

1 Nationwide genomic biobank in Mexico unravels demographic history and 2 complex trait architecture from 6,057 individuals

3
4 Mashaal Sohail^{1, 2,3, #}, Amanda Y. Chong^{4, *}, Consuelo D. Quinto-Cortes^{1, *}, María J. Palma-
5 Martínez^{1, *}, Aaron Ragsdale¹, Santiago G. Medina-Muñoz¹, Carmina Barberena-Jonas¹,
6 Guadalupe Delgado-Sánchez⁵, Luis Pablo Cruz-Hervert^{5,6}, Leticia Ferreyra-Reyes⁵, Elizabeth
7 Ferreira-Guerrero⁵, Norma Mongua-Rodríguez⁵, Andrés Jimenez-Kaufmann¹, Hortensia
8 Moreno-Macías^{7,8}, Carlos A. Aguilar-Salinas⁹, Kathryn Auckland⁴, Adrián Cortés¹⁰, Víctor
9 Acuña-Alonso¹¹, Alexander G. Ioannidis¹², Christopher R. Gignoux¹³, Genevieve L. Wojcik¹⁴,
10 Selene L. Fernández-Valverde¹, Adrian V.S. Hill^{14,15}, María Teresa Tusié-Luna⁷, Alexander J.
11 Mentzer^{4, 10}, John Novembre^{2,16}, Lourdes García-García^{5, #}, Andrés Moreno-Estrada^{1, #}

12
13
14 ¹Laboratorio Nacional de Genómica para la Biodiversidad (LANGBIO), Unidad de Genómica Avanzada (UGA),
15 CINVESTAV, Irapuato, Guanajuato, México.

16 ²Department of Human Genetics, University of Chicago, Chicago, IL, USA.

17 ³Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca,
18 Morelos, México.

19 ⁴The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

20 ⁵Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México.

21 ⁶Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México.

22 ⁷Unidad de Biología Molecular y Medicina Genómica, UNAM-INCMSZ, México City, México.

23 ⁸Universidad Autónoma Metropolitana, México City, México.

24 ⁹Division de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México.

25 ¹⁰Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.

26 ¹¹Escuela Nacional de Antropología e Historia (ENAH), Mexico City, México.

27 ¹²Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.

28 ¹³Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO,
29 USA.

30 ¹⁴Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

31 ¹⁵The Jenner Institute, University of Oxford, Oxford, UK.

32 ¹⁶Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.

33 *co-authorship

34 #co-corresponding

35 Emails for correspondence: andres.moreno@cinvestav.mx, garcigarm@gmail.com,
36 mashaal@ccg.unam.mx

37

38

39

40

41

42

43

44

45

46

47

48

49

50 **Abstract:**
51 Latin America continues to be severely underrepresented in genomics research, and fine-scale
52 genetic histories as well as complex trait architectures remain hidden due to the lack of Big Data.
53 To fill this gap, the Mexican Biobank project genotyped 1.8 million markers in 6,057 individuals
54 from 32 states and 898 sampling localities across Mexico with linked complex trait and disease
55 information creating a valuable nationwide genotype-phenotype database. Through a suite of
56 state-of-the-art methods for ancestry deconvolution and inference of identity-by-descent (IBD)
57 segments, we inferred detailed ancestral histories for the last 200 generations in different
58 Mesoamerican regions, unraveling native and colonial/post-colonial demographic dynamics. We
59 observed large variations in runs of homozygosity (ROH) among genomic regions with different
60 ancestral origins reflecting their demographic histories, which also affect the distribution of rare
61 deleterious variants across Mexico. We analyzed a range of biomedical complex traits and
62 identified significant genetic and environmental factors explaining their variation, such as ROH
63 found to be significant predictors for trait variation in BMI and triglycerides.
64

65 The genetic architecture of complex traits in admixed genomes cannot be understood outside the
66 context of their underlying histories. Present-day Mexico covers seven Mesoamerican regions
67 with rich civilizational histories¹. Archaeology and anthropology regionalize Mexico into the
68 north of Mexico, the north of Mesoamerica, the center, occident and gulf of Mexico, Oaxaca and
69 the Mayan region²(Fig. 1a). These are based on noting specific pre-Hispanic civilizations and
70 cultures, which began flourishing very early in the Mayan region, in Oaxaca, in the occident and
71 in the gulf of Mexico³, and later in the center and north of Mesoamerica. Such histories have also
72 been used to classify Mesoamerican chronology into preclassical, classical, postclassical,
73 colonial, and postcolonial periods.
74

75 In the last five hundred years, Spanish colonization has left an indelible mark on this native
76 tapestry. In a colonial context, ancestries that trace to European, African and Asian sources can
77 be identified in living Mexicans, however they vary in structure and timing between
78 Mesoamerican regions⁴⁵⁻⁸⁹⁻¹¹. The heterogeneity of such a mixture at a genetic level has been
79 characterized, revealing extensive fine-scale population substructure and ancestry sources across
80 Mexico¹²⁻¹⁶. These studies have also identified genes potentially under selection for some traits in
81 different native groups^{12,15}.
82

83 Further, such varying genetic histories, as captured by ancestry distributions, have been shown to
84 impact variation in complex traits in Mexicans in traits such as lung force capacity¹², and a
85 number of other complex traits and diseases¹⁷. Nevertheless, a large gap remains in the
86 representation of Mexicans from across Mexico in cohorts with linked genotypes and
87 phenotypes, which could enable finer-scale studies of genetic history and a better understanding
88 of complex trait architecture among individuals with diverse ancestries from the Americas and
89 those living in rural areas¹⁸. Past efforts have been limited to studying individuals from the United
90 States and Mexico City and have not simultaneously modelled the influence on complex trait
91 variation of a rich array of genetic and environmental factors as is possible with a nationwide
92 Biobank.
93

94 To bridge this gap, we launched the Mexican Biobank (MXB) project, densely genotyping 6,057
95 individuals from all 32 states across Mexico (Fig. S1-S2) recruited as part of the National Health
96 Survey in 2000 (ENSA2000), which sampled more than 40,000 participants nationwide. To
97 select the samples for genomic and biochemical characterization, we enriched for those
98 individuals that can speak an indigenous language in each state while maximizing the
99 representation of rural localities (~70% of the MXB out of a total of 898 localities, Fig. S2-S5) to
100 increase the representation of indigenous ancestries. The MXB is 70% female and comprised of
101 individuals born between 1910 and 1980, all sampled in the year 2000¹⁸(Table S1). These
102 individuals were genotyped at ~1.8 million SNPs and have linked information for traits such as
103 height, BMI, triglycerides, glucose, cholesterol, blood pressure and various socioeconomic and
104 biogeographical markers (Table S2).
105

106 Here, we leverage rich archaeological and anthropological information to guide a regionalized
107 analysis of Mexico, and harness the power of local ancestry estimation genome-wide and
108 segments of identity-by-descent (IBD) to decipher fine-scale genetic histories using ancestry-
109 specific approaches to denote origins and historical population size changes^{19,20}. We reveal a very
110 heterogeneous landscape of both, painting a genetically informed picture of varying demographic

111 trajectories of Mesoamerican civilizations, as well as colonial migrations and dynamics in
112 different regions of Mexico. We further investigate the role of these evolutionary histories as
113 captured by proxies of genetic ancestries in shaping genetic variation and complex traits patterns
114 in Mexico today. We show that these histories result in marked geographic and ancestry-specific
115 patterns in the distributions of runs of homozygosity (ROH) and of the genomic burden of rare
116 deleterious mutations.

