

1 Article

2 **The DEAD-box RNA helicase Dhx15 controls glycolysis and**
3 **arbovirus replication in *Aedes aegypti* mosquito cells**

4 **Samara Rosendo Machado^{1, #a}, Jieqiong Qu¹, Werner J.H. Koopman², Pascal Miesen^{1*}**

5

6 ¹ Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University
7 Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

8 ² Amalia Children's Hospital, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud
9 Center for Mitochondrial Medicine, Radboud University Medical Center, P.O. Box 9101 6500HB Nijmegen, The
10 Netherlands

11 ^{#a} Current address: Vivaltes B.V., Regulierenring 9, 3981 LA Bunnik, The Netherlands

12 *Corresponding author: pascal.miesen@radboudumc.nl

13

14

15 **Short title: Dhx15 controls glycolysis and arbovirus replication in mosquito cells**

16

17

18 Abstract

19 *Aedes aegypti* mosquitoes are responsible for the transmission of arthropod-borne (arbo)viruses including dengue
20 and chikungunya virus (CHIKV), but in contrast to human hosts, arbovirus infected mosquitoes are able to
21 efficiently control virus replication to sub-pathological levels. Yet, our knowledge about the molecular interactions
22 of arboviruses with their mosquito hosts is largely incomplete. Here, we aimed to identify and characterize novel
23 host genes that control arbovirus replication in *Aedes* mosquitoes. RNA binding proteins (RBPs) are well known
24 to regulate immune signaling pathways in all kingdoms of life. We therefore performed a knockdown screen
25 targeting 461 genes encoding predicted RBPs in *Aedes aegypti* Aag2 cells and identified 15 genes with antiviral
26 activity against a Sindbis reporter virus. Amongst these, three DEAD-box RNA helicases, AAEL004419/Dhx15,
27 AAEL008728 and AAEL004859 also acted as antiviral factors in dengue and CHIKV infections. Here, we explore
28 the mechanism of Dhx15 in regulating an antiviral transcriptional response in mosquitoes by silencing *Dhx15* in
29 Aag2 cells followed by deep-sequencing of poly-A enriched RNAs. *Dhx15* knockdown in uninfected or CHIKV-
30 infected cells resulted in differential expression of 856 and 372 genes, respectively. Interestingly, amongst the
31 consistently downregulated genes, *glycolytic process* was the most strongly enriched GO term as the expression
32 of all core enzymes of the glycolytic pathway was reduced, suggesting that Dhx15 regulates glycolytic function.
33 A decrease in lactate production supported the observation that *Dhx15* silencing functionally impaired glycolysis.
34 Modified rates of glycolytic metabolism have been implicated in controlling the replication of several classes of
35 viruses and strikingly, infection of Aag2 cells with CHIKV by itself also resulted in the decrease of several
36 glycolysis genes. Our data suggests that Dhx15 regulates replication of CHIKV, and possibly other arboviruses,
37 by controlling glycolysis in mosquito cells.

38 **Introduction**

39 The yellow fever mosquito *Aedes aegypti* is the principal vector of medically important arthropod-borne viruses
40 (arboviruses) such as Chikungunya virus (CHIKV; genus *Alphavirus*, family *Togaviridae*) and dengue virus
41 (DENV; genus *Flavivirus*, family *Flaviviridae*) (1-3). CHIKV and DENV infections cause similar, flu-like
42 symptoms including headache, fever and muscle pain. More serious CHIKV infections manifest with severe joint
43 pain and arthritis that sometimes persist for weeks up to years (4, 5), whereas serious DENV infections may result
44 in loss of body fluid and hemorrhagic fever (1). *Ae. aegypti* mosquitoes were originally restricted to (sub)tropical
45 countries. However, elevated global temperatures, increased urbanization and more extensive international travel
46 and trade have favored mosquito invasion of more temperate climate zones (1). The expansion of the *Ae. aegypti*
47 habitat has consequently lead to the global spread of arboviruses alike (6).

48 The ability of mosquitoes to acquire, replicate and transmit arboviruses, collectively referred as vector competence,
49 is a key determinant for efficient arbovirus transmission (7). Upon acquisition in an infected bloodmeal, viruses
50 initially infect midgut epithelial cells and subsequently disseminate to secondary tissues. Once a systemic infection
51 is established and high viral titers are reached in the mosquito saliva, arbovirus transmission takes place (7-9).
52 Interestingly, virus accumulation in mosquitoes generally remains sub-pathological (10), suggesting that
53 mosquitoes are able to efficiently reduce virus replication (resistance) and/or prevent virus-induced tissue damage
54 (tolerance) (11). However, to date, a comprehensive picture of the molecular processes that control arbovirus
55 replication in the mosquito hosts is still lacking (9).

56 The fruit fly *Drosophila melanogaster*, a well-established genetic model organism, has been instrumental in
57 dissecting the genetic basis of antiviral immunity in insects (12-14). In *Drosophila*, the RNA interference (RNAi)
58 pathway has been established as an important antiviral immune pathway that restricts both RNA and DNA viruses
59 (15, 16). Studies in mosquitoes have confirmed the broad antiviral activity of this pathways across dipteran insects
60 (17). Moreover, work in *Drosophila* has indicated that transcriptional responses through inducible immune
61 signaling pathways contribute to antiviral immunity, in particular the JAK-STAT (Janus kinase-signal transducers
62 and activators of transcription) pathway and the two NF κ B (Nuclear factor κ B)-related Toll and IMD (immune
63 deficiency) pathways (18-20). Whereas RNAi destroys viral RNA directly, transcriptional regulation of immune
64 responses has been proposed to up-regulate anti-microbial peptides (21) or module metabolic responses (22), but
65 in general, the role of transcriptional responses in antiviral immunity in *Ae. aegypti* mosquitoes is still largely
66 understudied (17).

67 Here, we set out to identify new genetic determinants that control mosquito immune responses focusing on RNA
68 binding proteins (RBPs), which regulate signaling pathways in response to infection in all kingdoms of life (23-
69 27). In particular, DEAD-box RNA helicases, a subgroup of RBPs (28), comprise well-known examples of
70 enzymes that recognize viral RNA and modulate antiviral signaling (23-25). These include the cytoplasmic viral
71 RNA sensors RIG-I (retinoic-acid-inducible gene I) and MDA5 (melanoma-differentiation-associated gene 5),
72 which are key activators of interferon signaling in vertebrates (24), the antiviral RNAi effector Dicer-2 (29), and
73 many other RNA helicases that act as co-receptors and signaling intermediates in diverse immune pathways (26,
74 27). Due to the important and versatile role of RBPs, we deemed it likely that members of this family control
75 arbovirus replication in vector mosquitoes.

76 To identify RBPs that interfere with arboviruses replication in mosquitoes we performed a knockdown screen in
77 *Ae. aegypti* Aag2 cells and assessed virus replication of a Sindbis reporter virus (SINV; genus *Alphavirus*, family
78 *Togaviridae*). This approach uncovered fifteen antiviral genes that upon knockdown enhanced virus replication;
79 amongst these, three DEAD-box RNA helicases, AAEL004419, AAEL008728 and AAEL004859 had broad
80 antiviral activity against SINV, CHIKV and DENV.

81 We further characterized the mechanism underlying antiviral activity of AAEL004419, the mosquito orthologue
82 of Dhx15. Knockdown of this helicase decreased the expression of genes involved in glycolysis and
83 consequentially reduced lactate production in mosquito cells. Glycolysis is a key process in energy metabolism by
84 converting glucose into pyruvate, which is taken up by the mitochondria, oxidized to acetyl-CoA, and further
85 metabolized in the tricarboxylic acid (TCA) cycle. Under anaerobic conditions, pyruvate can be converted into
86 lactate, which is released from the cell (30). Besides energy production, glycolysis provides the precursors for
87 essential biomolecules including nucleotides, amino acids and glycolipids/proteins (30, 31). The activity of
88 glycolysis has direct effect on antiviral responses and has been reported to change upon infection with distinct
89 viruses (32, 33). In line with this notion, we show that CHIKV infection of Aag2 cells reduced the expression of
90 several glycolysis related genes, similar to knockdown of AAEL004419/Dhx15. This crosstalk at the level of
91 glycolytic gene expression suggests that AAEL004419/Dhx15 controls CHIKV infection by regulating the
92 glycolysis pathway in mosquito cells.

93 **Materials and methods**

94 **RNA binding proteins selection**

95 Genes encoding RNA binding proteins were selected based on gene annotations from VectorBase release 2017-8
96 that used the *Ae. aegypti* L3 genome as reference genome. Using the Biomart-plugin, genes associated with the
97 gene ontology (GO) term “RNA binding” (GO:0003723) were selected from the *Ae. aegypti* gene dataset. This
98 analysis was repeated for four additional dipteran species with annotated genomes: *Ae. albopictus*, *Culex*
99 *quinquefasciatus*, *Anopheles gambiae* and *Drosophila melanogaster*. For the predicted RNA binding proteins from
100 these species, *Ae. aegypti* orthologues were identified using the Biomart functionality within VectorBase and all
101 list of genes were combined into a non-redundant set of genes encoding putative RNA binding proteins. We
102 manually excluded genes that were unambiguously annotated as part of the core transcriptional, translation and
103 splicing machinery. The remaining genes were included in the RNAi screen and selected for double-stranded RNA
104 production and knockdown in Aag2 cells (Table S1).

105 Of note, retrospective manual inspection of the candidate genes included in the screen identified a few genes not
106 to contain canonical RBP domains. This may be due to the revisited genome annotation or the orthologue-
107 conversion step which may define an *Ae. Aegypti* orthologue that lacks RBP domains. Also, due to several updates
108 of the *Ae. aegypti* reference genome annotation, some genes initially selected have been discontinued from the
109 database or the annotation has been changed. Throughout the manuscript, the current gene identifiers of the L5
110 version of the *Ae. aegypti* genome are used. *NB*: The Biomart-function within VectorBase has been discontinued
111 and replaced with a different search interface.

112

113 **Cells**

114 *Aedes aegypti* Aag2 cells and the C3PC12 clone derived from these cells (cleared of the persistently infecting
115 viruses Cell fusing agent virus, Phasi Charoen like virus and Culex Y virus) were maintained at 28 °C in Leibovitz's
116 L-15 medium (Invitrogen: catalogue number: 21083027) supplemented with 10% foetal bovine serum (Gibco), 50
117 U/mL penicillin, 50 µg/mL streptomycin (Gibco), 2% tryptose phosphate broth (Sigma), and 1% non-essential
118 amino acids (Gibco). For lactate assays, Aag2 C3PC12 cells were cultured in Schneider's *Drosophila* medium
119 (Invitrogen, catalogue number 21720024) containing 11.11 mM D-glucose and 12.32 mM L-glutamine. This
120 medium was supplemented with 10% foetal bovine serum (Gibco), 50 U/mL penicillin, and 50 µg/mL
121 streptomycin (Gibco). Hela cells, BHK15 and BHK21 cells were maintained at 37 °C, 5% CO₂ in Dulbecco's
122 modified Eagle medium (DMEM) (Life Technologies, catalogue number 11995065) containing 25 mM D-glucose,

123 4 mM L-glutamine, and 1 mM sodium pyruvate. This medium was supplemented with 10% foetal bovine serum
124 (Gibco), 50 U/mL penicillin, and 50 µg/mL streptomycin (Gibco).

125
126 SINV-nLuc, expressing a Nano-luciferase (nLuc) reporter as fusion protein with the SINV non-structural protein
127 3 (nsP3), was prepared on BHK-21 cells as previously described (34). The CHIKV expression plasmid encoding
128 the Leiden synthetic (LS3) wildtype strain (35) was kindly provided by Dr. M.J. van Hemert (Leiden University
129 Medical Center) and viral RNA was obtained by *in vitro* transcription on linearized plasmids using T7 mMessage
130 mMachine (Invitrogen). RNA was then transfected into BHK-21 to grow infectious virus. Stocks of DENV
131 serotype 2 (New Guinea C [NGC] strain) were prepared on *Aedes albopictus* (C6/36) cells. For quantification of
132 viral stocks, SINV and CHIKV were titrated on BHK-21 cells, and DENV2 was titrated on BHK-15 cells.
133 To determine infectious DENV titres upon helicase silencing, end-point dilution assays were performed. A day
134 prior to the titration, 1x10⁴ BHK-15 cells were seeded per well in a 96-well flat bottom plate. For the titration, a
135 10-fold serial dilution of virus samples were added to the cells in quadruplicate. After an incubation time of 7 days,
136 cells were inspected for cytopathic effect (CPE). The virus titre was calculated according to the Reed and Muench
137 method (36).
138

139 ***Aedes aegypti* mosquito rearing and dissection**

140 *Aedes aegypti* mosquitoes (Black Eye Liverpool strain, obtained from BEI resources) used for dissection were
141 reared at 28 °C and 70% humidity with automated room lighting set at a 12:12 hours light/dark cycle. Larvae were
142 fed with Tetramin Baby fish food (Tetra). Adult mosquitoes were fed with a 10% sucrose solution. Five days old
143 female mosquitoes (n=30) were dissected as previously described (37). Entire mosquitoes or dissected tissues
144 (ovaries, midgut, head, thorax, rest of the body) were homogenized in 300 µl RNA-Solv reagent (Omega Bio-Tek)
145 using a Precellys 24 homogenizer (Bertin technologies). To the homogenates, 700 µl RNA-Solv reagent was added
146 and total RNA was isolated according to manufacturer's recommendation.

