER, M., GHITANI, N. & CHESLER, A. T. 2018. A Brainstem-Spinal Circuit
820 Controlling Nocifensive Behavior. *Neuron*, 100, 1491-1503 e3.

821 BOWEN, A. J., CHEN, J. Y., HUANG, Y. W., BAERTSCH, N. A., PARK, S. & PALMITER, R. D. 2020. Dissociable
822 control of unconditioned responses and associative fear learning by parabrachial CGRP neurons.
823 *Elife*, 9.

824 BUTLER, A., HOFFMAN, P., SMIBERT, P., PAPALEXI, E. & SATIJA, R. 2018. Integrating single-cell
825 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol*, 36,
826 411-420.

827 CAI, H., HAUBENSAK, W., ANTHONY, T. E. & ANDERSON, D. J. 2014. Central amygdala PKC-delta(+)
828 neurons mediate the influence of multiple anorexigenic signals. *Nat Neurosci*, 17, 1240-8.

829 CAMPOS, C. A., BOWEN, A. J., ROMAN, C. W. & PALMITER, R. D. 2018. Encoding of danger by
830 parabrachial CGRP neurons. *Nature*, 555, 617-622.

831 CARTER, M. E., SODEN, M. E., ZWEIFEL, L. S. & PALMITER, R. D. 2013. Genetic identification of a neural
832 circuit that suppresses appetite. *Nature*, 503, 111-4.

833 CHEN, J. Y., CAMPOS, C. A., JARVIE, B. C. & PALMITER, R. D. 2018. Parabrachial CGRP Neurons Establish
834 and Sustain Aversive Taste Memories. *Neuron*, 100, 891-899 e5.

835 CHENG, W., GONZALEZ, I., PAN, W., TSANG, A. H., ADAMS, J., NDOKA, E., GORDIAN, D., KHOURY, B.,
836 ROELOFS, K., EVERS, S. S., MACKINNON, A., WU, S., FRIKKE-SCHMIDT, H., FLAK, J. N., TREVASKIS,
837 J. L., RHODES, C. J., FUKADA, S. I., SEELEY, R. J., SANDOVAL, D. A., OLSON, D. P., BLOUET, C. &
838 MYERS, M. G., JR. 2020. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius
839 Control Energy Balance via the Non-aversive Suppression of Feeding. *Cell Metab*, 31, 301-312
840 e5.

841 CHIANG, M. C., NGUYEN, E. K., CANTO-BUSTOS, M., PAPALE, A. E., OSWALD, A. M. & ROSS, S. E. 2020.
842 Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct
843 Components of the Pain Response. *Neuron*, 106, 927-939 e5.

844 CHOI, S., HACHISUKA, J., BRETT, M. A., MAGEE, A. R., OMORI, Y., IQBAL, N. U., ZHANG, D., DELISLE, M.
845 M., WOLFSON, R. L., BAI, L., SANTIAGO, C., GONG, S., GOULDING, M., HEINTZ, N., KOERBER, H.
846 R., ROSS, S. E. & GINTY, D. D. 2020. Parallel ascending spinal pathways for affective touch and
847 pain. *Nature*, 587, 258-263.

848 DENARDO, L. & LUO, L. 2017. Genetic strategies to access activated neurons. *Curr Opin Neurobiol*, 45,
849 121-129.

850 DENG, J., ZHOU, H., LIN, J. K., SHEN, Z. X., CHEN, W. Z., WANG, L. H., LI, Q., MU, D., WEI, Y. C., XU, X. H. &
851 SUN, Y. G. 2020. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the
852 Intralaminar Thalamic Nuclei, but Not the Amygdala. *Neuron*, 107, 909-923 e6.

853 DOUGLASS, A. M., KUCUKDERELI, H., PONSERRE, M., MARKOVIC, M., GRUNDEMANN, J., STROBEL, C.,
854 ALCALA MORALES, P. L., CONZELMANN, K. K., LUTHI, A. & KLEIN, R. 2017. Central amygdala
855 circuits modulate food consumption through a positive-valence mechanism. *Nat Neurosci*, 20,
856 1384-1394.

857 FU, O., IWAI, Y., KONDOH, K., MISAKA, T., MINOKOSHI, Y. & NAKAJIMA, K. I. 2019. SatB2-Expressing
858 Neurons in the Parabrachial Nucleus Encode Sweet Taste. *Cell Rep*, 27, 1650-1656 e4.

859 FULWILER, C. E. & SAPER, C. B. 1984. Subnuclear organization of the efferent connections of the
860 parabrachial nucleus in the rat. *Brain Res*, 319, 229-59.

861 GARFIELD, A. S., LI, C., MADARA, J. C., SHAH, B. P., WEBBER, E., STEGER, J. S., CAMPBELL, J. N.,
862 GAVRILOVA, O., LEE, C. E., OLSON, D. P., ELMQUIST, J. K., TANNOUS, B. A., KRASHES, M. J. &
863 LOWELL, B. B. 2015. A neural basis for melanocortin-4 receptor-regulated appetite. *Nat
864 Neurosci*, 18, 863-71.

865 GAURIAU, C. & BERNARD, J. F. 2002. Pain pathways and parabrachial circuits in the rat. *Exp Physiol*, 87,
866 251-8.

867 GAYOSO, A. & SHOR, J. 2022. JonathanShor/DoublletDetection: doubletdetection v4.2. v4.2 ed.: Zenodo.

868 GEERLING, J. C., KIM, M., MAHONEY, C. E., ABBOTT, S. B., AGOSTINELLI, L. J., GARFIELD, A. S., KRASHES,
869 M. J., LOWELL, B. B. & SCAMMELL, T. E. 2016. Genetic identity of thermosensory relay neurons
870 in the lateral parabrachial nucleus. *Am J Physiol Regul Integr Comp Physiol*, 310, R41-54.

871 GEERLING, J. C., YOKOTA, S., RUKHADZE, I., ROE, D. & CHAMBERLIN, N. L. 2017. Kolliker-Fuse GABAergic
872 and glutamatergic neurons project to distinct targets. *J Comp Neurol*, 525, 1844-1860.

873 HAFEMEISTER, C. & SATIJA, R. 2019. Normalization and variance stabilization of single-cell RNA-seq data
874 using regularized negative binomial regression. *Genome Biol*, 20, 296.

875 HAN, Y., XIA, G., HE, Y., HE, Y., FARIAS, M., XU, Y. & WU, Q. 2021. A hindbrain dopaminergic neural circuit
876 prevents weight gain by reinforcing food satiation. *Sci Adv*, 7.

877 HASHIKAWA, Y., HASHIKAWA, K., ROSSI, M. A., BASIRI, M. L., LIU, Y., JOHNSTON, N. L., AHMAD, O. R. &
878 STUBER, G. D. 2020. Transcriptional and Spatial Resolution of Cell Types in the Mammalian
879 Habenula. *Neuron*, 106, 743-758 e5.

880 HERMANSON, O., TELKOV, M., GEIJER, T., HALLBECK, M. & BLOMQVIST, A. 1998. Preprodynorphin
881 mRNA-expressing neurones in the rat parabrachial nucleus: subnuclear localization,
882 hypothalamic projections and colocalization with noxious-evoked fos-like immunoreactivity. *Eur
883 J Neurosci*, 10, 358-67.

884 HUANG, D., GRADY, F. S., PELTEKIAN, L. & GEERLING, J. C. 2021a. Efferent projections of Vglut2, Foxp2,
885 and Pdyn parabrachial neurons in mice. *J Comp Neurol*, 529, 657-693.

886 HUANG, D., GRADY, F. S., PELTEKIAN, L., LAING, J. J. & GEERLING, J. C. 2021b. Efferent projections of
887 CGRP/Calca-expressing parabrachial neurons in mice. *J Comp Neurol*, 529, 2911-2957.

888 HUANG, T., LIN, S. H., MALEWICZ, N. M., ZHANG, Y., ZHANG, Y., GOULDING, M., LAMOTTE, R. H. & MA,
889 Q. 2019. Identifying the pathways required for coping behaviours associated with sustained
890 pain. *Nature*, 565, 86-90.

891 JARVIE, B. C., CHEN, J. Y., KING, H. O. & PALMITER, R. D. 2021. Satb2 neurons in the parabrachial nucleus
892 mediate taste perception. *Nat Commun*, 12, 224.

893 KANG, S. J., LIU, S., YE, M., KIM, D. I., KIM, J. H., OH, T. G., PENG, J., EVANS, R. M., LEE, K., GOULDING, M.
894 & HAN, S. 2020. Unified neural pathways that gate affective pain and multisensory innate threat
895 signals to the amygdala. *bioRxiv*.

896 KARTHIK, S., HUANG, D., DELGADO, Y., LAING, J. J., PELTEKIAN, L., IVERSON, G. N., GRADY, F., MILLER, R.
897 L., MCCANN, C. M., FRITZSCH, B., ISKUSNYKH, I. Y., CHIZHIKOV, V. V. & GEERLING, J. C. 2022.
898 Molecular ontology of the parabrachial nucleus. *J Comp Neurol*, 530, 1658-1699.

899 KAUR, S., WANG, J. L., FERRARI, L., THANKACHAN, S., KROEGER, D., VENNER, A., LAZARUS, M.,
900 WELLMAN, A., ARRIGONI, E., FULLER, P. M. & SAPER, C. B. 2017. A Genetically Defined Circuit for
901 Arousal from Sleep during Hypercapnia. *Neuron*, 96, 1153-1167 e5.

902 KIM, D. Y., HEO, G., KIM, M., KIM, H., JIN, J. A., KIM, H. K., JUNG, S., AN, M., AHN, B. H., PARK, J. H., PARK,
903 H. E., LEE, M., LEE, J. W., SCHWARTZ, G. J. & KIM, S. Y. 2020. A neural circuit mechanism for
904 mechanosensory feedback control of ingestion. *Nature*, 580, 376-380.

905 KROUT, K. E. & LOEWY, A. D. 2000. Parabrachial nucleus projections to midline and intralaminar
906 thalamic nuclei of the rat. *J Comp Neurol*, 428, 475-94.

907 LIU, S., YE, M., PAO, G. M., SONG, S. M., JHANG, J., JIANG, H., KIM, J. H., KANG, S. J., KIM, D. I. & HAN, S.
908 2022. Divergent brainstem opioidergic pathways that coordinate breathing with pain and
909 emotions. *Neuron*, 110, 857-873 e9.

910 LUSKIN, A. T., BHATTI, D. L., MULVEY, B., PEDERSEN, C. E., GIRVEN, K. S., ODEN-BRUNSON, H., KIMBELL,
911 K., BLACKBURN, T., SAWYER, A., GEREAU, R. W. T., DOUGHERTY, J. D. & BRUCHAS, M. R. 2021.
912 Extended amygdala-parabrachial circuits alter threat assessment and regulate feeding. *Sci Adv*,
913 7.

914 MACOSKO, E. Z., BASU, A., SATIJA, R., NEMESH, J., SHEKHAR, K., GOLDMAN, M., TIROSH, I., BIALAS, A. R.,
915 KAMITAKI, N., MARTERSTECK, E. M., TROMBETTA, J. J., WEITZ, D. A., SANES, J. R., SHALEK, A. K.,
916 REGEV, A. & MCCARROLL, S. A. 2015. Highly Parallel Genome-wide Expression Profiling of
917 Individual Cells Using Nanoliter Droplets. *Cell*, 161, 1202-1214.

