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HIGHLIGHTS

e Most microbial species are genetically diverse. Their single nucleotide variants can be genotyped using
metagenomic data aligned to databases constructed from genome collections (“metagenotyping”).
Microbial genome collections have grown and now contain many pairs of closely related species.
Closely related species produce high-scoring but incorrect alignments while also reducing the uniqueness of correct
alignments. Both cause metagenotype errors.

e This dilemma can be mitigated by leveraging paired-end reads, customizing databases to species detected in the
sample, and adjusting post-alignment filters.

SUMMARY

Detecting genetic variants in metagenomic data is a priority for understanding the evolution, ecology, and functional
characteristics of microbial communities. Many recent tools that perform this metagenotyping rely on aligning reads of
unknown origin to a reference database of sequences from many species before calling variants. Using simulations designed
to represent a wide range of scenarios, we demonstrate that diverse and closely related species both reduce the power and
accuracy of reference-based metagenotyping. We identify multi-mapping reads as a prevalent source of errors and illustrate
a tradeoff between retaining correct alignments versus limiting incorrect alignments, many of which map reads to the wrong
species. Then we quantitatively evaluate several actionable mitigation strategies and review emerging methods with promise
to further improve metagenotyping. These findings document a critical challenge that has come to light through the rapid
growth of genome collections that push the limits of current alignment algorithms. Our results have implications beyond
metagenotyping to the many tools in microbial genomics that depend upon accurate read mapping.
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Box 1: Glossary

Conspecific. Of the same species.
Single nucleotide variant (SNV). Nucleotide that differs between orthologous sites in conspecific genomes.

Allele. One of the observed sequences at a genomic locus, e.g., one of the nucleotides A, T, C, G at an SNV. Allele frequency
is the proportional representation of one allele compared to others within a population.

Genotyping. Detecting genetic variants, identifying present allele(s), and quantifying allele frequencies, commonly
performed through DNA sequencing.

Metagenomics. Shotgun sequencing of DNA extracted from a microbial community.
Metagenotyping. Genotyping with metagenomic data.
Closely related genomes. Genomes with genome-wide similarity above a threshold (e.g., 92% average nucleotide identity).

Closely related species. Species that share at least one pair of closely related genomes, may be estimated with one
representative genome per species for computational efficiency.

Reference bias. Reduced alignment accuracy between divergent genomes of the same species. In the context of
metagenotyping, genetic differences between genomes in the sample versus database affect the rate and accuracy with which
reads can be aligned.

Uniquely-mapping. Sequencing read with one reported alignment or a best alignment that scores much higher than the
second-best alignment.

Multi-mapping. Sequencing read with two or more different alignments reported.

Cross-mapping. Sequencing read from one species aligned to another species. Also known as an off-target alignment.
On-target alignment. Sequencing read aligned to the correct species.

Post-alignment filter. Rule used to discard alignments, for example, based on sequence similarity or uniqueness.
MAPID. Sequence identity between a read and the database sequence to which it is aligned.

MAPQ. A measure of alignment uniqueness based on the ratio of alignment score of the best versus second best alignment.
Vertical coverage. Number of reads aligned at a nucleotide or other genomic element.

Horizontal coverage. Proportion of nucleotides in a genome that are covered by alignments (e.g., at least two aligned
reads).

Paired-end. Sequencing strategy in which both ends of a molecule are sequenced. In the context of metagenomics, both
reads in a pair should be aligned nearby and to the same species.

K-mer. A nucleotide sequence of length k, where k is typically a small integer.
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INTRODUCTION

Most microbes harbor immense within-species genetic variation, with strains differing in terms of single nucleotides, gene
copy number, and genome organization. Recognizing genetic differences between conspecific genomes is important for
many reasons. First, genetic variation can have functional consequences, ranging from differential metabolism to acquisition
of pathogenicity and antibiotic resistance (Chattopadhyay et al., 2009; Leshem et al., 2020; Maini Rekdal et al., 2019; Zeng
etal., 2019). Genotype atlases enable association studies that promise to reveal many such genotype-phenotype links (Power
et al., 2017). Second, variants are useful markers for tracking strains and mobile genetic elements, allowing investigations
into their ecological dynamics (Saak et al., 2020; Smillie et al., 2018). For human-associated microbes, this enables
epidemiological studies of clinically important strains, including transmission and dispersal of different lineages (Mitchell
et al., 2020). Finally, genetic variants may be utilized to infer the evolutionary forces acting on microbial species, shedding
light on the roles of drift, selection, and recombination across taxonomic groups and environments (Garud and Pollard,
2020; Shoemaker et al., 2022; Van Rossum et al., 2020). Thus, there is great interest in characterizing the genetic diversity
of microbiomes beyond the species level.

While cultured isolates have been genotyped for decades, metagenotyping—genotyping species using shotgun metagenomic
DNA sequences—is greatly expanding the field of microbial population genetics by enabling researchers to detect genetic
variation at an unprecedented scale and in new settings (Garud and Pollard, 2020; Shoemaker et al., 2022; Van Rossum et
al., 2020). Key benefits include being able to capture genetic variation across whole genomes, in uncultured species, in
samples that are ecologically diverse, and for many species in parallel with a single experiment. Metagenotyping many
species from a complex community sampled from its natural environment not only enables direct investigation into microbe-
environment associations at a precise taxonomic resolution, but it also reveals co-occurring and co-excluding lineages. This
may include interactions between strains of the same species as well as inter-species relationships, such as strain-specific
phage resistance or bacteria-fungi associations (Forbes et al., 2018).

Many bioinformatics pipelines have been developed for metagenotyping (reviewed in (Ghazi et al., 2022)). Most of these
methods are reference-based (Table S1), meaning they use alignment algorithms to map metagenomic reads to a database
of genomes or gene sequences and apply established genotyping workflows to call variants for each species. Commonly
used aligners include Bowtie2 (Langmead and Salzberg, 2012), BWA (Li and Durbin, 2009), and minimap2 (Li, 2018).
Metagenotyping suffers from many problems previously documented in the context of genotyping individual strains,
ranging from sequencing errors and alignment errors to reference bias (Anyansi et al., 2020; Bush et al., 2020; Ghazi et al.,
2022). However, these known errors are amplified by the massive diversity and high proportion of low-abundance species
present in metagenomic data, coupled with using multi-species reference databases. These factors also present several
unique challenges, including cross-mapping of reads to the wrong species (Hovhannisyan et al., 2020) and reduced
alignment uniqueness (Zhao et al., 2022). The core issue is that metagenotyping tools utilize alignment algorithms in
scenarios that are more complex than the contexts for which the aligners were developed (Table 1).

In this Synthesis, we highlight the challenges that arise in reference-based metagenotyping of bacterial single-nucleotide
variants (SN'Vs) in short reads, which is currently the most common strategy for studying genetic variation in microbial
communities. We focus on problems that are exacerbated by or unique to metagenotyping as compared to genotyping a
single isolate. Through surveying current genome databases, we show that an increasing number of bacterial lineages
contain sequences for multiple closely related species as well as a growing diversity of genomes per species. These changes
have benefits, but also some unfortunate downsides. Through examples and simulations, we explore why metagenotyping
errors tend to be worse in lineages with many closely related species and/or high intraspecific diversity. Next, we evaluate
post-alignment filters and custom genome databases as potential solutions to combat metagenotyping errors. We then review
ongoing and future work that could further improve the accuracy and utility of SNV metagenotypes, including alternatives
to current alignment algorithms. Recognizing that this field is evolving quickly, we discuss metagenotyping for other variant
types, taxonomic groups, and sequencing technologies. We conclude with a review of alternatives to standard alignment
algorithms and broader implications of our findings for the use of alignment in microbiome research.
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Intra-species
Species in Variation per

Example Sample Species in Sample Species in Database
Isolate genotyping Clonal isolate culture | One None - Low One
Community genotyping [ In vitro evolution One or Few Low - Medium Same as Sample

experiment
Metagenotyping Shotgun sequencing of | Many Low - High Many

a stool sample

Table 1. Complexity of sample and database across genotyping contexts.

SOURCES OF GENETIC VARIATION IN METAGENOMES

Each metagenomic sample contains reads from many species. Sequencing reads from orthologous regions of any one of
these species may harbor nucleotide differences due to genetic diversity captured in the sample (Figure 1A) as well as
sequencing errors. Genetic diversity has multiple sources (Ghazi et al., 2022; Shoemaker et al., 2022; Van Rossum et al.,
2020). One common source is the presence of two or more divergent lineages of the same species within a metagenome.
Any lineage abundant enough to be sequenced will contribute to the presence and allele frequencies of within-sample SNVs.
When the lineages are not closely related, many SNVs will be detected genome-wide. Another way to generate genetic
variation is a new mutation arising within a clonal lineage. If the mutation becomes prevalent enough in the community to
be captured and sequenced, it will be detected as a within-sample SNV. Horizontal gene transfer and homologous
recombination also introduce SNVs. Metagenotyping aims to detect all these sources of within-species genetic variation.