147
148 **Expression construct cloning**
149 cDNAs of AAEL004859, Dhx15 and AAEL008728, were cloned into pUbGw and pU3Fw for N-terminal tagging
150 with GFP or 3xFlag, respectively. The vector pUbGw was modified from the expression vector pUbB-GW, (kindly
151 provided by Dr. ir. Gorben Pijlman, University of Wageningen), as previously described (38). The expression
152 vector pU3Fw was derived from the pUbGw vector by exchanging the GFP sequence with a 3xflag tag (39). For

153 AAEL004859 and AAEL008728, gene-specific primers were used to amplify the genes from Aag2 cDNA and
154 insert these sequences into an intermediate cloning vector using the TOPO-TA cloning kit (Thermo Fisher)
155 according to the manufacturer's protocol. The obtained plasmids were used as template in a subsequent PCR for
156 In-Fusion HD Cloning (Takarabio). The purified PCR products were inserted into the Gateway entry vector
157 pDonor/Zeo vector (Invitrogen) using the In-fusion reaction according to the manufacturer's protocol. The
158 sequence of the entry vector was confirmed by Sanger sequencing and LR-recombination (Thermo Fisher) was
159 performed to recombine the sequence of the genes of interest to the destination vectors pUbGw and pU3Fw. For
160 Dhx15, PCR amplification with Gateway cloning compatible primers was performed directly on Aag2 gDNA
161 using CloneAmp Hifi PCR pre-mix (Takara), without prior amplification in a TOPO TA cloning vector. The PCR
162 product was inserted in the pDonor/Zeo entry vector and recombined into the destination vectors using the
163 Gateway cloning protocol (Thermo Fisher) as described above. Primer sequences are provided in Table S1.

164

165 **dsRNA production**

166 dsRNA targeting each of the 461 RNA-binding proteins or Argonaute-2 (Ago-2) and firefly luciferase as positive
167 and negative control, respectively, were produced from T7 promoter flanked PCR products. The T7 sequence was
168 either directly present in the primer sequence used to generate the PCR products or they were introduced during a
169 second PCR step using T7 universal primers that hybridize to short GC-rich tags that were introduced to the PCR
170 products in the first PCR (see Table S1 for primer sequences). These PCR products were *in vitro* transcribed using
171 a homemade T7 polymerase enzyme. For the formation of double-stranded RNA, the reactions were heated to 90
172 °C for 10 minutes and then allowed to gradually cool to room temperature. To purify the dsRNA, GenElute
173 Mammalian Total RNA kit (Sigma) or GenElute 96 Well Total RNA purification Kit (Sigma) was used according
174 to the manufacturer's protocol.

175

176 **Transfection of dsRNA and infection of Aag2 cells**

177 For silencing experiments, Aag2 cells were seeded at a density of 1.5×10^5 cells/well in a 24-wells plate or 5×10^4
178 cells/well in a 96-wells flat bottom opaque white plate. For each condition, 3 wells were seeded 24 hrs prior to the
179 first dsRNA transfection. In the 24-wells plate format, transfection mixes containing 300 μ l non-supplemented L-
180 15 medium, 450 ng dsRNA and 1.8 μ l X-treme GENE HP DNA transfection reagent (Sigma) were prepared
181 according to the manufacturer's instructions. Per well, 100 μ l of the transfection mix was added in a dropwise
182 manner. For the 96-wells plate format, the volumes and amounts of the components of the transfection mix was

183 one third of the quantities used for 24-wells plates. Three hours post-transfection, the medium was replaced with
184 supplemented L-15 medium. To enhance knockdown efficiency, transfection was repeated 48 hours after the first
185 transfection.

186 Where indicated, Aag2 cells were virus infected at the indicated multiplicity of infection (MOI) when changing
187 the medium after the second transfection and cells were harvested 48 hours post-infection for downstream
188 analyses.

189

190 **Cell fractionation**

191 For plasmid transfection experiments, Aag2 cells were seeded 24 hrs prior to transfection at a density of 3.7×10^6
192 cells/well in a 6-well plate. For each reaction, transfection mixes were prepared containing 500 μ l non-
193 supplemented L-15 medium, 5 μ g plasmid DNA (Flag-tagged helicases) and 5 μ l X-treme GENE HP DNA
194 transfection reagent. Where indicated cells were infected with SINV after the transfection and samples were
195 harvested 48h post infection. For sample preparation, Aag2 cells were resuspended, washed with PBS and pelleted
196 at 300 x g for 5min. Next, cell pellets were lysed using cytoplasmic lysis buffer (50 mM NaCl, 25 mM Tris-HCl
197 pH 7.5, 2 mM EDTA, 1x protease inhibitor, 0.5% NP40) and the cytoplasmic and the nuclear fractions were
198 separated after 10 minutes centrifugation at 9600 x g at 4 °C. To the supernatant (cytoplasmic fraction) 5x Laemmli
199 buffer (4% SDS, 0.004% bromophenol blue, 0.125 M Tris-HCl pH 6.8, 20% glycerol, 10% 2-mercaptoethanol)
200 was added to a final concentration of 1x, the nuclear pellet was resuspended in Laemmli buffer diluted to 1x in
201 cytoplasmic lysis buffer. For western blot, lysate fractions representing equal number of cells were loaded on gel.

202

203 **Co-immunoprecipitation**

204 For co-transfection, 2.2×10^7 Aag2 cells were seeded in a T-75 flask. To the transfection reaction for co-
205 immunoprecipitation 30 μ l of each plasmid DNA (GFP- and Flag-tagged helicases) and 60 μ l X-treme GENE HP
206 DNA transfection reagent was added. After two and a half hours incubation at 28 °C, the medium containing
207 transfection reagents was replaced with supplemented L-15 medium.

208 Aag2 cells co-expressing GFP- and Flag-tagged RNA helicases were lysed in RIPA buffer (1% Triton X-100, 150
209 mM NaCl, 0.1% SDS, 0.5% Na-deoxycholate, 50 mM Tris pH 8.0, 1x protease inhibitor). The lysate was subjected
210 to affinity enrichment using magnetic GFP-TRAP beads (ChromoTek) following the manufacturer's protocol.
211 Beads were washed in washing buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 1x complete-EDTA
212 free, and 1 mM PMSF). Where indicated, the samples underwent RNase A (Thermo Fisher) treatment for 7.5

213 minutes at 37 °C. After RNase A treatment, at least one additional washing step preceded the final elution. To the
214 input samples taken before the precipitation, samples of washing steps, and the final eluate 5x Laemmli buffer
215 diluted to 2x was added. Samples were heated at 90 °C for 10 minutes and analysed using western blot.

216

217 **Western blotting**

218 For western blotting, protein samples were separated on polyacrylamide gels, blotted to nitrocellulose membranes
219 and probed with the indicated antibodies. The primary antibodies used were mouse anti-H3K9me2 (Abcam
220 ab1220), rat anti- α -tubulin (Bio-Rad), mouse anti-Flag M2 (Sigma), and rat anti-GFP (ChromoTek). The
221 secondary antibodies used were: IRdye680 or IRdye800 conjugated goat anti-rat or goat anti-mouse (LI-COR).
222 Primary antibodies were diluted 1:1000, and secondary antibodies 1:10000. Western blots were imaged on an
223 Odyssey CLX imaging system (LI-COR).

224

225 **RNA isolation**

226 Aag2 cells were homogenized in RNA-Solv reagent (Omega Bio-Tek) and RNA extraction was performed as
227 described in the manufacturer's instructions. Briefly, to 1 mL RNA-Solv reagent, 200 μ l of chloroform was added
228 and thoroughly mixed. After centrifugation, the aqueous phase was collected, and RNA was precipitated using
229 isopropanol. This mix incubated for 1 hour at 4 °C followed by centrifugation to pellet the RNA. Pellets were
230 washed twice in 80% ethanol, dissolved in nuclease free water, and quantified using a Nanodrop
231 spectrophotometer.

232

233 **Reverse transcription and (quantitative) PCR**

234 For reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR), 1 μ g of RNA was DNase
235 I (Ambition) treated according to the manufacturer's protocol and reverse transcribed using the TaqMan
236 MultiScribe Reverse Transcription Kit (Applied Biosystems) using poly-dT and random hexamer primers.
237 Quantitative PCR was performed on a LightCycler 480 (Roche) using GoTaq qPCR Mix (Promega), according to
238 the manufacturer's protocol. Relative expression of target genes were calculated using the $2^{(-\Delta\Delta CT)}$ method (40) for
239 which the expression of lysosomal aspartic protease (LAP) was used as an internal reference. End-point PCR to
240 detect gene expression in mosquito tissues was performed using GoTaq polymerase (Promega) according to the
241 manufacturer's instructions. Sequences of primers are indicated in Table S1.

242

243 **Luminescence and Cell viability assay**

244 Renilla-Glo Luciferase assay (Promega) was used to quantify nLuc reporter activity. The recommended volumes
245 indicated in the manufacturer's protocol was adapted and 70 μ l of the reconstituted Renilla-Glo luciferase reagent
246 was used per well of the 96-well plate. The CellTiter-Glo 2.0 assay (Promega) was used to quantify viable cells,
247 according to the manufacturer's instructions. For both assays, luminescence was measured on a Perkin Elmer
248 Counter Victor 3 plate reader.

249

250 **RNA-sequencing library preparation and analysis**

251 TruSeq Stranded mRNA kit (Illumina) was used for library preparation from total RNA according to the
252 manufacturer's protocol. The input for the library preparation was 1 μ g RNA to obtain double-stranded cDNA.
253 The prepared libraries were quantified and controlled for sample quality using a DNA1000 Bioanalyzer (Agilent).
254 Next, the libraries were sequenced using Illumina HiSeq 4000 sequencing (GenomEast Platform).

255

256 **Bioinformatics analyses**

257 After initial quality control by the sequencing platform, raw sequence reads were aligned to the *Aedes aegypti*
258 LVP_AGWG AaegL5.1 reference genome (retrieved from VectorBase) using STAR 2.5.0 (41) with default
259 settings. Detailed summary of the RNA-seq data can be found in Table S3. R package DESeq2 (42) using read
260 count per gene was used for statistical analysis of differential gene expression (with adjusted *P* value < 0.05) and
261 principal-component analysis. Genes were considered expressed if the mean of the DESeq2-normalized counts
262 (baseMean) was higher than 10. The R package pheatmap (RRID:SCR_016418) was used to generate the heatmap
263 for differentially expressed genes upon CHIKV infection, which was based on z-scores of normalized gene
264 expressions (log10FPKM). The heat maps showing differential expression of glycolytic genes (based on log2-
265 transformed fold changes) were generated in Microsoft Excel using three colour scale option of the conditional
266 formatting function. Expression analysis of helicases in published datasets was performed as described previously
267 (43, 44). Briefly, publicly available datasets were retrieved from NCBI Sequence Read Archive and mapped to the
268 AaegL5 genome using STAR aligner version 2.5.2b (41). Raw read counts were then normalized with DESeq2
269 (42) and plotted with ggplot2 (45). GO term enrichment analysis was performed using DAVID (Database for
270 Annotation, Visualization and Integrated Discovery) (46, 47). The STRING database was used to predict protein-
271 protein interactions (48). Domain structure of RNA helicases was retrieved from Simple Modular Architecture
272 Research Tool (SMART) (<http://smart.embl-heidelberg.de/>).

273 Phylogenetic analysis of RNA helicases was performed using the Multiple sequence alignment tool available on
274 GenomeNet operated by the Kyoto University Bioinformatics Center (<https://www.genome.jp/tools-bin/clustalw>).
275 As input, the protein sequences of the DEAD domains of *D. melanogaster* and *Ae. aegypti* DEAD-box RNA
276 helicases were used. DEAD box helicases were identified using the “Search for” function in VectorBase asking
277 gene identifiers based on InterPro Domain database. The specific domain to be searched for was set to PF00270:
278 DEAD DEAD/DEAH box helicase domain. The resulting gene lists were obtained for both *D. melanogaster* and
279 *Ae. aegypti* and the ‘edit -orthologues’ function was used to identify orthologous genes in the other species,
280 respectively. The obtained lists were compiled into one non-redundant gene list of DEAD-box helicases for each
281 species. Amino acid sequences of the DEAD domain of each protein were retrieved from the SMART database,
282 or if unavailable, manually extracted from the protein sequences using the amino acid coordinates given by PFAM.
283 The maximum likelihood tree was generated on the multiple sequence alignment using the FastTree full algorithm
284 in GenomeNet, which is based on FastTree 2 (49).
285

286 **2-deoxy-D-glucose treatment and lactate concentration measurement**

287 Aag2 cells cultured in Schneider's *Drosophila* medium and Hela cells cultured in DMEM medium were seeded 24
288 hours prior to 2-deoxy-D-glucose (Sigma) treatment. Cells were incubated for 48 hours with either 24 mM or 50
289 mM 2-deoxy-D-glucose, harvested, and samples were analysed using a lactate assay kit (Sigma-Aldrich). The
290 concentration used for 2-deoxy-D-glucose was experimentally optimized in house. Lactate concentration was
291 measured using a colorimetric detection following the manufacturer's instructions.
292

293 **Statistical analysis**

294 Unless indicated differently, experiments had three biological replicates and the data are represented as mean +/-
295 standard deviation. Statistical significance was attributed when *p*-value was <0.05. Graphs and statistical analysis
296 were generated using GraphPad Prism (version 8.0.0 for Windows).
297
298

299 **Results**

300 **A targeted RNAi screen in mosquito cells identifies novel host genes that control SINV replication**

301 To identify RBPs that control virus replication in *Ae. aegypti*, we designed a targeted knockdown screen in Aag2
302 cells. Using the biomart plugin in VectorBase (release 2017-8), we selected all genes from the *Aedes aegypti* L3.3
303 genome annotation that were associated with the GO term RNA binding (Accession GO:0003723). We also
304 identified *Ae. aegypti* orthologues of predicted RBPs in other mosquito species (*Ae. albopictus*, *Culex*
305 *quinquefasciatus* and *Anopheles gambiae*) as well as the fruit fly *Drosophila melanogaster* and combined all
306 datasets into a non-redundant list of 635 genes. We manually excluded 132 genes that were part of the core
307 transcription, splicing and translation machineries. Another 42 genes were omitted because the PCR amplification
308 to generate the template for *in vitro* transcription repeatedly failed. Overall, we managed to successfully produce
309 double-stranded RNA (dsRNA) for knockdown of 461 genes, which represent the set of genes included in the first
310 screening round (Table S2).