918 MCDAVID, A., FINAK, G., CHATTOPADYAY, P. K., DOMINGUEZ, M., LAMOREAUX, L., MA, S. S., ROEDERER,
919 M. & GOTTARDO, R. 2013. Data exploration, quality control and testing in single-cell qPCR-based
920 gene expression experiments. *Bioinformatics*, 29, 461-7.

921 MCINNES, L., HEALY, J. & MELVILLE, J. 2018. UMAP: Uniform Manifold Approximation and Projection for
922 Dimension Reduction. Available: <https://ui.adsabs.harvard.edu/abs/2018arXiv180203426M>
923 [Accessed February 01, 2018].

924 MILNER, T. A., JOH, T. H. & PICKEL, V. M. 1986. Tyrosine hydroxylase in the rat parabrachial region:
925 ultrastructural localization and extrinsic sources of immunoreactivity. *J Neurosci*, 6, 2585-603.

926 MOGA, M. M., HERBERT, H., HURLEY, K. M., YASUI, Y., GRAY, T. S. & SAPER, C. B. 1990. Organization of
927 cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. *J
928 Comp Neurol*, 295, 624-61.

929 NORGREN, R. & LEONARD, C. M. 1971. Taste pathways in rat brainstem. *Science*, 173, 1136-9.

930 NORRIS, A. J., SHAKER, J. R., CONE, A. L., NDIOKHO, I. B. & BRUCHAS, M. R. 2021. Parabrachial
931 opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal
932 defenses. *Elife*, 10.

933 PALMITER, R. D. 2018. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. *Trends
934 Neurosci*, 41, 280-293.

935 PAXINOS, G. & FRANKLIN, K. 2019. *Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates*,
936 San Diego, Elsevier Academic Press.

937 RAVER, C., UDDIN, O., JI, Y., LI, Y., CRAMER, N., JENNE, C., MORALES, M., MASRI, R. & KELLER, A. 2020.
938 An Amygdalo-Parabrachial Pathway Regulates Pain Perception and Chronic Pain. *J Neurosci*, 40,
939 3424-3442.

940 RODRIGUEZ, A. & LAIO, A. 2014. Machine learning. Clustering by fast search and find of density peaks.
941 *Science*, 344, 1492-6.

942 RODRIGUEZ, E., SAKURAI, K., XU, J., CHEN, Y., TODA, K., ZHAO, S., HAN, B. X., RYU, D., YIN, H., LIEDTKE,
943 W. & WANG, F. 2017. A craniofacial-specific monosynaptic circuit enables heightened affective
944 pain. *Nat Neurosci*, 20, 1734-1743.

945 ROMAN, C. W., DERKACH, V. A. & PALMITER, R. D. 2016. Genetically and functionally defined NTS to PBN
946 brain circuits mediating anorexia. *Nat Commun*, 7, 11905.

947 ROSSI, M. A., BASIRI, M. L., LIU, Y., HASHIKAWA, Y., HASHIKAWA, K., FENNO, L. E., KIM, Y. S.,
948 RAMAKRISHNAN, C., DEISSEROTH, K. & STUBER, G. D. 2021. Transcriptional and functional
949 divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and
950 ventral tegmental area. *Neuron*, 109, 3823-3837 e6.

951 ROSSI, M. A., BASIRI, M. L., MCHENRY, J. A., KOSYK, O., OTIS, J. M., VAN DEN MUNKHOF, H. E., BRYOIS, J.,
952 HUBEL, C., BREEN, G., GUO, W., BULIK, C. M., SULLIVAN, P. F. & STUBER, G. D. 2019. Obesity
953 remodels activity and transcriptional state of a lateral hypothalamic brake on feeding. *Science*,
954 364, 1271-1274.

955 RYAN, P. J., ROSS, S. I., CAMPOS, C. A., DERKACH, V. A. & PALMITER, R. D. 2017. Oxytocin-receptor-
956 expressing neurons in the parabrachial nucleus regulate fluid intake. *Nat Neurosci*, 20, 1722-
957 1733.

958 SAKURAI, K., ZHAO, S., TAKATOH, J., RODRIGUEZ, E., LU, J., LEAVITT, A. D., FU, M., HAN, B. X. & WANG, F.
959 2016. Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a
960 Hypothalamic Social-Fear Circuit. *Neuron*, 92, 739-753.

961 SALEH, T. M. & CECHETTO, D. F. 1996. Peptide changes in the parabrachial nucleus following cervical
962 vagal stimulation. *J Comp Neurol*, 366, 390-405.

963 SANZ, E., BEAN, J. C., CAREY, D. P., QUINTANA, A. & MCKNIGHT, G. S. 2019. RiboTag: Ribosomal Tagging
964 Strategy to Analyze Cell-Type-Specific mRNA Expression In Vivo. *Curr Protoc Neurosci*, 88, e77.

965 SANZ, E., QUINTANA, A., DEEM, J. D., STEINER, R. A., PALMITER, R. D. & MCKNIGHT, G. S. 2015. Fertility-
966 regulating Kiss1 neurons arise from hypothalamic POMC-expressing progenitors. *J Neurosci*, 35,
967 5549-56.

968 SANZ, E., YANG, L., SU, T., MORRIS, D. R., MCKNIGHT, G. S. & AMIEUX, P. S. 2009. Cell-type-specific
969 isolation of ribosome-associated mRNA from complex tissues. *Proc Natl Acad Sci U S A*, 106,
970 13939-44.

971 SHIMADA, S., SHIOSAKA, S., EMSON, P. C., HILLYARD, C. J., GIRGIS, S., MACINTYRE, I. & TOHYAMA, M.
972 1985. Calcitonin gene-related peptidergic projection from the parabrachial area to the forebrain
973 and diencephalon in the rat: an immunohistochemical analysis. *Neuroscience*, 16, 607-16.

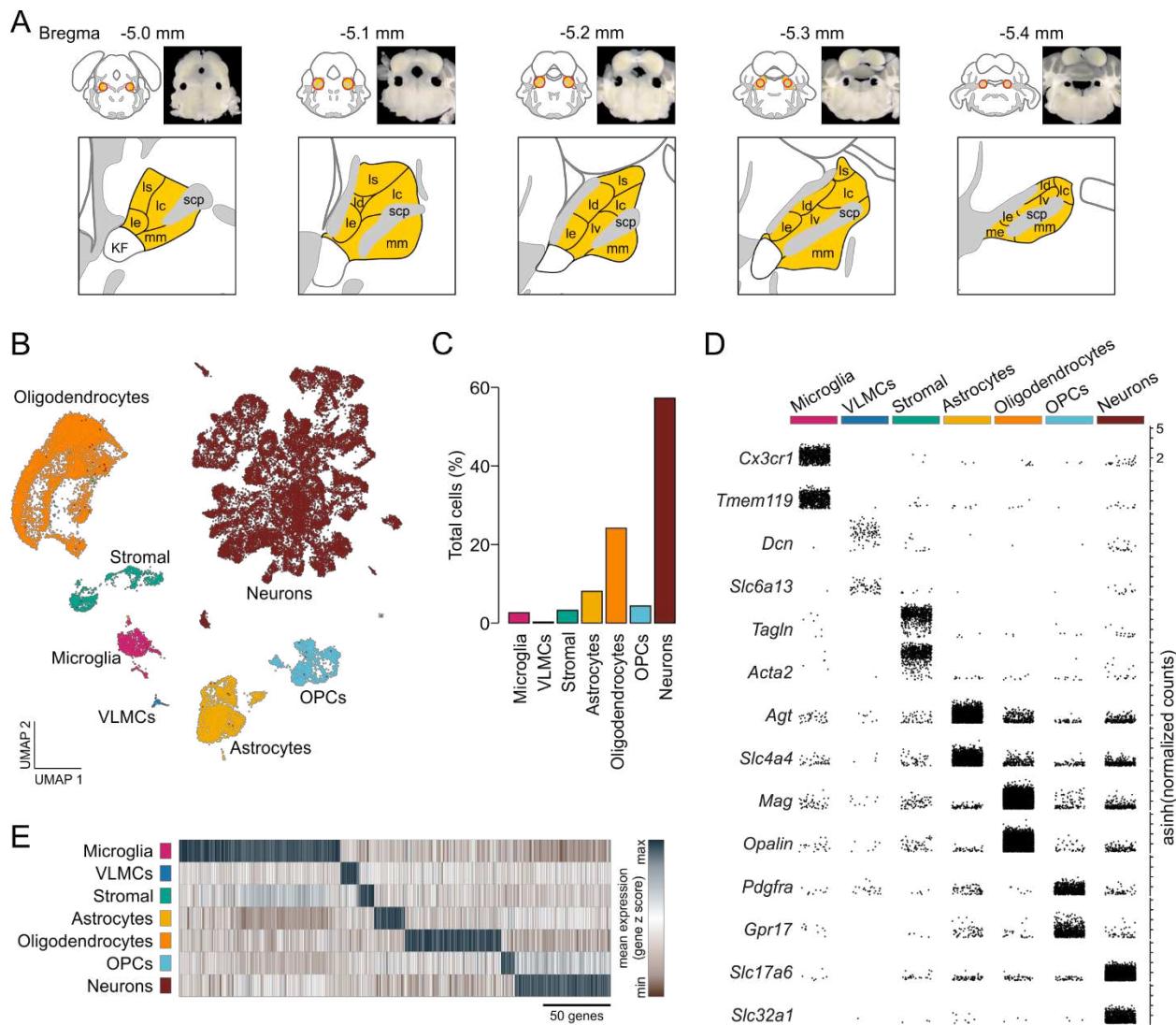
974 STUART, T., BUTLER, A., HOFFMAN, P., HAFEMEISTER, C., PAPALEXI, E., MAUCK, W. M., 3RD, HAO, Y.,
975 STOECKIUS, M., SMIBERT, P. & SATIJA, R. 2019. Comprehensive Integration of Single-Cell Data.
976 *Cell*, 177, 1888-1902 e21.

977 SUN, L., LIU, R., GUO, F., WEN, M. Q., MA, X. L., LI, K. Y., SUN, H., XU, C. L., LI, Y. Y., WU, M. Y., ZHU, Z. G.,
978 LI, X. J., YU, Y. Q., CHEN, Z., LI, X. Y. & DUAN, S. 2020. Parabrachial nucleus circuit governs
979 neuropathic pain-like behavior. *Nat Commun*, 11, 5974.

980 TING, J. T., LEE, B. R., CHONG, P., SOLER-LLAVINA, G., COBBS, C., KOCH, C., ZENG, H. & LEIN, E. 2018.
981 Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery
982 Method. *J Vis Exp*.

983 TOKITA, K., INOUE, T. & BOUGHTER, J. D., JR. 2009. Afferent connections of the parabrachial nucleus in
984 C57BL/6J mice. *Neuroscience*, 161, 475-88.

985 WU, Q., BOYLE, M. P. & PALMITER, R. D. 2009. Loss of GABAergic signaling by AgRP neurons to the
986 parabrachial nucleus leads to starvation. *Cell*, 137, 1225-34.