Metagenomic sequencing reads from an orthologous region of the same species typically harbor multiple nucleotide
differences when we compare samples from the same community over time (Figure 1B) or from different communities
(Figure 1C). Conserved nucleotides may represent recently acquired mobile elements, sites with strong negative selection,
or closely related lineages (when genome-wide). Some metagenotyping tools merge alleles of SNVs detected within a set
of samples to enable across-sample genetic analyses and to identify population SNVs detected in more than one sample
(Olm et al., 2021; Schloissnig et al., 2013; Van Rossum et al., 2021; Zhao et al., 2022). In other cases, users need to write
customized scripts for cross-sample metagenotype analysis (Shi et al., 2022). The SNV merging step may only use the
consensus allele for each sample (i.e., the nucleotide observed in the most reads) or it can preserve within-sample variation
by including the read counts for each nucleotide or for the two most frequent ones. With the resulting population SNVs for
each species in a set of metagenomic samples, researchers can perform a rich array of analyses, including strain
deconvolution or haplotype inference, metagenome-wide association studies, and tests for positive selection across gene
families, as reviewed in-depth elsewhere (Ghazi et al., 2022). All of these downstream investigations depend upon accurate
metagenotypes.

STEPS INVOLVED IN REFERENCE-BASED METAGENOTYPING

To understand when metagenotyping breaks down, it is important to know how metagenotypes are generated (Figure 1D).
All metagenotyping starts with a DNA sequencing library generated from a microbial community. Reads may be quality
controlled, trimmed, or taxonomically filtered (e.g., to remove host reads or contaminants). Next, reference-based methods
(Table S1) employ alignment algorithms to map each read to the putative species and genome coordinates from which it
was derived. This is done using a multi-species database, typically consisting of one representative genome for each distinct
species. Each alignment is scored based on similarity of the read to the database sequence after taking into account base
quality, and these scores are used to assess the uniqueness of the best alignment (e.g., MAPQ in Bowtie2, which compares
the scores from the best and second-best alignment). In a post-processing step, potentially erroneous alignments are filtered
out based on the alignment score and uniqueness. Then, the pileup of remaining reads is used to detect SNVs, producing a
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metagenotype vector for each species in each sample. Some software packages additionally quantify allele frequencies,
while others use pileups to metagenotype structural variants of various sizes (Greenblum et al., 2015; Zeevi et al., 2019).
Although metagenotyping appears to be a straightforward extension of well-vetted genotyping methodologies, the
complexity of the sequencing library and the multi-species database create some unique challenges for alignment algorithms
and post-alignment filtering.

ALIGNMENT PITFALLS & THEIR EFFECTS ON METAGENOTYPING

Accurate alignment is critical for generating a correct metagenotype. In this study, we say the species from which a read
was derived is the on-target species, and all others are off-target species. Let us consider all the possible outcomes when
aligning a sequencing read to the on-target genome (Figure 2A), ignoring at first the huge diversity of species in a
metagenotyping database. In the best-case scenario, the read has one high-scoring alignment, so it is retained for pileup. We
have high confidence in nucleotide differences from the reference genome, because we trust that the read is correctly aligned.
As uniqueness decreases, the probability that the best alignment is correct decreases (JohnUrbanGenome, 2022). If
uniqueness gets too low, we say that the read is multi-mapping, as in other genomics applications (Deschamps-Francoeur
et al., 2020; Zheng et al., 2019), and it will not be retained for the pileup. The read will not be aligned at all when the best
alignment’s score is low. These filters help to prevent false positive SNV calls. On the other hand, an alignment score
threshold will also remove correctly aligned reads from strains that are diverged from the reference genome. This
phenomenon is known as reference bias (Garrison et al., 2018), and it contributes to false negative SNVs. Uniqueness
filtering also results in false negative SN'Vs, and it can bias allele frequency estimates. Thus, metagenotyping methods face
a tension between controlling erroneous SNV calls and ensuring that true SNVs are detected.

Read alignment is even more challenging in reality, because both the metagenomic sample and the database contain many
species (Figure 2B). It is not known a priori which reads in the sequencing library come from which species. Furthermore,
short reads may have high-scoring alignments to genomes from off-target species, a problem known as cross-mapping
(Hovhannisyan et al., 2020). It can occur between highly conserved and horizontally transferred sequences in distantly
related species, but it affects many genomic loci when the database contains closely related species. The key issue is that
homologous sequences from the representative genomes of on-target and off-target species in the database compete for
reads. If neither alignment is unique enough, the read is filtered out. This affects reads that carry nucleotide differences from
the on-target representative genome and those that do not, contributing to errors in SNV detection and allele frequency
estimates. Another source of error is when the off-target genome has the best alignment with sufficiently high uniqueness
for the read to be retained. This affects the metagenotypes of both species, and it is more frequent with reads carrying
nucleotide differences from the on-target genome.

Clearly, reference bias, multi-mapping, and cross-mapping have the potential to negatively impact metagenotype accuracy.
We next look at how widespread these problems are across bacteria. Then we quantify their effects on metagenotypes and
use these results to explore two ways to combat the problem: changing post-alignment filtering thresholds and customizing
genomes in the database to be as similar as possible to the metagenomic sample.

RAPID GROWTH IN BACTERIAL GENOME DATABASES

Starting around 2015, the number of species with at least one genome sequence began to skyrocket (Figure 3A), with
hundreds of thousands of prokaryotic species now represented in NCBI Assembly (Kitts et al., 2016), European Nucleotide
Archive (Leinonen et al., 2011), and other databases (Chen et al., 2021a). This explosion of genomes is driven in part by
lower costs and higher throughput of DNA sequencing, coupled with algorithms for assembling isolate genomes from short
reads. Meanwhile, culture collections have grown rapidly due to technological advances and concerted efforts to capture
difficult to grow strains from diverse environments (Groussin et al., 2021; Mukherjee et al., 2017; Nowrotek et al., 2019;
Sarhan et al., 2019; Sood et al., 2021). Another major source of genomes has been assemblies generated directly from tens
of thousands of metagenomic sequencing libraries sampled from diverse environments (Levin et al., 2021; Parks et al.,
2017). These metagenome assembled genomes (MAGs) comprise a large proportion of databases such as GEM (natural


https://doi.org/10.1101/2022.06.30.498336
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498336; this version posted July 2, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

environments) (Nayfach et al., 2021) and UHGG (human gut) (Almeida et al., 2021b) (Figure 3B). MAGs have been
particularly useful for capturing genomes from species that are difficult to isolate with traditional culturing techniques.
Species that are medically important, laboratory models, and prevalent in environments that receive the most research
attention are over represented in genome databases, though these biases are decreasing somewhat.

One major benefit of more species with genomes is that a greater diversity of species can be metagenotyped with reference-
based methods. For example, UHGG provides reference genomes for nearly all prevalent prokaryotic species residing in
the stool of individuals from North America or Europe (Almeida et al., 2021b). Using samples from the PREDICT cohort
(Asnicar et al., 2021), we estimate that this translates to an alignment rate of ~80%, which is an improvement over older
databases (e.g., ~65% alignment rate for NCBI in 2013). Database coverage is unfortunately lower but also improving for
other human populations (Smits et al., 2017) and other environments (Nayfach et al., 2021). It is important to keep in mind
that new genomes are only helpful to metagenotyping tools if their quality is high enough to generate accurate genotypes.
When reference genomes are fragmented, incomplete or contaminated with sequences from off-target species, the number
of reads that can be correctly mapped is reduced and fewer sites can be metagenotyped (Olm et al., 2021; Shi et al., 2022;
Van Rossum et al., 2021; Zhao et al., 2022).

In parallel with increasing the species diversity of genome databases, recent sequencing and assembly efforts have also
greatly expanded the number of genomes per species. Genomes are typically grouped into species using algorithms based
on sequence similarity. Genome-wide average nucleotide identity (ANI) greater than 95% serves as an operational species
definition, though this threshold is debated and not strictly followed (Jain et al., 2018; Murray et al., 2021; Olm et al., 2020;
Rodriguez et al., 2021). There are now dozens of species with more than 1,000 genome sequences (Figure 3C). For many
species, the genomes are highly clonal. For example, Burkholderia mallei has 1,698 genomes in GTDB, and most pairs of
genomes are ~99% identical (Figure 3D). Other species show a greater range of sequence diversity, and some species
display population genetic structure with multiple clusters of genomes. Pairs of Enterobacter hormaechei_A genomes in
GTDB, for instance, tend to have either ~99% ANI or ~96% ANI, reflecting two divergent lineages (Figure 3E).

