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Abstract

Human childhood is characterized by dramatic changes in the mind and brain. However, little is
known about the large-scale intrinsic cortical network changes that occur during childhood due to
methodological challenges in scanning young children. Here, we overcome this barrier by using
sophisticated acquisition and analysis tools to investigate functional network development in
children between the ages of 4 and 10 years (n = 92). At multiple spatial scales, age is positively
associated with brain network segregation. At the system level, age was associated with
segregation of systems involved in attention from those involved in abstract cognition, and with
integration among attentional and perceptual systems. Associations between age and functional
connectivity are most pronounced in visual and medial prefrontal cortex, the two ends of a
gradient from perceptual, externally oriented cortex to abstract, internally oriented cortex. These
findings suggest that both ends of the sensory-association gradient may develop early, in contrast
to the classical theories that cortical maturation proceeds from back to front, with sensory areas
developing first and association areas developing last. More mature patterns of brain network
architecture, controlling for age, were associated with better visuospatial reasoning abilities. Our
results suggest that as cortical architecture becomes more specialized, children become more able

to reason about the world and their place in it.

Keywords: childhood, functional network, development, graph theory, reasoning
Significance

Anthropologists have called the transition from early to middle childhood the “age of reason”,
when children across cultures become more independent. We employ cutting-edge neuroimaging
acquisition and analysis approaches to investigate associations between age and functional brain
architecture in childhood. Age was positively associated with segregation between cortical
systems that process the external world, and those that process abstract phenomena like the past,
future, and minds of others. Surprisingly, we observed pronounced development at both ends of
the sensory-association gradient, challenging the theory that sensory areas develop first and

association areas develop last. Our results open new directions for research into how brains
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reorganize to support rapid gains in cognitive and socioemotional skills as children reach the age

of reason.

Introduction

Children’s minds develop fastest during the first decade of life. Sensory and motor skills develop
before complex cognitive skills: children can see and walk before they can solve abstract puzzles.
Diverse skills including reasoning, executive function, emotion regulation, and social cognition all
improve dramatically until 8-10 years of age, after which change slows down (see Akshoomoff et
al. (2014); Kopp (1989); Wellman (2014); Whitaker et al. (2018); but see also Fortenbaugh et al.
(2015)). Developmental psychologists once called these changes the “5-to-7-year shift”: the
transition from Piaget’s preoperational stage, in which children rely on perceptual information, to
the concrete operational stage, in which children are less bound by perceptual information and
more able to think abstractly (Sameroff and Haith, 1996). Anthropologists have called this
developmental period the “age of reason” or the “age of sense”, when children become more
independent from their parents, begin to build more complex social relationships with peers and
other adults, and become less egocentric and more able to understand others’ perspectives

(Chandler and Lalonde, 1996; Lancy, 2014).

A core tenet of developmental cognitive neuroscience is that brain development proceeds along
the sensory-association axis, with sensory areas developing first and association areas developing
last (Sydnor et al., 2021; Tooley et al.,, 2021). This sequence is in line with data from both
behavioral and cognitive development (Cole et al., 2005). The far end of the association axis is
anchored by the default mode system (Smallwood et al., 2021), which is furthest from sensory
input and engages primarily in abstract cognitive processes that do not rely on the current
sensory environment. Examples of such processes include remembering the past, projecting the
future, and taking the perspective of others (Buckner and DiNicola, 2019). Other association
systems, such as the dorsal and ventral attention systems, receive and process more input from
the outside world (Corbetta and Shulman, 2002). The frontoparietal system can be thought of as a
toggle controlling the switch between internally and externally oriented cognition, flexibly
coordinating other systems and holding sensory information online. Such processes are commonly

exemplified in working memory and reasoning tasks (Owen et al.,, 2005; Cole et al., 2013).
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Data on structural brain development, including cortical thinning, surface area, and white matter
coherence, clearly support early development of sensory areas (Stiles and Jernigan, 2010;
Raznahan et al,, 2011; Whitaker et al., 2016; Gennatas et al., 2017; Reynolds et al., 2019). However,
regions of the default mode system, including the medial prefrontal cortex and the precuneus, also
show early structural development (Brown and Jernigan, 2012; Li et al., 2013; Wierenga et al,,
2014; Lietal,, 2015). Thus, another possibility is that both ends of the sensory-association axis
become anchored early in life, and developmental processes differentiate and refine the
boundaries of attention and executive systems along this axis later in development. Brain
structure is easier to measure than function in sleeping children, so it has been better
characterized in early childhood (see Houston et al. (2014) and Lenroot and Giedd (2006)).
However, brain function may be more closely linked to cognition and behavior (Zimmermann et
al., 2018; Dhamala et al., 2021), particularly during development when the brain is highly plastic
(Chen etal., 2020).

Functional brain networks can be studied at multiple spatial scales: in the whole brain, across
systems, and among regions or parcels. Understanding how functional networks reorganize at the
whole brain level allows us to examine the extent to which segregation is an overall guiding
principle of development, while studying the constituent systems (sometimes referred to as
“networks” in the literature) allows for examination of relationships among specialized functional
subnetworks. The parcel resolution yields more granular detail about which specific brain areas,
or network nodes, might drive effects. Segregation refers to the presence of groups or
subnetworks of densely interconnected nodes, and is thought to emerge partially as a result of
maturing inhibitory interneurons; synchronized inhibition may be necessary for establishing

segregated network function (Cardin, 2018; Kraft et al., 2020; Chini et al., 2021).

Functional network development has been studied predominantly in middle childhood (7-10
years) or later (see Morgan et al. (2018) and Grayson and Fair (2017) for review), due to the
challenges of acquiring high quality data in younger children while they are awake. From middle
childhood through adolescence, at the whole brain level, networks become more modular and
segregated with age, supporting improved cognition (Satterthwaite et al., 2013b; Gu et al., 2015;
Grayson and Fair, 2017; Marek et al,, 2019). At the system resolution, age is associated with

increases in within-system connectivity, and decreases in between-system connectivity,
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particularly between the default mode system and executive control and attention systems (Fair et
al,, 2008; Chai et al., 2013; Satterthwaite et al.,, 2013b; Gu et al,, 2015; Lopez et al,, 2019; Jones et
al, 2021). At the regional level, effects are less consistent, perhaps because findings vary widely
depending on the age range studied (Grayson and Fair, 2017; Morgan et al., 2018). Another way to
examine parcel-level effects is to examine the development of the sensory-association axis across
cortex. Two recent and well-powered studies found that in middle childhood, a sensory-
association gradient is in place, but the most variance in patterns of connectivity is explained by
separation between visual and somatomotor systems (Dong et al., 2021; Xia et al., 2022). By age
12 years, however, the organization of the sensory-association gradient resembles that of adults;
development of the primary sensory-association gradient may be mediated by changes in network
architecture (Dong et al.,, 2021; Xia et al., 2022). Functional network architecture has been shown
to have cognitive consequences: youth with more segregated networks, and in particular task-
positive (i.e., attention and control systems) and task-negative (i.e., default mode) systems,
perform better on a wide variety of cognitive tasks (Gu et al., 2015; Lopez et al., 2019; Marek et al.,

2019; Jones et al., 2021; Xia et al.,, 2022).

