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B -cell epitope prediction tools are of great
medical and commercial interest due to their
practical applications in vaccine development.

The introduction of protein language models (LM)
trained on unprecedented large datasets of protein
sequences and structures, tap into a powerful nu-
meric representation that can be exploited to ac-
curately predict local and global protein structural
features from amino acid sequences only. In this
paper, we present BepiPred 3.0, a sequence-based
epitope prediction tool that, by exploiting LM em-
beddings, greatly improves the prediction accuracy
for both linear and conformational epitope predic-
tion on several independent test sets. Furthermore,
by carefully selecting additional input variables and
epitope residue annotation strategy, performance
can be further improved, thus achieving extraordi-
nary results. Our tool can predict epitopes across
hundreds of sequences in mere minutes. It is freely
available as a web server with a user-friendly inter-
face to navigate the results, as well as a standalone
downloadable package.

1 Introduction

B-cells are a major component of the adaptive immune
system, as they support long-term immunological pro-
tection against pathogens and cancerous cells. Their
activation relies on the interaction between specialized
receptors known as B-cell receptors (BCRs) and their
pathogenic targets, also known as antigens. Upon in-

teraction, B-cells produce antigen-specific molecules
known as antibodies, which are identical to BCRs in
structure, except that they do not have a transmembrane
region. More specifically, BCRs selectively interact with
specific portions of their antigens known as epitopes. B-
cell epitopes are divided into two types. Linear epitopes
are found sequentially along the amino-acid sequence,
while conformational epitopes are interspersed in the
antigen’s primary structure, and brought together in
spatial proximity by the antigen’s folding. While ap-
proximately 90% of B-cell epitopes fall into the confor-
mational category, most of these contain at least a few
sequential residue stretches [14]. Epitopes are typically
found in solvent-exposed regions of antigens. Physical
and chemical features other than solvent accessibility,
such as hydrophobicity, secondary structure propension,
protrusion indexes, and local amino acid composition,
have been shown to affect the likelihood of epitopes
[14]. B-cell epitope identification is of great interest
in biotechnological and clinical applications, such as
attenuated or subunit vaccine designs and therapeutic
antibody development. Their identification, however, is
a costly and time-consuming process requiring extensive
experimental assay screening. In silico prediction meth-
ods can significantly reduce identification workloads
by predicting epitope regions, and because of this they
have become critical for such tasks [20][19]. Structure-
based tools have been developed for predicting B-cell
epitopes [15][1][25][24]. However, as experimentally
determined structural information is often not available,
epitope identification must in many cases be performed
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from amino-acid sequences alone. So far, sequence-
based tools have only achieved mediocre results, in gen-
eral worse than structure-based tools [21][18][28][9].
Thanks to recent developments in the field of machine
learning, models trained on large datasets of protein
sequences and structures are now available to accurately
predict local and global protein structural features from
amino acid sequences only [10][8]. In particular, pro-
tein language models (LM) have been demonstrated to
allow for a powerful numeric representation of protein
sequences, that in turn can be exploited to substan-
tially increase the accuracy in many different predic-
tion tasks [17][4]. Here, we present BepiPred-3.0, a
sequence-based tool, which utilizes numerical represen-
tations from the protein language model ESM-1b, to
vastly improve prediction accuracy for linear and confor-
mational B-cell epitope prediction [[17]. Furthermore,
by carefully selecting the architecture of the predictor,
the training strategy, additional input variables to the
model, and using an epitope residue annotation strat-
egy adopted from one of our earlier works, performance
can be further improved, thus achieving unprecedented
results [26].

2 Methods

2.1 Structural datasets

A first dataset, named BP2, consists of the antigens used
for training the BepiPred 2.0 server. This dataset con-
tains 776 antigens and is available at the BepiPred-2.0
web server. A second updated dataset, named BP3,
was built using the same approach previously adopted
in BepiPred 2.0 [9]. We first identified crystal struc-
tures from the Protein Data Bank deposited before
29/09/2021 that contain at least a complete antibody,
and at least a non-antibody (antigen) protein chain [3].
This was done using existing HMM profiles developed
in-house [12]. We only included crystal structures with
a resolution lower than 3 Å and R-factor lower than 0.3.
On both datasets, we identified epitope residues using
the same approach adopted in our previous paper [9].
On each antigen chain, we labeled every residue that
had at least one heavy atom (main-chain or side-chain)
at a distance of less than 4 Å to any heavy atom belong-
ing to residues in antibody chains of the same crystal
structure as an epitope residue. We only retained anti-
gen chains with at least one epitope residue and with a
minimum sequence length of 39. Epitope residues for
antigens which were 100% identical in sequence were
merged and only one antigen entry included. Missing
residues were not included as part of the epitope anno-
tated antigen chains. After these steps, we obtained a
total of 1466 antigens for the updated BP3 dataset.