311 All genes were individually silenced in Aag2 cells followed by infection with a recombinant Sindbis virus
312 expressing a nano-luciferase reporter gene as a fusion protein with nsP3 (34) (Fig. 1A). In the initial screening
313 round, knockdown of 38 and 49 genes resulted in an ≥ 2 -fold increase or decrease of luciferase levels, respectively,
314 compared to the non-targeting control knockdown (Fig. 1B and C). We repeated the knockdown experiment for
315 these genes using the same dsRNA preparation and, for those that were reproducible, we generated a second set
316 of dsRNA targeting a different region of each gene to account for possible off-target effects (Fig. 1D, Table S2).
317 As controls, we included silencing of the antiviral RNAi core factor Ago2 and knockdown of the SINV genomic
318 RNA itself. With this extensive confirmation procedure, we validated the phenotype of fifteen antiviral hits (Fig.
319 1D) and four proviral hits (Table S2).

320 Here, we focused on the genes that enhanced virus replication upon knockdown, as those are putative players in
321 antiviral defense. Importantly, knockdown of these genes did not, or only mildly, affect cell viability (Fig. S1A).
322 To validate the antiviral activity using an independent readout, we assessed the effect of gene knockdown on SINV
323 replication at the RNA level. Efficient silencing could be verified for most genes (Fig. S1B) and, analogous to our
324 findings measuring luciferase, resulted in an increase of viral RNA levels (Fig. 1E), underscoring the robustness
325 of our screening approach.

326 Amongst the hits of our RNAi screen, we identified five predicted DEAD-box RNA helicases (AAEL001216,
327 AAEL004419, AAEL004859, AAEL006794, and AAEL008728) amongst which the known antiviral RNAi factor
328 Dicer 2 (AAEL006794) and four RNA helicases that had not previously been associated with antiviral activity in

329 mosquitoes. Given the importance of this class of RBPs in modulating immune signaling, we further focused our
330 analysis on the uncharacterized RNA helicases. First, we aimed to establish the antiviral activity of these DEAD-
331 box helicases against other arboviruses. Silencing of *AAEL004419*, *AAEL008728* and *AAEL004859*, but not
332 *AAEL001216* resulted in a profound increase of dengue virus titers, to similar levels as silencing of Ago2 (Fig.
333 1F). Similarly, knockdown of *AAEL004419*, *AAEL008728* and *AAEL004859* in Aag2-C3PC12 cells, enhanced
334 RNA replication of CHIKV by > 2-fold (Fig. 1G), suggesting a broad antiviral activity of these helicases. C3PC12
335 cells are an Aag2 cell sub-clone that was cleared from persistently infecting viruses (50). Importantly, silencing of
336 the identified RNA helicases in these cells resulted in increased Sindbis virus levels as observed in the initial
337 knockdown screen, which had been performed in the parental Aag2 cell line (Fig. S1C and D).

338

339 **Characterization of broadly antiviral RNA DEAD-box helicases**

340 *AAEL004419*, *AAEL008728* and *AAEL004859* are canonical DEAD-box helicases containing DEAD-like
341 helicase superfamily (DEXDc) and helicase superfamily C-terminal (HELICc) domains. In addition,
342 *AAEL004419* and *AAEL004859* contain a C-terminal helicase associated (HA2) domain and *AAEL004859*
343 contains two double stranded RNA binding motifs (DSRM) (Fig. 2A). Alignment of *Ae. aegypti* and *Drosophila*
344 DEAD-box helicase domains, identified *Dhx15*, *CG9143*, and *maleless* (*mle*) as the closest orthologs of
345 *AAEL004419*, *AAEL008728*, and *AAEL004859*, respectively (Fig. S2A). In particular, *AAEL004419* is highly
346 conserved with about 90% amino acid identity across all functional domains (Fig. S2B). Because of the close one-
347 to-one orthology, we will refer to *AAEL004419* as *Dhx15*.

348 To further characterize the three DEAD-box helicases, we investigated their expression pattern both at the tissue
349 level in adult mosquitoes and on and sub-cellular level in Aag2 cells. In dissected female *Ae. aegypti* mosquitoes,
350 we found *Dhx15*, *AAEL008728*, and *AAEL004859* to be ubiquitously expressed across all somatic and germline
351 tissues analyzed (Fig. 2B), which is in line with published RNA expression data (Fig. 2C). To assess the subcellular
352 localization of *Dhx15*, *AAEL008728*, and *AAEL004859*, we expressed Flag-tagged proteins in *Ae. aegypti* Aag2
353 cells and performed nuclear versus cytoplasmatic fractionation. Efficient separation of the cytoplasmic and nuclear
354 fractions was confirmed by the segregation of tubulin and Histone3-Lysine 9 tri-methylation (H3K9me3) markers,
355 respectively. We identified all three RNA helicases to be ubiquitously expressed in the nuclear and in the
356 cytoplasmic fractions both in uninfected and SINV infected Aag2 cells, indicating that subcellular localization was
357 not altered as a response to virus infection (Fig. 2D).

358

359 **Silencing of *Dhx15* results in an altered transcriptional response regulating glycolysis**

360 In vertebrates, orthologues of *Dhx15*, *AAEL008728* and *AAEL004859* have been proposed to regulate
361 transcriptional responses to virus infection by modulating signal transduction of core immune pathways such as
362 MAPK (mitogen-activated protein kinase) and NF κ B signaling (51-54). We therefore decided to investigate
363 transcriptional regulation mediated by the highly conserved RNA helicase *Dhx15*. After sequential knockdown of
364 *Dhx15* in C3PC12 cells, we performed RNA-sequencing and gene expression analysis (Fig. 3A). Genes were
365 considered differentially expressed (DE) when their expression levels were up or down-regulated by at least 2-
366 fold and the adjusted *p*-value was *p* < 0.05. Using these parameters, we identified 528 genes upregulated and 328
367 genes downregulated upon *Dhx15* knockdown (Fig. 3B). For the up-regulated genes, GO terms related to DNA
368 replication were the most strongly enriched; for the downregulated genes, GO terms related to sugar metabolism,
369 most prominently *glycolytic process*, were the most strongly enriched (Fig. 3C). These results indicate that *Dhx15*
370 directly or indirectly controls a transcriptional response in Aag2 cells.

371 We next assessed the effect of *Dhx15* knockdown on gene expression in the context of virus infection. Aag2 cells
372 were infected with CHIKV shortly after the second knockdown, and RNA samples were taken 48 hours post
373 infection. Efficient CHIKV replication and *Dhx15* knockdown were verified in these samples (Fig. S3A and B)
374 and analysis of RNA deep-sequencing data identified 229 genes and 143 genes to be significantly up or
375 downregulated, respectively (Fig. 3D). The majority of these (194 out of 229 upregulated genes and 89 out of 143
376 downregulated genes) overlapped with the differentially expressed genes in uninfected samples, defining a set of
377 genes with robust *Dhx15*-dependent differential expression, regardless of virus infection (Fig. S3C). Interestingly,
378 while for the up-regulated genes, *DNA templated regulation of transcription* was the only enriched GO term, for
379 the downregulated genes, GO terms were highly concordant between uninfected and infected conditions with
380 *glycolytic process* being the most strongly enriched (Fig. 3E). We therefore specifically analyzed the expression
381 of genes that are part of the glycolysis pathway, and indeed found that the entire set of glycolytic core enzymes
382 was downregulated upon *Dhx15* knockdown, in particular those that are involved in the metabolic conversion of
383 glucose to glyceraldehyde-3-phosphate (Fig. 3F and S3D).

384 Amongst the most strongly downregulated genes is the gene encoding phosphofructokinase, the enzyme that
385 performs the rate-limiting step of the glycolysis pathway. We therefore functionally assessed the effect of *Dhx15*
386 knockdown on the glycolytic rate by measuring the concentration of lactate, a fermentation product of the
387 glycolysis pathway as a proxy for activity (55-57). To benchmark our assay, we treated Aag2 cells with 2-deoxy-
388 D-glucose (2-DG), which is converted by hexokinase into 2-deoxy-D-glucose phosphate, a competitive inhibitor

389 of phosphoglucose isomerase at the second step of glycolysis (58). As a control, we treated Hela cells, for which
390 2-DG treatment is known to reduce lactate concentration (59). As expected, treatment with 2-DG resulted in an
391 almost 30% decline of lactate levels in Hela cells (Fig. S3E). In contrast, in Aag2 cells, baseline lactate levels were
392 lower and treatment with 2-DG only had a minor effect on lactate concentration (Fig. S3F). We hypothesized that
393 this may be explained by the composition of the L-15 culture medium, which contains galactose instead of glucose
394 and additional high levels of pyruvate. Galactose can enter glycolysis but at lower efficiency than glucose and high
395 levels of pyruvate favor energy production by directly entering into the tricarboxylic acid cycle, which likely
396 reduces the glycolytic activity to form lactate. To sensitize our lactate assay, we therefore cultured Aag2 cells in
397 Schneider's medium, which is supplemented with 11.11 mM glucose and does not contain pyruvate. In these
398 culture conditions, baseline lactate levels were elevated, and 2-DG treatment resulted in significantly lower lactate
399 concentrations, indicating that we were able to measure alterations in glycolytic activity in Aag2 cells (Fig. S3F).
400 We next assessed lactate levels upon *Dhx15* silencing. Strikingly, we observed a profound decrease of lactate
401 concentration in cell homogenates, even exceeding the effect of 2-DG treatment, indicating that the reduced
402 expression of glycolysis genes upon *Dhx15* knockdown results in a functional reduction of glycolytic activity in
403 Aag2 cells (Fig. 3G). The decrease in lactate concentration cannot be explained by a reduced cell number, which
404 remained stable or was slightly elevated upon *Dhx15* silencing (Fig. S3G). Altogether, our results suggest that
405 *Dhx15* knockdown effectively downregulates mRNA expression of core glycolytic enzymes resulting in functional
406 reduction of glycolysis rate.

407

408 **Transcriptional control of glycolytic genes is specific to Dhx15**

409 We next aimed to investigate whether, besides Dhx15, the other identified antiviral DEAD-box helicases
410 contributed to transcriptional downregulation of glycolytic genes. This hypothesis was sparked by a protein-protein
411 interaction map that we generated for all 15 antiviral hits picked up in our screen using the STRING algorithm. In
412 this analysis, all identified DEAD-box-helicases were predicted to interact in a protein complex (Fig. 4A). To
413 confirm a direct protein-protein interaction of AAEL008728 with Dhx15 and AAEL004859 experimentally, we
414 performed co-immunoprecipitations (Co-IP) in Aag2 cells. Confirming the predicted protein interaction network,
415 Flag-tagged AAEL008728 was efficiently co-precipitated both by GFP-tagged AAEL004859 and Dhx15 (Fig.
416 4B). Since the three DEAD-box helicases are predicted to have RNA binding activity, it was plausible that their
417 interaction was mediated indirectly through binding to the same RNA molecules. To explore this possibility, we
418 performed Co-IP in the presence of RNase A to disrupt RNA-bridged protein-protein interactions. Dhx15 and

419 AAEL008728 binding was resistant to RNase A treatment (Fig. 4C), indicating an RNA-independent interaction
420 between these helicases.

421 Having confirmed a direct interaction of the identified DEAD-box helicases, we next assessed if knockdown of
422 AAEL008728 and AAEL004859 caused a similar transcriptional response as Dhx15. Quantification of glycolytic
423 genes and an additional selection of differentially regulated genes from the RNA-seq data confirmed the reduced
424 expression upon silencing of *Dhx15*. However, knockdown of *AAEL008728* and *AAEL004859* did not reduce
425 expression of these genes (Fig. 4D and S4A), indicating that the transcriptional control of glycolysis genes was
426 not mediated by the protein complex of the three helicases identified (Fig. 4A) but rather by a function specific to
427 Dhx15.

428

429 **CHIKV infection down-regulates glycolysis genes, akin to *Dhx15* knockdown**

430 In response to virus infections, the activity of metabolic pathways is often changed reflecting the altered energy
431 and biomolecule demand in infected cells (33). Therefore, we wanted to assess the general transcriptional response
432 of Aag2 cells to CHIKV infection. For this aim, we re-analyzed our RNA-seq datasets comparing gene expression
433 of uninfected and CHIKV infected Aag2 cells treated with non-targeting control dsRNA. This analysis allowed us
434 to identify genes that are differentially regulated in response to CHIKV infection in Aag2 cells irrespective of
435 *Dhx15* knockdown. In general, the transcriptional response to CHIKV in Aag2 cells was modest with only 8 genes
436 upregulated and 51 genes downregulated (Fig. 5A). Strikingly, amongst the 51 downregulated genes, a significant
437 number of genes (n=22; Pearson Chi-square < 0.001) were also consistently decreased by *Dhx15* knockdown (Fig.
438 5B), suggesting that CHIKV infection and *Dhx15* knockdown results in a partially overlapping transcriptional
439 response. CHIKV induced gene repression was not mediated by downregulation of *Dhx15*, as expression of this
440 RNA helicase was not altered in infected cells (Fig. 5C). Strikingly, GO analysis identified *glycolytic process* as
441 the only enriched term (Fig. 5A). Three core enzymes of the glycolysis, aldolase, hexokinase, and the rate-limiting
442 phosphofructokinase were significantly downregulated (Fig. 5A and D). More general, all eleven glycolytic genes
443 are expressed at a lower level in infected cells, albeit not always reaching our thresholds for minimal fold changes
444 or statistical significance (Fig. S5A). Particularly, the expression of enzymes involved in the first metabolic steps
445 of glycolysis are reduced, mimicking the effect of *Dhx15* knockdown (Fig. 3F and S5A). These data suggest that
446 silencing of *Dhx15* is involved in regulating a glyco-metabolic response that establishes a cellular environment
447 that favors CHIKV replication, likely through alterations in metabolic rates or synthesis of precursors of
448 biomolecules.

