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Abstract

To produce genetic gain, hybrid crop breeding can change the additive as well as dominance genetic
value of populations, which can lead to utilization of heterosis. A common hybrid breeding strategy is
reciprocal recurrent selection (RRS), in which parents of hybrids are typically recycled within pools based
on general combining ability (GCA). However, the relative performance of RRS and other possible
breeding strategies have not been thoroughly compared. RRS can have relatively increased costs and
longer cycle lengths which reduce genetic gain, but these are sometimes outwei ghed by its ability to
harness heterosis due to dominance and increase genetic gain. Here, we used stochastic simulation to
compare gain per unit cost of various clonal breeding strategies with different amounts of population
inbreeding depression and heterosis due to dominance, relative cycle lengths, time horizons, estimation
methods, selection intensities, and ploidy levels. In diploids with phenotypic selection at high intensity,
whether RRS was the optimal breeding strategy depended on the initial population heterosis. However, in
diploids with rapid cycling genomic selection at high intensity, RRS was the optimal breeding strategy
after 50 years over almost all amounts of initial population heterosis under the study assumptions. RRS
required more population heterosis to outperform other strategies asitsrelative cycle length increased and
as selection intensity decreased. Use of diploid fully inbred parents vs. outbred parents with RRS
typically did not affect genetic gain. In autopolyploids, RRS typically was not beneficial regardliess of the
amount of population inbreeding depression.
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Key M essage

Reciprocal recurrent selection sometimes increases genetic gain per unit cost in clona diploids with
heterosis due to dominance, but it typically does not benefit autopol yploids.
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Introduction

Hybrid breeding may achieve genetic gain by changing the additive as well as dominance genetic
value of populations over breeding cycles. Hybrid breeding strategies are widely used in diploid, inbred-
hybrid crops such as maize (Zea mays L.) and sorghum (Sorghum bicolor L.), but an assessment of these
strategies’ genetic gain per unit cost over awide range of dominance genetic architectures has not yet
been conducted (Duvick, 2005; Longin et a., 2012). Additionally, breeding strategies to cost-effectively
utilize dominance in clonal breeding programs, particularly autopolyploids, have not been fully explored
or widely initiated (Diaz et a., 2021; Ceballos et a., 2020; Darkwa et a., 2020; Batte et a, 2020;
Lindhout et a., 2018). Dominance has been observed via inbreeding depression and heterosisin
economically important traits of various clonal species, such asfresh yield in diploid cassava (Manihot
esculenta) and autohexaploid sweetpotato (Ipomoea batatas; Ceballos et a., 2015; Diaz et a., 2021).
However, clonal crops have differences from inbred-hybrid crops which could affect the optimal breeding
strategy to achieve genetic gain when heterosis due to dominance is present. Therefore, we compare
breeding strategies in model clonal crop breeding programs by stochastic simulation with various genetic
architectures of heterosis due to dominance.

Thefirst consideration in clonal hybrid breeding is that clonal crops may be diploid, as are
cassava and white yam (Dioscorea rotundata), but are often various degrees of autopolyploid, asin potato
(Solanum tuber osum), sweetpotato, sugarcane (Saccharum spp.), and banana (Musa spp.). The
guantitative genetics of autopolyploids are an active area of research, and the increased transmissibility of
dominance value in autopol yploids with random mating compared to diploids suggests that breeding
strategies to harness heterosis due to dominance may differ between diploids and autopol ypl oids
(Amadeu et al., 2020). The second consideration is that the multiplication ratio of clonal crops may be
low; for example, maize typically produces around 200 seeds per cross (200:1), but white yam currently
produces around 4 to 8 propagules per plant (4:1 to 8:1; Aighewi et a., 2015). Therefore, hybrid breeding
strategies which require two stages of crossing may face penalties in species with low multiplication
ratios due to the additional time needed for multiplication. Finally, clonal crop genotypes can be routinely
reproduced identically by asexual reproduction rather than inbreeding to full homozygosity (McKey et d.,
2010). Many clonal crops are difficult or impossible to self and display severe inbreeding depression;
some populations lose viability even without complete homozygosity (Lebot, 2019). It has long been
recognized that hybrid breeding does not require fully inbred parental genotypes to harness heterosis;
rather, fully inbred parents are required to identically reproduce hybrid genotypes in inbred-hybrid crops
that cannot be clonally propagated (Schnell, 1961; Lamkey & Edwards, 1999). However, occasional
concern that clonal breeding would benefit from fully inbred lines remains (Ceballos et al., 2015; Powell
et a., 2020).

The key reason to pursue a hybrid breeding strategy isto utilize heterosis and avoid inbreeding
depression due to dominance while also increasing additive value. The mean additive value of traits can
be increased by increasing the frequency of favorable alleles, but for traits with both additive and
dominance gene action, there is a breeding opportunity to increase mean total genetic value by also
maintaining or increasing frequency of heterozygous genaotypes. Fundamentally, dominance value (d)
refers to deviation of heterozygote genetic value from mean homozygote value at a locus (Falconer &
Mackay, 1996). For evolutionary reasons, dominance may tend to be positive in the direction of fithess—
i.e., acrossloci which exhibit dominance, heterozygote value is often greater than mean homozygote
value on average (Lynch & Walsh, 1998; Mannaet al., 2011; Yang et a., 2017).

In traits of crops that do not exhibit dominance, selection on individual value with random mating
increases the mean genetic value of populations, because the frequency of favorable alleles can be
increased without regard for their transitory allocation into homozygous or heterozygous genotypes in the
next breeding cycle (Hallauer & Darrah, 1985). Each unit of increase in the frequency of afavorable
allele produces linear increase in mean genetic value. In traits with adequate dominance, the all ocation of
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90 dledesinto heterozygous genotypes nonlinearly affects mean genetic value (Schnell, 1961). Maintaining
91  orincreasing the frequency of heterozygous genotypes that exhibit dominance increases mean genetic
92  value because these heterozygous genotypes have disproportionately higher values than the less fit, lower-
93  value homozygous genotype (Wei & Van der Steen, 1991). At alocus with dominance, the lower-value
94  homozygous genotype is often referred to as a del eterious recessive genotype, and the decrease in
95  population fitness due to deleterious recessive loci is sometimes called genetic load (Fisher, 1935; Muller,
96  1950; Falconer & Mackay, 1996). Ultimately, fixing the favorable homozygous genotype leads to higher
97  mean genetic value than maintaining heterozygous genotypes in absence of complete dominance or
98  overdominance—so maximizing heterosisis suboptimal with incomplete dominance— but if the
99  favorable homozygoteis not fixed it is prudent to avoid the deleterious recessive state (Rembe et al.,
100  2019). Even in absence of true overdominance, linkage disequilibrium of dominant allelesin breeding
101  populations can lead to pseudooverdominance (Jones, 1917). If the haplotypes are not broken over the
102  breeding time horizon, they prevent stacking of favorable aleles and effectively behave as an
103 overdominant locus (Bingham, 1998; Werner et a., 2020).

104 The biologically dominant gene action of individual alleles of complex traits leads to population-
105  wide heterosis and inbreeding depression (Hallauer et al., 2010; Lamkey & Edwards, 1999; Labroo et al.,
106  2021). Here, we borrow from the framework of heterosis and inbreeding depression presented by

107  Faconer & Mackay (1996) and Lamkey & Edwards (1999). As defined by Falconer & Mackay (1996),
108  inbreeding depression is the difference in value between any population at Hardy-Weinberg equilibrium
109  (Pywg) and the population if fully inbred (homozygous; P;), or P; — Py g Heterosis can then be

110  considered the opposite of inbreeding depression due to dominance, Py — P;. Lamkey & Edwards
111 (1999) further partition heterosis into values which are relevant to RRS programs. Panmictic heterosisis
112 thedifferencein theinter-pool hybrid value (Pr, ) to the mean of the intra-pool genotypes at Hardy-

113 Weinberg equilibrium (Py,,,,, - Psyz)s OF P, — %(PAHWE + P, ) Basdline heterosis refersto the
114  differencein value of theintra-pool genotypes at Hardy-Weinberg equilibrium to the value of the intra-
115  pool genotypesif fully inbred to homozygosity (Py,, Ps,). or%[(PAHWE — Py,)+ (Po,yy — Ps,)|

116  Inbred-midparent heterosisis the sum of panmictic and baseline heterosis. Lamkey & Edwards (1999)
117  specifically define inbreeding depression as the reversal of baseline heterosis, but here we consider the
118  more general definition of Falconer & Mackay (1996). We acknowledge that heterosis due to epistasisis

119  possible, and that heterosis due to epistasisis not the reversal of inbreeding depression, but we do not
120  consider epistasisin this study (Lynch, 1991; Lynch & Walsh, 1998).

