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ABSTRACT

Diffusion MRI is the dominant non-invasive imaging method used to characterize white
matter organization in health and disease. Increasingly, fiber-specific properties within a voxel
are analyzed using fixels. While tools for conducting statistical analyses of fixel data exist,
currently available tools are memory intensive, difficult to scale to large datasets, and support
only a limited number of statistical models. Here we introduce ModelArray, a memory-efficient
R package for mass-univariate statistical analysis of fixel data. With only several lines of code,
even large fixel datasets can be analyzed using a standard personal computer. At present,
ModelArray supports linear models as well as generalized additive models (GAMs), which are
particularly useful for studying nonlinear effects in lifespan data. Detailed memory profiling
revealed that ModelArray required only limited memory even for large datasets. As an example,
we applied ModelArray to fixel data derived from diffusion images acquired as part of the
Philadelphia Neurodevelopmental Cohort (n=938). ModelArray required far less memory than
existing tools and revealed anticipated nonlinear developmental effects in white matter. Moving
forward, ModelArray is supported by an open-source software development model that can
incorporate additional statistical models and other imaging data types. Taken together,

ModelArray provides an efficient and flexible platform for statistical analysis of fixel data.
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HIGHLIGHTS
e ModelArray is an R package for mass-univariate statistical analysis of fixel data
o ModelArray is memory-efficient even for large-scale datasets
e ModelArray supports linear and nonlinear modeling and is extensible to more models

e ModelArray facilitates easy statistical analysis of large-scale fixel data
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INTRODUCTION

Diffusion MRI (dMRI) is the dominant method used to non-invasively study white matter
organization in the human brain. The most commonly used method for modeling the diffusion
signal is diffusion tensor imaging (DTI; Basser & Pierpaoli, 1996). However, DTI cannot
effectively model two or more crossing fibers within a given voxel; crossing fibers are thought to
comprise up to ~90% of white matter (WM) voxels (Jeurissen et al., 2013; Schilling et al., 2018;
Yeh et al., 2013). One method for addressing crossing fibers that is increasingly ascendant is
fixel-based analysis (FBA; Raffelt et al., 2015, 2017). A fixel refers to a specific fiber population
in a voxel; with FBA, multiple distinct fiber populations can be estimated within a voxel and
multiple fiber-specific properties can be quantified (Raffelt et al., 2015, 2017). The FBA pipeline
typically includes two parts. First, fixel data is generated for each participant in a sample and
quantified according to standard measures like fiber density (FD), fiber-bundle cross-section
(FC), or their combination — fiber density and cross-section (FDC). Second, the
high-dimensional fixel data from a sample is often analyzed in template space using
mass-univariate hypothesis testing; this often relies upon connectivity-based fixel enhancement

(CFE) as implemented in MRtrix (https://www.mrtrix.org/; Tournier et al., 2019).

However, current tools have two limitations. First, CFE has high memory demands,
which may scale by image resolution and sample size (Raffelt et al., 2015). This impedes the
application of FBA in large-scale dMRI data resources that include thousands of participants;
e.g., the Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014), the Human
Connectome Project (HCP; Van Essen et al., 2013), or the Healthy Brain Network (HBN;

Alexander et al., 2017). When faced with such large data resources, investigators often opt to
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reduce the dimensionality of the data and use regional summary measures, even if it is not

scientifically optimal.

Second, the statistical models supported by MRtrix for FBA are currently limited to the
general linear model (GLM). This may not be optimal for lifespan studies where effects of
interest are often nonlinear (e.g., Bethlehem et al., 2022; Lebel et al., 2012). Ideally, a statistical
analysis toolset should be extensible to incorporate diverse statistical models. R
(https://www.R-project.org; R Core Team, 2021) is a popular open-source statistical
programming software, and it supports a myriad of statistical functionality. Generalized additive
models (GAMs; Wood, 2001, 2004) are among the most widely used approaches to model
nonlinear effects of interest in R. GAMs can rigorously model both linear and nonlinear effects
by applying a penalty that helps avoid over-fitting; this approach is particularly valuable in
high-dimensional data settings — cases when hundreds of thousands of fixels are present — where

it is difficult to conduct detailed model diagnostics.

