

Peri-saccadic visual sensitivity is higher in the upper visual field

Alessio Fracasso^{1*}, Antimo Buonocore^{2*}, Ziad M. Hafed^{3, 4}

1. School of Psychology and Neuroscience, University of Glasgow, Scotland, UK, G12 8QE
2. Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, Italy, 80135
3. Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany, 72076
4. Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany, 72072

* these authors contributed equally to this work

* these authors contributed equally to this work

Correspondence to:

Alessio Fracasso

Hillhead Street 62, G12 8QE, University of Glasgow, Scotland UK

Email: alessio.fracasso@glasgow.ac.uk

49 **Abstract**

50

51 Visual neural processing is distributed among a multitude of sensory and sensory-motor
52 brain areas exhibiting varying degrees of functional specializations and spatial
53 representational anisotropies. Such diversity raises the question of how perceptual
54 performance is determined, at any one moment in time, during natural active visual
55 behavior. Here, exploiting a known dichotomy between the primary visual cortex and
56 superior colliculus in representing either the upper or lower visual field, we asked whether
57 peri-saccadic visual sensitivity is dominated by one or the other spatial anisotropy. Humans
58 detected peri-saccadic upper visual field stimuli significantly better than lower visual field
59 stimuli, contrary to known perceptual superiority in the lower visual field during steady-
60 state gaze fixation. Consistent with this, peri-saccadic superior colliculus visual responses
61 were also significantly stronger in the upper visual field than in the lower visual field. Thus,
62 peri-saccadic visual sensitivity reflects oculomotor, rather than visual, map spatial
63 anisotropies.

64

65

66

67 **Introduction**

68

69 Natural active visual behavior is characterized by frequent saccadic eye movements used to
70 scan our environment. At the time of saccades, vision is not necessarily completely halted¹⁻⁹,
71 but it is certainly altered. For example, visual sensitivity can be strongly suppressed peri-
72 saccadically^{3, 10-13}, and spatial localization perceptual performance is grossly distorted¹⁴⁻¹⁶.
73 Temporal judgements are additionally affected by saccades¹⁷. This evidence suggests that
74 peri-saccadic vision is phenomenologically fundamentally different from vision during
75 steady-state gaze fixation. In hindsight, this idea makes plenty of sense: peri-saccadic vision
76 takes place in exact temporal synchrony with large saccade-related activity bursts in
77 multiple cortical and subcortical areas, including the superior colliculus (SC), that drive the
78 eye movements¹⁸⁻²⁴.

79

80 The fact that peri-saccadic vision transpires at the same time as saccade motor commands
81 leads to a question about the neural substrates supporting this special, albeit fleeting, kind
82 of vision. In particular, it is well known that perceptual performance during steady-state
83 fixation is superior in the lower visual field²⁵⁻²⁸, and increasing evidence suggests that the
84 primary visual cortex (V1) exhibits neural tissue anisotropies that might explain such
85 perceptual asymmetry^{29, 30}. On the other hand, the SC's visual representation preferentially
86 favors the upper visual field instead³¹, with neurons exhibiting higher and earlier visual
87 sensitivity for stimuli above the retinotopic horizon than below it. If both V1 and SC neurons
88 interact to coordinate visually-guided behavior, how might such divergent anisotropies in
89 these two functionally and anatomically related brain areas determine perceptual
90 performance, and particularly during the peri-saccadic interval? Answering this and related
91 questions is important for better understanding how functional specializations in different
92 visual and motor structures³² can all work together to give rise to coherent behavioral
93 outcomes.

94

95 We approached this problem by studying peri-saccadic visual sensitivity. It is generally
96 accepted that the sensitivity of the visual system to brief peri-saccadic flashes is strongly
97 suppressed^{3, 6, 10, 11, 33}. However, residual visual processing still takes place at the time of
98 saccades^{1, 2, 9}, allowing us to ask whether such processing is more sensitive in the upper or
99 lower visual fields. We first asked human subjects to generate horizontal saccades, and we
100 presented upper or lower visual field peri-saccadic flashes, which were near the vertical
101 retinotopic meridian at the time of peak saccadic suppression. We found that, despite
102 expected saccadic suppression, residual visual sensitivity was significantly higher in the
103 upper visual field than in the lower visual field. This result was categorically different from
104 our expectation that perceptual sensitivity should have been better in the lower visual
105 field²⁵. However, it was in line with the anisotropy that exists in the oculomotor system,
106 symbolized by the SC's preference for upper visual field stimuli³¹. Therefore, we next
107 inspected SC visual responses in rhesus macaque monkeys around the time of saccades.
108 With similar stimuli to those used for the humans, we found that SC peri-saccadic visual
109 responses were again still higher in the upper rather than the lower visual field. Our results
110 suggest that peri-saccadic visual sensitivity reflects oculomotor, rather than visual, map
111 anisotropies. This observation might imply prioritization for detecting extra-personal stimuli
112 for rapid orienting or evasive responses exactly at the time at which perception may be
113 most compromised by saccades.

114

115

116 **Results**

117

118 *Peri-saccadic perceptual sensitivity is higher for upper visual field stimuli*

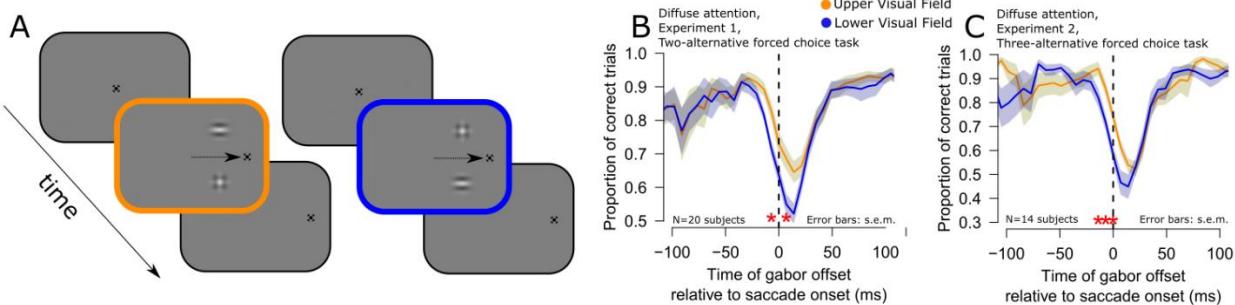
119

120 We first asked whether human perceptual sensitivity around the time of saccades is
121 different for upper or lower visual field peri-saccadic stimuli. In a first experiment
122 (Experiment 1; diffuse attention), subjects generated approximately 12 deg horizontal
123 saccades to the right or left of central fixation (Fig. 1A). At different times relative to saccade
124 onset, a brief flash lasting approximately 16.7 ms was presented. The flash was centered
125 horizontally at the midpoint between the initial fixation target location and the final desired
126 saccade endpoint (that is, halfway along the intended saccade vector), and it consisted of
127 two vertically-aligned image patches (each at 5 deg above or below the screen center). One
128 patch was the target to be detected by the subjects, and it was either a horizontal or vertical
129 gabor grating. The other patch was an irrelevant distractor without inherent orientation
130 information (it was a superposition of two orthogonal gabors, with the total pattern tilted
131 by 45 deg; Methods). Across trials, the oriented patch was placed either above (upper visual
132 field target location) or below (lower visual field target location) the horizontal meridian,
133 and the other patch was at the vertically-symmetric position. The subjects were instructed
134 to report the orientation of the target flash (horizontal or vertical), and we assessed
135 whether their performance differed as a function of target location.

136

137 Across 20 subjects, we found that peri-saccadic perceptual performance was consistently
138 better for upper visual field target locations when compared to lower visual field target
139 locations. Specifically, Fig. 1B shows the time course of the proportion of correct trials in this
140 experiment for targets flashed above (yellow) or below (blue) the horizontal meridian.
141 During pre- and post-saccadic intervals long before or after the eye movements,
142 performance was close to ceiling levels. However, in the critical peri-saccadic interval in
143 which saccadic suppression was to be expected^{6, 11, 12}, we found that the proportion of
144 correct trials was significantly higher in the upper visual field than in the lower visual field
145 (red asterisks; GLMM, main effect of target gabor location, $p < 0.01$, FDR corrected; see
146 Methods). Therefore, peri-saccadic perception was significantly better in the upper visual
147 field, unlike known lower visual field superiority of perceptual performance in the absence
148 of saccades^{25, 27, 28}.