117
118 Lastly, we study the impact of these histories which could associate certain trait-relevant
119 genotypes with certain genetic backgrounds, along with portions of the genome in ROH and
120 other sociocultural and biogeographical factors capturing environmental context, on creating trait
121 variation in complex and medically-relevant traits such as height, BMI, triglycerides, glucose
122 levels, and others in Mexico. Our results can help guide sampling and design for future genetic
123 mapping efforts by determining which environmental and genetic axes maximize trait variation,
124 to help increase power in genome-wide association studies. They can also help determine cases
125 where environmental interventions are more likely to bring a desired improvement in public
126 health.

127
128 **Genetic structure across Mexico is shaped by native diversity and historical migrations.**
129 We begin by excavating the population structure in the MXB at different geographic resolutions
130 and time-scales. Principal components analysis (PCA)²¹ captures predominant axes of genetic
131 similarity. Further, a proxy for genetic ancestries from different regions can be quantified using
132 ADMIXTURE²² (see note on genetic ancestries in methods). When we visualize the Mexican
133 biobank samples using PCA with individuals from around the world (1000 Genomes²³, HGDP²⁴,
134 and PAGE²⁵), we find that most Mexican individuals lie on a cline between living Europeans and
135 indigenous Americans, which we interpret as reflecting the history of admixture in Mexico since
136 Spanish colonization (Fig. 1B, Figs. S6). We also observe a “pull” towards present-day Africans,
137 likely reflecting the genetic impact of the trans-Atlantic slave trade during the colonial period
138 and subsequent migrations that brought many Africans to Mexico. When analyzed alone, the
139 MXB individuals show a striking population substructure delineation between the Mayan region
140 and the rest of the country (Fig. 1C, Fig. 1E, Figs. S7-S17). In the rest of the regions, only a
141 subtle genetic substructure mirroring Mesoamerican geography is visible in the MXB, likely
142 reflecting the effects of movement and mating among the different regions sampled in the year
143 2000.

144
145 We infer ancestry proxies at different geographic resolutions reflecting mating dynamics in the
146 colonial and post-colonial periods by analyzing MXB with global individuals as well as with
147 only native individuals using the software ADMIXTURE (Fig. 1D, Table S3, Fig. S11). We
148 observe that individuals in the Mexican Biobank are inferred to be admixed with varying degrees
149 of ancestries that are found most abundantly in individuals of the Americas (“American
150 ancestries”) and Europe (“European ancestries”). Higher levels of ancestries from the Americas
151 were inferred in the central and southern states of Mexico, compared to the northern states. We
152 observe the largest genetic differentiation as measured using Fst along a north to southeast cline
153 (Fig. S14-17). We observe some ancestries from Africa in individuals found in every single state
154 (Table S3). We observe that only 3 states in the north (Chihuahua, Nuevo Leon and Sinaloa)
155 have more ancestries on average from Europe than ancestries from the Americas, with ancestries
156 from the Americas being the majority ancestries in every other state (Table S3). Lastly, we note

157 the presence of a small but significant proportion of ancestries from East Asia in almost every
158 state (0-2.3%), the highest in the state of Guerrero (2.3%), and an even more modest but
159 significant amount of ancestries from South Asia in the majority of states as well (0-0.8%).
160

161 We use an ancestry-specific PCA or MDS approach to pinpoint the origins of the ancestries from
162 the Americas, Africa, and Asia observed in the Mexican Biobank within those regions. For
163 ancestries from the Americas, we observe that such ancestries tend to originate from indigenous
164 cultures predominant in the region an individual is from (Fig. S18, Table S4). For example, such
165 ancestries in the Yucatan peninsula originate from the Maya and Tzotzil. We observe that most
166 ancestries from Africa in Mexico originate from West Africa²⁶, in agreement with historical
167 records of shipping voyages from the trans-Atlantic slave trade (Fig. S19)⁴. For the ancestries
168 from East Asia, we find for individuals in Guerrero, such segments projecting to East Asian
169 regions that were linked to the Manila Galleon trade, as reported in preliminary findings¹⁶. In
170 contrast, for individuals from northern states such as Chihuahua, such segments project to China
171 and Japan, likely reflecting later migrations from East Asia to Mexico (Fig. S20). Similarly, for
172 ancestries from South Asia, as illustrated for individuals from Guerrero, the landing state of the
173 Manila Galleon, we observe diverse roots in South Asia (Fig. S21-S22).
174

175 The identification of individuals with genetic ancestries from East Asia in Mexico dating to the
176 Manila Galleon trade agrees with one other recent study¹⁶. These genetic observations are
177 plausibly explained by the poorly appreciated history of Mexico's Asian populations⁵⁻⁸. Using
178 voyage records, slaving documents, and other sources, historians have documented arrivals from
179 the Manila port in the Spanish Philippines to the Acapulco port in Mexico through the 16th and
180 17th centuries, with origins as diverse as the Philippines, Indonesia, Malaysia, India, Bengal, and
181 Sri Lanka (though they were collectively referred to as "Chinos" by the colonists). They entered
182 from the Acapulco port, but moved through most of Mexico, with even what was called the
183 "China Road" existing between Acapulco and Mexico City. There have also been later 19th and
184 20th century migrations from China and Japan, especially to the north of Mexico, and inheritance
185 from these ancestors likely explains part of the ancestries from East Asia we observe in the
186 northern states of the MXB today⁹⁻¹¹.
187

188 **Ancestry-specific IBD tracts recover 200 generations of genetic history within Mexico**

189 Apart from the small amount of recent ancestry from Asia discussed above, the ancestry of
190 contemporary Mexicans arises predominantly from lineages that would have been found in
191 Central America, Western Europe, and West Africa prior to 15th century. Each of these sources
192 had different demographic histories prior to and after their arrival in present-day Mexico. To
193 reveal the more recent history of population sizes of these three ancestries, we analyze identity-
194 by-descent segments²⁷ overlapped with their corresponding local ancestry inference¹⁹. We use this
195 approach to estimate effective population size (N_e) trajectories 200 generations into the past for
196 these ancestries in the Mexican Biobank as a whole, as well as in specific Mesoamerican regions
197 (Figure 2). This analysis helps us reveal genetic histories of present-day Mexicans, which is of
198 anthropological interest, as well as relevant for patterns of genetic and complex trait variation as
199 shown in later sections.
200

201 In the entire MXB, contextualized using Mesoamerican chronology (Fig. 2A), we find that, for
202 indigenous lineages, (i.e., those present in the area before the arrival of the Spaniards), the

203 effective population size went through a slow and steady decline in the classical period (250 –
204 900 CE). This decline was followed by an increase in the postclassical period (900 – 1521 CE),
205 right before the arrival of the Spaniards, and then a decline later in the colonial period (1521 –
206 1821 CE) and in the post-colonial period (1821 – present) (Fig. 2B).