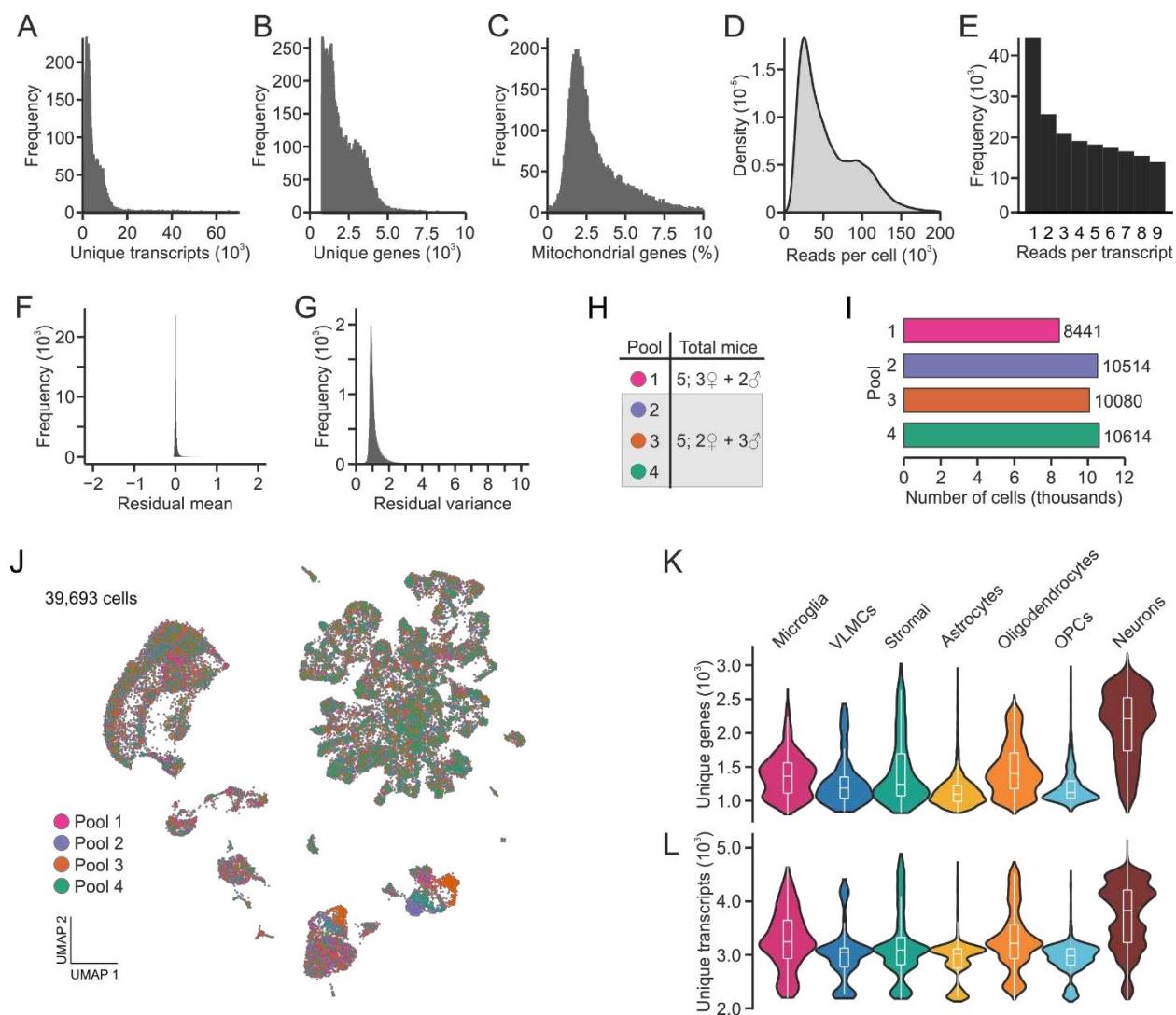

987 YANG, B., SANCHES-PADILLA, J., KONDAPALLI, J., MORISON, S. L., DELPIRE, E., AWATRAMANI, R. &
988 SURMEIER, D. J. 2021. Locus coeruleus anchors a trisynaptic circuit controlling fear-induced
989 suppression of feeding. *Neuron*, 109, 823-838 e6.

990 ZAJDEL, J., SKOLD, J., JAAROLA, M., SINGH, A. K. & ENGBLOM, D. 2021. Calcitonin gene related peptide
991 alpha is dispensable for many danger-related motivational responses. *Sci Rep*, 11, 16204.

992 ZHANG, C., KAYE, J. A., CAI, Z., WANG, Y., PRESCOTT, S. L. & LIBERLES, S. D. 2021. Area Postrema Cell
993 Types that Mediate Nausea-Associated Behaviors. *Neuron*, 109, 461-472 e5.

994

Figure 1


Figure 1. Single-cell RNA sequencing identifies resident cellular classes within the PBN.

(A) Brain sections showing location of PBN and approximate boundaries of punches used for scRNA-Seq. PBN subregions from Allen Mouse Brain Atlas are shown in yellow; abbreviations are the same as in Figure 4. **(B)** Cells were clustered according to their transcriptional profiles and plotted in UMAP space. **(C)** Percentage of total cells comprised by each cluster. **(D)** Expression of canonical features across PBN clusters. Each point represents a single transcript plotted according to its asinh-normalized expression level. **(E)** Classes of PBN cell types are distinguished by unique transcriptional profiles comprised of multiple genes.

Figure 1 – figure supplement 1. Technical metrics in scRNA sequencing analysis of resident PBN cell types

Supplementary File 1. Table denoting the average normalized expression, fraction of cells expressing, and likelihood ratio p-value for every gene in each cluster.

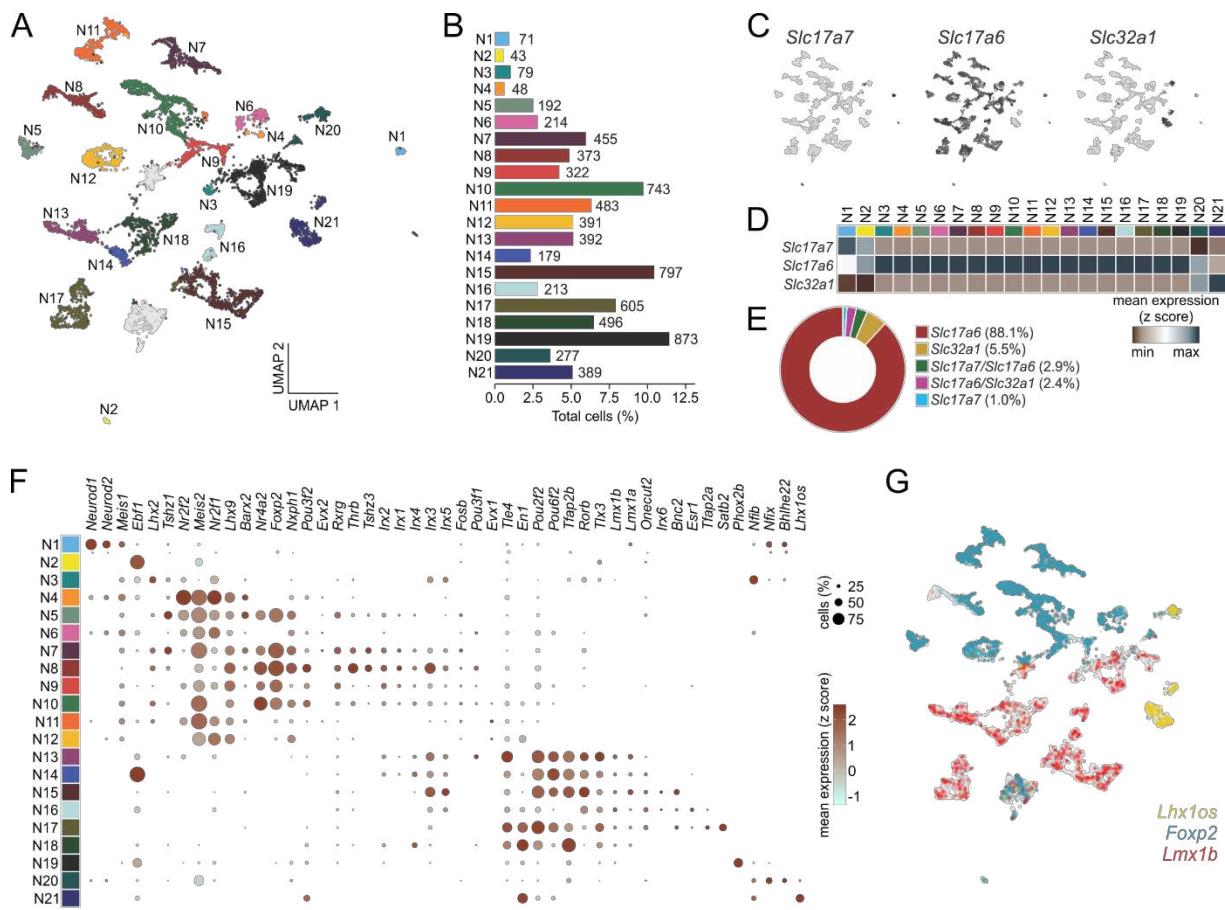

Figure 1 – figure supplement 1

Figure 1 – figure supplement 1. Technical metrics in scRNA sequencing analysis of resident PBN cell types.

(A) Distribution of unique transcripts per cell. **(B)** Distribution of unique genes per cell. **(C)** Distribution of percent mitochondrial reads per cell. **(D)** Distribution of total sequencing reads per cell. **(E)** Distribution of reads per transcript. **(F)** Following integration, the mean of residuals centers on zero. **(G)** Following integration, mean variance centers on one. **(H)** Number and sex of mice used in each library pool. **(I)** Number of cells sequenced from each library pool. **(J)** Following integration, each pool is represented uniformly across UMAP space. **(K)** Distribution of unique genes across each cell type **(L)** Distribution of unique transcripts across each cell type.

