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Abstract

Gene-based association tests aggregate multiple SNP-trait associations into sets defined by
gene boundaries. Since genes have a direct biological link to downstream function, gene-
based test results are widely used in post-GWAS analysis. A common approach for gene-
based tests is to combine SNPs associations by computing the sum of y? statistics.
However, this strategy ignores the directions of SNP effects, which could result in a loss of
power for SNPs with masking effects (e.g., when the product of the effects of two SNPs and
their linkage disequilibrium (LD) correlation is negative). Here, we introduce “mBAT-combo”,
a new set-based test that is better powered than other methods to detect multi-SNP
associations in the context of masking effects. We validate the method through simulations
and applications to real data. We find that of 35 blood and urine biomarker traits in the UK
Biobank, 34 traits show evidence for masking effects in a total of 4,175 gene-trait pairs,
indicating that masking effects in complex traits is common. We further validate the
improved power of our method in height, body mass index and schizophrenia with different
GWAS sample sizes and show that on average 95.7% of the genes detected only by mBAT-
combo with smaller sample sizes can be identified by the single-SNP approach with larger
sample sizes (average sample size increased by 1.7-fold). For instance, LRRC4B is
significant only in our method for schizophrenia, which has been shown to play a role in
presynaptic pathology using genetic fine-mapping and evidence-based synaptic annotations.
As a more powerful gene-based method, mBAT-combo is expected to improve the
downstream pathway analysis or tissue and cell-type enrichment analysis that takes genes
identified from GWAS data as input to understand the biological mechanisms of the trait or
disease. Despite our focus on genes in this study, the framework of mBAT-combo is general
and can be applied to any set of SNPs to refine trait-association signals hidden in genomic

regions with complex LD structures.
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Introduction

Genetic variants identified from genome-wide association studies (GWAS) of complex traits
are often collapsed to genes (defined as the minimum start and maximum end boundaries
over all identified gene transcripts) to seek biological interpretation of trait-variant
associations and conduct post-GWAS analysis. One approach to generating an association
statistic for a gene is to select an index SNP with the smallest P-value'?. Alternatively, a
gene-based test that aggregates association signals across all SNPs within the boundaries
of a gene® can be more powerful for the following reasons. First, it is common to observe
multiple causal variants with small effects in a region*®. Even if there is a single but
unobserved causal variant, it may not be perfectly tagged by any individual common SNP,
especially if it is uncommon or rare. In either case, aggregating signals over SNPs in the set
can improve power. Second, compared to GWAS, gene-based association tests have orders
of magnitude fewer significance tests compared to GWAS (approximately 20K versus 8
million) and so the threshold for declaring a significant test requires less correction for
multiple testing. Genes identified by gene-based tests have been used to explain trait-variant
associations’, put forward to downstream gene-set or pathway analysis®®, and used to infer

causative tissues and cell types for complex traits and diseases in conjunction with

10,11 12,13

functional annotations or single-cell RNA-seq data
State-of-the-art methods for gene-based test only require GWAS summary statistics (i.e.,
SNP association z-scores or y? statistics), usually with a reference genotype dataset for
computing the linkage disequilibrium (LD) correlation structure between SNPs (given
extensive LD differences between ancestries', it is important to match reference and GWAS
populations in ancestry). A popular strategy to combine signals across common SNPs is to
compute the sum of the y? statistics (referred to as the sum-y? strategy hereafter).
VEGAS", fastBAT'®, and MAGMA'"" are widely used methods that employ this strategy, with
the main difference between them in how P-values are computed. The sum-y? strategy can
lead to improved power, especially for genes harbouring multiple causal variants™®.

However, since this strategy is based on the sum of y? variables of individual SNPs, the
method loses power when the underlying causal variants mask the effects of each other
because of the correlation structure between them. In single SNP association tests this issue

can be addressed through the conditional and joint (COJO) analysis algorithm'®.

A standard GWAS reports the per-SNP x? which is a measure of the marginal association
for the trait, regardless of all other SNPs. If there are multiple causal variants at a locus, the

power of detecting marginal associations can substantially diminish if the product of the
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causal effects and the LD correlation between causal variants is negative (i.e., negative
genetic covariance among causal variants)'®. This phenomenon is referred to as “masking”,
that is, the masking of causal effects in marginal analysis due to LD. LD is often
parameterised using r?, but here we use the directional correlation (r). Fig.1 illustrates the
masking effect concept considering two variants in positive LD with opposite effects, where
the marginal effect of either variant, estimated from a single-SNP model, is smaller than the
true effect because the two causal effects tend to be cancelled out with each other by LD.
Similarly, the true effects can be masked when the two causal variants have the same effect
direction but negative LD. Given the mounting evidence for the presence of multiple causal

20,21 (

variants at a locus*® and the action of long-term stabilising selection in human traits or

negative selection on trait-associated variants)?*2°

, hegative LD could be created between
trait-increasing alleles (see below for more discussion). We seek to test if masking effects

are prevalent across the human genome.

SNP 1 SNP 1 SNP 2 SNP 1 SNP 2
LD corre—la:ti_on r=08 LD correlation r = ~0.8

True effect pi=1 pi=1 B, =-1 B1=1 B,=1
Marginal effect by =1 by = 0.2 b, = —0.2 by =0.2 b, =0.2

Figure 1 Schematic of masking effect. The masking effect occurs when the product of the true
effects and the LD correlation is negative. The marginal effect of each SNP can be written as the sum

of true effects weighted by the LD correlation between the two SNPs: b; = f; + r X ;. The marginal

effect size is smaller than the true effect size when the SNP is masked by another SNP in LD with it.