449

450 **Discussion**

451 *Aedes aegypti* mosquitoes are important biological vectors for major arboviruses that impose a growing threat to
452 human health (68), asking for a better understanding of the mechanisms that control virus growth in mosquitoes.
453 Similar to other insect species, antiviral immunity in mosquitoes is mediated through small RNA-mediated
454 silencing of viral RNA as well as transcriptional responses to virus infections (17). While the antiviral mechanisms
455 underlying small RNA pathways, in particular RNAi, are relatively well established, mechanistical insights into
456 how transcriptional responses govern antiviral immunity are limited (15-17), and additional, yet unknown,
457 pathways that control virus replication in mosquitoes likely exist. In order to identify new players in antiviral
458 defense, we performed a targeted knockdown screen in Aag2 mosquito cells, a cell line of embryonic origin that
459 is frequently used to molecularly dissect antiviral immune pathways (21, 60, 61). We focused this functional screen
460 on RBPs, a protein family with pleiotropic functions in regulating immune responses across all domains of life
461 (23-27). Indeed, using a robust screening strategy including two confirmation rounds with independent dsRNA
462 sequences, we identified several proteins with antiviral properties that, when silenced, resulted in increased virus
463 replication. Amongst the hits were the well-established antiviral RNAi factor Dicer 2 (AAEL006794) and proteins
464 that act in transcriptional pausing (Spt4: AAEL006566 and Spt6: AAEL006956), a process that had previously
465 been reported to have antiviral activity in flies and Aag2 mosquito cells (62).

466 From the identified hits, we initially focused on DEAD-box helicases and in particular the role of Dhx15. Dhx15
467 exhibits broad antiviral activity against SINV and CHIKV, two viruses of the alphavirus genus and DENV, a
468 flavivirus. We show that *Dhx15* controls a transcriptional response that decreases glycolytic activity in mosquito
469 cells. Intriguingly, CHIKV infections results in a similar reduction of genes involved in the glycolysis pathway.
470 Although further mechanistic experiments are needed, our data suggest that the enhanced virus replication of
471 CHIKV upon *Dhx15* knockdown may be explained by establishment of a metabolic environment that favors
472 CHIKV replication. Thus, while our RNAi screen was initially intended to discover new immune factors that
473 directly interfere with virus replication, we eventually identified a protein that indirectly represses virus growth
474 potentially by controlling the metabolic state of the cell.

475 DEAD box helicases have a large array of functions in general RNA metabolism as well as controlling antiviral
476 immunity (63-65). Prime examples are the DEAD-box helicases Dicer-2 and the RIG-I like RNA helicases, which
477 are essential for sensing viral RNA in invertebrates and vertebrates, respectively (24, 29). In addition, DEAD box
478 helicases modulate immune signaling via direct interaction with core signaling intermediates in the cytoplasm or

479 by regulating transcription in the nucleus as coactivators or co-suppressors of transcription factors (66, 67). As
480 such, several DEAD box helicases in mammals (i.e.: DDX1, DDX3, DHX9, DHX15, DDX21, DDX24 DHX33
481 and DHX36) exert broadly antiviral effects against a variety of RNA and DNA viruses (51, 53, 54, 67-71). In line
482 with this, we identified three DEAD box helicases, Dhx15, AAEL004859 and AAEL008728, to also have a broad
483 antiviral phenotype against SINV, DENV and CHIKV infections.

484 We pursued an in-depth characterization of Dhx15, a highly conserved DEAD-box RNA helicase that was
485 previously characterized as a part of the U2 spliceosome in vertebrates and invertebrates (72). Interestingly, in
486 human cells Dhx15 acts as a co-receptor for Rig-I like receptors (RLR) and is required for antiviral RLR signaling
487 (71). Furthermore, Dhx15 activates MAPK and NF κ B signaling during antiviral responses triggered by poly I:C
488 and the two RNA viruses encephalomyocarditis and Sendai virus (51). We, therefore, speculated that *Dhx15* is
489 involved in regulating a transcriptional response in mosquito cells, as well. Indeed, *Dhx15* silencing caused
490 hundreds of genes to be differentially expressed, both in uninfected as well as CHIKV-infected cells. However,
491 we did not observe canonical immune target genes to be differentially regulated upon *Dhx15* knockdown. Instead,
492 we observed that all genes that encode enzymes involved in the core glycolysis pathway were consistently
493 downregulated, both in uninfected and CHIKV infected cells. This downregulation resulted in reduced lactate
494 production, suggesting impairment of glycolytic activity in *Dhx15*-depleted mosquito cells. Also in mice, *Dhx15*
495 has previously been linked to energy metabolism but in contrast to our deep-sequencing data, various glycolytic
496 genes were transcriptionally upregulated upon Dhx15 knockdown in mouse endothelial cells (73). It is currently
497 unclear what explains this discrepancy, but it is likely that overall differences in the metabolic state and integration
498 of other regulatory mechanisms within the different experimental systems account for various metabolic outcomes.
499 In this context it is important to note that it is currently unclear via which signaling cascade Dhx15 regulates
500 glycolytic gene expression. In human cancer cells, inhibition of NF κ B signaling reduced glycolysis via
501 transcriptional regulation of hexokinase 2, the first enzyme of glycolysis (74). Interestingly, human Dhx15 has
502 been previously shown to activate NF κ B signaling, providing a possible link between Dhx15 expression and
503 alterations in glycolytic rates (51). In mosquitoes, two NF κ B-like signaling pathways, Toll and IMD, exist (17),
504 and it will be interesting to investigate whether these are involved in the Dhx15 mediated gene expression.
505 Although the exact mechanism of antiviral activity of Dhx15 remains to be established, we propose that
506 knockdown of *Dhx15* establishes a metabolic environment, in particular through the repression of glycolytic genes,
507 that favors CHIKV infection. Glycolysis can be a relevant source of ATP and supports cell growth by providing
508 intermediates for several biosynthesis pathways. For example, the product of the first enzymatic step of glycolysis,

509 glucose-6-phosphate enters the pentose phosphate pathway (PPP), which is responsible for generating pentoses
510 (five-carbon sugars) as well as other RNA and DNA precursors (31). Changes in glycolytic rate are known to
511 occur widely during virus infection presumably as a consequence of a higher energy and/or nucleotide demand
512 enforced by virus replication (32, 33, 75-77). On the other hand, an increased energy metabolism has been shown
513 to activate antiviral defense and glycolytic enhancement is dispensable or even avoided due to triggering of
514 immune responses of the host (31, 78, 79). Therefore, the activity of metabolic pathways is likely regulated at
515 multiple levels, potentially explaining why the outcome of changing metabolic rates appears to be highly specific
516 for distinct virus-host combinations (32, 77). For example, for alphaviruses, increased glycolytic activity has been
517 proposed to support the elevated demand of cellular energy and biomolecules required during Semliki Forest virus,
518 Mayaro virus (MAYV), and SINV replication (75, 79-81). For CHIKV, however, the effect of the virus infection
519 on the metabolic pathways is dependent on the experimental system (32). On the one hand, CHIKV infection in
520 human cells and in a mouse model incremented cellular metabolism by upregulation of PKM2 and PDHA1, an
521 isoenzyme of pyruvate kinase and a component of the pyruvate dehydrogenase enzyme complex, respectively (82,
522 83). On the other hand, CHIKV infection lead to downregulation of glycolytic enzymes in a human hepatic cell
523 line (82), similar to what we have observed in *Ae. aegypti* cells.
524 While in vertebrates, CHIKV virus infections cause a dramatic change in gene expression profiles, largely as a
525 consequence of immune gene induction upon stimulation of interferon signaling (84), we found that CHIKV
526 infection in Aag2 cells only resulted in differential expression of a few dozen genes, the vast majority of which
527 was downregulated. It is currently not clear what causes this curiously weak transcriptional response; two non-
528 mutually exclusive hypotheses are a generally more delicate transcriptional immune signaling in Aag2 cells or
529 active suppression of transcriptional responses by CHIKV and possibly other arboviruses. Despite the modest
530 transcriptional response to CHIKV infection, there was a remarkable overlap of genes that were downregulated
531 upon *Dhx15* silencing and CHIKV infection. It is tempting to speculate that *Dhx15* knockdown creates a metabolic
532 environment that mimics CHIKV infection thereby allowing for enhanced virus replication. Altogether, our results
533 uncover an intriguing interaction between transcriptional regulation mediated by a host DEAD-box RNA helicase,
534 alterations in metabolic activities, and antiviral activity in mosquito cells.

535 **Acknowledgements**

536 The authors would like to thank Rebecca Halbach for analyzing expression of DEAD-box helicases in published
537 sequencing data. Thanks also to Ronald van Rij for critical reading of the manuscript. The CHIKV Leiden synthetic
538 LS3 construct was kindly provided by Dr. Martijn J van Hemert at Leiden University Medical Center. Thanks to

539 BEI resources established by the National Institute of Allergy and Infectious Diseases for providing *Aedes aegypti*
540 Liverpool mosquitoes. This work was financially supported by a Veni grant (ID: VI.Veni.202.035) from the Dutch
541 Research Council (Nederlandse Organisatie voor Wetenschappelijk Onderzoek; NWO) to PM.

542

543 **Authors contribution**

544 SRM and PM conceptualized the project. SRM and JQ performed the experiments. JQ performed the
545 bioinformatics analyses. SRM, JQ and PM analyzed and interpreted the data. WK analyzed data of metabolic
546 experiments. SRM and PM wrote the manuscript, all authors read and edited the paper. PM acquired funding.

547 **Figures**

548 **Figure 1: RNAi screen identifies RNA-binding proteins (RBPs) that control arboviruses replication in**
549 **mosquito cells. A)** Schematic representation of recombinant Sindbis virus expressing a nano-luciferase reporter
550 gene as a fusion protein with nsP3. The individual non-structural and structural viral proteins are depicted in
551 different shades of green and purple, respectively. The position of the nLuc is marked by the yellow bar. **B)**
552 Schematic flow of the RNAi screen. Antiviral, proviral and neutral genes were depicted in blue, red and gray
553 respectively. **C)** SINV-nluc levels, measured by luminescence, upon individual silencing of 461 genes in Aag2
554 cells. The 2-fold threshold is indicated and putative antiviral and proviral genes are indicated in blue and red,
555 respectively. SINV-nluc infection was performed with MOI = 0.1. Bars are means of three replicates. **D)** Validation
556 of the RNAi screen. In infection with SINV (MOI = 0.1), candidate genes were silenced in Aag2 cells using two
557 independent sets of dsRNA and virus replication was measured with a luminescence assay. **E)** Quantification of
558 SINV RNA levels by RT-qPCR after silencing of the indicated genes in Aag2 cells using the first set of dsRNA.
559 **F)** Infectious DENV-2 titers in the supernatant of Aag2 cells upon *AAEL004419/Dhx15*, *AAEL008728*,
560 *AAEL004859* and *AAEL001216* silencing. DENV-2 infection MOI 0.1. **G)** Quantification of CHIKV RNA levels
561 by RT-qPCR after silencing of *AAEL004419/Dhx15*, *AAEL008728* and *AAEL004859*. CHIKV infection in Aag2
562 C3PC12 cells was performed with MOI = 0.1. In panels **(D-G)**, bars and whiskers represent the mean +/- SD of
563 three independent biological replicates. In **(F)** and **(G)**, statistical significance was determined using One-Way
564 ANOVA with Holm-Sidak correction (* p < 0.05, ** p < 0.005, *** p < 0.0005).

565

566 **Figure 2: Characterization of AAEL004419/Dhx15, AAEL008728 and AAEL004859. A)** Schematic
567 representation of the domain structure of the RNA helicases AAEL004419/Dhx15, AAEL008728 and
568 AAEL004859 predicted with SMART. DEDXc: DEAD-like helicase superfamily domain, HELICc: helicase
569 superfamily C-terminal domain, HA2: C-terminal helicase associated domain, DSRM: Double stranded RNA
570 binding motif. **B)** Expression of AAEL004419/Dhx15, AAEL008728, AAEL004859 and the house-keeping gene
571 Lysosomal Aspartic protease (LAP) assessed by RT-PCR on ovaries (OV), midgut (MG), head, thorax (TX), rest
572 of the body dissected from female *Ae. aegypti* mosquitoes as well as in entire mosquitoes. PCR amplification on
573 samples without reverse transcriptase (RT -) served as negative control. **C)** Expression of AAEL004419/Dhx15,
574 AAEL008728 and AAEL004859 in mosquito tissues in published RNA-seq datasets. **D)** Cellular localization of
575 the proteins of interest in noninfected (-) and SINV infected (+) Aag2 C3PC12 cells. SINV-nLuc infection was

576 performed at MOI = 0.1. Cell fractionation assay followed by western blot show the expression of
577 AAEL004419/Dhx15, AAEL008728 and AAEL004859 in the nucleus (N) and in the cytoplasm (C).