With more species in genome databases and more genomes per species, boundaries between species are getting closer
together and in some cases blurred (Jain et al., 2018; Murray et al., 2021; Olm et al., 2020; Rodriguez et al., 2021).
Thousands of bacteria now have a closely related species with >92% ANI (Figure 3F). Closely related species occur in
specific lineages of most phyla, and they are most numerous in Proteobacteria and Actinobacteria. Coupling closely related
species with divergent lineages of the same species (close to 95% ANI), it is possible that a strain of one species is more
similar to a genome from a closely related species than one from its own species, or at least that some parts of its genome
are. In some lineages, new genomes are basically filling the gaps in sequence similarity between species that were previously
separated. Clearly, the growth in genome sequencing has consequences for accurate read alignment to reference genomes
in metagenotyping tools.

MEASURING THE EFFECTS OF DATABASE GROWTH ON METAGENOTYPING

To quantify how closely related genome sequences affect metagenotypes, we performed a series of carefully controlled in
silico experiments in which metagenomic sequencing reads were generated from genomes using the read simulator ART
(Huang et al., 2012) and aligned with Bowtie2 (Langmead et al., 2019) to databases in which we vary the following
parameters using fastANI (Jain et al., 2018): (1) inter-species ANI of the closest off-target genome and (2) intra-species
ANI between the genome from which reads were simulated and the on-target representative genome. Since these were
simulations, we could directly track alignment rates (% aligned, horizontal coverage, vertical coverage), cross-mapping
rates (% aligned reads that are aligned to an off-target genome), and SNV accuracy (precision, recall) for reference versus
alternative alleles. The reference allele is the nucleotide matching the database sequence, and all other nucleotides are
alternative alleles. We first evaluated the full spectrum of errors with no post-alignment filters (alignment parameters:
bowtie2 --no-unal -X 1000.0 --end-to-end --very-sensitive), and then we examined the effects of applying various filters.
We varied simulated read coverage and observed a plateau in performance statistics starting around 10X (Figure S1). Trends
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in all measurements were qualitatively similar across coverage levels. We therefore used 20X in several of our analyses to
demonstrate a specific problem or solutions. We emphasize that the identified problems are expected to be even worse in
complex microbial communities where many species are at lower coverage values, and we refer readers to Figure S1 for
results across coverage levels. By repeating this workflow for hundreds of bacterial species with different population
structure, diversity, and distance to closely related species, we captured a huge variety of scenarios. These analyses vividly
illustrated the hypothetical alignment problems from Figure 2 using millions of reads, and they enabled us to evaluate
potential solutions in a quantitative manner.

INTRA-SPECIES DIVERSITY BIASES METAGENOTYPES TOWARDS REFERENCE ALLELES

Reference bias is well known to affect genome comparisons (Bush et al., 2020; Garrison et al., 2018; Gunther and Nettelblad,
2019). Not surprisingly, our simulations showed that it is also at play in metagenotyping workflows. Using alignment of
metagenomic reads simulated from 100 conspecific genomes of B. mallei (Figure 3G) or E. hormaechei_A (Figure 3H) to
a single representative genome of each species as examples, we observe a clear correlation between alignment rate and
genome-wide ANI to the representative genome. Repeating this analysis with all high-quality UHGG genomes for 327
species that have intra-species ANI ranging between 95 and 100%, we observed a significant positive correlation between
alignment rate and ANI (Figure 4A). As intra-species ANI approaches the species boundary, only ~75% of reads are aligned
on average. Importantly for metagenotyping, the probability of a correct alignment is lower for reads with differences from
the reference genome. Hence, both precision (Figure 4B) and recall (Figure 4C) are lower for SNV metagenotypes of
alternative versus reference alleles. Thus, when the representative genome in a metagenotyping database is diverged from
the genome(s) in a metagenomic study, fewer SNVs can be metagenotyped and the accuracy of the allele frequencies at
SNVs that are metagenotyped will be biased towards the reference allele.

CROSS-MAPPING IS PREVALENT IN METAGENOTYPING WORKFLOWS

We next used our simulation framework to quantify cross-mapping of metagenomic reads to a genome from the wrong
species. To do so, we repeated the analyses described above with the addition of a second, off-target genome in the database.
For each species, we iterated through a set of off-target genomes ranging from closely related species (inter-species ANI
~95%) to more distantly related species (inter-species ANI <77%). In the absence of cross-mapping, no reads should align
to the off-target genome.

This analysis showed that cross-mapping is prevalent and increases in frequency as the off-target genome approaches the
species boundary (Figure SA). It is also bi-directional, meaning that from the perspective of the on-target species, similar
amounts of reads are lost to and stolen by closely related species (Figure S2). On average, sites of the off-target genome
have ~10X vertical coverage in simulations with 20X coverage (Figure S3), indicating that erroneous alignments are not
limited to a small number of reads from a genomic locus (e.g., those with a particular sequencing error). We initially thought
that cross-mapped reads might therefore be piling up in specific extremely conserved loci. However, we found that closely
related off-target species (ANI > 92%) have a median horizontal coverage of 23.5% (range 3.8%-71.3%), which drops down
to ~5% for more distant off-target species (Figure 5B). This positive relationship between ANI and horizontal coverage is
consistent with prior findings based on genomes (Olm et al., 2020). Together, our results show that cross-mapping occurs
broadly across the genomes of closely related species and may affect a substantial proportion of reads.

Within these trends, cross-mapping varies quite a bit by species and even within the same species. Both the cross-mapping
rate (Figure 5A) and the horizontal coverage of the off-target genome (Figure 5B) tend to be higher when reads are
simulated from a species with greater intra-species diversity, after controlling for inter-species ANIL In the worst-case
scenario when intra-species ANI is ~95% and there is a closely related off-target genome in the database (~94% inter-
species ANI), as much as ~50% of reads can be aligned to the wrong genome, and the off-target genome may have up to
~70% horizontal coverage. But when intra-species diversity is lower and the off-target genome is less closely related, we
observe less cross-mapping (median 3% for all off-target genomes having inter-species ANI = 92%) and lower off-target
horizontal coverage (median 9.2%). Because these results were generated with actual pairs of genomes present in
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metagenotyping databases, we conclude that closely related species drive a great deal of cross-mapping, especially in
lineages with diverse species where species boundaries are blurred and when the representative genome for the on-target
species is diverged from the strains in the metagenome. Since there is relatively little cross-mapping with more distantly
related species, we focus in the following simulations on one closely related off-target species for each on-target species.

LOW ALIGNMENT UNIQUENESS IS A MAJOR DRIVER OF ERRONEOUS METAGENOTYPES

We next used our Bowtie2 alignment results for simulated metagenomic reads from Collinsella sp003458415 against
databases with different degrees of closely related species to examine the fate of reads without any post-alignment filters.
We began by looking at the distribution of MAPID and MAPQ values across scenarios. MAPID is the alignment sequence
identity, and it is used to evaluate the match between metagenomic read and reference genome. MAPQ measures how much
better the highest-scoring alignment is compared to the second-best alignment. A high MAPQ reflects a unique alignment,
and this statistic is used to decide how confident one is in the reported alignment.

When only the on-target C. sp003458415 genome is in the database, most alignments have high MAPQ (mean: ~40, 95th
percentile: ~25; Figure 6A) and MAPID > 95% (Figure 6B). However, we observed high variability in both MAPID and
MAPQ. The low MAPID values reflect alignments where the genome from which reads were simulated differs from the
reference genome (reference bias). This is expected based on our prior results, because C. sp003458415 is a diverse species
(intra-species ANI = 95.16%). The reads with low MAPQ show that multi-mapping occurs within this species. Thus, with
a single genome of the correct species in the database, MAPID and MAPQ are performing as expected. They detect
alignments where read mapping is uncertain due to divergence from the reference genome or paralogous sequences.

Adding another species to the database drastically changes the distribution of MAPQ scores. For reads correctly aligned to
the on-target genome, MAPQ drops precipitously when a closely related species (94% ANI) is added. Median MAPQ slowly
increases as the inter-species ANI decreases, returning to a distribution similar to that with only the on-target genome when
ANI < 80%. The distribution of MAPQ values for reads aligned to the off-target genome (cross-mapping) is lower than that
of the on-target alignments across ANI values with the majority of alignments having MAPQ < 10 even at 94% ANI. In
contrast, MAPID for reads correctly aligned to the on-target genome remains high with a closely related species in the
database. While MAPID for cross-mapped reads tends to be lower than that of on-target reads, these distributions are highly
overlapping.

Next, we repeated these analyses using a large, diverse reference database containing representative genomes for 3,956
species from the UHGG genome collection. With this many off-target species alignment uniqueness is even lower, with
only 23.3% of the on-target reads aligning and a distribution of MAPQ values similar to when using only the species with
94% ANI to the on-target species. Meanwhile, MAPID for both on-target and off-target alignments is higher than any other
simulation scenario, because only reads that are perfect or near-perfect matches are aligned. Altogether, these results make
it very clear that incorrect alignments may have high scores and that closely related species severely reduce alignment
uniqueness. Thus, while some form of post-alignment filtering is essential in the setting of metagenotyping in order to limit
errors due to cross-mapping, a MAPQ threshold that works well in the absence of closely related species (e.g., MAPQ >
30) will remove many correctly aligned reads.

