

1 **The human placenta exhibits a unique transcriptomic void**

2

3 Sungsam Gong^{1,2}

4 Francesca Gaccioli^{1,2}

5 Irving L.M.H. Aye^{1,2}

6 Giulia Avellino^{1,2}

7 Emma Cook¹

8 Andrew R.J. Lawson³

9 Luke M.R. Harvey³

10 Gordon C.S. Smith^{1,2,4}

11 D. Stephen Charnock-Jones^{1,2,4*}

12

13 ¹Department of Obstetrics and Gynaecology, University of Cambridge, NIHR

14 Cambridge Biomedical Research Centre, Cambridge, United Kingdom

15 ²Centre for Trophoblast Research (CTR), Department of Physiology, Development

16 and Neuroscience, University of Cambridge, Cambridge, United Kingdom

17 ³Wellcome Trust Sanger Institute, Hinxton, United Kingdom

18 ⁴These authors contributed equally

19 *Corresponding author: Professor D. Stephen Charnock-Jones, Department of
20 Obstetrics and Gynaecology, University of Cambridge, Box 223 The Rosie Hospital,
21 Cambridge, CB2 0SW, UK. Tel: +44 (0)1223 336875, Fax: +44 (0)1223 215327, e-
22 mail: dscj1@cam.ac.uk

23

24

25 **Abstract**

26 We have recently demonstrated that the human placenta exhibits a unique genomic
27 architecture with an unexpectedly high mutation burden(Coorens et al. 2021) and it is
28 also well recognized that the placenta uniquely expresses many genes(Gong et al.
29 2021). However, the placenta is relatively understudied in systematic comparisons of
30 gene expression in different organs. The aim of the present study was to identify
31 transcripts which were uniquely absent or depleted, comparing the placenta with 46
32 other human organs. Here we show that 40/46 of the other organs had no transcripts
33 which were selectively depleted and that of the remaining six, the liver had the largest
34 number with 26. In contrast, the term placenta had 762 depleted transcripts. Gene
35 Ontology analysis of this depleted set highlighted multiple pathways reflecting known
36 unique elements of placental physiology. However, analysis of term samples
37 demonstrated massive over representation of genes involved in mitochondrial
38 function ($P=5.8\times10^{-10}$), including PGC-1 α - the master regulator of mitochondrial
39 biogenesis, and genes involved in polyamine metabolism ($P=2.1\times10^{-4}$). We conclude
40 that the term placenta exhibits a unique metabolic environment.

41

42 **Introduction**

43 The placenta has a key role in the pathogenesis of many major complications of
44 pregnancy, such as preeclampsia (PE) and fetal growth restriction (FGR), termed,
45 collectively, the “Great Obstetrical Syndromes”(Brosens et al. 2011) and which
46 account for a substantial burden of global morbidity and mortality. Progress on
47 predicting and preventing these complications is hampered by lack of mechanistic
48 understanding of normal and abnormal placental function and we and others have
49 applied multiple studies using omic methods to try and address this knowledge gap.
50 Published studies of the placenta transcriptome tend to focus on identifying genes
51 differentially regulated in complicated pregnancies. Other studies have compared the
52 placental transcriptome across species(Armstrong et al. 2017) and across
53 gestation(Buckberry et al. 2017) but there are fewer studies comparing the placental
54 transcriptome with the transcriptomes of other organs(Kim et al. 2012; Gong et al.
55 2021). RNA-Seq enables transcriptome profiling of tissues or single cells and there
56 are a number of studies characterizing so-called the transcriptome ‘landscape’ of
57 tissues of interest. It is now an essential part of large-scale multi-omics studies, such
58 as the Encyclopedia of DNA Elements (ENCODE)(ENCODE Project Consortium

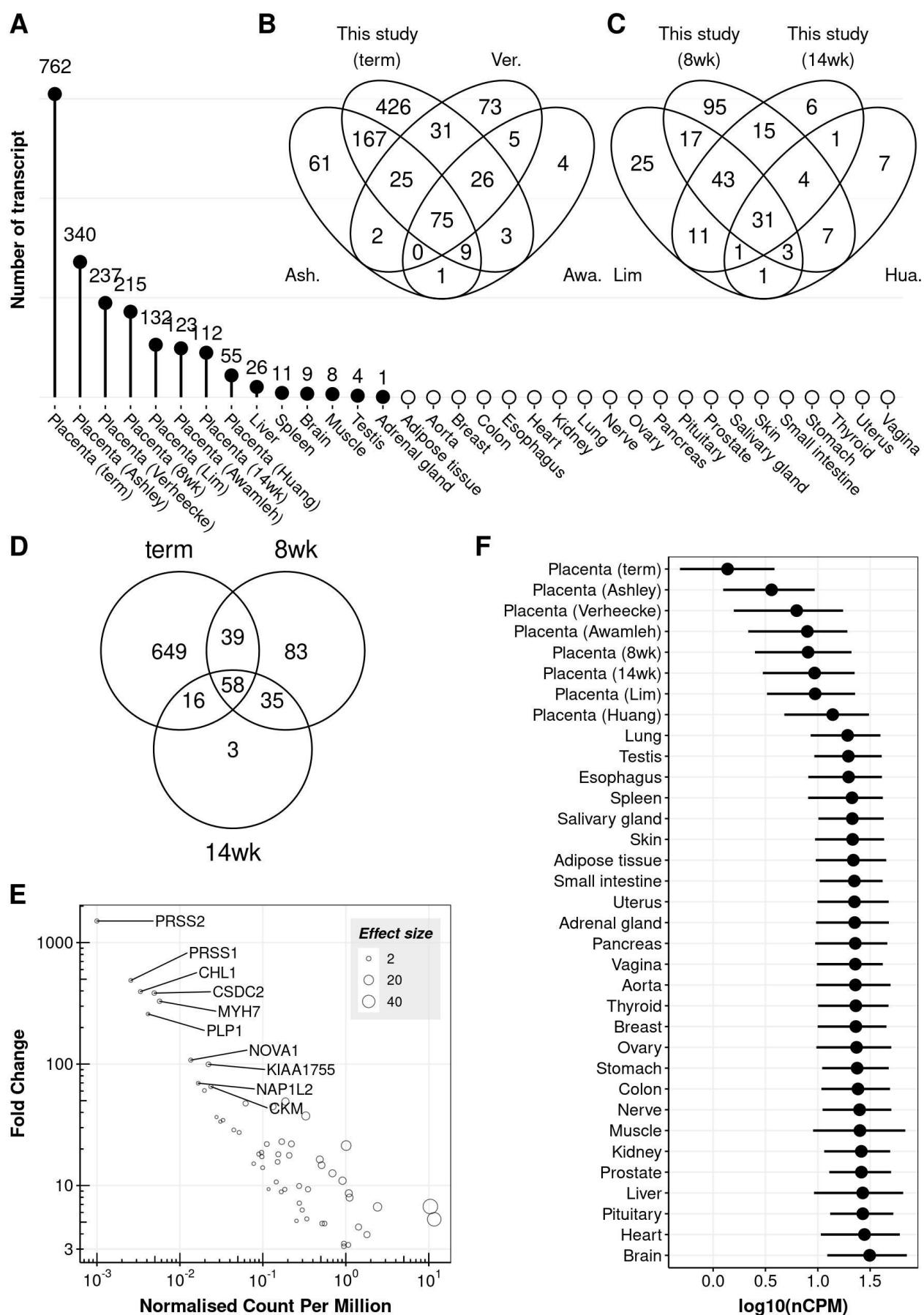
59 2012), the RoadMap Epigenomics Project(Roadmap Epigenomics Consortium et al.
60 2015), and the Functional Annotation of Mammalian Genome (FANTOM5) project(de
61 Rie et al. 2017). However, the human placenta transcriptome is relatively
62 understudied and absent from large-scale “omic” analyses such as the Genotype-
63 Tissue Expression (GTEx) project(GTEx Consortium 2020).

64
65 Pan-tissue comparative analyses generally focus on identifying transcripts that are
66 abundant in a tissue of interest while being absent or depleted in others. Indeed, there
67 are a number of tools and databases that enable “tissue-specific” gene enrichment
68 analysis(Jain and Tuteja 2019; Watanabe et al. 2019; Papatheodorou et al. 2020).
69 Studying “tissue-specific” genes provides information about specific functions that
70 define a unique set of characteristics or “identity” of a tissue of interest. Transcripts
71 that are ubiquitously expressed in multiple tissues, such as house-keeping
72 genes(Eisenberg and Levanon 2013) can be identified and this gives insight to the
73 functions that all tissue share. In contrast, little attention has been paid to the
74 identification of transcripts that are less abundant, or even absent, in one tissue
75 compared to all others. Here we report transcripts depleted or absent in the human
76 placenta at term and in early gestation compared with 46 other tissues studied in the
77 GTEx project. Functional enrichment analysis of depleted transcripts highlighted
78 pathways which reflect known aspects of placental physiology, such as lack of
79 nervous tissue and unique immunological features. However, these analyses also
80 generated evidence that the term human placenta has unique metabolic
81 characteristics, as evidenced by multiple absent transcripts involved in mitochondrial
82 function and polyamine metabolism.

83

84 **Results**

85 *Tissue-wide comparison of depleted transcripts*


86 We carried out mRNA sequencing (RNA-seq) using 59 human term placentas from
87 the POP study cohort(Pasupathy et al. 2008; Gaccioli et al. 2016; Gong et al. 2018b)
88 and 14 human placentas from earlier in gestation (n=8, 7-8 weeks (8wk); n=6, 13-14
89 weeks (14wk))(Prater et al. 2021). We obtained approximately 38 million reads from
90 each sample (**Supplementary Table 1**). We compared the placental transcriptome

91 profile at 8wk, 14wk and term with that of 46 tissues from 11,803 samples of GTEx
92 Consortium datasets(GTEx Consortium 2020) and investigated which transcripts are
93 absent or depleted in the placenta while being reasonably abundant in other tissues
94 (**Supplementary Table 2**). To adjust for differences in the RNA composition across
95 tissues, we applied the following two normalization methods: 1) the median ratio
96 method (DESeq(Anders and Huber 2010)) and 2) the trimmed mean of M-values
97 (TMM(Robinson and Oshlack 2010)) (see Methods for details). For 19,170 eligible
98 protein-coding transcripts, we ranked tissues by their normalized count per million
99 (nCPM) and identified 5,632 and 5,727 transcripts for which the term placenta was
100 ranked 47 (i.e. bottom) based on DESeq and TMM normalization methods,
101 respectively. Then we selected the 762 transcripts which satisfied the following three
102 conditions: (1) nCPM > 1 for the tissue of rank 46, (2) nCPM_(rank=46)/nCPM_(rank=47) > 3,
103 and (3) fulfilling these conditions both in DESeq and TMM normalization methods
104 (**Supplementary Table 3**) – these transcripts are described as being “depleted”
105 hereafter. For early gestational age datasets (8wk and 14wk placenta) we identified
106 215 and 112 such depleted transcripts respectively (**Supplementary Tables 4 and**
107 **5**).