While it is difficult to disentangle genetically correlated variants in the marginal analysis, joint
analysis based on a multiple regression approach can help uncover signals of masked
variants. There are two general types of joint analyses. One type of analysis performs the
hypothesis test on the joint associations of multiple variants on the trait. Brown et al."®
proposed a pairwise testing between every pair of SNPs in a sliding window to detect
masking effects. Yang et al.* employed a more sophisticated algorithm to include variants in
the joint-association test by a stepwise model selection, which searches for secondary
signals that are conditionally independent of the most genome-wide significant SNP in a

region (i.e., COJO). However, SNP hypothesis testing requires a stringent significant



threshold to correct for genome-wide multiple testing correction, and it is not devised for set-
based tests (e.g., for genes). Another type of joint analysis is based on estimation of genetic
variance. While the total genetic variance is typically estimated by a mixed model approach,
it is possible to estimate the local genetic variance with a fixed effect model that
simultaneously fit all SNPs in the focal region®. The variance explained by all SNPs would
capture the masking effect because it accounts for the LD between SNPs. Therefore, the
estimate can be greater than the sum of that estimated for each independently genome-wide
significant SNP?, contributing to filling the gap of “missing heritability”?®-°. Although the
variance estimation approach is expected to be more powerful than the SNP association
test, this approach was proposed for applications on mega-base sized genomic segments
(the median size of protein-coding genes is 27.4kb and only 0.3% are > 1 Mb); estimates

would thus tend to be biased when applying to gene regions®.

In this study, we proposed a novel gene-based method, multivariate set-Based Association
Test (mBAT), to improve power of identifying genes harbouring variants with masking
effects. Our method is derived based on the quadratic form theory in normal variables®!, and
only requires GWAS summary statistics and an appropriate LD reference. In essence,
mBAT tests for the non-zero variance explained by the SNPs in the set, thus it has the
advantage of high power as featured in the variance estimation approach. Meanwhile, our
test statistic is analytically tractable, with closed-form solutions for the P-values. We show by
extensive simulations that mBAT has greater power than the sum-y? strategy (taking
fastBAT and MAGMA as examples) in the presence of masking effects. To maximise overall
power regardless of the masking effects, we further proposed a hybrid method, mBAT-
combo, by combining mBAT and fastBAT test statistics through a Cauchy combination
method, a recently developed method to combine different test statistics without knowing the
correlation structure. We applied mBAT and mBAT-combo to GWAS results for a range of
complex traits of different genetic architecture® to compare the performance of COJO,
MAGMA and fastBAT. For height, body mass index (BMI), and schizophrenia (SCZ), we
investigated improved power empirically by comparing results from GWAS with smaller
sample sizes. Our methods have been implemented in the GCTA software * and in a R
package (https://github.com/Share-AL-work/mBAT).




Methods

mBAT

Let x be a m x 1 vector of random variables that follow a multivariate normal distribution with
mean zero and variance-covariance X, x~N (0, Z). Suppose A is a m X m symmetric matrix.
Then, the quadratic form of x in association with matrix A is*

Q(x) = x'Ax = X7 Axi (1)
where A; is the i" eigenvalue of ZA in descending order, and x? is an independent central
chi-squared variable with 1 degree of freedom (d.f.). If A = £71, then XA =1, and thus A; =
1. It follows that

Q) =xT7'x =X, x7 = xim ()
where x2, is a central chi-squared variable with d.f. = m. In the context of GWAS, under the
null hypothesis that none of the m SNPs in the set is associated with the trait, the z-scores of
SNPs would have the same distribution as x, with X being the LD correlation matrix among
SNPs (denoted as R):

z ~ N(O,R)
The test statistic of mMBAT is
Tmpar = ZR 7'z 3)
which, according to Eq (2), has a central chi-squared distribution:
TmBAT ~ X
See the Supplementary Note for a direct proof that the mBAT test statistic follows a central
chi-squared distribution. Note that because the normality assumption of z always holds

under the null, mBAT applies to genes with different genetic architectures.

We show below that essentially mBAT tests if the variance explained by all SNPs in the set
is zero. Let X be the n X m standardised genotype matrix with column mean zero and
variance one (n is the GWAS sample size), and f be the m x 1 vector of the true effects of

SNPs. The variance explained by the SNPs is

v = var(xp) = 22X = pRg (4)
Let b be the vector of SNP marginal effect estimates from GWAS. We have

b=Rf+e
where Var(e) = %R assuming unit phenotypic variance and each individual b; explaining a

negligible proportion of variance. It can be seen that b converges to Rf as n increases to
infinity, which gives

B=R1b
Substitution in Eq (4) gives



, =bR™'b
Given that the sampling variance of b; is 1/n as shown above, the mBAT test statistic is
simply a product of the genetic variance and the GWAS sample size:
Tmpat = nV; = Vnb’'R™'bvn = 2Rz
Thus, mBAT can be regarded as a test for a nonzero variance explained by the SNPs in the

gene region.