149

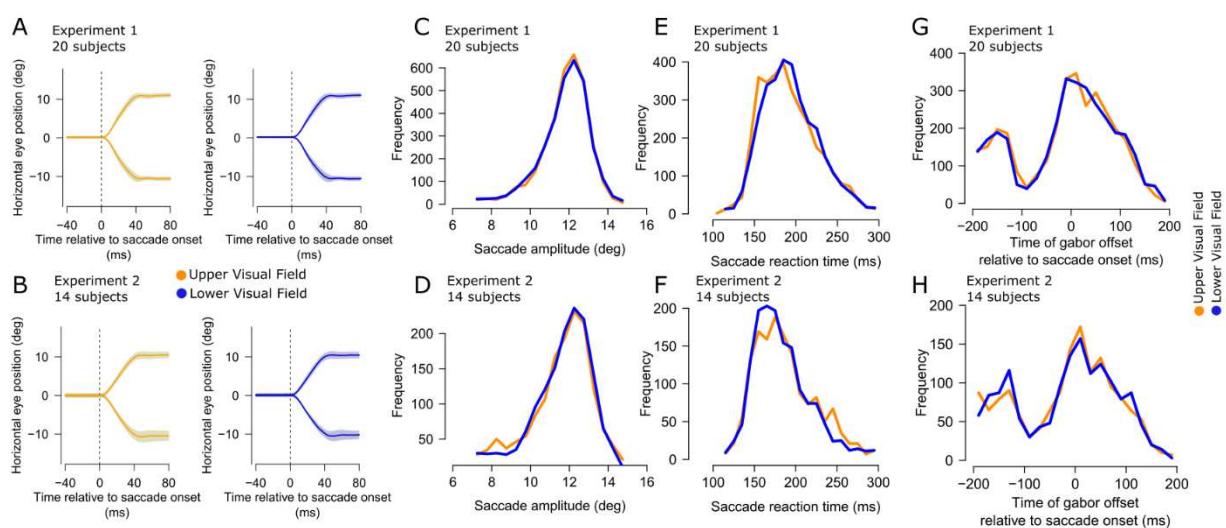

150

151

152

153

154

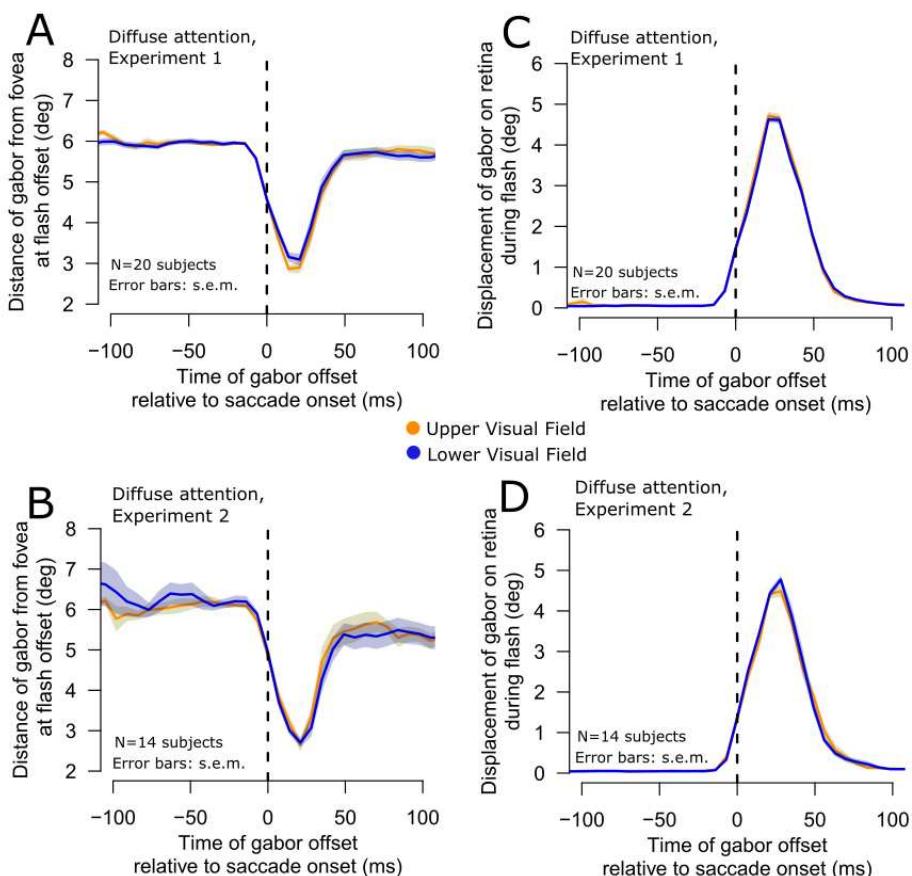

155
156
157 **Figure 1 Better peri-saccadic perceptual performance in the upper visual field.** **(A)** Subjects generated ~ 12 deg
158 horizontal saccades (schematized by an arrow in the figure). At different times relative to saccade onset, two
159 image patches appeared briefly, one above and one below the horizontal meridian (Methods). One patch was
160 an oriented gabor grating (the target), and the other was a distractor with no orientation information. The
161 subjects reported the orientation of the target gabor, and we assessed whether the subjects' responses were
162 better when the target appeared in the upper (yellow) versus lower (blue) visual field. **(B)** Time course of
163 perceptual performance relative to saccade onset for targets in the upper (yellow) or lower (blue) visual field in
164 Experiment 1 (diffuse attention condition; Methods). Red asterisks indicate significant differences between the
165 two curves (GLMM, main effect of target gabor grating location, $p < 0.01$, FDR corrected). **(C)** Similar analysis for
166 Experiment 2 (diffuse attention condition; Methods). Here, chance performance was at 0.33 proportion of
167 correct trials, instead of 0.5. In both cases, peri-saccadic perceptual performance was significantly higher in the
168 upper rather than the lower visual field. Figures 2, 3 describe eye movement and visual stimulation controls that
169 we analyzed in order to rule out other potential alternative explanations for different perceptual performance
170 in the upper and lower visual fields.

171
172
173
174
175 This result was also highly robust: we replicated the same observation in a second
176 experiment (Experiment 2, diffuse attention), in which we increased task difficulty.
177 Specifically, in this second experiment (Methods), the target could have one of 3 different
178 orientations, and we tested 14 subjects with it. The increased task difficulty allowed us to
179 obtain a higher dynamic range of potential correctness results, minimizing ceiling and/or
180 floor effects in the critical peri-saccadic interval. Once again, we found that perceptual
181 performance at the times near saccade onset (i.e. during peri-saccadic suppression of visual
182 sensitivity) was consistently better for upper rather than lower visual field target locations
183 (Fig. 1C, red asterisks; GLMM, main effect of target gabor location, $p < 0.01$, FDR corrected;
184 see Methods).

185
186 Note that in both peri-saccadic experiments in Fig. 1, the flashes were designed to be
187 symmetric around the horizontal meridian, minimizing visual differences between the upper
188 and lower visual field trials. In control analyses, we also explicitly confirmed that the flashes
189 appeared at similar times and retinotopic positions relative to the ongoing saccades, and
190 that the saccades themselves were similar across the two conditions of upper versus lower
191 visual field targets. Specifically, Fig. 2A, B shows the horizontal saccade trajectories in the
192 two experiments for upper and lower visual field target positions. The trajectories were
193 largely overlapping. Moreover, in Fig. 2C, D, we plotted the distributions of saccade
194 amplitudes in the two conditions, with no differences in the saccade sizes between upper
195 and lower visual field target trials. Similarly, both saccadic reaction times (Fig. 2E, F) as well
196 as gabor offset times relative to saccade onset times (Fig. 2G, H) in the two experiments

197 were the same for upper and lower visual field targets. Statistically, the distributions of
198 saccadic reaction times, saccadic amplitudes, and gabor grating offset times relative to
199 saccade onset times did not differ between trials with upper or lower visual field targets
200 (Kolgomorov-Smirnov test, $p>0.05$, corrected, 6 comparisons overall, for Experiment 1 and
201 Experiment 2). Therefore, the differences in peri-saccadic perceptual performance seen in
202 Fig. 1 cannot be attributed to systematically different saccade parameters between upper
203 and lower visual field target trials.

204
205
206
207

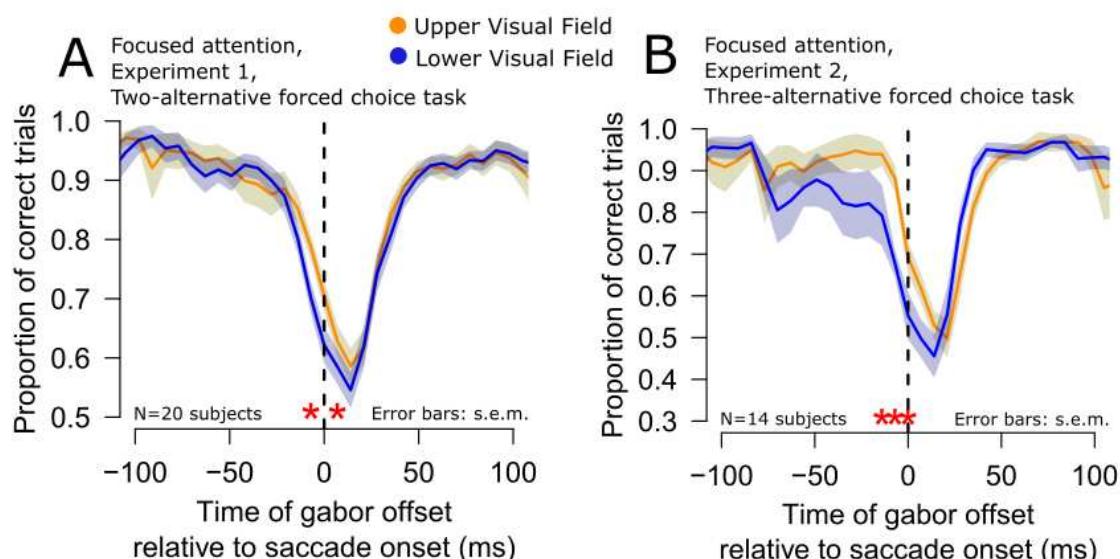

208
209 **Figure 2 Similarity of eye movement metrics and timings between the upper and lower visual field target**
210 **locations giving rise to differential peri-saccadic performance in Fig. 1. (A, B)** Mean horizontal eye position
211 **traces for Experiment 1 (A) and Experiment 2 (B), separated by target location.** Error bars denote two standard
212 **deviations.** The saccades were similar whether the target appeared in the upper or lower visual field. **(C, D)**
213 **Saccade amplitude histograms in each experiment, again separated by upper or lower visual field target location.**
214 **There was no systematic difference between the saccades for the different target locations. (E, F)** Saccadic
215 **reaction times in each experiment were also similar for upper or lower visual field targets. (G, H)** This implies
216 **that even the times of the gabor gratings relative to saccade onsets were matched between upper and lower**
217 **visual field targets. Note that the dip in the histogram in each experiment is a known outcome of saccadic**
218 **inhibition³⁴⁻³⁷, but it was, critically, no different between the two conditions.**