108
109 Using the same criteria we applied to the placenta, we sought to identify mRNAs
110 depleted in each of the 46 other tissues. Surprisingly, we found that there were ~30
111 times more transcripts depleted in the placenta than in the liver (26 depleted
112 transcripts), which was the highest among the 46 non-placental tissues. Besides the
113 placenta, only six tissues had one or more depleted transcript: liver, spleen, brain
114 (cerebellar hemisphere), muscle, testis and adrenal gland (**Figure 1A** and
115 **Supplementary Table 6**). We then used five external placenta RNA-Seq datasets
116 generated independently (two early gestational placenta datasets: (1) Lim et al.(Lim et
117 al. 2017) (n=4) and (2) Huang et al.(Huang et al. 2018) (n=3) and three term placenta
118 datasets: (3) Verheecke et al.(Verheecke et al. 2018) (n=66), (4) Ashley et al.(Ashley
119 et al. 2021) (n=4), and (5) Awamleh et al.(Awamleh et al. 2019) (n= 21)). These
120 analyses confirmed that the placenta had the most depleted transcripts among the
121 other tissues studied – 132 (Lim), 55 (Huang), 237 (Verheecke), 340 (Ashley), and
122 123 (Awamleh) (**Figure 1A** and **Supplementary Table 7**). All the datasets described
123 above had variable depth of coverage. So, to investigate any possible effect of
124 sequencing depth, we down-sampled the reads to 20 million for all samples. We then

125 repeated the analysis with the same methods and criteria as described above. In
126 down-sampled datasets, we obtained consistent results that the placenta had many
127 more depleted transcripts than other tissues (**Supplementary Figure 1** and
128 **Supplementary Table 8**). The number of depleted transcripts that were shared
129 among our dataset and other term placenta datasets (**Figure 1B**) or other first
130 trimester datasets (**Figure 1C**) was highly significant ($P<1\times10^{-314}$ for the term placenta
131 and $P=7.4\times10^{-209}$ for the early placenta; both Fisher's exact test). In our term and
132 early gestation placental datasets, there was a total of 883 transcripts depleted at any
133 gestational age and among these, 58 were depleted in all three trimesters
134 (**Supplementary Table 9** and **Figure 1D**). **Figure 1E** shows the 58 genes for which
135 the transcripts are depleted in our three placental datasets ranked by their fold
136 change, with the top 10 genes being annotated, compared to 46 tissues from the
137 GTEx dataset (see **Supplementary Table 9**).

138
139 Among the 762 transcripts depleted in our term placenta dataset, we did not detect
140 any transcripts encoding *PRSS2* (serine protease 2 also known as Trypsin 2) whilst
141 *MT-ND6* (mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6)
142 had the highest level of expression (nCPM=123), but was still three-fold lower than in
143 all the other tissues studied (**Supplementary Table 3**). Interestingly, the 762
144 transcripts depleted in our term placenta were also less abundant in our early
145 gestation placenta samples and other placenta data sets studied (**Figure 1F**).
146 Moreover, the 426 transcripts uniquely depleted in our term placenta data (**Figure 1B**)
147 were also less abundant in external term placenta datasets and majority of them were
148 ranked bottom in the Ashely (335; 79%), Verheecke (245; 58%), and Awamleh (179;
149 42%) datasets (**Supplementary Figure 2**).
150

152 **Figure 1. The number of absent or depleted transcripts in various tissues. A,** The number of
153 depleted transcripts are shown in the placenta samples (our and other studies) and other somatic
154 tissues. The term, 8wk and 14wk placentas are from this study. Tissues with open circles represent
155 zero depleted transcripts. **B-D,** Venn diagrams showing the number of transcripts, and their overlaps,
156 depleted in early gestational placentas (**B**), term placentas (**C**) and three gestational stages of the
157 placenta datasets from this study (**D**). The lists of transcripts depleted in the non-placental and the
158 external placental tissues are available in **Supplementary Tables 6 and 7**, respectively. Ver.
159 (Verheecke), Ash. (Ashley), Awa. (Awamleh), Hua. (Huang). **E,** Abundances of the transcripts (x-axis)
160 relatively depleted in all three trimesters are shown along with their fold change (y-axis, calculated as
161 follows: $nCPM_{(rank=46)}/nCPM_{(rank=47; placenta)}$). The counts (per million) on x-axis are normalized by TMM
162 method and the data is available in **Supplementary Table 9**. To avoid fold change being infinite
163 values, a small number (0.001) was added to nCPM of the term placenta. The transcripts with the 10
164 highest fold change (*PRSS2* being the top one) are shown with their gene names. The size of circle
165 represents the effect size (i.e. $nCPM_{(rank=46)} - nCPM_{(rank=47; placenta)}$). **F,** The range of transcript
166 abundances for the 762 genes in the placental tissues and 26 representative somatic tissues out of 46
167 we studied. Dot: median; line: interquartile range (IQR). For display, non-placental tissues shown in **F**,
168 were manually selected if there are at least two subregions from the same tissue. For example, we
169 analyzed a total of 13 brain subregions in this study and the cerebellar hemisphere is shown here to
170 represent the brain. The representative sub-regions are shown in **Supplementary Table 2**.
171

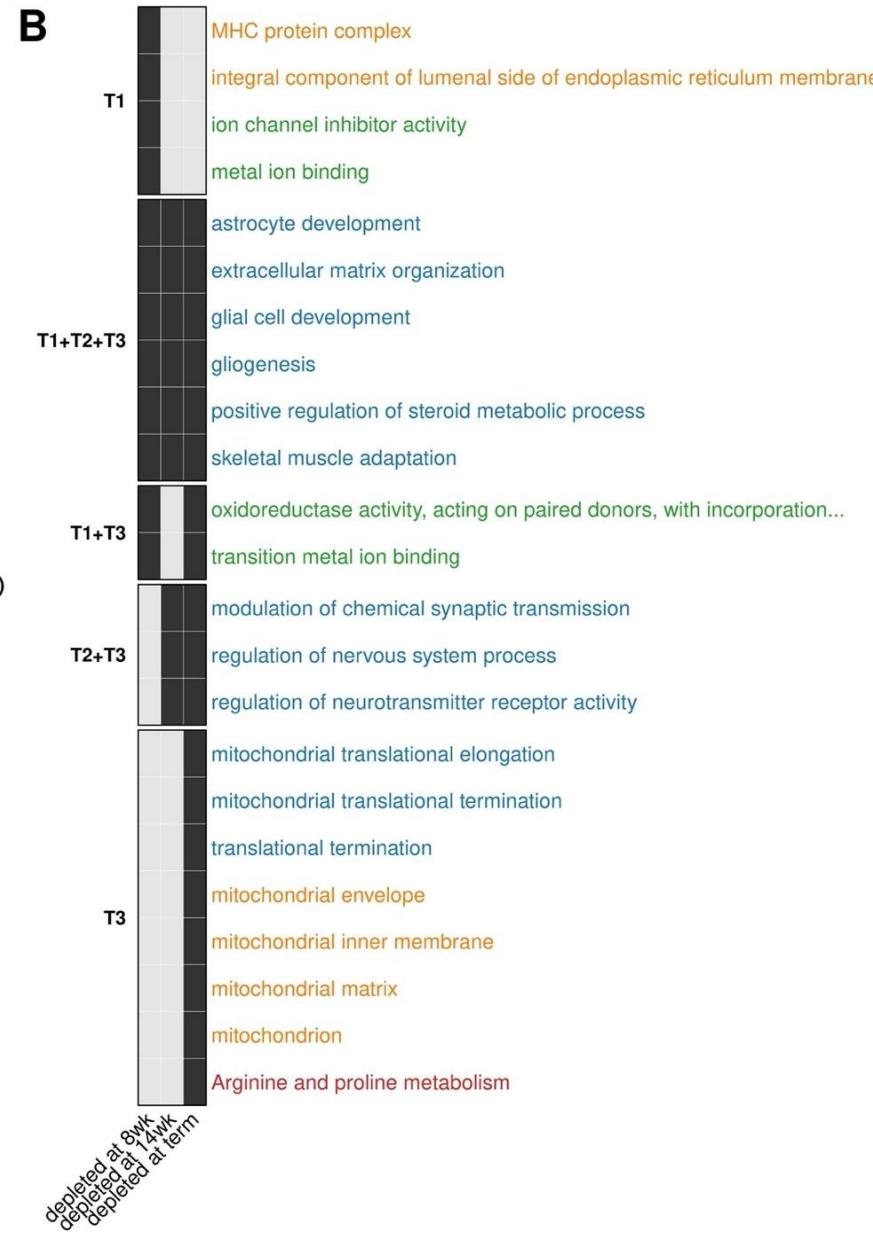
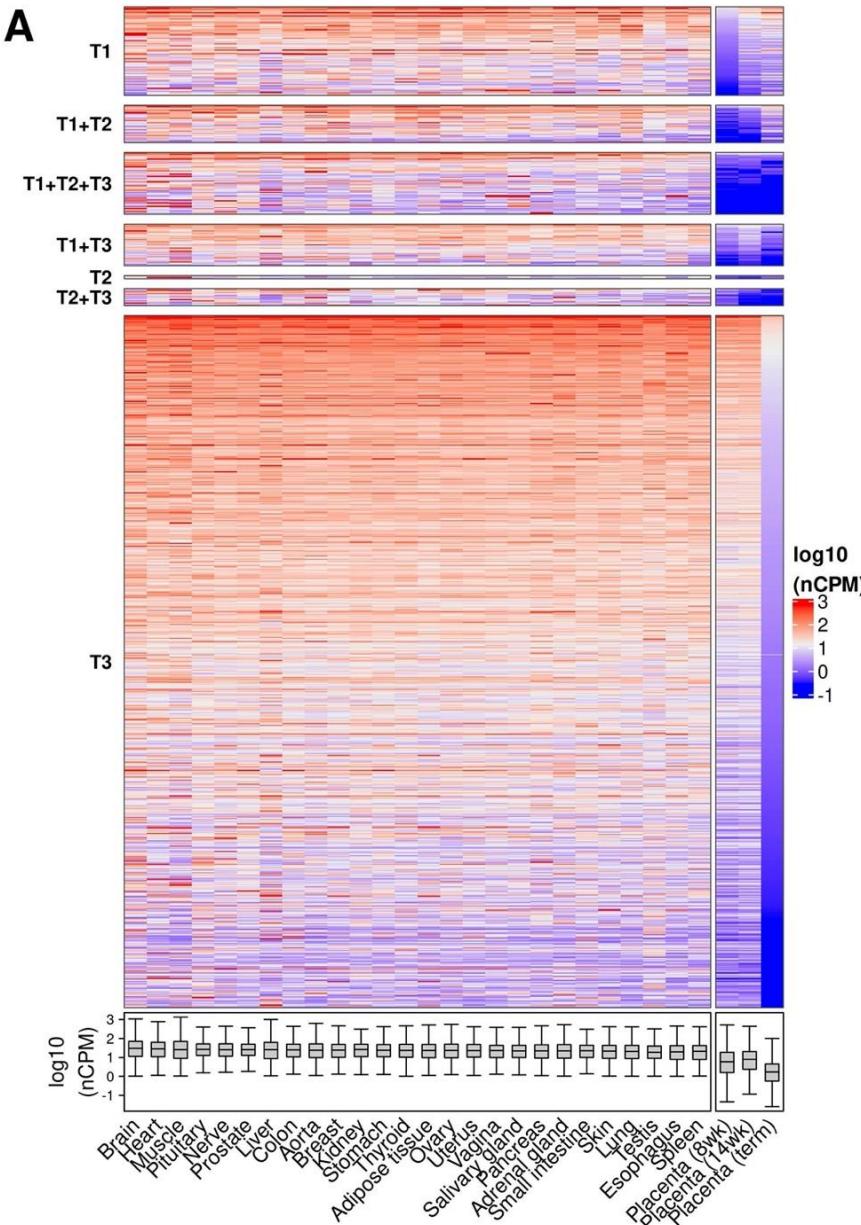
172 *Dynamic changes of depleted transcripts during pregnancy*

173 We further investigated the 883 transcripts depleted in the placenta at any trimester of
174 pregnancy (**Figure 1D**) to see how they change over time. Among the 215 transcripts
175 depleted in the first trimester placenta, 83 transcripts were not shared with other
176 gestational ages (T1 in **Figure 2A**) and their abundances increased as gestation
177 progressed (**Supplementary Figure 3A**). A number of gene ontology (GO) terms
178 were significantly enriched ($P<0.05$) in these 83 transcripts (T1 in **Figure 2B**),
179 including MHC protein complex (*HLA-A*, *HLA-DPA1* and *HLA-DPB1*) and ion channel
180 inhibitor activity (*ANKRD36*, *CAMK2D*, *LYNX1*, and *SCN1B*), suggesting a limited role
181 for these functions in the first trimester.
182

183 We found the second trimester placenta sample had the smallest number of depleted
184 transcripts ($n=112$) compared to those from the first trimester ($n=215$) and the term
185 placenta ($n=762$). Indeed only 3 transcripts (cilia and flagella associated protein 91
186 (*CFAP91*, also known as *MAATS1*), myomesin 2 (*MYOM2*), and neurotrophic
187 receptor tyrosine kinase 3 (*NTRK3*)) were uniquely depleted in the second trimester

188 (T2 in **Figure 2A**). However, they all were ranked bottom (i.e. the least abundant
189 compared to non-placental tissues) in the first trimester and close to bottom in the
190 term placenta. However, they were not sufficiently low enough to satisfy the 3-fold
191 threshold for both TMM and DESeq normalization methods. For example, for *MYOM2*
192 the fold changes based on TMM and DESeq were 2.9 and 2.8 fold respectively.