2.2 Redundancy reduction

We used a redundancy reduction approach similar to ex-
isting works, which we called the epitope collapse strat-
egy [26]. Here, sequence clusters were first generated
using MMseqs2 [22]. Next, all antigen sequences be-
longing to the same cluster were aligned to the MMseqs2
defined cluster representative. The cluster representa-
tive sequence then underwent the following modifica-
tions: At any position of the alignment, if an epitope was
identified in the cluster representative, it was retained as
is. If an epitope was found on any of the aligned antigen
sequences, it was grafted onto the cluster representative
sequence and labelled as epitope. For each cluster, only
the sequence of the cluster representative, modified as
described above, was retained. This was done at 95%
sequence identity for both the BP2 and BP3 datasets,
making the size of the BP2 and BP3 datasets 238 and
603 antigens, reduced from 776 and 1466 antigens re-
spectively. Furthermore, the strategy was performed at
50% sequence identity for the BP3 dataset. This dataset
was called BP3C50ID and contained 358 antigens re-
duced from 1466 antigens.

Redundancy was further reduced for two additional
datasets. The sequences of the final BP2 and BP3
datasets described above were clustered at 70% se-
quence identity using MMseqs2, and then only the clus-
ter representatives were incorporated into the reduced
datasets [22]. This gave rise to datasets BP2HR and
BP3HR, which contained 190 and 398 antigens, reduced
from 238 and 603 antigens, respectively (Table 1).

Table 1: The number of antigens, epitope residues (Epi. res.),
epitope residue ratios (Epi. ratio) as well as redundancy
reduction (Redu. red.) and epitope collapse (Epi. col.)
by MMseqs2 for BP2, BP3, BP2HR, BP3HR and BP3C50ID.
Epitope residue ratios were computed as the ratios between
the number of epitope residues and total number of residues.
The redundancy reduction and epitope collapse columns are
the MMseqs2 sequence identity %’s, for which the epitope
collapse and the second redundancy reduction approaches
were used.

Antigens Epi.

res.

Epi.

ratio

Epi.

col.

Redu.

red.

BP2
bef. epi
collapse

776 6591 0.10 - -

BP2 238 2106 0.103 95% -
BP2HR 190 1679 0.103 95% 70%
BP3
bef. epi
collapse

1466 12981 0.09 - -

BP3 603 6597 0.112 95% -
BP3HR 398 4481 0.117 95% 70%
BP3C50ID 358 5011 0.134 50% -
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2.3 External test sets

Three different independent test sets were built. The
first corresponds to the same 5 antigens used as exter-
nal test evaluation in BepiPred-2.0 [9]. But the anti-
gens were extracted from BP3C50ID, and therefore con-
tained updated and enriched epitope annotations. Any
sequence with more than 20% sequence identity to this
test set, as calculated by MMseqs2, was removed from
all BP2 training sets. After this removal, BP2 and BP2HR
training sets contained 233 and 185 antigens. The sec-
ond external test set comprises the antigens mentioned
above, plus 10 additional BP3C50ID antigens selected
from the MMseqs2 clusters at 20% identity. Here, any
sequence with more than 20% identity to any of the 15
antigens was removed from all BP3 training sets. Af-
ter this removal, the training sets for BP3, BP3HR and
BP3C50ID contained 582, 383 and 343 antigens. Finally,
a third external dataset was constructed by download-
ing all linear B cell epitopes from the IEDB and then
discarding any epitopes containing post translational
modifications, as well as epitopes for which the source
protein ID, as indicated in the IEDB entry itself, was not
a UniProt entry [27][2]. Epitopes with a perfect match
in the source protein were mapped to the relevant re-
gion while the rest were discarded. This resulted in
4072 epitopes with mapped protein sequences. Finally,
we removed all proteins which had more than 20% se-
quence identity to the BP3C50ID dataset, leaving 3560
sequences (Table 2).