219
220
221
222

223 We also considered whether potential saccadic curvature might have differed sufficiently
224 between the two conditions to influence the results of Fig. 1. That is, it could be argued that
225 the retinotopic position of the flash might have been systematically closer to the fovea for
226 upper versus lower visual field target flashes (perhaps due to saccadic curvature), which
227 would have conferred a slight acuity advantage for the upper visual field targets. However,
228 this was again not the case. In Fig. 3A, B, we plotted the distance of the gabor grating from
229 the fovea at the time of its offset in the two conditions (upper versus lower visual field
230 target locations), and in the two experiments. There was clear overlap in this distance
231 between the two target locations. Moreover, since the flash sometimes happened during
232 the eye movements themselves, we also plotted the retinal slip of the flash in Fig. 3C, D.

233 Again, such slip was similar whether the target flash was in the upper or lower visual fields,
234 and this was the case in both experiments. Therefore, the retinal conditions of the flashes
235 were similar for upper and lower visual field targets, meaning that the results of Fig. 1 were
236 not trivially explained by systematically different retinotopic stimulation between
237 conditions.

238
239
240
241


242
243 **Figure 3 Similarity of retinal stimulation by the flashed gabor patches in the upper and lower visual field target**
244 **trials. (A, B)** In each experiment, we plotted the distance of the target gabor grating from the fovea as a function
245 of time from saccade onset. During the saccade, the patches were closest to the fovea because the flash was
246 always midpoint along the saccade path and timed to frequently occur peri-saccadically. However, and most
247 critically, the distance to the fovea was not different for upper and lower visual field targets (compare yellow
248 and blue curves in each panel). Therefore, the results of Fig. 1 were not due to a visual acuity benefit for upper
249 visual field targets due to retinal eccentricity. Error bars denote s.e.m. **(C, D)** Similar analysis but for the retinal
250 slip of the images during their onset (that is, the displacement of the gabor during its presentation). Because the
251 eye was moving during a saccade, the grating slipped in position on the retina. However, once again, such retinal
252 slip was the same for upper (yellow) and lower (blue) visual field targets in both experiments.

253
254
255
256
257
258

259 *Valid prior knowledge of upper or lower visual field target location does not
260 alter the result*

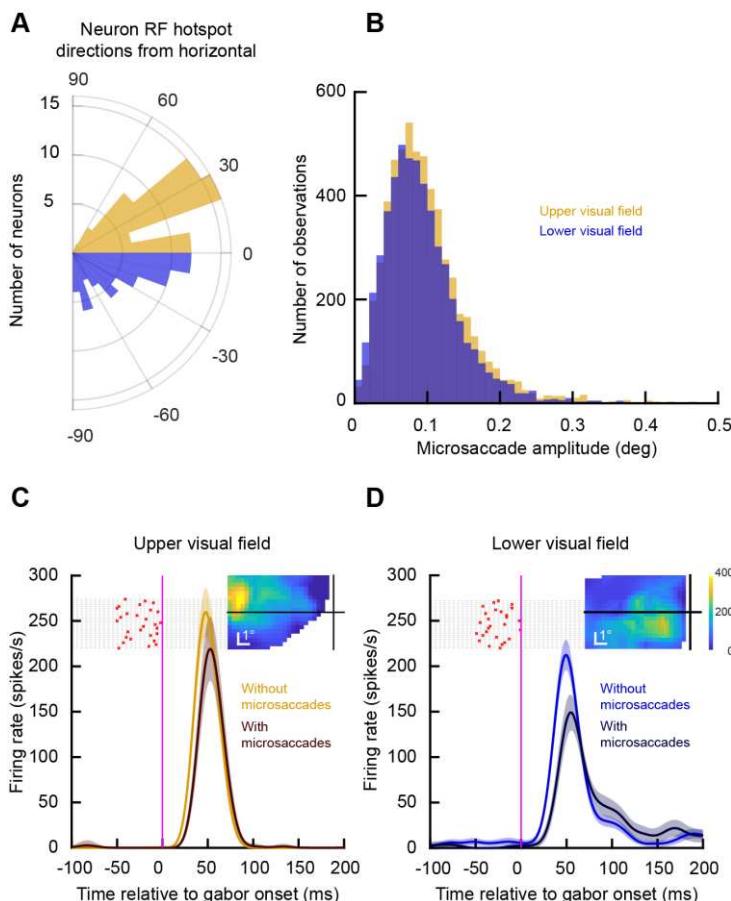
261
262 Perhaps the strongest evidence that better upper visual field peri-saccadic perceptual
263 performance was a robust phenomenon emerged when we gave our subjects, within
264 contiguous blocks of trials, valid prior knowledge about the upcoming target location.
265 Specifically, in approximately one quarter of all trials in each experiment (Methods), the
266 subjects were explicitly told that the current block of trials had primarily only upper visual
267 field targets (with 97% probability). Similarly, in another one quarter of the trials, the
268 subjects were informed that the current block of trials had primarily lower visual field target
269 locations (with 97% probability). We called these blocked trials the “focused attention”
270 trials. In both cases, visual sensitivity in the peri-saccadic interval was still higher in the
271 upper visual field than in the lower visual field. This result is shown in Fig. 4. That is, even
272 when the subjects fully knew in advance that a target was going to appear in the lower
273 visual field, their peri-saccadic sensitivity to such a target was still lower than their
274 sensitivity for targets in the upper visual field. In fact, statistical analysis in each experiment
275 (including both diffuse versus focused trial comparisons) revealed that there was neither a
276 main effect of attentional instruction nor an interaction effect between gabor grating
277 position and attentional instruction (Fig. 4 A,B, red asterisks; GLMM, main effect of target
278 gabor location, $p < 0.01$, FDR corrected; see Methods). Note also that eye movement control
279 analyses in the focused attention conditions (as in Fig. 2, 3) again ruled out any eye
280 movement or retinal stimulation explanations of the results. Thus, even valid advance
281 knowledge of target position did not eliminate the observation of stronger peri-saccadic
282 perceptual sensitivity in the upper visual field.

283
284
285
286

287
288 **Figure 4 Persistence of the upper visual field peri-saccadic perceptual advantage even with full advance prior**
289 **knowledge of target location. (A, B)** In both experiments, peri-saccadic upper visual field performance was still
290 better than lower visual field performance (red asterisks) even with valid prior knowledge of target location
291 (Methods). All other conventions are similar to those in Fig. 1.

292 Of course, the results of Fig. 4 were not entirely only a negative result (with respect to the
293 blocking manipulation of target position). For example, when we compared perceptual
294 performance long before saccade onset (-200 to -70 ms from saccade onset) in the diffuse
295 and focused attention conditions, both experiments were suggestive of a perceptual benefit
296 when prior knowledge about target location was provided. For example, in Experiment 1,
297 the subjects exhibited 88% average correct rates with prior knowledge of target location
298 (focused attention trials) when compared to 86% average correct rates without prior
299 knowledge ($p=0.055$, paired t-test). In Experiment 2, the average correct rates were 91%
300 and 88% in the diffuse and focused attention trials, respectively ($p=0.017$, paired t-test).
301 Therefore, the lack of influence of advanced prior knowledge on peri-saccadic perceptual
302 performance alluded to above (Fig. 4) was primarily restricted to the peri-saccadic interval.
303
304

305 *Peri-saccadic superior colliculus visual sensitivity is also higher for the upper
306 visual field*


307
308 The results so far suggest that peri-saccadic perceptual sensitivity in humans is better in the
309 upper visual field, a result that is directly opposite of how perceptual sensitivity normally
310 manifests during maintained gaze fixation^{25, 27, 28}. This implies that peri-saccadic perceptual
311 sensitivity may be dominated by pathways other than the classic visual cortical systems
312 exhibiting anisotropies favoring the lower visual field^{29, 30}. Interestingly, unlike the visual
313 cortex, the SC does preferentially process upper, rather than lower, visual field stimuli
314 during fixation³¹. Therefore, we wondered whether peri-saccadic visual sensitivity in the SC
315 was still better in the upper visual field, consistent with our perceptual results above (e.g.
316 Fig. 1). In other words, we investigated whether neural peri-saccadic sensitivity patterns
317 were similar to the perceptual results.
318