121 As stated, increasing favorable alele frequencies can increase the additive value of populations.
122 Recurrent selection (RS) is a breeding strategy which increases the frequency of favorable alleles

123 (Hallauer et a., 2010). In RS, asingle pool of genotypes is formed. The genotypes are evaluated, and the
124 best genotypes are selected. The selected genotypes are then randomly intermated to restart the breeding
125  cycle, which concentrates favorable aleles in the next generation. However, with random mating in a
126  singlepoal, it is challenging to increase the frequency of heterozygotes beyond 0.5, because Hardy-

127  Weinberg equilibrium is nearly constantly restored by random mating relative to the previous generation
128  (Falconer & Mackay, 1996). Therefore, when traits have appreciable dominance, reciprocal recurrent
129  selection (RRS) can be aviable alternative strategy to RS (Comstock et al., 1949; Hallauer et al., 2010).
130 InRRS, germplasmis split into at least two pools. Within each pool, intra-pool genotypes may or may not
131 befully inbred. Intra-pool genotypes a'so may or may not be evaluated for their per-se performance.

132 Next, theintra-pool genotypes are crossed to genotypes of the opposing pool to form single-cross inter-
133 pool F, hybrids; typically, a sample of intra-pool genotypesis used because the number of all possible
134  crosses becomesimpractically large. The inter-pool hybrids are evaluated. Then, intra-pool parents of
135  hybrids are usually selected based on estimates of their average inter-pool performancein F; hybrids, or
136  general combining ability (GCA; Comstock et al., 1949; Schnell, 1961). The two pools remain strictly
137  separated with no mixing of pools during recycling, and over breeding cycles, this process leads to the
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138  formation of heterotic pools (Duvick et al., 2004). Heterotic pools arise because selection on GCA not
139  only increases the frequency of favorable alleles, but also drives and drifts apart the frequencies of aleles
140  between pools, particularly those which exhibit dominance (Rembe et al., 2019). Upon inter-pool

141  crossing, this differencein alele frequency produces an excess of heterozygous genotypes in the F;

142 hybrids compared to the frequency of heterozygous genotypes in the parent pools (Lamkey & Edwards,
143 1999). The excess of heterozygosity leads to population-wide heterosis as excess dominance value is

144  expressed in the inter-pool hybrids over the intra-pool parents. This panmictic heterosis occurs regardless
145  of whether theintra-pool genotypes are fully inbred. If the intra-pool genotypes are inbred, upon inter-
146 pool crossing both panmictic heterosis and baseline heterosis are observed in their hybrids, as

147  heterozygosity exceeds not only the diverged poolsif they were outbred but also the fully inbred lines.

148 Despite the widespread popularity of RRS (e.g. in maize breeding), additional assessment of its
149  efficiency is needed to inform decision-making in diverse crops. In absence of heterosis, or even with low
150  amounts of heterosis, RRSisthought to be less efficient than RS in improving mean genetic val ue of

151  breeding populations because RRS usually requires alonger cycle length (L; Longin et a., 2014). RRS
152 dsousualy has higher costs per genotype generated than RS because RRS requires maintaining separate
153  pooals of germplasm and evaluating both intra- and inter-pool material (Longin et a., 2014). However, in
154  the presence of adeguate dominance, RRS is thought to be more efficient in producing genetic gain than
155 RS because RRS prevents expression of deleterious homozygous recessive statesin F; hybrids by

156  increasing the frequency their heterozygous genotypes. In other words, RRS harnesses and exploits

157  heterosis due to dominance, which partly entails avoiding inbreeding depression due to dominance.

158 To avoid the challenges of RRS while still making some use of heterosis, animal breeders have
159  developed intermediate strategies (Leroy et al., 2016; Swan & Kinghorn, 1992). Of these strategies, the
160  most relevant to challenges in plant breeding may be terminal crossing (Leroy et a., 2016). Terminal
161  crossing can be thought of as RS within two pools, which are subsequently crossed to obtain panmictic
162  heterosisviadrift. In termina crossing, germplasm is divided into two pools. Within each pool, intra-poal
163  genotypes are evaluated for per-se performance. Then, intra-pool genotypes are “terminally” crossed to
164  the opposing pool to form single-crossinter-pool F; hybrids, and the inter-pool hybrids are evaluated for
165  useas products. However, intra-pool parents are selected and recycled as parents using estimates of their
166 intra-pool per-se performance rather than their GCA. Asin RRS, the two pools remain strictly separated
167  during recycling. Termina crossing has a shorter cycle length than RRS because parents can be recycled
168  without waiting for their hybrid progeny phenotypes, and terminal crossing can be logistically simpler
169  than RRS because testcrossing is not necessary. As mentioned, terminal crossing can also exploit some
170  panmictic heterosis because alele frequencies within pools come to diverge by drift. However, terminal
171  crossing builds less panmictic heterosis than RRS when dominance is present because it relies on drift
172 and does not actively select for divergence between pools as would GCA.

173 The use of genomic selection (GS) to decrease cycle length can increase the competitiveness of
174  RRScompared to other strategies, especially to establish new hybrid breeding programs (Kinghorn et al.,
175  2010; Rembeet al., 2019). Reciprocal recurrent genomic selection can achieve cycle lengths equal to one-
176  poal recurrent genomic selection and two-pool terminal crossing with genomic selection because parents
177  can berecycled on estimates of their value using their relatives' phenotypes in a genomic prediction

178  model rather than estimates using the parent’ s phenotypes (Kinghorn et a., 2010; Powell et al., 2020).
179  Therefore, in al strategies, parents can be recycled as soon as they can be genotyped and predicted

180  accurately rather than as soon as they can be phenotyped accurately, which is the case with phenotypic
181  selection (PS).

182 A recently developed strategy to address dominance is cross performance, particularly genomic
183  prediction of cross performance (Werner et al., 2020; Wolfe et al., 2021). In genomic prediction of cross
184  performance, a single pool of genotypesisformed. The genotypes and phenotypes are evaluated and used
185  to generate a genomic prediction model which typically includes both additive and dominance effects.
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186  Then, the predicted effects are used to cal culate the mean performance of all possible crossesin the pool,
187  and the best crosses are selected. Finally, the selected crosses are made to restart the breeding cycle. Key
188  concepts with cross performance are that mating is non-random in asingle pool and that the parental

189  selection units are the crosses rather than the individuals. Non-random mating allows combinations of

190  alleleswithin alocus (i.e. genotypes) to be “cut-and-paste” from parents into progeny, so more

191  heterozygosity and thus more dominance value is maintained than with random mating. In the presence of
192  dominance, genomic prediction of cross performance has been demonstrated to outperform selection on
193  genomic estimated breeding value with random mating in a single pool (Werner et a., 2020). However,
194  thevarious possible genomics-assisted hybrid breeding strategies have not been compared previoudly.

195 Finally, the long-term benefit and short-term cost of controlling the inbreeding rate in breeding
196  populationsiswell understood, particularly with use of pedigree selection or GS (Woolliams et d., 2015).
197  However, it is unknown whether the relative performance of hybrid breeding strategies reacts to different
198  degrees of inbreeding control. We contend that inbreeding control can be viewed as a method to manage
199  inbreeding depression in a population, as demonstrated by Fernandez et a. (2021). The relative

200 efficiencies of various breeding strategies to address inbreeding depression may differ depending on the
201  inbreeding rate, which is explored indirectly here viathe selection intensity. Inbreeding is caused by

202  selection and drift over breeding cycles, which lead to overrepresentation of homozygous genotypesin
203  breeding generations compared to the base population at Hardy-Weinberg equilibrium. Even if

204  populations are at Hardy-Weinberg equilibrium in terms of genotype frequencies, and thus not inbred per
205  se they may still beinbred relative to the base population. Inbreeding due to concentration or fixation of
206  favorable alleles, which can increase overall genetic value, is desirable. However, inbreeding due to drift
207  canincrease the frequency of unfavorable alleles and their homozygotes inadvertently. Inbreeding control
208  attemptsto limit inbreeding due to drift and thus can prevent inbreeding depression. Thisis because

209  inbreeding control prevents random loss of heterozygosity which decreases mean genetic valuein the
210  presence of directional dominance. Of course, inbreeding control aso limits drift of alele frequenciesin
211  favorable directions, which often leads to short-term costs. Inbreeding control also informs long-term
212 comparisons of breeding strategies. In its absence, different strategies may completely deplete genetic
213 variance at different timepoints, with no further gain, and long-term comparison is simply arecord of
214  these different timepoints. The optimal or acceptable inbreeding rate fundamentally depends on the time
215  horizon of abreeding pipeline (Moeinizade et al., 2019). Different hybrid breeding strategies may have
216  different performance at different time horizons, so inbreeding control may be needed to prevent

217  exhaustion of genetic variance and reveal these differences.

218 In summary, several possible breeding strategies to improve traits with heterosis and inbreeding
219  depression due to dominance exist. We shall now proceed to their comparison. We consider how various
220  amounts of inbreeding depression and heterosisin a popul ation affect breeding strategy efficiencies

221  across ploidies. We test phenotypic strategy efficiencies for species with ajuvenility period (i.e. delayed
222 flowering) and low multiplication ratio. We explore the impact of intra-pool eval uation in RRS programs,
223 aswell astheimpact of intra-pool doubled haploid development.

224 Materials and M ethods

225 Stochastic simulations were conducted in the R 4.0.4 computing environment with the package
226  AlphaSimR 1.0.1 on the International Maize and Wheat Improvement Center High-Performance

227  Computing Cluster and the University of Wisconsin-Madison Center For High Throughput Computing (R
228  Core Team, 2021; Gaynor et al., 2021). The general procedure was that 180 starting populations with

229  different genetic architectures were simulated, then combinations of breeding strategies, selection

230 intensities, and estimation methods were applied to each population for 100 breeding cyclesin ten

231  replicates (Fig. 1). The responses were then measured with variously assumed cycle lengths.