207
208 Further, we observe fine-scale structure in N_e trajectories for indigenous lineages which we
209 interpret in the context of the different cultural histories of Mesoamerican regions (Fig. 2C)¹.
210 Starting chronologically, archaeologists document that Mesoamerican civilizations flourished
211 very early in the Mayan region, in Oaxaca, in the occident and in the gulf of Mexico, where we
212 also observe large N_e already in the classical period³. For example, in the gulf, where we observe
213 high N_e since the pre-classical period (2500 BCE – 250 CE), there is archaeological evidence,
214 among a myriad of other groups, of the Olmecs in the pre-classical period, the Totonacs in the
215 classical period, and the Huastecs in the post-classical period²⁸. In Oaxaca, we observe N_e rapidly
216 growing in the pre-classical to the classical period, in line with archaeological inferences that the
217 Zapotecs were already starting to create sedentary settlements in the pre-classical period
218 followed by a rise in social and political structures in the classical period. This was followed by a
219 more militaristic period in the post-classical causing warfare²⁹, and our genetic evidence suggests
220 a significant population decline toward the end of the post-classical period. In the Yucatan
221 peninsula, the Maya had prominent civilizational spread in the classical period (peak N_e
222 observed), and started going through a slow decline only in the post-classical period due to what
223 archaeologists have inferred as a combination of different political and ecological factors, and
224 this trajectory is supported in the N_e trend³. We further observe that native groups in both Oaxaca
225 and the Mayan peninsula started to increase in population size again through the colonial and
226 post-colonial (1821 – present) periods, after the arrival of the Spaniards.

227
228 This is in contrast with the center and north of Mesoamerica, where the Aztec empire had a
229 strong-hold most recently and where we see increasing N_e in the post-classical right before the
230 arrival of the Spaniards and into part of the colonial period, after which we start to see a
231 population decline in N_e . Thus, the decline in N_e after the arrival of the Spaniards is most
232 prominent in the center and north of Mesoamerica, and is actually followed by an increase in
233 Oaxaca and the Mayan region, where native ancestries from Central America are most prevalent
234 today as evidenced by the Admixture analysis (Table S3). As generational time can vary, we
235 present our analysis at two extremes of 20 and 30 years per generation³⁰ (Fig. S23 and 2C,
236 respectively).

237
238 We observe that ancestries from Western Europe that entered the contemporary Mexican gene
239 pool went through a sharp decline in effective population size during the colonial period. The
240 extent of the founder effect varied by region, with the strongest effect seen in Oaxaca and the
241 Mayan region (Fig. S24, S25). Similarly, ancestries from Western Africa in Mexico revealed
242 stronger founder effects that varied by region with N_e ranging between 10^3 and 10^4 in the colonial
243 period. The population size in the post-colonial period continued to grow in some regions such as
244 the occident and north of Mexico and the Mayan region, compared to others (Fig. S26, S27).

245
246 **Demographic histories impact patterns of genetic variation in Mexico**
247 ***Small ROH prevalence is correlated with ancestry proxies***

248 We next analyze the patterns of ROH in the MXB and their relationship with geography and
249 ancestry proxies. ROH patterns help further illuminate demographic and mating histories of
250 Mexicans³¹, and are relevant for variation in complex traits if trait-relevant variation is partially
251 recessive³². We identify ROH (≥ 1 Mb) in the Mexican Biobank and observe that both the
252 number of ROHs and the total length of ROH per individual increases as we move from north to
253 southeast in the country (Fig. S28-29). We confirm that this is primarily due to individuals with
254 more genetic ancestries from Central America also having more ROH in their genomes (Fig. 3A,
255 Figs. S30-31, Table S5).

256

257 Next, we asked whether this signal of higher ROH associated with higher ancestry from Central
258 America is due to historical bottlenecks and small population sizes, or due to consanguinity. A
259 bottleneck event or a long-term small population size will result in a large number of small
260 ROH³³. Consanguinity or marriage between relatives would instead result in fewer but longer
261 ROH³³. To answer this question, we analyze the total length of ROH per individual in each state,
262 after first partitioning ROH by size (Fig. 3B). We observe that there are more ROH per
263 individual moving southwards in Mexico in large part due to small ROH (smaller than those
264 expected from recent consanguinity e.g., < 8 Mb), implying that bottlenecks and small
265 population sizes rather than consanguinity have been largely responsible for more ROH in
266 individuals with higher ancestries from Central America.

267

268 Lastly, we observe that ROH that are found on segments of the genome from Central America
269 are more frequently found in younger individuals compared to older individuals (Spearman's rho
270 = 0.31, $p = 0.016$) (Fig. 3C). We also verified that this correlation with birth year primarily
271 derives from small ROH (rho = 0.35, $p = 0.006$), and small ROH found on genomic segments
272 from the Americas (rho = 0.39, $p = 0.002$) (Fig. 3C). This result is at least partly due to younger
273 individuals carrying more ancestries from Central America compared to older individuals,
274 especially in the rural localities (Fig. S51), and agrees with recent observations about ancestry
275 and ROH made in Mexican-Americans¹⁷. The observation of higher ancestries from Central
276 America in younger individuals in rural areas may be due to either individuals in rural areas pro-
277 creating at a higher rate, or individuals with other ancestries moving out from rural to urban
278 areas. The observation of a larger number of small ROH in younger individuals in the MXB is
279 relevant for parsing the genetic architecture of complex traits and diseases, especially those with
280 a recessive component.

281

282 ***Rare deleterious variant burden is correlated with ancestry proxies***

283 We also investigated the effects of demographic history on the frequency distribution of genetic
284 variants. If such an effect exists for variants that contribute to trait variation, it would imply
285 varying genetic architectures for some traits that may be captured by ancestry proxies. This
286 analysis is motivated by previous theoretical and empirical work showing that undergoing a
287 bottleneck changes the allele frequency distribution in the group that experienced the
288 bottleneck^{23,34,35}. In particular, rare variants are lost or increase in frequency after the bottleneck.

289

290 We can evaluate this effect within and between genes in the genome by calculating the genome
291 load of genetic variants, or mutation burden. We calculated the genome-wide mutation burden by
292 summing the derived alleles at each SNP in the genome for different types of variants
293 (intergenic, synonymous, putatively deleterious). When considering only rare variants (DAF \leq

294 5%), we observe that the total number of rare variants is negatively correlated with ancestries
295 from Central America, while it is positively correlated with ancestries from Western Europe and
296 West Africa (Fig. 4). Thus, individuals with higher ancestries from Central America carry fewer
297 rare variants likely due to a history of more bottlenecking events compared to individuals with
298 higher ancestries from Western Europe and West Africa. We observed the same general pattern
299 for different types of variants. However, this effect of varying demographic histories on variant
300 frequencies is strongest for putatively neutral variants (Fig. 4). We have verified these
301 observations for rare variants with whole-genome sequences from the subset of Mexicans living
302 in Los Angeles (MXL) from the 1000 Genomes Project to rule out ascertainment biases due to
303 the array genotyping as the source of this effect (Fig. S50).

304
305 As shown in previous studies, the effect of demographic history on the total mutation burden is
306 minimal in MXB³⁵⁻³⁷. When we consider all frequencies (DAF <= 100%), we see only a small
307 correlation between mutation burden and ancestries from different regions likely due to
308 ascertainment bias as this correlation does not persist in whole genome sequence data from 1000
309 Genomes (Fig. 4, Fig. S50). This is because while some rare variants are lost, some increase in
310 frequency, compensating the total mutation burden, which overall remains unchanged.