To demonstrate this tension, we tracked the fate of every C. sp003458415 read from the above analysis using the commonly
employed post-alignment filter MAPQ = 30 versus MAPQ > 10. We chose MAPQ = 10 as an alternative post-alignment
filtering threshold, because off-target alignments in Figure 6A tend to have MAPQ below 10, including when using the
database with 3,956 UHGG species, while many on-target alignments have MAPQ between 10 and 30. In both cases, we
used MAPID > 94% to remove some off-target alignments while not filtering out too many on-target ones (Figure 6B).
We classified each read based on whether it was unaligned, incorrectly aligned to the off-target species, or correctly aligned
to the on-target species before filtering, plus whether it passed the MAPQ and MAPID filters or not. Across the series of
databases where the off-target genome has varying similarity to the on-target genome (90-95% inter-species ANI), we
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observed that MAPQ > 10 enables many more reads to be mapped to the on-target genome compared to using MAPQ >
30 (Figure S4). Most of these reads pass post-alignment filtering when only the on-target genome is in the database.
Meanwhile, cross-mapping is higher at MAPQ > 10 versus 30, as expected, but this increase is relatively small. These
results illustrate that a closely related genome in the database can have a bigger impact on alignment uniqueness than on
cross-mapping and that retaining alignments with medium values of MAPQ could be advantageous.

ADJUSTING POST-ALIGNMENT FILTERS INCREASES METAGENOTYPE RECALL WITHOUT LARGE
NUMBERS OF FALSE POSITIVES

Post-alignment filtering is used in metagenotyping tools to remove reads whose alignments are not unique or high scoring
enough to be confident that the aligner has mapped the read to the correct species and genomic location. The goal is to do
this without removing reads that are aligned correctly. Our results above indicate that balancing these two objectives can be
difficult when there are closely related species in the database that compete for reads.

To explore this dilemma, we conducted simulations to quantify the effects of various post-alignment filters on
metagenotypes across species. For these experiments, we used 86 diverse bacterial species whose closest relatives in the
genome database had a range of inter-species ANI values (78-95%). First, we computed the recall and precision of SNVs
without using any post-alignment filtering compared to different choices of MAPQ-based filtering (Figure 7A). This
analysis showed that precision tends to be very high overall but lower for alternative alleles (median = 99.95% compared
99.99% for reference alleles). Precision is negatively correlated with inter-species ANI regardless of allele type,
underscoring the importance of post-alignment filtering to avoid false positive SNVs. As expected from the rates of multi-
mapping and reduced alignment uniqueness we quantified above, SNV recall is affected by post-alignment filters. Recall
drops as the MAPQ threshold is increased, due to the presence of second-best alignments with scores that are not a lot worse
than the best alignment. Overall, recall is lower for alternative versus reference alleles, especially when the closest off-target
genome has higher inter-species ANL

Leveraging paired-end reads helps reduce this drop in recall without degrading precision. Specifically, we recommend to
use only properly-aligned read pairs for metagenotyping (i.e., both ends of the reads are properly oriented and mapped
within a reasonable distance given the expected distance input to the alignment software) and to retain both reads whenever
one read has a sufficiently high MAPQ and MAPID. Across all 86 species, paired-end filtering with MAPQ > 10 and
MAPID = 94% increases recall to values intermediate between no filter and filtering each read independently. The paired-
end filter is particularly helpful for alternative alleles. It works for two reasons: (1) a read with low sequence similarity can
be rescued if its pair has very high MAPID, and (2) a read with low alignment uniqueness (MAPQ < 10) can be rescued if
its pair has a unique alignment. With the Bowtie2 aligner, it is important to properly set up the -X (maximum fragment
length) to guarantee read pairs from DNA fragments longer than 500 nucleotides will be aligned (Zhao et al., 2022).
Requiring proper pairs does filter out some improperly-aligned individual reads, so the total number of reads passing post-
alignment filtering is similar for paired-end and single-end filtering. We conclude that choosing a MAPQ threshold
appropriate to the community being studied and applying paired-end filtering together provide a good balance between false
positive and false negative metagenotypes.

DATABASE CUSTOMIZATION TO SAMPLE

Next, we considered horizontal coverage as a way to avoid false positive species and vertical coverage as a way to identify
local regions affected by cross-mapping. These coverage filters can be applied after post-alignment filtering and pileup, just
before calling SNVs. Our simulations showed that both of these commonly accepted quality measures can be as high for
closely related off-target genomes as they are for the on-target genome, making them poor choices for eliminating erroneous
alignments and reducing metagenotype error. However, we observed that horizontal coverage > 40% works well for
determining if a species is present in the metagenome, resulting in only 1/86 false negative species in our simulation (Figure
7B). Being able to determine which species are in fact present motivated us to examine customization of the database to the
metagenomic sample as a way to mitigate the effects of closely related species. Some strain-level analysis pipelines have
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incorporated a species detection or taxonomic prescreening step to customize the database to present species. For example,
MIDAS?2 (Zhao et al., 2022) uses the median coverage of 15 universal single copy genes, while HUMAnN?2 (Franzosa et
al., 2018) uses MetaPhlAn2 (Truong et al., 2015) to rapidly identify community species.

To test if adding genomes not present in the sample to the database can reduce metagenotype accuracy, we conducted a
simulation in which reads from 86 pairs of closely related species (inter-species ANI > 92%) were combined in a
metagenomic sample and then alignment, paired-end filtering, and SNV calling were performed with two database options:
(1) a database that only includes the two species in the sample (customized) versus (ii) a database that includes 3,956 UHGG
species (not customized). As expected, we noted that alignment was faster with the smaller, customized databases, although
this speed up was canceled out by the computing resources needed for determining which species were present in the
metagenome. Next, we looked at horizontal genome coverage and observed that the genomes for both species in the sample
tend to have slightly higher coverage with the customized database (Figure 7B), and coverage is higher for metagenomes
where the two species have low inter-species ANI (consistent with Figure 4A). For Lachnospira eligens
(GCF_020735745.1, inter-species ANI: 94%, intra-species ANI: 95.6%), alignment uniqueness is so low that horizontal
coverage is below a detection threshold of 40% with both databases despite being in the metagenome, while Adlercreutzia
equolifaciens (GCF_000478885.1, inter-species ANI: 80.8%, intra-species ANI 95.9%) is correctly detected at this
threshold with the customized database only. In general, UHGG species not in the sample have horizontal coverage below
40%, although uncultured Adlercreutzia sp. MGYG-HGUT-02712) is falsely detected at this threshold and would be
genotyped incorrectly by most pipelines. Importantly, we found that customized databases notably improved our power to
detect SNVs, increasing recall 7.5% for the alternative allele and 4.9% for the reference allele (Figure 7C). Recall is higher
for reference versus alternative alleles and for species pairs with low inter-species ANI (consistent with Figure 5). Finally,
metagenotype precision is similar for both databases. Together, these results offer support for the idea of trimming genomes
from metagenotyping databases and leaving only those from species detected in the sample.

We also evaluated the choice of representative genome for species that are present in the metagenomic sample. Our results
and prior work (Olm et al., 2021) suggest that when a species has multiple genome sequences, selecting a reference genome
that is as similar as possible to the genome in the metagenomic sample will increase alignment uniqueness and reduce
mapping errors (Figure SA). How best to pick representative genomes is not a solved problem. For a single sample
containing a single strain, recall of reference alleles is highest when using the representative genome closest to that strain.
But recall of alternative alleles is not correlated with genome-wide nucleotide identity, most likely because the average for
the genome is not predictive of what happens at the most divergent sites. Furthermore, metagenomes containing two or
more divergent lineages of a species make the choice of representative genome harder, as does identifying a single best
genome to use for a set of diverse samples. We examined one species, E. hormaechei_A, in detail and found that using a
centroid of all sequenced genomes for the species is an acceptable compromise that improves alignment rate ~10%
compared to using the most distantly related genome (Figure S5). Although underutilized in practice, customization of
reference databases shows great promise for maximizing alignment rate and minimizing reference bias.

CONCLUSIONS AND PERSPECTIVES

Not long ago, the major challenge for reference-based metagenotyping was a paucity of species with a high-quality genome
assembly. Now in some environments and some taxonomic groups, we have in a sense too many genomes, or rather too
many for the existing tools to work in the intended way. From the perspective of reference-based metagenotyping, database
growth has pros and—perhaps surprisingly—also cons. In this Synthesis, we quantified these drawbacks and the effects of
potential bioinformatics solutions, highlighting how databases containing closely related species reduce alignment
uniqueness and increase metagenotype errors.