Table 2: The number of antigens, epitope residues (Epi. res.),
epitope residue ratios (Epi. ratio) and epitope collapse strat-
egy (Epi. col.) for the 5 and 15 antigen external sets as well
as the external IEDB test set. Epitope residue ratios were com-
puted as the ratios between the number of epitope residues
and total number of residues. The epitope collapse strategy
column is the MMseqs2 sequence identity %, for which epi-
tope collapse was done.

Antigens Epi.

res.

Epi.

ratio

Epi.

col.

External
test set 1

5 88 0.256 50%

External
test set 2

15 209 0.190 50%

External
IEDB test
set

3560 8818 0.116 -

2.4 Dataset encoding

Residues were represented either by sparse encoding,
BLOSUM62 log-odds scores or by numeric embeddings
extracted from the ESM-1b protein languagemodel [17].
When employing sparse and BLOSUM62 encodings, the
encoding of each residue was generated by concatenat-
ing sparse or BLOSUM62 encodings from the residue
itself and from the 8 neighboring residues, 4 on each
side. For residues close to sequence terminals where an

insufficient number of neighbors existed, padding to-
kens were used to fill in for lacking residues. Thus, each
residue was represented by a vector of size 189 (9*21).
ESM-1b encodings were obtained by passing antigen
sequences through the pretrained ESM-1b transformer,
and extracting the resulting sequence representations
from the model. Here, each residue was represented by
a vector of size 1280. We also included the NetSurfP-
3.0 predicted RSA values for the central residue and
the protein sequence lengths to the encodings [8]. The
target values were encoded in a position-wise binary
manner, resulting in a sequence denoting epitope and
non-epitope residues with the same length of the antigen
sequence (Figure 1).

2.5 Model architectures and hyperpa-
rameter tuning

Feed Forward (FFNN), Convolutional (CNN), and Long
Short-term Memory (LSTM) neural networks were
trained on sparse, BLOSUM62 and ESM-1b encodings,
with or without the additional variables (sequence
length or NetSurfP-3.0 predicted RSA values). Model
weights were initialized and updated using the default
PyTorch weight initialization schemes and an Adam
optimizer [11]. Since we have independent test data,
hyperparameter tuning could be performed in a simple
5-fold cross fold validation setup using a grid search on
the training sets described in method section 2.3. Hyper-
parameters were chosen as those which yielded the best
validation cross-entropy (CE) loss averaged across all
folds. The hyperparameters in question are the learning
rate, weight decay, dropout rate and different architec-
tural setups (see supplementary methods section 5.3 for
the exact final model configurations). As a baseline, a
Random Forest Classifier (RFC) was trained on sparse
and BLOSUM62 encodings. We tested forest sizes rang-
ing from 25-300 and determined the optimal size on a
validation AUC score basis (see supplementary method
section 5.2).

2.6 Training and evaluation

A 5-fold cross-validation was used to train the mod-
els with the optimized hyperparameters discussed in
the previous section. For BP2 and BP3 cross-validation
setups, antigens were clustered at 70% sequence iden-
tity using MMseqs2, and sequences of the same cluster
placed into the same partition. A total a five partitions
were created [22]. For the 3 remaining datasets, train-
ing and validation splits were made randomly. Each
cross-validation setup generated 5 models, where both
validation cross entropy (CE) loss and AUC was used
as an early stopping criteria. For instance, the training
procedure for a fold was the following: Model weights
were initialized using the default PyTorch weight initial-
ization schemes. The model was trained on the training
data using batches of 4 antigens, and the loss backpropa-
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Figure 1: Overview of sequence encoding pipelines, where N is length of the sequence. Amino acid sequences were encoded
using either sparse, BLOSUM62 or ESM-1b derived sequence representation schemes. For the two former approaches,
encodings from adjacent residues were concatenated to generate a new set of encodings describing the sequence context of
each residue. The encoded sequences were subsequently used for training various models for position-wise antigen prediction.