One challenge in the computation of the mBAT test statistic is that the R=! may not always
exist in a gene region because the LD matrix for a set of consecutive SNPs is often rank
deficient. Thus, we used the pseudo-inverse of the R, R~ = UD~1U’, where D = diag{4;} with
i =1,...,pis a diagonal matrix of the p positive eigenvalues of R,and Uisam X p
orthogonal matrix whose columns are eigenvectors corresponding to the eigenvalues in D.
As a result, the test statistic follows a chi-squared distribution with d.f. equal to the number of

selected eigenvalues (Supplementary Note):
p

Tmsar = ZRZ= ) 371U ~ i}

i=1
In practice, R would be computed from a reference sample if individual-level genotype data
from GWAS are not available. To remove LD differences between the reference and GWAS
samples due to sampling, for each gene region, we chose to only include the top k principal
components needed to explain at least y% of the total variance in the LD matrix, where the
total variance of the LD matrix is computed as the sum of all positive eigenvalues.
Depending on the LD structure, k can differ between genes. We investigated different
thresholds for proportion of variance explained y = 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99 and 1

in simulations, and determined to use 0.9 in real data analyses.

The sum-y? strategy
The connection between the sum-y? strategy and mBAT can be regarded as the use of
different A matrices in Eq (1). If we set A = I, the m x m identity matrix, the quadratic form of
z-scores is

Qz) =21z =3,z = X% Aixi (5)
Thus, both Eq (2) and (5) can be regarded as a special case of the general form of Eq (1).
This is the test statistic used in fastBAT, VEGAS and MAGMA. Unlike mBAT, it does not
have a closed-form solution for computing the P-value, i.e., Pr(Q(z) > q) with g being the
observed value. fastBAT uses the Saddlepoint method for an approximation®*. VEGAS
calculates the P-value by simulation which is computational demanding'®. MAGMA uses

Imhof’s method to compute the P-value by numerical integration but when it fails, an



empirical P-value from simulations is reported instead'’* (in which case the minimum P-

value is 1/number of simulations).

mBAT-combo

The relative superiority of mBAT or the sum-y? strategy could depend on the genetic
architecture of the gene for the trait. To achieve the optimal power, we combine the test
results of MBAT and fastBAT by the aggregated Cauchy combination method (ACAT), an
established omnibus test®’” that combines P-values from different tests without knowing the
correlation structure among the test statistics. Let P; be the P-value from fastBAT or mBAT.

With equal weights assigned to the two tests, we have

1 2
TBAT-combo = EZ 1tan{(0-5 — P)m}
i=

Where tan{(0.5 — P;)r} follows a standard Cauchy distribution®” given that P; is uniformly
distributed under the null*®. The P-value of mBAT-combo is expected to approach the
smallest P-value from mBAT or fastBAT in the presence of a true signal, therefore giving the
highest power overall. When one of the methods give an extremely small P-value (i.e., <

1x107'%), we have

1¢1
TmBAT-combo = E{Pl_ﬂ + tan{(O.S - PZ)T[}}

Where P; and P, denote the P-values smaller and larger than the threshold, respectively.

When both methods’ P-values are smaller than the threshold, we have

1,1 1
TBAT-combo = 2 (P_ + P_)
1 2

Derivation of theoretical power

To compare analytically the performance of mBAT and methods using the sum-y? strategy,
we derived the theoretical power given a false positive rate for the two approaches. It
requires, for each method, knowledge of the distribution under the null model and evaluating
Pr(T > 1) under the alternative model, where T is the test statistic and 7 is the quantile value
given a false positive rate a under the null. Without loss of generality, let us consider a
simple case with two (m = 2) causal variants in LD with each other. The causal effects are g,

and S,, respectively, and the LD between the two variants is r.

The mBAT test statistic follows a central chi-squared distribution with d.f. = 2 under the null

and a non-central chi-squared distribution with d.f. = 2 under the alternative, where the non-

nq?
1-q?

centrality parameter NCP = with g2 = BZ + B2 + 2,8, being the variance explained by

the two causal variants jointly.



The sum-y? test statistic does not have a known distribution either under the null or the
alternative model. However, it has been shown that the distribution of the sum of correlated
central chi-squared variables can be well approximated by a Gamma distribution®®.

Specifically,

! 2(1+72
m,( %))

where 7?2 is the squared correlation between the two chi-squared variables. The quantile

zi + 25 ~ T

value t given a can be computed by the inverse of the Gamma cumulative density function

(CDF). Under the alternative model, the test statistic is the sum of two correlated non-central

2 2
chi-squared variables with d.f. = 1, NCP, = 1"6’;2 and NCP, = lnﬁ respectively, where g2 =
—41

_q%’
b? with b, = B, + rf, and q3 = b2 with b, = 8, + ;. It is known *° that this statistic can be
transformed into the sum of two independent non-central chi-squared variable with d.f. = 1

and NCP equal to 5 and 62, respectively, where
I [ —
5= |51] = R
and u = [\/NCP;, \/NCP,]'. Then, the Saddlepoint approximation®® can be used to compute
the power, i.e., Pr(T > 1), without knowing the exact distribution under the alternative. An R

script for computing the theoretical power in the case of two causal variants can be found at
GitHub (https://github.com/Share-AL-work/mBAT).