To address these limitations, we introduce ModelArray
(https://pennlinc.github.io/ModelArray/), a memory-efficient R package for statistical analysis of
fixel data. To maximize memory efficiency, ModelArray does not load the entire fixel data into
the memory. Instead, it only reads a limited block of data when needed by leveraging the
Hierarchical Data Format 5 (HDF5) file format and DelayedArray package in R (Pages et al.,
2021), At present, ModelArray supports linear models and GAMs, but it is by design extensible
and can incorporate many statistical models implemented in R. To demonstrate ModelArray’s
scalability, functionality, and extensibility, we profiled its memory usage and applied it to

examine nonlinear patterns of brain development using fixel data from the PNC (n = 938). As
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described below, ModelArray allows for efficient and flexible analysis of fixel data in large scale

data resources.

MATERIALS AND METHODS

Overview

ModelArray is an R package for mass-univariate hypothesis testing of fixel data that is
designed to be scalable for large datasets. We chose R as the platform as it is among the most
widely used platforms for statistical computing. This feature facilitates the potential to easily
incorporate diverse statistical models. ModelArray takes the fixel-wise data as input, after it has
been converted to the HDF5 format by its companion software ConFixel
(https://github.com/PennLINC/ConFixel). Fixel-wise data with metrics such as FD, FC, and FDC
can be calculated in existing software such as MRtrix (Tournier et al., 2019). ModelArray
performs statistical analysis for each fixel based on the statistical formula a user provides, and
finally saves statistical output as images via ConFixel. These output images can then be viewed

in widely-used visualization tools such as MRView from MRtrix (https:/www.mrtrix.org/;

Tournier et al., 2019).

Software design and memory efficiency

We capitalized upon the R package DelayedArray (Pagés et al., 2021) to maximize
memory efficiency. Of note, the term “memory” is used in this paper to refer to the computer’s
memory (RAM) used by software (including data loaded into the memory), and “disk™ or “disk
space” refers to the hard disk space where the files (e.g., an HDFS5 file) are stored. ModelArray

wraps fixel data on disk into a DelayedArray object, allowing common array operations such as
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indexing (e.g., extracting values of a specific fixel from a matrix) or transposing to be performed
without loading the on-disk object into memory. DelayedArray objects store their component
data in an HDFS5 file, and operations on a DelayedArray object are executed in a
memory-efficient, “delayed” way (where most R operations are processed on-demand and en
masse). The result is a memory-efficient and easy-to-use R interface for a large and hierarchical
on-disk dataset. After being generated by ConFixel (see below), an HDFS5 file of fixel data
contains a scalar matrix (fixels by participants), basic information of fixels and voxels (e.g.,
lookup tables of the directions of fixels and the coordinates of voxels that contain fixels), and,
once calculated by ModelArray, one or more result matrices (fixels by statistical metrics).
Leveraging DelayedArray, HDFS5 format, and the supporting R package HDF5Array (Pages,
2021), the on-disk fixel data can be accessed and manipulated while minimizing memory

requirements.

ModelArray workflow

ModelArray is packaged with the companion software ConFixel for converting fixel data
to the expected file format (see Figure 1). Specifically, ConFixel is a Python-based
command-line interface software, and it converts between the original MRtrix image format
(.mif) and the HDFS5 file format (.h5) used for ModelArray. After the file format conversion,
ModelArray generates a ModelArray-class object for representing the on-disk HDFS5 file.
ModelArray uses the S4 Object Oriented Programming (OOP) model which gives users easy
access to the scalar matrix, the source .mif file list, one or more results matrices (if any), and the
file path to the HDFS5 file. When fitting models, ModelArray iterates across all fixels in the scalar
matrix but only reads a limited block of data for each current fixel in order to reduce memory

usage. For each fixel, the software fits a model for the participant-level phenotypes of interest —
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such as age, sex, or diagnosis, which are loaded from a separate CSV file provided by the user —
and generates the statistical outputs for each fixel, such as p-values, coefficient estimations, and
t-statistics. After generating the result matrix of fixel-wise statistics, ModelArray will calculate
corrected p-values using the False Discovery Rate (FDR) and export the final result matrix back
into the input HDFS file. Finally, ConFixel converts the HDFS5 file’s results matrix into a list of
.mif files that are readable by widely-used visualization tools such as MRView from MRtrix