Integrating across all our results, we identified low alignment uniqueness as one of the most important factors influencing
metagenotype accuracy. One might think that diverse genome databases are a good thing, because adding the genome of a
new species could prevent erroneous alignments of reads from that species to the genomes of related species. While this
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does happen, we found that a much more common outcome when a close species’ genome is added to a metagenotyping
database is that reads are not unique enough to be aligned, especially when post-alignment filters are applied (e.g., MAPQ
> 30). Another set of problems arise when reads align better to an off-target genome. We showed that cross-mapping can
affect a large proportion of the genome and is worse when the on-target reference genome is diverged from the strain in the
metagenomic sample. Low alignment uniqueness and cross-mapping are both worse for reads carrying alternative alleles
compared to the reference genome.

These findings point to several actionable solutions. First, we recommend lowering the MAPQ threshold. In our analyses
of hundreds of species with a variety of intra-species and inter-species ANI values, MAPQ > 10 emerged as a reasonable
trade-off between false positive and false negative metagenotypes. Stricter thresholds do increase the accuracy of allele calls
at sites that are metagenotyped, but at the cost of lower recall especially for SNVs with alternative alleles. Second, leveraging
paired-end reads helps to increase SNV recall, which is especially important for alternative alleles and species with a close
neighbor in the database. Finally, database customization can help in two ways. By using only the genomes of species likely
to be in the metagenomic sample, many closely related genomes can be eliminated from the database, thereby mitigating
their negative effects on metagenotypes. For species that are present, additionally selecting a reference genome that is similar
to the genome in the reads will reduce reference bias and decrease alignment competition with related species. Some of
these options are already available in existing metagenotyping tools (Table S1). To enable users to tune each step of analysis
to their application, we encourage further development of pipelines in which the metagenotyping methods are fully
customizable, from reference database to post-alignment filtering and SNV calling.

Even if all of these recommendations are followed, metagenotypes may still have fairly high error rates in some situations.
Looking ahead, we can envision several large changes that could further reduce these errors. Metagenotyping tools could
start using recent innovations in alignment algorithms, such as graph-based aligners (Kim et al., 2019), probabilistic
alignment of multi-mapping reads (Bray et al., 2016; Shah and Ruthenburg, 2021; Vainberg-Slutskin et al., 2022; Zheng et
al., 2019), and methods that utilize multiple reference genomes (Chen et al., 2021b). These strategies could reduce reference
bias and resolve some cases of cross-mapping, though they increase compute time and memory use. Benchmarking these
methods in the context of metagenotyping (Andreu-Sanchez et al., 2021) would reveal if alignment uniqueness increases
and/or cross-mapping decreases, as well as the computational resources needed to achieve performance advantages. Another
way to increase SNV accuracy, while also disentangling strains of the same species present within the a sample, may be to
metagenotype multiple co-occurring SNVs together using some combination of long reads (Chen et al., 2022; Xie et al.,
2020; Yahara et al., 2021), haplotype assembly (Ghazi et al., 2022; Li et al., 2019; Pulido-Tamayo et al., 2015), and single-
cell metagenomic sequencing (Cole et al., 2020). The idea is to leverage information from genetically linked sites to increase
confidence in metagenotypes. Similar to how paired-end reads increase recall of SNVs, we expect that these emerging
techniques could rescue reads that would otherwise be filtered out, in particular closing the gap in recall we detected between
reference and alternative alleles. Finally, we remind readers that performance decreases as a function of species abundance
in simulations with different simulated coverage values (Figure S1), indicating more work is needed for applying the
strategies in this study to low abundance bacteria. Matched amplicon sequencing (e.g., 16S) or metatranscriptomic data
(RNA rather than DNA) may help with detection of low abundance species and is an interesting future direction for database
customization. While all these approaches will require new or significantly re-engineered metagenotyping pipelines, their
benefits may justify this effort.

This Synthesis focuses on reference-based metagenotyping, where alignment errors are the major source of inaccurate
results. But alternatives to read alignment exist (Shajii et al., 2016). Inspired by forensic and taxonomic profiling tools that
use exact matching of short sequences (k-mers) (Breitwieser et al., 2018; Liu et al., 2019; Ounit et al., 2015; Phillippy et
al., 2009), we developed a metagenotyping pipeline in which the database is comprised of k-mers covering each allele of
known SNV sites, filtered to remove any k-mers that occur in any other sequenced genome (Shi et al., 2022). This approach
reduces both false positive and false negative SNV calls, and it is faster than alignment. However, very few SNVs are
covered with unique k-mers when there are closely related species in the database, which limits the number of SN'Vs that
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can be metagenotyped per species. Also, this strategy is specific to SNVs identified by comparing reference genomes, for
which k-mers can be designed, and the k-mers must not contain flanking insertions or deletions that interfere with exact
matching. Another emerging strategy is completely reference-free metagenotyping in which reads are directly compared to
each other to detect SN'Vs, insertions and deletions (Arif et al., 2019; Laso-Jadart et al., 2020; Leggett and MacLean, 2014;
Peterlongo et al., 2017). Further benchmarking this approach on metagenomic data and developing parallel methods for
larger structural variants are important future directions.

While our analyses focused on SNVs in bacterial genomes, most of the points raised here apply to other types of variants
and to different taxonomic groups. Indeed, all of the metagenotyping challenges associated with diverse and closely related
species will affect those lineages of archaea, viruses, and eukaryotes where genomes are being densely sampled and
assembled (Emerson et al., 2018; Gregory et al., 2020; Gregory et al., 2019; Massana and L6pez-Escard6, 2022; Mukherjee
et al., 2017; Nayfach et al., 2021). Beyond SNVs, alignment is used in several tools that metagenotype gene copy number
variants and other structural variants (Greenblum et al., 2015; Zeevi et al., 2019; Zhao et al., 2022). Since these variants are
called based on coverage in pileups, their detection and quantification will be biased by reads that are not aligned, fail post-
alignment filtering, or are incorrectly aligned. Therefore, competition for reads across species, within-species multi-
mapping, and cross-mapping will affect structural variant metagenotypes in ways qualitatively similar to the effects we
demonstrated for SNVs. More broadly, our findings are also very relevant to metagenomic analyses that do not involve
genotyping, such as species detection and abundance estimation, where probabilistic mapping has been recently proposed
as a solution for perfectly multi-mapping reads (Vainberg-Slutskin et al., 2022). Thus, many aspects of microbiome
bioinformatics require careful consideration of how alignment algorithms perform on a tree of life in which many lineages
are now densely sequenced.

Despite the prevalence of closely related species in genome databases today, it is important to remember that the vast
majority of species, including most bacteria, still have limited or no genome sequences. We emphasize that genome
sequencing aimed at expanding reference genome collections should focus on capturing these under-represented lineages.
However, this Synthesis shows that alignment and other bioinformatics tools must continue to evolve in order to remain
accurate in the face of closely related genomes.

STAR * METHODS

Software and algorithms

fastANI (version 1.33) (Jain et al., 2018)

Mash (version 2.2) (Ondov et al., 2016)

ART (version 2.5.8) (Huang et al., 2012)

Bowtie2 (version 2.3.5.1) (Langmead and Salzberg, 2012)

MUMmer4 (version 4.0) (Marcais et al., 2018)

MIDAS?2 (version 0.5) (Zhao et al., 2022)

R (version 4.2.0) (R Core Development Team, 2022) (packages: ggplot, ggbeeswarm, ggsci)
metacoder (version 0.3.5) (Foster et al., 2017)

Databases

NCBI Assembly (May 29, 2022) (Kitts et al., 2015)

Genome Taxonomy Database (GTDB; version R207) (Parks et al., 2021)

Genomes of Earth’s Microbiomes (GEM; June 1, 2022) (Nayfach et al., 2021)

Unified Human Gastrointestinal Genome collection (UHGG; v1.0) (Almeida et al., 2021a)

Survey of prokaryotic genome collections
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We counted the number of prokaryotic species with a genome in the NCBI Assembly database from 1999 to 2022. NCBI
Assembly was used for this analysis because (1) it is the largest genome database, (2) it is updated daily, and (3) it
unambiguously identifies and tracks changes. To ensure maximum inclusiveness as well as low redundancy, we counted
unique species of bacteria and archaea with any of four levels of genome assemblies: complete genome assemblies,
assemblies that include chromosomes or linkage groups, scaffolds and contigs, assemblies that include scaffolds and contigs,
and assemblies that include only contigs. We also surveyed the number of species and the number of genomes per species
in the current versions of three other databases: GTDB, GEM, and UHGG. These large genome collections have distinct
features. GTDB contains mainly assemblies from isolate whole-genome shotgun sequencing projects, and it uses genomes
solely from the NCBI Assembly database. GEM is a collection of genomes from diverse environments. UHGG is a
collection of genomes from the human gut microbiome. Both GEM and UHGG contain a high proportion of metagenome-
assembled genomes (MAGs). Using pairs of high-quality GTDB genomes for B. mallei and E. hormaechei_A, we computed
intra-species ANI. We aligned the metagenomic reads of 5 random US samples (ERR4330028, ERR4330046, ERR4334225,
ERR4335281 and ERR4341723) and 5 random UK samples (ERR4334072, ERR4334226, ERR4335245, ERR4335298 and
ERR4341720) from the PREDICT cohort (Asnicar et al., 2021) to UHGG (4,643 gut genomes) and NCBI (2013; 6,549
genomes) using Bowtie2 and computed the median alignment rates. These samples have very high sequencing depth (~55
million reads per sample on average), and none of them contributed genomes to UHGG or the 2013 release of NCBL

Survey of genomic similarity between species in GTDB

We downloaded a total of 65,703 genomes from GTDB and selected one high-quality representative genome for each of
the 19,754 species. For each representative genome, we used Mash to generate a 21-mer sketch profile (mash sketch -k 21
-s 5000) and calculated pairwise genomic distance to all other representative genomes (mash dist). Mash distance estimates
genome-wide average nucleotide identity (ANI) and is computationally feasible with 19,754 genomes. We denoted a species
as having a closely related species (CRS) if the smallest Mash distance to any other species was below 0.08 (= 92% ANI).
The heat_tree function in Metacoder was used to visualize the number of species with CRS on the GTDB phylogeny,
rendered as a cladogram.