193
194 Among the 883 transcripts depleted in any of the three trimesters, 58 are depleted in
195 all three (**Supplementary Table 9** and T1+T2+T3 in **Figure 2A**) and they are
196 associated with various GO terms (T1+T2+T3 in **Figure 2B**). It is unsurprising that
197 genes annotated with the GO terms “astrocyte development, “gliogenesis” and
198 “skeletal muscle adaptation” are absent in the placenta. However, as the placenta is
199 a steroidogenic organ the depletion of genes associated with “positive regulation of
200 steroid hormone metabolic process” is more surprising. The genes annotated with this
201 term include aldo-keto reductase family members (*AKR1C1* and *AKR1C2*). This is
202 consistent with the requirement for placental steroid production as these reductases
203 inactivate steroid hormones(Penning et al. 2015), specifically progesterone in the
204 case of *AKR1C1*. Peroxisome Proliferator Activated Receptor Gamma (PPARG) is
205 abundant and is essential for placental development(Valle et al. 2005) and function.
206 However, the depletion of PPARG Coactivator 1 Alpha (*PPARGC1A*) transcripts (also
207 known as PGC-1 α) suggests that the usual coordination between PPARG and PGC-
208 1 α does not occur in the placenta(Hondares et al. 2006). Of note, PGC-1 α is also
209 directly implicated in regulating mitochondrial biogenesis(Wu et al. 1999) and the
210 regulation of mitochondrial genes (see below).

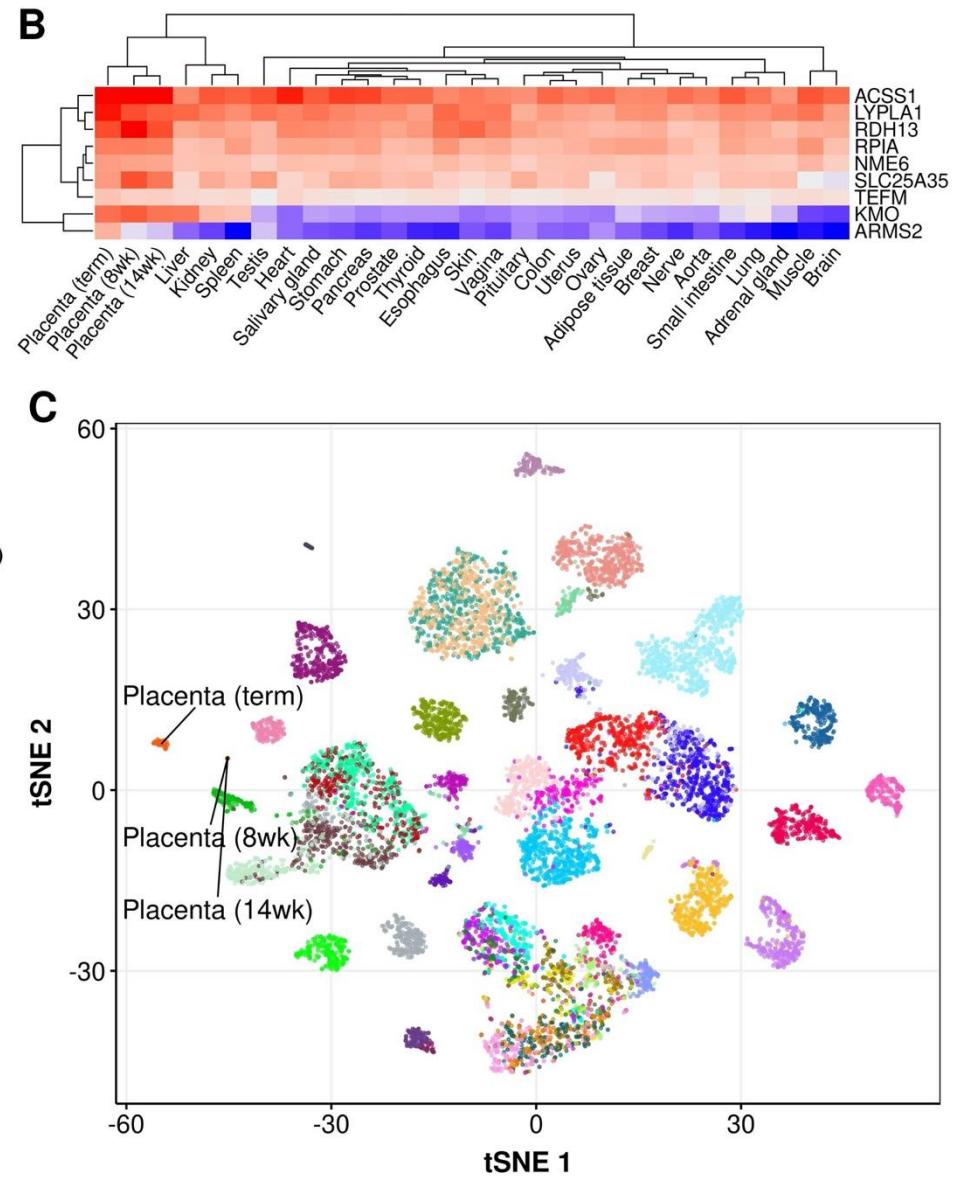
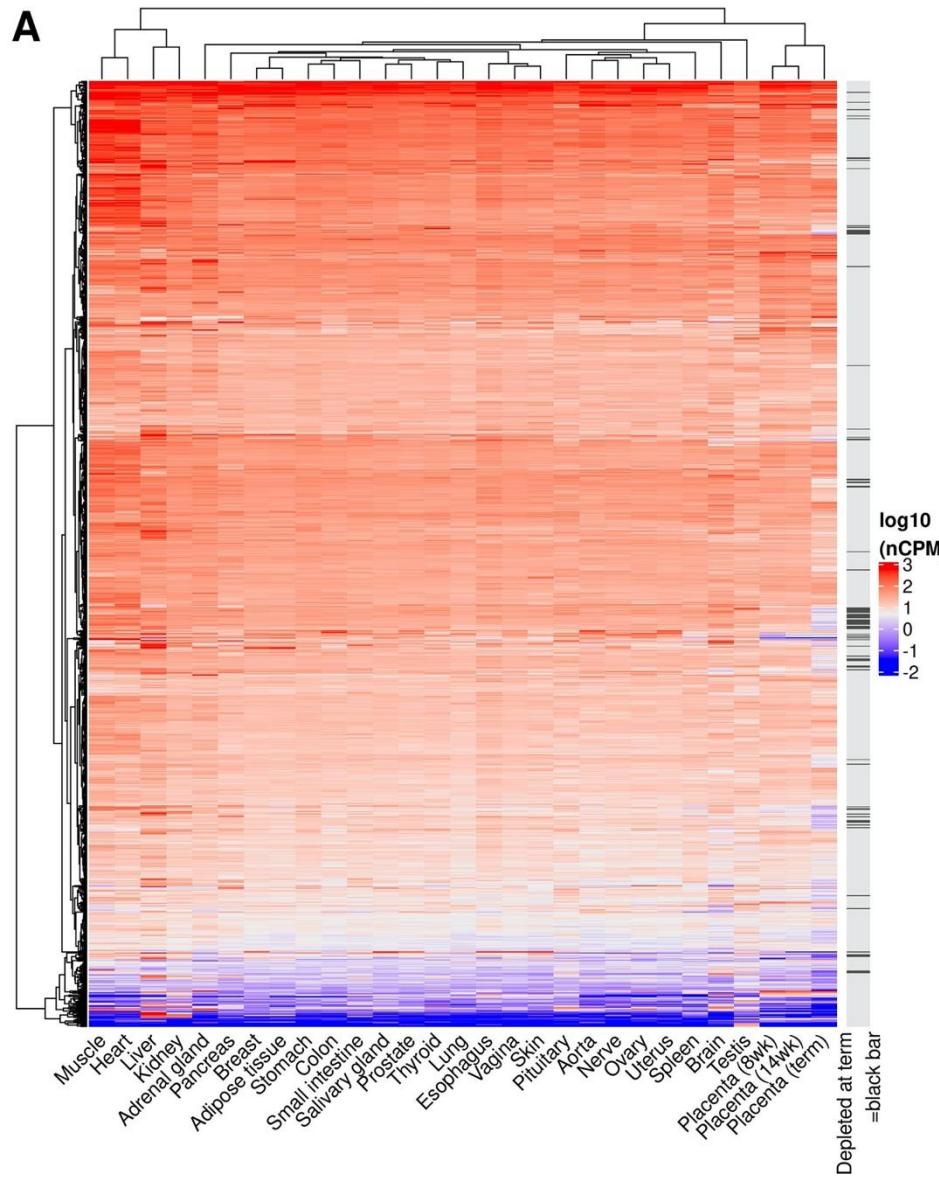


211
212 Several depleted transcripts are annotated with the GO term “extracellular matrix
213 organization”. Trypsins 1 and 2 (*PRSS1* and *PRSS2*) are notable as these were
214 essentially absent from the placenta. As these proteins are key activators of multiple
215 matrix metalloproteases this suggests that initiation of matrix remodeling is mediated
216 by other proteases. Transcripts encoding two type IV collagen genes (*COL4A3*,
217 *COL4A4*) were depleted. These collagens are components of basement membranes
218 and form a triple helix (with *COL4A5*). Mutation or loss of any of these three genes
219 causes Alport’s syndrome(Hudson et al. 2003). However, the lack of the
220 α 3. α 4. α 5(IV) collagen protomer is without effect in the placenta, in contrast to the
221 other organs affected in Alport’s syndrome. It is likely that the α 1. α 1. α 2(IV) collagen

222 protomer is sufficient and in fact the placenta has the highest expression of COL4A1
223 among the GTEx tissues from our previous study(Gong et al. 2021). Keratin filament
224 transcripts (*KRT4*, *KRT5*, *KRT13*) are also depleted and annotated with the GO term
225 “extracellular matrix organization”. These keratins are characteristic of stratified
226 epithelial surfaces(Moll et al. 2008) (such as the esophagus in which the expression
227 level is >10,000 times higher) and this difference likely reflects the syncytial nature of
228 the trophoblast epithelial surface.