(https://www.mrtrix.org/; Tournier et al., 2019).
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Figure 1. Schematic of ModelArray and its companion converter ConFixel. The original fixel
data (.mif files) are first converted into an HDF5 file (.h5) using ConFixel (top of the left box).
ModelArray provides easy access to fixel data in the HDFS5 file (“accessor”). When performing
statistical analysis of each fixel (top of the right box), to reduce memory usage, only a limited
block of fixel data is read into the memory. Using the phenotypes of interest (e.g.,: age, sex;
provided by a CSV file), ModelArray fits a statistical model and calculates statistical output for
each fixel. After iterating across fixels, the result matrix is generated (bottom of the right box)
and saved to the original HDFS5 file on disk by ModelArray (“write”). Finally, ConFixel converts
the result matrix in this HDFS5 file into a list of .mif files ready to be viewed (bottom of the left
box).
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ModelArray functions

ModelArray provides functions for model fitting and writing statistical results. At

present, ModelArray supports linear models (ModelArray.1m()) as well as GAMs with and
without penalized splines (ModelArray.gam () ). Model fitting can be accelerated by

requesting more CPU cores for parallel computing. ModelArray writes the rich statistical output
of R into an HDFS file using the writeResults () function. This HDFS5 file is then converted
to a list of .mif files with ConFixel for viewing, as described above. Default statistical output
from ModelArray includes several maps for each model term (e.g., coefficient, 7-statistic, raw
and FDR-corrected p-values), as well as maps regarding the overall model fit (e.g., adjusted
R-squared, raw and FDR-corrected p-values from the model F-test in linear models). New
statistical models can be easily added by any GitHub contributor following the same workflow as

existing ones (ModelArray.lm() and ModelArray.gam () ); see developer documentation

at: https://pennlinc.github.io/ModelArray/articles/doc_for _developer.html. Thus, ModelArray is

extensible to many diverse statistical methods used in R.

Evaluation data

To evaluate ModelArray, we used the fixel data generated from the Philadelphia
Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014). Here we provide a brief summary
of the data and methods including participant inclusion, image acquisition, image quality
assurance, diffusion MRI preprocessing, and fixel-based analysis. In total, we included n=938
participants (521 female, 417 male) aged 8-23 years old. Participants were excluded due to lack
of diffusion imaging data, abnormalities in brain structure, major health conditions, missing BO
field map, poor image quality, etc. All the dMRI data underwent a rigorous manual and
automated quality assessment as previously described (Roalf et al., 2016).

10
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MRI scans were acquired on a Siemens TIM Trio 3T scanner. Diffusion MRI scans were
acquired with a twice-refocused spin-echo (TRSE) single-shot echo-planar imaging (EPI)
sequence. The sequence included 64 diffusion-weighted images of b = 1000 s/mm? as well as 7
interspersed b = 0 images; these images were acquired over two scan runs. The in-plane
resolution was 1.875x1.875 mm?, slice thickness was 2 mm without gap. In addition, a BO field
map was also acquired for distortion correction of dMRI data. In-scanner motion during the
dMRI scan was quantified as the root mean squared displacement (mean relative RMS); this was
calculated from 7 b = 0 volumes interspersed over the course of the dMRI scan (Roalf et al.,
2016). Motion was included as a covariate when modeling age effects using GAMs (described

below). Diffusion images were processed with QSIPrep (https:/github.com/PennBBL/gsiprep:

Cieslak et al., 2021). This process included denoising, distortion correction, and head motion
correction. Finally, the images were resampled to AC-PC alignment with 1.25 mm isotropic

voxels.

Following preprocessing, fixel-based analysis was performed using MRtrix

(https://www.mrtrix.org/, version v3.0RC3) (Dhollander et al., 2021; Raffelt et al., 2017;

Tournier et al., 2019). Briefly, study-specific response functions were calculated using data from
30 representative participants across ages (15M/15F). Fiber orientation distributions (FODs) for
all participants were then estimated using single-shell three-tissue constrained spherical

deconvolution (CSD) (Tournier et al., 2007). A study-specific FOD template was generated, and
participants’ FOD images were registered to this study template. After defining fixels, FDC was
quantified and chosen as the metric of interest as it combines both FD and FC and may be more
sensitive than FD or FC alone (Dhollander et al., 2021). Finally, the FDC values were smoothed

with “connected” nearby fixels to increase the signal-to-noise ratio (Raffelt et al., 2015). To

11
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smooth the data, a whole-brain probabilistic tractogram with 2 million streamlines was generated
from the FOD template, and a fixel-fixel connectivity matrix based on this tractogram was
computed. Lastly, FDC values were smoothed based on this matrix. This procedure yielded fixel
data in template space for each participant, which included 602,229 fixels. This fixel data was

used by both ModelArray and by the function fixelcfestats (Raffelt et al., 2015) in MRtrix

for comparison.