Quantification of intra-species and inter-species genomic similarity

To assess genomic diversity within species, we used intra-species ANI. For each species, we used fastANI to compute the
sequence similarity between conspecific genome assemblies. This calculation was applied to all high-quality genomes of
selected species from UHGG (1,969 species with 2-6,645 genomes per species) and to all high-quality genomes of selected
species from GTDB (9 species with 1,000-2,000 genomes per species). We also used intra-species ANI to compare
individual high-quality genomes from NCBI Assembly to conspecific genomes from UHGG. The resulting intra-species
ANI values were used to assess how diverse the genomes from different species are and to select genomes for simulation
experiments.

To assess genomic distance between species, we used inter-species ANI. For each pair of species, we used fastANI to
compute the similarity between a representative genome of each species. This calculation was applied to high-quality
representative genomes of species pairs from UHGG. The resulting inter-species ANI values were used to select genomes
for simulation experiments.

Metagenomic simulations

To evaluate alignment and metagenotyping errors across a broad range of scenarios, we simulated metagenomic sequencing
reads from UHGG, NCBI Assembly, and GTDB genomes selected based on intra-species and inter-species ANI (Table
S2). We used two GTDB species with >1,000 genomes (Burkholderia mallei and Enterobacter hormaechei_A) to evaluate
reference bias (Table S3). We used 327 UHGG species with at least two high-quality genomes and at least one CRS (inter-
species ANI > 92%) to further explore reference bias and to evaluate cross-mapping, alignment uniqueness, and alignment
sequence identity (Table S4). We used 86 NCBI genomes from species commonly found in the human gut (Cheng et al.,


https://doi.org/10.1101/2022.06.30.498336
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.30.498336; this version posted July 2, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

2021) and represented in UHGG with at least one related species (inter-species ANI > 80%) to evaluate performance
differences between reference and alternative alleles, as well as the effects of post-alignment filtering and database
customization (Table S5). All genomes used as simulation templates were high quality (Completeness = 90, Contamination
<'5), and only species with at least two high-quality genomes were used.

For each genome used as a simulation template, 150-basepair, paired-end Illumina sequencing reads were computationally
generated using ART (GTDB and UHGG genomes: art_illumina -ss HS25 -1 150 - m 1000 -s 100 -sp, NCBI genomes:
art_illumina -ss HS25 -1 125 - m 600 -s 60 -sp) at a range of genome coverage levels (1X - 50X). In an initial set of
experiments, only one species was included in the metagenomic reads. Template genomes were selected to have a range of
values for intra-species ANI to the representative genome of that species in the metagenotyping database (see below). Next,
we evaluated the effects of adding reads from additional species with varying inter-species ANI to the first species (based
on representative genomes). Since the majority of errors that we detected were due to the most closely related species in the
metagenomic reads, we simplified further experiments by simulating reads from only two species, one designated as the on-
target species and the second as the off-target species.

Metagenotyping databases and read alignment

For each iteration of the simulation experiments, metagenomic reads generated from the template genome(s) were aligned
to a particular database using Bowtie2 (bowtie2 --no-unal -X 1000.0 --end-to-end --very-sensitive). In order to tune ANI
between the reads and the reference database, we selected representative genomes based on intra-species and inter-species
ANI (Table S2). To evaluate reference bias, reads simulated from GTDB and UHGG non-representative genomes were
aligned to the default representative genome for their species. GTDB reads were also aligned to the centroid of all GTDB
genomes (lowest average pairwise ANI) and a boundary genome (highest average pairwise ANI). Reads simulated from
NCBI genomes were aligned to a UHGG genome with ANI 95.5% - 99.5% to the NCBI genome (either the default
representative genome or another genome if the default one is outside this ANI range). For all other analyses, we used
databases with (i) only the UHGG representative genome of the on-target species, (ii) the UHGG representative genomes
of the on-target and off-target species, or (iii) all UHGG representative genomes.

Defining ground truth variants with whole-genome alignment

To determine the correct genotypes for simulated metagenomic reads, we compared the template genome to the
representative genome in the metagenotyping database. Whole-genome alignments of pairs of conspecific genomes were
aligned using nucmer in the MUMmer package (--mum: only use anchor matches that are unique in both the reference and
query). Poorly aligned blocks with average sequence identity < 95% were identified, and nucleotides in these blocks were
excluded from metagenotype performance assessments. For retained blocks, single nucleotide variants (SNVs) were called
and used as ground truth variant sites for simulation experiments. All matching sites in these blocks were used as ground
truth non-variant sites.

Metagenotype analysis

We used MIDAS2 to metagenotype each simulated metagenome with each choice of database. Single-sample
metagenotyping was performed using the SNV module of MIDAS?2 (midas2 run_snps). For each sample, MIDAS?2 reports
summary statistics of the read alignment and pileup. SNVs were called in the pileup of metagenomic reads, and the per-
sample per-species major allele per-site was compared to ground truth variant and non-variant sites from whole-genome
alignments (see above). MIDAS? is flexible enough that we could explore horizontal and vertical coverage thresholds, post-
alignment filters, and database customization across a range of settings that cover most of the defaults in other
metagenotyping tools (Figure S1). Performance differences between MIDAS2, metaSNV2, and inStrain have been
investigated elsewhere (Olm et al., 2021; Zhao et al., 2022).
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Post-alignment filtering

In an initial set of experiments, we assessed alignment and metagenotyping errors without using any post-alignment filters.
Then these performance results were compared to results with post-alignment filtering. Three different post-alignment filters
were implemented by customizing the MIDAS?2 command line: no filter (--analysis_ready), single-end based filter (default
option), and paired-end filter (--paired_only).

