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Abstract

Single-cell genomics is now producing an ever-increasing amount of datasets that, when
integrated, could provide large-scale reference atlases of tissue in health as well as disease.
Such large-scale atlases not only increase the scale and generalizability of analyses but also
enable combining the knowledge generated by individual studies. Specifically, individual
studies often differ in terms of cell annotation terminology and depth, with different groups
specializing in different cell type compartments, often using distinct terminology.
Understanding how these distinct sets of annotations are related and complement each
other would mark a major step towards a consensus-based cell type annotation that reflects
the latest knowledge in the field. Whereas recent computational techniques, referred to as
“reference mapping” methods, facilitate the usage and expansion of existing reference
atlases by mapping new datasets (i.e. queries) onto an atlas; a systematic approach towards
harmonizing dataset-specific cell type terminology and annotation depth is still lacking. Here,
we present “treeArches”, a framework to automatically build and extend reference atlases
while enriching them with an updatable hierarchy of cell type annotations across different
datasets. We demonstrate various use cases for treeArches, from automatically resolving
relations between reference and query cell types to identifying unseen cell types not present
in the reference, such as disease-associated cell states. We envision treeArches enabling
data-driven construction of consensus, atlas-level cell type hierarchies, as well as facilitating
efficient usage of reference atlases.
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Introduction

Single-cell sequencing technologies have revolutionized our understanding of human health.
Hereto, large single-cell datasets - referred to as “reference atlases” - have been built to
characterize the cellular heterogeneity of whole organs. The concept of a “reference”
suggests it should help analyze and interpret new datasets (called “query”). This, however, is
complicated by batch effects between reference and query, limited computational resources,
and data privacy and sharing. Recently, we along with others developed computational
approaches known as ”reference mapping” methods to address these challenges [1–4].

Reference mapping methods have changed the traditional paradigm of manual and
time-consuming cell annotation and novel cell type discovery. Recent efforts to build organ-
and body-scale cell atlases in collaborative efforts within consortia such as the human cell
atlas (HCA) have leveraged reference mapping to make their resources public for individual
users and labs, annotate new datasets, and identify novel cell types by disease to healthy
references [5–11]. As a result, users can contextualize their datasets within these references
to identify novel cell types from healthy to disease-specific variations and thus enabling the
discovery of disease-affected cell types that can be prioritized for treatment design.
However, identifying novel unseen cell types requires expert knowledge and additional data
analysis. Recent approaches leverage uncertainty-aware classification [2,12] or
distance-based approaches [4] combined with a core reference mapping method to flag such
unseen cell types. Still, the relation of the flagged cell type is not associated with a specific
cell type in the reference such as being a subtype or altered state of a specific cell type or a
completely novel cell type not in the reference.

Additionally, in the presence of annotated query data, updating the existing atlas while
harmonizing its labels with the query remains an open question due to different labeling
schemes, hierarchical relations between the cell types [13], and the presence of
study-specific cell types as stated before. Due to the large individual variability, and a large
number of diseases, new cell types keep being discovered. To create or extend a reference
atlas, we would ideally leverage information from multiple scRNA-seq datasets and
harmonize their cell annotations. This, however, is not as easy as it seems since all datasets
are annotated at a different resolution. Furthermore, it is difficult to match cell types based on
the names only. Databases such as the Cell Ontology try to overcome this problem, but a
complete naming convention is still missing [13]. Learning the relation between cell types
could even be used to improve the Cell Ontology database.

To address these challenges, we propose a framework building upon recent approaches for
reference mapping called single-cell architectural surgery (scArches) [1] and single-cell
Hierarchical Progressive Learning (scHPL) [14] to progressively build and update a
reference atlas and corresponding hierarchical classifier (treeArches, see Methods). Our
approach allows users to build a reference atlas using existing integration methods
supported by scArches (e.g. scVI, scANVI, totalVI, and all others described in [15]). Next, we
can use scHPL to augment this reference atlas by learning the relations between cell types
to construct a cell type hierarchy. Afterwards, query data, which can be either annotated or
unannotated, can be mapped to the reference. If the query is annotated, the query cells can
expand the newly updated tree by highlighting potential novel cell types and their
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relationship with other cell types in the reference. Otherwise, the created reference can be
used to annotate the query cells and identify new unseen cell types in the query. We show
that treeArches can be used to create a reference atlas and corresponding cell type
hierarchy from scratch, update an existing reference atlas and the hierarchy by finding novel
relations between cell types, and leverage a reference atlas to transfer labels to a new
dataset.