Memory profiling
We evaluated the memory efficiency of ModelArray and compared it to the primary

existing tool for fixel-wise statistical analysis: the function fixelcfestats in MRtrix

(version 3.0.2-193-gdd63cc20) (Raffelt et al., 2015). Memory profiling for both ModelArray and
MRtrix was completed using a Linux system by Working Set Size (WSS) Tools for Linux
(https://www.brendangregg.com/wss.html). We used a virtual machine on a standalone computer
to avoid interference from other users, with memory allocated to the virtual machine = 55
Gigabytes (GB) and total RAM on the computer = 64 GB. Specifically, the resident set size
(RSS) — real memory pages currently mapped — was captured by WSS and recorded. We sampled
the RSS once every second for both parent and any child processes (if more than one CPU core
was used). The total RSS from all processes was calculated by summing the interpolated RSS

values at each second, and the maximum RSS used over time was calculated.

To facilitate comparisons in profiling, we used a simple linear model of FDC = intercept
+ age. To evaluate how memory usage scaled with data size, we examined the full sample
(n=938) as well as subsamples of different sizes (n=30, n=100, n=300, n=500, and n=750).
Furthermore, memory profiling over different parallelization factors was also performed. During

the memory profiling for ModelArray and MRtrix, up to four CPU cores were made available.

12
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We compared memory requirements using both the full dataset (n=938) and smallest subset of

data (n=30). For MRtrix fixelcfestats, 100 permutations were specified, and F tests were

performed. In all cases, memory profiling was run three times for each use case, and the median

value was reported.

Application using generalized additive models

The memory benchmarking studies were conducted using linear models, as that
functionality is available for both MRtrix and ModelArray. However, in addition, we also
demonstrated the use of GAMs in ModelArray for modeling nonlinear developmental effects.
Notably, existing tools such as MRtrix only support GLMs and do not easily allow users to
model nonlinear developmental effects using GAMs. This application illustrates the extensibility

of ModelArray to incorporate diverse statistical models.

For this application, data from all participants (n = 938) was used. Age was modeled as a
smooth term s(age) with four basis functions (k=4); sex and in-scanner motion (mean relative

RMS displacement) were included as covariates. As in prior work (Pines et al., 2022), the effect

. . 2 2 2
size of the age term was quantified as Ra aj, full ~ Ra dj, reduced? where the Ra aj, fu W3S the
. . 2 . .
adjusted R-squared in the full model, and R was that in a reduced model that did not

adj, reduced

include the age term.

Open-source software development and release

ModelArray has been developed on GitHub with version controls and all code is openly
available on GitHub (see Data and code availability statements). Continuous Integration (CI)
testing is used to ensure stability and quality assurance. Specifically, we use CircleCI to perform

unit tests for all major features of ModelArray. These tests ensure the consistency between the
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statistical results calculated in ModelArray fitting loop and those calculated in standard R. Once
updated code is committed to GitHub, CircleCI automatically builds the software and runs unit
tests. If there are any errors, CircleCI will alert the developers to this failure immediately,

assuring that updates do not alter software performance.

Data and code availability statements
ModelArray documentation can be found at https://pennlinc.github.io/ModelArray. All
code used to perform memory profiling and application of GAMs is available at

https://github.com/PennLINC/ModelArray paper. The source code for ModelArray is available

at https://github.com/PennLINC/ModelArray, and the source code for ConFixel is available at

https://github.com/PennLINC/ConFixel. The version of ModelArray used for benchmarking and

demonstration was commit SHA-1 0911c4f. The PNC dataset used in this paper is available on
dbGAP

(h

2). As
part of the software tutorial, example fixel data from 100 PNC participants is openly shared on

OSF (https://doi.org/10.17605/OSE.IO/JVEHY).