A few studies have characterized functional network development in children younger than 6
years of age, and overall suggest developmental specialization of cortex with age. In utero, a proto-
default-mode system is detectable, and visual and motor systems show overlap with that found in
adults, but attention and frontoparietal systems remain undifferentiated (Turk et al., 2019;
Thomason, 2020). Infant brain networks can be studied during sleep: primary sensory systems
have an adult-like architecture at birth, but default, ventral attention, and dorsal attention systems
do not develop a distributed network architecture until 1-2 years of age, and executive control
systems are still immature at 2 years of age (Gilmore et al., 2018). The anticorrelation between
default and dorsal attention system connectivity begins to emerge around 1 year of age (see Gao et
al. (2013), n = 147). From the age of 3 months to 6 years, within-system connectivity broadly
increases with age, while between-system connectivity decreases (see Bruchhage et al. (2020),

n = 196, natural sleep). Another way to address challenges involved in scanning young children is
to have them view movies: a study of children aged 4 to 7 years showed that age was positively
associated with connectivity in systems identified with an independent component analysis,

including sensory, motor, default mode, and executive control systems, but not the ventral


https://doi.org/10.1101/2022.07.07.499176
http://creativecommons.org/licenses/by-nc-nd/4.0/

—_

O oo N SN Ut B~ W

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.07.499176; this version posted July 9, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

attention system (see Rohr et al. (2018), n = 60). An analysis of the same sample also found that
age was negatively associated with connectivity between seeds in the dorsal attention system
(intraparietal sulcus, frontal eye fields) and areas of the default mode system (Rohr et al. (2017),
n = 44). In general, more mature patterns of connectivity are associated with better performance
on measures of attention and cognition (Rohr et al., 2017, 2018; Bruchhage et al., 2020; Qi et al,,
2021). These studies of young children have examined connectivity between specific regions or
subsets of regions, but not the architecture of intrinsic cortical networks at rest. Hence, little is
known about how rewiring of intrinsic functional networks supports the profound cognitive

changes that take place during childhood.
The present research

Here we focused on functional brain network development between the ages of 4 and 10 years
(n = 92). To overcome barriers associated with resting-state data collection from young children,
we applied sophisticated neuroimaging acquisition and analysis approaches to minimize motion
and its impacts, including sequences optimized to reduce motion artifacts (Tisdall et al., 2012),
real-time motion monitoring (Dosenbach et al,, 2017), rigorous image quality assurance using
open-source tools, and a preprocessing pipeline optimized to reduce the impact of head motion.
We used network science tools to take a hierarchical analytical approach, asking first whether
whole-brain measures of network topology are associated with age, and then which systems and
parcels of cortex drive patterns of topological refinement. Finally, we asked whether network
structure was associated with cognition. We focused on reasoning because it is a core skill that
develops rapidly until middle childhood (Whitaker et al., 2018), is highly predictive of later
academic outcomes (Fuchs et al., 2006; Ferrer et al., 2007; Pagani et al., 2017), and was assessed
across the majority of our sample. If age-associated changes in network architecture support
reasoning skills, then individual differences in reasoning, controlling for age, should mirror
associations with age. In other words, we predict that children with more mature functional

architecture, i.e., greater network segregation, should have better cognitive skills.
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Materials & Methods

Participants

The Institutional Review Board at the University of Pennsylvania approved this study. All parents
provided informed, written consent. Children younger than age 8 provided verbal assent, and
children ages 8 and older provided written assent. Participants were recruited from Philadelphia
and the surrounding regions through advertisements on public transportation, partnerships with
local schools, outreach programs, community family events, and social media ads. Children were
between the ages of 4 and 10.59 years (M = 6.85, SD = 1.38). We chose to collect data from
children starting at 4 years of age, as collecting functional brain imaging data from awake children
younger than 4 may result in large amounts of unusable data. Parents were asked to report their
child’s gender and were provided four sex categories: female, male, other, and prefer not to
answer. We recognize that the wording of this question conflated sex and gender, making it
impossible for us to investigate the relation between brain development and the child’s gender
identity, whether within or outside the binary. 54% of children were reported by parents to be
male and 46% were reported by parents to be female; none were reported to be other, suggesting
that we might not have any intersex children in our sample. The racial and ethnic makeup of the
sample was as follows: 61% Black, 36% white, 20% Asian, 8% other, and 10% Hispanic/Latino.
Percentages sum to greater than 100% because parents or guardians could endorse multiple
races. 49% of children had a parent with a college degree or more education and 45% had an
annual family income of $50,000 or more. For comparison, Philadelphia is 43.6 % Black, 44.8 %
White, 7.8 % Asian, 3.9 % Other, and 15.2 % Hispanic or Latino, and the median household income
was $49,127 (US Census Bureau, 2020).

The target sample size was 123 children with usable data to detect correlations of r = .25 with a
power of greater than .8. However, data usability in young children can be difficult to predict, and
data collection was cut short in 2020 by the COVID-19 pandemic. Resting-state scans were
acquired for 138 participants. Ninety-two participants were included in the final sample.
Participants were excluded for not completing the resting-state scan (e.g., due to falling asleep or

wanting to end the scan early, n = 17), or parent-reported diagnosis of Attention-
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Deficit/Hyperactivity Disorder or developmental delay during the visit, despite not reporting a

diagnosis during screening (n = 4).

To mitigate the effect of image quality on our analyses, we also employed motion and quality
exclusions, excluding children with average framewise displacement (FD) > 1 mm (n = 14), and
censored volumes at 0.5 mm FD. We further excluded children with > 30% of frames exceeding 0.5
mm FD (n = 8, Power et al. (2012)) or artifacts (n = 3, see below for details).These criteria were
selected to balance the need to include as much data as possible in a young population (Leonard et
al,, 2017) and the need to limit the influence of low-quality on connectivity metrics (Power et al.,

2014a).

We conducted an additional sensitivity analysis with stricter motion cutoffs: excluding children

with > 0.5 mm average FD (n = 9) and censoring volumes with > 0.25 mm FD.

25 children were excluded for image artifacts or motion in the original sample. At the more lenient
threshold, these children were younger than the included children (¢(40.15) = —2.79, p = .008),
but not different on age-normed reasoning scores (t(37.60) = —1.47, p = .150). At the stricter
threshold, 34 children were excluded for image artifacts or motion: excluded children were
younger than the included children (t(50.96) = —2.13, p = .038), but not different on age-normed
reasoning scores (t(52.15) = —1.46, p = .150).

Data acquisition

Prior to the scanning session, participants were acclimated to the scanning environment with a
mock scanner that simulates typical MRI noises. Participants practiced keeping still in the mock
scanner, by watching a movie that would pause each time they moved their heads more than 1
mm. During the MRI session, a researcher stayed in the scanner room with the participant to
reassure the child. Participants viewed a fixation cross on a gray screen throughout the resting-

state scan.