Results

treeArches enables efficient building and updating of hierarchically annotated
reference atlases
treeArches consists of two main steps, which are removing the batch effects between
datasets and matching the annotated cell types to construct a cell type hierarchy. Assume
that we start with multiple labeled datasets called reference datasets in the following. During
the first step, we leverage existing neural network-based reference building models (e.g.
sc(AN)VI [15] or scGen [16]) which have been shown to be top performers in recent data
benchmarking efforts [17] and compatible with scArches to construct a latent space. Next,
we use scHPL to construct the cell type hierarchy (Fig 1A). For each dataset, we train a
classifier in the learned latent space and cross-predict the labels of the other dataset(s).
Using the confusion matrices, we automatically match the cell types to create a hierarchy.
This hierarchy also represents a hierarchical classifier where every node represents a cell
type of one or more of the datasets. Afterwards, we can map new query datasets to the
learned latent space using architectural surgery, a transfer learning approach to map query
datasets to references, implemented by scArches (Fig 1B). Architectural surgery brings the
advantage that the count matrices of the reference datasets are not needed anymore for
querying the model - instead, we only use the pre-trained neural network architecture. The
query datasets can either be labeled or unlabeled. In the case of a labeled dataset, we
match the cell types from the query to the reference and again update the hierarchy we had
learned on the reference datasets. In the case of an unlabeled query, we annotate the cells
using the learned hierarchy.

When matching the cell types or predicting labels of a query dataset, identifying new cell
types that are not present in the reference is important. This is only possible when biological
variation is preserved when mapping the datasets to the latent space and when the classifier
in scHPL recognizes unseen cells that are not present in the tree, i.e. scHPL rejects these
cells and identifies them as a new cell type. Within scHPL, a cell is rejected if it meets one of
the following criteria: 1) if the posterior probability of the classifier is lower than a threshold
which means the predicted label is ambiguous, 2) if the distance between a cell and its
closest neighbors is too big, 3) if the reconstruction error after PCA is too high which means
the query cell is too different from the reference cell types. These three thresholds are
automatically set based on the distribution of the data (see Methods)

treeArches detects new cell types in PBMC datasets
We showcase the method with a relatively straightforward example where we build a cell
type hierarchy using one bone marrow and three PBMC datasets [18–21] (Table S1). We
consider three datasets as the reference (Freytag, Oetjen, and Sun), and one as the query
(10X). Since both scArches and scHPL are invariant to a different order of the datasets,
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treeArches will be invariant as well [1,14]. The names of the cell types in the datasets are
harmonized already, only not all cell types exist in all datasets (Table S2). Nine out of sixteen
cell types are present in all four datasets, while four cell types are specific to the Oetjen
dataset. The challenge is thus to match the cell types that exist in multiple datasets correctly
and to add other cell types as new nodes to the tree. For this second challenge, it is
important to note that these new cell types are not forced to be aligned with other existing
cell types during the integration step and that the classifier used by scHPL contains a good
rejection option during the matching step.

We remove the batch effects from the reference datasets using scVI [22] and match the cell
types in the learned latent space (see Methods) (Fig 1C-D, Fig S1). When building the
hierarchy, we start with the Freytag dataset and progressively add the Oetjen and Sun
datasets. The constructed tree looks almost completely as we would expect: most cell types
are matched (e.g. the CD4+ T cells from all three datasets) and cell types that are only found
in one dataset are added as new cell types to the tree (e.g. the CD10+ B cells and
erythrocytes).