Ethics statement

No new data were collected specifically for this paper. The Philadelphia
Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014) was approved by IRBs of the
University of Pennsylvania and Children's Hospital of Philadelphia. All adult participants in the
PNC provided informed consent to participate; minors provided assent alongside the informed

consent of their parents or guardian.
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RESULTS

Software walkthrough
Before using ModelArray, two files need to be prepared by the user: an HDFS5 (.h5) file

of fixel data (example filename here: example.hb5), and a CSV file of participant’s phenotypes
of interest (e.g., age, sex, etc; example filename here: example. csv). The HDFS file can be
obtained by applying ConFixel to convert the original fixel data (.mif files) into required HDF5
file format. An example of the usage of ModelArray is displayed in Figure 2. After loading the
package ModelArray in R (code line #3 in Figure 2), a ModelArray-class object modelarray
was created with the function ModelArray () ; it represents the fixel data in the HDF5 (.h5)
file on disk, including the scalar matrix (fixels by participants) (code line #5). As the entire data
was not loaded into memory, this object only required less than 1 Megabytes (MB) for complete
n = 938 evaluation data, much less than the HDFS5 file size on the disk (2.1 GB). After the data
frame of phenotypes was loaded into R (code line #6), mass-univariate analyses using linear
models and GAMs were performed with ModelArray.1lm () and ModelArray.gam(),
respectively (code line #9-10). The statistical outputs 1m.outputs and gam.outputs were
saved back to the original HDFS5 file with the function writeResults () (code line #13-14).
These outputs saved in the HDFS5 file can be converted back to .mif files by ConFixel for

viewing.
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1# Run in R:

2 # Setups:

3 library(ModelArray) # load the ModelArray package

4 filename <- "“example.h5” # filename of HDF5 file (got via ConFixel beforehand)

5 modelarray <- ModelArray(filename, scalar_types=“FDC") # define a ModelArray-class object
6 phenotypes <- read.csv(“example.csv”) # load csv file of phenotypes (age, sex, etc)

8 # Statistical analyses:

9 Tm.outputs <- ModelArray.lm(FDC~age, modelarray, phenotypes, “FDC”) # linear models

10 gam.outputs <- ModelArray.gam(FDC~s(age)+sex+motion, modelarray, phenotypes, “FDC") # GAMs
11

12 # Write results back to the HDF5 file:

13 writeResults(filename, df.output=Im.outputs, analysis_name="Tm")

14 writeResults(filename, df.output=gam.outputs, analysis_name="gam”)

Figure 2. Example R code for executing analysis using ModelArray. ModelArray functions are
highlighted in green.

For further details, as part of the comprehensive online documentation, please see the
“Walkthrough” of ModelArray and ConFixel

(https://pennlinc.github.io/ModelArray/articles/walkthrough.html). This walkthrough can be

used in conjunction with openly-shared fixel data from 100 PNC participants, which is available

on OSF (https://doi.org/10.17605/OSEIO/JVEHY).

ModelArray is memory-efficient and robust to dataset size

We profiled the memory usage of ModelArray and fixelcfestats from MRtrix over
a range of input data sizes (e.g., number of participants) and parallelization settings. As a first
step, we evaluated both the full dataset (n=938) as well as five smaller sub-samples. This initial
evaluation was completed using four CPU cores. As the number of participants analyzed
increased, ModelArray memory usage only changed minimally (Figure 3A). In comparison,
MRtrix’s memory requirements scaled with the number of participants included, ultimately

requiring 47.79 GB of memory when 938 participants were analyzed (Figure 3B).
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Figure 3. Memory required by ModelArray does not vary by sample size. The maximal memory
required by a linear model executed using ModelArray.lm () was evaluated when analyzing
a range of sample sizes (A) and compared with MRtrix (B). All models were performed with a

parallelization factor of 4.

Next, we examined how parallelization options impacted memory use. As expected,

when ModelArray requested more CPUs for analysis of samples of either small (n=30, Figure

4A) or large number of participants (n=938, Figure 4B), the memory required scaled by the

parallelization factor. However, regardless of the parallelization configuration, ModelArray
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consumed substantially less memory than MRtrix (Figure 4C & D), especially when analyzing a

large number of participants.
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Figure 4. ModelArray is memory-efficient even under different parallelization configurations.
Maximal memory usage for a linear model run using ModelArray.1lm () was evaluated across
a sample of n=30 (A) and n=938 (B) with varying numbers of CPU cores requested (top panels).
ModelArray.1lm () consumed substantially less memory than a comparable analysis using
MRtrix in both sample sizes (C, D).
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ModelArray captures nonlinear developmental effects

As a final illustration of ModelArray’s functionality and extensibility to diverse statistical
models, we also examined nonlinear developmental effects in the PNC using GAMs. Robust
nonlinear age effects can be observed in white matter tracts including the corpus callosum (CC)
and tracts in the brainstem even at very high statistical thresholds (p-value of s(age) < 1x10°",
Figure 5). To visualize the nonlinear age effects, a cluster in CC was defined with above
statistical threshold, and a GAM was fit for FDC averaged in an example 2D slice of this cluster
(highlighted in Figure SA by a white arrow). The averaged FDC of these fixels increased
throughout childhood and adolescence but then plateaued in young adulthood (Figure 5B). The

effect size (change in adjusted R’) of age in this fitted GAM was 0.204.