gated using the Adam optimizer [11]. After each epoch,
a cross entropy loss and AUC score was computed on
the validation set. Only if both scores improved, were
the model parameters stored. We trained for 75 epochs.
Next, the models were evaluated on the independent
test data sets. The evaluative metrics on the external test
set were AUC, AUC10, MCC, recall, precision, F1-score
and accuracy. AUC scores were computed by concatenat-
ing all 5 model outputs from all 5 model outputs, into a
single vector, and comparing with a 5 times duplicated
label vector. AUC10 scores were computed as the inte-
gral of the ROC curve area going from 0 to 0.1 on the
false positive rate axis, divided by 0.1, setting the AUC10
score in a range of 0 to 1. For the remaining threshold-
dependent metrics, a majority voting scheme was used
based on the individual predictions from the 5 models.
The classification threshold used for each fold model was
one that maximized the MCC score on respective valida-
tion splits. For some model performance comparisons,
paired t-tests were performed and p-values calculated
on their CE loss scores on all test antigen residues.

3 Results

3.1 Improved performance on BP3
datasets and when the epitope
collapse strategy is used

In an initial benchmark study, we investigated the effects
of using updated datasets (BP3, BP3HR and BP3C50ID)
versus datasets constructed from the BepiPred2 paper
(BP2, BP3HR), as well as various redundancy reduction
approaches (see method section 2.2 for more details).
We determined that BP3 datasets (BP3 and BP3HR)
led to a improved predictive performance compared to
models trained using the smaller BP2 datasets (BP2 and
BP2HR). This was observed by training a set of random
forest classifiers (RFCs) and evaluating on the 5 anti-
gen external test set. We improved performance further

by first doing sequence redundancy reduction at a 50%
identity threshold as defined by MMseqs2, and then
using the epitope collapse strategy (BP3C50ID dataset)
where all epitopes for sequences found in a given clus-
ter are transferred to the cluster representative antigen.
We determined that the performance increases from us-
ing updated datasets and the epitope collapse strategy,
were statistically significant at all common thresholds (p-
values of 1 x 10−15 and 1 x 10−20 respectively) (for more
details on the epitope collapse strategy refer methods
section 2.2, and for details on the results, see supple-
mentary result section 6.1). Given these results, we
therefore only used the BP3 and BP3C50ID datasets for
the subsequent analyses.

3.2 Improved performance using neural
networks and ESM-1b sequence em-
beddings

The main goal of this paper was to demonstrate that
a B-cell epitope predictive tool based on LM embed-
dings will perform better than models using other en-
coding schemes, such as BLOSUM62 or sparse encoding.
To assess the best performing machine-learning archi-
tecture and sequence representation for the BP3 and
BPC50ID datasets, optimal hyperparameters for four dif-
ferent architectures (RFCs, FFNNs, CNNs and LSTMs)
were identified using a grid search (see methods section
2.5). For each architecture, we investigated the perfor-
mance when representing protein residues with sparse
encoding, BLOSUM62 encoding or ESM-1b embedding.
The best performing models were selected from opti-
mal cross-validation performance, and tested on the 15
antigen external test set using a classification threshold
optimized on the validation splits (Table 3). We found
that all neural networks using ESM-1b sequence embed-
dings as input performed better. We determined that the
performance increase of models using ESM-1b embed-
dings instead of BLOSUM62 encodings was statistically

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2022. ; https://doi.org/10.1101/2022.07.11.499418doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499418
http://creativecommons.org/licenses/by-nc-nd/4.0/


BepiPred-3.0: Improved B-cell epitope prediction using protein language models

Table 3: Evaluation performance on an external test set of 15 antigens, with a set of RFC, FFNN, CNN and LSTM models,
trained using cross-validation on the BP3C50ID dataset. The best models in terms of validation CE loss and AUC score were
chosen for evaluation on the test set (see methods section 2.6). The evaluative metrics used were AUC, AUC10, MCC, recall,
precision, F1-score and accuracy. The best score within a metric category is marked in bold. We also computed paired t-test
p-values, comparing the CE loss scores of models using BLOSUM62 encoding and ESM-1b embeddings as input.