The megakaryocyte progenitor cells from the three datasets, however, do not match. The
Freytag and Sun datasets are PBMC datasets and the Oetjen dataset is a bone marrow
dataset. Looking at the expression of marker genes and the location of the megakaryocyte
progenitor cells in the UMAP embedding supports our claim that the cell types from Sun and
Freytag should not match Oetjen in the hierarchy (Fig S2). Based on marker gene
expression, the MK progenitor cells in the Oetjen dataset should be annotated as early
erythrocytes and the MK progenitor cells in the Freytag and Sun dataset as platelets. These
cell types of Freytag and Sun are very small (14 and 16 cells respectively), which makes it
difficult to train the classifier and explains why these two are not matched.

Next, we align the query dataset to the latent space of the reference datasets using
scArches and update the learned hierarchy with the new cell types (Fig 1E-F). For this step,
only the trained model and reference latent space are needed. Again, almost all cell types
(10 out of 12) are added to the correct node in the tree. Two mistakes are that the plasma
cells and the megakaryocyte progenitors are added to the tree as new cell types. These cell
types contain 21 and 18 cells respectively, which makes them difficult to match compared to
the other cell types in the query dataset which contain more than 1000 cells on average.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.07.499109doi: bioRxiv preprint 

https://paperpile.com/c/VieJVM/yjX7+IHTQ
https://paperpile.com/c/VieJVM/nKjM
https://doi.org/10.1101/2022.07.07.499109
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. A schematic version of treeArches and an example using PBMC and bone marrow
datasets. (a) Pre-training of a latent representation using labeled public reference datasets. After
integration, a cell type hierarchy is created by matching the cell types of the different datasets. Here,
for instance, cell types (CT) 1 and 2 from study (S) 2 are subtypes of CT1 from S1. (b) (Un)labeled
query datasets can be added to the latent representation by applying architectural surgery. After
integration, the cell type hierarchy is updated with labeled query datasets. Unlabeled query datasets
can be annotated using the learned hierarchy. (c) UMAP embedding showing the integrated latent
space of the three reference datasets. (d) Cell type hierarchy tree learned from the three reference
datasets. (e) Updated hierarchy after the 10X dataset was added. (f) UMAP embedding showing the
integrated latent space of the reference and query datasets.
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Increasing the resolution of the human lung cell atlas using treeArches
The human lung cell atlas (HLCA) is a carefully constructed reference atlas for the human
respiratory system [6]. Sikkema et al. aligned 14 datasets, harmonized the annotations, and
constructed a cell type hierarchy consisting of 5 levels (Fig 2A, Fig S3). Furthermore, they
used scArches to align multiple datasets to this reference atlas. Since the cell type hierarchy
for the reference is well-defined, we can omit the reference building step and leverage
treeArches to update the reference hierarchy using one of the query datasets (Meyer) [23].
Using scHPL, we matched the cell types of the Meyer dataset to the cell types from the
reference (Fig S4). In the updated hierarchy, we see in general that most cell types from the
query dataset match a cell type from the reference dataset as expected. For some parts of
the hierarchy, we can even increase the resolution. Suppose we zoom in on the blood vessel
branch in the tree, for instance. In that case, we see that the pulmonary and systemic
endothelial vascular arterial cell types from the query both match ‘EC arterial’ from the
reference (Fig 2B).

For some parts of the tree, e.g. the airway epithelium secretory cells, the matches are not
what we would expect based on the names (Fig 2C). The secretory goblet cells from the
query dataset match not only the goblet but also the club cells from the reference and the
secretory club cells match the transitional club-AT2 cells. This cell type has only been
recently discovered, which could explain why it is missing from the original Meyer
annotations [24–26]. Based on the expression of marker genes, we can conclude that the
match between the transitional club-AT2 and secretory club cells is a correct match (Fig 2D).
The expression of the marker genes in the other cell types, however, is ambiguous and it is
hard to determine what is the correct match.