578

579 **Figure 3: Dhx15 regulates a transcriptional response that controls glycolysis.** **A)** Set-up of RNA-seq analysis
580 to assess the transcriptomic response to *Dhx15* silencing. 24 hours and 48 hours after Aag2 C3PC12 cells were
581 seeded, a sequential knockdown of *Dhx15* (dsDhx15) or a non-targeting Firefly luciferase (dsLuc) control was
582 performed. CHIKV (MOI = 5) or mock infection was performed 3 hours after the second knockdown and samples
583 were collected 48 hours later. **B)** Volcano plot of differential expression of *Dhx15* silencing depicting comparison
584 between downregulated genes (blue) and upregulated genes (red). The X-axis denotes log2 fold change values; the
585 Y-axis shows -log10 (*P*-value). **C)** GO terms of differentially expressed genes upon *Dhx15* silencing. Upper panel
586 (blue), GO analysis of downregulated genes. Lower panel (red), GO annotation of upregulated genes. **D)** Volcano
587 plot of *Dhx15* silencing in the context of CHIKV infection, showing downregulated genes and upregulated genes
588 in blue and red, respectively. The X-axis denotes log2 fold change values; the Y-axis shows -log10 (*P*-value). **E)**
589 GO annotation of differentially expressed genes upon *Dhx15* silencing and CHIKV infection. Upper panel (blue),
590 downregulated genes. Lower panel (red), upregulated genes. **F)** Schematic representation of the players involved
591 in the glycolysis pathway (left) and log₂ fold change of these genes upon *Dhx15* or Firefly luciferase silencing
592 (right). **G)** Relative lactate concentration upon *Dhx15* or Firefly luciferase silencing in Aag2 C3PC12 cells. Bars
593 and whiskers represent the mean +/- SD of three independent biological replicates. Statistical significance was
594 determined using unpaired two tailed t-test (** *p* < 0.005).

595

596 **Figure 4: Dhx15 silencing, but not other RBPs downregulate glycolytic genes.** **A)** Protein-protein interactions
597 predicted for fifteen antiviral RBPs using STRING. The color code of the lines connecting the different RBPs,
598 represents the prediction for the protein-protein association. A network of uncharacterized DEAD-box RNA
599 helicases is highlighted with a purple background. **B)** Western blot analysis of protein lysates from Aag2 cells
600 transfected with GFP-Dhx15 and Flag-AAEL008728 (top panel) as well as GFP-AAEL004859 and Flag-
601 AAEL008728 (bottom panel). Samples before (input) and after GFP-IP or control IP with empty beads were
602 analyzed for co-purification of GFP- and Flag-tagged transgenes. Samples were probed with antibodies against
603 GFP and Flag. **C)** Co-IPs of GFP-Dhx15 and Flag-AAEL008728 (top panel) and GFP-AAEL008728 and Flag-
604 Dhx15 (bottom panel) from Aag2 C3PC12 cell lysate with (+) and without (-) subsequent on-bead RNase A
605 treatment. RNase A was added to the sample after the 3 initial wash steps post IP and samples taken directly after

606 incubation are denoted as – RNase A and + RNase A in vertical writing, respectively. Samples were probed with
607 antibodies against GFP and Flag. **D)** Quantification of glycolytic genes by RT-qPCR after silencing of *Dhx15*,
608 *AAEL008728* and *AAEL004859* in Aag2 C3PC12 cells. Bars and whiskers represent the mean +/- SD of three
609 independent biologicals replicates. Statistical significance was determined using One-Way ANOVA with Holm
610 Sidak correction (* $p < 0.05$, ** $p < 0.005$, *** $p < 0.0005$).

611

612 **Figure 5: Glycolytic genes are downregulated upon CHIKV infection.** **A)** Heatmap of differentially expressed
613 genes upon CHIKV infection MOI 5 (fold change ≥ 2 ; p -value < 0.05). Z-score was calculated based on \log_{10}
614 fold changes of each gene to indicate the level of expression. **B)** Overlap of genes downregulated by *Dhx15*
615 silencing and CHIKV infection as identified by RNA-seq. Statistical significance was determined using Pearson
616 Chi-square test ($p < 0.001$). **C)** Relative expression of *Dhx15* in uninfected and CHIKV infected cells, extracted
617 from RNA-seq data. **D)** RNA-seq tracks for AAEL05766 (aldolase) AAEL006895 (phosphofructokinase) and
618 AAEL009387 (hexokinase) from the indicated conditions.

619

620 **Figure S1: RBP candidate genes that control arboviruses replication in mosquito cells** **A)** Viability of Aag2
621 cells was measured using CellTiter-Glo assay after silencing of 15 candidate genes (see Fig. 1D and E) using the
622 first set of double-stranded RNA. Bars and whiskers represent the mean +/- SD of three independent biologicals
623 replicates. **B)** Knockdown efficiency of 15 candidate genes (from experiment shown in Fig. 1E) was assessed by
624 RT-qPCR. Bars and whiskers represent the mean +/- SD of three independent biologicals replicates. Statistical
625 significance was determined using unpaired two tailed t-test (* $p < 0.05$, ** $p < 0.005$, *** $p < 0.0005$). **C)** Levels
626 of SINV were quantified using RT-qPCR after silencing of *Dhx15*, *AAEL008728* and *AAEL004859* in Aag2
627 C3PC12 cells. SINV infection with MOI 0.1. Bars and whiskers represent the mean +/- SD of three independent
628 biologicals replicates. Statistical significance was determined using One-Way ANOVA with Holm Sidak
629 correction (** $p < 0.0005$). **D)** Knockdown efficiency of genes from panel (C) were assessed by RT-qPCR. Bars
630 and whiskers represent the mean +/- SD of three independent biologicals replicates. Statistical significance was
631 determined using unpaired two tailed t-test (* $p < 0.05$).

632

633 **Figure S2: AAEL004419 is the direct orthologue of Dhx15.** **A)** Unrooted approximately-maximum likelihood
634 tree of *Drosophila* (purple) and *Ae. aegypti* (brown) RNA-helicases with branch lengths estimated using the CAT

635 approximation described in (49). **B)** Multiple sequence alignment of *Drosophila* Dhx15 and *Ae. aegypti*
636 AAEL004419. The functional domains (see Fig. 2A) are highlighted with colored boxes.

637

638 **Figure S3: RNA-seq analysis identifies *Dhx15* as regulator of glycolysis. A-B)** Levels of CHIKV (A) and
639 knockdown efficiency of *Dhx15* (B) in samples used for deep-sequencing were assessed by RT-qPCR. CHIKV
640 infection was performed with MOI = 5. Bars and whiskers represent the mean +/- SD of three independent
641 biologicals replicates. Statistical significance was determined using unpaired two tailed t-test (** p < 0.005, *** p
642 < 0.0005). **C)** Number of overlapping genes downregulated (left panel) and upregulated (right panel) upon *Dhx15*
643 silencing in uninfected and CHIKV infected cells. **D)** Schematic representation of the players involved in the
644 glycolysis pathway (left) and log₂ fold change of these genes upon *Dhx15* or Firefly luciferase silencing (right) in
645 CHIKV infected cells. **E-F)** Relative lactate concentration upon 2-deoxy-D-glucose (2-DG) treatment in Hela (E)
646 and Aag2 (F) cells. **G)** Number of Aag2 cells after sequential *Dhx15* or Firefly luciferase knockdown. Bars and
647 whiskers represent the mean +/- SD of three independent biologicals replicates. Statistical significance was
648 determined using unpaired two tailed t-test (* p < 0.05, *** p < 0.0005).

649

650 **Figure S4: Differentially regulated genes derived from RNA-seq data are specifically dependent on *Dhx15***
651 **silencing. A)** Quantification of top five most differentially regulated genes obtained from the RNA-seq list of 22
652 genes with shared downregulation between CHIKV infection and *Dhx15* knockdown (Fig. 5B). RNA levels were
653 measured by RT-qPCR after individual silencing of *Dhx15*, AAEL008728 and AAEL004859 in Aag2 C3PC12
654 cells. Bars and whiskers represent the mean +/- SD of three independent biologicals replicates. Statistical
655 significance was determined using One-Way ANOVA with Holm Sidak correction (* p < 0.05, *** p < 0.0005).

656

657 **Figure S5: CHIKV infection causes reduction of glycolytic genes. A)** Relative expression of genes from the
658 glycolysis pathway in CHIKV infected cells (MOI = 5) compared to uninfected cells in control (dsLuc) knockdown
659 conditions. Expression values were extracted from the RNA-seq data and normalized to uninfected cells. Bars and
660 whiskers represent the mean +/- SD of three independent biologicals replicates. Statistics from the DESeq2
661 analysis are shown (* P adj < 0.05, (** P adj < 0.005, *** P adj < 0.0005).

662

663 **Table S1: Oligonucleotides used in this study.**

664

665 **Table S2: Raw data from target knockdown screen and confirmation rounds.** Genes that have been selected
666 for an RNAi screen and, if applicable, updated gene identifiers in the recent version of VectorBase (version 57,
667 accessed April 2022).

668
669 **Table S3: Differentially expressed genes in different comparisons.** List 1: *Dhx15* knockdown vs. control
670 knockdown in uninfected cells. List 2: *Dhx15* knockdown vs. control knockdown in CHIKV cells. List 3: CHIKV
671 infected vs. uninfected cells in control knockdown conditions.

672
673 **Table S4: Source data file.**

674
675 **References**

- 677 1. Weaver SC, Reisen WK. Present and future arboviral threats. *Antiviral research*. 2010;85(2):328-
678 45.
- 679 2. Barzon L. Ongoing and emerging arbovirus threats in Europe. *Journal of Clinical Virology*.
680 2018;107:38-47.
- 681 3. Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: A review.
682 *Infection, Genetics and Evolution*. 2019;67:191-209.
- 683 4. Khongwichit S, Chansaenroj J, Thongmee T, Benjamanukul S, Wanlapakorn N, Chirathaworn C,
684 et al. Large-scale outbreak of Chikungunya virus infection in Thailand, 2018–2019. *PloS one*.
685 2021;16(3):e0247314.
- 686 5. Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. *New
687 England Journal of Medicine*. 2015;372(13):1231-9.
- 688 6. Kraemer MU, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread
689 of the arbovirus vectors Aedes aegypti and Aedes albopictus. *Nature microbiology*. 2019;4(5):854-
690 63.
- 691 7. Martina BE, Barzon L, Pijlman GP, de la Fuente J, Rizzoli A, Wammes LJ, et al. Human to human
692 transmission of arthropod-borne pathogens. *Current opinion in virology*. 2017;22:13-21.
- 693 8. Franz AW, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in
694 mosquitoes. *Viruses*. 2015;7(7):3741-67.
- 695 9. Hardy JL, Houk EJ, Kramer LD, Reeves W. Intrinsic factors affecting vector competence of
696 mosquitoes for arboviruses. *Annual review of entomology*. 1983;28(1):229-62.
- 697 10. Oliveira JH, Bahia AC, Vale PF. How are arbovirus vectors able to tolerate infection?
698 *Developmental & Comparative Immunology*. 2020;103:103514.
- 699 11. Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us
700 about treating infectious diseases. *Nature Reviews Immunology*. 2008;8(11):889-95.
- 701 12. Sabin LR, Hanna SL, Cherry S. Innate antiviral immunity in *Drosophila*. *Current opinion in
702 immunology*. 2010;22(1):4-9.
- 703 13. Marques JT, Imler J-L. The diversity of insect antiviral immunity: insights from viruses. *Current
704 opinion in microbiology*. 2016;32:71-6.
- 705 14. Palmer WH, Varghese FS, Van Rij RP. Natural variation in resistance to virus infection in dipteran
706 insects. *Viruses*. 2018;10(3):118.
- 707 15. Bronkhorst AW, van Rij RP. The long and short of antiviral defense: small RNA-based immunity
708 in insects. *Current opinion in virology*. 2014;7:19-28.

709 16. Olson KE, Blair CD. Arbovirus–mosquito interactions: RNAi pathway. *Current opinion in virology*. 2015;15:119-26.

710 17. Machado SR, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran 711 insects—compiling the experimental evidence. *Developmental & Comparative Immunology*. 2021;104010.

712 18. Arbouzova NI, Zeidler MP. JAK/STAT signalling in *Drosophila*: insights into conserved regulatory 713 and cellular functions. *Development*. 2006;133(14):2605-16.

714 19. Ferreira ÁG, Naylor H, Esteves SS, Pais IS, Martins NE, Teixeira L. The Toll-dorsal pathway is 715 required for resistance to viral oral infection in *Drosophila*. *PLoS Pathog*. 2014;10(12):e1004507.

716 20. Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW. A novel system for the launch of 717 alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. *PLoS Pathog*. 2009;5(9):e1000582.

718 21. Zhang R, Zhu Y, Pang X, Xiao X, Zhang R, Cheng G. Regulation of Antimicrobial Peptides in 719 *Aedes aegypti* Aag2 Cells. *Frontiers in cellular and infection microbiology*. 2017;7:22-.

720 22. Kamareddine L, Robins WP, Berkey CD, Mekalanos JJ, Watnick PI. The *Drosophila* Immune 721 Deficiency Pathway Modulates Enteroendocrine Function and Host Metabolism. *Cell Metabolism*. 2018;28(3):449-62.e5.

722 23. Tabara H, Yigit E, Siomi H, Mello CC. The dsRNA binding protein RDE-4 interacts with RDE-1, 723 DCR-1, and a DExH-box helicase to direct RNAi in *C. elegans*. *Cell*. 2002;109(7):861-71.

724 24. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of 725 MDA5 and RIG-I helicases in the recognition of RNA viruses. *Nature*. 2006;441(7089):101-5.

726 25. Díaz-Muñoz MD, Turner M. Uncovering the role of RNA-binding proteins in gene expression in 727 the immune system. *Frontiers in immunology*. 2018;9:1094.

728 26. Taschuk F, Cherry S. DEAD-Box Helicases: Sensors, Regulators, and Effectors for Antiviral 729 Defense. *Viruses-Basel*. 2020;12(2).

730 27. Ahmad S, Hur S. Helicases in antiviral immunity: dual properties as sensors and effectors. *Trends in biochemical sciences*. 2015;40(10):576-85.

731 28. Linder P, Jankowsky E. From unwinding to clamping—the DEAD box RNA helicase family. 732 *Nature reviews Molecular cell biology*. 2011;12(8):505-16.

733 29. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the 734 initiation step of RNA interference. *Nature*. 2001;409(6818):363-6.

735 30. Lunt SY, Vander Heiden MG. Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell 736 Proliferation. *Annu Rev Cell Dev Bi*. 2011;27:441-64.