Figure 2

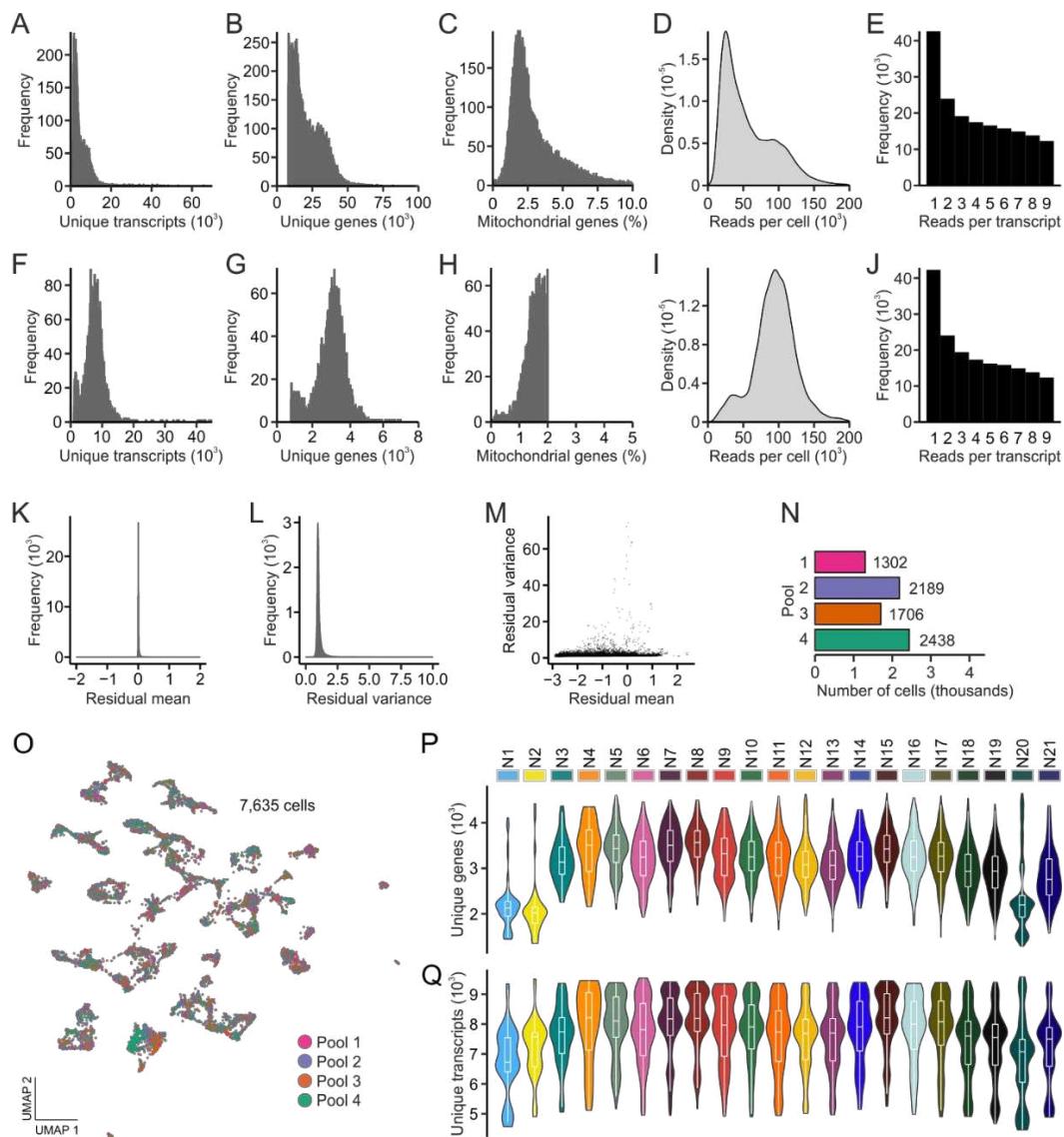


Figure 2. Single-cell RNA sequencing identifies discrete classes of PBN neurons.

(A) Neurons were clustered according to their transcriptional profiles and plotted in UMAP space. **(B)** Percentage of total neurons comprised by each neuronal subcluster. **(C)** Expression values of fast neurotransmitters in UMAP space. **(D)** Average expression of fast neurotransmitters across neuronal subclusters. **(E)** Percentage of neurons individually expressing or co-expressing fast neurotransmitters. **(F)** Transcription factor expression across neuronal subclusters plotted according to their average normalized expression and fraction of cells expressing each gene. **(G)** Expression of the transcription factors *Foxp2*, *Lmx1b*, and *Lhx10s* across neurons in UMAP space. **(H)** Percentage of neurons individually expressing or co-expressing *Foxp2*, *Lmx1b*, and *Lhx10s*.

Figure 2 – figure supplement 1. Technical metrics in scRNA sequencing analysis of neuronal subclusters.

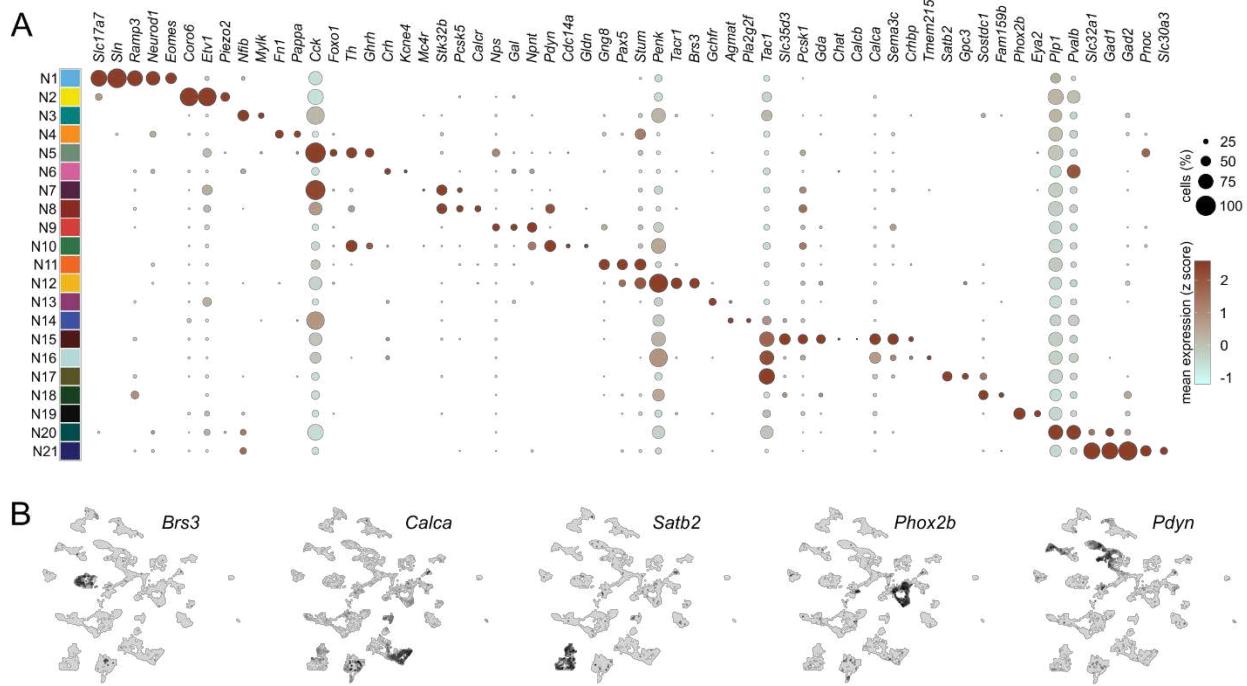

Figure 2 – figure supplement 1

Figure 2 – figure supplement 1. Technical metrics in scRNA sequencing analysis of neuronal subclusters.

(A) Distribution of unique transcripts per cell. **(B)** Distribution of unique genes per cell. **(C)** Distribution of percent mitochondrial reads per cell. **(D)** Distribution of total sequencing reads per cell. **(E)** Distribution of reads per transcript. **(F)** Distribution of unique transcripts per cell after thresholding. **(G)** Distribution of unique genes per cell after thresholding. **(H)** Distribution of percent mitochondrial reads per cell after thresholding. **(I)** Distribution of total sequencing reads per cell after thresholding. **(J)** Distribution of reads per transcript after thresholding. **(K)** Following integration, the mean of residuals centers on zero. **(L)** Following integration, mean variance centers on one. **(M)** High-variance residuals were assessed for clustering analysis. **(N)** Number and sex of mice used in each library pool. **(O)** Following integration, each pool is represented uniformly across UMAP space. **(P)** Distribution of unique genes across each neuronal subcluster **(Q)** Distribution of unique transcripts across each neuronal subcluster.

Figure 3

Figure 3. Distinguishing features of each neuronal subcluster.

(A) Expression of select differentially expressed features across neuronal subclusters plotted according to their average normalized expression and fraction of cells expressing each gene.

(B) Expression of select genes plotted in UMAP space.

Figure 3 – table supplement 1. Neuropeptides and GPCRs with restricted expression.

Supplementary File 2. Table denoting the average normalized expression, fraction of cells expressing, and likelihood ratio p-value for every gene in each neuronal subcluster.

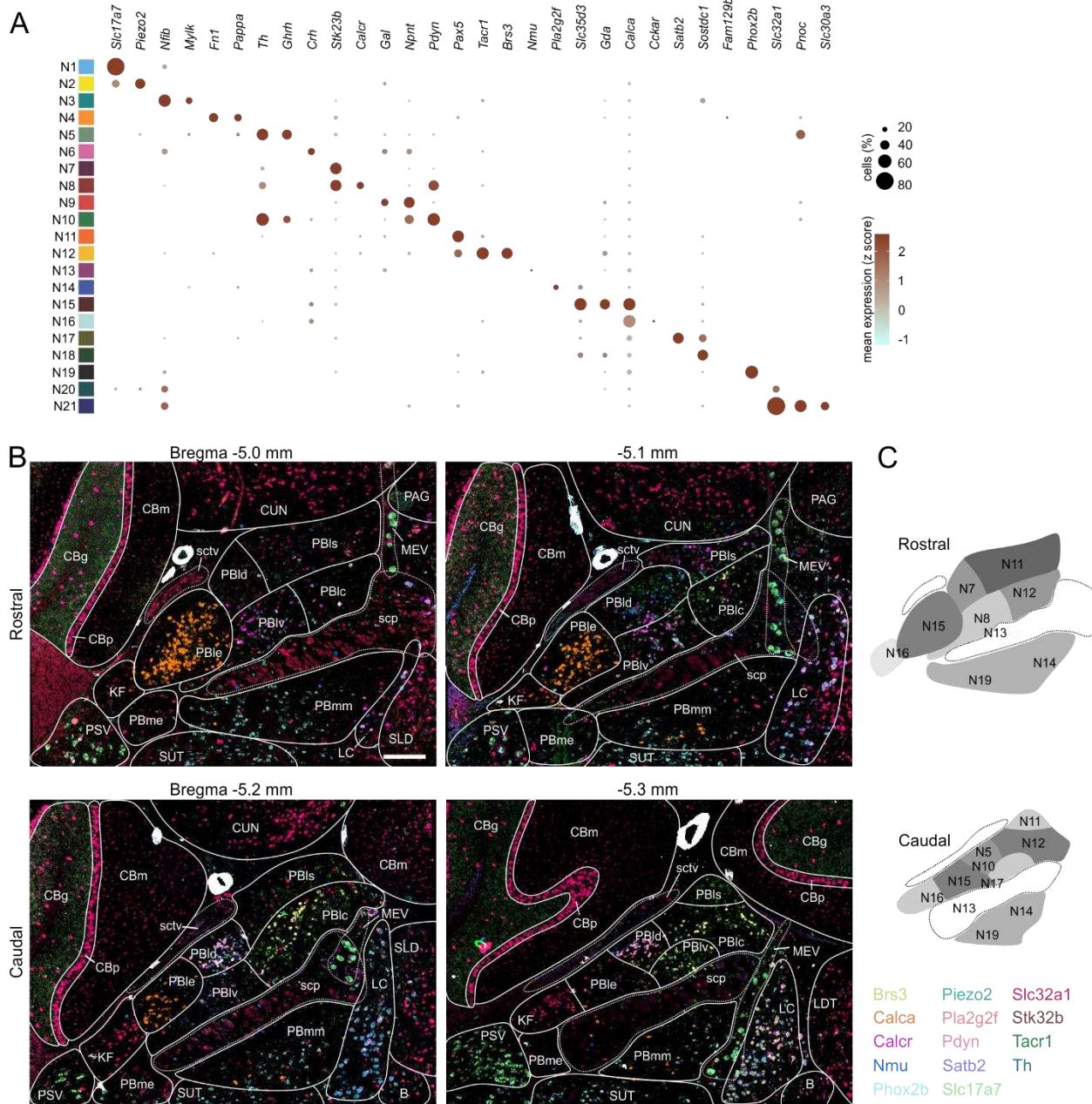
Supplementary File 3. Expression of neuropeptides across neuronal subclusters plotted according to their average normalized expression and fraction of cells expressing each gene.

Supplementary File 4. Expression of GPCRs across neuronal subclusters plotted according to their average normalized expression and fraction of cells expressing each gene.