232 Genetic architecture simulation
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233 The following steps were common to all scenarios. A genome with haploid n = 10 chromosomes
234 was simulated using the AlphaSimR runMacs() command, which calls the Markovian Coal escent

235  Simulator of Chen et d. (2009). The “GENERIC” species history was used, which implied starting

236  effective population size (N¢) of 100 * ploidy / 2, following the scaling recommendations of Arnold et al.
237 (2012), and amutation rate of 2.5 * 10°® mutations per base pair. Following the genome simulation, a
238  founder population of 100 non-inbred hermaphroditic individuals was drawn. A single AD trait with

239  additive and dominance effects was simulated with a starting mean genetic value of zero and additive
240  genetic variance of one using the addTraitAD() command. The useVarA option was set to TRUE, so the
241  starting additive genetic variance in the base population was one for all scenarios, but the dominance
242  variance and thus total genetic variance varied depending on the dominance parameters. Although some
243 types of epistasis can contribute to inbreeding depression and heterosis, epistasis was not considered in
244 thisstudy. We also did not consider environment or genotype x environment effects to reduce the

245  complexity of the study. We assumed no historic population split, which could affect the relative

246  efficiency of the strategies (Lamkey & Edwards, 1999).

247 To create trait genetic architectures for each scenario, all combinations of the following factors
248  and their levels were simulated: number of quantitative trait loci (QTL) per chromosome, nQtlPer Chr, of
249 100, 1000, or 5000; mean dominance degree, meanDD, of 0, 0.5, 1, 1.5, or 10; variance of the dominance
250  degrees, varDD, of 0, 0.2, 1, or 10; and, ploidy of 2, 4, or 6 (Fig. 1; Supplemental File 1). The methods of
251  simulating alelic effectsin AlphaSimR are described in the vignette “ Traits in AlphaSimR”; as such,

252 polyploid values were assigned assuming digenic dominance interactions only (Gaynor, 2021; Gallais,
253 2003). Varying the number of QTL, mean dominance degree, variance of the dominance degrees, and
254  ploidy led to 180 populations (3 * 5* 4* 3) with varied amounts of initial population heterosis (Ho) as
255  well asvaried starting dominance and total variance, all of which were recorded (Supplemental Fig. 1;
256  Gaynor et d., 2018).

257 Ho was the difference in the starting population at Hardy-Weinberg equilibrium from the starting
258  population if fully inbred to homozygosity; it was divided by the starting genetic standard deviation to
259  allow comparison across populations with traits at different scales. This measure of heterosis is not named
260  intheframework of Lamkey & Edwards (1999), but it corresponds to the reversal of inbreeding

261  depression as defined by Falconer & Mackay (1996). With al else equal, the amount of Hy increases as
262  the mean dominance degree and the square root of the number of QTL increase and decreases as the

263  variance of the dominance degrees increases, however, the effect of the variance of the dominance

264  degreesisrelatively smaller (Supplemental Fig. 1; Gaynor et al., 2018). We did not control linkage

265  disequilibrium, which also affects Hp, so simulating populations with identical parameters asin this study
266  may lead to slightly different Hy as their linkage disequilibrium varies (Gaynor et al., 2018). Occasional
267  negative Hy was observed in architectures with meanDD = 0 and varDD > 0 due to random sampling of
268  dominance degrees, which sometimes led to negative directional dominance in the starting population and
269  higher mean values of inbred than outbred genotypes. Each single trait modeled can be interpreted as

270  representing an index of quantitative traits.

271  Breeding scenarios

272 Each simulation was initiated by drawing 40 individual s from the same founder population with a
273 given genetic architecture for each of ten replicates. In other words, founder populations were not varied
274 within genetic architectures, and stochasticity within architectures was only due to Mendelian sampling
275  and (at times) random phenotypic error. As such, there was more stochasticity across genetic

276  architectures—which used different founder populations and traits—than within genetic architectures. For
277  simulations with two pooals, the 40 individuals were randomly split into two pools of 20 (Cowling et al.,

7
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278  2020). Then, a combination of strategy, selection intensity, and estimation method was applied for 100
279  cycles. Responses were subsequently interpreted with variously assumed cycle lengths. A scenario was
280  defined as a combination of strategy, estimation method, selection intensity, and assumed relative cycle
281  lengths (Fig. 1). Most combinations of the following were assessed: a strategy of One-Pool Breeding

282  Vaue, One-Pool Predicted Cross Performance, Two-Pool Breeding Vaue, Two-Pool GCA, or Two-Pool
283  Breeding Value + GCA; an estimation method of phenotypic value, genomic estimated value, or none
284  (truevalue); and, high or low selection intensity (Fig. 1). For ploidy = 2 only, we considered two

285  additional selection strategies to address inbred-hybrid crops: Two-Pool Doubled Haploid GCA and Two-
286  Pool Doubled Haploid Breeding Value + True GCA. Two-Pool Breeding Value referred to aterminal
287  crossing program. Scenarios with a phenotypic estimation method and the One-Pool Predicted Cross
288  Performance strategy were not considered; although phenotypic cross performance can be estimated as
289  the mean of the parental phenotypes, this scenario was too computationally intensive with phenotypic
290  program sizes used.

291 Phenotypes in the study referred to single phenotypic values per entry with afixed error variance
292  and aninitial broad-sense heritability of 0.5, which represent replicated phenotypes. The broad sense

293  heritability of the phenotypes subsequently changed with genetic variance over cycles. The phenotypic
294  estimate of value referred to these single phenotypic values, which were used for selection, though for
295  Two-Pool GCA the single phenotypic records were used to calculate GCA.

296 Strategy cycle length was assumed to depend on the estimation method. Strategies which used true
297  valuesor genomic estimates were assumed to have a cycle length of two, which was considered arealistic
298  rapid-cycling length. Some rapid-cycling GS programs may achieve a one-season cycle length, but thisis
299  uncommon due to practical constraints (Gaynor et a., 2017). Phenotypic strategies were considered to
300 havedifferent cycle lengths depending on whether fast or slow multiplication was possible. Scenarios
301  with slow multiplication were also assumed to have slow flowering, as occursin white yam (A. Amele,
302  pers.comm.). Fast multiplication indicated that adequate material for phenotypic evaluation and crossing
303  wasavailablein the season following crossing, and slow multiplication implied adequate material was
304  available after two seasons following crossing. Doubled haploid production was assumed to require one
305  season. All cyclelengths under all assumed constraints are reported in Table 1.

306 We assumed that a single cohort and breeding stage occurred per season, although typical

307  programs may run multiple cohorts at different stagesin parallel per season (Covarrubias-Pazaran et al.,
308  2021). Assuch, to modify the cycle length, the cycle numbers for a given strategy, estimation method,
309 andintensity were multiplied by the appropriate value. For example, the PS scenarios with fast and slow
310  multiplication were obtained from the same simulations, and fast and slow multiplication cycle lengths
311  wereimposed by multiplying the cycle number by the strategy cycle length. We assumed that both

312  phenotypic and genotypic information became available post-flowering. Genotypic information was

313  obtained from asimulated SNP-chip with 1000 markers; the number of markers was not varied across
314  genetic architectures. If genomic estimated values were used, the training set for two-pool programs was
315  comprised of the 2,000 most recently evaluated inter-pool individuals, and the training set for one-pool
316  programs was comprised of the 2,000 most recently evaluated intra-pool individuals. To control resources
317  across strategies, we varied program size by decreasing the number of progeny per cross first, then

318  decreasing the number of crossesif necessary. We assumed that the costs of making crosses and growing
319  out non-evaluated plots were negligible. The cost of evaluation plots was assumed to be equal across

320  strategies. For further comparisons, we defined all costs in terms of evaluation plots. We assumed the cost
321  of generating a doubled haploid line was three times the cost of an evaluation plot. We assumed that the
322 cost of phenotyping an individual was equal to the cost of genotyping an individua. With use of outbred
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intra-pool parents, genotyping both intra-pool parents and their inter-pool segregating progeny was
necessary. In the doubled haploid scenarios, we assumed that both intra- and inter-pool genotypes were
genotyped, even though the inter-pool progeny genotypes could be inferred from their doubled haploid
parents under the assumed cycle lengths. Scenarios which used true values were identical in sizeto
scenarios with genomic estimated values; cost is not arealistic consideration to obtain true values, and the
true value scenarios were used to consider a situation with perfect accuracy.

A description of each strategy follows. For conciseness, the program sizes are represented by

variables, and the values of variables for each scenario are given in Supplemental Table 1. Parents were
randomly mated in the first cycle, and in all subsequent cycles a crossing plan conferring maximum
avoidance of inbreeding was used (Kimura & Crow, 1963).

One-Pool Breeding Value: The parents are made into x crosses with y progeny per cross, totaling
zindividuals. The z progeny are phenotyped. Then, 2 individuals per family (cross) are selected
using the estimate of value for the scenario strategy. The cycle restarts with the selected
individuals. Genomic estimates were made from a directional dominance model fit on the training
population of intra-pool genotypes using the RRBLUP_D() function (Xiang et a., 2016). Codeis
in Supplemental Files2—7.