737 31. O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev 738 Immunol*. 2016;16(9):553-65.

739 32. Van Huizen E, McInerney GM. Activation of the PI3K-AKT Pathway by Old World Alphaviruses. 740 *Cells*. 2020;9(4):970.

741 33. Pant A, Dsouza L, Yang ZL. Alteration in Cellular Signaling and Metabolic Reprogramming during 742 Viral Infection. *Mbio*. 2021;12(5).

743 34. Varghese FS, Meutiawati F, Teppor M, Jacobs S, de Keyzer C, Taskopru E, et al. Posaconazole 744 inhibits multiple steps of the alphavirus replication cycle. *Antiviral Res*. 2021;197:105223.

745 35. Scholte FEM, Tas A, Martina BEE, Cordioli P, Narayanan K, Makino S, et al. Characterization of 746 Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates. 747 *Plos One*. 2013;8(8).

748 36. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. *American journal of 749 epidemiology*. 1938;27(3):493-7.

750 37. Coleman J, Juhn J, James AA. Dissection of midgut and salivary glands from *Ae. aegypti* 751 mosquitoes. *JoVE (Journal of Visualized Experiments)*. 2007(5):e228.

752 38. Joosten J, Miesen P, Taşköprü E, Pennings B, Jansen PW, Huynen MA, et al. The Tudor protein 753 Veneno assembles the ping-pong amplification complex that produces viral piRNAs in *Aedes* 754 mosquitoes. *Nucleic acids research*. 2019;47(5):2546-59.

755 39. Joosten J, Taşköprü E, Jansen PW, Pennings B, Vermeulen M, Van Rij RP. PIWI proteomics 756 identifies Atari and Pasilla as piRNA biogenesis factors in *Aedes* mosquitoes. *Cell Reports*. 757 2021;35(5):109073.

758

759

760

761

762

763 40. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative
764 PCR and the 2⁻ ΔΔCT method. *methods*. 2001;25(4):402-8.

765 41. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
766 RNA-seq aligner. *Bioinformatics*. 2013;29(1):15-21.

767 42. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq
768 data with DESeq2. *Genome Biology*. 2014;15(12):550.

769 43. Betting V, Joosten J, Halbach R, Thaler M, Miesen P, Van Rij RP. A piRNA-LncRNA regulatory
770 network initiates responder and trailer piRNA formation during mosquito embryonic development.
771 *Rna*. 2021;27(10):1155-72.

772 44. Halbach R, Miesen P, Joosten J, Taskopru E, Rondeel I, Pennings B, et al. A satellite repeat-derived
773 piRNA controls embryonic development of *Aedes*. *Nature*. 2020;580(7802):274-7.

774 45. Wickham H. *ggplot2: Elegant Graphics for Data Analysis*. Use R. 2009:1-212.

775 46. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists
776 using DAVID bioinformatics resources. *Nat Protoc*. 2009;4(1):44-57.

777 47. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the
778 comprehensive functional analysis of large gene lists. *Nucleic Acids Res*. 2009;37(1):1-13.

779 48. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database
780 in 2021: customizable protein–protein networks, and functional characterization of user-uploaded
781 gene/measurement sets. *Nucleic Acids Research*. 2021;49(D1):D605-D12.

782 49. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large
783 alignments. *PLoS One*. 2010;5(3):e9490.

784 50. Besson B, Lezcano OM, Overheul GJ, Janssen K, Spruijt CG, Vermeulen M, et al. Arbovirus-
785 vector protein interactomics identifies Loquacious as a co-factor for dengue virus replication in
786 *Aedes* mosquitoes. *bioRxiv*. 2022:2022.02.04.479089.

787 51. Mosallanejad K, Sekine Y, Ishikura-Kinoshita S, Kumagai K, Nagano T, Matsuzawa A, et al. The
788 DEAH-box RNA helicase DHX15 activates NF-κB and MAPK signaling downstream of MAVS
789 during antiviral responses. *Science signaling*. 2014;7(323):ra40.

790 52. Lu H, Lu N, Weng L, Yuan B, Liu YJ, Zhang Z. DHX15 senses double-stranded RNA in myeloid
791 dendritic cells. *J Immunol*. 2014;193(3):1364-72.

792 53. Ma Z, Moore R, Xu X, Barber GN. DDX24 negatively regulates cytosolic RNA-mediated innate
793 immune signaling. *PLoS Pathog*. 2013;9(10):e1003721.

794 54. Zhang Z, Yuan B, Lu N, Facchinetto V, Liu YJ. DHX9 pairs with IPS-1 to sense double-stranded
795 RNA in myeloid dendritic cells. *J Immunol*. 2011;187(9):4501-8.

796 55. Robergs RA, McNulty CR, Minett GM, Holland J, Trajano G. Lactate, not lactic acid, is produced
797 by cellular cytosolic energy catabolism. *Physiology*. 2018;33(1):10-2.

798 56. Brooks GA. Lactate as a fulcrum of metabolism. *Redox Biology*. 2020;35:101454.

799 57. Zhang W, Guo C, Jiang K, Ying M, Hu X. Quantification of lactate from various metabolic
800 pathways and quantification issues of lactate isotopologues and isotopomers. *Scientific reports*.
801 2017;7(1):1-12.

802 58. Wick AN, Drury DR, Nakada HI, Wolfe JB, Britton B, Grabowski R. Localization of the primary
803 metabolic block produced by 2-deoxyglucose. *Journal of Biological Chemistry*. 1957;224(2):963-
804 9.

805 59. Jain VK, Kalia VK, Sharma R, Maharajan V, Menon M. Effects of 2-deoxy-D-glucose on
806 glycolysis, proliferation kinetics and radiation response of human cancer cells. *Int J Radiat Oncol*
807 *Biol Phys*. 1985;11(5):943-50.

808 60. Barletta ABF, Silva MCLN, Sorgine MHF. Validation of *Aedes aegypti* Aag-2 cells as a model for
809 insect immune studies. *Parasite Vector*. 2012;5.

810 61. Fallon AM, Sun DX. Exploration of mosquito immunity using cells in culture. *Insect Biochem*
811 *Molec*. 2001;31(3):263-78.

812 62. Xu J, Grant G, Sabin LR, Gordesky-Gold B, Yasunaga A, Tudor M, et al. Transcriptional Pausing
813 Controls a Rapid Antiviral Innate Immune Response in *Drosophila*. *Cell Host Microbe*.
814 2012;12(4):531-43.

815 63. Tanner NK, Linder P. DExD/H box RNA helicases: from generic motors to specific dissociation
816 functions. *Molecular cell*. 2001;8(2):251-62.

817 64. Turner M, Diaz-Munoz MD. RNA-binding proteins control gene expression and cell fate in the
818 immune system. *Nature immunology*. 2018;19(2):120-9.

819 65. Baldaccini M, Pfeffer S. Untangling the roles of RNA helicases in antiviral innate immunity. *PLoS*
820 *Pathog*. 2021;17(12):e1010072.

821 66. Fuller-Pace FV, Nicol SM. Chapter Sixteen - DEAD-Box RNA Helicases as Transcription
822 Cofactors. In: Jankowsky E, editor. *Methods in Enzymology*. 511: Academic Press; 2012. p. 347-
823 67. Xiang N, He M, Ishaq M, Gao Y, Song F, Guo L, et al. The DEAD-Box RNA Helicase DDX3
824 Interacts with NF- κ B Subunit p65 and Suppresses p65-Mediated Transcription. *PLoS One*.
825 2016;11(10):e0164471.

826 68. Mitoma H, Hanabuchi S, Kim T, Bao M, Zhang Z, Sugimoto N, et al. The DHX33 RNA helicase
827 senses cytosolic RNA and activates the NLRP3 inflammasome. *Immunity*. 2013;39(1):123-35.

828 69. Zhang Z, Kim T, Bao M, Facchinetto V, Jung SY, Ghaffari AA, et al. DDX1, DDX21, and DHX36
829 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells.
830 *Immunity*. 2011;34(6):866-78.

831 70. Xing J, Zhou X, Fang M, Zhang E, Minze LJ, Zhang Z. DHX15 is required to control RNA virus-
832 induced intestinal inflammation. *Cell Reports*. 2021;35(12):109205.

833 71. Pattabhi S, Knoll ML, Gale M, Loo Y-M. DHX15 Is a Coreceptor for RLR Signaling That Promotes
834 Antiviral Defense Against RNA Virus Infection. *Journal of Interferon & Cytokine Research*.
835 2019;39(6):331-46.

836 72. Herold N, Will CL, Wolf E, Kastner B, Urlaub H, Luhrmann R. Conservation of the Protein
837 Composition and Electron Microscopy Structure of *Drosophila melanogaster* and Human
838 Spliceosomal Complexes. *Molecular and Cellular Biology*. 2009;29(1):281-301.

839 73. Ribera J, Portolés I, Córdoba-Jover B, Rodríguez-Vita J, Casals G, González-de la Presa B, et al.
840 The loss of DHX15 impairs endothelial energy metabolism, lymphatic drainage and tumor
841 metastasis in mice. *Communications Biology*. 2021;4(1):1192.

842 74. Londhe P, Yu PY, Ijiri Y, Ladner KJ, Fenger JM, London C, et al. Classical NF- κ B Metabolically
843 Reprograms Sarcoma Cells Through Regulation of Hexokinase 2. *Front Oncol*. 2018;8:104.

844 75. Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. *Virology*. 2015;479-480:609-
845 18.

846 76. Passalacqua KD, Lu J, Goodfellow I, Kolawole AO, Arche JR, Maddox RJ, et al. Glycolysis Is an
847 Intrinsic Factor for Optimal Replication of a Norovirus. *mBio*. 2019;10(2):e02175-18.

848 77. Thaker SK, Chapa T, Garcia G, Gong D, Schmid EW, Arumugaswami V, et al. Differential
849 Metabolic Reprogramming by Zika Virus Promotes Cell Death in Human versus Mosquito Cells.
850 *Cell Metabolism*. 2019;29(5):1206-16.e4.

851 78. Burke JD, Plataniias LC, Fish EN. Beta interferon regulation of glucose metabolism is PI3K/Akt
852 dependent and important for antiviral activity against coxsackievirus B3. *J Virol*. 2014;88(6):3485-
853 95.

854 79. Findlay JS, Ulaeto D. Semliki Forest virus and Sindbis virus, but not vaccinia virus, require
855 glycolysis for optimal replication. *J Gen Virol*. 2015;96(9):2693-6.

856 80. Mazzon M, Castro C, Thaa B, Liu L, Mutso M, Liu X, et al. Alphavirus-induced hyperactivation
857 of PI3K/AKT directs pro-viral metabolic changes. *PLoS Pathog*. 2018;14(1):e1006835.

858 81. El-Bacha T, Menezes MM, Azevedo e Silva MC, Sola-Penna M, Da Poian AT. Mayaro virus
859 infection alters glucose metabolism in cultured cells through activation of the enzyme 6-
860 phosphofructo 1-kinase. *Mol Cell Biochem*. 2004;266(1-2):191-8.

861 82. Thio CL, Yusof R, Abdul-Rahman PS, Karsani SA. Differential proteome analysis of chikungunya
862 virus infection on host cells. *PLoS One*. 2013;8(4):e61444.

863 83. Dhanwani R, Khan M, Lomash V, Rao PVL, Ly H, Parida M. Characterization of chikungunya
864 virus induced host response in a mouse model of viral myositis. *PloS one*. 2014;9(3):e92813.

865 84. Wilson JA, Prow NA, Schroder WA, Ellis JJ, Cumming HE, Gearing LJ, et al. RNA-Seq analysis
866 of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic
867 inflammation. *PLoS Pathog*. 2017;13(2):e1006155.