Figure 3 – table supplement 1

Subcluster	Neuropeptide	GPCR Receptor
N1	--	--
N2	--	Adora2, Gpr156, Gpr157, Gprc5c ² , Olfr90, Olfr889, P2ry14*
N3	Apln	Cckbr ² , Mc4r ³ , Mchr1 ²
N4	Npy ²	Fzd2, Grpr, Ntsr1 ²
N5	Ghrh ² , Nmb ² , Nps ^{*2} , Pnoc ^{*2}	Olfr552, Orfpr
N6	Crh [*]	Lgr5
N7	Grp ^{*2} , Npy ² , Prok2 ³	Chrm1 ² , Fzd7, Fzd8 ² , Mc4r ³ , Npbwr1 ² , Npy2r, Rxfp3
N8	Grp ^{*2} , Pdyn ^{*2} , Prok2 ³	Calcr ³ , Cckbr ² , Ednra ² , Fzd8 ² , Gpr6, Mc3r, Npbwr1 ²
N9	Gal [*] , Nps ^{*2}	Chrm1 ² , Ednra ² , Mchr1 ²
N10	Ghrh ² , Nmb ² , Penk ^{*3} , Pdyn ^{*2} , Prok2 ³	Agtr2, Mc4r ³
N11	Edn1, Sct	Calcr ³ , Ntsr1, Olfr876
N12	Penk ^{*3}	Brs3 , Calcr ³ , Tacr1 [*]
N13	Nmb ² , Nmu	Ptgfr
N14	--	F2rl2 ² , Gabrb2 ² , Hrh2 ³
N15	Calca [*] , Calcb, Gast, Tac1 ^{*3}	Avpr1a, F2rl2 ² , Galr1, Hrh2 ³ , Npr3 ⁴
N16	Calca [*] , Penk ^{*3} , Nts [*] , Tac1 ^{*3}	Cckar, F2rl2 ² , Hrh2 ³ , Npr3 ⁴
N17	Tac1 ^{*3}	Gabrb2 ² , Npr3 ⁴
N18	--	Npr3 ⁴
N19	--	--
N20	--	Gprc5c ²
N21	Pnoc ^{*2} , Trh	--

Bold, highly expressed and unique to this subcluster


Bold*, highly expressed in this subcluster but also expressed in others at lower levels

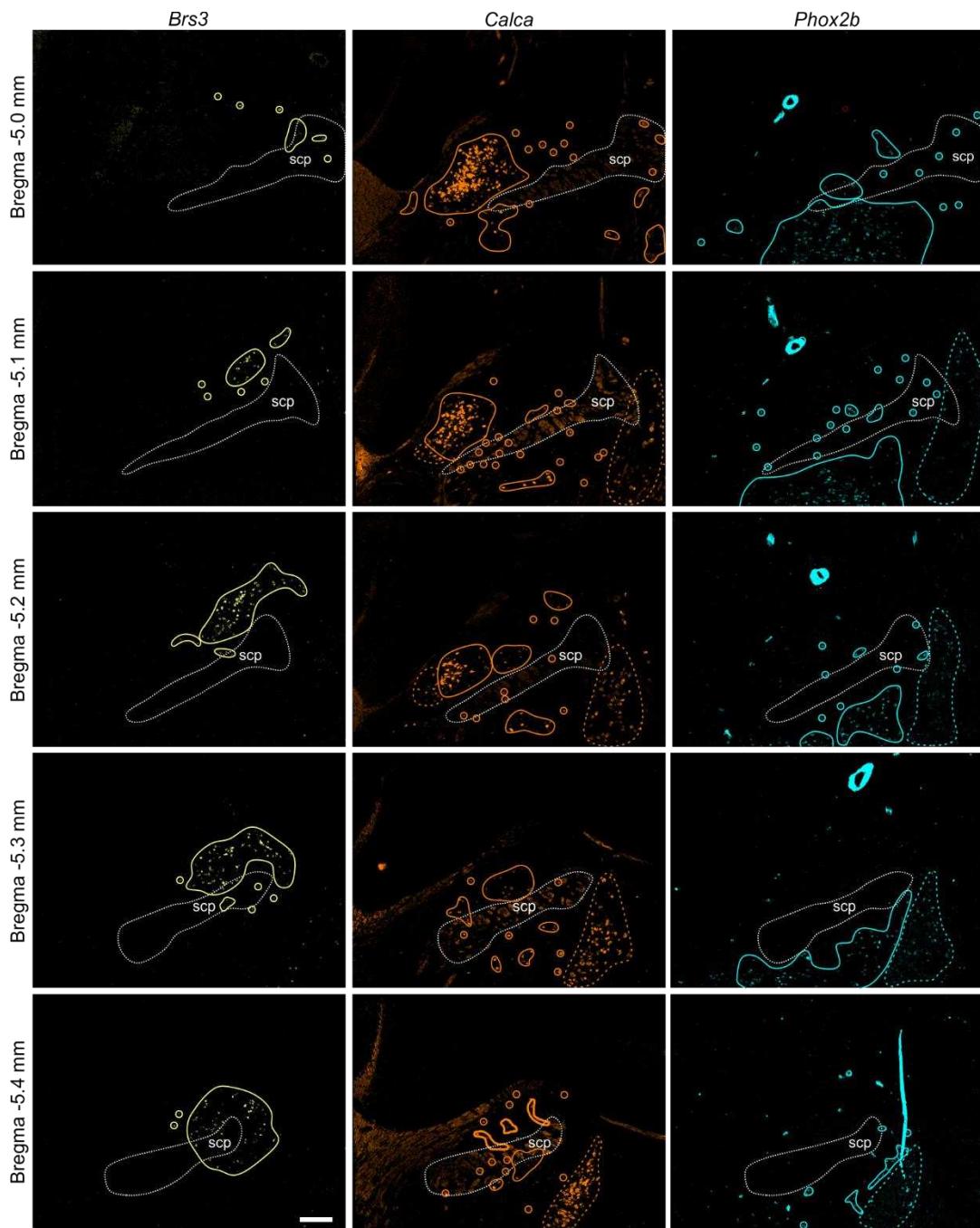
Superscript, number of subclusters with expression

Figure 3 – table supplement 1. Neuropeptides and GPCRs with restricted expression in the 21 neuronal clusters.

These data are extracted from **Supplementary File 3** and **Supplementary File 4**.

Figure 4

Figure 4. Localization of mRNAs in subregions of the PBN based on HiPlex results.


(A) Expression of genes selected as HiPlex probes within the scRNA-seq dataset. **(B)** Example of how the ROIs denoting PBN subregions were drawn for analysis of 15 probes from the first HiPlex experiment. Probes and their colors are indicated. **(C)** Diagram of the approximate location of 12 of the identified clusters in a rostral and caudal PBN. Scale bar, 200 μ m. Abbreviations from AMBA: PBle, external lateral PBN; PBlv, ventral lateral PBN; PBld, dorsal lateral PBN; PBlc, central lateral PBN; PBls, superior lateral PBN; PBmm, medial PBN; PBme, medial external PBN; scp, superior cerebellar peduncle; KF, Koelliker-Fuse; sctv, ventral spinocerebellar tract; CUN, cuneiform nucleus; LDT, laterodorsal tegmental nucleus; MEV, Midbrain trigeminal nucleus; SUT, supratrigeminal nucleus; SLD, sublaterodorsal nucleus; B,

Barrington's nucleus; PSV, principle sensory trigeminal nucleus; CBm, cerebellar molecular layer; CBg, cerebellar granular layer; CBp, cerebellar Purkinje layer; PAG, periaqueductal gray; LC, locus coeruleus.

Figure 4 – figure supplement 1. Example of HiPlex staining for *Brs3*, *Calca*, and *Phox2b* for 5 Bregma levels. Solid lines surround clusters of positive neurons or individual neurons, colored dashed lines indicate expression outside the PBN, such as in KF and LC.

Supplementary File 5. HiPlex data for all probes at 5 Bregma levels of the PBN.

Figure 4 – figure supplement 1

Figure 4 – figure supplement 1. Example of HiPlex staining for *Brs3*, *Calca*, and *Phox2b* for 5 Bregma levels.

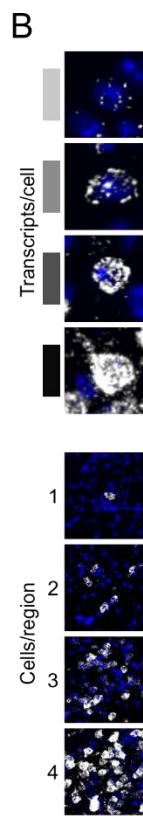

Solid lines surround clusters of positive neurons or individual neurons, colored dashed lines indicate expression outside the PBN, such as in KF and LC. Scale bar, 200 μ m.

Figure 5

A

	Bregma	le	lv	ld	lc	ls	mm	me	scp	KF
<i>Th</i> N5 N10	-5.0	1	2	1	1	2				
	-5.1		2	3	1	1	1			
	-5.2	1		4	1					
	-5.3			3						
	-5.4		1	1			n/a			
<i>Stk32b</i> N7 N8	-5.0	3	2	3	1	1	1			1
	-5.1	3	3	3	2	2	2			1
	-5.2	2	2	2	3	3	3			1
	-5.3		1	1	3	3	2	1	1	1
	-5.4		2	1	2	n/a	2			1
<i>Calcr</i> N8	-5.0		2	1	1	1	1			
	-5.1	1	2	2	1	2	1			1
	-5.2			1	1	1	1			
	-5.3		2		1		1			
	-5.4		1	1	n/a	1				
<i>Pdyn</i> N8 N10	-5.0		3	1	1	1				
	-5.1	1	3	3	1	1				
	-5.2		1	4	2	1	1			
	-5.3			4	1		1			
	-5.4			3		n/a	1			
<i>Pax5</i> N11	-5.0	1	2	2	3	3	1			2
	-5.1	1	2	3	3	4	1			1
	-5.2	1	1	1	3	4	1			1
	-5.3	1	3	1	3	3	1			1
	-5.4		3	1	3	n/a	2	1		1
<i>Tacr1</i> N12	-5.0	1	2	1	2	2	2	1	1	
	-5.1	1	1	3	3	3	2		1	
	-5.2		1	1	4	3	1			1
	-5.3	1	3	2	3	3	2			1
	-5.4		3	1	3	n/a	1			1

	Bregma	le	lv	ld	lc	ls	mm	me	scp	KF
<i>Nmu</i> N13	-5.0						1		1	
	-5.1		1							1
	-5.2				1		1		1	1
	-5.3							1	1	
	-5.4						n/a			
<i>Pla2g2f</i> N14	-5.0									
	-5.1								1	
	-5.2								2	
	-5.3								1	
	-5.4						n/a			
<i>Gda</i> N15	-5.0	4	1	1	2	2	2		1	2
	-5.1	4	1		3	3	3		1	1
	-5.2	4	1		3	3	3			
	-5.3	3	3	1	3		3			
	-5.4	2	3	1	4	n/a	3			
<i>Calca</i> N15 N16	-5.0	4	2	1	1		1	1	1	1
	-5.1	4	2	1	1		2	1	1	1
	-5.2	3	2		1		2		1	2
	-5.3	2	1	1			2		1	1
	-5.4	1	2	1		n/a	2		2	
<i>Satb2</i> N17	-5.0									
	-5.1		1				2			
	-5.2		2				2			
	-5.3	2	2	1			2		1	
	-5.4	1	2		1	n/a	3		2	
<i>Phox2b</i> N19	-5.0	1	1		1		3	1	1	
	-5.1	1	2		1	1	3	2	1	
	-5.2		1		1		3	1		
	-5.3						3			
	-5.4					1	n/a	1		

Figure 5. A guide to HiPlex results showing relative strength and abundance of mRNA expression in PBN subregions.

(A) Qualitative expression for 12 genes that can be used to identify different subregions in the PBN. Strength of expression and percentage of cells in subregions of the cells were analyzed for 5 bregma levels. **(B)** Key for the colors and numbers in the table. Shade of gray gets darker as the number of transcripts per cell increases and the number represents an estimate of the number of positive cells per subregion. The abbreviations are defined in **Figure 4**.