Proof-of-concept simulations

We used simulations based on simulated genotypes to contrast the performance of our
methods to the sum-y? strategy (fastBAT was used as a representative) using a minimal
number of parameters to depict the scenarios of masking and non-masking effects. We

considered two SNPs with simulated genotypes from a bivariate normal distribution,

X~ N([g] , [i ;]) where the correlation between the genotypes (r, i.e., LD) varied from 0.1

to 0.99. The effect of SNP 1 (B,) was set to 1. The effect of SNP 2 (B,) varied from -0.1 to -1.
This setting represented a scenario of masking effects, i.e., 8; X B, X r < 0. In the scenario
of non-masking effects, the direction of 8, was set to be positive. We simulated genotypes
for 500 individuals, each had a genotypic value g; = X;1 8, + X;2B, and a phenotypic value

y; = gi + e;, with e; ~ N(0,100). The marginal effect of each SNP was estimated by
regressing the phenotypes on the SNP genotypes. The z-scores of marginal associations
and the true LD correlation matrix were the input data for each method. This simulation

process was repeated 1,000 times for each combination of 8, and r values. An R script for



running the proof-of-concept simulations can be found at GitHub (https://github.com/Share-
AL-work/mBAT).

Simulations based on real genotypes

We performed simulations based on real genotypes to 1) determine the optimal y parameter
(the proportion of variance in LD explained by the chosen eigenvalues) for subsequent real
data analyses, and 2) compare our methods with fastBAT and MAGMA in terms of false
positive rate (FPR; the proportion of null genes with P-values < 0.05) and power (the
proportion of causal genes identified with significant P-values). We defined a gene unit as a
SNP set located in £50 Kb of base-pair positions for the start and stop codons for each gene
derived from gene ID and annotation list released from GENCODE in the genome build of
hg19/GRch37 Release 37 (GRCh37) (https://www.gencodegenes.org/human/). The
simulations were conducted based on 100 randomly selected protein-coding genes on
chromosome 1 with 45,657 imputed common SNPs (MAF > 0.01) on a random sample of
34,993 unrelated individuals of European ancestry in the UKB. All the selected genes have
at least 50 SNPs to ensure that we had enough room to sample up to 8 causal variants for
each gene. Under the null hypothesis, individual phenotypes were sampled from a standard
normal distribution without a genetic component. Under the alternative hypothesis, 100
genes were sampled as the causal genes in the scenarios of either masking or non-masking
effects (the same definition as in the proof-of-concept simulation above), with a trait
heritability h2 = 0.1. We extracted 2-8 causal variants per gene from SNPs that were located
in the region unique to the gene. We further simulated different levels of statistical power

(measured by NCP=50, 100 or 150) by performing simulation for each gene in isolation with

p2 = _Nep
" n+NCP

times for each of the settings under the alternative hypothesis. In the analysis, the LD

. The simulation was repeated 1,000 times under the null hypothesis and 10

correlation matrix was computed from either the GWAS sample (internal LD) or an
independent dataset (external LD). The unrelated individuals of European ancestry in the
Genetic Epidemiology Research on Aging (GERA) dataset*® (n=51,258) or 1000 Genome
Project dataset*' (n= 494) were used as the external LD data sets to investigate the
influence of reference sample size on our methods. Finally, we randomly flipped the
direction of the marginal effect for 0.5%, 1%, 2%, 5%, or 7% of the SNPs to examine the

robustness of our methods to the potential allelic errors in the GWAS summary data.

Real data analyses
First, we benchmarked different methods with multiple linear regression (MLR) using

individual-level genotype and phenotype data in UKB height. MLR was regarded as the gold

10



standard because it invoked an ANOVA test for the variance explained by all SNPs in the
set, which accounts for the masking effects, but can only be applied when individual-level
data are available. The linear regression model (LRM) implemented in fastGWA*? was used
to conduct GWAS analyses on 8,531,416 variants with MAF =0.01 in all the UKB unrelated
individuals of European ancestry with height phenotypes (n = 348,423). Age, sex, and the
top 20 PCs provided by the UKB were used as covariates in fastGWA-LRM and MLR. In all
the analyses of real data, we always ran mBAT, mBAT-combo, fastBAT v1.93.2 and
MAGMA v1.09 using the imputed genotype data from GERA as the LD reference. For this
benchmark analysis, we also ran these methods using the internal LD as a sensitivity check.
MLR was carried out using the top k eigenvectors obtained from the singular value
decomposition (SVD) of the genotype matrix for each gene as independent variables, with k
being the same number of eigenvalues corresponding to the y parameter in mBAT (y was

chosen to be 0.9 for the real data analyses).

Next, we applied COJO analysis to the GWAS summary data from 35 UKB blood and urine
biomarker traits using genotype data from all UKB unrelated individuals as LD reference. We
used COJO to identify genes with significant masking effects and compared the power of
detecting such putative masking genes between different gene-based methods. More
specifically, a gene is identified as a putative masking gene if it had at least 2 joint SNP
effects detected by COJO, with the top associated SNP at the genome-wide significant level
of Ppoint < 5108, a secondary SNP at a relaxed significant level of Point < 5%10°, and the
genetic covariance between the two SNPs being negative (i.e., f; X r x ,< 0). While we
knew COJO was underpowered to identify all masking genes, those identified were unlikely
to be false given the stringent significance threshold imposed by multiple test correction at
SNP level.

Finally, we applied mBAT and mBAT-combo to the publicly available summary data from the
latest and earlier releases of GWAS meta-analyses for height>**, BMI>** and SCZ***® with
different sample sizes. A gene identified only by mBAT or mBAT-combo was called if it
passed genome-wide significance threshold at gene level (Pmear < 2.7%10°) and there was
no genome-wide significant SNP (Pawas > 5%107®) within 1MB of the gene. We further
investigated the results that were only significant in mBAT (mBAT-combo) but neither in
fastBAT nor in MAGMA. We used the results from analyses applied on height, BMI and SCZ
and sought to find whether most of the genes identified only by mBAT (or mBAT-combo) in
smaller samples could be discovered by GWAS with larger sample sizes (presence of a

genome-wide significant SNP in gene region + 50kb).