319 We analyzed the visual responses of 115 SC neurons that we knew exhibited saccadic
320 suppression for stimuli appearing immediately in the wake of microsaccades³⁸. We chose
321 this particular dataset (Methods) to carefully analyze for visual field asymmetries because of
322 two primary reasons. First, microsaccades are an effective means to study saccadic
323 suppression in the SC^{38, 39} because microsaccades are genuine saccades^{40, 41}, and because
324 they have the advantage of not moving visual response fields (RF's) too much due to their
325 small size. Therefore, presenting stimuli to the RF's with and without the rapid eye
326 movements (to assess suppression of visual sensitivity relative to baseline) is experimentally
327 simple with microsaccades. Second, in this data set, we used stimuli presented directly in
328 the post-movement interval after the microsaccades³⁸, allowing us to avoid (as much as
329 possible) the visual effects of retinal image displacements during the movements
330 themselves.
331

332 We first assessed that the recorded neurons were similarly distributed across the upper and
333 lower visual fields. Figure 5A shows the RF hotspot directions in deg, relative to the
334 horizontal cardinal axis, for all of the recorded neurons. Negative numbers indicate neurons
335 representing the lower visual field, and positive numbers indicate neurons with RF hotspots
336 above the horizontal meridian. From the figure, it can be seen that the two populations of
337 neurons were equally sampled across the upper and lower visual fields. Similarly, in Fig. 5B,
338 we plotted the amplitudes of microsaccades occurring near stimulus onset (and thus

339 associated with peri-saccadic suppression), which were similar in the sessions in which we
340 recorded neurons with either upper or lower visual field RF's. Therefore, the eye movement
341 characteristics were similar regardless of whether we recorded upper or lower visual field
342 SC neurons.

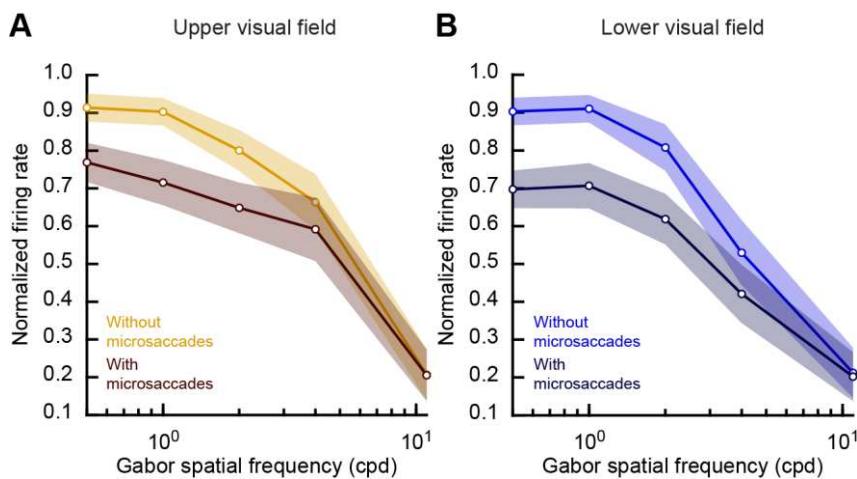
343
344

345
346

347 **Figure 5 Higher upper visual field peri-saccadic sensitivity in SC neurons.** (A) Distribution of RF hotspot locations
348 from our recorded population, expressed as a direction from the horizontal meridian. Approximately half of the
349 neurons had RF hotspots in the upper visual field (yellow), and the rest had hotspots in the lower visual field. (B)
350 We assessed peri-saccadic suppression by evaluating visual sensitivity for stimuli appearing near the time of
351 microsaccades^{38, 39}. Here, we characterized the microsaccade amplitudes for the two groups of sessions that we
352 compared (in which we recorded either upper or lower visual field SC neurons). The eye movement amplitudes
353 were matched across the two groups. (C) Example upper visual field SC neuron responding to the onset of a low
354 spatial frequency gabor grating (0.56 cpd). The saturated yellow curve shows the neuron's visual response in the
355 absence of nearby microsaccades (Methods), and the darker curve shows the same neuron's visual response
356 when the stimulus appeared immediately in the wake of microsaccades (individual microsaccade onset times
357 are shown as a trial raster of red crosses in the background of the figure). The inset shows the RF location of this
358 neuron, indicating that it preferentially represented a part of the upper visual field. Error bars denote 95%
359 confidence intervals. (D) Similar to C but for a neuron preferring the lower visual field (see RF map in the inset).
360 Not only did the neuron have lower baseline visual sensitivity (saturated blue curve)³¹, but its suppressed visual
361 response (darker curve) was also more strongly reduced than in the neuron in C. Thus, SC visual neural sensitivity
362 was still higher in the upper visual field during peri-saccadic intervals.

363

364 When we then inspected the neurons' visual responses themselves, we observed
365 consistently higher peri-saccadic SC visual sensitivity in the upper visual field neurons than
366 in the lower visual field neurons. Consider, for example, the pair of neurons shown in Fig.

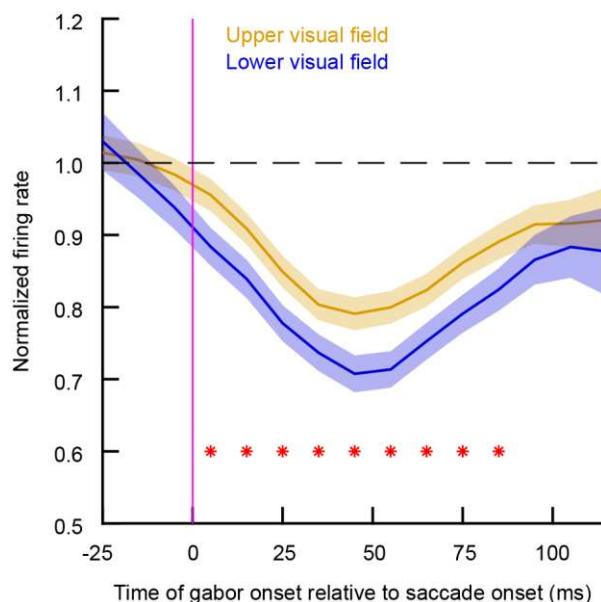

367 5C, D. In Fig. 5C, the neuron had an upper visual field RF (the RF map is shown in the inset).
368 Its visual response to a low spatial frequency grating of 0.56 cpd was mildly suppressed
369 when the grating appeared immediately after microsaccades. Specifically, the yellow curve
370 shows the neuron's average firing rate in the absence of microsaccades near stimulus onset
371 (Methods), and the darker curve shows the average firing rate when the grating appeared
372 immediately after microsaccades (individual microsaccade times across different trials from
373 this condition are shown as red crosses in the figure). The neuron's response was
374 suppressed in association with microsaccades, as expected but such suppressed response
375 was still robust and peaking above 200 spikes/s. On the other hand, the neuron in Fig. 5D
376 represented a lower visual field location (its RF map is shown in the inset). Not only was its
377 baseline visual response (in the absence of nearby microsaccades) weaker than the baseline
378 response of the neuron in Fig. 5C³¹, but its peri-saccadically suppressed response (dark
379 curve) was also more strongly affected by the eye movements. In other words, the neuron
380 experienced stronger saccadic suppression than the neuron in the upper visual field,
381 consistent with our perceptual results above. Thus, if anything, the spatial anisotropy in the
382 SC in terms of upper versus lower visual field neural sensitivity³¹ was amplified even more
383 during peri-saccadic intervals.

384
385 We confirmed this by isolating a measure of saccadic suppression, and confirming that it
386 was stronger for lower rather than upper visual field SC neurons. Across the population, we
387 normalized each neuron's activity by its strongest no-microsaccade visual response to any of
388 the five different spatial frequencies that we tested³⁸; that is, we picked the spatial
389 frequency that evoked the strongest peak response, and we normalized all trials' firing rate
390 measurements by this value (Methods). We then normalized each neuron's peri-saccadically
391 suppressed visual response using the very same normalization factor, and we averaged
392 across neurons. For the neurons preferring the upper visual field (Fig. 6A), the population
393 generally preferred low spatial frequencies⁴² in its baseline no-microsaccade activity (yellow
394 curve; error bars denote 95% confidence intervals). However, the tuning curves were
395 broader than in the lower visual field neurons (Fig. 6B, blue curve). For example, the upper
396 visual field neurons were more sensitive to 4.44 cpd gratings than the lower visual field
397 neurons, consistent with prior observations³¹. Most importantly for the current study, for
398 the peri-saccadically suppressed visual bursts (dark curves in Fig. 6), similar observations
399 persisted. That is, the upper visual field neurons had broader tuning curves than the lower
400 visual field neurons in the peri-saccadic interval, and they were suppressed less than the
401 lower visual field neurons at the low spatial frequencies. For example, at the lowest spatial
402 frequency (0.56 cpd), there was significantly weaker saccadic suppression in the upper
403 visual field neurons (Fig. 6A) than in the lower visual field neurons (Fig. 6B); this is evidenced
404 by the larger difference between the blue and dark blue curves in Fig. 6B than between the
405 yellow and dark yellow curves in Fig. 6A ($p = 0.038$, two-sample t-test).