Figure 5 – figure supplement 1a. HiPlex results for all probes with signal in PBN and surrounding area, page 1.

Figure 5 – figure supplement 1b. HiPlex results for all probes with signal in PBN and surrounding area, page 2.

Figure 5 – figure supplement 2. *Pdyn* and *Calca* neurons form tight clusters in PBld and PBle, respectively.

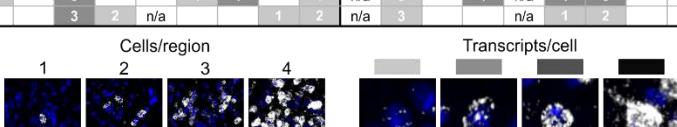
Figure 5 – figure supplement 3. *Calca/Gda* or *Calca/Tac1/Satb2* co-expression analyzed by RNAScope

Figure 5 – table supplement 4. Table showing enrichment of neuropeptide mRNAs in *Calca* neurons based on RiboTag experiment

Supplementary File 6. Source data for Ribotag experiment showing all genes.

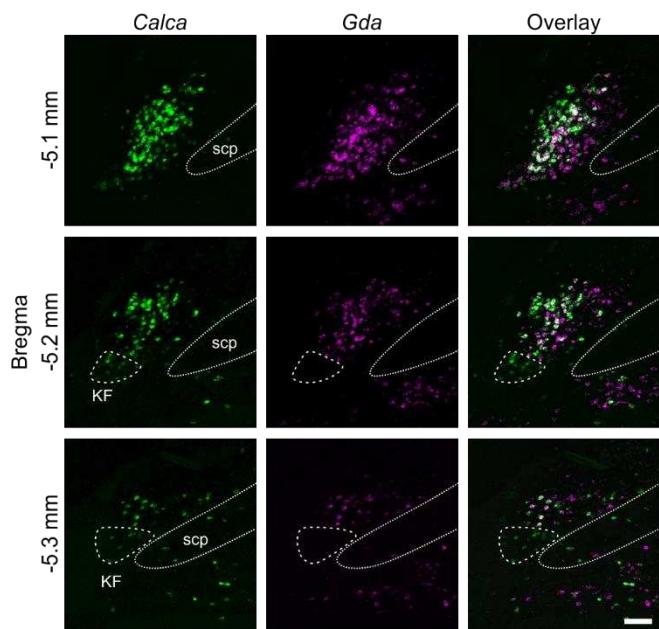
Figure 5 – figure supplement 1a

	Bregma	Parabrachial Subnuclei										Nearby Nuclei												
		le	lv	ld	lc	ls	mm	me	scp	KF	CUN	LDT	MEV	SUT	SLD	B	PSV	CBm	CBg	CBp	PAG	LC		
<i>Slc17a7</i> N1	-5.0		1	1				1		1		n/a	4			n/a	4	2	4					
	-5.1			1				1				n/a	4			n/a	3	2	4	1				
	-5.2		1				1	1				n/a	4		1	3	2	4		n/a				
	-5.3			1								n/a	4		n/a	4	4	4	n/a					
	-5.4						n/a					n/a	4		n/a	2	4	4	n/a	1				
<i>Piezo2</i> N2	-5.0											n/a	4			n/a								
	-5.1		1	2	1	2						1	n/a	4		n/a								
	-5.2		1	1	1	1						n/a	4								n/a			
	-5.3		1		1							n/a	4		n/a						n/a			
	-5.4		2	1	2	n/a	1					n/a	4		n/a	1					n/a			
<i>Nfib</i> N3	-5.0											n/a			n/a	1	4							
	-5.1											n/a			n/a	2	4							
	-5.2											n/a				2	4	n/a						
	-5.3											n/a	3		n/a	3	4	n/a						
	-5.4						n/a					n/a	3		n/a	2	4	n/a						
<i>Pappa</i> N4	-5.0											n/a			n/a		3							
	-5.1											n/a			n/a		3							
	-5.2											n/a				3	n/a							
	-5.3		1									n/a	1		n/a	2	3	n/a						
	-5.4		1		n/a							n/a	3		n/a	3	3	n/a						
<i>Th</i> N5, N10	-5.0	1	2	1	1	2						1	n/a			n/a					3			
	-5.1	2	3	1	1	1	1					1	n/a			n/a					3			
	-5.2	1		4	1							n/a			1	1				n/a	3			
	-5.3			3								n/a			n/a					n/a	3			
	-5.4		1	1		n/a						n/a			n/a					n/a	4			
<i>Ghrh</i> N5, N10	-5.0	1	1	1	1	1						n/a			n/a									
	-5.1	1	1	3								n/a			n/a									
	-5.2	1		3								n/a								n/a	1			
	-5.3			2								n/a			n/a					n/a				
	-5.4		1	1	n/a							n/a			n/a					n/a	1			
<i>Crh</i> N6	-5.0	3	1				1	1		1		n/a			3	n/a								
	-5.1	2	1	1								n/a			1	n/a					2			
	-5.2		1	1								n/a			1	3				n/a				
	-5.3		1	1								n/a			n/a	4				n/a	1			
	-5.4			2	n/a	2						n/a			n/a	3				n/a				
<i>Stk32b</i> N7, N8	-5.0	3	2	3	1	1	1					1	n/a		2	n/a								
	-5.1	3	3	3	2	2	2					2	n/a		2	2	n/a				2	3		
	-5.2	2	2	2	3	3	3					1	1	2	n/a		3	2		n/a	3			
	-5.3		1	1	3	2	1	1				n/a	2		n/a	1		n/a	3					
	-5.4		2	1	2	n/a	2					n/a	2		n/a	2		n/a	3					
<i>Calcr</i> N8	-5.0		2	1	1	1	1					n/a			1	n/a					2			
	-5.1	1	2	2	1	2	1					1	n/a			n/a		1	3					
	-5.2		1	1	1	1	1					n/a			1	1		n/a	3					
	-5.3		2		1	1	1					n/a	1		n/a	1		n/a	3					
	-5.4		1	1	1	n/a	1					n/a	1		n/a	2		n/a	4					
<i>Gal</i> N9	-5.0				1		1					n/a			2	n/a					1			
	-5.1							1				n/a			1	n/a					3			
	-5.2							1				n/a			1					n/a	3			
	-5.3											n/a			n/a					n/a	4			
	-5.4				n/a			1				n/a			n/a					n/a	4			
<i>Npnt</i> N9	-5.0											n/a			3	n/a								
	-5.1											n/a			2	n/a					1			
	-5.2				2							n/a								n/a	1			
	-5.3			2								n/a	1		n/a	1	2			n/a	1			
	-5.4			2	n/a							n/a			n/a					n/a	1			
<i>Pdyn</i> N8, N10	-5.0		3	1	1	1						n/a			1	n/a								
	-5.1	1	3	3	1	1						n/a				n/a					1	2		
	-5.2	1	4	2	1	1						n/a			2					n/a	2			
	-5.3			4	1		1					n/a	1		n/a					n/a	2			
	-5.4			3	n/a	1						n/a	1		n/a					n/a	2			
<i>Pax5</i> N11	-5.0	1	2	2	3	3	1		2			3	n/a		1	n/a					3			
	-5.1	1	2	3	3	4	1		1			3	n/a			n/a					2	2		
	-5.2	1	1	1	3	4	1		1			2	n/a		1					n/a	2			
	-5.3	1	3	1	3	3	1		1			n/a			n/a					n/a	2			
	-5.4	3	1	3	n/a	2		1				n/a			n/a					n/a	1			


Cells/region
Transcripts/cell

1
2
3
4
5
6
7

Figure 5 – figure supplement 1a. HiPlex results for all probes with signal in PBN and surrounding area, page 1.


Figure 5 – figure supplement 1b

	Parabrachial Subnuclei												Nearby Nuclei									
	Bregma	le	lv	ld	lc	ls	mm	me	scp	KF	CUN	LDT	MEV	SUT	SLD	B	PSV	CBm	CBg	CBp	PAG	LC
<i>Tacr1</i> N12	-5.0	1	2	1	2	2	2	1	1		1	n/a		1	1	n/a					1	
	-5.1	1	1	3	3	3	2		1		3	n/a		2	1	n/a					1	2
	-5.2	1	1	4	3	1		1		3	n/a		1	2							n/a	2
	-5.3	1	3	2	3	3	2		1		n/a	2		1	n/a						n/a	2
	-5.4	3	1	3	n/a	1			1		n/a	1									n/a	2
<i>Brs3</i> N12	-5.0			1	1				1			n/a				n/a						
	-5.1	1	1	2					1			n/a				n/a					1	
	-5.2	1	1	3							n/a				1						n/a	
	-5.3	3	1	3					1		n/a	1			n/a						n/a	
	-5.4	1	3	3	n/a	1			1		n/a	1			n/a						n/a	
<i>Nmu</i> N13	-5.0					1			1			n/a				n/a						
	-5.1	1			1				1			n/a				n/a						
	-5.2			1		1			1	1		n/a									n/a	
	-5.3						1				n/a				n/a						n/a	
	-5.4					n/a					n/a				n/a						n/a	
<i>Pla2g2f</i> N14	-5.0											n/a				n/a						
	-5.1					1						n/a				n/a						
	-5.2					2						n/a									n/a	
	-5.3				1						n/a				n/a						n/a	
	-5.4					n/a						n/a				n/a					n/a	
<i>Gda</i> N15	-5.0	4	1	1	2	2	2		1	2		n/a				n/a						
	-5.1	4	1		3	3	3		1	1	1	n/a				n/a						
	-5.2	4	1		3	3	3				1	n/a									n/a	
	-5.3	3	3	1	3		3				n/a				n/a						n/a	1
	-5.4	2	3	1	4	n/a	3				n/a				n/a						n/a	1
<i>Calca</i> N15, N16	-5.0	4	2	1	1		1	1		1		n/a			1	n/a						2
	-5.1	4	2	1	1		2	1	1	1		n/a				n/a						3
	-5.2	3	2		1		2		1	2		n/a			1	1					n/a	3
	-5.3	2	1	1			2		1	1		n/a				n/a					n/a	3
	-5.4	1	2	1		n/a	2		2			n/a				n/a					n/a	4
<i>Tac1</i> N1-N21	-5.0	4	2	2	3	3	3		1	2	1	n/a				n/a						
	-5.1	3	3	2	3	2	3		1	1	1	n/a				n/a						
	-5.2	3	3	2	3	2	3		1	1	1	n/a									n/a	
	-5.3	3	3	1	3		3		1	1	1	n/a				n/a					n/a	
	-5.4	3	2	2	3	n/a	3		1		n/a				n/a						n/a	
<i>Satb2</i> N17	-5.0											n/a				n/a						
	-5.1		1				2					n/a				n/a						
	-5.2	2				2						n/a									n/a	
	-5.3	2	2	1		2			1		n/a				n/a						n/a	
	-5.4	1	2	1	n/a	3			2		n/a				n/a						n/a	
<i>Sostdc1</i> N17, N18	-5.0		1	1								n/a				n/a						
	-5.1	1	1		1							n/a				n/a						
	-5.2	1	1		1		1					n/a									n/a	
	-5.3	1	2	1	1		1				n/a				n/a						n/a	
	-5.4	2	1	2	n/a	1					n/a				n/a						n/a	
<i>Phox2b</i> N19	-5.0	1	1	1	1	3	1	1	1			n/a		3		n/a	1					1
	-5.1	1	2	1	1	3	2	1	1	3		n/a		3		n/a	1					1
	-5.2	1		1	1	3	1					n/a		2	1	1	1				n/a	3
	-5.3					3						n/a		2	n/a	1					n/a	3
	-5.4			1	n/a	1						n/a		n/a	n/a	1	1	1			n/a	3
<i>Slc32a1</i> N20, N21	-5.0	1	1	1	1	3	2	1	1	2	3	n/a	1	3	n/a	1	4	1	4	3	1	
	-5.1	1	1	1	1	3	2	1	1	3	3	n/a	1	3	n/a	1	4	1	4	3	2	
	-5.2	1	1		2	2	2	1	1	3	3	n/a	1	3	2	1	4	1	4	1	4	
	-5.3	1		1	1	1	1	1	1	3	n/a	3	n/a	2	1	4	1	4	1	4	n/a	
	-5.4	1	1	1	1	n/a	1		1	3	n/a	3	n/a	1	2	4	1	4	1	4	n/a	
<i>Pnuc</i> N21	-5.0			1	1	2	1		1	1	3	n/a	1	3	n/a	2					2	
	-5.1	1	1	1	1	1	1		1	2	3	n/a	1	3	n/a	1					1	3
	-5.2	1	1	3	1	1	1	1	1	2	2	n/a	1	2	1	2					n/a	2
	-5.3	1		3			1	1		1	1	n/a	3	1	n/a	1	3				n/a	2
	-5.4	3	2	n/a			1	2		1	2	n/a	3	n/a	1	2					n/a	2

Figure 5 – figure supplement 1b. HiPlex results for all probes with signal in PBN and surrounding area, page 2.