Furthermore, we see that there are sixteen cell types from the query added to the root node
of the tree as a new cell type (Fig S4). Of these cell types, most of them, e.g. chondrocytes,
erythrocytes, Schwann cells, and B plasmablasts, are indeed not in the reference atlas. For
some, such as some macrophage subtypes that are seen as new, it is a bit more difficult to
determine whether they are new or whether they should match one of the macrophage
subtypes in the tree. The ‘Macro CHIT1’ cells from the Meyer dataset, for instance, form a
relatively big cell type of 1570 cells and are still seen as new. We visualized the expression
of CHIT1, the gene this cell type was named after, and the marker genes that were used to
annotate the cells in the reference data (Fig S5). This shows that the Macro CHIT1 cell type
is the only cell type that expresses CHIT1. Furthermore, the marker gene profile of the other
cell types does not correspond to the profile of the Macro CHIT1 cells, which indicates that
this cell type was indeed rejected correctly.

Twelve out of 77 cell types, however, are missing from the tree, which means that it was
impossible to match these cell types with a cell type from the reference. Due to
many-to-many matches between the reference and query cell types, it is sometimes unclear
where a cell type should be added to the tree. Especially, when the boundary between cell
types forms a gradient, it can be quite subjective where to put the threshold. If this threshold
is different in each dataset or if cells are wrongly annotated in general, this can cause
impossible matching scenarios. Here, we notice that this mainly happens with some immune
and stromal subtypes. The B cells and plasma cells from the reference and Meyer dataset,
for instance, could not be matched automatically, which is caused by the plasma cells in the
Meyer dataset that are partially misannotated (Fig S6).
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Figure 2. Updated hierarchy when adding Meyer to the reference atlas. (a) Cell type hierarchy
corresponding to the reference atlas (only the first two levels are shown). Each node represents a cell
type in the reference atlas instead of a cell type in a separate dataset of the reference atlas. The
UMAP embedding shows the aligned reference and query dataset. The cells in the reference dataset
are colored according to their level 2 annotation. (b-c) Updated hierarchy zoomed in on the blood
vessels and airway epithelium secretory cells respectively. The UMAP embeddings are colored
according to their finest resolution. (d) Expression of marker genes for club and goblet cells in the
reference and query cell types.

treeArches identifies unseen disease-associated cell types in the query data
Next, we show how we can use treeArches to detect previously unseen cell types in
idiopathic pulmonary fibrosis (IPF) samples [27]. This dataset was mapped on the HLCA
with scArches (Fig 3A-C). Ideally, we would use scHPL to update the hierarchy with the new
cell types. A downside of the original annotations, however, is that the resolution is very low.
Cells are, for instance, only annotated as endothelial cells. Therefore, we used scHPL to
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predict the labels of the IPF data and compare those predictions to the original annotations
(Fig 3D). In the predictions, we see some interesting differences between the IPF and
healthy cells.

For the IPF cells, many macrophages and epithelial cells are rejected, while almost none for
the healthy cells. Furthermore, most healthy Col1+ cells are predicted to be alveolar
fibroblasts, while the diseased Col1+ are mainly SM-activated stress response cells. In all
datasets, however, we notice confusion between the B cells and dendritic cells. Based on
marker gene expression, the cells originally annotated as B cells and dendritic cells are more
likely to be plasmablasts and B cells respectively (Fig S7). The cells originally annotated as
dendritic cells also overlap in the UMAP with the lymphoid lineage mainly instead of the
myeloid lineage (Fig 3A-B).