Imaging was performed at the Center for Advanced Magnetic Resonance Imaging and
Spectroscopy (CAMRIS) at the University of Pennsylvania. Scanning was conducted using a
Siemens MAGNETOM Prisma 3 T MRI scanner with the vendor’s 32-channel coil. 5-minute resting-

state fMRI scans were acquired using a T2*-weighted multiband gradient-echo echo-planar
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imaging (EPI) sequence (TR = 2000 ms, TE = 30.2 ms, BW = 1860 Hz/px, flip angle = 90-, voxel size
= 2 mm isotropic, matrix size = 96 x 96, 75 axial slices, FOV = 192 mm, volumes = 150-240, 5
dummy scans, multiband acceleration factor = 3). We chose a multiband factor of 3 to minimize
interactions between multiband and motion (Risk et al., 2021). A whole-brain, high-resolution, T1-
weighted 3D-encoded multi-echo anatomical image (MEMPRAGE) was acquired (TR = 2530 ms,
TEs = 1.69 ms/3.55 ms/5.41 ms/7.27 ms, BW =650 Hz/px, 3x GRAPPA, flip angle = 7-, voxel size
=1 mm isotropic, matrix size = 256 x 256, 176 sagittal slices, FOV =256 mm, total scan time of 4:38
minutes). This anatomical sequence used interleaved volumetric navigators to prospectively track

and correct for subject head motion (Tisdall et al., 2012).

To increase the amount of usable data, midway through data collection, we updated our
acquisition strategy in two ways: (i) monitoring head motion in real-time using the Framewise
Integrated Real-time MRI Monitor (FIRMM) system (Dosenbach et al., 2017), and (ii) collecting 10
minutes of low-motion resting-state data (2 resting-state runs of data with FD < 1 mm) when
possible. An incidental feature of this design choice is that it decouples age, and reasoning ability,
from the amount of data acquired for each child. One scan was acquired for 43 children, two scans
were acquired for 48 children, and three scans were acquired for one child. Participants were
eligible for inclusion if they had more than 135 frames of resting-state data. Participants had an
average FD of 0.3 mm (SD = 0.18 mm). For participants with more than one usable resting-state
run, we took an average of FD across runs, weighted by run length. All analyses controlled for

average FD and total number of resting-state frames collected.
Image preprocessing

Results included in this manuscript come from preprocessed data, where the preprocessing was
performed using Freesurfer (Dale et al.,, 1999), fMRIPprep 1.2.6-1 (Esteban et al. (2018); Esteban
et al. (2019); RRID:SCR_016216), which is based on Nipype 1.1.7 (Gorgolewski et al. (2017);
Gorgolewski et al. (2011); RRID:SCR_002502), as well as xcpEngine 1.0 (Ciric et al., 2018). Brain
surfaces were reconstructed using recon-all (Dale et al., 1999) prior to other processing, and

reconstructed surfaces were used as input to fMRIprep.

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) using

N4BiasFieldCorrection (Tustison et al. (2010), ANTs 2.2.0), and used as T1w-reference throughout
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the workflow. The T1w-reference was then skull-stripped using antsBrainExtraction.sh (ANTs
2.2.0), using OASIS as the target template. The brain mask was refined with a custom variation of
the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-
matter of Mindboggle (RRID:SCR_002438, Klein et al. (2017)). Spatial normalization to the ICBM
152 Nonlinear Asymmetrical template version 2009c (Fonov et al. (2009), RRID:SCR_008796) was
performed through nonlinear registration with antsRegistration (ANTs 2.2.0, RRID:SCR_004757,
Avants et al. (2010)), using brain-extracted versions of both T1w volume and template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white matter (WM) and gray matter was
performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al.
(2001)).

For each of the resting-state BOLD runs found per subject, the following preprocessing was
performed: A reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD reference was then co-registered to the T1w reference using
bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl, 2009).
Co-registration was configured with nine degrees of freedom to account for distortions remaining
in the BOLD reference. Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and translation parameters) were
estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. (2002)).
BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde (1997),
RRID:SCR_005927). The BOLD time-series were resampled onto MNI152NLin2009cAsym
standard space by applying a single, composite transform, generating a preprocessed BOLD run in

MNI152NLin2009cAsym space.

Several confounding time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals (CSF, WM, and the whole-brain).
FD and DVARS were calculated for each functional run, both using their implementations in
Nipype (following the definitions by Power et al. (2014b)). The head-motion estimates calculated

in the correction step were also placed within the corresponding confounds file.

All resamplings can be performed with a single interpolation step by composing all the pertinent

transformations (i.e. head-motion transform matrices and co-registrations to anatomical and

10
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template spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms
(ANTSs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels

(Lanczos, 1964).

Further preprocessing was performed using a confound regression procedure that has been
optimized to reduce the influence of participant motion (Satterthwaite et al., 2013b; Ciric et al.,
2017; Parkes et al,, 2018); preprocessing was implemented in XCPEngine 1.0, a multi-modal
toolkit that deploys processing instruments from frequently used software libraries, including FSL
(Jenkinson et al,, 2012) and AFNI (Cox, 1996). Further documentation is available at
https://xcpengine.readthedocs.io and https://github.com/PennBBL/xcpEngine. Functional
timeseries were demeaned, and linear and quadratic trends were removed. Confound regression
was performed using a 36-parameter model; confounds included mean signal from the whole
brain, WM, and CSF compartments, 6 motion parameters as well as their temporal derivatives,
quadratic terms, and the temporal derivatives of the quadratic terms (Satterthwaite et al., 2013a).
Motion censoring was applied, with outlier volumes exceeding FD = 0.5 mm or standardized
DVARS = 1.75 flagged and removed from confound regression. Outlier volumes were interpolated
over using least squares spectral analysis (Power et al.,, 2014a) prior to band-pass filtering to
retain frequencies between 0.01 Hz and 0.08 Hz, then re-censored. Prior to confound regression,
all confound parameters were band-pass filtered in a fashion identical to that applied to the
original timeseries data, ensuring comparability of the signals in frequency content (Hallquist et

al.,, 2013).
Image quality and exclusion criteria

The quality of imaging data was assessed using fMRIPrep’s visual reports and MRIQC 0.14.2
(Esteban etal,, 2017). Two raters manually examined all structural and functional images
between preprocessing steps for image quality issues. Functional images were visually inspected
for whole-brain field of view coverage, signal blurring or artifacts, and proper alignment to the
anatomical image. Participants were excluded for: unusable anatomical image (n = 1), artifact in
functional data (due to hair glitter, n = 1), incorrect registration at the scanner (n = 1), average
FD greater than 1 mm (n = 14), more than 30% of resting-state frames exceeding FD > 0.5 mm

(n = 8, Power et al. (2012)). All participants that were flagged for dropout or signal blurring were
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ultimately excluded for not meeting motion criteria. For participants with more than one usable
resting-state run, FD was averaged across runs, weighted by run length. All analyses controlled for

average FD and total number of resting-state frames.