406
407 At higher spatial frequencies, the saccadic suppression effect was expectedly weakened
408 overall³⁸, but this weakening again happened more so for the upper visual field neurons
409 than for the lower visual field neurons (for example, the difference between the curves at
410 2.22 and 4.44 cpd was smaller in the upper visual field, panel A, than in the lower visual
411 field, panel B). Coupled with the fact that the neurons were themselves more sensitive in
412 the upper visual field in the no-microsaccade trials³¹ (e.g. Fig. 5), this suggests that there

413 was consistently higher peri-saccadic visual sensitivity in the SC visual bursts in the upper
414 visual field.

415
416
417
418


419
420
421 **Figure 6 Broader peri-saccadic SC population tuning curves in the upper visual field.** (A) Average population
422 tuning curve of the upper visual field neurons without eye movements (saturated yellow) and peri-saccadically
423 (dark). Error bars denote 95% confidence intervals. In both curves, we normalized each neuron's activity to the
424 peak visual response for the preferred spatial frequency (Methods). Lower spatial frequencies experienced more
425 suppression than higher spatial frequencies, as expected³⁸. (B) Same analysis but for the lower visual field
426 neurons. In baseline (saturated blue), the neurons were more low-pass in nature than the upper visual field
427 neurons in A³¹. For example, the tuning curves dropped sharply at 4.44 cpd when compared to the neurons in
428 A. This difference persisted for the peri-saccadic tuning functions (that is, there was stronger saccadic
429 suppression in the darker curve when compared to A); also see Fig. 7.

430
431
432
433

434 We also confirmed the above interpretations by plotting the neural peri-saccadic
435 suppression time course profiles, like we did for the human experiments above. We found
436 consistently higher relative sensitivity in the upper visual field neurons than in the lower
437 visual field neurons, as can be seen in Fig. 7 for the case of 0.56 cpd grating stimuli. To
438 obtain this figure, we calculated the normalized firing rate for each trial in which the gabor
439 grating appeared in the interval from -50 ms to 140 ms relative to movement onset (see
440 Methods). We then plotted the mean normalized firing rate at each time bin for neurons in
441 the upper (yellow) versus lower (blue) visual fields. Values lower than one indicated a
442 reduction in firing rate, which took place for both upper and lower visual field neurons
443 (indicating peri-saccadic suppression). Most critically, and consistent with Figs. 5, 6, the peak
444 suppression was stronger by about 10% for the neurons in the lower visual field (blue)
445 compared to the neurons in the upper visual field (yellow). Similar trends were observed for
446 higher spatial frequencies, but they got progressively weaker and weaker as expected from
447 Fig. 6 and ref. ³⁸. We conclude that peri-saccadic visual neural sensitivity is consistently
448 higher in the upper visual field, similar to our conclusion with our human perceptual results.

449
450

451
452
453

454
455

456 **Figure 7 Milder suppression in upper visual field SC neurons in peri-saccadic times.** The figure shows the time
457 course of visual neural sensitivity in the SC for low spatial frequencies (Methods). Upper visual field neurons
458 (yellow) experienced milder saccadic suppression, and were therefore more sensitive, than lower visual field
459 neurons (blue). Such an effect was temporally locked to the saccades, as in Fig. 1B, C. Thus, coupled with overall
460 higher visual sensitivity in upper visual field SC neurons, these results suggest that during peri-saccadic intervals,
461 the anisotropy between upper and lower visual field SC sensitivity is even larger than in the absence of eye
462 movements.

463

464

465

466

467 Discussion

468

469 In this study, we started with human perceptual experiments in which we flashed images at
470 approximately the upper and lower vertical retinotopic meridians (Fig. 3) during saccades.
471 For these particular presentations (that is, peri-saccadically), perception was paradoxically
472 better in the upper visual field than in the lower visual field (e.g. Fig. 1), despite strong
473 saccadic suppression. That is, at the time of strong peri-saccadic perceptual suppression<sup>3, 10,
474 11, 33</sup>, perceptual performance violated a well-known observation that lower vertical
475 meridian vision is better than upper vertical meridian vision²⁵⁻²⁸. We then investigated visual
476 neural sensitivity in the SC, and we again found higher sensitivity in the upper visual field.
477 Thus, during peri-saccadic epochs, visual performance may actually reverse its superiority
478 for the lower visual field and reflect, instead, better processing of upper visual field
479 locations.

480

481 When considering active vision, the existence of spatial anisotropies in neural circuits and
482 behavior is intriguing, in general. In particular, not only is visual performance better in the
483 lower visual field²⁵⁻²⁸, but attentional performance is as well^{43, 44}. Moreover, cortical visual

484 areas may have anisotropies that are in line with such behavioral anisotropies favoring the
485 lower visual field^{29, 30}. However, for the oculomotor system, opposite anisotropies exist.
486 First, the SC strongly favors upper visual field visual stimuli³¹. Second, saccadic reaction
487 times are faster in the upper visual field^{31, 45-47}. And, third, saccadic landing positions are
488 also more accurate in the upper visual field³¹, likely reflecting significantly smaller
489 movement fields in the SC upper visual field representation³¹. However, if that is indeed the
490 case, how does vision operate during peri-saccadic intervals? We found that it behaves
491 more like the oculomotor anisotropy, as in being better in the upper visual field, than the
492 visual cortical anisotropy. This dichotomy is interesting to consider from a broader
493 perspective, especially when discussing more general questions regarding the role of the SC
494 in cognition in general. For example, increasing evidence suggests that the SC may be a
495 controller of visual attentional modulations in the cortex⁴⁸⁻⁵⁴. However, if this is the case,
496 then how might one reconcile the opposite anisotropies that the SC and visual cortices
497 exhibit?

498

499 One possibility might be that the pattern of feedback that the SC provides to the cortex is
500 combined to serve either attention or perceptual performance at strategic times. For
501 example, it may be the case that larger visual RF's in the lower visual field representation of
502 the SC aid multiple smaller RF's in the cortex to be functionally bound together during
503 directed covert attention to a given location. This could jointly modulate the normally
504 separate cortical RF's. Thus, the opposite anisotropy between the SC and visual cortex may
505 actually be functionally useful during gaze fixation. In the case of peri-saccadic vision, the
506 opposite anisotropy may be useful in an additional manner: to favor detecting far, extra-
507 personal stimuli (e.g. aerial threats) exactly at the time in which perception may be most
508 compromised by saccadic suppression. This can aid in quick orienting or evasive responses.
509 Thus, it may be favorable to have better peri-saccadic vision in the upper visual field, like in
510 the SC, than in the lower visual field, like in the cortex. This, in turn, might mean that the
511 gain of feedback from the SC to the cortex, which may be useful for saccadic suppression⁵⁵,
512 is higher for lower visual field locations than upper visual field locations (that is, causing
513 stronger saccadic suppression).

514

515 We find this idea useful, and plausible, in placing our results in the context of other recent
516 observations related to active vision. For example, we recently found that SC saccade-
517 related bursts are stronger in the lower visual field, not the upper visual field^{31, 56}.
518 Interestingly, saccade kinematics were not different for upper and lower visual field
519 saccades, suggesting that the SC motor bursts do not necessarily dictate movement
520 kinematics⁵⁶. Instead, we think that they may modulate the gain of feedback to the cortex,
521 perfectly supporting our observations of stronger saccadic suppression in the lower visual
522 field. Indeed, there is evidence that feedback projections from the SC to the frontal cortex
523 may target inhibitory neurons^{57, 58}, and inactivation of the SC during saccades renders
524 saccade-related frontal cortical bursts stronger rather than weaker⁵⁹. All of this evidence
525 suggests that there may be asymmetric gain feedback to the cortex from the SC, which
526 causes stronger saccadic suppression in the lower visual field. One prediction of the above
527 idea, therefore, is that we should also observe stronger peri-saccadic visual sensitivity in the
528 upper visual field in cortical visual areas, not just in the SC, but this idea remains to be
529 tested.

530

531 Another interesting insight from our SC results is that within the SC itself, the visual
532 anisotropy between the upper and lower visual fields is magnified peri-saccadically. That is,
533 not only are neurons less sensitive in the lower visual field in baseline fixation (Fig. 5), but
534 they also experience stronger saccadic suppression in the peri-movement intervals (Figs. 6,
535 7). Therefore, the already strong disparity in visual sensitivity between the upper and lower
536 visual fields in the SC³¹ is rendered even stronger peri-saccadically.

537
538 Finally, it is interesting to consider that even full prior knowledge of target location (Fig. 4)
539 did not necessarily alter our observations in the perceptual experiments. This suggests that
540 fundamental mechanisms governing peri-saccadic vision operate under practically all
541 conditions, irrespective of attention. This might have a useful ecological purpose, as
542 mentioned above. At the time during which vision is most compromised by saccades, it
543 might be most useful to utilize whatever remaining residual visual abilities, under all
544 behavioral contexts, to detect extra-personal stimuli (which primarily reside in the upper
545 visual field) and rapidly react to them.