Next, we annotated the cells at a higher resolution (see Methods) and used these
annotations to update the hierarchy (Fig S8). In the updated hierarchy, the healthy and IPF
transitioning epithelial cells, a cell type not present in the reference atlas, are correctly added
as a new cell type. As expected, we also see some differences in how the healthy and IPF
cell types are added to the tree. IPF alveolar macrophage proliferating cells, for instance, are
seen as new, while the healthy cells are a perfect match with the same cell type in the
hierarchy. For other IPF macrophage cell types, however, this is not the case even though
many cells were rejected previously. Comparing the new annotations with the previously
obtained predictions and the matches in the hierarchy, we notice that there are still many
macrophages rejected (Fig 3E). For most IPF cell types, however, only a subset of the cells
is rejected. For instance, for the IPF monocyte-derived macrophages (Md-M), 486 cells are
rejected and 750 are predicted to be Md-M (reference). Therefore, the two cell types are still
matched. Comparing the two IPF ‘subtypes’ of Md-M, the top differentially expressed gene is
SPP1. Monocytes and macrophages expressing SPP1 are known to be a hallmark of IPF
pathogenesis [28,29]. The rejected Md-M cells are the only group of cells expressing SPP1
(Fig 3F). Combining the confusion matrices with the created hierarchy, these diseased
subtypes are thus easily found either directly as the proliferating cells or by looking at the
rejected cells of a matched cluster.
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Figure 3. Identifying diseased cells in IPF data. (a-c) UMAPs show the HLCA and IPF datasets
after alignment. The cells are colored according to their cell type or condition. (d) Heatmap showing
the predicted labels by scHPL and original labels. The dark boundaries indicate the hierarchy of the
reference tree. (e) Sankey diagram showing the new annotations and predictions for the
macrophages for the IPF condition. (f) Expression of SPP1 in the different cell types of the reference
and query datasets.
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treeArches can correctly map cell types across species
Next, we show how treeArches can be applied to map the relationship between cell types of
different species. We construct a cell type hierarchy for the motor cortex of the brain using
human, mouse, and marmoset data (Table S3) [30]. We integrate the reference datasets,
mouse and marmoset, using scVI and construct the cell type hierarchy for the GABAergic
neurons using scHPL (Fig 4A-B). Here, we only focus on this subset to make the results less
cluttered. Almost all cell types are a perfect match, except for ‘Meis2’ and ‘Sncg’. In the
latent space, the Meis2 cell types from mouse and marmoset also show no overlap, and
both cell types were defined using different marker genes (Fig S9A-B). Furthermore, Bakken
et al. also didn’t find a match between these two [30]. It is less clear why the Sncg cell types
(559 and 960 cells in mouse and marmoset respectively) do not match. Even though the cell
types are aligned in the UMAP embedding as expected and the marker genes correspond
quite well, the cells are rejected based on distance (Fig S9C-D). This means that the cells
are still too separated in the latent space. Next, we align the human dataset to the reference
using architectural surgery and add the human cell type to the reference hierarchy (Fig
4B-C). Here, the constructed hierarchy looks like what we would expect based on the names
of the cell types.

All previous results were obtained using the default parameters (number of neighbors = 50,
see Methods), which turned out to be relatively robust (Fig S10). The main difference is
whether a match is found between the Sncg cell types. When increasing the number of
neighbors, this match is correctly found.

Figure 4. Results motor cortex across species. (a) UMAP embedding of the integrated reference
datasets. (b) Learned hierarchy when combining mouse and marmoset (step 1) and after adding
human (step 2). The color of each node represents the dataset(s) that the cell type originates from. (c)
UMAP embedding after architectural surgery with the human dataset.
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Discussion

In this study, we present treeArches, a method to create and extend a reference atlas and
the corresponding cell type hierarchies. treeArches builds on scArches, which allows users
to easily map new query datasets to the latent space learned from the reference datasets
using architectural surgery. Architectural surgery has the advantage that the reference
datasets are not needed anymore for the mapping and that the latent space corresponding
to the reference datasets does not change. This last point is especially important for scHPL,
which then allows users to match the cell types of multiple labeled datasets to build a cell
type hierarchy. If the latent space of all datasets would be altered when a new dataset is
added, we would have to restart the construction of the tree completely.

We have shown three different situations where treeArches can be applied: building a
reference atlas from scratch, extending an existing reference atlas to add new cell types or
increase the resolution, or using an existing reference atlas to label cells in a new dataset.
By using the HLCA data, we show an example of how treeArches can be used to extend a
hierarchy or to label cells in a new dataset. The HLCA reference atlas consists of 16
datasets with a well-defined cell type hierarchy. We show that treeArches can be used to
extend this hierarchy. For instance, by increasing the resolution of some branches of the
tree, but also by adding new cell types. We could also detect diseased cell types in the IPF
datasets.

Whether building or extending a reference atlas or labeling new cells, it is essential that we
can detect new cell types, such as disease-specific cell types. To do so, it is important that
during the mapping, the cell types are not forced to align; the biological variation should be
preserved. Furthermore, during the classification, there should be a correctly working
rejection option (i.e. cells are recognized to belong to a new unseen class). Here, we
showed that this indeed works in all tested scenarios.