To ensure that our results were not driven by motion, we conducted an additional analysis with a
more stringent preprocessing pipeline and motion exclusion criteria. In this pipeline, motion
censoring was applied with a threshold for outlier volumes of FD > 0.25 mm or standardized
DVARS > 1.75. One participant was lost during preprocessing as they did not have adequate
degrees of freedom. Additionally, we excluded participants who had average FD greater than 0.5

mm (n = 8 additional participants), for a total of n = 83 total participants.
Functional network analysis

After preprocessing and nuisance regression, we extracted residual mean BOLD time series from a
400-region cortical parcellation (Schaefer et al., 2018), and represented the functional
connectivity matrix as a graph or network (Bassett et al., 2018). To evaluate whether our results
were dependent on specific node definitions, we also extracted residual mean BOLD time series
from a 200-region cortical parcellation (Schaefer et al., 2018). Results were qualitatively similar
between the two parcellations (see online at

https://github.com/utooley/Tooley_2022_childhood_functional_network_dev).

We assigned regions, or nodes, to systems based on a 7-system partition (Yeo et al., 2011), or
assignment of nodes to systems. Here, we use the term system to refer to a set of regions
previously defined a priori (i.e. the dorsal attention system, comprising a set of regions), while we
use the term network to refer to the representation of the functional connectivity matrix as a
graph. Regions were represented by network nodes, and the functional connectivity between
region i and region j was represented by the network edge between node i and node j. We used
this encoding of the data as a network to produce an undirected, signed, and weighted adjacency
matrix A. We estimated the functional connectivity between any two brain regions by calculating
the product-moment correlation coefficient r between the mean activity time series of region i
and the mean activity time series of region j (Zalesky et al., 2012). Correlations were subsequently

r-to-z-transformed.
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Recent evidence has demonstrated that the maintenance of edge weights is critical for an accurate
understanding of the underlying biology of neural systems (Cole et al., 2012; Bassett and
Bullmore, 2017), and work in applied mathematics has demonstrated that graph-related
calculations are markedly more robust in weighted graphs than in binary graphs (Good et al,,
2010). In light of these two lines of evidence and recent work in the field developing methods
sensitive to the topologies present in weak versus strong edges (Rubinov and Sporns, 2011), we
maintained all edge weights without thresholding and studied the full graph including both
positive and negative correlations (Bassett et al., 2012; Santarnecchi et al., 2014). Functional
connectivity matrices were averaged across runs for each participant, weighted by the number of

frames in each run passing the quality threshold.

Across the cortex, we calculated the following summary functional network measures. System
segregation is a measure of segregation that quantifies the difference between mean within-
system connectivity and mean between-system connectivity as a proportion of mean within-
system connectivity (Chan et al., 2014; Wig, 2017), given an a priori partition of nodes into
systems, in this case the 7-system partition referenced earlier (Yeo et al,, 2011). Modularity,
quantified by the modularity quality index (Q), is a measure of mesoscale network segregation
that estimates the extent to which a network’s nodes can be subdivided into groups or “modules”
characterized by strong, dense intramodular connectivity and weak, sparse intermodular
connectivity. Our approach is built on the modularity quality function originally defined in
Newman (2006). Unlike system segregation, the modularity quality index is independent of a
mapping of nodes to functional systems. Higher modularity is indicative of a more highly
segregated network at the mesoscale. The clustering coefficient is a measure of local segregation
that quantifies the amount of connectivity between a node and its strongest neighbors (Achard et
al., 2006; Bartolomei et al., 2006; Bassett et al., 2006; Xu et al., 2016a). A node has a high clustering
coefficient when a high proportion of its neighbors are also strong neighbors of each other. The
participation coefficient quantifies the diversity of a node’s connections across systems (Guimer‘a
and Nunes Amaral, 2005; Rubinov and Sporns, 2010). A node has a high participation coefficient
when it is evenly and strongly connected to many different systems. A lower participation
coefficient is indicative of a more highly segregated network. We specifically chose measures of

functional network topology that were suitable for weighted, signed networks, when possible.
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System segregation

System segregation quantifies the difference in mean within-system connectivity and mean
between-system connectivity as a proportion of within-system connectivity. Previous work has
linked this measure to aging-related changes in brain networks and poorer cognitive ability across
age (Chan et al,, 2014). In these analyses, we define system segregation as in (Chan et al., 2014),

as:

Awithin — Apetween

Aywithin

Where a,;¢nin is the mean edge weight between nodes within the same system and @, ¢ \yeen is the
mean edge weight between nodes of one system to all nodes in other systems. We assigned nodes
to systems based on a 7-system partition (Yeo et al., 2011). Freely available MATLAB code from

https://github.com/mychan24 /system_matrix_tools was used to calculate system segregation.
Modularity quality index

Statistics that quantify the modular structure of a network assess the extent to which a network’s
nodes can be subdivided into groups or modules characterized by strong, dense intramodular
connectivity and weak, sparse intermodular connectivity. We considered the most commonly
studied mesoscale organization—assortative community structure—that is commonly assessed
by maximizing a modularity quality function (Porter et al,, 2009; Fortunato, 2010). Our approach
is built on the modularity quality function originally defined by Newman (Newman, 2006) and

subsequently extended to weighted and signed networks by various groups.

Specifically, we follow Rubinov and Sporns (2011) by first letting the weight of a positive

+

connection between nodes i and j be given by a;; , the weight of a negative connection between

t
nodes i and j be given by a™;; , and the strength of a node i, sii = Y.j a’, be given by the sum of the

ijo
positive or negative j connection weights of i. We denote the chance expected within-module

+
+ _ Sis

*
=1L We

ij pE

connection weights as el?; for positive weights and e;; for negative weights, where e

let the total weight vE = Xij a;—’j be the sum of all positive or negative connection weights in the

network. Then the asymmetric generalization of the modularity quality index is given by:
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where M; is the community to which node i is assigned, and M; is the community to which node j
is assigned. We use a Louvain-like locally greedy algorithm as a heuristic to maximize this
modularity quality index subject to a partition M of nodes into communities. We ran the Louvain
algorithm 100 times per network, and detected on average 3 (M=3.44, SD =0.483) communities

using modularity maximization in our developmental sample.
Clustering coefficient

To assess local network segregation, we used a commonly studied graph measure of local
connectivity—the clustering coefficient— that is commonly interpreted as reflecting the capacity
of the system for processing within the immediate neighborhood of a given network node (Achard
et al.,, 2006; Bartolomei et al., 2006; Bassett and Bullmore, 2006; Xu et al., 2016b). We specifically
used a formulation that was recently generalized to signed weighted networks (Zhang and
Horvath, 2005; Costantini and Perugini, 2014). This version is sensitive to nonredundancy in path
information based on edge sign as well as edge weight and importantly distinguishes between
positive triangles and negative triangles, which have distinct meanings in networks constructed

from correlation matrices.