229
230 We identified 762 depleted transcripts in the term placenta and this was the highest
231 number among three trimesters, and 649 of them (85%) were uniquely depleted at
232 term (T3 in **Figure 2A**). GO analysis showed these genes are predominantly
233 associated with mitochondria-specific processes, suggesting that the term placenta
234 has diminished capacity for these functions (T3 in **Figure 2B**). They include genes
235 encoding 12 mitochondrial ribosomal proteins, ATP synthase, H⁺ transporting,
236 mitochondrial F1 complex, delta subunit (*ATP5D*), succinate dehydrogenase complex
237 assembly factor 1 (*SDHAF1*), NADH:ubiquinone oxidoreductase complex assembly
238 factors (*NDUFAF3*, *NDUFAF8*) and subunits (*NDUFB7*, *NDUFS7*, *NDUFS8*), and
239 mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 6 (*MT-ND6*).
240 Even though these transcripts were not sufficiently low to be classified as being
241 depleted in earlier gestations, most of them were also less abundant than somatic
242 tissues (**Supplementary Figure 3B**). Using KEGG (Kyoto Encyclopedia of Genes
243 and Genomes) pathway analysis of the 649 transcripts depleted only at term, we also
244 noted that genes for arginine and proline metabolism and hence the polyamine
245 (putrescine, spermidine, and spermine) metabolic pathway were also significantly
246 over-represented (**Supplementary Text and Supplementary Figure 4**).
247

248 Having observed significantly over-represented mitochondria-related GO terms in the
249 list of depleted transcripts, we examined the proportion of RNA-Seq reads from the
250 19,170 protein-coding genes that mapped to mitochondrial DNA. The term placenta
251 has the lowest percentage (3.4%), followed by the aorta (4.5%), and the 8wk placenta
252 (4.6%) (**Supplementary Figure 5A**). In contrast, the heart (left ventricle; 39.7%), the
253 kidney (cortex; 31.3%) and the liver (21.1%) expressed the most mitochondrial
254 protein-coding transcripts. We also examined the extent of mitochondrial transcripts
255 including both the protein-coding and non-coding transcripts, such as mitochondrial

256 rRNA and tRNA, and found the term placenta also showed the lowest proportion of
257 reads mapped to mitochondrial DNA (3.7%, **Supplementary Figure 5B**).

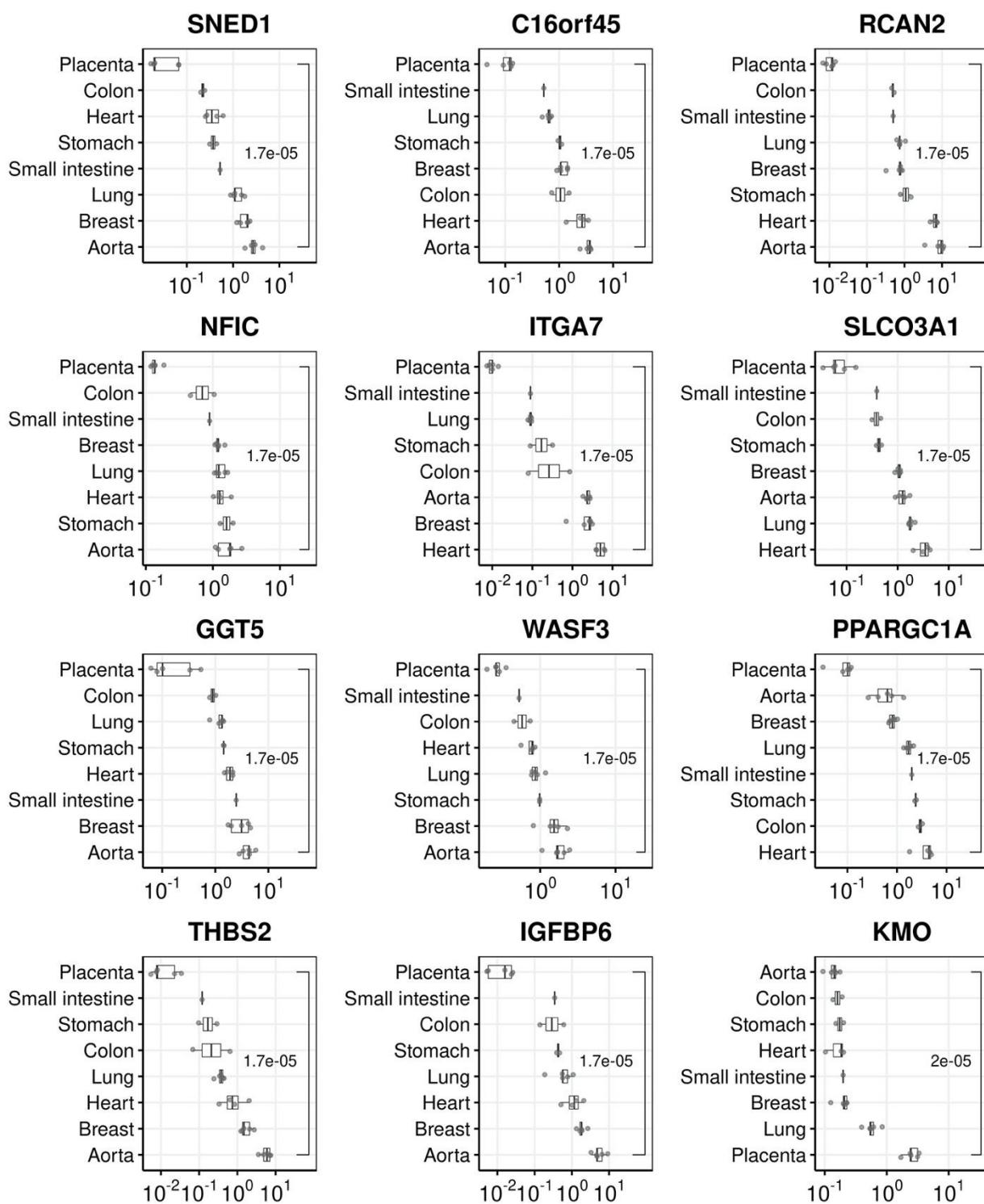


249 **Figure 2. Abundance and GO analysis of transcripts depleted in the placenta during pregnancy. A,**
250 A heatmap representation of the abundance of 883 placenta-depleted transcripts (rows) across 29 tissues
251 including our placenta datasets, i.e. 8wk (T1), 14wk (T2), and term (T3). nCPM (\log_{10} scale) is color-
252 coded from red (higher) to blue (lower) and their values across the 883 transcripts are shown as a boxplot
253 in the bottom. 26 non-placental tissues are shown in descending order of the median CPM and the
254 placenta samples are ordered by gestational age. The 883 transcripts are ordered in descending order of
255 the average CPM across the placental samples. **B**, A summary of the gene ontology (GO) and KEGG
256 pathway analysis. Significantly (adjusted $P < 0.05$) overrepresented GO terms and KEGG pathway are
257 shown with the following three sources: biological process (blue); molecular function (green); cellular
258 component (orange); KEGG (red). The black and grey square represent being depleted and not being
259 depleted, respectively, at the corresponding gestational age. To note, GO terms with at least the depth of
260 5 or more from the root and the intersection size of 3 or more (i.e. the number of overlaps between the
261 query and the number of annotated genes belong to the GO terms in question) were plotted. For KEGG
262 pathways, those with the intersection size of 5 or more were plotted. The full list of significantly
263 overrepresented GO terms is shown in **Supplementary Table 10**. For **A** and **B**, the 883 transcripts are
264 divided by their depleted status among the placenta samples at 8wk, 14wk, and term as shown by the
265 following: T1: depleted at 8wk only; T1+T2: depleted at 8wk and 14wk; T1+T2+T3: depleted at 8wk, 14wk
266 and term; T1+T3: depleted at 8wk and term; T2: depleted at 14wk only; T2+T3: depleted at 14wk and
267 term; T3: depleted at term only. For display, non-placental tissues, shown in **A**, were manually selected if
268 there are at least two subregions from the same tissue. For example, we analyzed a total of 13 brain
269 subregions in this study and the cerebellar hemisphere is shown here to represent the brain. The
270 representative sub-regions are show in **Supplementary Table 2**. nCPM: normalized count per million;
271 wk: week of gestation.

272

273 *Abundance of nuclear-encoded transcripts localized in the mitochondria*

274 Mitochondria contain proteins encoded by nuclear DNA and subsequently imported to
275 the mitochondria as well as those directly encoded by mitochondrial DNA (mtDNA).

276 MitoMiner(Smith and Robinson 2016) is a database of protein coding genes with
277 strong support for mitochondrial localization and hence function. Having observed
278 association of mitochondria-related GO terms in the 762 transcripts depleted in the
279 term placenta, we further investigated how many of these encode mitochondrial
280 proteins defined in MitoMiner and found 84 ($P=5.1\times10^{-10}$, Fisher's exact test). For the
281 234 transcripts depleted earlier in gestation (either first or second trimester, **Figure**
282 **1D**), the number overlapping with MitoMiner is only 9 ($P= 0.382$, Fisher's exact test).
283 We then examined the abundance of transcripts encoding the 1,042 genes in
284 MitoMiner across non-placental tissues from GTEx and placentas obtained in all three
285 trimesters (8wk, 14wk and at term). We found that the 3 placental tissues clustered on
286 a single branch and were distinct from the other tissues (**Figure 3A**). The transcript
287 abundance of the 1,042 MitoMiner genes were lowest in the term placenta, followed
288 by the 14wk placenta, while they were the most abundant in the muscle, followed by
289 the liver and the heart (**Supplementary Figure 6**). However, the term placenta also
290 had 9 transcripts whose abundance levels were higher than any other somatic tissues
291 we compared (**Figure 3B**) – two of them (KMO and ARMS2) were measured using
292 RT-qPCR (discussed further below). Interestingly multidimensional scaling of all
293 11,876 samples showed a profound clustering of all 49 tissues, indicating tissue-
294 specific expression of the 1,042 genes (**Figure 3C** and **Supplementary Figure 7**). All
295 placental samples were clustered closely together. Next, using whole-genome
296 sequencing (WGS) datasets, we examined mtDNA copy numbers of the term
297 placental tissue (n=80) and compared those of four healthy tissues
298 (endometrium(Moore et al. 2020) (n=398), blood(Lee-Six et al. 2018) (n=199),
299 colon(Lee-Six et al. 2019) (n=568), and liver(Brunner et al. 2019) (n=517); see
300 **Supplementary Table 11**, **Supplementary Figure 8**) and 21 non-placental tissues
301 from the Cancer Genome Atlas Pan-Cancer Analysis of Whole Genomes (PCAWG)
302 Consortium(Yuan et al. 2020). We found that mtDNA copy number was not
303 substantially lower in the placenta than other tissues we compared (see
304 **Supplementary Text**).


304 **Figure 3. Nuclear-encoded mitochondrial transcripts.** **A**, A heatmap representation of the
305 abundance of 1,042 genes in MitoMiner (rows) across 29 tissues (columns). nCPM (\log_{10} scale) of a
306 transcript is color-coded from red (higher) to blue (lower). **B**, A heatmap showing the abundance (\log_{10}
307 scale) of 9 highly enriched MitoMiner transcripts in the placenta. **C**, A multidimensional scaling plot
308 (tSNE) of 11,876 samples from 49 tissues using nCPMs (calculated by TMM method) of 1,042 genes in
309 MitoMiner. Each dot represents one of 11,876 samples (i.e. 11,803 samples from GTEx and 73 from
310 the placenta of the following gestational ages: 8 at 8wk, 6 at 14wk and 59 at term) and each color
311 represents a tissue and the full color-coding is shown in **Supplementary Figure 7**. For display, non-
312 placental tissues, shown in **A**, were manually selected if there are at least two subregions from the
313 same tissue. For example, we analyzed a total of 13 brain subregions in this study and the cerebellar
314 hemisphere is shown here to represent the brain. The representative sub-regions are show in
315 **Supplementary Table 2**. nCPM: normalized count per million; wk: week of gestation; tSNE: t-
316 distributed stochastic neighbor embedding.