546
547
548
549

550 **Methods**

551

552 Experiments 1 and 2 were psychophysical experiments on human participants. The third
553 experiment consisted of analyzing neurophysiological recordings from two rhesus macaque
554 monkeys. The human experiments were approved by the University of Glasgow Research
555 Ethics Committee, and the participants received a compensation of £6 per testing hour.
556 Written informed consent was also obtained, in accordance with the 1964 Declaration of
557 Helsinki. The monkey experiments were approved by the Regierungspräsidium Tübingen,
558 under licenses CIN3/13 and CIN04/19G, and the experiments complied with European and
559 national laws governing animal research.

560

561 A total of 34 human subjects aged between 18 and 38 years took part in the behavioral
562 experiments (Experiment 1: 20 subjects, 14 females; Experiment 2: 14 subjects, 8 females).
563 All subjects self-reported as being free from neurological impairments. All subjects also had
564 normal or corrected to normal vision and were naïve to the purposes of the experiment. The
565 neurophysiological analyses were performed on an existing data set from ref. ³⁸, which we
566 re-analyzed here from the perspective of visual field asymmetries. The monkeys in that
567 study were two adult, male rhesus macaques aged 7 years.

568

569 In what follows, we first describe the human experiments, and we then report on the
570 neurophysiological analyses.

571

572

573 *Human laboratory setup and behavioral tasks*

574

575 Stimuli were presented on a 24-inch LCD monitor (1920 x 1024 pixels) at 60 Hz. Subjects
576 were seated with their head resting on a chin and forehead rest to reduce head movements.
577 Eyes were horizontally and vertically aligned with the center of the screen at a distance of
578 65 cm. Eye movements were recorded with the EyeLink 1000 system (detection algorithm:
579 pupil and corneal reflex; 1000 Hz sampling; saccade detection was based on 30 deg/s
580 velocity and 9500 deg/s² acceleration thresholds). Subjects' responses were recorded on a
581 standard keyboard. A five point-calibration on the horizontal and vertical axes was
582 performed at the beginning of each experimental run. The programs for stimulus
583 presentation and data collection were written in MATLAB (MathWorks) using the
584 Psychophysics Toolbox Version 3^{60, 61}, and Eyelink Toolbox extensions⁶².

585

586 Stimuli included a fixation point measuring 0.7 degrees of visual angle (deg), which was
587 jumped to instruct saccade generation. Target stimuli were gabor with a spatial frequency
588 of 0.9 cycles per deg, gaussian envelope with σ 3.5 deg (see Fig. 1A). Distractor stimuli
589 consisted of the sum of two gabor (one horizontal and one vertical), tilted by 45 degrees
590 (see Fig. 1A).

591

592 Each subject took part in two behavioral sessions, in non-consecutive days (day 1 and day
593 2). The experiment consisted of a gabor discrimination task, adapted from ref. ³. During the
594 first session (day 1) each subject completed three training runs before a fourth experimental
595 phase. Day 2 started directly with the experimental runs, without training runs. Each session
596 lasted approximately 1.2 hours.

597

598 On the first experimental day, the subjects first engaged in three training phases, each
599 lasting approximately 4-5 minutes. For the first phase, the subjects were shown a fixation
600 spot that jumped right or left by 12 deg, and they generated visually-guided saccades. We
601 measured their baseline reaction times during this phase. For the second phase, the
602 subjects maintained gaze fixation, and two image patches (like in Fig. 1A) were flashed for 1
603 frame (~16.7 ms) either on the right or left side of the fixation spot (at a horizontal
604 eccentricity of 6 deg). The patches were each at 5 deg above or below the horizontal
605 meridian, and one of them was the target patch, while the other was the distractor patch.
606 They both had a contrast of 40%. In Experiment 1, the target could have two orientations
607 (horizontal or vertical), and in Experiment 2, it could have 3 orientations (horizontal,
608 vertical, and oblique with direction +/-15 deg from the horizontal). Subjects practiced
609 reporting the target orientation during fixation. Then, we moved to the third phase, in
610 which we reduced the patch contrasts to 30% instead of 40%. We then started the main
611 experiments.

612

613 Each experimental run consisted of 55 trials. Each subject took part in a variable number of
614 experimental runs, ranging between 15 and 20 in two non-consecutive days. At the
615 beginning of each run, a five point-calibration on the horizontal and vertical axes was
616 performed. During each run, drift correction was applied every 7 trials. For each trial,
617 subjects maintained central fixation and pressed the spacebar to initiate a trial. After a
618 variable interval between 750 ms and 1250 ms, the central fixation spot disappeared and a
619 target fixation point was presented at 12 deg eccentricity, horizontally, randomly to the left
620 or right with respect to central fixation. Subjects were asked to perform a saccade as quickly
621 and accurately as possible towards the target fixation point. At a variable interval from the
622 requested saccade signal, we presented the target-distractor configuration (flash) on the
623 same side as the requested saccade, for 1 frame or ~16.7 ms (see Fig. 1A)^{1, 2, 63-65}. The flash
624 time interval was centered on the subject's median saccadic reaction time estimated from
625 the first training phase. We aimed at sampling behavioral performance around three main
626 moments around the peri-saccadic interval: a) before saccade onset, presenting the target-
627 distractor configuration 110 ms before the expected saccade onset time, as estimated from
628 median saccadic reaction times; b) around saccade onset, presenting the target-distractor
629 configuration at the expected saccade onset; and c) After saccade onset, presenting the
630 target-distractor configuration 30ms after the expected saccade onset. In Experiment 1,
631 subjects reported one of two orientations as above, and in Experiment 2, they reported one
632 of three orientations. Subjects were instructed to aim for accurate responses, not fast
633 response times.

634

635 In each experiment, we had either a diffuse attention set of trials or a focused attention
636 block of trials. In 50% of the experimental runs, the subjects were told that the target could
637 either appear in the upper or lower visual field. In 25% of the runs, the subjects were told
638 that the target will appear in the upper visual field with 97% probability. And, in the final
639 25% of the runs, the subjects were told that the target will appear in the lower visual field
640 with 97% probability. We randomly varied the order with which the diffuse and focused
641 blocks of trials that were run across individuals. That is, for some subjects, the diffuse block
642 could start first followed by the two focused blocks, whereas for other subjects, one focused

643 block could be finished first, then the diffuse block, and then the other focused block. Each
644 subject was told which block they were running before they started their sessions.

645

646

647 *Human data analysis*

648

649 Only trials where a valid eye movement was executed entered the next stage of analysis.
650 Valid eye movements had to be performed towards the landing fixation point and be
651 between 7 deg and 15 deg in amplitude. Eye movement reaction time had to be between
652 100 ms and 300 ms, and with saccade duration shorter than 90 ms. For Experiment 1, 24%
653 of trials were excluded based on these criteria, on average, across subjects. For Experiment
654 2, 32% of trials were excluded based on these criteria, on average, across subjects.

655

656 For perceptual reports, we computed the timing of the gabor offset relative to saccade
657 onset by subtracting the time when the target-distractor configuration (flash) disappeared
658 from the moment of saccade onset. According to this convention, negative values represent
659 stimuli that were presented before the onset of the eye movement, while positive values
660 represent stimuli that were (partially or in full) presented after saccade onset.

661

662 We also computed the distance traveled by the eyes while the target-distractor
663 configuration (flash) was presented ('Displacement of gabor on retina during flash') by
664 subtracting the eye position measured when the target-distractor configuration (flash)
665 disappeared on screen from the eye position measured when the target-distractor
666 configuration (flash) appeared on screen. This measure captures the distance traveled by
667 the eyes over the target-distractor configuration, or the retinal slip of the flash, thus
668 capturing potential saccade kinematic differences between experimental conditions that
669 could account for discrimination performance during the peri-saccadic interval.

670

671 Finally, we computed the distance between the fovea and the target gabor when the target-
672 distractor configuration disappeared from screen ('Distance of gabor from fovea at flash
673 offset'). This measure captures the distance between the fovea and the target gabor when
674 the target-distractor configuration disappeared from screen, allowing us to assess potential
675 differences in proximity of the fovea to the target gabor that could account for
676 discrimination performance during the perisaccadic interval.

677

678 Data were analyzed using the R software for statistical computing⁶⁶. The data were analyzed
679 with a Generalized Linear Mixed Model (GLMM)⁶⁷, based on the Generalized Linear Model
680 framework proposed by McCullagh and Nelder⁶⁸. Main effects and interaction between
681 conditions for proportion of correct trials (binary outcome, 0-1) were tested using the logit
682 function as link function (logistic regression model). Main effects and interaction between
683 conditions for displacement of gabor on retina during flash and distance of gabor from
684 fovea at flash offset were tested using the identity function (linear regression model). A
685 subject numerical identifier was used as a random effect variable.

686

687 For each participant, we used a moving time window of 30 ms, shifting its center by 7 ms at
688 every iteration. For every time window, we ran one GLMM for each dependent variable
689 (proportion of correct trials, displacement of gabor on retina during flash and distance of

690 gabor from fovea at flash offset, 3 models overall) and tested the main effect and
691 interaction of the independent variables (gabor position and attentional state). The p values
692 of each test were corrected by the number of time windows that entered the analysis by
693 means of false discovery rate (FDR)⁶⁹ at a p<0.01 level.