Let the functional connectivity network of a single participant be represented as the graph G =

(V,E), where V and E are the vertex and edge sets, respectively. Let a;; be the weight associated
with the edge (i,j) € V, and define the weighted adjacency matrix of G as A = [aij]. The clustering
coefficient of node i with neighbors j and q is given by

_2jq (aﬁaiq a,-q)

 Yjeq|ia]

Ci

The clustering coefficient of the entire network was calculated as the average of the clustering

coefficient across all nodes as follows:
1
C = —Z Ci
n

IEN
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In this way, we obtained estimates of the regional and global clustering coefficient for each subject

in the sample.
Participation coefficient

The participation coefficient is a measure of network integration that quantifies the diversity of a
node’s connections across communities, and has been linked in older children and adolescents to
developmental changes in network segregation (Marek et al,, 2015; Baum et al,, 2017). In these

analyses, we define the participation coefficient P; of a node i as:

ne1- 3 (%)

k€K

where k is a system in a set K of systems, in this case defined by the a priori mapping of nodes to
intrinsic functional systems (Yeo et al., 2011), a; is the positive (negative) weight of edges
between node i and nodes in system k, and s; is the positive (negative) strength of node i. The
participation coefficient was calculated separately on negative and positive weights (Rubinov and

Sporns, 2010).

As in our analyses of local segregation, the participation coefficient of the entire network was

calculated as the average positive (negative) participation coefficient across all nodes as follows:
1
P = —Z Pi
n .
IEN

The average positive and negative participation coefficient for each participant’s network were

averaged to obtain a global measure of network integration.
System connectivity

Within- and between-system connectivity were estimated as the average connectivity between
nodes within a functional system or between pairs of functional systems. Results were corrected

for multiple comparisons using the Benjamini-Hochberg false discovery rate (FDR).
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Parcel-level connectivity

When examining results at the parcel resolution, we applied a similar model as that at the whole-
brain and system level across all 79,800 edges in each child’s functional brain network. As
correction for multiple comparisons in this situation raises the risk of missing true effects, we
alternatively employed a stringent significance threshold for display of edge-level data (p <
0.001). Data are presented at p < .01 and atp < .00001 online at
https://github.com/utooley/Tooley_2022_childhood_functional_network_dev.

Statistical models

All statistical analyses were conducted in MATLAB R2018a and R 3.6.1 [@MATLAB:2018a; R Core
Team (2013)]; code is publicly available at
https://github.com/utooley/Tooley_2022_childhood_functional_network_dev. We examined
effects of age using generalized additive models with the mgcv package in R (Wood, 2011;
Satterthwaite et al., 2014). We first tested for nonlinear effects of age. The penalty parameters for
the nonlinear spline terms were fit as random effects and tested using restricted likelihood ratio
tests (RLRTs) with RLRsim (Scheipl et al., 2008). Note that these tests of nonlinearity are
constructed so as to test for nonlinear effects over and above any linear effects that may be
present. We did not observe significant nonlinear relationships between age and whole-brain or
system-level measures of network structure. 7.9% of edges showed significant nonlinear effects of
age, as compared to 12.5% of edges that showed linear effects. Nonlinear effects at the parcel level
are presented online at

https://github.com/utooley/Tooley_2022_childhood_functional_network_dev.

We modeled the linear effect of age while controlling for in-scanner motion (average FD), sex
(male or female), total number of volumes across runs, and average functional network weight.
Average network weight was included to control for global differences in connectivity strength
(Van Wijk et al.,, 2010; Ginestet et al., 2011; Yan et al,, 2013). Multiple comparisons correction was
applied across models at the parcel and system resolutions using Benjamini-Hochberg false
discovery rate (FDR) correction (Benjamini and Hochberg, 1995). Surfaces and partitions were
shown on cortical surfaces generated by Freesurfer (Dale et al., 1999), using fsbrain 0.4.2 and

freesurfer-formats 0.1.14 (Schiafer and Ecker, 2020).
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Measurement and analyses of visuospatial reasoning ability

To assess reasoning, we administered matrix reasoning tests from Wechsler batteries. We used
age-appropriate versions to avoid ceiling and floor effects. Children between the ages of 4 and 7
years, 7 months completed the Matrix Reasoning subtest of the Wechsler Preschool & Primary
Scale of Intelligence (WPPSI-IV, Wechsler and Corporation (2012); n = 63). Children over age 7
years, 7 months took the Matrix Reasoning subtest of the Wechsler Intelligence Scale for Children
(WISC, Wechsler et al. (2014); n = 23). Test items in both versions require identifying and
integrating patterns in abstract shapes. For example, in Figure 4a, the foreground and background
shapes switch across columns, and the shape type and color change across rows. To answer the
question correctly, it is necessary to integrate these two relations. The WPPSI is normed down to
2.5 years old so it begins with simpler items than the WISC. Therefore, raw scores on the WPPSI
cannot be combined with raw scores on the WISC. Age was positively associated with raw scores
on the WPPSI (mean raw score: 15.31, range 3-23, max possible score: 26, t(62) = 2.78,p = .007).
Age was not associated with raw scores on the WISC (mean raw score: 16.13, range 7-24, max
possible score: 32,t(21) = 0.40, p = .694). Scaled scores were used for all brain analyses. Models
examining relationships between reasoning and system connectivity controlled for age, sex, in-
scanner motion, total number of volumes across runs, and average functional network weight.
Associations between system connectivity and reasoning ability were examined only for systems
showing significant associations with age and the frontoparietal system (FDR-corrected for

multiple comparisons across 5 systems).
Results

Functional network segregation increases with age

We first investigated age effects on measures of whole-brain functional network segregation (Fig.
1). Measures of functional network segregation were consistently positively associated with age,
including average within-system connectivity (8 = 0.3, t(86) = 3.75,p < .001, pppr = 0.0006),
average between-system connectivity (8 =-0.06, t(86) = —3.75, p < .001, pzpr = 0.0006),
overall system segregation (8 = 0.11, t(86) = 3.60, p = .001, pzpg = 0.0008), the modularity
quality index (8 = 0.19, t(86) = 3.06, p = .003, pppr = 0.004), and the clustering coefficient (8 =
0.19,t(86) = 2.35,p = .021, prpr = 0.021). Consistent with these associations, we found that the
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1 average participation coefficient, a measure that inversely tracks network segregation, was

2 negatively correlated with age (f =-0.35,t(86) = —4.68,p < .001, pgpr = 0.00006).
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Figure 1. Functional network segregation is positively associated with age. a. System segregation is a whole-
brain measure of functional network segregation that quantifies the difference between mean within-system
connectivity and mean between-system connectivity as a proportion of mean within-system connectivity. b. System
segregation is positively associated with age. c. Modularity is a measure of mesoscale network segregation that

estimates the extent to which a network’s nodes, or in this case brain regions, can be subdivided into modules

O o0 N &N Ul A

characterized by strong, dense intramodular connectivity and weak, sparse intermodular connectivity. Note that the
10 modules are data-driven, not a priori defined as functional systems. d. Modularity is positively associated with age. e.
11 The clustering coefficient is a measure of local segregation that quantifies the amount of connectivity between a node
12 and its neighbors. A node has a high clustering coefficient when a high proportion of its neighbors are also strongly

13 connected to one another. In a weighted network, the clustering coefficient measures the strength of triangles around
14 anode. f. The average clustering coefficient is positively associated with age. g. The participation coefficient quantifies
15 the diversity of a node’s connections across systems. A node has a high participation coefficient when it is evenly

16 connected to many different systems. A lower participation coefficient is indicative of a more segregated network. h.