Two-Pool Breeding Value: Within each pool, the parents are made into x crosses with y progeny
per cross, totaling z intra-pool progeny per pool. The zintra-pool progeny are phenotyped. From
each pool, two individuals are then selected randomly. For both pools, al zintra-pool progeny per
pool are crossed to both individuals sel ected from the opposing pool, and each inter-pool cross
produces one progeny, creating w inter-pool progeny. The inter-pool progeny are phenotyped.
Within each pool, 2 individuals per family (cross) are selected on the scenario surrogate of intra-
pool breeding value. The cycle restarts with the selected individuals. Genomic estimates were
made from a directional dominance model fit on the training population of inter-pool genotypes
using the RRBLUP_D() function. We did not explore use of other models or use of intra-pool
information in the training set. Code isin Supplemental Files 8—13.

One-Pool Predicted Cross Performance: The parents are made into x crosses with y progeny per
cross, totaling z individuals. The z progeny are evaluated. The expected mean progeny value for
each possible biparental crossis calculated from the expected genotype distribution for each locus
under the assumption that gametes pair independently and that the frequency of these gametes
follows a binomia distribution. In the case of autopolyploids, these assumptions are consistent
with strict bivalent pairing of chromosomesin meiosis, which is the assumption used in this
study. True expected mean progeny valueis calculated using true QTL and their effects, whereas
genomic estimated expected mean progeny value is using SNP markers and their estimated
effects (https://github.com/gaynorr/QuantGenResources/bl ob/main/Cal cCrossM eans.cpp). To
conduct maximum avoidance with cross performance, the pairs of families (crosses) which satisfy
amaximum avoidance of inbreeding plan are identified. Within those pairs of families, the values
of inter-family crosses of their individual members are calculated. Then the two best crosses from
each set of paired families are selected. The cycle restarts with the selected crosses. Genomic
estimates were made from a directional dominance model fit on the training population of intra-
pool genotypes using the RRBLUP_D() function. Code isin Supplemental Files 14—17.
Two-Pool GCA: Within each pooal, the parents are made into x crosses with y progeny per cross,
totaling z intra-pool progeny per pool. From each pool, two individuals are selected randomly.
For both pools, al zintra-pool progeny per pool are crossed to both individuals selected from the
opposing pool, and each inter-pool cross produces one progeny, creating w inter-pool progeny.
The inter-pool progeny are phenotyped. Then, within each pool, 2 individuals per family (cross)
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are selected as parents on GCA. The cycle restarts with the selected individuals. Genomic
estimates of GCA were made from a model with parent-specific allelic additive effects fit on the
training population of inter-pool genotypes using the RRBLUP_GCA() function. Codeisin
Supplemental Files 18—23.

Two-Pool Breeding Value + GCA: these strategies have the same structure as Two-Pool GCA,
except that the intra-pool progeny are evaluated before testcrossing. The top ~75% of individuals
per family (cross) are selected on the appropriate estimate of breeding value according to
scenario, and only the selected individuals are used in testcrossing. With use of genomic
estimated values, intra-pool breeding val ues were estimated with use of a directional dominance
model, RRBLUP_D(), on atraining set of inter-pool genotypes. Intra-pool GCA were estimated
with the same training set but the RRBLUP_GCA() model. Codeisin Supplemental Files 24—
29.

Two-Pool Doubled Haploid GCA: these strategies have the same structure as Two-Pool GCA,
except that al intra-pool progeny were used to create a single doubled haploid linein the season
before testcrossing. Codeisin Supplemental Files 30—35.

Two-Pool Doubled Haploid Breeding Value + GCA: these strategies had the same structure as
Two-Pool GCA, except that all intra-pool progeny were used to create a single doubled haploid
linein the season following intra-pool crossing. The intra-pool doubled haploid lines were
evaluated before testcrossing and the top ~75% of individuals per family (cross) were selected on
the appropriate estimate of breeding value according to scenario, and only these selected
individuals were used in testcrossing. With use of genomic estimated values, intra-pool breeding
values were estimated with use of a directional dominance model, RRBLUP_D(), on atraining set
of inter-pool genotypes. Intra-pool GCA was estimated with the same training set but the
RRBLUP_GCA() model. Codeisin Supplemental Files 36—A41.

Responses and analysis

The responses reported were as follows:

For one-pool scenarios, genetic gain was the mean genetic value at a given timepoint in the intra-
pool genotypes following their evaluation (G, ) minus the mean genetic value of the founder
population (G,), or G, — G,. For the two-pool scenarios, the method was the same except the
inter-pool genotypes were used. This allowed comparison of genetic gain in the product pools of
both scenarios. Genetic gain was also reported for the intra-pool genotypes in the Two-Pool
GCA, Two-Pool Doubled Haploid GCA, Two-Pool Breeding Value + GCA, and Two-Pool
Doubled Haploid Breeding Value + GCA scenarios. Genetic gain was divided by theinitial
population genetic standard deviation.

Mean additive value and mean dominance value were reported at a given cycle in the respective
product pools for one-pool and two-pool scenarios and scaled to the starting popul ation genetic
standard deviation.

Inbreeding depression was reported for the product pools of the scenarios as previously described
(Falconer & Mackay, 1996).

For scenarios with selection on true values, the genomic inbreeding coefficient f was reported for
the product poolsrelative to their initial populations based on a genomic (G) additive relationship
matrix (Van Raden 2008; Method 1) with allele frequencies from the initial population. For
diploids, the mean diagonal of G equals 1 + f (Powell et al., 2010; Endelman and Jannink, 2012).
The more general relationship for ploidy 0 is that the mean diagonal of G equals 1 + (0 —1)f
(Gallais 2003). Please note that the inbreeding coefficient was used only to compare inbreeding
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414 for identical strategies at high vs. low selection intensity and requires subtlety in interpretation
415 across populations with different levels of homozygosity dueto structure.

416 e Panmictic heterosis was reported for the two-pool strategies as previously described (Lamkey &
417 Edwards, 1999).

418 We wish to highlight that the methods used do not permit meaningful comparisons of absolute or

419  scaled values across ploidies. For example, observing that a breeding program for autohexapl oids leads to
420  greater mean genetic value than adiploid at a given cycle does not necessarily imply that more gainis
421  possiblein autohexaploids.

422 Responses were reported for al scenarios after 15 and 50 years of breeding, at which timepoints

423  genetic variance was non-zero for all scenarios. Genetic variance was later exhausted at different

424  timepoints among scenarios. Responses were also reported for PS at the same cycle numbers (8 and 25) as
425 GS and true scenarios. This was done to demonstrate the effect of using GS as an estimation method,

426  without using it to reduce cycle length, on the relative performance of PS and GS. For clarity, results were
427  grouped by the question of interest. The core strategiesto explore the optimal breeding strategy across Hg
428  were One-Pool Breeding Vaue, One-Pool Cross Performance, Two-Pool Breeding Vaue, and Two-Pool
429  GCA. The core strategies were also used to explore the optimal estimation method—i.e. genomic

430  estimated or phenotypic—under the experimental assumptions. The non-core strategies, Two-Pool

431 Breeding Value + GCA, Two-Pool GCA, Two-Pool Doubled Haploid GCA, and Two-Pool Doubled

432  Haploid Breeding Value + GCA, were used to assess whether combined selection on intra-pool breeding
433 vaueand inter-pool GCA increased gain with or without fully inbred intra-pool parents. The non-core
434  strategies were also used to assess whether use of fully inbred diploid intra-pool parentsincreased the rate
435  of genetic gain.

436 To analyze and plot the results, each response at the timepoint of interest (15 years, 50 years, or 25
437  cycles) for the questions of interest (core or non-core strategies) was linearly modeled in base R as
438  follows:

Yijk= Au'+5i+Hj+SHij+ gijk

439 where Y;j;, was the response value for the i scenario S, the " Ho value H, their ij" interaction SH,
440  andtheijK" error ¢ of the simulation replicate. The scenario of aresponse was the combination of

441  dtrategy, estimation method, selection intensity, and assumed cycle length. All effects were assumed to be
442 fixed, normally distributed, and independently distributed. The coefficient of determination (R) value,
443  dope, slope standard error, intercept, and intercept standard error was recorded for each regression

444  (Supplemental File 42). The regressions, the 95% confidence interval of their predicted means, and, at
445  times, raw data points were plotted using the R package ggplot2 (Wickham, 2011). The intersections of
446  the regressions which occurred within the surveyed Hy values and, when possible, their standard errors
447  were aso calculated (Supplemental File 43). The standard errors of the intersections were estimated by
448  maximum likelihood with the R package nime and used to calculate the 95% confidence interval of the
449  intersection (whuber, 2020; Pinheiro et al., 2017). In accordance with recent guidelines of the statistical
450  community, significance testing was not conducted and confidence intervals were interpreted

451  (Wasserstein & Lazar, 2016; Alexander & Davis, 2022). We assumed regressions could be meaningfully
452  distinguished at a given value of Hyif their confidence intervals did not overlap.

453 Only selected responses are plotted in the figures and supplementary figures, but plots of all
454  responsesfor all scenarios in the study are available for reference in Supplemental File 44.