311
312 **Complex traits display varying roles of genetics and environment**

313 Lastly, we assessed the contribution of genetic variation towards impacting variation in complex
314 traits or disease in Mexico (Fig. S32). For example, ROH have been previously shown to have
315 associations with a broad range of complex traits, and estimated to be negatively associated with
316 height, weight, and cholesterol³². Such associations, if due to genetic factors, point towards a
317 recessive architecture of the traits. Further, genetic ancestry proxies can also be associated with
318 complex traits due to genetic factors, or due to differential experience of discrimination and other
319 socioeconomic factors (Fig. S32). Such genetic factors can be different distributions of ROH or
320 other differential patterns of genetic variation caused by demographic and environmental
321 histories that vary among ancestries, and that can lead to the association of particular causal
322 genotypes with ancestry proxies. Indeed, genetic ancestry proxies in Mexico are correlated with
323 the number and length of ROH (Fig. 3A). We therefore model the association of genetic factors
324 such as ancestry proxies and ROH with trait variation in the same model to disentangle these
325 effects. As genetic ancestry proxies can also reflect differential environmental exposures, we
326 consider in our model several environmental factors, to further disentangle the role of genetic
327 factors reflected in ancestry proxies compared to environmental factors. Our model therefore
328 also includes variables available in the MXB related to discrimination, socioeconomic
329 opportunities, and living environment (collectively called sociocultural and biogeographical
330 factors). We also account for cryptic relatedness and potential unmodelled environmental factors
331 using a genetic relationship matrix and city or town of origin as random effects in a mixed model
332 framework. Significant associations would give insight into the architecture, including the
333 genetic architecture, of the trait in Mexico to help guide future efforts in genetic mapping, and in
334 considering other interventions towards improving public health.

335
336 Aiming to first understand how the traits are distributed geographically and relative to single
337 model covariates, we first visualize average trait values by units of our biogeographical and
338 sociocultural factors to understand the dimensions of trait variation (Figs. 5A, S33-41). Next, we
339 use a mixed model to estimate the contribution of genetic factors to trait variation jointly

340 modelled with the environmental factors (Figs. 5B, D-F, S42-49). Finally, we visualize trait
341 values by birth year to assess their changes over time. We focus on several quantitative traits:
342 height, BMI, triglycerides, cholesterol, glucose, blood pressure, and others. Our test predictive
343 variables in the full model include genetic factors (genetic ancestry proxies from ADMIXTURE
344 and ancestry-specific MDS analyses, and ROH in kb in each genome), life history factors (age,
345 sex), sociocultural factors (educational attainment as a proxy for income levels (Fig. S42),
346 whether they speak an indigenous language or not as a proxy for differential experience of
347 discrimination/other cultural factors such as diet, whether they live in an urban or rural
348 environment), and biogeographical factors (altitude, latitude and longitude). For height and other
349 traits analyzed, a significant association with ancestry proxies could reflect the association of
350 particular causal genotypes with those ancestries or associated unmodelled environmental factors
351 such as nutrition. If the association is due to genetic factors, it should still not be interpreted as
352 deterministic of a trait value, but makes a case for inclusion of diverse individuals in genetic
353 studies of complex traits.
354

355 *Height.* When viewed as averages per state, height values show a clear increasing pattern from
356 southeast to northwest in the MXB (Fig. 5A). Even though every state shows a large variance
357 (Fig. 5A), height shows a significant correlation with both latitude and longitude univariately
358 (Figs. S34-35). With our explanatory mixed model, we can explain 66.33% of the variance for
359 height. We find that individuals with higher ancestries from Central America are significantly
360 shorter ($\beta = -0.42, p < 2.2 \times 10^{-16}$) (Figure 5b). Further, considering ancestries at a finer
361 resolution, we observe decreased height with a change in ancestries from the North of Mexico
362 (Huichol, Tarahumara) to the Mayan region (Tojolabal, Maya) (Fig. S48). Notably, individuals
363 having higher educational attainment are also estimated to be taller. After Bonferroni correction
364 across traits and predictors, the relationship between ROH and height is not statistically
365 significant ($\beta = -0.07, p = 0.03$). Nevertheless, younger individuals with any range of
366 ancestries from Central America are taller than older individuals with the same ancestries (Fig.
367 5C). As the positive correlation between birth year and height for all individuals regardless of
368 their ancestries demonstrates, height can also vary due to environmental factors or aging.
369

370 *Body mass index (BMI).* BMI similarly shows a significant correlation with latitude and
371 longitude univariately (Figs. S34-35). Our full mixed model explains 30.10% of the variation in
372 BMI. In the full model, ROH remain significantly associated with lower BMI ($\beta = -0.18, p =$
373 3.95×10^{-5}), while ancestry does not (Fig. 5D). BMI is also significantly correlated with birth
374 year, increasing with older age, as well as with being female (Fig. 5D).
375

376 *Triglycerides.* There are clear differences in levels by region that are more striking for
377 cholesterol (see below) than for triglycerides (Fig. S33). Our full model explains 37.23% of the
378 variation in triglyceride levels. Ancestries from Central America are significantly associated with
379 higher triglyceride levels ($\beta = 0.19, p = 3.17 \times 10^{-4}$) while the ROH carried by an individual
380 are significantly associated with lower triglyceride levels ($\beta = -0.18, p = 1.4 \times 10^{-4}$) (Fig.
381 5D). Notably, age, being male, lower educational attainment and high altitude are also associated
382 with higher triglyceride levels (Fig. 5D).
383

384 *Cholesterol.* Cholesterol levels show a significant correlation with latitude and longitude
385 univariately (Fig. S33-35). In the full model (explaining 29.49% of trait variation), we do not see

386 any correlation with genetic ancestry proxies or ROH, but we estimate significantly lower
387 cholesterol in individuals who speak an indigenous language ($\beta = -0.26, p = 6.93 \times 10^{-7}$).
388 We also estimate higher cholesterol in those living in an urban environment, at high altitude or of
389 a higher age (Fig. S43). For HDL and LDL levels, we similarly find a significantly lower
390 cholesterol in those who speak an indigenous language but not related to ancestry (Fig. S43)
391 likely indicating that cultural/diet factors are stronger than the genetic factors tested here. Living
392 in an urban environment is also significantly associated with high HDL and LDL levels (Fig.
393 S43).
394

395 *Glucose.* Glucose levels show a significant correlation with latitude in univariate analysis (Fig.
396 S34). In the full model (explaining 28.62% of the trait variation), we estimate ancestries from
397 Central America to be significantly correlated with higher glucose levels ($\beta = 0.23, p =$
398 2.452×10^{-5}). Glucose also remains significantly associated with latitude (increasing
399 northwards) and higher age (Figure 5d). For fasting glucose, where we reduce sample size by
400 about four-fifths, ancestry from Central America still has a positive estimated coefficient (Fig.
401 S45), but it is not significant with the smaller sample size.
402

403 *Other traits.* We also analyze creatinine, and systolic and diastolic blood pressure
404 (Fig. S44). Individuals that speak an indigenous language have significantly lower creatinine
405 ($\beta = -0.18, p = 1.32 \times 10^{-3}$). Living in an urban environment and altitude are significantly
406 associated with higher creatinine. Only age and sex are significantly associated with diastolic and
407 systolic blood pressure (adjusted by medication status) (Fig. S44).
408

409 Overall, ancestries from Central America are significantly associated with trait variation for
410 height, triglycerides, and glucose levels (Fig. S46), the ROH present in a genome with BMI and
411 triglycerides (Fig. S47) levels, and native ancestry variation within Central America with height
412 variation (Fig. S48-49). In contrast, cholesterol levels, creatinine levels, and blood pressure are
413 significantly associated with environmental, but not genome-wide genetic factors. This does not
414 rule out the effect that specific gene variants may have in the variation of these traits, as
415 illustrated before by candidate gene approaches discovering functional variants exclusive to the
416 Americas³⁸.
417