317

318 *Validation of placental transcript abundances*

319 To confirm the transcript abundance levels of the placenta and other somatic tissues
320 that we identified based on RNA-Seq dataset, we performed RT-qPCR assays in
321 independent samples. We selected a total of 13 transcripts (11 depleted and 2
322 mitochondria-associated transcripts enriched in the term placenta) and measured
323 their mRNA levels in eight human tissues: placenta (term), aorta, heart, breast, lung,
324 stomach, small intestine and colon (see Methods for details). For each of the 11
325 depleted transcripts, we confirmed that their abundances were significantly lower in
326 the placenta than the other tissues ($P=1.7\times10^{-5}$, Mann-Whitney test) and the placenta
327 was ranked lowest (**Figure 4**). We also confirmed that the mRNA level of KMO, one
328 of the enriched transcripts in the placenta, was the highest in the placenta and it was
329 significantly higher ($P=2\times10^{-5}$, Mann-Whitney test) than the other tissues tested
330 (**Figure 4**). For ARMS2, another enriched target, 19 of the 24 non-placental tissue
331 samples used were not assayable by qPCR, (below the limit of detection), whereas all
332 5 of the placental samples were measurable – this is consistent with the RNA-Seq
333 data showing enrichment in the placenta (**Figure 3B**). Overall, the 13 transcripts
334 selected for validation of either being depleted (11) or enriched (2) from RNA-Seq
335 datasets were confirmed using RT-qPCR.

336

337

338 **Figure 4. qPCR validation assays for 14 transcripts.** The transcript abundance levels (x-axis) were
339 measured in 8 tissues (y-axis) which were ranked from the lowest to highest level using the median
340 abundance for each transcript. Each dot represents an individual sample (by taking the mean of the
341 technical triplicate) and each of the boxes shows the median and interquartile range (IQR). The
342 horizontal lines (whiskers) extended from the box represent a range of $1.5 \times \text{IQR}$ from both ends. The P -
343 values (Mann-Whitney test) are shown between the placenta and the rest of non-placental tissues. The
344 qPCR data used for the graph are available in **Supplementary Table 12**.

345

346 **Discussion**

347 The key finding of the present study is that the human placenta has a unique
348 transcriptome architecture compared to all of the organs studied in the GTEx project.
349 More than 80% of the organs studied in the GTEx project lack even a single uniquely
350 depleted transcript. Of the organs studied in the GTEx project, the liver had the
351 largest number of uniquely depleted transcripts, with 26 depleted or absent. Strikingly,
352 the transcriptome of term placenta had almost 30 times more depleted or absent
353 transcripts than the liver. Gene Ontology analysis indicated that some of the absent
354 transcripts reflect known unique qualities of placental function. For example, the
355 placenta has no innervation and this likely reflects the identification by Gene Ontology
356 analysis of multiple transcripts involved in formation of elements of the nervous
357 system. Similarly, recognition of the allo-immune placenta is essential for normal
358 pregnancy(Moffett et al. 2017) and this is reflected in unique expression of MHC
359 antigens, which was another Gene Ontology analysis pathway identified. However,
360 Gene Ontology analysis identified other pathways which we did not anticipate.
361

362 The most striking example was that many transcripts related to mitochondrial function
363 were far less abundant in the term placenta than other somatic tissues. Interestingly,
364 the mRNA for PPARGC1A (Peroxisome proliferator-activated receptor gamma
365 coactivator 1-alpha; also known as PGC-1 α), a transcriptional master regulator of
366 mitochondrial biogenesis, was depleted in the placenta in all three trimesters, as well
367 as in four external placenta datasets (**Supplementary Table 7**). *Ppargc1a*-null mice
368 have decreased expression of mitochondrial genes, especially those encoding
369 various subunits of the electron transport chain (Austin and St-Pierre 2012; Vernier
370 and Giguère 2021), suggesting a possible link between its low abundance and the
371 diminished content of mitochondrial transcripts in the placenta. PGC-1 α interacts with
372 a very wide range of transcriptional co-activators and is a key regulator of metabolic
373 homeostasis(Miller et al. 2019) and protects cells against oxidative damage by
374 inducing the expression of several ROS (reactive oxygen species) detoxifying
375 enzymes such as superoxide dismutase 2 (SOD2). Interestingly, our RNA-Seq
376 analysis showed that SOD2 mRNA was the lowest in the early gestation placentas as
377 well as having a low rank (45/47) in the term placenta. As ectopic expression of PGC-
378 1 α reduced levels of ROS(Valle et al. 2005; St-Pierre et al. 2006), it has been
379 suggested that PGC-1 α ensures high energy metabolism and removal of its toxic by-

380 products at the same time. We recently reported that the placenta has a unique
381 somatic mutation profile(Coorens et al. 2021), predominantly the SBS18 signature
382 which is associated with oxidative stress. This could be explained, at least in part, by
383 accumulation of ROS possibly due to lower level of PGC-1 α and SOD2 transcripts in
384 the placenta.

385

386 The syncytiotrophoblast (STB) is a multinucleated epithelium covering the outer layer
387 of chorionic villi and it differentiates from cytotrophoblast (CTB). The STB
388 mitochondria have different morphological properties compared to CTB, specifically,
389 they are smaller with irregular spherical cristae and a dense matrix(Holland et al.
390 2017; Fisher et al. 2020) and it has been suggested that these changes are related to
391 steroidogenesis of STB(Martínez et al. 1997; Martinez et al. 2015). Functional studies
392 have shown that STB mitochondria have reduced membrane potential, increased
393 levels of hydrogen peroxide, lower antioxidant level and are more sensitive to
394 ROS(Watson et al. 1998; Bustamante et al. 2014; Schoots et al. 2018). These
395 characteristics are due to the complement of mitochondrial proteins present and again
396 reflect the features of placental biology that are not found in other tissues.

397

398 We have previously reported that placental polyamine metabolism is implicated in
399 placentally related complications of human pregnancy(Gong et al. 2018b). In the
400 current study we found that genes associated with the KEGG pathway “arginine and
401 proline metabolism” were over-represented among the depleted transcripts. Within
402 this group were transcripts from five genes (SRM, SAT2, SMOX, AZIN2, and PAOX)
403 involved in polyamine metabolism; these were depleted at term but were also less
404 abundant earlier in gestation (see **Supplementary Text** and **Supplementary Figure**
405 **4**). Interestingly, expression levels of some genes in the polyamine pathway (e.g.,
406 *SAT1*, *AZIN1*, *SMS*, and *AMD1*) were higher in the placenta than non-placental
407 tissues. Kajander et al.(Kajander et al. 1989) reported enzymatic activities of
408 spermidine synthase (SRM) and spermine synthase (SMS) in seven human tissues,
409 and the SMS-to-SRM ratio was the highest in the placenta (~5) followed by the kidney
410 (~3.7). In our comparative analysis of RNA-Seq datasets, we confirmed that the SMS-
411 to-SRM ratio at their transcript level was also the highest at the term placenta (48.7),
412 followed by the 14wk placenta (5.4), and the 8wk placenta (5.3). The kidney cortex
413 (2.5) appeared to have the highest ratio among 46 non-placenta tissues we

414 compared, with the pancreas (0.17) being the lowest – it was also the lowest from the
415 protein ratio (0.4) reported by Kajander. This demonstrates that our tissue-wide
416 comparison of transcripts parallels previous analyses based on measurement of
417 proteins level.

418

419 The mechanisms underlying the reduced expression of the selectively depleted
420 transcripts in the placenta remains to be determined. One we considered was
421 differential methylation of the promoter regions of such genes. While it has long been
422 recognized that placental DNA is globally hypomethylated compared to other
423 tissues(Ehrlich et al. 1982; Fuke et al. 2004), it varies in locus-specific
424 manner(Chatterjee et al. 2016; Gong et al. 2018a). We previously reported 71 protein-
425 coding transcripts specifically enriched in the placenta(Gong et al. 2021), and we
426 compared their promotor methylation levels(Gong et al. 2018a) with those of the
427 transcripts depleted in the placenta we report here. However, we did not observe any
428 significant difference in DNA methylation between the enriched and depleted
429 transcripts in the CPG islands associated with these genes (**Supplementary Figure**
430 **9**). Moreover, when we studied the promoter regions of the two sets of genes, the
431 median promoter methylation of enriched transcripts (36.9%) was actually higher than
432 that of depleted transcripts (10.2%, $P=3.4\times 10^{-11}$). This observation runs counter to the
433 typical “high-methylation - low-expression” relationship and suggests that other
434 mechanisms may be involved, and this is an area for future study. We considered
435 possible differences in the number of mitochondria per nucleus but the placenta was
436 not an outlier in mitochondrial DNA copy number (**Supplementary Figure 8**) and
437 some mitochondrial genes actually had higher levels of expression in the placenta
438 than in other tissues.

439

440 We noted that the proportion of genes encoding depleted transcripts from
441 chromosome 19 was higher than expected by chance (Odds Ratio=3.18, $P=1.5\times 10^{-25}$,
442 Fisher's exact test) (**Supplementary Figure 10**). This chromosome has the highest
443 gene density of all human chromosomes and the highest GC and CpG content. It is
444 unusual in that nearly a quarter of its genes fall in 20 tandemly arranged gene
445 families(Grimwood et al. 2004; Harris et al. 2020). Several of these families have
446 direct roles in pregnancy – for example, the beta subunit of chorionic gonadotropin
447 (CGB, 6 functional genes), the pregnancy specific glycoproteins (PSG, 10 functional

448 genes) and the large imprinted cluster of miRNAs which are largely placenta
449 specific(Donker et al. 2012) (C19CM, 46 genes). These genes are all highly
450 expressed in the placenta(Gong et al. 2021). However, chromosome 19 encodes
451 other unusual gene families. Natural killer cells play an important role in human
452 pregnancy(Colucci 2019) and their receptors (killer cell immunoglobulin-like receptors,
453 KIRs.) are highly polymorphic and are in a cluster within the 1 Mb leukocyte receptor
454 complex in Chromosome 19.

455

456 Finally, transposable elements or their remains account for a surprisingly large
457 fraction of the human genome and host organisms have evolved numerous strategies
458 to defend themselves against the threat posed by functional endogenous
459 retroelements. One such mechanism involves the very large and rapidly evolving
460 family of transcription factors, the Krüppel-associated box domain zinc finger proteins
461 (KRAB-ZFPs)(Bruno et al. 2019). There are an estimated 352 genes encoding KRAB-
462 ZFPs in the human genome, and 209 of these are located within six clusters on
463 chromosome 19(Yang et al. 2017). Thus chromosome 19 has many unusual features
464 and many of these are related to placental or reproductive function. We now add to its
465 list of unusual features – that of having an over representation of depleted transcripts
466 in the human placenta.

467

468 Clearly, there is a risk that apparent differences in expression could be observed due
469 to batch effects and this could occur at any of a range of levels, including RNA
470 extraction, the sequencing platform employed, the transcriptome size, and the
471 normalization method employed. For example, the results of long RNA-seq are
472 profoundly affected by whether RNA was size selected or selected by oligo dTs for
473 selective extraction of mRNA through its polyadenylated tail(Gong et al. 2021). We
474 mitigated these risks using multiple approaches. First, we ensured comparable
475 methods of RNA extraction and sequencing between our own samples (mirVana
476 miRNA isolation Kit, Ambion) and GTEx (Tissue miRNA Kit, PreAnalytix® and
477 miRNeasy Mini Kit, Qiagen). Second, we analyzed multiple distinct placental RNA-
478 seq datasets, including those we generated and using other publicly available
479 sources. Third, we compared multiple bioinformatic approaches to determine that the
480 results were robust to definitions using different pipelines. Finally, we externally
481 validated some of the key results using qPCR and a separate group of placental

482 samples and tissue samples obtained from a local tissue bank. We conclude that
483 these data support a unique transcriptomic void in the human placenta. We speculate
484 that this void might identify transcripts that are dispensable in a transient organ – but
485 not in others. Moreover, the neglect of the placenta in a large-scale international
486 consortium resulted in the exclusion of one of the human body's most interesting
487 transcriptional landscapes.