455 Results
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456  Genetic gain in the core strategies

457 The relative performance of the core strategies depended on Hy, the time horizon, the selection
458  intensity in the program, the relative cycle lengths among strategies, the estimation method, ploidy level,
459  and their interactions. Typicaly, the comparative advantage of Two-Pool GCA increased with increased
460  Ho, time horizon, and selection intensity, aswell as with use of GS, but it decreased with increased ploidy
461  level or increased cycle length.

462 With use of GSin the clonal diploids, at high intensity Two-Pool GCA was the best strategy after
463 15 yearsif Ho was greater than 9.3, and One-Pool Breeding Vaue or One-Pool Cross Performance was
464  thebest strategy if Ho was lower (Fig. 2). After 50 years, Two-Pool GCA was the best predicted strategy
465  at al positive Hp values, and its relative advantage increased as Hy increased (Fig. 2). In contrast, at low
466  intensity, one-pool strategies were aways better than Two-Pool GCA after 15 years (Fig. 2). After 50
467  yearsat low intensity Two-Pool GCA only outperformed One-Pool Breeding Vaue if Hy was greater than
468  17.7, asubstantially greater amount of Hy than at high intensity (Fig. 2). High intensity programs had

469  greater genetic gain than low intensity programs on average, but low intensity one pool strategies

470  outperformed high intensity one pool strategiesif Ho was relatively high (Fig. 2). (Of course, two-pool
471  drategies still outperformed the best one-pool strategy over the range at which low intensity one pool

472  strategies outperformed high intensity one pool strategies.)

473 With use of PS and fast multiplication in clonal diploids, Two-Pool GCA was not the best

474  dtrategy after 15 years at any Hp value (Supplemental Fig. 2). After 50 years, it required Ho greater than
475  13.9to outperform other strategies, and the amount of overperformance was relatively less than with GS
476  (Supplemental Fig. 3). With PS and slow multiplication, Two-Pool GCA never outperformed other

477  strategies over the time horizons surveyed (Supplementa Fig. 2, Supplemental Fig. 3).

478 With use of GSin the clonal autopolyploids, Two-Pool GCA showed fewer advantages than in
479  diploids, and One-Pool Breeding Vaue or One-Pool Cross Performance were typically better strategies
480  (Fig. 3). At high intensity after 15 years, One-Pool Breeding Value or One-Pool Cross Performance were
481  thebest strategies for both autotetraploids and autohexaploids. One-Pool Cross Performance was the

482  better strategy at high Ho, and One-Pool Breeding Value was the better strategy at low Ho. After 50 years
483  at highintensity in the autotetrapl oids, One-Pool Breeding Vaue or One-Pool Cross Performance

484  provided the most gain if Ho was less than or equal to 31.0 + 2.4; if Hy was greater, Two-Pool GCA or
485  Two-Pool Breeding Vaue provided the most gain, but the advantages were small (Fig. 3). In the

486  autohexaploids, the same strategy pattern was apparent but the intersection occurred at Hq of 61.7 + 5.0.
487  Atlow selection intensity, One-Pool Breeding Value or One-Pool Cross Performance provided the most
488  gain at both timepoints for both autotetraploids and autohexaploids (Fig. 3).

489 For the clona diploids, use of the best GS strategy increased genetic gain compared to the best PS
490  dtrategy with fast multiplication after 50 years (Fig. 3). If GS was not used to reduce cycle length, and all
491  strategies were compared at 25 cycles, then at small values of Hy, the best PS strategy produced more gain
492  andthe best GS strategy produced more gain with greater Ho (Supplemental Fig. 3). Thisindicates the
493  dependency of the relative performance of GS and PS on their relative cycle length as well as Hy. For the
494  clonal autopolyploids, at high intensity the best GS strategy was better than or equal to the best PS

495  dtrategy (Fig. 3). The advantage of GS decreased as Ho decreased. At low intensity in autotetraploids, the
496  best GS strategy was indistinguishable from the best PS strategy. At low intensity in autohexaploids, PS
497  outperformed GSif Ho was low, and vice versaif Howas high.

498 Less absolute genetic gain was observed as Hy increased (Fig. 2—3). Based on the slopes of the
499  regression lines, one-pool strategies were more sensitive to Hy than two-pool strategies (Supplemental
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500 File42; Fig. 2—3). As genetic gain increased due either to alonger time horizon or higher intensity, the
501  sensitivity of genetic gain to Hp also increased.

502  Additive and dominance value in the core strategies

503 Regardless of ploidy level, strategy, selection intensity, or timepoint, the regression of additive
504  vaueon Hy produced a negative slope, while the regression of dominance value on Hy produced a

505  positive slope (Supplementary File 42; Supplemental Fig. 5—8). If no dominance was simulated, then
506  both dominance value and Ho were always zero. In general, one-poal strategies produced more additive
507  valuethan two-pool strategies regardless of ploidy, timepoint, or intensity (Supplemental Fig. 5,

508  Supplemental Fig. 7). In diploids, Two-Pool GCA produced more dominance value than other strategies
509  at high but not low intensity and as timepoint increased, particularly with use of GS (Supplemental Fig.
510  6). In autopolyploids, there was typically little difference in dominance value among strategies

511  (Supplementa Fig. 8).

512  Inbreeding coefficient with true values for the core strategies

513 The inbreeding coefficient was recorded for scenarios with an estimation method of none (true
514  values) only. Within agiven ploidy level and timepoint, the regression of inbreeding coefficient on H for
515  each strategy differed depending on the selection intensity (Supplemental File 42). After 15 years,

516  regardless of strategy and ploidy, strategies had higher inbreeding coefficients with high selection

517  intensity and lower inbreeding coefficients with low selection intensity across Hy values (Supplemental
518 Fig.9). After 50 years, in diploids One-Pool Cross Performance and Two-Pool Breeding Vaue had

519  higher inbreeding coefficients with high selection intensity and lower inbreeding coefficients with low
520 intensity, but crossover was observed for Two-Pool GCA and One-Pool Breeding Value (Supplemental
521  Fig. 10). For both, high intensity tended to lead to higher inbreeding coefficients when Ho was smaller,
522 but low intensity led to high inbreeding coefficients with higher Ho. In autopolyploids, after 50 years all
523  strategiestended to lead to higher inbreeding coefficients under high selection intensity than low selection
524  intensity (Supplemental Fig. 10). The difference in the inbreeding coefficient by intensity was lessin

525  autopolyploidsthan diploids.

526  Inbreeding depression with the core selection strategies

527 Subsequent to the ssmulation of an initial amount of inbreeding depression, the amount of

528  inbreeding depression in the population potentially could change as allele frequencies changed due to
529  selection and other forces. Regardless of ploidy level, strategy, selection intensity, or timepoint, the

530  regression of population inbreeding depression on Hy produced a positive slope as expected, given that
531  populations with greater Hy sustained greater amounts of inbreeding depression regardless of breeding
532  cycle (Supplementa File 42). In general, with comparisons at the same number of cycles, the amount of
533  inbreeding depression for a given ploidy level, estimation method, intensity, and timepoint did not

534  dramatically differ by strategy although some differences were detected (Supplemental Fig. 11—12).
535  Greater reduction of population inbreeding depression was not associated with greater genetic gain.

536  Panmictic heterosis with the core selection strategies

537 Panmictic heterosis was zero for the one-pool strategies by definition. For the two-pool strategies,
538 theregression of panmictic heterosis on Hy produced positive slopes, indicating that the amount of

539  panmictic heterosis strategies built increased with the amount of Hg regardless of ploidy (Supplemental
540  File42; Fig. 4). Two-Pool GCA tended to build more panmictic heterosis than Two-Pool Breeding Value,
541  and their relative difference decreased as Hp decreased. In general, Two-Pool GCA built increasingly
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542  more panmictic heterosis than Two-Pool Breeding Value as selection intensity and timepoint increased.
543  However, the difference in panmictic heterosis between Two-Pool GCA and Two-Pool Breeding Vaue
544  decreased as ploidy level increased.

545  Breeding Value + GCA strategies

546 Strategies in which intra-pool evaluation was used to advance genotypes to intra-pool crossing,
547  Two-Pool Breeding Vaue + GCA and Two-Pool Doubled Haploid Breeding Value + GCA, showed

548  increased genetic gain with PS and unchanged genetic gain with GS compared to strategies without intra-
549  pool evaluation, Two-Pool GCA and Two-Pool Doubled Haploid GCA (Supplemental Fig. 13). The same
550  pattern was observed across ploidies for Two-Pool Breeding Vaue + GCA and Two-Pool GCA. More
551  interestingly, with selection on GCA, intra-pool genetic value tended to decrease over cycles (compared
552  totheinitia intra-pool genotypes) regardless of whether intra-pool evaluation was used at high Hg

553  (Supplemental Fig. 14). However, intra-pool genetic value tended to increase over cycles at low Ho. Intra-
554  pool evaluation increased intra-pool genetic values compared to its absence with PS and fast

555  multiplication without use of doubled haploids, but intra-pool evaluation had no effect on intra-pool

556  genetic values with GS or with PS and use of doubled haploids (Supplemental Fig. 14).