17 The average participation coefficient is negatively associated with age.
18  Systems specializing in perceptual processing segregate from systems for abstract thought

19  We next tested for age effects at the system level by dividing the cortex into seven systems (Yeo et
20  al, 2011). We first visualized the balance of significant positive and negative age effects within and
21 between systems (Fig. 2a). Within systems, 94.6% of significant age effects were positive and 5.3%

22 were negative. Between systems, 27.7% of significant age effects were positive and 72.2% were
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negative. Age was positively, but weakly, associated with within-system connectivity in the visual
(Fig. 2b, B = 0.25,t(86) = 2.51, p = .014) and default mode systems (8 = 0.24, t(86) = 2.42,p =
.017), as well as in the ventral attention system (f = 0.24, t(86) = 2.41,p = .018). The
significance of these associations did not survive correction for multiple comparisons. In contrast,
age was strongly associated with between-system connectivity (Fig. 2c). Age was negatively
associated with connectivity between the default mode and dorsal attention systems (f = -0.24,
t(86) = —3.79,p < .001, pppr = 0.01), and connectivity between the default mode and ventral
attention systems (8 =-0.22, t(86) = —3.36,p = .001, prpr = 0.02). Additionally, age was
positively correlated with connectivity between the visual and dorsal attention systems (f = 0.32,
t(86) = 3.15,p =.002, pppr = 0.02) and with connectivity between the dorsal attention and
ventral attention systems (f = 0.22, t(86) = 2.92, p = .004, prpr = 0.03).

a  Age effects on edge connectivity b Age effects on within-system connectivity C Age effects on between-system connectivity
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Figure 2. System-level effects of age on system connectivity. a. Age effects on edge connectivity. Note that only
edges with significant age effects at p,,,. < 0.001 are shown. b. Age effects on within-system connectivity. No
relationships survive FDR correction across systems. c. Age effects on between-system connectivity. All effects shown

survive FDR correction across systems.
Age effects are concentrated at both ends of the sensory-association gradient

We next examined age effects at the parcel level to characterize regional specificity. In particular,
we determined which parcels had the most edges with significant age effects. Parcels with the
highest number of positive edge-level age effects were observed in the intraparietal sulcus (2

parcels with 9 significant edges), the medial prefrontal cortex (7 edges), and the occipital cortex (6
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edges; see Fig. 3a). When parcels were grouped by system (Yeo et al., 2011), positive associations
with age were most common in the visual system, followed by the default mode system, and the
ventral attention system (Fig. 3b). Parcels with negative edge-level age effects were also
concentrated in the medial prefrontal cortex and the intraparietal sulcus, but not in lower-level
sensory or motor areas (Fig. 3c). Edge-level age effects were most pronounced in a medial
prefrontal cortex parcel in the default mode system (top parcel: medial prefrontal cortex, 13
negative age-associated edges). The top five non-anatomical meta-analytic associations on
Neurosynth for the medial prefrontal cortex region (MNI coordinates of centroid: x =8,y =54,z =

»n «

12) were “mind,” “theory mind,” “autobiographical,” “mentalizing,” and “mental states”. Negative
associations with age were most common in the default mode system and the ventral attention
system, followed by the dorsal attention and frontoparietal systems. Very few negative

associations were found in the visual, somatomotor, or limbic systems (Fig. 3d).
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Figure 3. Parcel-level effects of age on network connectivity. a. Number of edges from each parcel showing a
significant positive age association; significance was defined as p,,,,. < 0.001. b. Number of edges with positive effects

of age, grouped by system. Each datapoint represents a parcel. c. Number of edges from each parcel showing a
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significant negative age association; significance was defined as p,,,. < 0.001. d. Negative edge effects for each parcel

grouped by system. Each datapoint represents a parcel.
Functional network structure is associated with cognition

Finally, we explored the cognitive consequences of age-associated network segregation by
examining relationships between functional architecture and visuospatial reasoning (matrix
reasoning from Wechsler tests (Wechsler and Corporation, 2012; Wechsler et al., 2014); see Fig.
4a). Controlling for age, reasoning was positively associated with average within-system
connectivity (8 = 0.34, F(1,79) = 4.78, p = .032, prpr = 0.08), and negatively associated with
average between-system connectivity (f =-1.57, F(1,79) = 4.78,p = .032, prpr = 0.08) and
average participation coefficient (8 =-0.35, F(1,79) = 4.39, p = .039, prpr = 0.08). However,
these associations did not pass correction for multiple comparisons, and reasoning was not
associated with other measures of whole-brain network architecture (p-values >.05). At the
system level, we focused on pairs of cognitive systems that show significant associations with age
(see Fig. 2c), and found that connectivity between the visual and dorsal attention systems was
positively associated with reasoning ability (Fig. 4b, f = 0.46, t(79) = 4.06,p < .001, pppr =
0.0006). We also found that connectivity between the default and dorsal attention systems was
negatively associated with reasoning ability (Fig. 4b, 8 = -0.55,t(79) = —2.93,p = .004, pppr =
0.01). Further, motivated by prior studies linking the frontoparietal system to reasoning (Prado et
al, 2011; Wertheim and Ragni, 2018), we tested whether reasoning was associated with within-
system frontoparietal connectivity; we found no effect (8 = 0.07, t(79) = 0.51,p = .613, pppr =
0.68). At the parcel level, connections with the intraparietal sulcus (top parcel: 8 edges), as well as
the medial prefrontal and occipital areas, showed positive relationships with reasoning (Fig. 4c).
Parcels with positive reasoning effects were most numerous in the visual system (Fig. 4d).
Connections with the frontal pole (top parcel: 8 edges), the intraparietal sulcus, the medial
prefrontal cortex, and visual areas showed negative associations with reasoning (Fig. 4e). Parcels
with negative reasoning effects were most numerous in the visual, default mode, and dorsal

attention systems (Fig. 4f).
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Figure 4. Associations between functional network structure and visuospatial reasoning. a. Example reasoning
item. Reasoning was assessed with the Matrix Reasoning subscale of the Weschler assessments. b. System-level
associations with reasoning, controlling for age. Reasoning is associated with connectivity between the visual and
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Sensitivity analyses

We conducted a set of sensitivity analyses to ensure that our results were not dependent on
specific analytical choices. Specifically, we conducted our main analyses with a more stringent
preprocessing pipeline and motion exclusion criteria. In this pipeline, measures of functional
network segregation were consistently positively associated with age, including average within-
system connectivity (8 = 0.22,t(77) = 3.02,p = .003, pppr = 0.007), average between-system
connectivity (8 =-0.04, t(77) = —3.02, p =.003, pppr = 0.007), overall system segregation (f =
0.1,t(77) = 2.53,p = .013, pppgr = 0.01), the modularity quality index (8 = 0.23, t(77) = 3.74,

p <.001, prpr = 0.002), and the clustering coefficient (f = 0.21, t(77) = 2.67,p = .009, prpr =
0.01). Consistent with these associations, we found that the average participation coefficient, a
measure that inversely tracks network segregation, was negatively correlated with age (f =-0.23,

t(77) = —2.66,p =.009, pppr = 0.01, see Fig. 5a).