11



Results

Method comparison by proof-of-concept simulations

The proof-of-concept simulations found no inflation in FPR for mBAT, fastBAT (as a
representative sum-y? strategy like VEGAS and MAGMA) or mBAT-combo (Fig. 2a). We
derived the theoretical power for mBAT and fastBAT (Fig. 2c and 2d, solid line; Methods),
and the results were consistent with those computed empirically across simulation replicates
(Fig. 2c and 2d, dashed line). These results confirmed that mBAT was superior to fastBAT
in the presence of masking effects, especially when the two causal variants had similar
magnitudes of effect sizes. The benefits of mMBAT increased with LD up to the point where
LD was so high that the two variants effectively collapsed into one (Fig. 2c). When the effect
sizes of the two variants became distinctive or the variants were in lower LD, the difference
between mBAT and fastBAT diminished because of a smaller masking effect between the
two variants, i.e., a decreased proportion of genetic variance being masked (Fig. $1). We
noted that fastBAT gave a slightly higher power than mBAT under the scenario of non-
masking effect (Fig. 2d). This is likely because the marginal association signals were
enhanced when the genetic covariance is positive, which led to a stronger signal in the sum-
x? strategy. Nevertheless, mBAT-combo, which combines the merits of both tests, gave a
power as high as that of the best method in either scenario (Fig. 2b), with consistent
performance across different settings (Fig. 2c and 2d). As expected, the P-values from
mBAT were highly consistent with those from MLR (Fig. S2 and S3), which were both more
significant than fastBAT in the scenario of masking effect (Fig. S2).
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Figure 2: False positive rate (FPR) and power comparisons of mBAT, fastBAT and mBAT-
combo using proof-of-concept simulations. a) FPR under the null model; b) Overall power under
the causal model in scenarios of masking and non-masking effects. Each boxplot consisted of results
across different settings for effect size of the second SNP (effect of the first SNP was set to be 1) and
the LD correlation between the two SNPs, with 1,000 simulation replicates per setting. c) and d)
Theoretical power (solid line) and empirical power (dashed line; mean over 1,000 replicates) given a
P-value of 0.05 in the scenario of masking effect (c) and non-masking effect (d) with different settings
for the second SNP effect size (grey header boxes) and LD levels (x-axes). Results of different

methods are shown by colours.

Assessing performance in simulations based on real genotypes

We calibrated the critical parameter in mBAT, the proportion (y) of variance in the LD matrix
explained collectively by the selected eigenvalues, by simulations based on genotype data in
the UKB. Using an external LD reference from the GERA dataset, FPR was remarkedly
inflated when y = 1 (including all positive eigenvalues) and the inflation decreased when a

smaller y value was used (Fig. S4a). Thus, it is necessary to impose a filter on small
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eigenvalues which are trivial in variance explained but sensitive to sampling variation in LD
between GWAS and reference samples as well as genotyping or allelic errors in GWAS.
This is supported by our observations that mild LD pruning (pairwise r? > 0.9) alleviated the
inflation at y = 1 (because complete LD may not persist across samples). Moreover,
applying DENTIST* (a quality control, QC, tool to detect LD heterogeneity in GWAS
summary statistics) prior to the analysis could further reduce the inflation (Fig. S4a). Note
that when y is 0.95 or 0.90, FPR in mBAT had already been well-controlled regardless of the
additional QC steps, and the removal of small eigenvalues also improved the robustness of
mBAT in the presence of mislabelled alleles in GWAS summary statistics (Fig. S5).
However, the highest power was achieved at y = 0.9~0.85 for mBAT and additional QC
such as LD pruning or application of DENTIST reduced power (Fig. S4b, S6 and S7).
Therefore, we chose y = 0.9 for mBAT or mBAT-combo in the following analyses unless

otherwise specified and without LD-pruning or application of DENTIST.

Next, we compared methods. By default, fastBAT performs pairwise LD-pruning at r*> 0.9
and MAGMA implements a pruning of eigenvalues that cumulatively explain < 0.1% of the
variance in the LD matrix (equivalent to setting y = 0.999). All methods were well calibrated
under the null simulation. Under the causal model, mBAT had higher power than fastBAT
under the masking scenario but not under the non-masking scenario (Fig. 3), consistent with
the result from the proof-of-concept simulation. Overall, mBAT-combo test gave the highest
power regardless of the masking or non-masking scenario, whereas MAGMA gave the
lowest power compared to other methods across different settings (investigated in detail
below). Similar patterns of performance were observed with different numbers of causal
variants (natL = 2, 4, 6 or 8), different levels of power (quantified by NCP per gene = 50, 100
or 150), and the use of internal LD or two external LD datasets with very different sample
sizes (GERA (n=51,258) and 1KG (n= 494) European samples datasets) (Fig. $S8-S10).
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Figure 3 False positive rate (FPR) and power comparisons of different methods in simulations
based on real genotype data. Colours represent different gene-based tests. a) FPR under the null
model; Each boxplot represents the distribution of estimates across 1,000 simulation replicates; b)
Overall power under the causal model in scenarios of masking and non-masking effects. Each boxplot

represents the distribution of estimates across 10 simulation replicates.