Due to the extended rejection options, however, it is difficult to match small cell types (less
than 50 cells). We adapted the kNN classifier from scHPL such that the number of neighbors
automatically decreases when there is a small cell type in the training data, but apparently
this is not enough in all cases. The number of neighbors used is a trade-off between the
ability to learn a representation for small cell types and a generalizable representation for the
big cell types.

treeArches relies on the original annotations to extend the cell type hierarchy. This can be a
problem in two different situations. If the annotations are missing or at a too low resolution, it
is impossible to extend the atlas. This was the case with the original annotations of the IPF
dataset. It can also be that there are annotations at a high resolution, but that these are
(partially) incorrect. Especially when there is no clear boundary between cell types, but it
looks more like a gradient, experts might disagree on where to put the threshold.
Inconsistencies like this might result in a hierarchy that looks erroneous at first sight. In those
cases, however, treeArches can still be more useful than expected. A cell type hierarchy that
looks different than expected, is usually a sign that something is wrong with the original
annotations. Certain parts of the dataset, e.g. the cell types that could not be added to the
tree or caused confusion, can then be reannotated. Furthermore, the tree can still be
adapted afterwards. Examples of this are the goblet and club cells in the HLCA and the
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megakaryocyte progenitor cells in the PBMC datasets. The learned hierarchy is a good
starting point. Based on marker gene expression or expert knowledge, cell types can also be
added to the tree, removed from the tree, or rewired.

Our proposed method builds upon existing data integration methods. Thus, it naturally
inherits both advantages and issues linked to existing models. As previously reported [1,2],
the choice of the reference building algorithm and reference atlas itself can influence the
quality of reference mapping. Therefore, in scenarios where the query dataset is strikingly
different from the reference, the integrated query will still contain batch effects leading to
inaccurate estimation of hierarchies in treeArches. This erroneous modeling results in weak
label transfer results and thus identifies many overlapping cell types between query and
reference as a new cell type only present in the query. We advise users to choose a
comprehensive reference atlas and extensively benchmark and screen various data
integration methods for an optimal reference representation [17],

In summary, we present treeArches, a method that can be used to combine multiple labeled
datasets to create or extend a reference atlas and the corresponding cell type hierarchy.
This way we provide users with an easy-to-use pipeline to map new datasets to a current
reference atlas, match cell types across multiple labeled datasets, and consistently label
cells in new datasets. With the increasing availability of reference atlases, we envision
treeArches facilitating the usage of reference atlases allowing users to automatically analyze
their datasets from label transfer to the automatic identification of novel cell states in the
query data. In conclusion, treeArches will enable a data-driven path towards
consensus-based cell type annotation of (human) tissues and will significantly speed up the
building and annotation of atlases.

Methods
treeArches
treeArches is a framework built around scArches (version 0.5.3) [1] and scHPL (version
1.0.1) [14] to build and update a reference atlas and corresponding cell type hierarchy using
multiple labeled datasets. The first step is to create a reference atlas by aligning multiple
labeled datasets. This is done using any of the existing integration methods supported by
scArches. scArches is a deep learning framework leveraging conditional variational
autoencoders such as scVI, and scANVI [15,31,32]. Next, we use the constructed latent
space to match the cell types of the reference datasets and build the corresponding cell type
hierarchy using scHPL [14].
Afterwards, query datasets can be aligned to the reference atlas using scArches. Query
datasets can be either labeled or unlabeled. In the case of a labeled dataset, we can extend
the cell type hierarchy by matching the cell types of the query dataset to the reference. If the
query dataset is unlabeled, we can use the hierarchy of the reference to transfer cell
annotations to the query cells.