418 Conclusion.

419 Our work is a demonstration of the value of generating genotype-phenotype data on
420 underrepresented populations to reveal lesser-known genetic histories and generate findings of
421 biomedical relevance. It is also an illustration of the joint modeling of genetic and environmental
422 effects to reveal the etiology of complex traits and disease. In this project, we ensured diverse
423 indigenous and rural presence in our sampling strategy, considered the fluidity of ancestries from
424 different local and global regions in our analyses and evaluated their reflection in genetic and
425 disease-relevant complex trait variation. By leveraging the largest nationwide genomic biobank
426 in Mexico, we find diverse sources of ancestries in Mexico in light of its unique history, infer
427 population size changes and runs of homozygosity using ancestry-specific haplotype identity that
428 reveal an elaborate fine-scale structure in the country. We also show that demographic history
429 affects the frequency distribution of genetic variants thus changing how many rare variants
430 individuals with different ancestries carry. We observe a significant impact of genetic ancestries,
431 ROH, as well as socioeconomic and biogeographic variables on a variety of complex traits

432 implicating the importance of both genetic and environmental factors in explaining complex trait
433 variation and in considerations of potential public health interventions. Our results can inform
434 the design of future studies in other admixed populations and the MXB will hopefully motivate
435 additional efforts to strengthen local research capacity across Latin America and benefit
436 underserved populations globally.

437

438 **Funding**

439 This work was supported by “The Mexican Biobank Project: Building Capacity for Big Data
440 Science in Medical Genomics in Admixed Populations”, a binational initiative between Mexico
441 and the UK co-funded equally by CONACYT (Grant number FONCICYT/50/2016), and The
442 Newton Fund through The Medical Research Council (Grant number MR/N028937/1) awarded
443 to AME and AH. MS was also supported by the Chicago Fellows program of the University of
444 Chicago. Training activities in Mexico were hosted by CINVESTAV and supported in part by
445 CABANA, a capacity strengthening project for bioinformatics in Latin America, funded by the
446 Global Challenges Research Fund (GCRF) of the UK.

447

448 **Data availability**

449 The dataset for the 6,057 newly genotyped individuals from the MX biobank project are
450 available at the European Genome-phenome Archive (EGA) through a Data Access Agreement
451 with the Data Access Committee (EGA accession number in process).

452

453 **Code availability**

454 All custom scripts/approaches described in Methods will be made available from
455 https://github.com/msohail88/MXB_popstruct_complextraits on publication and all existing
456 software packages and versions used are noted in Methods

457

458 **Acknowledgments**

459 We thank the participants of the *Encuesta Nacional de Salud, 2000* (2000 National Health
460 Survey, ENSA 2000), conducted in Mexico nationwide by the *Secretaría de Salud* (Health
461 Secretariat) and the *Instituto Nacional de Salud Pública* (National Institute of Public Health,
462 INSP). We are grateful to Mauricio Hernández and Celia Alpuche-Aranda for Institutional
463 support from INSP, Mitzi Flores, Rocío Nájera, and Adriana Garmendia for project management
464 support, and to Carlos Conde, Victor Guerrero Lemus, Armando Mendez Herrera, Cruz Portugal
465 García, Rosario Rodriguez, and Manuel Velazquez Mesa for biobank maintenance and sample
466 preparation. We thank Mary Ortega, Cecilia Gutiérrez, and Sara García for technical assistance,

467 Jacob Cervantes for IT support, Harald Ringbauer for useful advice with the ROH analysis, Juan
468 Esteban Rodriguez for helpful conversations about population structure in Mexico, and Arslan
469 Zaidi for useful comments on an earlier draft of this manuscript.

470

471 **Inclusion and Ethics statement**

472 Samples were collected as part of the 2000 National Health Survey (ENSA 2000) conducted by
473 the National Institute of Public Health (INSP), and informed consent was obtained from all
474 participants. The ENSA 2000 was carried out following the strictest ethical principles and in
475 accordance with the Helsinki Declaration of Human Studies. Extracted DNA has been stored and
476 maintained at the National Institute of Public Health (Cuernavaca, Mexico), and samples were
477 genotyped at the Advanced Genomics Unit of CINVESTAV (Irapuato, Mexico) through a
478 collaboration agreement. The data has been jointly analyzed promoting local leadership and
479 participation of Mexican researchers and trainees. The project was reviewed and approved by the
480 Research Ethics Committee and the Biosafety Committee of the National Institute of Public
481 Health (IRB approvals CI: 1479 and CB: 1470). For the present project, personally identifiable
482 data was removed from the data set.

483

484 **References**

- 485 1. Michael D. Coe, R. K. *Mexico: From the Olmecs to the Aztecs*. (Thames & Hudson, 2013).
- 486 2. Vela, E. Áreas culturales: Oasisamérica, Aridamérica y Mesoamérica. *Arqueología*
487 *Mexicana, edición especial 28–29* (2018).
- 488 3. Gugliotta, G. The Maya: Glory and Ruin. *The National Geographic Magazine* 68–109
489 (2007).
- 490 4. Trans-atlantic slave trade database. *Slave Voyages*. <https://www.slavevoyages.org/> (2018).
- 491 5. Seijas, T. *Asian Slaves in Colonial Mexico: From Chinos to Indians*. (Cambridge University
492 Press, 2014).
- 493 6. Chávez, C. P. M. El alcalde de los chinos en la Provincia de Colima durante el siglo XVII:
494 Un sistema de representación en torno a un oficio. *Letras Históricas E-ISSN: 2448-8372*
495 (2009).
- 496 7. Keresey, D. O. LA ESCLAVITUD ASIÁTICA EN EL VIRREINATO DE LA NUEVA ESPAÑA,
497 1565-1673. *Hist. Mex.* **61**, 5–57 (2011).

498 8. Carrillo, R. Asia llega a América. Migración e influencia cultural asiática en Nueva España
499 (1565-1815). *Asiadémica* **3**, 81–98 (2014).

500 9. Mishima, M. E. O. *Siete migraciones japonesas en México: 1890-1978*. (El Colegio de
501 Mexico, 1982).

502 10. Augustine-Adams, K. Prohibir el mestizaje con chinos: solicitudes de amparo, Sonora,
503 1921-1935. *Rev. Indias* **72**, 409–432 (2012).

504 11. Guillén, M. L. Vivir para trabajar. La inserción laboral de los inmigrantes chinos en Chiapas,
505 siglos XIX y XX. *Studium: Revista de humanidades* 113–140 (2013).

506 12. Moreno-Estrada, A. *et al.* The genetics of Mexico recapitulates Native American
507 substructure and affects biomedical traits. *Science* **344**, 1280–1285 (2014).

508 13. García-Ortiz, H. *et al.* The genomic landscape of Mexican Indigenous populations brings
509 insights into the peopling of the Americas. *Nat. Commun.* **12**, 5942 (2021).

510 14. Romero-Hidalgo, S. *et al.* Demographic history and biologically relevant genetic variation of
511 Native Mexicans inferred from whole-genome sequencing. *Nat. Commun.* **8**, (2017).

512 15. Ávila-Arcos, M. C. *et al.* Population History and Gene Divergence in Native Mexicans
513 Inferred from 76 Human Exomes. *Mol. Biol. Evol.* **37**, 994–1006 (2020).