BP3C50ID Models AUC AUC10 MCC Recall Precision F1 Accuracy P-value

RFC (Sparse) 0.593 0.091 0.104 0.535 0.237 0.328 0.585 -
RFC (BLOSUM62) 0.611 0.096 0.129 0.593 0.245 0.347 0.576 -
FFNN (Sparse) 0.631 0.104 0.153 0.716 0.243 0.363 0.522 -
FFNN (BLOSUM62) 0.630 0.103 0.155 0.730 0.243 0.364 0.516 -
FFNN (ESM-1b) 0.697 0.118 0.220 0.658 0.289 0.401 0.627 < 1 x 10

−39

CNN (Sparse) 0.635 0.101 0.154 0.746 0.240 0.364 0.504 -
CNN (BLOSUM62) 0.636 0.101 0.158 0.723 0.245 0.366 0.523 -
CNN (ESM-1b) 0.685 0.115 0.205 0.585 0.293 0.390 0.653 < 1 x 10

−16

LSTM (Sparse) 0.606 0.092 0.113 0.732 0.225 0.344 0.469 -
LSTM (BLOSUM62) 0.641 0.103 0.147 0.542 0.261 0.353 0.622 -
LSTM (ESM-1b) 0.685 0.116 0.214 0.596 0.297 0.396 0.655 < 1 x 10

−38

BP3C50ID overall aver-
age

0.641 0.104 0.159 0.651 0.256 0.365 0.568 -

Figure 2: ROC-AUC curves for the BP3C50ID FFNN, illustrate the difference of using sparse (A), BLOSUM62 (B) or ESM-1b
encodings (C). The x and y axis are the false and true positive rates respectively. Dashed lines along the diagonal indicate
random performance at 50 % AUC, and the remaining lines are the performances of different fold models. Also, a confusion
matrix illustrates threshold-dependent performance of the best FFNN (ESM-1b) model (D). The true negatives or positives
and predicted negatives or positives are on the vertical and horizontal axis respectively.
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significant at all common thresholds (p-values of 1 x
10

−39, 1 x 10
−16 and 1 x 10

−38 for the FFNN, CNN and
LSTM respectively). The paired t-test was performed by
comparing each models CE loss scores on all test anti-
gen residues. The overall best performing model was
the FFNN architecture using ESM-1b sequence embed-
dings as input. Contrary to our expectations, the FFNN
(ESM-1b) performed better than the CNN (ESM-1b) and
LSTM (ESM-1b) models. While CNNs and LSTMs se-
quentially process residues along the antigen sequence,
the FFNN was trained on single residue ESM-1b encod-
ings without applying any sliding window to the input
data. This suggests that the ESM-1b residue embed-
dings already contain sufficient information about the
sequence neighborhood, making convolutions over the
sequence unnecessary. We also did an identical analysis
for models trained on the BP3 dataset, which gave us
slightly worse results than those presented in Table 3
(see supplementary results section 6.2). And so similar
to the initial benchmark using RFCs, we find that the
models trained on the BP3C50ID dataset perform better.
This points to the epitope collapse strategy improving
performance.
Importantly, we also investigated how the epitope

collapse strategy affects predictions on a test set with-
out collapsed epitopes. We note that the collapsing of
epitopes also includes the possibility of adding addi-
tional epitope residues to the chosen sequence, which
in turn would modify the extracted ESM-1b sequence
embeddings. Here, we found that there was no appar-
ent decrease in performance (see supplementary results
6.5).

To conclude, we find that while part of the improve-
ment can be ascribed to training on a larger dataset
and the epitope collapse strategy (see result section
3.1), a massive improvement is gained from using LM
embeddings (Table 3, Figure 2).

3.3 Feature engineering: Adding se-
quence lengths improves perfor-
mance

In BepiPred-2.0, one of the main factors that contributed
to predictive performance was relative solvent accessibil-
ity (RSA), an input feature predicted from the antigen
sequence using NetSurfP-2.0 [13]. We uncovered a posi-
tive correlation between NetSurfP-2.0 predicted RSA val-
ues and BepiPred-3.0 B-cell epitope probability scores,
indicating that information on solvent accessibility is,
at least in part, encoded in the ESM-1b embeddings
(see supplementary results section 6.3). To quantify
to what extent RSA contributes to epitope predictions
in BepiPred-3.0, we compared the performance of an
FFNN trained on the BP3C50ID dataset with and with-
out NetSurfP-3.0 RSA added as an input feature [8]. We
evaluated the performance on the same external test set
of 15 antigens. Here, we found that the added RSA fea-
ture failed to improve performance further, indicating