We enhanced the original version of scHPL by adding the option to use a k-nearest neighbor
(kNN) classifier. The dimensionality of the latent space learned by scArches is relatively low
(varying between 10 and 30 dimensions). We noticed that the linear SVM originally
implemented doesn’t perform well, since the cell types are not linearly separable anymore.
Therefore, it is better to use scHPL with the kNN classifier in this case. In contrast to the
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linear SVM, we train a multiclass classifier for every parent node instead of a binary classifier
for every child node [14]. During training, we set the default number of neighbors to 50.
However, when there are cell types in the dataset that consist of less than 50 cells, this is not
ideal. Therefore, we added an extra option (dynamic_neighbors) to automatically decrease k
to the size of the smallest cell type across the direct child nodes. Since the tree consists of
multiple classifiers, it can thus be that they all use a different number of neighbors because
of this option. For the kNN classifier itself, we implemented alternatives using either the
FAISS library [33] or the scikit-learn library [34]. The FAISS implementation is faster than the
scikit-learn library but is only available on Linux.

Detecting new or diseased cell types
We have implemented three methods to detect new or diseased cell types: 1) a threshold on
the posterior probability, 2) a threshold on the reconstruction error, and 3) a threshold on the
distance between query and reference. The first two options were already implemented in
the previous version of scHPL. The default threshold for the first option is 0.5. The threshold
for the second rejection option is determined using a nested cross-validation loop. It is the
median reconstruction error that gives a certain amount of false negatives on the test folds
(default = 0.5%). The third option rejects cells whose distance to the predicted class is too
big. The threshold for rejection is determined by calculating the neighbors for all cells in the
training set, averaging the distance across the neighbors, and taking the 99th percentile.

Datasets

PBMC datasets
The dataset was obtained from the recent data integration benchmark [17]. The data
contains bone marrow samples from Oetjen et al. [18] and also PBMC samples that were
obtained from 10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/
datasets/3.0.0/pbmc_10k_v3, Freytag et al. and Sun et al. [19,20], the original url and the
preprocessing and annotation details can be found in Luecken et al. [17]. Marker genes
specific to early erythrocytes and platelets were downloaded from Azimuth [3].

Brain datasets
We used datasets from the primary motor cortex of three species: human, mouse, and
marmoset [30]. We downloaded the datasets from the Cytosplore comparison viewer. In
these datasets, genes were already matched based on one-to-one homologs. For the
analysis, we only kept these one-to-one matches (15,860 genes in total). We selected 2,000
highly variable genes based on the reference datasets (mouse and marmoset) and used
those counts as input for treeArches. The datasets are annotated at three different
resolutions: Class, Subclass, and RNA_cluster. The class level contains three broad brain
cell types: GABAergic neurons, glutamatergic neurons, and non-neuronal cells. At the
subclass level, the cells are annotated at a higher resolution (5-10 subclasses per class).
The RNA_cluster level contains the highest resolution. Here, we will use the subclass level
to match the cell types. Marker genes used for visualization were chosen based on
Supplementary Tables 5 and 6 from the original paper [30].

Human Lung Cell Atlas
The human lung cell atlas (HLCA) is a carefully constructed reference atlas for the human
respiratory system [6]. Sikkema et al. aligned 14 datasets, harmonized the annotations, and
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built a cell type hierarchy consisting of 5 levels. When matching the cell types, we used the
latent space generated in their original paper (downloaded from
https://zenodo.org/record/6337966#.YqmGIidBx3g). When updating the hierarchy with the
IPF data, we removed the cell types smaller than 10 cells. Marker genes were downloaded
from the lung reference v2 from Azimuth [3,6].
We annotated the fibrosis-specific cell types in greater detail by subclustering the cell types
of interest (macrophages, epithelial cells, myofibroblasts and identifying the subtypes by
marker gene expression. We identified transitioning/basaloid epithelial cells by KRT5/KRT17
expression, inflammatory monocyte-derived macrophages by SPP1 expression, and
myofibroblasts by the expression of CTHRC1.