514 16. Rodríguez-Rodríguez, J. E. *et al.* The genetic legacy of the Manila galleon trade in Mexico.
515 *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **377**, 20200419 (2022).

516 17. Spear, M. L. *et al.* Recent shifts in the genomic ancestry of Mexican Americans may alter
517 the genetic architecture of biomedical traits. *Elife* **9**, (2020).

518 18. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. *Nature* **538**, 161–164
519 (2016).

520 19. Browning, S. R. *et al.* Ancestry-specific recent effective population size in the Americas.
521 *PLoS Genet.* **14**, 1–22 (2018).

522 20. Moreno-Estrada, A. *et al.* Reconstructing the Population Genetic History of the Caribbean.
523 *PLoS Genet.* **9**, (2013).

524 21. Novembre, J. *et al.* Genes mirror geography within Europe. *Nature* **456**, 98–101 (2008).

525 22. Alexander, D. H., Novembre, J. & Lange, K. Fast Model-Based Estimation of Ancestry in

526 Unrelated Individuals. *Genome Res.* **19**, 1655–1664 (2009).

527 23. 1000 Genomes Project Consortium *et al.* A global reference for human genetic variation.

528 *Nature* **526**, 68–74 (2015).

529 24. Li, J. Z. *et al.* Worldwide human relationships inferred from genome-wide patterns of

530 variation. *Science* **319**, 1100–1104 (2008).

531 25. Wojcik, G. L. *et al.* Genetic analyses of diverse populations improves discovery for complex

532 traits. *Nature* **570**, 514–518 (2019).

533 26. Patin, E. *et al.* Dispersals and genetic adaptation of Bantu-speaking populations in Africa

534 and North America. *Science* **356**, 543–546 (2017).

535 27. Browning, S. R. & Browning, B. L. Accurate Non-parametric Estimation of Recent Effective

536 Population Size from Segments of Identity by Descent. *Am. J. Hum. Genet.* **97**, 404–418

537 (2015).

538 28. Diehl, R. A. *The Olmecs : America's first civilization.* (London : Thames & Hudson, 2004).

539 29. Marcus, J. & Flannery, K. Cultural Evolution in Oaxaca: the Origins of the Zapotec and

540 Mixtec Civilizations. in *The Cambridge History of the Native Peoples of the Americas* 358–

541 406 (Cambridge University Press, 2000). doi:10.1017/CHOL9780521351652.009.

542 30. Wang, R. J., Al-Saffar, S. I., Rogers, J. & Hahn, M. W. Human generation times across the

543 past 250,000 years. (2021).

544 31. Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of

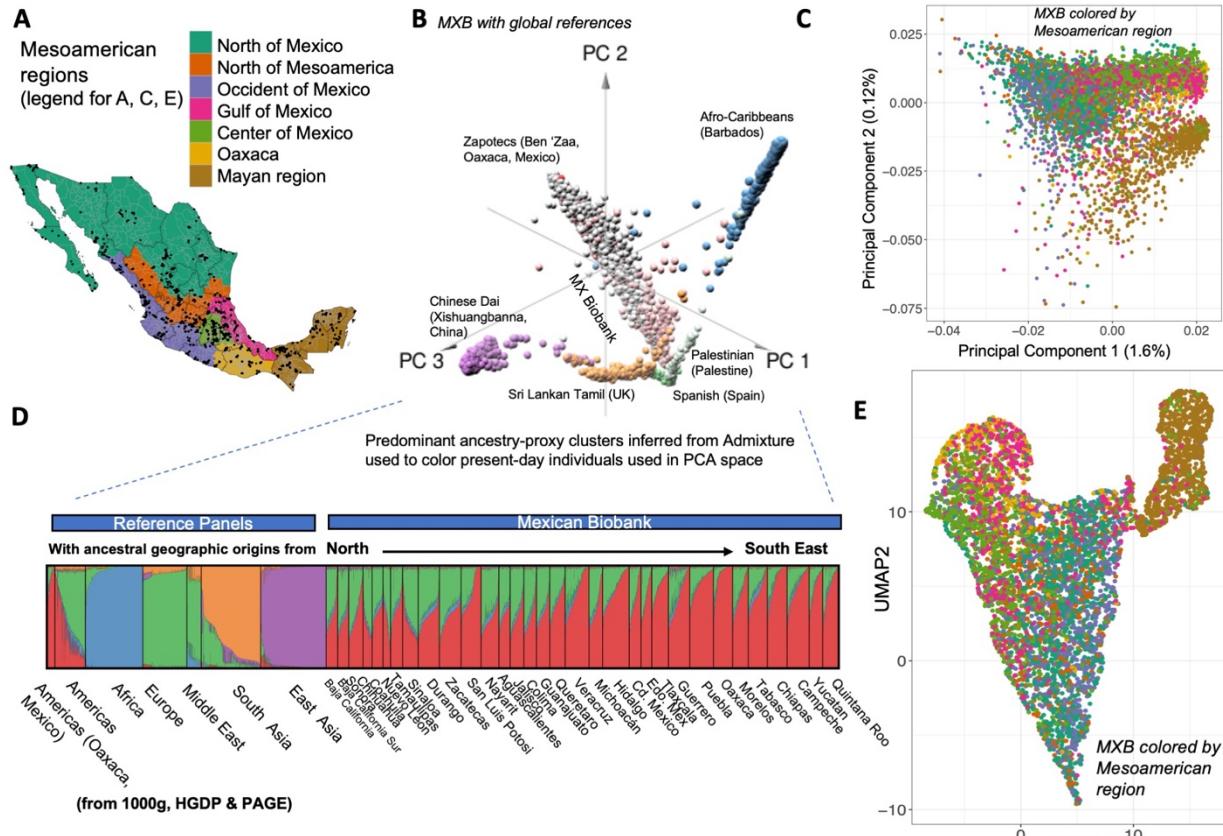
545 homozygosity: windows into population history and trait architecture. *Nat. Rev. Genet.* **19**,

546 220–234 (2018).