557  Doubled Haploid GCA strategies

558 The use of intra-pool fully inbred lines generally led to unchanged genetic gain after 50 years

559  with GS, but in some cases increased genetic gain with PS. (Supplemental Fig. 13). With PS, Two-Pool
560  Doubled Haploid GCA increased gain compared to Two-Pool GCA but had similar performance to Two-
561  Pool Breeding Vaue + GCA and Two-Pool Doubled Haploid Breeding Value + GCA (Supplementa Fig.
562  13). Intra-pool fully inbred lines typically had lower mean genetic values than intra-pool outbred clonesin
563  both the short and long term (Supplemental Fig. 14). The difference in doubled haploid and outbred intra-
564  pool genotypes was greater as Hyo increased as they suffered additional inbreeding depression

565  (Supplemental Fig. 14). Population inbreeding depression typically did not differ between Two-Pool

566  Doubled Haploid GCA and Two-Pool GCA, nor between Two-Pool Doubled Haploid Breeding Vaue +
567  GCA and Two-Pool Breeding Vaue + GCA (Supplemental Fig. 15).

568 Discussion

569 Although Two-Pool GCA sometimes provided substantially greater rates of genetic gain per unit
570  cost than other strategiesin clonal diploids, its relative performance depended on heterosis and inbreeding
571  depression due to dominance in the trait population, the time horizon, the selection intensity in the

572 program, the relative achievable cycle lengths among strategies, the estimation method, ploidy level, and
573  therinteractions. The use of GS rather than PS drastically increased the competitiveness of Two-Pool
574  GCA, indicating that GS unlocks novel opportunitiesto utilize heterosis. Increased selection intensity
575  increased the relative performance of Two-Pool GCA to other strategies, perhaps indicating that Two-
576  Pool GCA ismore competitive at higher inbreeding rates. In typical diploid programs with high selection
577  intensities, if Two-Pool GCA could achieve equal cycle lengths as other strategies, then Two-Pool GCA
578  tended toincrease the rate of genetic gain per unit cost at lower amounts of Ho than if Two-Pool GCA
579  required alonger cycle length. However, in autopolyploids, Two-Pool GCA usualy did not increase the
580 rateof genetic gain compared to One-Pool Breeding Vaue or One-Pool Cross Performance.

581  Autopolyploid Two-Pool GCA tended to provide an advantage in genetic gain at higher values of Hp than
582 indiploids, if at all, and the amount of relative increase was less than in diploids. Asin other studies, the
583  useof GStended toincrease gain compared to PS likely due to increased accuracy, faster inbreeding, and
584  decreased cycle length across Ho; use of GSto reduce of the cycle length was a determining factor in
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585  whether it outperformed PS at the heritabilities used (Powell et d., 2020; Gaynor et a., 2017; Heslot et
586  a., 2015; Heffner et a., 2010; Longin et &., 2015).

587  Clonal diploids

588 In clonal diploids, Two-Pool GCA appeared to outperform other strategies in some conditions
589  because of its exceptional ability to increase the dominance value of F; hybrid populations, as well asthe
590  additive value. Fundamentally, thisis because use of Two-Pool GCA can increase not only the frequency
591  of favorable aleles but aso the frequency of heterozygote genotypes relative to Hardy-Weinberg

592  equilibrium in F; hybrids of two poals, leading to panmictic heterosis (Lamkey & Edwards, 1999). The
593 latter isachieved by selection on GCA, which differs from breeding values in a single pool because

594  dominance value (d) is weighted by allele frequencies in the opposite pool (Schnell, 1965; Rembe et dl .,
595  2019). Selection on GCA drives apart allele frequencies between pools, which resultsin a sustained

596  increasein heterozygosity and therefore dominance value in the F; hybrids. Although both additive and
597  dominance value are transmissible with selection on breeding value and random mating in a single pool,
598  thefrequency of heterozygotesislimited by Hardy-Weinberg equilibrium, which is overcome by non-
599  random mating in two pools (Hardy, 1908; Weinberg, 1908). Reducing population heterosis (inbreeding
600  depression) was neither required nor a strategic advantage to make genetic gain, and at longer time

601  horizons genetic variance was exhausted due to drift and selection well before any changes in population
602  heterosis or inbreeding depression were observed. Generally, the advantages of Two-Pool GCA in clonal
603  diploidsincrease as:

604 e the amount of Hy due to dominance increases, because ability to increase dominance value

605 becomes relatively more important

606 o thetime horizon increases, because formation of heterotic pools with diverged allele frequencies
607 requires selection over breeding cycles

608 o itsrelative cycle length to the other strategies decreases, because cycle length directly impacts the
609 rate of genetic gain, and Two-Pool GCA has a necessarily longer cycle length than the other

610 strategies with PS but not GS

611 o theselection intensity increases, perhaps because higher selection intensities lead to more

612 inbreeding which lead to greater reductions in heterozygosity due to selection and drift which are
613 better alleviated by GCA compared to other strategies, or because higher selection intensities

614 more rapidly drove apart allele frequencies between pools

615 o itsrelative cost to the other strategies decreases; however, we did not investigate different levels
616 of relative cost among strategies because this was demonstrated by Longin et al. (2014) and its
617 particulars are highly program-specific.

618 The amount of trait population heterosis can be estimated experimentally in breeding populations,

619  hutitistypically unknown. Better methods and increased effort to estimate heterosis in breeding

620  programs would be useful to inform decision-making. However, for clonal diploids which can utilize
621  rapid-cycling GS, the benefit of Two-Pool GCA was robust to Ho under the study assumptions. Two-Pool
622  GCA provided the most gain over most Hy values and timepoints surveyed, and if Ho was relatively low
623  Two-Pool GCA only modestly decreased gain in the short term. Programs for which Two-Pool GCA is
624  relatively more expensive than assumed here may require more Hy to reap its benefit. In contrast to GS,
625  moving to Two-Pool GCA without adequate population heterosis or time presented arisk of decreased
626  genetic gain for phenotypic programs. Interestingly, clonal crops using PS with alow multiplication ratio
627  never benefited from Two-Pool GCA over the time horizons in the study, highlighting this consideration
628  for clonal species and the usefulness of efforts to increase the multiplication ratio (Aighewi et al., 2015).
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629 It would be useful to confirm the optimal GS strategies for programs with low multiplication ratios,
630  particularly with multiple cohorts running in parallel per season. Please see Supplementa File 5 for
631  discussion of Two-Pool Breeding Value and One-Pool Cross Performance in diploids, which may be
632  useful for programs which cannot transition to Two-Pool GCA.

633 In applied diploid inbred-hybrid RRS programs of seed crops, intra-pool genotypes are often first
634  selected as parents of hybrids on their per-se value (Lee & Tracy, 2009). In clonal crops with relatively
635  lower multiplication ratios, increased performance of intra-pool parents may not drastically increase

636  hybrid propagule or seed production, so it was unclear whether resource all ocation to intra-pool

637  evauation isefficient. For the costs and proportions of individuals advanced assumed in the study, we
638  observed that around of intra-pool advancement on breeding value before intra-pool recycling on GCA
639  typically increased genetic gain with PS or did not change the rate of genetic gain with GSin theinter-
640  pool hybrids. Intra-pool evaluation led to a shift from dominance to additive gain compared to forgoing
641  intra-pool evaluation. As such, breeders likely have some flexibility in whether to conduct intra-pool

642  evauation. For example, with multiple traits, it is common to cull intra-pool parents for markers and

643  highly heritable traits; unless negative genetic correlations are present in the trait index, this decision

644  likely would not decrease genetic gain for inter-pool traits, assuming it does not increase cycle length. For
645  the GS scenarios here, it was likely suboptimal to predict intra-pool breeding values from atraining set of
646  inter-pool individuals, and predicting intra-pool breeding values from intra-pool individuals may increase
647  geneticgan.

648 Interestingly, the effect of recycling on GCA on intra-pool mean value over cycles depended on
649 Ho: it tended to decrease intra-pool value as Hy increased but increase intra-pool value as Hy decreased. In
650  absence of dominance, intra-pool breeding valueis equal to GCA, so intra-pool genotypes selected for
651  GCA are nearly the same as those which would be selected on breeding value at low Ho (Rembe et al.,
652  2019). Thislikely led to increases in intra-pool genetic value. As dominance increases, and as allele

653  freguencies differ between pools, the values of intra-pool breeding value and GCA diverge. At high Ho,
654  selection on GCA led the parental pools to suffer inbreeding depression as they were driven to

655  homozygous states, thus decreasing their value over breeding cycles. Conducting intra-pool advancement
656  on breeding value sometimes dightly increased intra-pool parents value compared to forgoing intra-pool
657  evaluation. However, at the proportion of individuals advanced (75%), intra-pool selection did not

658  prevent decreasein intra-pool value when population heterosis was high. In practice, if population

659  heterosisishigh and it is necessary to maintain or increase intra-pool value with Two-Pool GCA, it may
660  be necessary to select intra-pool parents more stringently on their breeding values or even to recycle intra-
661  pool parentson an index of intra-pool breeding value and GCA (Longin et a., 2006).