488

489 **Materials and Methods**

490 *Placenta samples*

491 All the full-term placenta samples were obtained from the Pregnancy Outcome
492 Prediction (POP) study, a prospective cohort study of nulliparous women attending
493 the Rosie Hospital, Cambridge (UK) for their dating ultrasound scan between January
494 14, 2008, and July 31, 2012. The study has been previously described in
495 detail(Pasupathy et al. 2008; Gaccioli et al. 2016). Ethical approval for the study was
496 given by the Cambridgeshire 2 Research Ethics Committee (reference number
497 07/H0308/163) and all participants provided written informed consent. A total of 128
498 unique placental samples were analysed in this study - 60 samples were used for
499 RNA-Seq (**Supplementary Table 1**) and 80 for WGS (**Supplementary Table 11**).
500 One of the RNA-Seq samples was dropped from the analysis due to the presence of
501 decidual contamination(Gong et al. 2021) and 12 placentas were analyzed using both
502 methods.

503

504 First and second trimester tissue samples were collected with informed written patient
505 consent and approval of the Joint University College London/University College
506 London Hospital Committees on the Ethics of Human Research (05/Q0505/82) from
507 7-8 wGA (n=8) and 13-14 wGA (n=6) uncomplicated pregnancies. Gestational age
508 was confirmed by ultrasound measurement of the crown-rump length of the embryo.
509 All samples were collected from patients undergoing surgical pregnancy termination
510 under general anesthesia for psycho-social reasons. Villous samples were obtained
511 under transabdominal ultrasound guidance from the central region of the placenta
512 using a chorionic villus sampling (CVS) technique. All samples were snap-frozen

513 immediately in liquid nitrogen and stored at -80°C until analysis. These samples have
514 previously been described in full(Prater et al. 2021).
515

516 *RNA sequencing and data processing*

517 The POP study placental biopsies were collected within 30 minutes of delivery and
518 flash frozen in RNAlater (ThermoFisher). For each biopsy, total placental RNA was
519 extracted from approximately 5 mg of tissue using the “mirVana miRNA Isolation Kit”
520 (Ambion) which efficiently isolates all RNAs longer than 10 nucleotides in length,
521 followed by DNase treatment (“DNA-free DNA Removal Kit”, Ambion). RNA quality
522 was assessed with the Agilent Bioanalyzer and all the samples with RIN values ≥ 7.0
523 were used in the downstream experiments. RNA-libraries were prepared from 1 μ g of
524 total placental RNA with the TruSeq Stranded mRNA Library Prep Kit (Illumina) which
525 captures polyA-tailed transcripts by oligo-dT beads, then pooled and sequenced
526 (single-end, 50bp) using a Single End V4 cluster kit and Illumina HiSeq2500. RNA
527 was also extracted from human first and second trimester placental villi using the
528 RNeasy Plus Universal Mini Kit (Qiagen). Libraries were made using the Illumina
529 TruSeq Stranded mRNA Library Kit according to the manufacturer’s instructions.
530

531 The adaptor sequences and poor-quality bases were trimmed using *cutadapt* v1.16
532 (with python v3.6.1) with the following command:

533 *cutadapt -j 32 -a AGATCGGAAGAGCACACGTCTGAACCTCCAGTCAC -q 20 -O 8 -m*
534 *20 -o \$TRIMMED_FASTQ \$INPUT_FASTQ*

535
536 The quality-assured trimmed short reads were mapped to the GRCh38 version of
537 human genome reference using *TopHat2* (v2.0.12):

538 *tophat2 -p 32 --library-type fr-firststrand --output-dir \$OUTPUT_DIR --max-multihits 10*
539 *--prefilter-multihits -transcriptome-index=\$TR_INDEX \$BOWTIE2INDEX*
540 *\$TRIMMED_FASTQ*

541
542 The transcriptome index above was built using transcript annotation from Ensembl
543 v88 (equivalent to Gencode v26). We applied so-called two-pass (or two-scan)
544 alignment protocol to rescue unmapped reads from the initial mapping by re-aligning
545 unmapped reads toward the exon-intron junctions detected in the first-mapping:

546 `tophat2 -p 32 --library-type fr-firststrand --output-dir $OUTPUT_DIR --raw-juncs`
547 `$MERGED_JUNCTION $UNMAPPED_FASTQ`
548
549 For each sample, the initial and second mapped reads were merged by *samtools*
550 (v1.2-24-g016c62b):
551 `samtools merge $MERGED_BAM $FIRST_MAP_BAM$SECOND_MAP_BAM`
552
553 Before gene-level quantification of read counts, we pre-processed the transcript
554 annotation file (Gencode v26) using the '*collapse_annotation.py*' python script
555 available from the following GTEx github site: https://github.com/broadinstitute/gtex-pipeline/tree/master/gene_model.
556
557 `python3 collapse_annotation.py $GENCODE_26_GTF`
558 `$PROCESSED_GENCODE_26_GTF`
559
560 Finally, we quantified sequencing reads at the gene-level using *featureCounts* tool of
561 *subread* package (v1.5.1):
562 `featureCounts -T 32 -a $PROCESSED_GENCODE_26_GTF -Q 10 -s 2 -p -C -o`
563 `$GENE_COUNT_OUTPUT $MERGED_BAM`
564
565 *Tissue collection for RT-qPCR analysis*
566 Placental tissues for qPCR validation were collected from healthy women with normal
567 term pregnancies and scheduled for delivery by elective cesarean section.
568 Participants were consented for research sample collection as part of the surgical
569 procedure, with further permission for storage and transfer of materials to the biobank
570 given under approval 07/MRE05/44. Analysis was performed as part of the
571 Cambridge Blood and Stem Cell Biobank REC ID 18/EE/0199. Human aorta, lung
572 and left ventricle used in the research study was obtained from the Papworth Hospital
573 Research Tissue Bank. Written consent was obtained for all tissue samples using
574 Papworth Hospital Research Tissue Bank's ethical approval (East of England -
575 Cambridge East Research Ethics Committee) under approval 18/EE/0269. Human
576 colon, stomach and small bowel were obtained from Cambridge University Hospitals
577 Human Research Tissue Bank under approval 04/Q1604/21 and breast tissues from
578 the Institute of Metabolic Sciences.

579

580 Approximately 35 mg of frozen tissues were homogenized by bead beating for 20 s at
581 a speed of 4.5 ms⁻¹ on a FastPrep24 sample disruption system with Lysing Matrix S
582 tubes (MP Biomedicals, Santa Ana, CA). Total RNA was isolated with the RNeasy
583 Plus Mini Kit (Qiagen) and 200 ng of total RNA from each sample was reverse
584 transcribed using the High-capacity RNA-to-cDNA kit (ThermoFisher Scientific). The
585 qPCR reactions were prepared using TaqMan Multiplex Master Mix (ThermoFisher
586 Scientific).

587

588 *Whole genome sequencing and data processing*

589 The whole genome sequencing dataset of the placenta (n=80) was from 'cohort1'
590 (babies delivered by pre-labor Caesarean section) described in our previous report(de
591 Goffau et al. 2019), which was also based on the POP study. Detailed description of
592 the experimental protocol is available in the original paper.

593

594 The sequencing files were converted from CRAM format to FASTQ using *samtools*
595 (v1.7-15-g9ce8c64):

596 *samtools fastq -F 0x200 \$INPUT_CRAM -1 \$FASTQ_R1 -2 \$FASTQ_R2*

597

598 The adaptor sequences and poor-quality bases were trimmed using *cutadapt* v1.16
599 (with python v3.6.1) with the following command:

600 *cutadapt -j 32 -a AGATCGGAAGAGCACACGTCTGAACCTCCAGTCAC -A*
601 *AGATCGGAAGAGCGTCGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTA*
602 *TCATT -q 20 -O 8 -m 20 -o \$TRIMMED_R1 -p \$TRIMMED_R2 \$FASTQ_R1*
603 *\$FASTQ_R2*

604

605 The quality-assured trimmed short reads were mapped to the GRCh38 version of
606 human genome reference using *bwa* (v0.7.17-r1188):

607 *bwa mem -M -t 32 |*

608 *-R*

609 *"@RG\tID:\$ID\tPL:illumina\tPU:run\tLB:\$ID\tSM:\$Barcode\tCN:CamObsGynae" |*
610 *\$GRCh38_GENOME_FASTA \$TRIMMED_R1 \$TRIMMED_R2 |*
611 */ samtools view -Sb - > \$BAM_FILE*

612

613 The whole genome sequencing dataset of the 1,682 healthy normal tissues (the
614 endometrium, blood, colon, and liver) was generated at the Wellcome Trust Sanger
615 Institute(Moore et al. 2020).

616

617 *GTEx data processing*

618 We compared our placenta RNA-Seq datasets with 46 somatic tissues from GTEx
619 (v8.p2). To select eligible samples from GTEx RNA-Seq datasets, we used the same
620 filtering conditions applied to our previous study(Gong et al. 2021): (a) RNA integrity
621 number (SMRIN) ≥ 6 , (b) mapping rate (SMMAPRT) ≥ 0.9 , (c) exonic mapping rate
622 (SMEXNCRT) ≥ 0.75 , and (d) ≥ 20 qualifying samples per tissue. Five tissues (out of
623 54) were dropped after applying the aforementioned filters: the kidney (medulla), the
624 fallopian tube, the cervix (endocervix), the cervix (ectocervix), and the bladder. We
625 further removed the following three non-solid tissues: the whole blood, cultured
626 fibroblast cells, and EBV-transformed lymphocytes cells. Finally, a total of 11,803
627 samples were selected from 46 somatic tissues. **Supplementary Table 2** shows the
628 number of samples across the 46 tissues we considered. In our initial analysis, we
629 used 4,454 samples from 20 somatic tissues from GTEx with the following modified
630 criteria: (a) the RNA integrity number (SMRIN) ≥ 6 , (b) mapping rate to genome
631 (SMMAPRT) > 0.8 , (c) mapping rate to exon (SMEXNCRT) > 0.8 , (d) ≥ 10 qualifying
632 samples of both sexes (i.e. at least 20 samples per tissue), and (e) manual selection
633 of tissue sub-types if two or more were available for the same tissue. We considered
634 56,156 genes from the gene-level quantification information available from the
635 following file: GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz.
636

637 *Identification of absent or depleted protein-coding transcripts*

638 We made a count matrix of 56,156 genes by 11,876 samples (i.e. 11,803 samples
639 from GTEx and 73 from the placenta of the following gestational ages: 8 at 8wk, 6 at
640 14wk and 59 at term), then filtered out genes of the following conditions: (1) the sum
641 of read count across samples is zero (n=238), (2) non-polyadenylated RNAs (e.g.
642 transcripts of major histones) reported from the study of Yang et al.(Yang et al. 2011)
643 (n=90), and (3) transcripts which are not annotated as 'protein-coding' as per

644 Ensembl v88 (n=36,658). After filtering, a total of 19,170 protein-coding genes were
645 considered. To adjust differences in the composition of RNA populations across
646 multiple tissues, we applied the following two normalization methods to the count
647 matrix (a dimension of 19,170 x 11,876): (1) the median ratio method implemented in
648 the '*estimateSizeFactors*' function of DESeq2 (v.1.26) Bioconductor package(Anders
649 and Huber 2010), and (2) the trimmed mean of M-values (TMM), available from
650 '*calcNormFactors*' function of edgeR (v.3.28.1) Bioconductor package(Robinson and
651 Oshlack 2010). Then, we built two matrices of normalized count per million (nCPM),
652 each of which has a dimension of 19,170 x 11,876, using the '*fpm*' and '*cpm*'
653 functions of DESeq2 and edgeR package, respectively. The columns (i.e. 11,876
654 samples) of the matrix were reduced to a size of 47 columns (i.e. 46 tissues from
655 GTEx and 1 placental tissue either from early gestation or full term) by taking the
656 mean of nCPM across samples of the same tissue. Using the placenta at term, we
657 identified 5,632 and 5,727 genes for which the placenta was ranked 47 (i.e. bottom)
658 based on DESeq and TMM normalization methods, respectively. Finally, we selected
659 762 of them (**Supplementary Table 3**) which satisfied the following three conditions:
660 (1) nCPM >1 for the tissue ranked 46, (2) nCPM_(rank=46)/nCPM_(rank=47) >3, and (3)
661 fulfilling aforementioned conditions both in DESeq and TMM normalization methods.
662 In the down-sampling analysis, we applied binomial sampling, using '*rbinom*' in R, to
663 each column of the count matrix with the subsampling probability being 20 million
664 divided by the sum of each column – a similar approach was previously
665 introduced(Robinson and Storey 2014). This is equivalent to randomly choosing each
666 individual mapped read with the same subsampling probability, so that the final
667 number of down-sampled reads becomes 20 million per sample, which is the
668 minimum number of sequencing reads in our placenta RNA-Seq dataset
669 (**Supplementary Table 1**). Then, we applied the same approach of finding absent or
670 depleted transcripts, as described earlier, to the down-sampled count matrix.
671