Code availability

treeArches is part of the scArches repository (https://github.com/theislab/scarches). The
code for scHPL as a standalone package can be found here:
https://github.com/lcmmichielsen/scHPL. All code to reproduce the results and figures can
be found at the reproducibility GitHub:
https://github.com/lcmmichielsen/treeArches-reproducibility

Data availability
PBMC count data:
https://drive.google.com/uc?id=1Vh6RpYkusbGIZQC8GMFe3OKVDk5PWEpC
Brain count data: https://doi.org/10.5281/zenodo.6786357
PBMC + brain latent space: https://doi.org/10.5281/zenodo.6786357
HLCA latent space: https://zenodo.org/record/6337966#.YqmGIidBx3g
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Bavarian Ministry of Science and the Arts in the framework of the Bavarian Research
Association “ForInter” (Interaction of human brain cells).
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Supplementary Material

Figure S1: Intermediate step when creating the cell type hierarchy for the reference PBMC
datasets. a) Starting tree, which is a flat tree containing only the cell types of the Freytag
dataset, b) Oetjen dataset added, c) Sun dataset added
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Figure S2: a) UMAP embedding showing the different cell types in the Freytag, Oetjen, and
Sun dataset. Megakaryocyte (MK) progenitor cells of the Freytag and Sun dataset are at a
different location compared to the Oetjen dataset. b) Marker gene expression for early
erythrocytes and platelets in the three different datasets.

Figure S3: Cell type hierarchy constructed for the reference atlas [6].
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Figure S4. Updated cell type hierarchy learned by adding a query dataset (Meyer dataset) to
the reference tree.

Figure S5. Marker gene expression for macrophage cell types in the reference datasets and
Meyer dataset. The first column shows the expression of CHIT1, a gene used to annotate
the Macro CHIT1 cells in the Meyer dataset. The rest of the genes are grouped according to
the cell type in the reference atlas they were used as a marker for.
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Figure S6. a) UMAPs showing the B cells and plasma cells in the reference and Meyer
dataset. We split the plasma cells in the Meyer dataset into two groups. The first group
overlaps with the reference B cells and the second group overlaps with the reference plasma
cells. b) B cell and plasma cell marker gene expression in the reference and Meyer cell
types. Plasma-1 from Meyer shows B cell marker gene expression, while Plasma-2 from
Meyer shows plasma marker gene expression.

Figure S7. Expression of marker genes for B cells, plasma cell, and dendritic cells in the cell
types in the IPF dataset.
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Figure S8. Updated hierarchy of the HLCA after adding the IPF dataset (IPF condition and
normal condition).
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Figure S9: a) and c) UMAP embedding showing the integrated latent space of the reference
datasets (mouse and human). The Meis2 and Sncg cell types are highlighted respectively. b)
and d) Marker gene expression for the Meis2 and Sncg cell types respectively. The three
gene names shown are the human/marmoset/mouse gene names.

Figure S10: Influence of the number of neighbors (K) on the learned hierarchy. The nodes
are colored according to the species they come from. The links between most nodes are
robust and do not change when the number of neighbors varies. The differences between
the trees are highlighted using brighter colors.
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Table S1: Information on PBMC datasets used in this study

Dataset
(add
referenc
e)

Tissue No. of
Samples

No. of
cells

No. of
genes

No. of
cell

types

Protocol Referenc
e or
query

Oetjen
[18]

Bone
marrow

3 9581 12303 16 10X v2 Referenc
e

Sun [19] PBMC 4 8829 12303 10 10X Referenc
e

Freytag
[20]

PBMC 1 3347 12303 9 10X v2 Referenc
e

10X [21] PBMC 1 10727 12303 12 10X v3 Query

Table S2: Overview of cell types in the PBMC datasets

cell type Oetjen Sun Freytag 10X

CD4+ T 2524 4312 1238 2937

CD8+ T 985 578 270 350

NKT 608 649 432 1056

NK 89 973 476 756

CD20+ B 491 409 427 1546

CD10+ B 207

CD14+ MC 997 1501 452 3388

CD16+ MC 165 271 25 364

MC derived DC 214 82 182

pDC 133 40 11 81

MK progenitor 219 14 16 21

Erythrocytes 1502

Erythroid prog. 463

HSPC 445 28

MC progenitor 428

Plasma cell 111 18
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Table S3: Information on brain datasets used in this study

Species No. of cells No. of genes No. of
cell types

(class/subclass/
RNA_cluster)

Protocol

Mouse 159,739 27,439 3/23/116 10X v3

Marmoset 69,279 27,466 3/22/94 10X v3

Human 76,621 32,991 3/20/127 10X v3
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