868

869

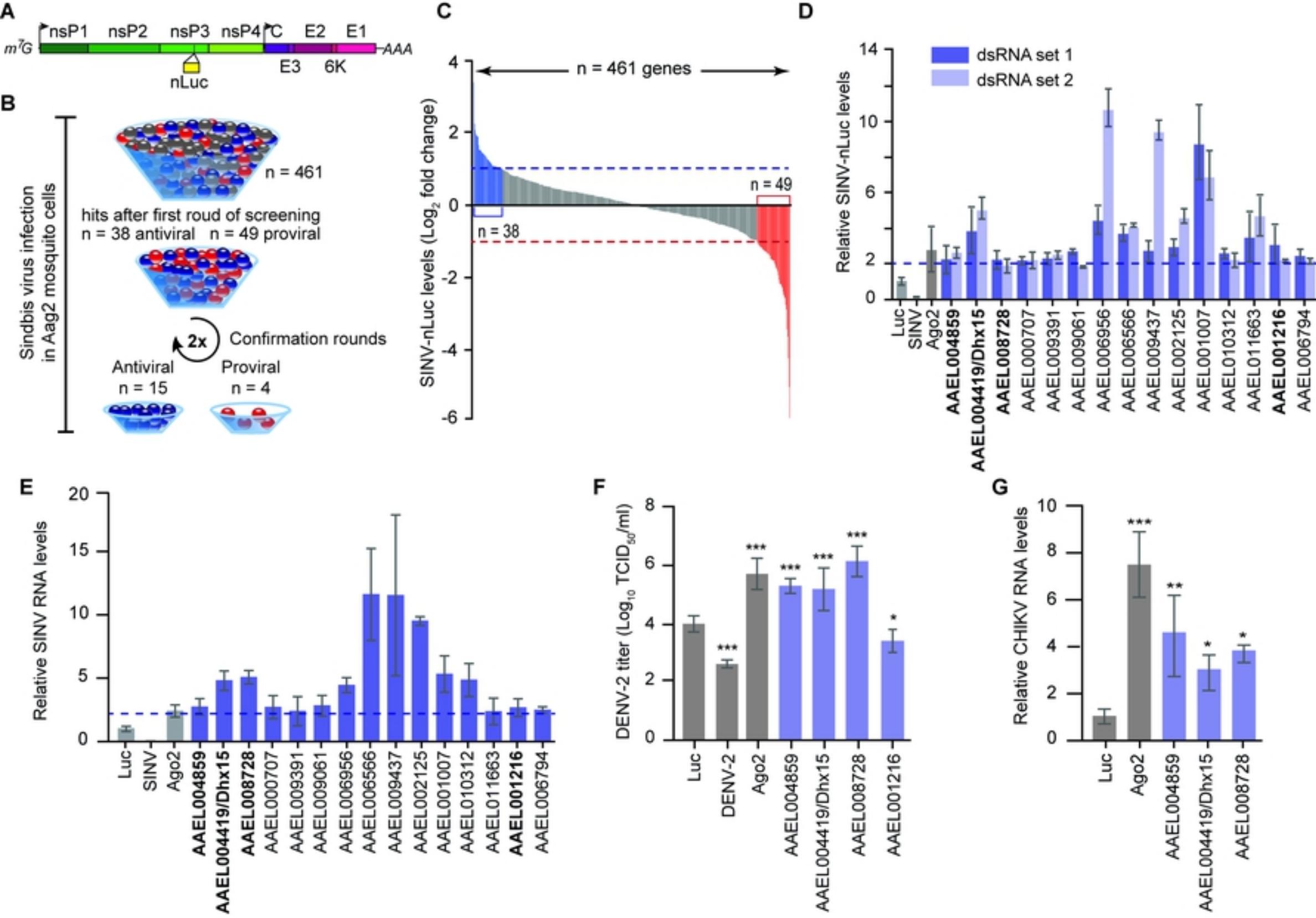


Figure 1

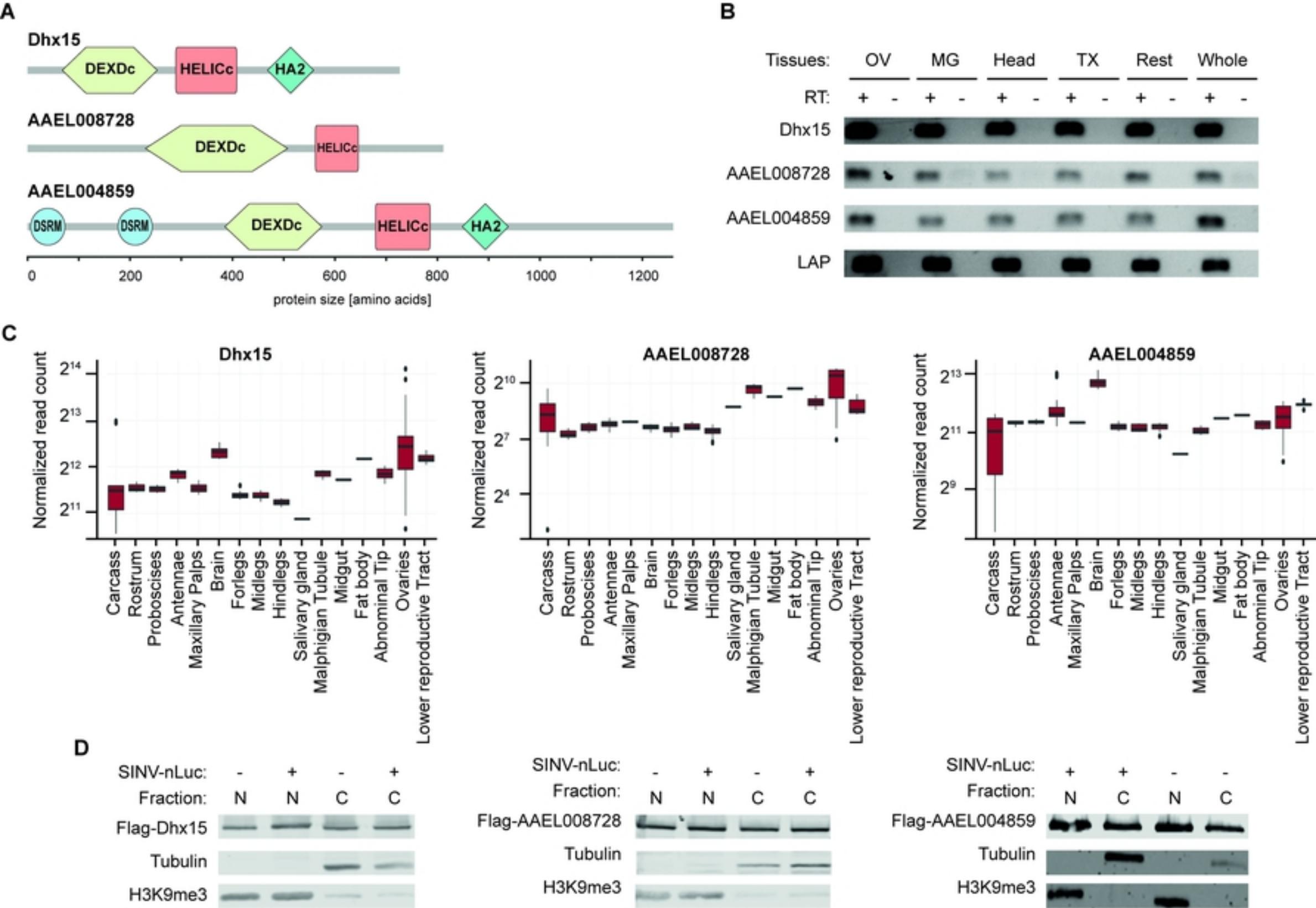


Figure 2

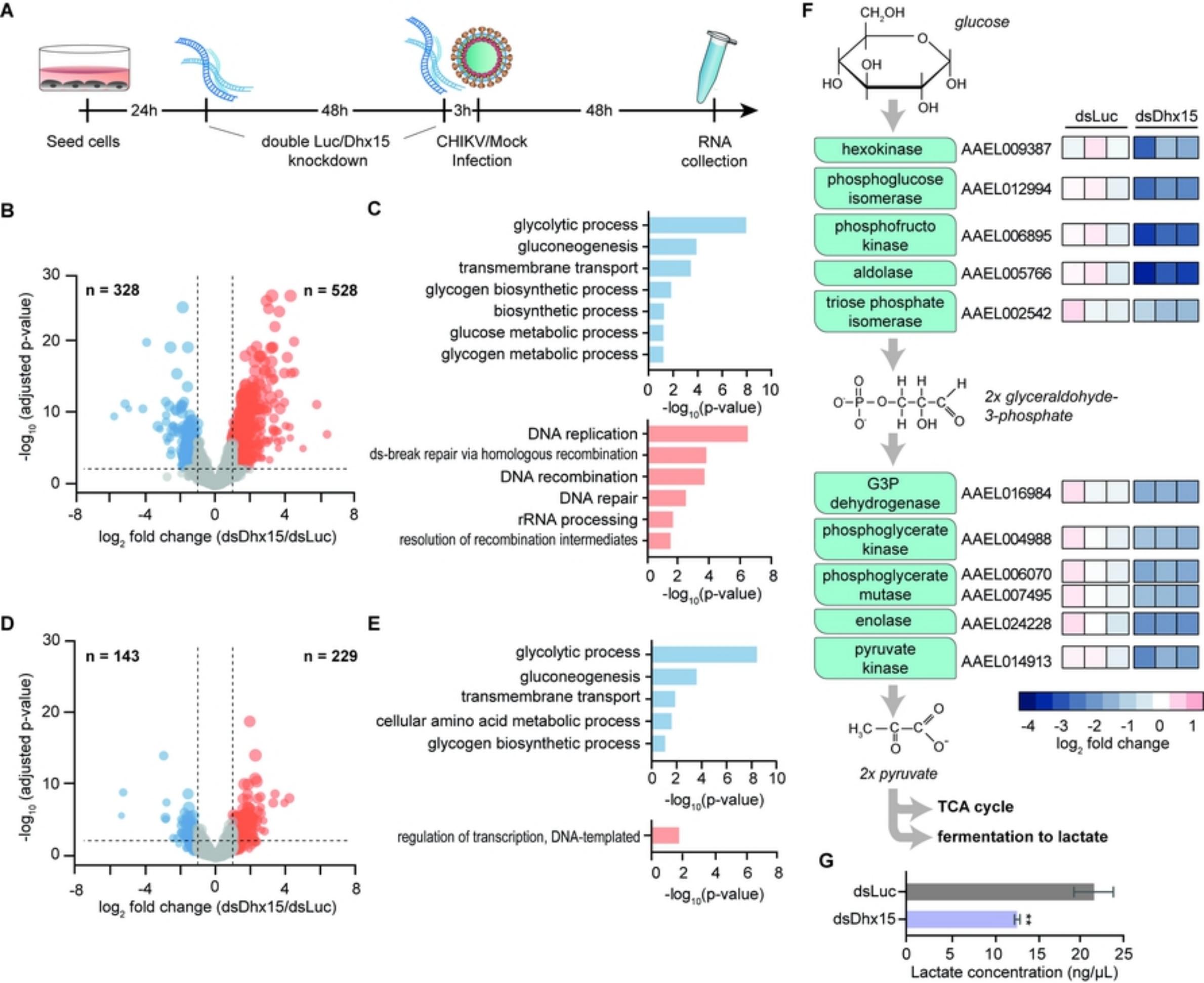


Figure 3

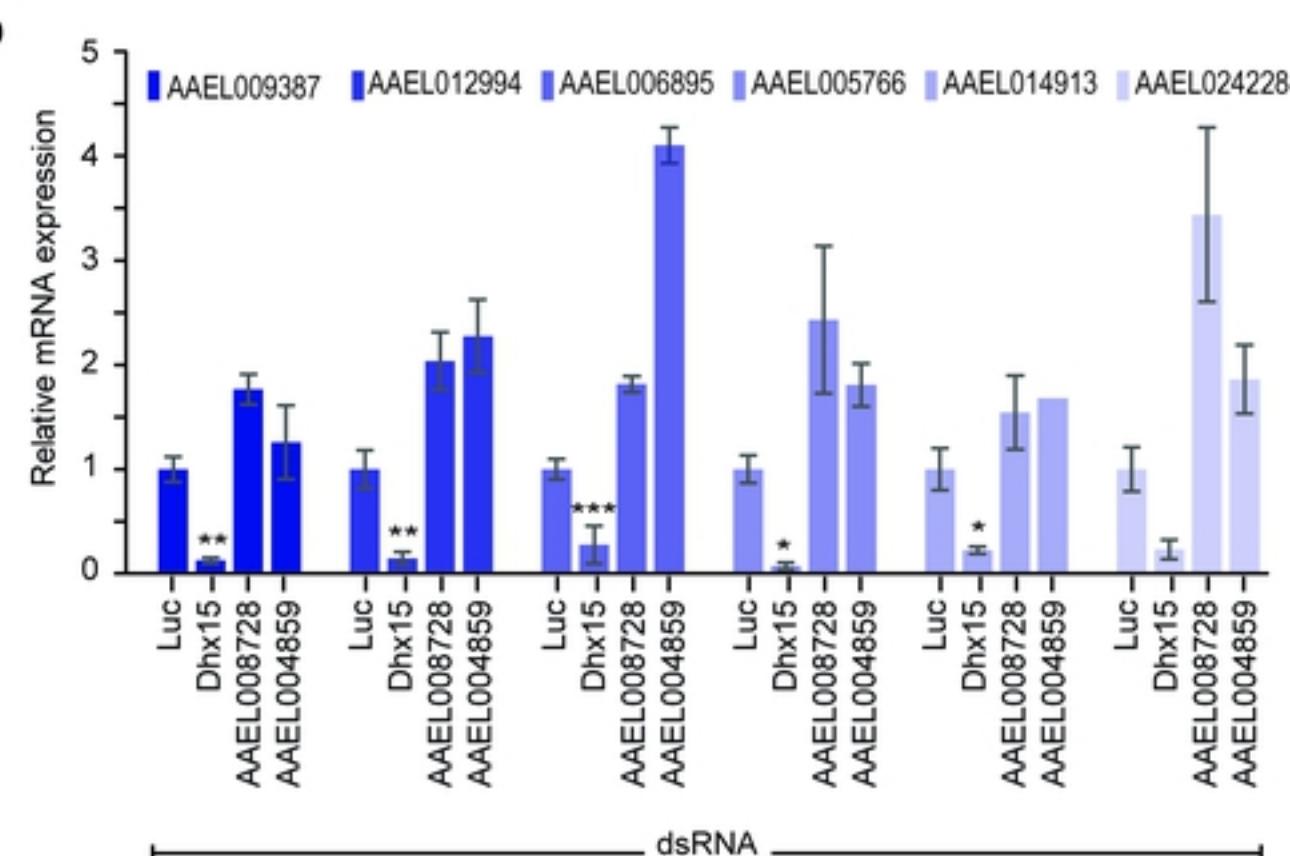
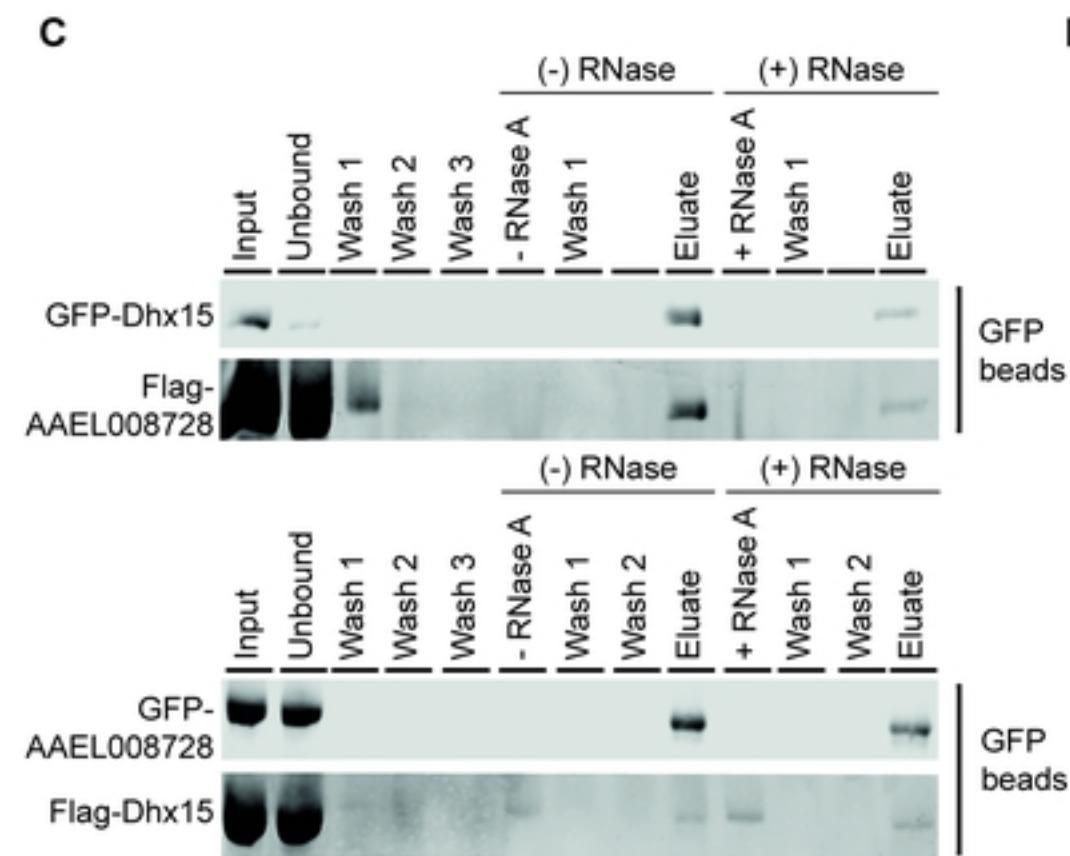
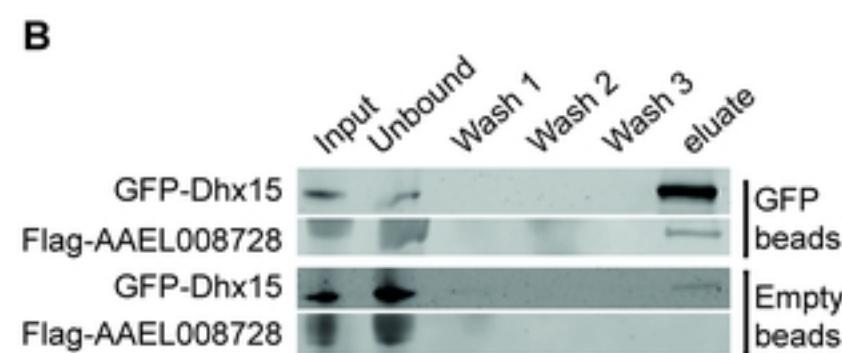