At the system resolution, age was positively, but weakly, associated with within-system
connectivity in the visual (f = 0.25, t(77) = 2.21, p = .030) and limbic (8 = 0.2, t(77) = 2.05,p =
.044) systems, and was marginally positively associated with within-system connectivity in the
default mode (f = 0.17,t(77) = 1.83, p = .071) and somatomotor systems (f = 0.18, t(77) =
1.93, p = .057). None of these associations survived correction for multiple comparisons. In
contrast, age was strongly associated with between-system connectivity (Fig. 5b). Age was
negatively associated with connectivity between the default mode and ventral attention system
(B =-0.17,t(77) = —3.09, p = .003, prpr = 0.04). Age was also negatively associated with
connectivity between the default mode and dorsal attention system (f =-0.17, t(77) = —2.66,

p = .009, prpr = 0.09), but this association was marginal after FDR correction. Additionally, age
was positively correlated with connectivity between the visual and dorsal attention systems (ff =

0.36, t(77) = 3.64, p < .001, pppr = 0.01).

We next examined age effects at the parcel level to characterize regional specificity. Parcels with
the highest number of positive edge-level age effects were observed in the superior parietal
lobule/intraparietal sulcus (2 parcels with 11 and 9 significant edges) and the occipital cortex (2

parcels with 10 and 9 significant edges; see Fig. 5d). Parcels with the highest number of negative
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edge-level age effects occurred in medial prefrontal cortex (8 edges) and intraparietal sulcus (7

edges, Fig. 5e).

Finally, we examined relationships between functional architecture and visuospatial reasoning.
Controlling for age, reasoning was marginally positively associated with average within-system
connectivity (8 = 0.32, F(1,72) = 2.96,p = .090, prpr = 0.18), and marginally negatively
associated with average between-system connectivity (f =-1.62, F(1,72) = 2.96, p = .090,

prpr = 0.18). However, these associations did not pass correction for multiple comparisons, and
reasoning was not associated with other measures of whole-brain network architecture (p-values
>.05). At the system level, we focused on pairs of cognitive systems that showed associations with
age in the main analyses, and found that connectivity between the visual and dorsal attention
systems was positively associated with reasoning ability (Fig. 5e, § = 0.51, t(72) = 4.00,p < .001,
pPrpr = 0.0008). We also found that connectivity between the default and dorsal attention systems
was negatively associated with reasoning ability (8 =-0.72, t(72) = —3.51,p = .001, pppr =
0.0019). Reasoning was not associated with within-system frontoparietal connectivity (f = 0.17,
t(72) = 1.01, p = .318, pppr = 0.53). At the parcel level, connections with superior parietal cortex
(8 edges) and visual areas (7 edges) showed positive relationships with reasoning (Fig. 5f).
Connections with the frontal pole (7 edges), superior parietal cortex (2 parcels with 7 and 6
edges), medial prefrontal cortex (6 edges), and visual areas showed negative associations with

reasoning (Fig. 5g).
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Figure 5. Replication with stricter motion exclusions. In this pipeline, we censored volumes with FD > 0.25mm
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and excluded participants with average FD > 0.5 mm. a. Whole-brain measures of functional network segregation
(system segregation, modularity, and the clustering coefficient) are positively associated with age. The participation
coefficient is a measure of functional network integration and is negatively associated with age. b. Age effects on
between-system connectivity. c. Number of edges from each parcel showing a significant positive age association;
significance was defined as p,,,,. < 0.001. d. Number of edges from each parcel showing a significant negative age
association; significance was defined as p,,,. < 0.001. e. System-level associations with reasoning, controlling for age.
Reasoning is associated with connectivity between the visual and dorsal attention systems, and with connectivity

between the default mode and dorsal attention systems. f. The number of edges from each parcel showing a
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significant positive reasoning association; significance was defined as p,;,, < 0.001. g. The number of edges from each

parcel showing a significant negative reasoning association; significance was defined as p,,,,. < 0.001.
Discussion

We investigated the development of cortical functional network architecture during childhood. At
the whole-brain level, age was positively associated with multiple measures of functional network
segregation, consistent with prior work on development later in childhood and adolescence (Fair
et al, 2009; Marek et al,, 2015; Lopez et al., 2019). At the system level, age was associated with a
segregation of systems involved in attention from those involved in abstract, internally oriented
cognition, as well as an integration among attentional and perceptual systems. At the parcel level,
age effects on functional connectivity were strongest in medial prefrontal areas of the default
mode system, and in areas of the visual system. Classically, brain development is thought to move
from back to front, from sensory areas to association areas. Our results suggest another
possibility: both ends of the sensory-association gradient are anchored early, perhaps by the
presence or absence of sensory input, and then boundaries along the gradient are gradually
solidified. This possibility is consistent with the very early emergence of the default mode network
in utero and in infancy (Gao et al.,, 2009; Thomason et al., 2014; Gilmore et al.,, 2018; Hodel, 2018),
and with work showing that medial prefrontal cortex, like primary sensory areas, is already highly
segregated in adolescence (Baum et al., 2020). These findings fill a critical gap in our
understanding of how intrinsic functional network remodeling supports the profound cognitive

development that takes place during early and middle childhood.

Age effects were pronounced in areas of medial prefrontal cortex that are activated by self-
referential thought and social perception tasks in adults (de la Vega et al., 2016; Meyer and
Lieberman, 2018; Parelman et al., 2021). This result is consistent with evidence for major changes
in social cognition between the ages of 3 and 10 years, supported by changes in the structure and
function of the medial prefrontal cortex, the precuneus, and the temporoparietal junction (Weimer
et al.,, 2021). Though we did not collect a behavioral or imaging measure of social cognition in this
sample, we speculate that the medial prefrontal regions that show age effects may support
improvements in social cognition in this age range. In this context, it is notable that medial

prefrontal cortex continues developing after 10 years of age, and shows a protracted course of
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age-associated change through adolescence and into adulthood (Baum et al., 2020). The age-
associated remodeling we observe in medial prefrontal cortex may be simply an early
manifestation of the ongoing anchoring of the far end of the sensorimotor-association gradient
that continues into adulthood. It is also possible that changes in medial prefrontal connectivity
more broadly support self-regulation processes that are required for efficiently completing most

types of tasks (Akshoomoff et al.,, 2014; de la Vega et al,, 2016; Meyer and Lieberman, 2018).