672 *Target selection for RT-qPCR validation*

673 We selected a total of 13 transcripts to measure their abundance levels using qPCR.
674 Eleven targets (NFIC, SNED1, GGT5, THBS2, C16orf45, ITGA7, WASF3, IGFBP6,
675 RCAN2, SLC03A1, and PPARGC1A) were selected by comparing our placenta RNA-
676 Seq datasets to 20 non-placental tissues from GTEx (i.e. an initial analysis) based on

677 the following criteria: 1) depleted in the placenta across three gestational ages (as
678 described above), 2) fold-change (i.e. $nCPM_{(rank=20)}/nCPM_{(rank=21; term-placenta)} > 5$, and
679 3) top 10 by the effect size (i.e. $nCPM_{(rank=20)} - nCPM_{(rank=21; term-placenta)}$). PGC-1 α
680 (PPARGC1A) while it was depleted it was not within the top 10, but it was included
681 considering its important role in regulating mitochondria. Two targets (KMO and
682 ARMS2) were selected by comparing our placenta RNA-Seq datasets to 46 non-
683 placental tissues from GTEx based on the following criteria: 1) annotated in
684 MitoMiner(Smith and Robinson 2016), 2) highest nCPM in the placenta across three
685 gestational ages (i.e. ranked within top 3), and 3) $nCPM_{(rank=4)} > 1$. There were 9
686 transcripts (KMO, ARMS2, LYPLA1, RDH13, RPIA, SLC25A35, ACSS1, NME6, and
687 TEFM) satisfying these conditions and we selected top two by the average fold
688 change of the term placenta compared to 46 non-placental tissues (i.e. $nCPM_{(term-}$
689 $placenta)}/nCPM_{(non-placenta)}$). The following 13 predesigned TaqMan assays were used:
690 NFIC (Hs00232157_m1), SNED1 (Hs00966449_m1), GGT5 (Hs00897715_m1),
691 THBS2 (Hs01568063_m1), C16orf45 (Hs01014981_m1), ITGA7 (Hs01056475_m1),
692 WASF3 (Hs00903488_m1), IGFBP6 (Hs00181853_m1), RCAN2 (Hs00195165_m1),
693 SLCO3A1 (Hs00203184_m1), PPARGC1A (Hs00173304_m1), ARMS2
694 (Hs01394203_m1), and KMO (Hs00175738_m1). The above target genes were
695 normalized to the geometric mean of CDC34 (Hs00362082_m1) and TBP
696 (Hs00427620_m1).
697

698 *Calculation of mitochondrial copy number*

699 The mitochondrial copy number ($Copy_{mt}$) was calculated as the ratio of mitochondrial
700 depth of coverage (Cov_{mt}) over the average genome depth of coverage (Cov_g). It is
701 formally defined as following:

$$702 Copy_{mt} = \frac{Cov_{mt}}{Cov_g}, \text{ where } Cov_{mt} = \frac{N_{mt} * L_{mt}}{MT} \text{ and } Cov_g = \frac{N_g * L_g}{G}$$

703

704 The depth of coverage (Cov) above is defined as the number of mapped bases, which
705 is the number of reads (N) multiplied with the length of the mapped reads (L), divided
706 by the haploid size of genome (G) or mitochondrion (MT). We calculated the depth of
707 coverage from the BAM files of whole genome sequencing datasets using *bedtool*
708 with the following command:

709 *bedtools genomecov -ibam \$BAM_FILE > \${BAM_FILE%.bam}.cov.txt.*

710

711 *Gene Ontology analysis*

712 The gene ontology analysis was performed using g:Profiler(Raudvere et al. 2019)
713 (<https://biit.cs.ut.ee/gprofiler>; version e103_eg50_p15_68c0e33) with FDR multiple-
714 testing correction method applying significance threshold of 0.05. We used the
715 gprofiler2 R package (<https://cran.r-project.org/web/packages/gprofiler2/>), a R client
716 for the g:Profiler tools, with the 19,170 protein-coding genes (see above) as a list of
717 background genes.

718

719 *Dimension reduction*

720 We used Rtsne (<https://cran.r-project.org/web/packages/Rtsne>; v0.15) with a default
721 option for the main dimension reduction method as shown in **Figure 3C**.

722

723 *External datasets used in this study*

724 **mtDNA copy numbers in cancer:** we downloaded mtDNA copy numbers of the
725 Cancer Genome Atlas Pan-Cancer Analysis of Whole Genomes (PCAWG)

726 Consortium(Yuan et al. 2020) from the following URL:

727 <https://ibl.mdanderson.org/tcma/download/TCMA-CopyNumber.tsv.zip>. The dataset
728 was downloaded as of the 9th of March 2020.

729 **WGS datasets of healthy human tissues:** we used WGS datasets of healthy human
730 tissues from the European Genome-phenome Archive (EGA, <https://ega-archive.org/>)
731 with the following accession numbers: EGAD00001004086 (blood),
732 EGAD00001004192 (colon), EGAD00001004547 (endometrium), and
733 EGAD00001004578 (liver).

734 **Placental RNA-Seq datasets:** we downloaded four placenta RNA-Seq datasets from
735 the European Nucleotide Archive (ENA, <https://www.ebi.ac.uk/ena>) with the following
736 accession numbers: PRJNA386110 (Lim), PRJNA499121 (Huang), PRJNA704615
737 (Ashley), and PRJNA472249 (Awamleh). The RNA-Seq dataset from the Verheecke's
738 study was obtained personally from one of the authors.

739

740 *Identification of transcripts localized in the mitochondria*

741 We downloaded MitoMiner (v4), a dataset of mitochondrial localization, from the
742 following URL: <http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/mitocarta.do>. We
743 selected genes of the following conditions: (1) not encoded in mitochondrial
744 chromosome, (2) “Known mitochondrial” or “Predicted mitochondrial” as types of
745 evidence, and (3) one of the 19,156 eligible protein-coding genes described above.
746 After filtering, we considered 1,042 protein-coding genes.

747

748 *Code Availability*

749 Codes used in this study is available in the Methods section and at
750 <https://gitlab.com/sunggong/pops-placenta-mt-2020>.

751

752 **Data access**

753 The term placenta RNA-Seq data have been deposited in the European Genome-
754 phenome Archive (EGA, <https://ega-archive.org/>) with the following accession
755 number: EGAD00001006304. The early gestation placenta RNA-seq data have been
756 deposited in the European Nucleotide Archive (ENA, <https://www.ebi.ac.uk/ena>) with
757 the following accession number: PRJEB38810. The term placenta WGS data have
758 been deposited in the EGA with the following accession number: EGAD00001004198.
759 Correspondence and requests for materials should be addressed to D.S.C-J.
760 (dscj1@cam.ac.uk)

761

762 **Competing interest statement**

763 D.S.C-J. reports non-financial support from Roche Diagnostics Ltd, outside the
764 submitted work; G.C.S.S. reports personal fees and non-financial support from Roche
765 Diagnostics Ltd, outside the submitted work; D.S.C-J. and G.C.S.S. report grants from
766 Sera Prognostics Inc, non-financial support from Illumina Inc, outside the submitted
767 work. S.G, F.G, I.A, G.A, E.C, A.R.J.L. and L.M.R.H. have nothing to disclose.

768

769

770 **Acknowledgements**

771 This work was supported by the Medical Research Council (United Kingdom;
772 G1100221 and MR/K021133/1) and the National Institute for Health Research (NIHR)
773 Cambridge Biomedical Research Centre (Women's Health theme). I.A. is funded by
774 the Centre for Trophoblast Research (CTR) Next Generation Fellowship. G.A. is
775 funded by the CTR PhD scholarship. A.R.J.L. and L.M.R.H. are funded by Wellcome
776 PhD studentships. We would like to thank Katrina Holmes, Josephine Gill, Leah
777 Bibby, Samudra Ranawaka and Ryan Millar for technical assistance during the study.
778 We would like to thank Dr Álvaro Cortés-Calabuig for kindly sharing research data.
779 The views expressed are those of the authors and not necessarily those of the NHS,
780 the NIHR or the Department of Health and Social Care.

781

782 *Author contributions:* D.S.C-J. and G.C.S.S. conceived the experiments. S.G, D.S.C-
783 J, G.C.S.S, designed the experiments. F.G, I.A, G.A. and E.C. performed the
784 experiments. S.G. analyzed all the sequencing data. E.C. managed sample collection
785 and processing and the biobank in which all samples were stored. A.R.J.L. and
786 L.M.R.H. provided and processed sequence data. All authors contributed to writing
787 the manuscript and approved the final version.

788

789

790 **References**

791
792 Anders S, Huber W. 2010. Differential expression analysis for sequence count data. *Genome*
793 *Biol* **11**: R106.

794 Armstrong DL, McGowen MR, Weckle A, Pantham P, Caravas J, Agnew D, Benirschke K,
795 Savage-Rumbaugh S, Nevo E, Kim CJ, et al. 2017. The core transcriptome of
796 mammalian placentas and the divergence of expression with placental shape. *Placenta*
797 **57**: 71–78.

798 Ashley B, Simner C, Manousopoulou A, Jenkinson C, Hey F, Frost JM, Rezwan FI, White
799 CH, Lofthouse EM, Hyde E, et al. 2021. Placental uptake and metabolism as
800 determinants of pregnancy vitamin D status. *BioRxiv*.

801 Austin S, St-Pierre J. 2012. PGC1 α and mitochondrial metabolism--emerging concepts and
802 relevance in ageing and neurodegenerative disorders. *J Cell Sci* **125**: 4963–4971.

803 Awamleh Z, Gloor GB, Han VKM. 2019. Placental microRNAs in pregnancies with early
804 onset intrauterine growth restriction and preeclampsia: potential impact on gene
805 expression and pathophysiology. *BMC Med Genomics* **12**: 91.

806 Brosens I, Pijnenborg R, Vercruyse L, Romero R. 2011. The “Great Obstetrical Syndromes”
807 are associated with disorders of deep placentation. *Am J Obstet Gynecol* **204**: 193–201.

808 Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, Sanders MA, Ellis P,
809 Alder C, Hooks Y, et al. 2019. Somatic mutations and clonal dynamics in healthy and
810 cirrhotic human liver. *Nature* **574**: 538–542.

811 Bruno M, Mahgoub M, Macfarlan TS. 2019. The Arms Race Between KRAB-Zinc Finger
812 Proteins and Endogenous Retroelements and Its Impact on Mammals. *Annu Rev Genet*
813 **53**: 393–416.

814 Buckberry S, Bianco-Miotto T, Bent SJ, Clifton V, Shoubridge C, Shankar K, Roberts CT.
815 2017. Placental transcriptome co-expression analysis reveals conserved regulatory
816 programs across gestation. *BMC Genomics* **18**: 10.

817 Bustamante J, Ramírez-Vélez R, Czerniczyniec A, Cicerchia D, Aguilar de Plata AC, Lores-
818 Arnaiz S. 2014. Oxygen metabolism in human placenta mitochondria. *J Bioenerg
819 Biomembr* **46**: 459–469.