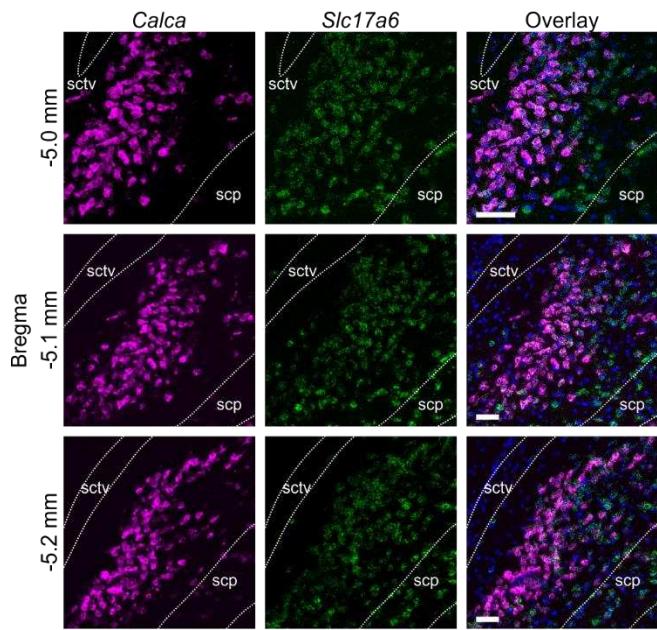

Figure 5 – figure supplement 2

Figure 5 – figure supplement 2. RNAscope for *Calca* and *Gda*.

Co-expression represents **N15** based on scRNA-Seq data. *Calca*-only cells that do not express *Gda* (circled by dashed line) are located in the ventral lateral PBle that extends partially into the Koelliker-Fuse (KF) represent **N16**. Scale bar, 100 μ m.

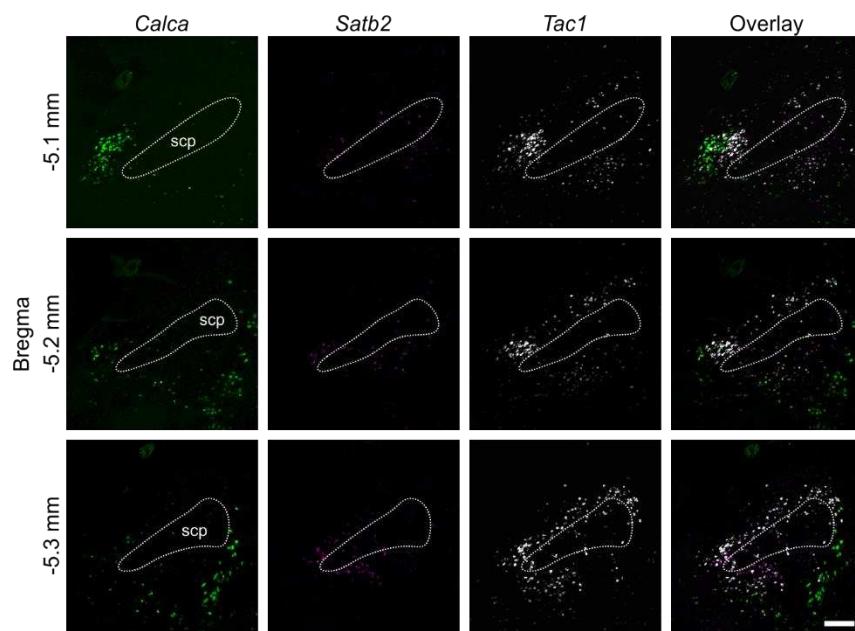

Figure 5 – figure supplement 3

Figure 5 – figure supplement 3. RNAscope for *Calca* and *Slc17a6*.

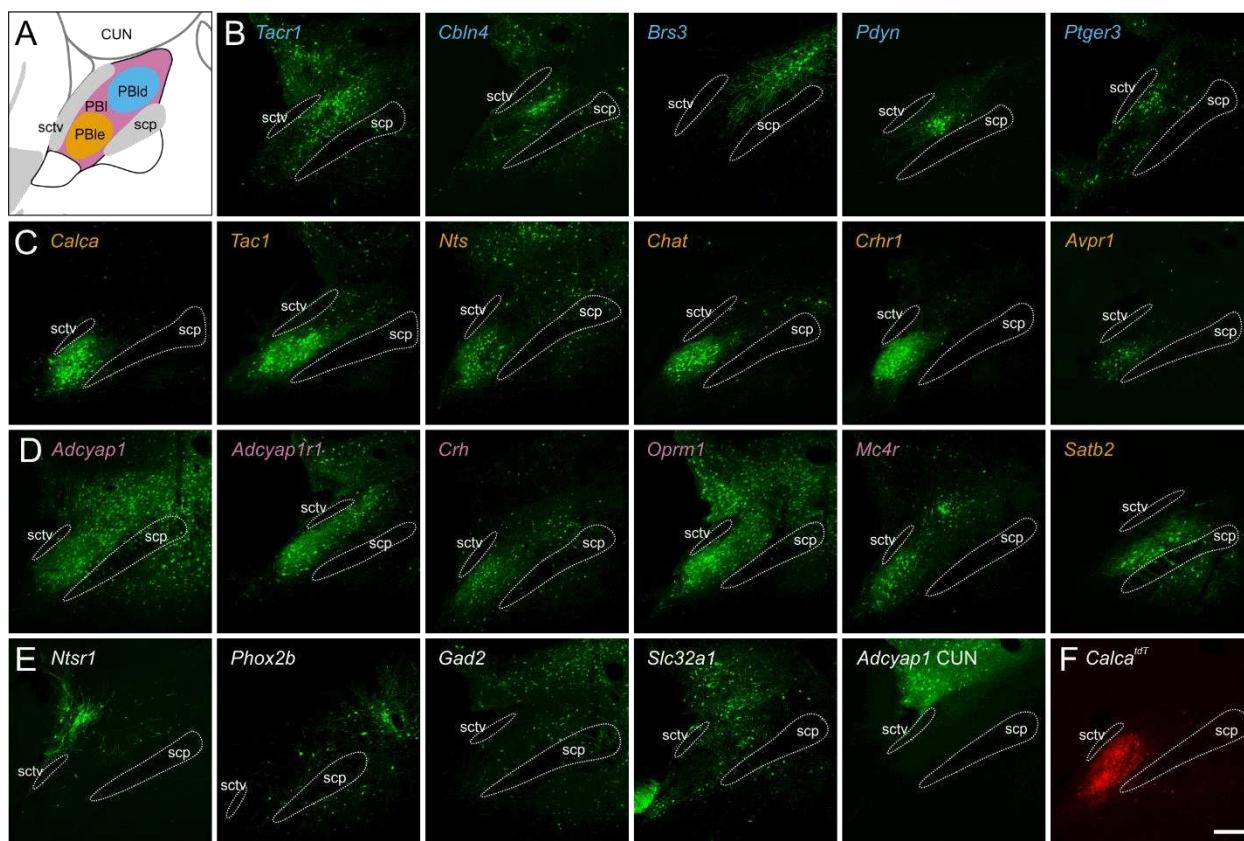
Nearly all *Slc17a6*-positive cells in the core of PBle also express *Calca*. Dapi is shown in blue in the Overlay image. Scale bar, 100 μ m.

Figure 5 – figure supplement 4

Figure 5 – figure supplement 4. RNAscope for *Calca*, *Satb2* and *Tac1*.

Difference in expression patterns of *Calca*, *Satb2* and *Tac1*. Scale bar, 200 μ m.

Figure 5 – table supplement 5


Gene	Enrichment (FC)	
<i>Crh</i>	>10*	
<i>Calca</i>	9.7	
<i>Nts</i>	5.9	
<i>Cbln2</i>	5.0	
<i>Tac1</i>	3.8	
<i>Adcyap1</i>	3.6	
<i>Scg2</i>	2.2	
<i>Pnoc</i>	2.1	
<i>Scg3</i>	0.7	
<i>Igf2</i>	0.4	
<i>Igf1</i>	0.4	
<i>Apln</i>	0.2	
Reference Genes		
<i>Gapdh</i>	1.1	Housekeeping
<i>Actb</i>	0.8	Housekeeping
<i>Gfap</i>	0.4	Astrocyte
<i>Cnp</i>	0.3	Oligodendrocyte
<i>Aif1</i>	0.3	Microglia
<i>S100b</i>	0.2	Oligodendrocyte/Astrocyte

*Inaccurate enrichment. Detection P value for input samples >0.05

Figure 5 – table supplement 5. Enrichment of neuropeptide mRNAs in *Calca* neurons based on RiboTag experiment, measured by the ratio of immunoprecipitate to input (FC, fold change). Only significantly different ($p<0.05$) neuropeptide mRNAs are shown. Housekeeping and glial mRNAs are included for reference.

Supplementary File 6. Source data for Ribotag experiment showing all genes (1) and genes significantly enriched/depleted ($p<0.05$) sorted by fold change (FC, 2).

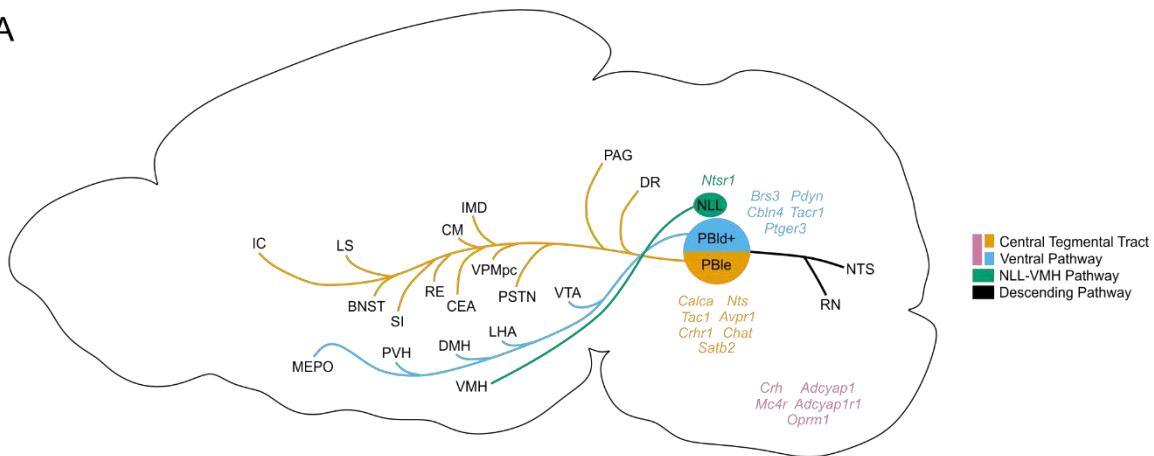
Figure 6

Figure 6. PBN expression in Cre-driver mouse lines.