that BepiPred-3 already considers this information in the
ESM embeddings (Table 4). We note that NetSurfP-3.0
itself uses ESM-1b to predict residue RSA.
We also uncovered a negative relationship between

the length of the antigen sequences and their respective
epitope residue ratios, with a Spearman correlation coef-
ficient of -0.58 (see supplementary results section 6.4).
We expect this to be due to multiple effects, concerning
the larger surface-to-volume ratio of small proteins, the
issue of a limited number of antibodies being mapped
to individual antigens, as well as possible selection bi-
ases in the dataset. Interestingly, we also found that the
performance of our best models decreased for longer
antigen sequences, suggesting that the models could
not infer the protein sequence length from the sequence
embeddings. To account for this trend, we trained an-
other FFNN on the BP3C50ID dataset, where sequence
lengths were added as an additional input, and the re-
sulting models evaluated on the same 15 antigen test
set. This further improved our AUC performance from
0.697 to 0.714, and in a paired t-test comparing both
models CE loss scores on all test antigen residues, we de-
termined that the performance increase was statistically
significant with a p-value of < 1 x 10

−10. We therefore
used this as the final model for the BepiPred-3.0 web
server and for further benchmarking (sections 3.4 and
3.5).

Table 4: A FFNN was cross-validated on BP3C50ID ESM-
1b encodings as well as corresponding sequence lengths or
NetSurfP-3.0 computed RSA values. The best models in terms
of validation CE loss and AUC were evaluated on the external
BP3C50ID test set of 15 antigens.

Models AUC AUC10 MCC

FFNN (+ NetSurfP-3.0 RSA) 0.692 0.131 0.223
FFNN (+ SeqLen) 0.714 0.143 0.241

3.4 BepiPred-3.0 web server

BepiPred-3.0 is an easy to use tool for B-cell epitope
prediction, as the user only needs to upload protein se-
quence(s) in fasta format. Furthermore, one can specify
the threshold for epitope classification, and by default,
a threshold of 0.1512 is used. Alternatively, the user
may specify the number of top residue candidates that
should be included for each protein sequence. These
options generate two separate fasta formatted output
files.
A total of 4 result files are generated. One is a fasta

file containing epitope predictions at the set threshold,
and another is a similar fasta file, but epitope predic-
tions are instead the number of top residue candidates
specified by the user. In each file, epitope predictions
are indicated with letter capitalization. The third is
a .csv file containing all model probability outputs on
the uploaded protein sequence(s). Finally, we provide
a .html file, which works as a graphical user interface
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Figure 3: The graphical user interface for BepiPred-3.0 on the external test set protein 7lj4_B. In this interface, the x and
y axis are protein sequence positions and BepiPred-3.0 epitope scores. Residues with a higher score are more likely to be
part of a B-cell epitope. The threshold can be set by using the slider bar, which moves a dashed line along the y-axis. Epitope
predictions are updated accordingly, and B-cell epitope predictions at the set threshold can be downloaded by clicking the
button ‘Download epitope prediction’.

that can be opened in any browser. Similar to BepiPred-
2.0, this interface can be used for setting a threshold
for each antigen and downloading the corresponding
B-cell epitope predictions [9]. Due to memory limita-
tions, however, this interface is limited to the first 30
sequences in the uploaded fasta file. We believe this
intuitive interface will allow researchers to maximize
their precision of B-cell epitope prediction, as a single
threshold might not work for all uploaded sequences
(Figure 3).

3.5 Benchmarking: BepiPred-3.0 outper-
forms its predecessors as well as
structure-dependent B-cell epitope
prediction tools

BepiPred-3.0 was re-evaluated and compared to its two
predecessors on the 5 antigens from the BepiPred-2.0
paper external test set for a direct benchmarking [9][7].
Here, we find a drastic improvement in BepiPred 3’s
AUC performance versus its predecessors, at 0.57, 0.60
and 0.71 for BepiPred 1, 2 and 3, respectively (Table 5).

Table 5: Benchmarking on 5 antigen external test set from
BepiPred2 paper.