820 Chatterjee A, Macaulay EC, Rodger EJ, Stockwell PA, Parry MF, Roberts HE, Slatter TL,
821 Hung NA, Devenish CJ, Morison IM. 2016. Placental hypomethylation is more
822 pronounced in genomic loci devoid of retroelements. *G3 (Bethesda)* **6**: 1911–1921.

823 Colucci F. 2019. The immunological code of pregnancy. *Science* **365**: 862–863.

824 Coorens THH, Oliver TRW, Sanghvi R, Sovio U, Cook E, Vento-Tormo R, Haniffa M, Young
825 MD, Rahbari R, Sebire N, et al. 2021. Inherent mosaicism and extensive mutation of
826 human placentas. *Nature* **592**: 80–85.

827 de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones
828 DS, Smith GCS. 2019. Human placenta has no microbiome but can contain potential
829 pathogens. *Nature* **572**: 329–334.

830 de Rie D, Abugessaisa I, Alam T, Amer E, Arner P, Ashoor H, Åström G, Babina M, Bertin
831 N, Burroughs AM, et al. 2017. An integrated expression atlas of miRNAs and their
832 promoters in human and mouse. *Nat Biotechnol* **35**: 872–878.

833 Donker RB, Mouillet JF, Chu T, Hubel CA, Stoltz DB, Morelli AE, Sadovsky Y. 2012. The
834 expression profile of C19MC microRNAs in primary human trophoblast cells and
835 exosomes. *Mol Hum Reprod* **18**: 417–424.

836 Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C. 1982.
837 Amount and distribution of 5-methylcytosine in human DNA from different types of
838 tissues of cells. *Nucleic Acids Res* **10**: 2709–2721.

839 Eisenberg E, Levanon EY. 2013. Human housekeeping genes, revisited. *Trends Genet* **29**:
840 569–574.

841 ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the
842 human genome. *Nature* **489**: 57–74.

843 Fisher JJ, Bartho LA, Perkins AV, Holland OJ. 2020. Placental mitochondria and reactive
844 oxygen species in the physiology and pathophysiology of pregnancy. *Clin Exp*
845 *Pharmacol Physiol* **47**: 176–184.

846 Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C,
847 Okazaki Y, Jinno Y. 2004. Age related changes in 5-methylcytosine content in human
848 peripheral leukocytes and placentas: an HPLC-based study. *Ann Hum Genet* **68**: 196–
849 204.

850 Gaccioli F, Lager S, Sovio U, Charnock-Jones DS, Smith GCS. 2016. The pregnancy outcome
851 prediction (POP) study: Investigating the relationship between serial prenatal
852 ultrasonography, biomarkers, placental phenotype and adverse pregnancy outcomes.
853 *Placenta* **0**.

854 Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders P-J, Martens L, Kirk PDW,
855 Richardson S, Smith GCS, et al. 2021. The RNA landscape of the human placenta in
856 health and disease. *Nat Commun* **12**: 2639.

857 Gong S, Johnson MD, Dopierala J, Gaccioli F, Sovio U, Constância M, Smith GC, Charnock-
858 Jones DS. 2018a. Genome-wide oxidative bisulfite sequencing identifies sex-specific
859 methylation differences in the human placenta. *Epigenetics* **13**: 228–239.

860 Gong S, Sovio U, Aye IL, Gaccioli F, Dopierala J, Johnson MD, Wood AM, Cook E, Jenkins
861 BJ, Koulman A, et al. 2018b. Placental polyamine metabolism differs by fetal sex, fetal
862 growth restriction, and preeclampsia. *JCI Insight* **3**.

863 Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D,
864 Couronne O, Tran-Gyamfi M, et al. 2004. The DNA sequence and biology of human
865 chromosome 19. *Nature* **428**: 529–535.

866 GTEx Consortium. 2020. The GTEx Consortium atlas of genetic regulatory effects across
867 human tissues. *Science* **369**: 1318–1330.

868 Harris RA, Raveendran M, Worley KC, Rogers J. 2020. Unusual sequence characteristics of
869 human chromosome 19 are conserved across 11 nonhuman primates. *BMC Evol Biol*
870 **20**: 33.

871 Holland O, Dekker Nitert M, Gallo LA, Vejzovic M, Fisher JJ, Perkins AV. 2017. Review:
872 Placental mitochondrial function and structure in gestational disorders. *Placenta* **54**: 2–
873 9.

874 Hondares E, Mora O, Yubero P, Rodriguez de la Concepción M, Iglesias R, Giralt M,
875 Villarroya F. 2006. Thiazolidinediones and rexinoids induce peroxisome proliferator-
876 activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop
877 controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated
878 receptor-gamma coactivation. *Endocrinology* **147**: 2829–2838.

879 Huang Z, Du G, Huang X, Han L, Han X, Xu B, Zhang Y, Yu M, Qin Y, Xia Y, et al. 2018.
880 The enhancer RNA lnc-SLC4A1-1 epigenetically regulates unexplained recurrent
881 pregnancy loss (URPL) by activating CXCL8 and NF- κ B pathway. *EBioMedicine* **38**:
882 162–170.

883 Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG. 2003. Alport's syndrome,
884 Goodpasture's syndrome, and type IV collagen. *N Engl J Med* **348**: 2543–2556.

885 Jain A, Tuteja G. 2019. TissueEnrich: Tissue-specific gene enrichment analysis.
886 *Bioinformatics* **35**: 1966–1967.

887 Kajander EO, Kauppinen LI, Pajula RL, Karkola K, Eloranta TO. 1989. Purification and
888 partial characterization of human polyamine synthases. *Biochem J* **259**: 879–886.

889 Kim J, Zhao K, Jiang P, Lu Z, Wang J, Murray JC, Xing Y. 2012. Transcriptome landscape of
890 the human placenta. *BMC Genomics* **13**: 115.

891 Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, Osborne RJ,

892 Huntly BJP, Martincorena I, Anderson E, et al. 2018. Population dynamics of normal
893 human blood inferred from somatic mutations. *Nature* **561**: 473–478.

894 Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, Georgakopoulos N,
895 Torrente F, Noorani A, Goddard M, et al. 2019. The landscape of somatic mutation in
896 normal colorectal epithelial cells. *Nature* **574**: 532–537.

897 Lim YC, Li J, Ni Y, Liang Q, Zhang J, Yeo GSH, Lyu J, Jin S, Ding C. 2017. A complex
898 association between DNA methylation and gene expression in human placenta at first
899 and third trimesters. *PLoS One* **12**: e0181155.

900 Martínez F, Kiriakidou M, Strauss JF. 1997. Structural and functional changes in mitochondria
901 associated with trophoblast differentiation: methods to isolate enriched preparations of
902 syncytiotrophoblast mitochondria. *Endocrinology* **138**: 2172–2183.

903 Martinez F, Olvera-Sánchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O.
904 2015. Multiple functions of syncytiotrophoblast mitochondria. *Steroids* **103**: 11–22.

905 Miller KN, Clark JP, Anderson RM. 2019. Mitochondrial regulator PGC-1a-Modulating the
906 modulator. *Current Opinion in Endocrine and Metabolic Research* **5**: 37–44.

907 Moffett A, Chazara O, Colucci F. 2017. Maternal allo-recognition of the fetus. *Fertil Steril*
908 **107**: 1269–1272.

909 Moll R, Divo M, Langbein L. 2008. The human keratins: biology and pathology. *Histochem
910 Cell Biol* **129**: 705–733.

911 Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dentro SC, Dawson KJ,
912 Butler T, Rahbari R, Mitchell TJ, et al. 2020. The mutational landscape of normal
913 human endometrial epithelium. *Nature* **580**: 640–646.

914 Papatheodorou I, Moreno P, Manning J, Fuentes AM-P, George N, Fexova S, Fonseca NA,
915 Füllgrabe A, Green M, Huang N, et al. 2020. Expression Atlas update: from tissues to
916 single cells. *Nucleic Acids Res* **48**: D77–D83.

917 Pasupathy D, Dacey A, Cook E, Charnock-Jones DS, White IR, Smith GCS. 2008. Study
918 protocol. A prospective cohort study of unselected primiparous women: the pregnancy
919 outcome prediction study. *BMC Pregnancy Childbirth* **8**: 51.

920 Penning TM, Chen M, Jin Y. 2015. Promiscuity and diversity in 3-ketosteroid reductases. *J
921 Steroid Biochem Mol Biol* **151**: 93–101.

922 Prater M, Hamilton RS, Wa Yung H, Sharkey AM, Robson P, Abd Hamid NE, Jauniaux E,
923 Charnock-Jones DS, Burton GJ, Cindrova-Davies T. 2021. RNA-Seq reveals changes
924 in human placental metabolism, transport and endocrinology across the first-second
925 trimester transition. *Biol Open* **10**.

926 Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019. g:Profiler: a
927 web server for functional enrichment analysis and conversions of gene lists (2019
928 update). *Nucleic Acids Res* **47**: W191–W198.

929 Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A,
930 Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, et al. 2015. Integrative analysis
931 of 111 reference human epigenomes. *Nature* **518**: 317–330.

932 Robinson DG, Storey JD. 2014. subSeq: determining appropriate sequencing depth through
933 efficient read subsampling. *Bioinformatics* **30**: 3424–3426.

934 Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression
935 analysis of RNA-seq data. *Genome Biol* **11**: R25.

936 Schoots MH, Gordijn SJ, Scherjon SA, van Goor H, Hillebrands J-L. 2018. Oxidative stress in
937 placental pathology. *Placenta* **69**: 153–161.

938 Smith AC, Robinson AJ. 2016. MitoMiner v3.1, an update on the mitochondrial proteomics
939 database. *Nucleic Acids Res* **44**: D1258-61.

940 St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J,
941 Yang W, et al. 2006. Suppression of reactive oxygen species and neurodegeneration by
942 the PGC-1 transcriptional coactivators. *Cell* **127**: 397–408.

943 Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. 2005. PGC-1alpha regulates the
944 mitochondrial antioxidant defense system in vascular endothelial cells. *Cardiovasc Res*
945 **66**: 562–573.

946 Verheecke M, Cortès Calabuig A, Finalet Ferreiro J, Brys V, Van Bree R, Verbist G, Everaert
947 T, Leemans L, Gziri MM, Boere I, et al. 2018. Genetic and microscopic assessment of
948 the human chemotherapy-exposed placenta reveals possible pathways contributive to
949 fetal growth restriction. *Placenta* **64**: 61–70.

950 Vernier M, Giguère V. 2021. Aging, senescence and mitochondria: the PGC-1/ERR axis. *J
951 Mol Endocrinol* **66**: R1–R14.

952 Watanabe K, Umićević Mirkov M, de Leeuw CA, van den Heuvel MP, Posthuma D. 2019.
953 Genetic mapping of cell type specificity for complex traits. *Nat Commun* **10**: 3222.

954 Watson AL, Skepper JN, Jauniaux E, Burton GJ. 1998. Susceptibility of human placental
955 syncytiotrophoblastic mitochondria to oxygen-mediated damage in relation to
956 gestational age. *J Clin Endocrinol Metab* **83**: 1697–1705.

957 Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell
958 B, Scarpulla RC, et al. 1999. Mechanisms controlling mitochondrial biogenesis and
959 respiration through the thermogenic coactivator PGC-1. *Cell* **98**: 115–124.

960 Yang L, Duff MO, Graveley BR, Carmichael GG, Chen L-L. 2011. Genomewide
961 characterization of non-polyadenylated RNAs. *Genome Biol* **12**: R16.

962 Yang P, Wang Y, Macfarlan TS. 2017. The Role of KRAB-ZFPs in Transposable Element
963 Repression and Mammalian Evolution. *Trends Genet* **33**: 871–881.

964 Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ,
965 Weinstein JN, et al. 2020. Comprehensive molecular characterization of mitochondrial
966 genomes in human cancers. *Nat Genet* **52**: 342–352.

967