694

695 We used the Kolmogorov-Smirnov test to assess potential differences between distributions
696 in the upper visual field and lower visual field experimental conditions for saccade reaction
697 time, saccade gabor offset relative to saccade onset, and saccade amplitude.

698

699

700 *Monkey neurophysiology*

701

702 We analyzed the neural data presented in ref. ³⁸. In that study, we documented saccadic
703 suppression in the SC, but we did not explore effects of upper versus lower visual field
704 locations. Here, we re-analyzed the same data from the perspective of visual field
705 asymmetries. The behavioral and neurophysiological methods were described previously³⁸.

706

707 Briefly, the monkeys fixated a small, central fixation spot. At some point during gaze
708 fixation, a vertical gabor grating of different spatial frequencies (0.56, 1.11, 2.22, 4.44, and
709 11.11 cpd) and high contrast (100%) appeared within a recorded neuron's RF and stayed
710 there for a few hundred milliseconds. The monkeys were rewarded for simply maintaining
711 fixation on the fixation spot until trial end. Because the stimulus stayed on for a prolonged
712 period (unlike in the human experiments), we only analyzed trials in which the stimulus
713 onset event happened after microsaccades. This interval is still an interval in which peri-
714 saccadic suppression of the evoked visual burst still takes place^{13, 38, 39}. Also, prior to running
715 the main task, we mapped the RF's using standard delayed and memory-guided saccade
716 tasks. This allowed us to identify the RF hotspots and classify them as being in either the
717 upper or lower visual field (Fig. 5A). All microsaccades were also detected previously in the
718 original study³⁸. Here, we assessed their amplitude distributions across the upper and lower
719 visual field sessions (Fig. 5B), to ensure their similarity.

720

721 One main goal of the analysis was to investigate suppression of visual sensitivity around the
722 time of microsaccades, and to determine if such modulation was different for neurons
723 located in the upper or in lower visual field. To perform such analysis, for each neuron, we
724 analyzed the neural activity following the stimulus onset in the mapping task, to determine
725 the neuron's RF hotspot location as the region of the visual field giving most activity. Once
726 the hotspot was determined, upper visual field neurons were defined when the vertical
727 component of the hotspot location was bigger than zero. All other neurons were labeled as
728 lower visual field neurons. Then, we divided the data into two groups depending on
729 whether saccades were executed or not during a critical interval around the stimulus
730 presentation. In particular, no-saccade trials were defined as all the trials which did not have
731 any saccades present between -100 to 100 ms around gabor onset. If a saccade was present
732 in the time interval above, it was considered a saccade trial, and we assessed saccade time
733 relative to stimulus onset time for evaluating time courses of neural suppression.

734

735 Spatial frequency tuning curves (i.e., responses for each given spatial frequency) were
736 described previously^{31, 38}, but in this, study we analyzed how saccades influenced these

737 curves differently when the RF was either in the upper or lower visual field. To test the
738 effect of saccadic suppression in the upper and lower visual fields, we computed a measure
739 of “normalized firing rate”. First, we calculated, for each trial, the peak firing rate between
740 30 and 150 ms after stimulus onset. Then, for each neuron and spatial frequency condition,
741 we averaged the peak firing rate in trials in which no saccades were detected. This value
742 was then normalized by dividing the averages of each spatial frequency condition by the
743 preferred spatial frequency response of that neuron, giving as a result the average tuning
744 curve when no saccades were present. Similarly, for each neuron and spatial frequency, we
745 averaged all the trials in which the gabor stimulus was presented 40 to 100 ms after saccade
746 onset. The average peak firing rate at each spatial frequency condition was then normalized
747 by the peak firing rate for the preferred spatial frequency response of the trials with no
748 saccades. Doing so, values lower than one indicated suppression of neural activity because
749 of saccade generation.

750

751 To summarize the time courses of saccadic suppression of SC visual bursts in the upper and
752 lower visual fields (e.g. Fig. 7), we selected all the trials in which the gabor stimulus was
753 presented between -50 to 140 ms relative to saccade onset. We then smoothed the data by
754 applying a running average window of 50 ms on the normalized peak firing rate (relative to
755 the baseline firing rate of for that spatial frequency) and by moving the average time
756 window in steps of 10 ms. This analysis was performed only for the lower spatial frequency
757 grating (0.56 cpd), which was the one used in the behavioral experiment reported above. To
758 statistically test the difference between the upper and lower visual fields, we ran a series of
759 two-sample independent t-tests at each bin of the two curves, and we adjusted the alpha
760 level with Bonferroni correction.

761

762

763

764

765

766

767

768

769

770

771 **Acknowledgements**

772

773 The authors would like to thank Isla Macvicar and Noor Musaed N Alsedairi for help in
774 collecting the human data. A.F. was supported by a grant from the Biotechnology and
775 Biology Research Council (BBSRC, grant number: BB/S006605/1) and the Bial Foundation
776 (Bial Foundation Grants Programme; Grant id: A-29315, number: 203/2020, grant edition:
777 G-15516). A. B. and Z. M. H. were funded by the Deutsche Forschungsgemeinschaft (DFG)
778 under projects HA6749/2-1 (FOR 1847; project A6) and BU4031/1-1.

779

780

781 **Competing interests**

782

783 The authors declare no competing interests.

784

785

786 **References**

787

- 788 1. Fracasso A, Melcher D. Saccades Influence the Visibility of Targets in Rapid Stimulus Sequences: The Roles of Mislocalization, Retinal Distance and Remapping. *Frontiers in systems neuroscience*. 2016;10:58.
- 789 2. Fracasso A, Kaunitz L, Melcher D. Saccade kinematics modulate perisaccadic perception. *Journal of vision*. 2015;15(3).
- 790 3. Vallines I, Greenlee MW. Saccadic suppression of retinotopically localized blood oxygen level-dependent responses in human primary visual area V1. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2006;26(22):5965-9.
- 791 4. Burr DC, Ross J, Binda P, Morrone MC. Saccades compress space, time and number. *Trends Cogn Sci*. 2010;14(12):528-33.
- 792 5. Ross J, Morrone MC, Goldberg ME, Burr DC. Changes in visual perception at the time of saccades. *Trends in neurosciences*. 2001;24(2):113-21.
- 793 6. Binda P, Morrone MC. Vision During Saccadic Eye Movements. *Annual review of vision science*. 2018;4:193-213.
- 794 7. Grujic N, Brehm N, Gloge C, Zhuo W, Hafed ZM. Perisaccadic perceptual mislocalization is different for upward saccades. *Journal of neurophysiology*. 2018;120(6):3198-216.
- 795 8. Zimmermann E. Saccade suppression depends on context. *eLife*. 2020;9.
- 796 9. De Pisapia N, Kaunitz L, Melcher D. Backward masking and unmasking across saccadic eye movements. *Curr Biol*. 2010;20(7):613-7.
- 797 10. Diamond MR, Ross J, Morrone MC. Extraretinal control of saccadic suppression. *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2000;20(9):3449-55.
- 798 11. Latour P. Visual threshold during eye movements. *Vision research*. 1962;2(3):261-2.
- 799 12. Matin E. Saccadic suppression: a review and an analysis. *Psychological bulletin*. 1974;81(12):899.
- 800 13. Idrees S, Baumann MP, Franke F, Münch TA, Hafed ZM. Perceptual saccadic suppression starts in the retina. *Nature communications*. 2020;11(1):1977.

816 14. Binda P, Cicchini GM, Burr DC, Morrone MC. Spatiotemporal distortions of visual
817 perception at the time of saccades. *J Neurosci*. 2009;29(42):13147-57.

818 15. Kaiser M, Lappe M. Perisaccadic mislocalization orthogonal to saccade direction.
819 *Neuron*. 2004;41(2):293-300.

820 16. Ross J, Morrone MC, Burr DC. Compression of visual space before saccades. *Nature*.
821 1997;386(6625):598-601.

822 17. Morrone MC, Ross J, Burr D. Saccadic eye movements cause compression of time as
823 well as space. *Nat Neurosci*. 2005;8(7):950-4.

824 18. Hafed ZM, Krauzlis RJ. Similarity of superior colliculus involvement in microsaccade
825 and saccade generation. *Journal of neurophysiology*. 2012;107(7):1904-16.

826 19. Bruce CJ, Goldberg ME. Primate frontal eye fields. I. Single neurons discharging
827 before saccades. *J Neurophysiol*. 1985;53(3):603-35.

828 20. Russo GS, Bruce CJ. Effect of eye position within the orbit on electrically elicited
829 saccadic eye movements: a comparison of the macaque monkey's frontal and
830 supplementary eye fields. *Journal of neurophysiology*. 1993;69(3):800-18.

831 21. Stanton GB, Friedman HR, Dias EC, Bruce CJ. Cortical afferents to the smooth-pursuit
832 region of the macaque monkey's frontal eye field. *Experimental brain research*.
833 2005;165(2):179-92.

834 22. Russo GS, Bruce CJ. Supplementary eye field: representation of saccades and
835 relationship between neural response fields and elicited eye movements. *Journal of*
836 *neurophysiology*. 2000;84(5):2605-21.