Performance assessments

We evaluated performance using definitions that adhere to best practices for microbial genomics (Olson et al., 2015).
Alignment rate was calculated as the number of aligned reads (after any filter was applied) divided by the total number of
reads. MIDAS2 computes horizontal coverage as the proportion of genomic sites aligned with at least two post-filtered
reads, and vertical coverage as the average read depth of genomic sites covered with at least two reads. SNV precision was
computed as the number of correctly called non-variant or variant sites over the number of called non-variant or variant
sites. SNV recall was computed as the number of correctly called non-variant or variant sites over the total number of non-
variant or variant sites in the ground truth sets defined from whole-genome alignments. Precision provides insight into
accuracy of the metagenotyping results, while recall measures statistical power.
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Figure 1. Detecting SNVs in microbiome samples. Within-species genetic variation, such as single nucleotide variants (SNVs), can be
detected within and between communities using metagenotyping. (A) A single community may harbor multiple strains of the same species
at the same time. A biallelic SNV is shown. The C allele is present in 70% of genomes, while the other 30% have the G allele. This genetic
variant may be detected by metagenotyping a single sample. (B-C) Across-sample analysis of metagenotypes may reveal population SN'Vs.
(B) Over time, conspecific genomes in a community develop genetic differences through strain replacement, recombination, horizontal gene
transfer, and de novo mutation. (C) Two communities may harbor divergent strains with many SNVs. (D) Reference-based metagenotyping
involves mapping metagenoic reads to a reference database of representative genome sequences (or marker genes) using alignment or an
alternative method, such as k-mer exact matching. Typically, alignments are filtered before detecting SNVs in the pileup of aligned reads.
The detected SNV alleles and their read counts are output to a file. Across-sample analysis involves merging this data for a set of samples.
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Figure 2. Common alignment pitfalls in the context of reference-based metagenotyping. Possible outcomes of aligning one read from a
metagenomic sequencing library to a metagenotyping database. Alignment similarity, alignment uniqueness, and the probability that the read
is correctly aligned after applying post-alignment filtering is recorded below each example. Post-alignment filtering: The best alignment is
retained if sequence similarity between the read and the genome is high enough and if the alignment is unique enough compared to the
second best alignment. Solid arrow: the best alignment, passes post-alignment filtering; Dashed arrow: read aligns but is not the best
alignment and/or fails post-alignment filtering. Arrow with cross: read does not align, best alignment is below the aligner’s minimum score.
Alignment similarity indicated on all arrows. For aligned reads, SNVs between the read and the genome are indicated by red dots. Top: The
database contains only an on-target genome, which is a different strain of the same species as the read (purple). (A) Uniquely aligned read:
aligned one place with high similarity and uniqueness, so it passes post-alignment filtering. It is likely a correct alignment. (B) Aligned read
with low uniqueness: the second best alignment is pretty good, so it may fail post-alignment filtering depending on the uniqueness threshold.
Confidence in the best alignment is reduced. (C) Multi-mapping read: aligned two places and the best alignment has only slightly higher
similarity, so it will probably fail post-alignment filtering. (D) Perfectly multi-mapping read: aligned two places with identical similarity, so
it will fail post-alignment filtering. (E) Unaligned read: no alignments reported. Bottom: The database contains the on-target genome plus
an off-target genome of another species (maroon). (F) Aligned read with low uniqueness: the second best alignment is to the off-target
species but has fairly high similarity. The uniqueness threshold will determine if it passes post-alignment filtering. (G-H) Multi-species
multi-mapping reads. (I) Cross-mapping read: the best alignment is off-target. It may pass post-alignment filtering, depending on the
uniqueness threshold. A higher uniqueness threshold would reduce cross-mapping and false positive SNVs in the off-target species, but this
would also eliminate correct alignments as in B and F. Filtered out and unaligned reads can bias SNV metagenotypes in the on-target
species.
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Figure 3. Rapid growth in prokaryotic genome sequences uncovers diverse and closely related species. (A) The number of prokaryotic
species with at least one genome assembly has grown rapidly in recent years. NCBI Assembly database (as of May 2022) by year from 1999
to 2022. (B) Many large genome collections are available today. Shown are Genomes of Earth’s Microbiomes (GEM; June 1, 2022),
Genome Taxonomy Database (GTDB; version R207), and Unified Human Gastrointestinal Genome collection (UHGG; v1.0). (C) It is now
common for a prokaryotic species to have multiple genome sequences. (D-E) Species differ in the amount of intra-specific genetic diversity
in genome databases. Genome-wide average nucleotide identity (ANI) between the representative genome and conspecific genomes is
shown for two example species chosen from GTDB to represent different population structures at the extremes of intra-species ANIL. (D)
Burkholderia mallei (RS_GCF_000011705.1). (E) Enterobacter hormaechei_A (RS_GCF_001729745.1). (F) A heat-tree (cladogram)
showing the prevalence of bacterial taxa with a closely related species (CRS), defined as 92%-95% identity (1 - Mash distance, a fast
approximation of ANI). Species with CRS are most common in Proteobacteria and specific lineages of Actinobacteria. This phylogenetic
distribution in part reflects the large amount of sequencing and assembly effort focused on pathogens, model organisms, and the human
microbiome. (G) We simulated metagenomic reads from 100 B. mallei genomes at 30X coverage and aligned them to the GTDB B. mallei
representative genome. Alignment rate is highest when reads come from a genome that has higher ANI with the representative genome. (H)
E. hormaechei_A shows the same relationship between alignment rate and ANI but with more variability in both variables.
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Figure 4. Reference bias reduces the number and accuracy of metagenotyped SNVs for divergent lineages. (A) We quantified
reference bias for 327 species selected from the UHGG database to represent a range of different levels of intra-species diversity.
Simulated metagenomic reads from all genomes of each species were aligned to a single high-quality representative genome, one species
at a time with no other genomes in the Bowtie2 database. Across species, alignment rate is positively correlated with ANI (Pearson’s
correlation 0.75, p<2.0x10'%) and ranges from 52% to 100%. Alignment rate is computed as the fraction of aligned reads over total
simulated read counts. (B-C) We metagenotyped SNVs in alignments from (A) for reads simulated from 86 high-quality NCBI genomes,
without any post-alignment filtering. SNV recall and precision are correlated with intra-species ANI (i.e., similarity of the NCBI genome
in the metagenomes to the UHGG genome in the database) for reference (REF) alleles. (B) As expected, unaligned reads tend to carry
more alternative (ALT) alleles, and hence recall is notably higher for REF alleles. (C) Precision is very high for REF alleles and somewhat
lower for ALT alleles.
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Figure 5. Cross-mapping is prevalent. Using
UHGG, reads were simulated at 20X coverage from
one genome and aligned to a database containing
two representative genomes: the on-target species
(color: ANI to the simulation template) and an off-
target species (horizontal axis: inter-species ANI).
All aligned reads were retained (no post-alignment
filtering). (A) We observe increased cross-mapping
as the template genome gets more diverged from the
representative genome and as the two species
become more closely related. Cross-mapping rate is
the proportion of all aligned reads incorrectly
(B) Cross-
mapped reads can cover a high proportion of the

mapped to the off-target genome.

off-target genome, with similar trends as the cross-
mapping rate. Horizontal coverage is the proportion
of nucleotides in the off-target genome covered by
at least two reads.
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Figure 6. Closely related species greatly reduce alignment uniqueness. Simulated reads from Collinsella sp003458415 were aligned to
databases containing only the representative genome of the on-target species (Rep), two representative genomes: one on-target and from an
one off-target species (horizontal axis: inter-species ANI), or representative genomes for 3,956 species (UHGG). No post-alignment
filtering was applied. (A) A wide distribution of MAPQ values (vertical axis) with the Rep database shows that within-species multi-
mapping reduces alignment uniqueness. Adding one closely related species to the database greatly reduces alignment uniqueness for reads
aligned correctly to the on-target genome (red). This effect is correlated with inter-species ANI but remains fairly high out to 90% inter-
species ANI. Using MAPQ > 30 for post-alignment filtering would remove the majority of on-target alignments. Including all 3,956
species in the database does not lead to a further decrease in MAPQ compared to including a closely related species with 94% inter-species
ANI, emphasizing that low alignment uniqueness is mostly driven by highly related genomes in the database. Cross-mapped reads aligned
to off-target genomes (blue) tend to have even lower MAPQ than on-target alignments. (B) As expected, reads aligned to the on-target
genome tend to have high sequence identity (vertical axis: MAPID). This is especially true when there is a closely related species in the
database (UHGG and 94% inter-species ANI), because many reads that would have lower MAPID are not correctly not aligned. Reads
aligned to the off-target genome have slightly lower MAPID than on-target alignments, and their MAPID decreases with inter-species ANI.
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Figure 7. Post-alignment filtering and database
customization improve SNV recall.

To explore potential solutions to metagenotyping
errors caused by closely related species in the
database, we simulated reads from 86 species and
aligned them to a database containing representative
genomes for the on-target species and one off-target
species with varying inter-species ANI (shade of
purple). (A) SNV recall is reduced with closely
related species (darker purple), especially for
alternative (ALT versus REF) alleles. Recall falls
further when individual reads are subjected to post-
alignment filtering (Single: MAPQ at least 10,
MAPID at least 94), but increases when paired-end
filtering is used (MAPQ at least 10 for at least one
read in a proper pair), with 8% more SNVs correctly
genotyped at ALT sites. (B) Adding reads from the
off-target species to the simulated metagenomes, we
found that a horizontal coverage threshold of 40%
(dashed line) accurately distinguishes most species
in the reads (on-target, off-target) from species not
present (Others), with one false positive and two
false negative species when the database is not
customized (3,956 UHGG genomes). Customizing
the database to include only the two species in the
reads increases horizontal genome coverage,
eliminating one false negative and the false positive
species. (C) The customized database increases SNV