(A) Schematic of the PBN showing PBle in orange dotted line, dorsal PBN regions in blue dotted line, and expression in both in pink. **(B)** Five Cre-driver lines (blue lettering) with expression primarily in dorsal PBN. **(C)** Six Cre-driver lines (orange) primarily in PBle. *Satb2* is included here because its projection pattern resembles that of this group. **(D)** Five Cre-driver lines (pink) with expression in several PBN regions. **(E)** Five Cre-driver lines (grey) with expression patterns that do not fit with the other categories. **(F)** Image of *Calca-tdTomato* expression in the PBN for comparison. All images of viral expression are in mid-PBN sections; approximately Bregma -5.2 mm. Scale bar, 200 μ m.

Figure 6. Source data available at Zenodo DOI: 10.5281/zenodo.6707404 and includes complete TIFF stacks for each of these Cre-drivers and *Calca-tdTomato*.

Figure 6 – table supplement 1. Table of all Cre-driver lines of mice that have been used to study expression in PBN and axonal projections.


Figure 6 – table supplement 1

Cre-driver	Extent of Analysis	Source	Identifiers
Adcyap1	Extensive	this paper	JAX Strain #:030155
Adcyap1r1	Extensive	this paper	JAX Strain #:035572
Avpr1a	Extensive	this paper	JAX Strain #:035573
Brs3	Moderate to Extensive	this paper; Mogul et al., 2021	JAX Strain #:030540
Calca	Limited to Extensive	this paper; Chen et al., 2018; Bowen et al., 2020; Huang et al., 2020; Kaur et al., 2017	JAX Strain #:033168
Cbln4	Extensive	this paper (previously unpublished; see Methods)	
Cck	Limited to Extensive	Grady et al., 2020; Huang et al., 2020; Yang et al., 2020	JAX Strain #: 012706
Chat	Extensive	this paper	JAX Strain #: 006410, 031661
Crh	Extensive	this paper	JAX Strain #: 012704
Crhr1	Extensive	this paper, Sanford et al., 2017	
Esr1	Limited	Grady et al., 2020	JAX Strain #: 017913, 031386
Gad2	Moderate	this paper	JAX Strain #:028867
Ghsr	Limited	May et al., 2021	
Mc4r	Extensive	this paper	JAX Strain #: 030759
Nts	Extensive	this paper	JAX Strain #:017525
Ntsr1	Extensive	this paper (previously unpublished; see Methods)	
Oprm1	Extensive	this paper, Liu et al., 2022	JAX Strain #:035574
Oxtr	Moderate	Ryan et al., 2017	JAX Strain #: 030543
Pdyn	Limited to Extensive	this paper (previously unpublished; see Methods); Grady et al., 2020; Huang et al., 2021; Norris et al., 2021	JAX Strain #: 927958
Penk	Limited	Norris et al., 2021	JAX Strain #: 025112
Phox2b	Extensive	this paper	JAX Strain #: 016223
Prlr	Limited	Kokay et al., 2018	
Ptger3	Extensive	this paper	JAX Strain #:035575
Satb2	Moderate to Extensive	this paper; Jarvie et al., 2021; Fu et al., 2019	JAX Strain #: 030546
Slc17a6	Moderate to Extensive	Chiang et al., 2020; Grady et al., 2020; Huang et al., 2021	JAX Strain #: 028863
Slc32a1	Extensive	this paper	JAX Strain #: 028862
Tac1	Limited to Extensive	this paper; Barik et al., 2018	JAX Strain #: 021877
Tacr1	Limited to Extensive	this paper (previously unpublished; see Methods); Barik et al., 2021; Deng et al., 2020	

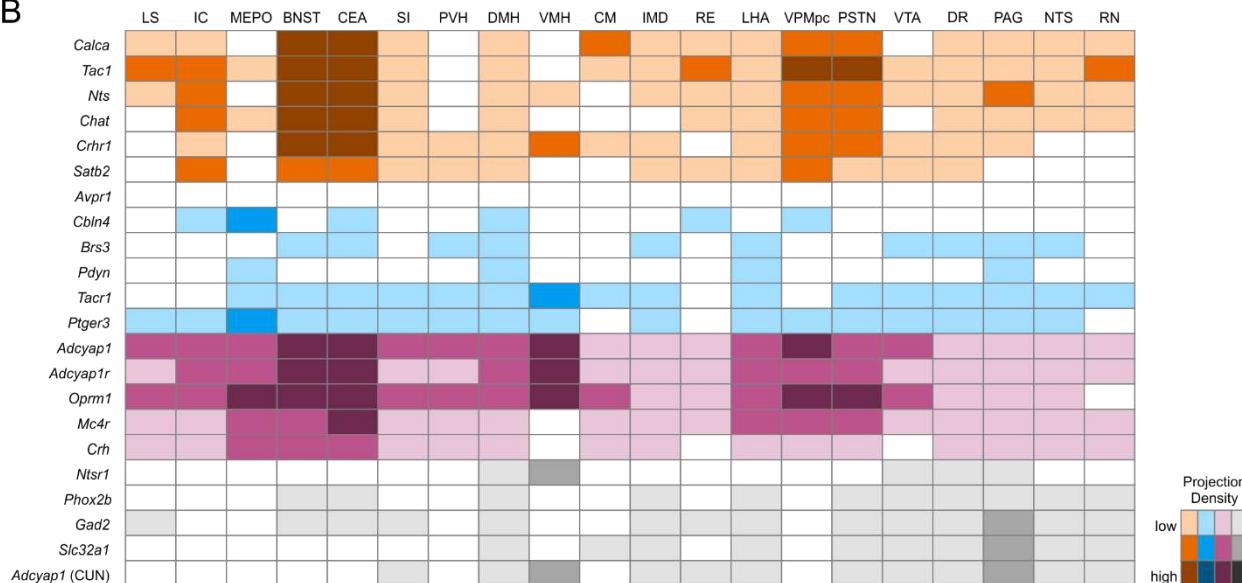

Figure 6 – table supplement 1. Table of all Cre-driver lines of mice that have been used to study expression in PBN and axonal projections.

Figure 7

A

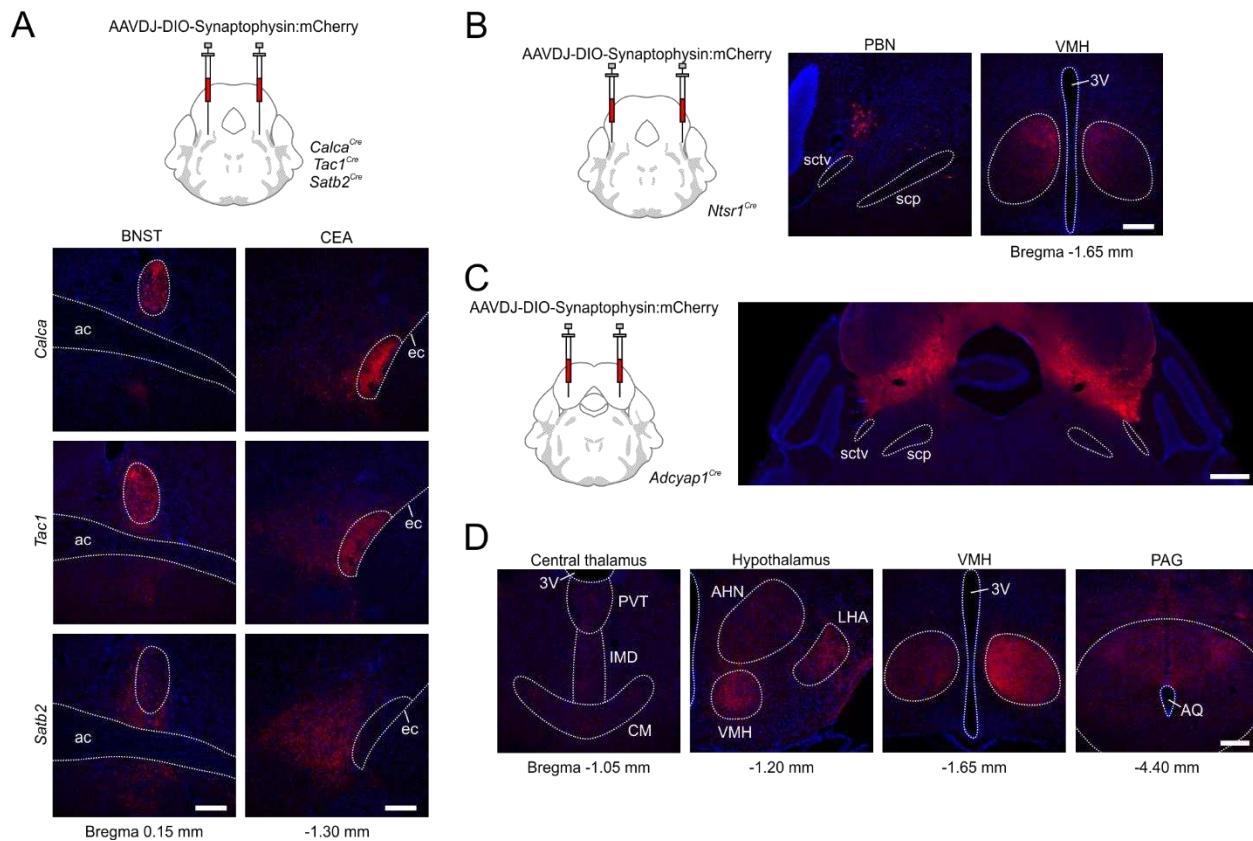

B

Figure 7. Descending pathways from the PBN and surrounding regions and the strength of their projections.

(A) Diagram showing the two main ascending projection pathways from the PBN. Genes are listed in a matched color with their pathway; pink genes follow both pathways. Many genes from each group have projections into the descending pathway that are not shown. **(B)** Guide showing approximate density of synaptophysin in a subset of target regions along with their abbreviations. Colors represent the pathways; darker shades indicate denser innervation.

Figure 8

Figure 8. Projection patterns in target brain regions.

(A) Comparison of synaptophysin:mCherry staining in BNST and CEA for *Calca*, *Tac1* and *Satb2* Cre-driver lines. Scale bars, 200 µm. **(B)** Example of cell body location in NLL region adjacent to PBN for *Ntsr1*^{Cre} mice (left); they project almost exclusively to the VMH (right). Scale bar, 200 µm. **(C)** Cell bodies in the CUN, ICE, and PAG, but not PBN, in *Adcyap1*^{Cre} mice. Scale bar, 500 µm. **(D)** Examples of projections from *Adcyap1*-expressing neurons in non-PBN regions that may mistakenly be attributed to the PBN. Scale bar, 200 µm.