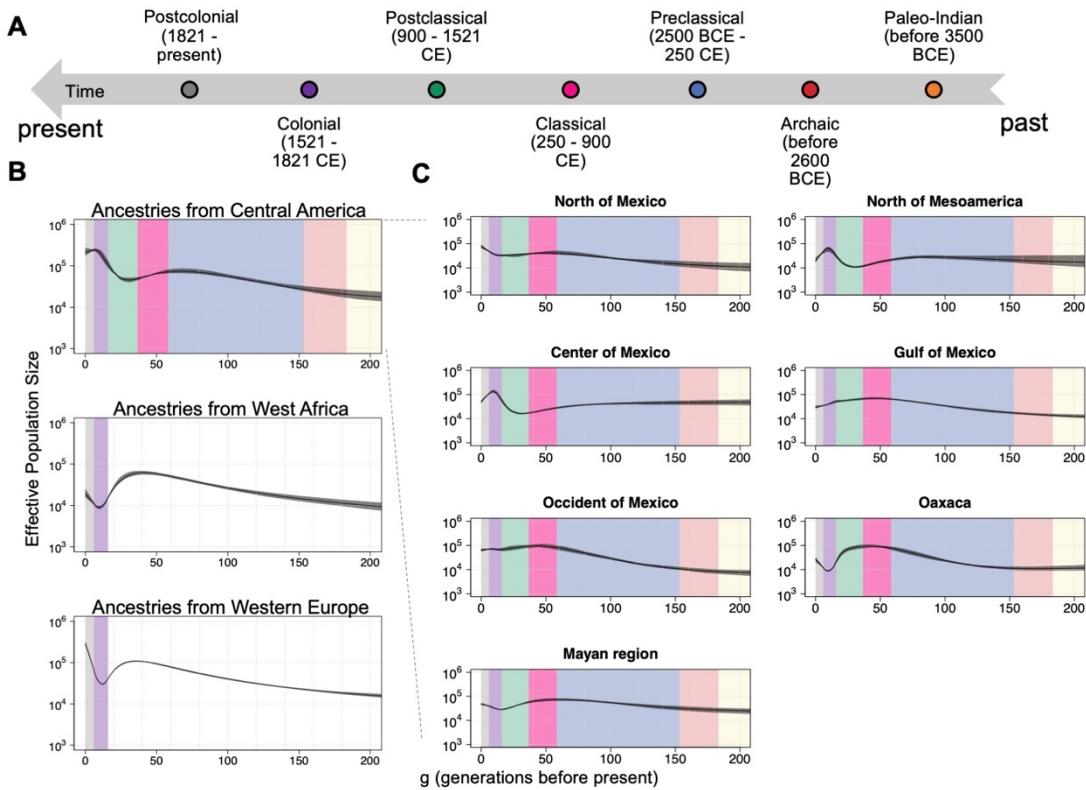
547 32. Clark, D. W. *et al.* Associations of autozygosity with a broad range of human phenotypes.

548 *Nat. Commun.* **10**, 4957 (2019).

549 33. Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed
550 by runs of homozygosity in ancient DNA. *Nat. Commun.* **12**, 5425 (2021).

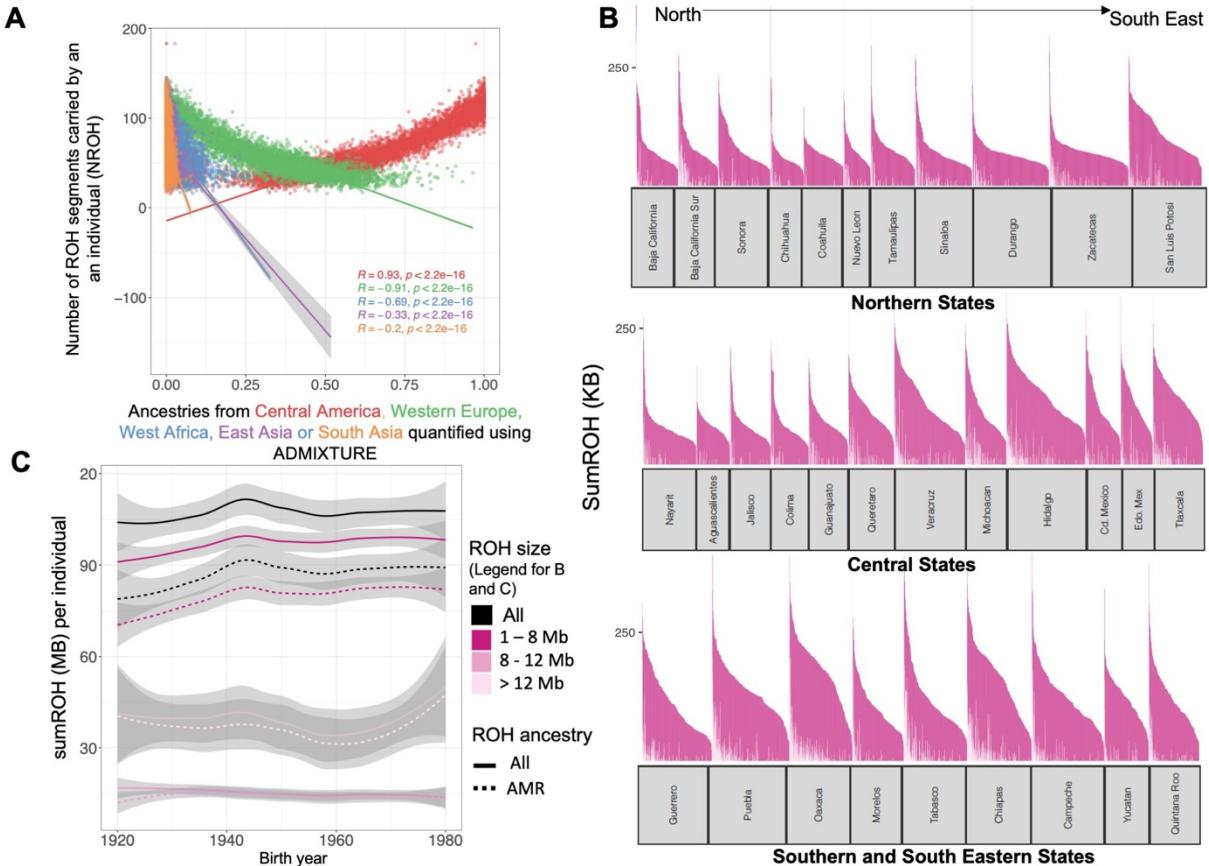

551 34. Henn, B. M. *et al.* Distance from sub-Saharan Africa predicts mutational load in diverse
552 human genomes. *Proceedings of the National Academy of Sciences* 201510805 (2015)
553 doi:10.1073/pnas.1510805112.

554 35. Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating
555 Mutation Load in Human Genomes. *Nat. Rev. Genet.* **16**, 333–343 (2015).


556 36. Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is
557 insensitive to recent population history. *Nat. Genet.* **46**, 220–224 (2014).

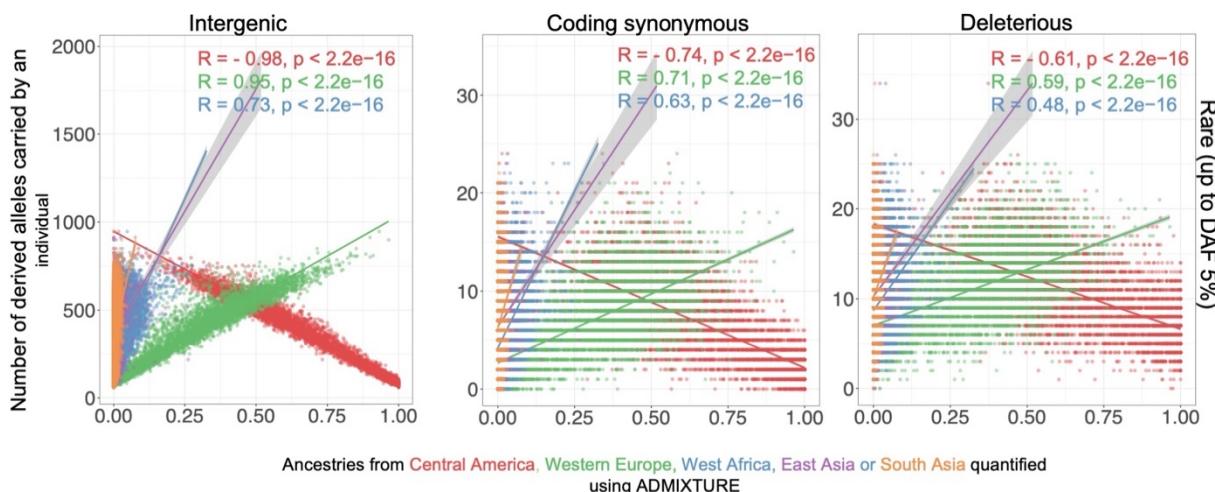
558 37. Do, R. *et al.* No evidence that selection has been less effective at removing deleterious
559 mutations in Europeans than in Africans. *Nat. Genet.* **47**, 126–131 (2015).