Benchmark with multiple linear regression in UKB height

In theory, mBAT tests for a nonzero genetic variance explained by all SNPs in the gene
(Methods), and we have shown its equivalence to the multiple linear regression (MLR)
approach by simple proof-of-concept simulations (Fig. S2 and S3). Here, we investigate in
the real data analyses the consistency between mBAT using GWAS summary statistics and
MLR using individual-level genotype and phenotype data in the UKB height, in comparison
with fastBAT and MAGMA (Fig. 4). Consistent with the simulation results, mBAT (or mBAT-
combo) was almost identical to MLR when in-sample LD were used, and in strong
agreement with MLR when using external LD (Pearson correlation r = 0.98), suggesting

mBAT (or mBAT-combo) is robust to the choice of LD reference in practice once very small

15



eigenvalues are eliminated (Fig. S11). Compared to the gold-standard MLR approach, both
fastBAT and MAGMA tended to have compromised P-values, especially for genes with
strong association signals, likely because of the presence of masking effects in those genes.
In MAGMA when the Imhof integration method fails, P-values are generated through
simulation, which limits the minimum P-value to 1/10'°, where 10'° is the number of
simulation replicates, and the Imhof's method relies on numerical integration, which does not
track the extreme P-values. If genes with extreme P-values (P < 5x10% in MLR) are
excluded, then using external LD, mBAT (r = 0.98, regression slope b = 1.04) and mBAT-
combo (r=0.97, b = 1.03) remained most consistent with MLR, followed by fastBAT (r =
0.87, b =0.72), and MAGMA had the least concordance (r=0.79, b = 0.52) (Fig. S12).
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Figure 4 Benchmark of different gene-based test methods with multiple linear regression
(MLR) in the UKB height, using external LD and in-sample LD. The y-axis is the -log10 P-values
of different gene-based methods denoted by colours. The x-axis is the -log10 P-values of MLR with
the same number of eigenvectors as that used in mBAT and mBAT-combo. See Supplementary Fig.

12 for a zoom-in when Puir > 5%10°20,

Masking is common if not ubiquitous

Our hypothesis is that masking phenomenon is common, given the evidence of multiple
causal variants in a locus and widespread negative selection in the human genome*.
mBAT could uncover trait-associated genes that were missed by other methods due to
masking effects, and so did mBAT-combo. We have shown that mBAT had relatively high
power under masking, tested by simulations. To validate it in real data, we used the results

from the COJO analysis (a conservative approach) to form a set of putative genes with
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masking effects and sought for two lines of evidence of validation. We applied our methods
to 35 UKB blood and urine metabolite traits with diverse genetic architectures. mBAT-combo
indeed identified more significantly associated genes than the sum-y?2 methods (Fig. 5a). On
average across traits, mBAT-combo (mBAT) identified 19.7% (11.5%) more genes than
fastBAT and 56.9% (43.9%) more than MAGMA.

First, we collected genes with evidence of masking effects from COJO, where the top two
SNPs with significant joint-association signals had a negative product of their effects and LD
correlation (Methods) and examined if mMBAT had a higher power to detect these putative
true positives. We found such putative genes with masking effects in 31/35 metabolite traits
and the numbers varied from 21 to 402 across traits (Fig. S13), reflecting differences in trait
genetic architecture. Of these 31 traits, mMBAT-combo and mBAT had higher power detecting
masking genes than other methods in 26 traits, leading to a significant improvement overall
(t-test P-value = 3.4x10°° between mBAT-combo and fastBAT and 2.9x10° between mBAT-
combo and MAGMA) (Fig 5b). For genes with evidence of multiple causal variants but non-
masking effects (the top-2 SNPs with significant COJO signals had a positive product of their
effects and LD correlation), mBAT and mBAT-combo had a mean power as high as fastBAT
but still significantly higher than MAGMA (Fig. S14). There were genes with multiple
conditionally independent signals detected by COJO, except for creatinine, microalbumin,
potassium and sodium in urine. In all methods, the power increased with an increasing
number of COJO signals (Fig. $S15), with mBAT and mBAT-combo always being the most

powerful methods, consistent with the simulation result (Fig. S9).

The second line of evidence supporting the relatively high power of mBAT in detecting
genes with masking effects is to investigate if genes that are only detected by mBAT (not
significant in the sum-y2 methods) are enriched with putative genes with masking effects
(based on the COJO results). Across 34 traits, we found 4,273 gene-trait pairs that are
conservatively significant in mBAT (at a more stringent threshold of Pmsat<5%107%) but not
significant in other methods after a standard Bonferroni correction within each trait (both
Prastear and Pwacua < 2.7x10°). Among these gene-trait pairs, 115 (2.7%) harboured at least
two joint association signals detected by COJO, of which the majority (98/115=85.2%) were
consistent with the scenario of masking effects (Table S1). Namely, the COJO signals with
masking effects were significantly enriched in genes that were only significant in mBAT
(Fisher’s exact test P-value = 7.6x10?°, Table S2). Thus, association signals that are
specifically detected by mBAT can be regarded as an evidence of masking effect

associations.
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Our results showed that of 35 blood and urine biomarker traits analysed, 34 had evidence

for genes with masking effect associations (24 confirmed by COJO). Notably, mBAT had
identified almost all putative masking genes defined by COJO (99.4%) but reported much
more significant genes (Fig. 5¢), suggesting a higher power of mBAT than COJO in terms of

identifying masking genetic effects, in line with the simulation result (Fig. $16). All these
results suggest that masking is common in trait-associated gene regions, and mBAT can

improve power of detecting genes with masking effect in traits with diverse genetic
architecture, thus making mBAT-combo the best method achieving an optimal power overall.
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Validation of novel genes found by mBAT-combo in GWAS data with larger sample
sizes