Models AUC AUC10 Data Method

BepiPred-1.0 0.573 0.055 Peptides HMM
BepiPred-2.0 0.596 0.080 PDB RFC
BepiPred-3.0 0.710 0.129 PDB NLP

When tested on the IEDB external test set (see method
section 2.3), BepiPred-3.0 obtained an AUC score of 0.65
when using ESM-1b sequence embeddings, versus 0.50
if using either sparse or BLOSUM62 encodings [27].
This demonstrates the improved ability to generalize on
novel datasets when using the ESM-1b protein language
model embeddings (Table 6).

Table 6: Benchmarking on homology reduced IEDB dataset
of 3560 sequences.

Models AUC AUC10

BepiPred-3.0 (Sparse) 0.497 0.041
BepiPred-3.0 (Blosum62) 0.501 0.043
BepiPred-3.0 (ESM-1b) 0.644 0.148

We also benchmarked against a recently developed
structure-based B-cell epitope predictive tool, epitope3d,
that was in turn shown to outperform different other
tools [6][29][16][26]. A 5-fold cross-validation setup
on the 200 antigens available at the epitope3D online
tool, was used for re-training and validating Bepipred-
3.0. We then evaluated the re-trained model on the
provided epitope3d external test set composed of 45
antigens. The evaluations in the epitope3D paper were
done only on surface residues, and so to ensure a fair
comparison, we calculated BepiPred’s performance on
a subset of surface residues with an RSA above 15%, as
defined in the epitope3D paper..

While epitope3D obtains an AUC Of 0.59 on their test
set, BepiPred-3.0 obtains an AUC of 0.7, when evalu-
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ated on surface residues only (Table 7). We also tried
including non-surface residues in the evaluation as well,
which improved the AUC score to 0.74. We find these
results surprising, as structure-based methods are gen-
erally considered superior to sequence-based methods,
indicating the sheer power of the recent developments
in protein language modeling.

Table 7: Benchmarking on surface residues of the epitope3D
external test set of 45 antigens. Performance numbers for
epitope3D were extracted from the publication.

Models AUC surface only

BepiPred-3.0 0.70

Epitope-3d 0.59
Seppa-3.0 0.52
Discotope 0.49
Ellipro 0.44

4 Discussion

Deep learning methods, such as ESM-1b and AlphaFold,
are revolutionizing the field of biology at large, and
changing the role of computational tools in numerous
tasks [17][10]. In this paper, we demonstrate that pro-
tein LMs can vastly improve B cell epitope prediction,
and, using only the antigen sequence as an input, out-
perform existing tools, including structure-based ones.
We can envision that, by using a similar approach on
structure based embeddings calculated on solved anti-
gen structures, or on structural models created using
AlphaFold, it will be possible to further improve the cur-
rent results [23][10]. We also want to argue on the fact
that the current BepiPred-3.0 results are likely affected
by the limited availability of experimental structures.
The available solved antibody-antigen complexes are
just a minute fraction of all possible pathogenic proteins,
and of the antibodies that target them. Due to the under-
representation of observed epitopes in current datasets,
we expect that in many cases, regions predicted to be
epitopes may not be false positives, but rather should
be considered unlabeled or potentially positive residues
due to data paucity. To this aim, it is possible to frame
the epitope prediction problem as a positive and unla-
beled (PU) training problem. Moreover, we can also
argue that the current AUC of the model, around 71%,
is an underestimation, and only by collecting more ex-
perimental data will it be possible to fully assess how
close we are to the upper limit of the B cell epitope
prediction tools.
It is also interesting to note that a major progress

in this class of predictors would be the possibility to
include the sequences of individual antibodies, or of
antibody libraries, for which we want to identify all the
potential epitopes. Language models provide an elegant
way to include them in the prediction, by encoding the
antibodies together with the antigen. As more data will
be available, it will be interesting to test if LMs can

also provide a solution to this fundamental problem in
immunology and biotechnology.

To conclude, BepiPred-3.0 is available as a web server
and as a stand alone software, it is easy to use for experts
and non-experts alike, and provides state-of-the art B
cell epitope predictions that will be fundamental to
tasks of primary medical and societal importance, such
as vaccine development and antibody engineering.
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