Age effects were also pronounced in the visual system. The visual network showed increased
integration with the dorsal attention network, particularly along the dorsal stream. The majority
of inputs into primary visual cortex come from higher-order visual areas and attention areas
(Muckli and Petro, 2013), so it is possible that inputs from attention systems are reflected in the
structure and function of perceptual areas. Indeed, attention improves substantially in early
childhood (Amso and Scerif, 2015). Further, connectivity within regions of the dorsal attention
and visual systems is positively associated with attention skills in 4-7-year-old children (Rohr et
al, 2017, 2018), suggesting that the age effects we observe in regions of the visual system may

also support developing attention skills.

Better reasoning abilities were associated with more mature patterns of brain network
architecture, after controlling for age. At the parcel level, reasoning was associated with the
connectivity of medial prefrontal and visual areas, as well as the intraparietal sulcus and the
frontal pole. At the systems level, reasoning was associated with integration between the visual
and dorsal attention systems, and with segregation between the default mode and dorsal attention
systems. Prior work in older children and adults has linked structure and function of the
frontoparietal system to reasoning skills, with a specific focus on rostral lateral prefrontal cortex
and parietal areas (Prado et al., 2011; Vendetti and Bunge, 2014; Wertheim and Ragni, 2018).
Interestingly, one study found that neural correlates of reasoning depended on age: after age 8
years, stronger reasoning skills were associated with stronger functional connectivity between
rostral lateral prefrontal cortices and the inferior parietal lobe, whereas before age 8 years, there
were no such associations (Wendelken et al., 2016). Similarly, we found no association between
frontoparietal system connectivity and reasoning ability in our age range. By taking a whole brain
approach rather than focusing on the frontoparietal network, we found that visuospatial

reasoning is associated with integration between perceptual and attentional systems in children.
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We also found that reasoning was associated with segregation between task-positive and task-
negative systems, consistent with other work across multiple age ranges and cognitive domains
(Chan etal,, 2014; Keller et al,, 2015; Marek et al., 2019; Bruchhage et al., 2020). The involvement
of perceptual systems such as the visual and dorsal attention systems in reasoning may not be as
surprising as it initially seems: in children and adults, reasoning tasks engage visual areas more
than non-reasoning control tasks (Souli‘eres et al., 2009; Mackey et al.,, 2015; Whitaker et al.,
2018). There is also evidence that reasoning performance relies more on lower-level skills like
processing speed and visuospatial attention than on higher-level skills like working memory and
relational integration early in childhood (Fry and Hale, 1996; Kail and Hulme, 2016). Broadly, our
results suggest that maturation of brain network architecture, in particular in areas at two ends of

the sensory-association gradient, supports the development of reasoning abilities.

Making decisions about motion criteria is difficult because of tradeoffs between data quality and
generalizability, as motion is often highly correlated with other sample characteristics of interest
(Hodgson etal., 2017; Leonard et al., 2017; Bolton et al., 2019). Our approach here was to analyze
the data at two motion thresholds, a more lenient threshold that included more children and more
data, and a more conservative threshold that minimized motion concerns. At both thresholds, the
general pattern of findings was the same. At the whole-brain level, age was positively associated
with measures of segregation. At the system level, age was positively associated with segregation
between external and internal attention systems, and integration between attentional and
perceptual systems. Although the specific parcel-level results were not identical, the broad pattern
of results is similar, with age effects on functional connectivity strongest in medial prefrontal
cortex, superior parietal cortex, and visual areas. Better reasoning abilities were associated with
more mature patterns of brain network architecture. This suggests that our findings are robust

and are not driven by motion.

Several potential limitations should be noted. First, our dataset is cross-sectional and of a
relatively small sample size. Future work with longitudinal data will be necessary to establish the
temporal sequence of the relationships we report, as well as to better evaluate nonlinearities and
ideally, developmental trajectories in children younger than age 4 years. Longitudinal data would
also make it possible to test whether changes in network structure mediate age-related

improvements in reasoning. Fortunately, such a study — the HEALthy Brain and Cognitive
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Development Study (Volkow et al., 2020) — is about to begin. Second, by carefully excluding data
with motion artifacts, we may have limited the generalizability of our findings. Most young
children move in the scanner, so it is essential to develop more motion-resilient sequences to
allow investigators to acquire data in a more representative sample of young kids. Third, our
cognitive measures were limited. Future work is necessary to link changes in functional
organization to changes across a broader set of cognitive and social skills, including abilities that
might diminish with age, such as creativity and imagination (Thompson-Schill et al., 2009; Gopnik,
2020). Fourth, major cognitive and social changes during middle childhood (called the “age of
reason” by anthropologists Sameroff and Haith (1996)) have been observed across many cultures
all over the world, but our sample only captures development in our specific geographic and
cultural context. Finally, we could not determine the causes of the developmental patterns we
uncovered. More work is needed to understand whether these patterns were associated with
specific experiences, for example formal schooling (Brod et al., 2017; Nolden et al., 2021), or

simply reflect biological experience-independent maturation.

In sum, age effects on functional cortical architecture during childhood parallel long-known age
effects on behavior. As children learn to resist the lure of perceptual information, and begin to
reason abstractly, cortical systems for perception and abstraction separate, while connections that
facilitate attention tend to strengthen. As children’s concept of self matures, the connectivity of the
medial prefrontal cortex changes. Our results provide new insights into how changes in cortical

organization give rise to changes in the mind as children reach the age of reason.

Citation diversity statement

Recent work in several fields of science—including neuroscience, where our work here is
situated—has identified a bias in citation practices such that papers from women and other
marginalized scholars are under-cited relative to the number of such papers in the field (Maliniak
et al.,, 2013; Mitchell et al., 2013; Caplar et al.,, 2017; Dion et al,, 2018; Dworkin et al., 2020;
Chatterjee and Werner, 2021; Teich et al,, 2021; Wang et al,, 2021). Here we sought to proactively
consider choosing references that reflect the diversity of the field in thought, form of contribution,
gender, race, ethnicity, and other factors. First, we obtained the predicted gender of the first and

last author of each reference by using databases that store the probability of a first name being
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carried by a woman (Dworkin et al., 2020; Zhou et al., 2020). By this measure (and excluding self-
citations to the first and last authors of our current paper), our references contain 26%
woman(first)/woman(last), 16% man/woman, 20% woman/man, and 38% man/man
categorization. This method is limited in that a) names, pronouns, and social media profiles used
to construct the databases may not, in every case, be indicative of gender identity and b) it cannot
account for intersex, non-binary, or transgender people. Second, we obtained the predicted
racial/ethnic category of the first and last author of each reference by databases that store the
probability of a first and last name being carried by an author of color (Ambekar et al., 2009; Sood
and Laohaprapanon, 2018). By this measure (and excluding self-citations), our references contain
9.83% author of color (first)/author of color(last), 16.45% white author/author of color, 18.51%
author of color/white author, and 55.21% white author/white author. This method is limited in
that a) names and Florida Voter Data to make the predictions may not be indicative of
racial/ethnic identity, and b) it cannot account for Indigenous and mixed-race authors, or those
who may face differential biases due to the ambiguous racialization or ethnicization of their
names. We look forward to future work that could help us to better understand how to support

equitable practices in science.
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