837 23. Wurtz RH, Goldberg ME. Superior colliculus cell responses related to eye movements
838 in awake monkeys. *Science (New York, NY)*. 1971;171(3966):82-4.

839 24. Wurtz RH, Goldberg ME. Activity of superior colliculus in behaving monkey. 3. Cells
840 discharging before eye movements. *Journal of neurophysiology*. 1972;35(4):575-86.

841 25. Barbot A, Xue S, Carrasco M. Asymmetries in visual acuity around the visual field.
842 *Journal of vision*. 2021;21(1):2.

843 26. Himmelberg MM, Winawer J, Carrasco M. Stimulus-dependent contrast sensitivity
844 asymmetries around the visual field. *Journal of vision*. 2020;20(9):18.

845 27. Talgar CP, Carrasco M. Vertical meridian asymmetry in spatial resolution: visual and
846 attentional factors. *Psychonomic bulletin & review*. 2002;9(4):714-22.

847 28. Montaser-Kouhsari L, Carrasco M. Perceptual asymmetries are preserved in short-
848 term memory tasks. *Attention, perception & psychophysics*. 2009;71(8):1782-92.

849 29. Kupers ER, Benson NC, Carrasco M, Winawer J. Asymmetries around the visual field:
850 From retina to cortex to behavior. *PLoS computational biology*. 2022;18(1):e1009771.

851 30. Benson NC, Kupers ER, Barbot A, Carrasco M, Winawer J. Cortical magnification in
852 human visual cortex parallels task performance around the visual field. *eLife*. 2021;10.

853 31. Hafed ZM, Chen CY. Sharper, Stronger, Faster Upper Visual Field Representation in
854 Primate Superior Colliculus. *Curr Biol*. 2016;26(13):1647-58.

855 32. Previc FH. Functional specialization in the lower and upper visual fields in humans: Its
856 ecological origins and neurophysiological implications. *Behavioral and Brain Sciences*.
857 1990;13(3):519-42.

858 33. Idrees S, Baumann MP, Franke F, Munch TA, Hafed ZM. Perceptual saccadic
859 suppression starts in the retina. *Nat Commun*. 2020;11(1):1977.

860 34. Buonocore A, McIntosh RD. Saccadic inhibition underlies the remote distractor
861 effect. *Experimental brain research*. 2008;191(1):117-22.

862 35. Edelman JA, Xu KZ. Inhibition of voluntary saccadic eye movement commands by
863 abrupt visual onsets. *Journal of neurophysiology*. 2009;101(3):1222-34.

864 36. Reingold EM, Stampe DM. Saccadic inhibition in voluntary and reflexive saccades.
865 *Journal of cognitive neuroscience*. 2002;14(3):371-88.

866 37. Bompas A, Sumner P. Saccadic inhibition reveals the timing of automatic and
867 voluntary signals in the human brain. *The Journal of neuroscience : the official journal of the*
868 *Society for Neuroscience*. 2011;31(35):12501-12.

869 38. Chen CY, Hafed ZM. A neural locus for spatial-frequency specific saccadic
870 suppression in visual-motor neurons of the primate superior colliculus. *Journal of*
871 *neurophysiology*. 2017;117(4):1657-73.

872 39. Hafed ZM, Krauzlis RJ. Microsaccadic suppression of visual bursts in the primate
873 superior colliculus. *The Journal of neuroscience : the official journal of the Society for*
874 *Neuroscience*. 2010;30(28):9542-7.

875 40. Hafed ZM, Goffart L, Krauzlis RJ. A neural mechanism for microsaccade generation in
876 the primate superior colliculus. *Science (New York, NY)*. 2009;323(5916):940-3.

877 41. Hafed ZM. Mechanisms for generating and compensating for the smallest possible
878 saccades. *The European journal of neuroscience*. 2011;33(11):2101-13.

879 42. Chen CY, Sonnenberg L, Weller S, Witschel T, Hafed ZM. Spatial frequency sensitivity
880 in macaque midbrain. *Nature communications*. 2018;9(1):2852.

881 43. He S, Cavanagh P, Intriligator J. Attentional resolution and the locus of visual
882 awareness. *Nature*. 1996;383(6598):334-7.

883 44. Rubin N, Nakayama K, Shapley R. Enhanced perception of illusory contours in the
884 lower versus upper visual hemifields. *Science (New York, NY)*. 1996;271(5249):651-3.

885 45. Schlykowa L, Hoffmann KP, Bremmer F, Thiele A, Ehrenstein WH. Monkey saccadic
886 latency and pursuit velocity show a preference for upward directions of target motion.
887 *Neuroreport*. 1996;7(2):409-12.

888 46. Zhou W, King WM. Attentional sensitivity and asymmetries of vertical saccade
889 generation in monkey. *Vision research*. 2002;42(6):771-9.

890 47. Hafed ZM, Goffart L. Gaze direction as equilibrium: more evidence from spatial and
891 temporal aspects of small-saccade triggering in the rhesus macaque monkey. *Journal of*
892 *neurophysiology*. 2020;123(1):308-22.

893 48. Hafed ZM, Lovejoy LP, Krauzlis RJ. Modulation of microsaccades in monkey during a
894 covert visual attention task. *J Neurosci*. 2011;31(43):15219-30.

895 49. Hafed ZM, Lovejoy LP, Krauzlis RJ. Superior colliculus inactivation alters the
896 relationship between covert visual attention and microsaccades. *The European journal of*
897 *neuroscience*. 2013;37(7):1169-81.

898 50. Lovejoy LP, Krauzlis RJ. Changes in perceptual sensitivity related to spatial cues
899 depends on subcortical activity. *Proceedings of the National Academy of Sciences of the*
900 *United States of America*. 2017;114(23):6122-6.

901 51. Lovejoy LP, Krauzlis RJ. Inactivation of primate superior colliculus impairs covert
902 selection of signals for perceptual judgments. *Nature neuroscience*. 2010;13(2):261-6.

903 52. Krauzlis RJ, Bogadhi AR, Herman JP, Bollimunta A. Selective attention without a
904 neocortex. *Cortex; a journal devoted to the study of the nervous system and behavior*.
905 2018;102:161-75.

906 53. Bogadhi AR, Katz LN, Bollimunta A, Leopold DA, Krauzlis RJ. Midbrain activity shapes
907 high-level visual properties in the primate temporal cortex. *Neuron*. 2021;109(4):690-9.e5.

908 54. Bogadhi AR, Bollimunta A, Leopold DA, Krauzlis RJ. Spatial Attention Deficits Are
909 Causally Linked to an Area in Macaque Temporal Cortex. *Current biology* : CB.
910 2019;29(5):726-36.e4.

911 55. Berman RA, Cavanaugh J, McAlonan K, Wurtz RH. A circuit for saccadic suppression
912 in the primate brain. *J Neurophysiol.* 2017;117(4):1720-35.

913 56. Hafed ZM. Superior colliculus saccade motor bursts do not dictate movement
914 kinematics. *bioRxiv.* 2021.

915 57. Sommer MA, Wurtz RH. What the brain stem tells the frontal cortex. I. Oculomotor
916 signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. *J*
917 *Neurophysiol.* 2004;91(3):1381-402.

918 58. Shin S, Sommer MA. Division of labor in frontal eye field neurons during presaccadic
919 remapping of visual receptive fields. *Journal of neurophysiology.* 2012;108(8):2144-59.

920 59. Berman RA, Joiner WM, Cavanaugh J, Wurtz RH. Modulation of presaccadic activity
921 in the frontal eye field by the superior colliculus. *Journal of neurophysiology.*
922 2009;101(6):2934-42.

923 60. Pelli DG, Vision S. The VideoToolbox software for visual psychophysics: Transforming
924 numbers into movies. *Spatial vision.* 1997;10:437-42.

925 61. Brainard DH, Vision S. The psychophysics toolbox. *Spatial vision.* 1997;10(4):433-6.

926 62. Cornelissen FW, Peters EM, Palmer J. The Eyelink Toolbox: eye tracking with MATLAB
927 and the Psychophysics Toolbox. *Behavior Research Methods, Instruments, & Computers.*
928 2002;34(4):613-7.

929 63. Buonocore A, Fracasso A, Melcher D. Pre-saccadic perception: Separate time courses
930 for enhancement and spatial pooling at the saccade target. *PLoS one.* 2017;12(6):e0178902.

931 64. Buonocore A, Melcher D. Interference during eye movement preparation shifts the
932 timing of perisaccadic compression. *J Vis.* 2015;15(15):3.

933 65. Fabius JH, Fracasso A, Nijboer TCW, Van der Stigchel S. Time course of spatiotopic
934 updating across saccades. *Proceedings of the National Academy of Sciences of the United*
935 *States of America.* 2019;116(6):2027-32.

936 66. Team RDC. R: A language and environment for statistical computing. Vienna, Austria:
937 R Foundation for Statistical Computing.

938 67. Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models.
939 *Journal of the American Statistical Association.* 1993;88(421):9-25.

940 68. McCullagh P, Nelder JA. Generalized linear models: Routledge; 2019.

941 69. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
942 powerful approach to multiple testing. *Journal of the Royal statistical society: series B*
943 *(Methodological).* 1995;57(1):289-300.

944