662 Another concern in clonal diploids is whether RRS programs benefit from using fully inbred

663  parents, asisdonein other species. We did not observe substantial increases in genetic gain with use of
664  inbred parentsin RRS, especially with intra-pool evaluation. With al else equal, it is expected that

665  inbreeding depression (loss of baseline heterosis) suffered in the intra-pool parentsisfully reversed in the
666  inter-pool hybrids, aswell asthe addition of the panmictic heterosis value, so intra-pool inbreeding is
667  unnecessary to harness heterosis. The cost and time to generate inbred lines are likely higher than

668  assumed in our study, given that doubled haploid technologies do not exist for most clonal species.

669  Furthermore, the simulated inbred line values may correspond to total non-viability in some species or
670  populations, especially those with high population inbreeding depression. It has been proposed that use of
671  inbred parents could enable seed systems in clonal crops and reduce the cost of propagation, the time and
672  cost required to transport clones across national borders, and the spread of disease (McKey et al., 2010;
673  Ceballoset a., 2015). These are worthy considerations that are considered externalities in the current
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674  study, but they are completely independent of the use of RRS and could equally be availed in one-pool
675  strategies. Programs considering line development should thoroughly assess their germplasm’ s tol erance
676  of full inbreeding aswell as the tradeoffs in time and resources needed for line development.

677  Clonal autopolyploids

678 In contrast to clonal diploids, Two-Pool GCA typically did not outperform other strategiesin

679  clonal autopolyploids. Instead, One-Pool Breeding Vaue or One-Pool Cross Performance was the safest
680  option depending on Ho. A larger range of Hy values were considered in autopol yploids than diploids;

681  RRSdid not benefit autopolyploids at the same and some greater amounts of Hy which benefited diploids.
682  Thisislikely because autopol yploids inherit multiple chromosome copies per gamete, and therefore

683  autopolyploids sustain greater heterozygosity across all gametes, genotypes, and matings at segregating
684  loci even in response to selection on One-Pool Breeding Value (Supplemental Fig. 16; Bartlett &

685 Haldane, 1934; Bever & Felber, 1992). The relative advantage of Two-Pool GCA in diploidsisduetoits
686  ability to increase heterozygosity of inter-pool populations at loci with dominance. Because the frequency
687  of heterozygotes compared to homozygotes at segregating loci in autopolyploid populationsis already
688  relatively high compared to diploids, there is not only less value to be gained by increasing heterozygote
689  frequency with Two-Pool GCA but also less value lost to the smaller increase in deleterious recessive
690  homozygote frequency under selection on One-Pool Breeding Value (Supplemental Fig. 16,

691  Supplemental Table 2). Though this study considered clonal species, these conclusions should be

692  applicable to non-clonal autopolyploids.

693 Consistent with this hypothesis, the relative overperformance of one-pool strategies compared to
694  Two-Pool GCA was greater in autohexapl oids than autotetraploids: autohexapl oids inherit more

695  chromosome copies per gamete (3) than autotetraploids (2), leading to greater heterozygosity at

696  segregating loci. We expect that the relative genetic gain per unit cost of Two-Pool GCA to One-Pool
697  Breeding Value would be further reduced at higher autoploidies. Another line of support for this

698  hypothesis was that the relative performance of Two-Pool GCA to other strategies increased with GS at
699  highintensity. High-intensity GS likely increased inbreeding and genetic drift compared to low-intensity
700  GSor high-intensity PS, so the ability of Two-Pool GCA to relieve homozygosity became more

701  important. However, One-Pool Cross Performance was similarly capable of relieving inbreeding in this
702  situation and islesslogistically demanding. Finally, Two-Pool GCA built more panmictic heterosis than
703  Two-Pool Breeding Vaue, but the difference was less in autopol ypl oids than diploids. Thisindicates
704  breeding for heterosis with GCA was less effective in autopol yploids, since it more narrowly

705  outperformed incurrence of heterosis due to drift.

706 It is possible that further increasing the inbreeding rate in autopolyploids (e.g. by reducing the
707  number of parents or using truncation sel ection without inbreeding control) could increase the relative
708  performance of Two-Pool GCA to other strategies, but this would not necessarily increase genetic gain.
709  However, further investigation of strategy relative performance over additional inbreeding ratesis

710  warranted. Tangentialy, the accuracy of autopolyploid genomic estimates tended to be similar to diploids
711 atlow Hy, but increasingly lower than diploids at high Ho, suggesting that alelic effects may be harder to
712 predict in autopolyploids than diploids as dominance increases. Thisis sensible because more dominance
713 effects are present in autopol yploids per phenotypic observation. However, it did not seem to be the main
714  cause of the decreased advantage of Two-Pool GCA in the autopolyploids, which also appeared with use
715  of true values. It may be worth noting that the lack of advantage to selection on Two-Pool GCA only

716  appliesto autopolyploids, not to allopolyploids for which chromosome copies are not independently

717  assorted.
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718 The lack of advantages of Two-Pool GCA in autopolyploids does not imply that autopolyploids
719  cannot or do not exhibit heterosis. Selection on Two-Pool GCA or Two-Pool Breeding Value led to clear
720  panmictic heterosis in the autopolyploids simulated in the study. Empirical evidence of panmictic

721  heterosisin autohexaploid sweetpotato, for example, isreadily available for fresh root yield (Diaz et a.,
722 2021). The point isthat even if autopolyploids exhibit heterosis or inbreeding depression, RRS did not
723  provideincreased gain per unit cost compared to RS on breeding value in asingle, merged pool under the
724  study assumptions. In the case of sweetpotato, two pools exhibiting panmictic heterosis emerged when a
725  single breeding population was split into two locations (M. Andrade, pers. comm.). Over approximately
726  twenty years, the pools were selected separately by truncation (W. Gruneberg, pers. comm.), and

727  therefore alele frequencies likely came to diverge between pools due to selection and drift. Reunion of
728  thepooalsthen led to population-level panmictic heterosisin the F, hybrids (Diaz et a., 2021). The

729  existence of panmictic heterosis in autohexaploids does not imply that Two-Pool GCA or Two-Pool

730  Breeding Vaueisthe optimal breeding strategy for autohexaploids. The observed panmictic heterosisin
731  sweetpotato could aso be availed by intermating the two pools and conducting RS on breeding valuein
732 thesingle, merged pool. However, further comparisons of strategy efficiencies with pre-existing diverged
733  poolswould beinformative in both diploids and autopolyploids.

734 The relatively decreased homozygosity of autopolyploids compared to diploids with selection on
735  breeding value does not imply that autopolyploids suffer less inbreeding depression than diploidsin the
736  event that they do experience homozygosity of unfavorable aleles. This misconception may arise from
737  falureto differentiate the inbreeding rate and inbreeding depression value. Autopolyploids in fact may
738  experience more inbreeding depression in response to increased homozygosity than diploids, which can
739  beobserved in simulated autopolyploids produced by chromosome doubling with digenic dominance.

740  Although few comparable estimates of inbreeding depression in real data are available, one such dataset is
741  that of Yao et a. (2020), which compared genotypically matched diploid and autotetraploid maize. In a
742  sdfing series of each, Yao et al. observed similar inbreeding depression in the diploids and

743  autotetraploids at the same selfing generation (2020). Since autotetraploids are less inbred than diploids at
744  agiven selfing generation, their similar inbreeding depression suggest that autotetraploid inbreeding

745  depression was more severe per unit increase in homozygosity. Of course, it cannot be concluded that the
746  maize autotetraploids used experienced only inbreeding depression due to digenic dominance, and the
747  inbreeding depression observed could be due to loss of higher-order dominance interactions as well.

748  Assumptions, limitations, and future research directions

749 The conclusions of this study depend on the assumptions made and parameters used. Further

750  exploration of these factors is welcomed, and we encourage breeding programs to simulate and optimize
751  their specific situation when information is readily available. Exploration of ranges of valuesis helpful to
752  explore factors which affect the relative performance of breeding strategies, but once identified, the

753  number of real-world constraints on breeding programs is much smaller than all possible constraints on
754  breeding programs.

755 The breeding schemes used are not optimal but are rather a baseline for comparison of population
756  improvement methods. For example, we did not optimize accuracy within the breeding strategies and

757  estimation methods, which may require different designs for optimal accuracy. Particularly, testcrossing
758  isnecessary with phenotypic Two-Pool GCA but is suboptimal for genomic estimated Two-Pool GCA
759  (Fristche-Neto et al., 2017; Seye et al., 2020). We did not optimize tester choice or number and simply
760  used two random testers. With GS and Two-Pool Breeding Value, prediction of intra-pool genotypes

761  from an inter-pool training set was suboptimal compared to use of intra-pool training genotypes, which
762  has been demonstrated in prediction of purebred animals from crossbreds (Wel & Van der Werf, 1994;
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763  Moghaddar et a., 2014; Hidalgo et a ., 2016). However, to address the lack of optimization of accuracy,
764  wesimulated all scenarios with true values to control accuracy across strategies and did not observe

765  radicaly different trends of the breeding strategies with respect to population heterosis. The scenarios
766  with true values have controlled accuracy but less genetic drift than GS scenarios, because true values are
767  like using phenotypes with broad-sense heritabilities of one (Daetwyler et a ., 2007; Sonesson et dl .,

768  2012).

769 We did not optimize each scenario to a given time horizon. The number of parents used were
770  certainly not optimal for the time horizons explored, because unused genetic variance remained for all
771  scenarios. It is possible that different strategies could produce different amounts of gain at optimal

772 intensitiesfor the times considered, and it may be that this also varies by genetic architecture. Somewhat
773  abitrarily, we aso assumed a fixed number of parents per strategy rather than afixed number of parents
774  per poal.