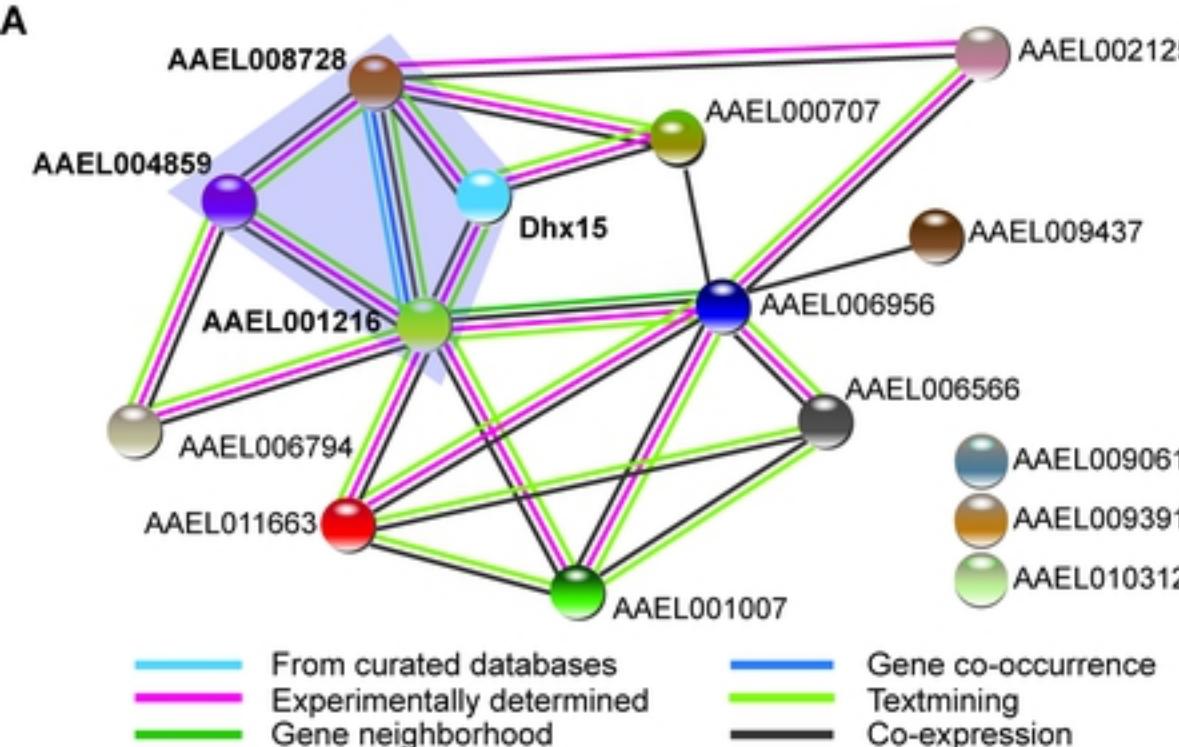
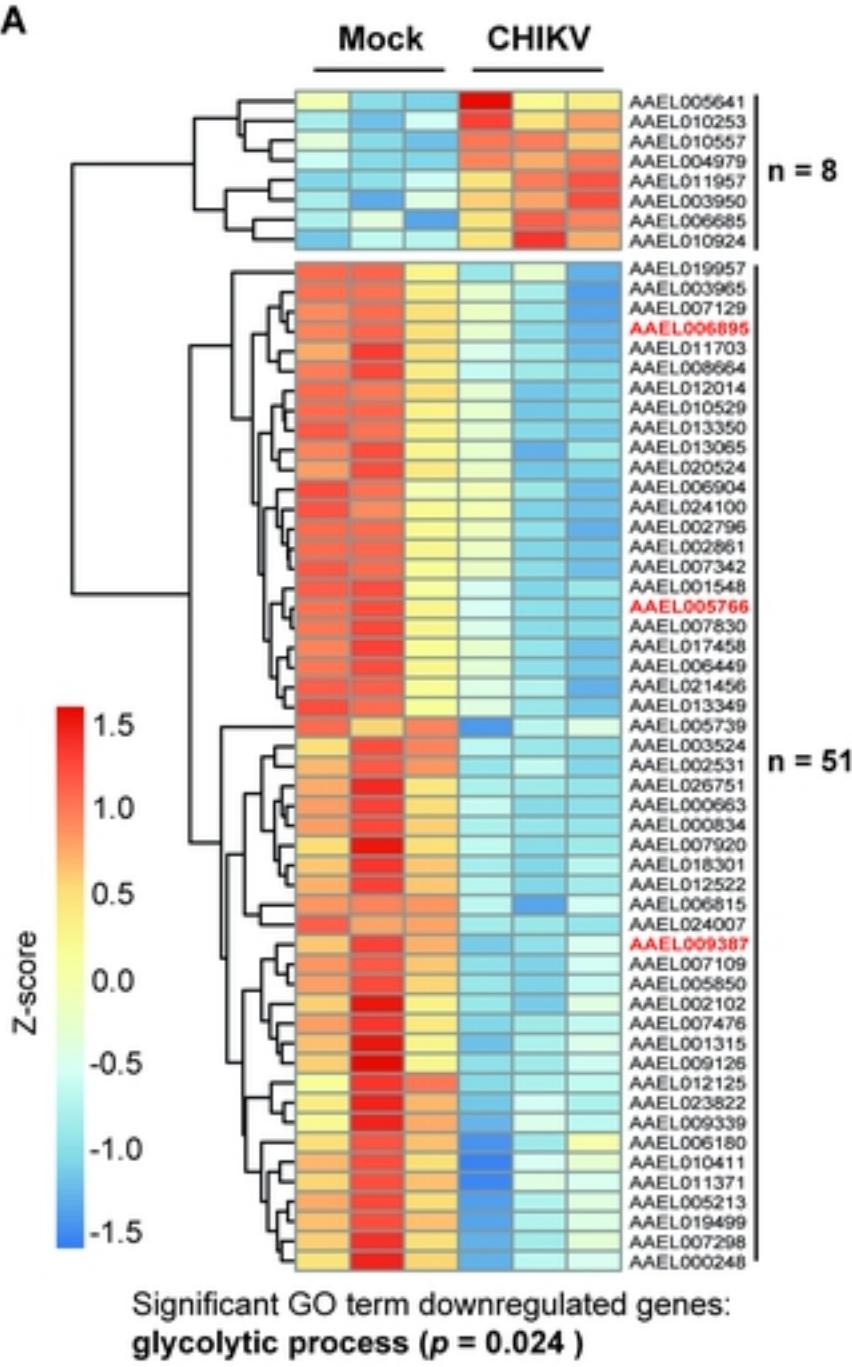
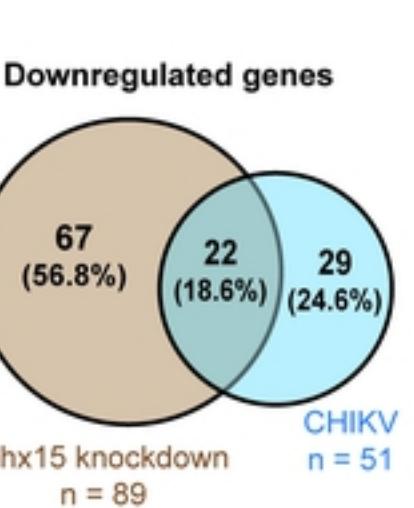







Figure 4

A**B**

*Pearson Chi-square $p < 0.001$

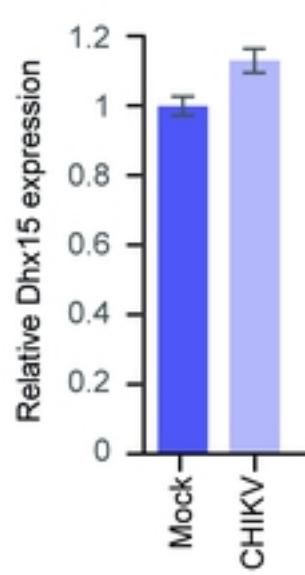
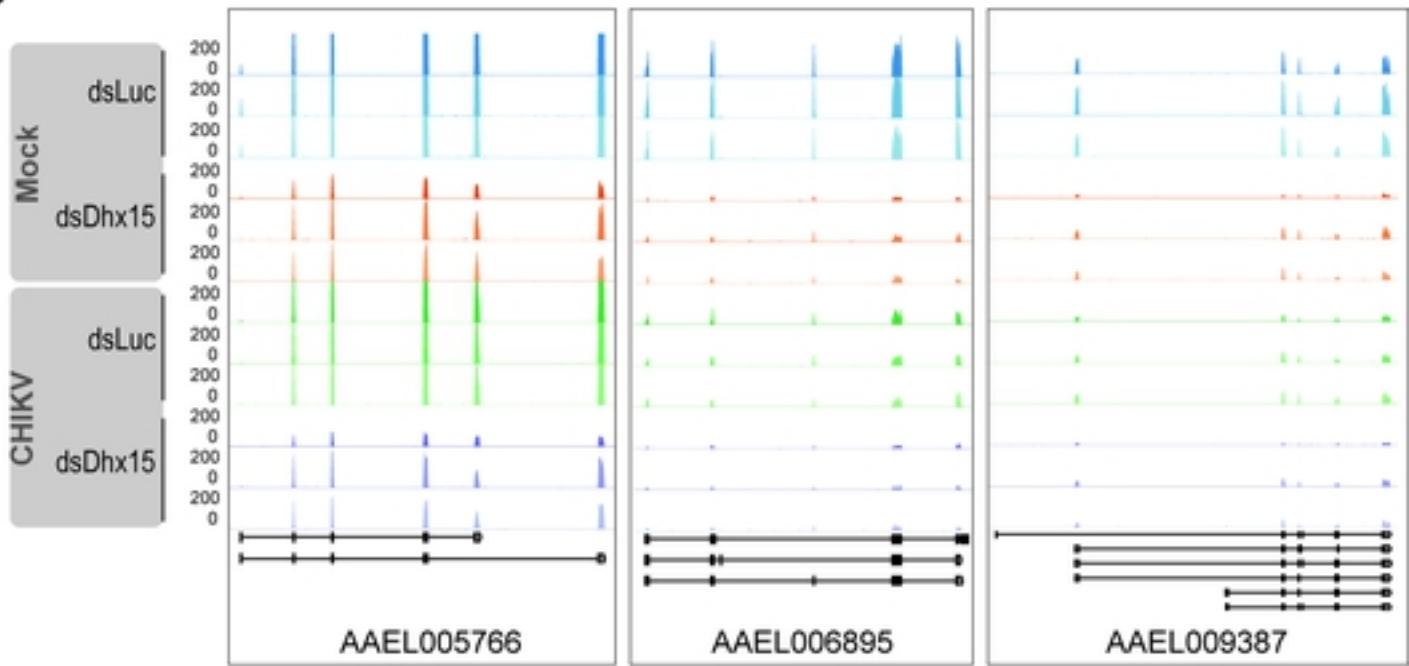


C**D**

Figure 5