B 150
1.251 po , Pn,
" L5 #%
¢ L5 -l e
& .'0.-“"9;;.:. ’& e
o] - RS
L . e

0.751

Effect size of s(age): 4RZ; 050+
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Figure 5. ModelArray allows memory-efficient estimation of nonlinear effects. Fixel-wise GAM
fitted with Mode1Array.gam () revealed nonlinear FDC changes with age in childhood and
adolescence (n = 938). The GAM also included sex and motion quantification as covariates. (A)
Fixels whose FDC was significantly associated with age (p-value of s(age) < 1x107); fixels are
colored by effect size of s(age). Background image is the FOD template. (B) GAM fit for FDC
averaged in the 2D slice of the cluster in CC highlighted in panel A by a white arrow.
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DISCUSSION

Despite the advantages of representing diffusion imaging data as fixels, FBAis a
relatively new framework compared to voxel-based analysis, and relatively few analytic tools are
currently available for statistical analysis of fixel data. ModelArray is an R package for
mass-univariate statistical analysis of fixel data. As discussed below, ModelArray allows for both
linear and nonlinear modeling of fixel data in large datasets while only requiring modest amounts

of memory.

Scalability to large-scale data resources

Large-scale neuroimaging datasets enhance statistical power and the reliability of
findings in studies of individual differences (Marek et al., 2022). However, as data size grows,
memory requirements often become quite large when performing group-level statistical analysis.
As our benchmarking studies demonstrate, an existing tool for fixel-wise statistical analysis of
fixel data (MRtrix) scales with sample size, which can be problematic for with limited
computational resources. To address this challenge, we designed ModelArray to minimize
memory requirements by only reading data into memory as needed. Our benchmarking studies
illustrated that ModelArray memory requirements were low even when analyzing hundreds of
participants, and only had minimal change when the number of participants increased. This

scalability facilitates fixel-wise statistical analyses of large-scale data resources.

Extensibility to diverse statistical models

Brain changes across the lifespan are often nonlinear. One of the most-widely used
statistical models to capture both linear and nonlinear effects is the GAM. GAMs use smooth
functions to flexibly model linear and nonlinear effects; these smooth functions can be penalized

to avoid over-fitting. The incorporation of GAMs in ModelArray represents an advance over
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existing tools, which at present only support the GLM. However, it should be noted that because
ModelArray is built within R, it has the potential to leverage the myriad of statistical models that
R provides. Indeed, additional statistical models can be added to ModelArray using the same
workflow described in the developer documentation

(https://pennlinc.github.io/ModelArray/articles/doc_for_developer.html). This extensibility will

allow for ongoing enhancements — by both the original developers and the broader community —

to extend ModelArray’s functionality to a wide variety of statistical models.

Limitations and future directions

Several limitations of ModelArray should be noted. First, ModelArray is configured to
only analyze fixel data. Moving forward, it may be generalized to allow for analyses of other
imaging data types such as voxel (NIfTT) and surface (CIFTI) data. Such extensions could
leverage ModelArray’s modular I/O interface, which would only require additional companion
converters (i.e., ConVoxel instead of ConFixel). Second, ModelArray does not incorporate
information of fixel-fixel connectivity (in contrast to CFE with MRtrix), which limits the ability
of ModelArray to conduct cluster-wise statistical inference. However, the control of multiple
comparisons using methods such as FDR is commonly used in large-scale studies and is
currently implemented in ModelArray. Third and finally, ModelArray requires installation in R

and depends on other R packages.

Conclusion
ModelArray is a scalable R package for fixel-wise statistical analysis. It reduces memory
requirements and offers both linear and nonlinear modeling with substantial extensibility. Taken

together, ModelArray facilitates the statistical analysis of fixel data in large-scale dMRI datasets.
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