775 We did not fully explore all possible genetic architectures, particularly those including epistasis
776  or higher-order autopol yploid dominance. We note that positive directional dominance could arise from
777  selection and was not necessarily present in the starting population for situations when Two-Pool GCA to
778  presented advantages over one-pool strategies—e.g., with an initial mean dominance degree of zero and
779  non-zero variance of dominance degrees (Falconer & Mackay, 1996; Varonaet al., 2018). We did not
780  consider environment or genotype x environment effects, which may affect the relative performance of
781  GSand PS and depletion of genetic variance. We assumed a fixed marker density and genome size. We
782  assumed bialelic loci. We do not expect that multiallelic loci in autopol yploids would likely lead to
783  increased advantages of Two-Pool GCA, because with linkage disequilbrium haplotypes of biallelic loci
784  effectively behave as asingle multiallelic locus. We did not vary the probability of autopolyploid

785  multivalents.

786 We assessed Hy as a predictor of various responses. Hy appeared to explain the variance of

787  responses among strategies well, but it is possible that its components—mean dominance degree, the

788  variance of the dominance degrees, and the square root of the number of QTL—could reveal different
789  patterns of strategy performance if used as predictors rather than Ho. We plotted genetic gain of the core
790  dtrategies with use of true values after 50 years with use of each component as a predictor of responses
791  with both other components held constant in all possible combinations (Supplemental Fig. 17—25). In
792  general, we observed similar patterns as with use of Ho for mean dominance degree and the square root of
793  thenumber of QTL, with the relative performance of Two-Pool GCA increasing as each of these

794  increased. Therelative performance of Two-Pool GCA increased as mean dominance degree increased
795  regardless of whether incomplete dominance, complete dominance, or overdominance was simulated;
796  notably, overdominance did not decrease the relative advantage of Two-Pool GCA (Rembe et a., 2019).
797  However, for the variance of dominance degrees, if the mean dominance degree was low then advantage
798  of Two-Pool GCA increased as the variance of dominance degrees increased, even though the variance of
799  dominance degrees has an inverse relationship with Ho. This seemed to be because selection on GCA led
800 todirectional dominance in the breeding population when loci with positive dominance degrees were

801  present. Thistrend reversed to expectation as mean dominance degree and the number of QTL increased.

802 With use of maximum avoidance at high vs. low intensity, there were necessarily more full

803  siblings per family at high vs. low intensity. Availability of additional full siblings at high intensity may
804  haveincreased the accuracy of prediction of dominance values (Misztal et al., 1998), which could affect
805  therelative performance of Two-Pool GCA. However, the difference in relative performance between
806  Two-Pool GCA and other strategies at high vs. low intensity was also apparent with use of true values at
807  perfect accuracy, indicating the influence of the inbreeding rate.
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808 Although we completely disregarded product development strategies or prediction of inter-pool
809  crossesin additional to GCA for RRGS, we presume that population improvement strategies which
810  produce populations with higher means and similar distributions will lead to extraction of higher-value
811  productswith all else, such as product evaluation strategy, equal. Allocation of resources among stages
812  wasnot explored.

813 The study considered plausible values for the cost of phenotyping, genotyping, and phenotyping
814  to genotyping among strategies, but these may differ among applied programs. Particularly, the cost of
815  two-pool vs. one-pool breeding depends strongly on crop biology. We assumed that the cost of controlled
816  inter-pool crossing was negligible, which may not be the case in some crops.

817 Multiple frameworks to model dominance in polyploids are available; here, only digenic

818 dominance is considered, while other frameworks allow for additional intra-locus interactions (Gallais,
819  2003). It does not seem likely that other valuations of various possible heterozygotes or inclusion of
820  additional intra-locus interactions would change the relative performances of the strategies presented
821  here, because the superfluity of Two-Pool GCA seemsto arise from the increased frequency of

822  heterozygotes in autopolyploids regardless of their valuation. However, further study may reveal

823  unexpected results.

824 We note that heterosis in autopol yploids is not maximized with single crosses among two

825 diverged poals, i.e. heterosisis progressive (Groose et al., 1989; Washburn & Birchler, 2014; Washburn
826  etal., 2019; Labroo et al., 2021). Autopolyploid heterosis due to dominance is progressive because

827  autopolyploids have fewer parents than inherited gametes. If allele frequencies diverge randomly across
828  the genome among parents, additional heterosis occurs by making multi-parental crosses because

829  additional heterozygosity can be stacked into the progeny genome. We do not expect that utilization of
830  progressive heterosis in autopol yploids would change the relative performance of the strategies because
831  theadditiona heterosisislikely relatively small compared to the potential additional time needed to make
832  additional crosses aswell as the resources needed to maintain additional pools. However, testing this

833  hypothesisiswarranted. We note that progressive heterosis due to digenic dominance can be observed by
834  thesimulation methods of the study

835  (https://github.com/gaynorr/AlphaSimR_Examples/blob/master/misc/ProgressiveHeterosis.R).

836 As mentioned repeatedly, comparisons of gain across ploidies from simulation should not be
837  made because they are not guaranteed to reflect biological reality. Rea data, which are likely population-
838  specific, would be needed. For example, we assume that the minimum homozygote and maximum

839  heterozygote value are the same in diploids and polyploids, but there is evidence that thisis unredlistic in
840  some populations because polyploid populations produced by col chicine doubling someti mes have higher
841  mean valuesthan their diploid progenitors (Sattler et a., 2016). For example, in the case of potato, our
842  findings strongly suggest that Two-Pool GCA is not likely to be the optimal breeding strategy for

843  autotetraploid potato, whereas Two-Pool GCA islikely to be the optimal breeding strategy for diploid
844  potatoif GSisused or Hy is adequate. However, we cannot determine from simulation alone whether

845  overdl genetic gainislikely to be higher in autotetraploid or diploid potato.
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The 180 starting populations are simulated with various genetic architectures.
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Figure 1. Overview of the study methods. Populations at three ploidy levels with varied amounts of
popul ation heterosis were generated by simulating all combinations of the ploidy level, number of QTL,
mean dominance degrees, and variance of dominance degrees shown. Linkage disequilibrium was not
controlled. For further details of these parameters’ relationship to inbreeding depression and heterosis,
please see Gaynor et a., 2018. After simulating the 180 starting populations, a combination of breeding
strategy, selection intensity, and estimation method was run on each population, except that strategies
with doubled haploids were only run for ploidy = 2 (**). Because multiple cohorts per cycle were not
simulated, cycle length was varied by multiplying cycle number by the appropriate value and not by
running an independent simulation (dashed line). The combination of strategy, intensity, estimation
method, and cycle lengths defined a scenario. All combinations of the scenario factors were assessed,
except that the cycle lengths depended on the estimation method (solid lines) and a phenotypic estimate of
One-Pool Cross Performance was not considered (*). Cycle lengths (L) by strategy and estimation method
aregivenin Table 1.
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Diploid Genetic Gain, Genomic Selection
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Figure 2. Genetic gainin diploids after 15 and 50 years with use of GS regressed on breeding scenario,
initial population heterosis, Ho, and their interaction. Colored lines indicate regressions by breeding
strategy with GS and cycle length 2, and grey bands indicate the standard error of the predicted means.
Dots indicate raw data points and dot color indicates strategy asin the lines. At high intensity after 15
years, the differences among strategies were marginal, and after 50 years Two-Pool GCA provided the
most gain over ailmost all Ho values. At low intensity, two-pool strategies required more Hq and time to
outperform the one-pool strategies than at high intensity.
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Genetic Gain, Year 50
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Figure 3. Genetic gain for each ploidy level after 50 years of breeding with use of genomic and
phenotypic selection and various strategies as a function of Ho, breeding scenario, and their interaction.
Line color indicates strategy, and grey bands indicated the standard error of the predicted mean. Line type
indicates estimation method with the accompanying set of cycle lengths (L). In clona diploids at high
intensity, genomic selection on Two-Pool GCA isthe best strategy regardless of Ho, but this advantageis
not apparent in the autopolyploids. Instead, the autopol yploids tend to benefit from one-pool strategies.
Use of GStypically increases or does not change genetic gain at high intensity, particularly for diploids. It
is not appropriate to compare amounts of genetic gain across ploidy levels.
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Figure 4. Panmictic heterosis for each ploidy as afunction of initial population heterosis, Ho, after 50
years of breeding with each strategy and use of genomic selection with cycle length of 2. Colored lines
indicate strategy and grey bands indicate the standard error of their predicted means. Colored dots
indicate the corresponding strategy raw data points. Two-Pool GCA tended to build more panmictic
heterosis that Two-Pool Breeding Value, especialy in diploids at high intensity, because Two-Pool GCA
leads to increased divergence of alele frequencies between pools by selection. Two-Pool Breeding Vaue
builds panmictic heterosis primarily by drift, and one-pool strategies do not build panmictic heterosis.
Two-pool strategies lead to clear panmictic heterosis in autopol ypl oids even though neither two-pool
strategy was optimal in terms of genetic gain. Comparisons of absolute values across ploidies are not
likely to be biologically relevant.
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