560 38. Acuña-Alonso, V. *et al.* A functional ABCA1 gene variant is associated with low HDL-
561 cholesterol levels and shows evidence of positive selection in Native Americans. *Hum. Mol.*
562 *Genet.* **19**, 2877–2885 (2010).



563
564 **Figure 1.** Visualizing genetic structure across the geography of the Mexican Biobank as inferred
565 by dimensionality reduction and unsupervised clustering. A) Mexico regionalized into
566 Mesoamerican regions according to anthropological and archaeological context. B) Principal
567 components analysis (PCA) of MXB with reference global data from the 1000G project, HGDP
568 and PAGE. Some specific sampled cohorts are labelled across the plot to orient the reader. C)
569 PCA with only MXB colored and regionalized into Mesoamerican regions. D) Unsupervised
570 clustering using Admixture and global reference panels (same as in B). E) UMAP analysis of
571 MXB colored by Mesoamerican regions.
572

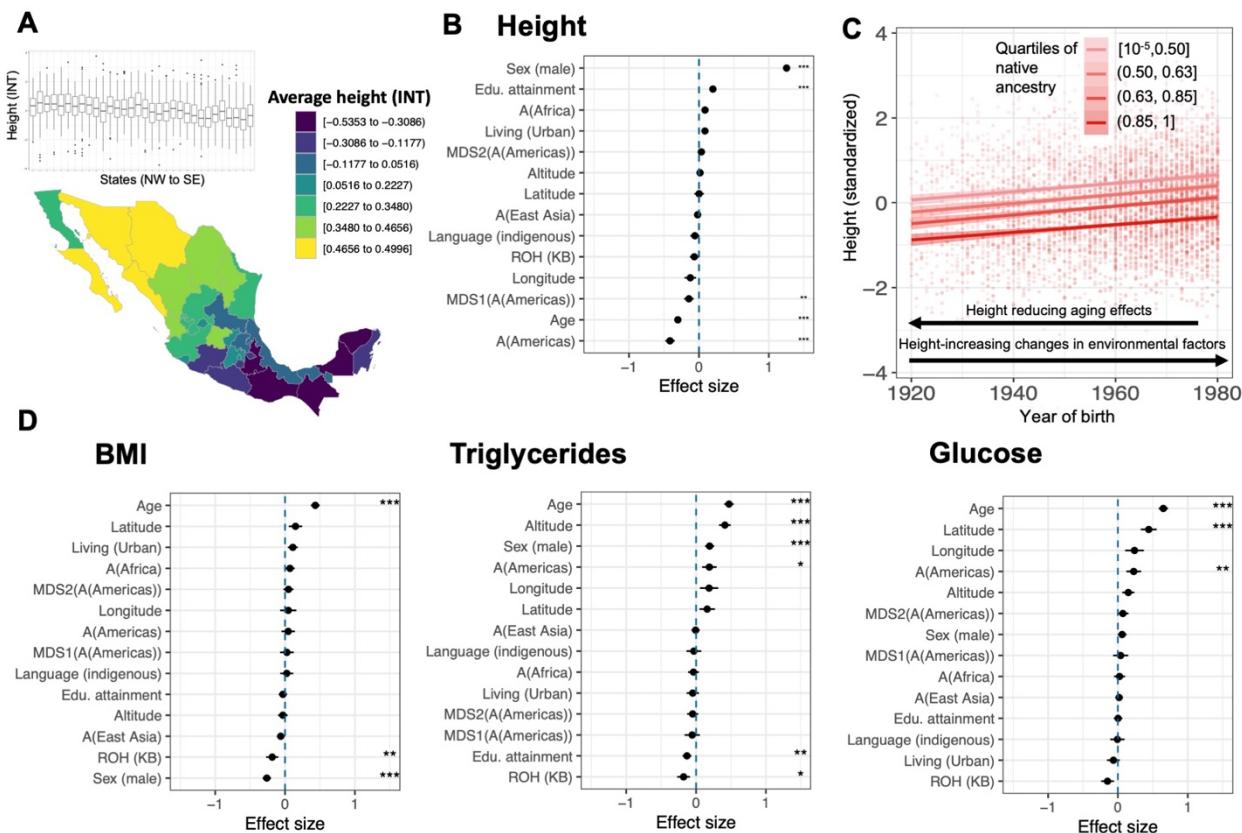
573
574
575
576
577
578
579
580
581
582


Figure 2. Effective population size (N_e) changes inferred using identity-by-descent (IBD) tracts across ancestries and geographies reveal the different histories present within Mexico. A) Mesoamerican chronology coloring different periods in Mesoamerican history using anthropological and archaeological context B) Ancestry-specific effective population size changes over past 200 generations across Mexico (colored by chronology from A assuming 30 years per generation (see Figs. S23-27 for other generation intervals and ancestries). C) Ancestry-specific effective population changes over time for ancestries from Central America in different Mesoamerican regions of Mexico.

583
584
585
586
587
588
589
590
591
592

Figure 3. Analysis of runs of homozygosity (ROH) in each individual in MXB across ancestries, geographies and birth year reveals the role of ancient and recent demographic movements to and within Mexico. A) ROH are correlated with ancestries from global region in each individual reflecting the impact of varied and shared demographic histories and bottlenecks. B) Distribution of ROH segments of different sizes for each Northern, Central, Southern and Southeastern state. The y-axis was truncated to aid visualization, truncating the first bar for some states. C) ROH as a function of birth year. Solid lines show ROH overall, and dashed lines indicate ROH overlapping ancestries from Central America. ROH are divided into small, medium and large ROH same as in (B).

593



594

Figure 4. Mutation burden in different ancestries show effects of bottleneck in causing loss of rare variants. Rare variants are correlated with levels of ancestries from Central America, Western Europe or West Africa for rare variants (DAF < 5%), and common variants. Analysis of WGS from 1000 genomes MXL shows that the rare mutation burden result is robust while the full mutation burden correlation is caused by ascertainment bias of the MEGA array (Fig. S50). Variants were annotated using VEP, and deleterious variants are a combined set of missense variants predicted to be damaging by polyphen2 along with splice, stoploss and stopgain variants.

603

604

605

606 **Figure 5.** Height variation over space and birth year, and analysis of the factors influencing
 607 height and other complex trait variation. A) Map of average height in Mexico (inset shows
 608 boxplots of height variation in each state from North-west to South-east). B) Explanatory model
 609 for height variation implicates the role of genetics and environment. The plot shows effect size
 610 estimates and confidence intervals from a mixed model analysis. All quantitative predictors are
 611 centered and scaled by 2 standard deviations. Asterisks indicate significance of the effect of a
 612 predictor after Bonferroni correction (** $P < 10^{-5}$, *** $P < 10^{-6}$) across traits and predictors
 613 analyzed. C) Height as a function of birth year in quartiles of ancestries from Central America.
 614 D) Trait profiles for BMI, Triglycerides, and Glucose. Results of mixed model analysis same as
 615 in (B). Educational attainment is on a scale from 0-8 (low to high educational attainment), and
 616 altitude is measured in meters (low to high).

617

618

619

620

621