recall at both ALT (7.5%) and REF (4.9%) sites.
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Figure S1. Convergence of performance statistics around 20x coverage. Reads simulated from Catenibacterium mitsuokai
DSM-15897 (GCF_000173795.1) with coverage ranging from 1X to 50X (horizontal axes) were aligned to a database containing
the UHGG representative genomes for C. mitsuokai (On-target) and another species (Off-target) selected to have a range of inter-
species ANI (Rep: only the on-target genome, 91-93: ANI between representative genomes of two species in the database, Random:
inter-species ANI < 77). Post-alignment filtering was varied (No filter, Single-end filter, Paired-end filter) with MAPQ at least 10
and MAPID at least 94 as thresholds. (A-B) For each representative genome in the database, we tracked the following alignment
statistics after any post-alignment filtering and dropping sites with only one aligned read: percentage of genome covered by aligned
reads (horizontal genome coverage; left), percentage of reads aligned to that genome (middle), and average per site read depth in
the pileup divided by the simulated coverage (relative vertical genome coverage; right). (A) Alignment statistics for the on-target
species C. mitsuokai DSM-15897 are lower with a closely related species in the database, with post-alignment filtering, and at
simulated coverage values below 10X. Even when the database contains only the on-target representative genome and no post-
alignment filtering is performed, horizontal coverage is only ~80% and ~28% of reads are not aligned due to sequencing errors,
reference bias, and other factors that prevent accurate read mapping. (B) Alignment statistics for the off-target genome show that
cross-mapping is prevalent. It increases with simulated coverage, but this relationship levels off around 10X-20X coverage
depending on the alignment statistic. Cross-mapping depends heavily on inter-species ANI and is mitigated by post-alignment
filtering, illustrating the trade-off between maximizing on-target alignments while minimizing off-target alignments. (C)
Metagenotyping was performed with MIDAS?2 using the alignments from A-B, and SNV calls were compared to the gold standard
of SNVs from whole-genome alignments of the simulation template genome of the on-target species to the representative genome
of the on-target species. The majority allele was used for this evaluation, and ambiguous sites (tied reads for both alleles) were
excluded. SNV precision (correctly called sites divided by all unambiguous sites with at least 2 reads; left) is lower with post-
alignment filtering, lower simulated coverage, and a closely related species in the database. It is lower for alternative (ALT) versus
reference (REF) alleles in most scenarios. SNV type I error (incorrectly called sites divided by all unambiguous sites with at least 2
reads; right) is high overall, but shows similar trends. It is notably lower for ALT alleles.
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Figure S2. Cross-mapping is mutual. The
simulation in Figure 5 was augmented by
including reads from a genome from the off-
target species. The metagenome containing
reads from both species was aligned to the
same database containing the representative
genomes for both species. No post-alignment
filtering was applied. Mirroring the result in
Figure SA, the cross-mapping rate for reads
from the off-target species to the on-target
genome high
positively correlated with inter-species ANI

representative was and
(horizontal axis). As expected, it was not
highly correlated with the intra-species ANI

of the on-target species (colors).

Figure S3. Cross-mapping leads to high
genome Using the
simulations from Figure 5, we observed that

vertical coverage.
an average site in the off-target genome can
have many reads aligned. The reads were
simulated at 20X coverage, so 10X vertical
coverage represents half of the expected
coverage for the on-target genome. Vertical
coverage is higher when the simulation
template genome has lower similarity to the
on-target representative genome, but it does
not show a strong trend with inter-species
ANI. Vertical coverage is the mean read
depth in the pileup, counting only cross-
mapped reads.
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Figure S4. Tracking the fate of every read as a function
of database and post-alignment filters. We simulated
reads from Collinsella sp003458415 (UHGG species ID:
100197, intra-species ANI ~95%) at 20X coverage and
aligned them to databases containing representative
genomes for C. sp003458415 (on-target) and another
species (off-target) selected to have a range of inter-species
ANI (Rep: only the on-target genome, 90-94: ANI between
representative genomes of two species in the database,
Random: a randomly selected UHGG species). Post-
alignment filtering was performed with a MAPID threshold
of 94% and a MAPQ threshold of 10 versus 30. Reads are
traced across databases and classified in each analysis as
follows: Unaligned (pink), TP Species Pass (correctly
aligned reads with MAPID and MAPQ above thresholds;
purple), TP Species Low MAPQ (aligned to on-target
genome with MAPID at least 94% but MAPQ below
threshold; blue), TP Species Fail (aligned to on-target
genome with MAPID and MAPQ below threshold; teal),
FP Species Pass (aligned to off-target genome with MAPID
and MAPQ above thresholds, i.e., cross-mapped; lime), FP
Species Low MAPQ (aligned to off-target genome with
MAPID at least 94% but MAPQ below threshold; orange),
FP Species Fail (aligned to off-target genome with MAPID
and MAPQ below thresholds; red). (A) At a MAPQ
threshold of 30 (common default), closely related species
cause cross-mapping (lime) and greatly reduce alignment
uniqueness (purple reads flowing to blue and orange). (B)
At a MAPQ threshold of 10 more correctly mapped reads
pass post-alignment filtering (purple) at the cost of more
cross-mapping (lime).
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Figure SS. Reference bias as a function of representative genome. We simulated reads from 100 diverse GTDB genomes of
Enterobacter hormaechei_A at 30X coverage and aligned them to databases containing three different choices of on-target
reference genome: boundary (furthest from other GTDB E. hormaechei_A genomes, mean intra-species ANI = 96.0%;
GCF_008082005.1), default GTDB representative (mean intra-species ANI = 96.6%; GCF_001729745.1), or centroid (closest
to other GTDB E. hormaechei_A genomes, mean intra-species ANI = 97.7%; GCF_003964925.1). For each reference genome,
alignment rate decreases with ANI to the simulation template genome (color scale). Across reference genomes, alignment rate
tends to be highest for the centroid, followed by the GTDB default representative and then the boundary genome.
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Table S1. Comparison of features implemented in different alignment-based metagenotyping tools.

(Beghini et al. 2021)

marker genes

Metagenotyping Reads aligned to | Database customization | Post-alignment filter uses | Default MAPQ
pipeline paired-end information filter
MIDAS2 Whole genomes | Species detected by Yes MAPQ >= 10
(Zhao et al. 2022) profiling 15 universal

single copy genes
inStrain Whole genomes | No Yes MAPQ >=2
(Olm et al. 2021)
metaSNV v2 Whole genomes | No No Uniquely
(Van Rossum et al. aligned only.
2021)
StrainPhlan3 Species-specific | No No MAPQ > 30
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Table S2. Data and analysis used in metagenomic simulation figures.

Figure Dataset Genome(s) used to simulate metagenomic | Database Filter
reads in each iteration
Figure 3G | B. mallei One Burkholderia mallei GTDB genome GTDB representative genome None
with varying ANI to the GTDB for B. mallei
representative genome (GCF_000011705.1)
Figure 3H | E. One Enterobacter hormaechei_A GTDB GTDB representative genome None
hormaechei | genome with varying ANI to the GTDB for E. hormaechei_A
representative genome (GCF_001729745.1)
Figure S5 E. One Enterobacter hormaechei_A GTDB GTDB centroid genome for E. None
hormaechei | genome with varying ANI to the hormaechei_A
representative genome (boundary or (GCF_900077895.1) or GTDB
. boundary genome for E.
centroid) .
hormaechei_A
(GCF_008082005.1)
Figure S1 C. mitsuokai | NCBI genome of Catenibacterium UHGG representative genomes | None,
mitsuokai DSM-15897 (GCF_000173795.1) | for C. mitsuikai and for one off- | Single,
target species with varying ANI | Paired
to the C. mitsuikai representative
genome
Figure 6A | C. UHGG representative genome of UHGG representative genome None
& 6B + sp003458415 | Collinsella sp003458415 (species ID: for C. sp003458415 and UHGG
Figure S4 100197) representative genome for one
off-target species with varying
ANI to the C. sp003458415
representative genome
or UHGG representative
genomes for 3,956 species
including C. sp003458415
Figure 4A [ 327 UHGG | One UHGG genome from the on-target UHGG representative genome None
species species with varying ANI to the UHGG for on-target species
representative genome of that species
Figure SA [ 327 UHGG | One UHGG genome from the on-target UHGG representative genome None
species species with varying ANI to the UHGG for on-target species and UHGG
representative genome of that species, one representative genome for off-
per 1% ANI bin (95% to 100%, up to five target species
per on-target species)
Figure S2 327 UHGG One UHGG genome from the on-target UHGG representative genome
species species with varying ANI to the UHGG for on-target species and UHGG
representative genome of that species and representative genome for off-
one UHGG non-representative genome target species
from an off-target species with varying ANI
to the on-target species, one per 1% ANI
bin (77% to 95% based on the two
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representative genomes plus one random
species, up to 19 per on-target species)

closest off-target species (based on ANI to
the on-target species)

another UHGG genome for on-
target species with ANI 95.5% -
99.5% to NCBI genome and one
UHGG representative genome
for the off-target species. Not
customized: 3,956 UHGG
representative genomes

Figure 5B + [ 327 UHGG | One UHGG genome from the on-target UHGG representative genome None
Figure S3 species species with varying ANI to the UHGG for on-target species and UHGG
representative genome of that species representative genome for off-
target species
* Horizontal coverage only includes reads
from the off-target species (cross-mapping)
Figure 4B 86 NCBI One NCBI genome from the on-target UHGG representative genome None
& 4C strains species for on-target species or another
UHGG genome for that species
with ANI95.5% - 99.5% to
NCBI genome
Figure 7A | 86 NCBI One NCBI genome for the on-target species | One UHGG representative None,
strains genome or another UHGG Single,
genome for on-target species Paired
with ANI95.5% - 99.5% to
NCBI genome and one UHGG
representative genome for the
off-target species with varying
ANI to the on-target species
Figure 7B 86 NCBI One NCBI genome from the on-target Customized: One UHGG Paired
&7C strains species and one UHGG genome from the representative genome or

* The genome used to simulate reads is never the same with the representative genome in the database.
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