We have shown by real trait analysis that mBAT (or mBAT-combo) has higher power in
identifying genes with COJO signals of masking effects and such COJO signals were
enriched in genes only detected by mBAT. Another approach to validate the novel genes
identified by mBAT and mBAT-combo is to check if these genes go on to have a genome-
wide significant SNP when the GWAS sample size increases. We performed this validation
analysis in three complex traits (height, BMI and SCZ) for which GWAS summary statistics
with different sample sizes are available. With mBAT-combo (mBAT), we identified 2,198
(2,111) novel genes for height (N = 241,427), 117 (104) for BMI (N = 226,289), and 576
(477) for SCZ (Netective= 57,231) at the genome-wide significance level (i.e., P <2.7x107%)
using an earlier GWAS summary dataset for each trait"*>. A mBAT-combo (or mBAT)
specific gene was claimed if it was significant in mBAT-combo (or mBAT) gene-based test,
but no genome-wide significant SNP was found in the gene region £ 1Mb. Of these mBAT-
combo (mBAT) specific genes, the vast majority can be validated in the subsequent GWAS
with larger sample sizes (at least one SNP in the gene region + 50kb reached genome-wide
significance level of Pewas <5%10®), i.e., 99.3% (99.6%) for height (N= 456,426), 100%
(99.1%) for BMI (N=456,426), and 87.2% (90.2%) for SCZ (Nefrecive= 73,189) (Fig. 6a-c), with
a pooled validation rate 95.5%(96.3%) across the three traits (by 1.9, 2.0 and 1.3 fold
sample size increase respectively). For the mBAT-combo (mBAT) specific genes that could
not be detected by either fastBAT or MAGMA, we also observed high validation rates, 99.0%
(98.8%) for height, 100% (97.6%) for BMI, and 80.7% (76.7%) for SCZ (Fig. 6d-f). Using the
latest GWAS datasets, there were 477 (403), 352 (314) and 882 (716) detected by mBAT-
combo (mBAT) only (absence of single SNP associations in gene region + 1Mb and not
detected by either fastBAT or MAGMA) for height, BMI and SCZ respectively. We predict

that most of these genes, if not all, will be detected in GWAS in the future.

For example, LRRC4B, a susceptibility gene reported by the latest SCZ GWAS study*® using
FINEMAP*®, a statistical fine-mapping approach, was detected only by mBAT in this study.
LRRC4B has been annotated by SynGO*°, an evidence-based synaptic annotation

database, that its protein product plays a role in synaptic organization and differentiation.
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Figure 6. The overlap between the mBAT-combo or mBAT specific genes identified using an
earlier release of GWAS data with a smaller samples size and the latest GWAS data with a
larger sample size in different traits. In panels a, b, and c, the red (blue) circle shows the number of
novel genes detected by mBAT-combo (mBAT) using an earlier GWAS dataset, with no GWAS signal
in the gene region + 1Mb, and the yellow circle shows the numbers of genes with a GWAS signal in
the gene region + 50kb using the latest GWAS dataset and not found in earlier GWAS. In panels d, e
and f, the red (blue) circle shows the number of novel gene detected only by mBAT (mBAT-combo)
but missed by fastBAT and MAGMA using the earlier GWAS dataset with a smaller sample size.
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Discussion

In this study, we have introduced two new multivariate gene-based methods, mBAT and
mBAT-combo. Briefly, mBAT tests for the nonzero variance explained by all the SNPs in a
gene region, using GWAS summary statistics and reference LD. We have shown by theory,
simulations, and real trait analyses that mBAT is equivalent to the multiple linear regression
approach without access to the individual-level data and improves power of identifying
genes harbouring variants with masking effects (when the product of SNP effects and LD
correlation is negative). While mBAT was more powerful than the sum-y? methods in the
context of masking effects, we observed a small loss of power when genes have multiple
causally associated variants have the same direction of effect and the SNPs are in positive
LD. Since different genes may have different genetic architectures of association, we

introduced the mBAT-combo method that combines the mBAT and fastBAT associations.

The same genes can have different genetic architectures in different traits, which could
make them masked in some traits but not in others. This has been confirmed in our analysis
of the 35 UKB blood and urine traits. There were 1,483 genes showing multiple association
signals in more than 2 traits, among which 579 genes showed both feature of masking and
non-masking in different traits according to $; x r x f3, of the top two SNPs reported by
COJO. For instance, gene A1CF showed a signal of masking effect in creatinine and eGFR
marker but a signal of non-masking effect in gamma glutamyl transferase marker. Variants in
ABCA1 were masked in cholesterol adjusted for statins, HDL cholesterol and urate marker
but not in apolipoprotein A and LDL direct adjusted for statins. To maximise the overall
power, it is necessary to use the mBAT-combo test that accounts for both masking and non-

masking effects.

The superiority of the mBAT-combo method over other gene-based test was evidenced by
simulations and real trait analyses using individual-level data and the COJO results. As a
result, for the 35 UKB biomarker traits we uncovered 98 genes with significant signals of
masking effects that cannot be identified by other gene-based methods. To demonstrate that
new discoveries are enriched with masking effects, we conducted analyses to provide
validation of the discoveries. Pooled across three complex traits, 96.3% (95.5%) of the
mBAT (mBAT-combo) specific genes were successfully validated by the conventional
GWAS approach in the latest datasets with larger sample sizes, confirming that mBAT and

mBAT-combo are powerful methods that produce consistent and reproducible results.

It remains an open question about how common the masking effect is in the human genome.

Comprehensive analysis in all traits of UKB is expected to address this question and will be
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our next project. Still, our analysis provides some insight into this question by quantifying the
proportion of genes that are significant in mBAT but not in the sum-y? methods for a wide
range of complex traits. For the 35 blood and urine metabolite traits analyzed in this study,
we identified a total of 4,273 gene-trait pairs with Pmpat < 5%x107 but Prasteat & Macma > 2.7%107°
in 34 traits, implicating pervasive masking effects in complex traits. Note that 4.1% (4/98) of
these genes did not have any SNP with the marginal association P-value reached the
genome-wide significance level, which can therefore contribute to explaining the “missing
heritability” problem, that is, a fraction of the total variance explained by the independently
genome-wide significant SNPs is masked due to the negative genetic covariance between
causal variants'®. Moreover, the presence of masking effect may not occur completely at
random. Instead, it could result from the actions of natural selection that have shaped the
genetic variation in complex traits. For example, negative LD between two trait-increasing
alleles at different loci can be introduced by directional selection (also known as Bulmer
effect®’ or stabilising selection on the trait (Fig. S17). A masking effect could also occur if
two negatively correlated trait-associated variants are both under selection, even though the
trait itself is not correlated with fithess. Given the mounting evidence of natural selection in

the human genome?23:25%0

, masking effects are likely to be common. We expect that
applications of our methods on a broad range of traits will enhance our understanding of
masking effects across the genome, their contribution to missing heritability, and the

evolutionary processes that give rise to their occurrences.

Another advantage of mBAT is that its test statistic is analytically tractable such that the
computation of P-value is exact and fast. The commonly used sum-y? methods such as
VEGAS'"™, MAGMA'" and fastBAT'® use the same statistical test but differ in the way they
calculate p-values. VEGAS is computationally slow as P-values are derived from simulations
and fastBAT was shown to match VEGAS results with P-values derived from Saddlepoint
approximation®®. MAGMA uses the Imhof's method®® to generate P-values by numerical
integration but reverts to simulation when the numerical integration fails. In addition, the
Imhof’s method implemented in MAGMA appears to have a limitation on the precision (Fig.
$18), resulting in a relatively low power comparing to fastBAT and mBAT (Fig. 3 and 5). For
genes that pass the genome-wide significance threshold, MAGMA underestimates their P-
values, which could be an issue in the subsequent analysis that relies on the P-values of

these genes, such as pathway or tissue enrichment analysis.

In contrast to the sum-y? methods that do not account for the directions of z-score

associations, mBAT, as a multivariate approach, makes use of both direction and size of
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each z-score, which potentially could result in mBAT being sensitive to the LD differences
between GWAS and reference samples as well as various errors in GWAS summary
statistics such as genotyping errors or mistakes in labelling the effect alleles. According to
our results, removing LD matrix eigenvalues that account for only a small fraction of LD
variance (y = 0.9) appeared to be sufficient to address the LD differences due to sampling
variation when using external LD, and would allow the method to tolerate a reasonably high
proportion of mislabelled effect alleles in the GWAS summary data. Alternatively, the
potentially problematic SNPs can be filtered by applying an external tool prior to the
analysis, such as DENTIST*, which compares the difference between the observed GWAS
test-statistic of a variant and its predicted value (using the neighbouring variants in a sliding
window and LD data from a reference panel). While DENTIST is versatile in detecting
various errors, it can result in a substantial loss in power for some genes (Fig. S4b, 19-21).
Thus, we set eigenvalue selection without DENTIST as the default setting for mBAT.
However, when a small LD reference dataset was used (1KGP), MAGMA tended to give
higher P-values for genes with strong signals than those using in-sample LD (Fig. S$20). In

this case, DENTIST could be useful to reduce the inflation.

A feature of all gene-based tests is that gene boundaries overlap so that SNPs can be
annotated to more than one gene. There are 33.1% SNPs (458,158/1,382,625) across the
whole genome located in more than one gene (gene region defined as gene + 50kb). A
distribution of the number of genes a SNP is allocated to can be found in Figure S22, where
the highest number of genes a SNP allocated to is 23. It has been found that genes tend to

have similar biological functions when collocated®'~>3

, and they are likely to be detected
together by gene-based tests because of the overlapping of gene regions and the leakage of
association signals due to LD between SNPs at the locus. Thus, it requires caution in
downstream analyses such as pathway and tissue/cell type enrichment tests, where the
enrichment signal could be inflated because of the inclusion of collocated genes. This is a
feature of all gene-based tests, and one solution is to perform conditional or joint tests on

multiple genes in neighbourhood®.

In conclusion, we proposed a multivariate approach that is superior to the prevailing sum-y?
methods in uncovering genes with masking effects, and a combined method to maximise the
overall power for gene mapping. As a more powerful gene-based method, mBAT or mBAT-
combo is expected to improve the downstream pathway analysis or tissue and cell-type
enrichment analysis that takes genes identified from GWAS data as input to understand the

biological mechanisms of the trait or disease®.
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