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Abstract 16 

Time series of brain activity recorded from different anatomical regions and in different behavioural 17 

states and pathologies can be summarised by the power spectrum. Recently, attention has shifted to 18 

characterising the properties of changing temporal dynamics in rhythmic neural activity. Here, we 19 

present evidence from electrocorticography recordings made from the motor cortex to show that, 20 

dependent on the specific motor context, the statistics of temporal transients in beta frequency (14-30 21 

Hz) rhythms (i.e., bursts) can significantly add to the description of states such rest, movement 22 

preparation, movement execution, and movement imagery. We show that the statistics of burst duration 23 

and amplitude can significantly improve the classification of motor states and that burst features reflect 24 

nonlinearities not detectable in the power spectrum, with states increasing in order of nonlinearity from 25 

movement execution to movement preparation to rest. Further, we provide mechanistic explanations 26 

for these features by fitting models of the motor cortical microcircuit to the empirical data and 27 

investigate how dynamical instabilities interact with noise to generate burst dynamics. Finally, we 28 
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examine how beta bursting in motor cortex may influence the integration of exogenous inputs to the 29 

cortex and suggest that properties of spontaneous activity cannot be reliably used to infer the response 30 

of the cortex to external inputs. These findings have significance for the classification of motor states, 31 

for instance in novel brain-computer interfaces. Critically, we increase the understanding of how 32 

transient brain rhythms may contribute to cortical processing, which in turn, may inform novel 33 

approaches for its modulation with brain stimulation. 34 

1 Introduction 35 

Rhythmic activity from populations of neurons, as is routinely summarised in the power spectrum, is 36 

often taken to be sufficient to characterise neural activity from different brain regions (Keitel and Gross 37 

2016; Mahjoory et al. 2020), behavioural states (Siegel et al. 2012), and pathologies (Brown et al. 2001; 38 

Schnitzler and Gross 2005). However, when analysed in time, neural rhythms often resolve into a 39 

succession of intermittent, transient events (Baker et al. 2014; van Ede et al. 2018; Fingelkurts and 40 

Fingelkurts 2010; Freeman 2004; Friston 1997) that can appear as sustained oscillations when 41 

investigated using trial averaged analyses (van Ede et al. 2018; Jones 2016). To understand how 42 

alterations in power are underwritten by the temporal dynamics of neural rhythms, it is necessary to 43 

explicitly quantify the duration, amplitude, and rate of transient events (Heideman et al. 2020).  44 

Temporal intermittencies in neural rhythms (i.e., <bursts=) are known to be important in behaviours 45 

such as sleep (Adamantidis et al. 2019) and working memory (Lundqvist et al. 2016). In the healthy 46 

motor system, changes in the temporal patterning of beta frequency (14-30 Hz) activity can predict 47 

behaviour beyond that achieved when using just the amplitude of beta activity (Enz et al. 2021; Hannah 48 

et al. 2020; Shin et al. 2017; Wessel 2020). Further, beta burst dynamics appear to be significantly 49 

altered in Parkinsonism (Cagnan et al. 2019; Deffains et al. 2018; Tinkhauser et al. 2017b), where they 50 

form a major target for adaptive deep brain stimulation (Little et al. 2016; Tinkhauser et al. 2017a). An 51 

important consideration for therapeutic stimulation specificity is discriminating between pathological 52 

and healthy motor activity. Properties of transient activity can, in principle, improve classification 53 

accuracy and thus increase the specificity of stimulation effects.  54 

In the context of motor behaviour, preparation and execution have been conventionally described in 55 

terms of event related synchronization and desynchronization in the beta frequency band (Pfurtscheller 56 

and Lopes da Silva 1999). Movement imagery has also been linked to event related desynchronization 57 

albeit with less power decrease in beta when compared to movement execution (Pfurtscheller and 58 

Neuper 1997). When temporally resolved, changes in the rate and timing of beta bursts are associated 59 

with movement preparation, planning, termination or cancellation (Diesburg et al. 2021; Feingold et al. 60 

2015; Khanna and Carmena 2017; Little et al. 2019; Torrecillos et al. 2018; Tzagarakis et al. 2010; 61 

Wessel 2020). Additionally, the occurrence of beta bursts is associated with effects that persist beyond 62 
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their termination (Khanna and Carmena 2017; Torrecillos et al. 2018).  It has been suggested that bursts 63 

reflect a competition between endogenous processing and external sensory responses that bias 64 

perception in the cortex (Karvat et al. 2021).  65 

Taken together, we hypothesize that (1) the temporal properties of beta bursts are altered between 66 

different movement states; (2) these changes in dynamics reflect altered responses of the motor cortex 67 

to stochastic inputs, that arise from a reconfiguration of the underlying microcircuit, and thus (3) bursts 68 

reflect a rebalancing of how the cortex integrates between spontaneous and exogenous inputs. 69 

To date, the mechanisms underlying burst activity have been described using relatively simple models, 70 

such as an excitatory/inhibitory network of Wilson-Cowan populations (Duchet et al. 2021; Powanwe 71 

and Longtin 2019; Xing et al. 2012) that are motivated by pyramidal-interneuron models of beta 72 

generation (Jensen et al. 2005; Kopell et al. 2011). These studies indicate that burst statistics are 73 

determined by interactions between synaptic noise and the connectivity parameters of any given model. 74 

This suggests that models constrained using burst statistics can more accurately infer underlying 75 

connectivity across states, particularly in more complex models of the motor cortex. In models 76 

incorporating a more complete structure, previous work has demonstrated the importance of laminar 77 

specific corticothalamic inputs, which given the right timing can generate short, high amplitude beta 78 

events (Sherman et al. 2016). Whilst these models have been useful in understanding how to either 79 

experimentally or therapeutically modulate the mechanisms that give rise to beta bursts, it is still not 80 

known how changes in burst statistics during different stages of movement are underwritten by 81 

alterations in cortical microcircuitry.  82 

This present work aims to establish how alterations of the cortical microcircuitry during motor 83 

behaviour are manifest in the burst statistics of beta rhythms recorded from large scale neuronal activity. 84 

To this end, we use a library of publicly available electrocorticography (ECoG) data recorded from 85 

participants performing a range of motor tasks (Miller 2019). We first investigated how rhythmic burst 86 

features in these data may enhance the classification of different motor stages4such as movement 87 

preparation, execution, and imagery4by providing information beyond that available in the time 88 

averaged spectra. Secondly, using computational models of the motor cortex microcircuit fitted to the 89 

burst statistics and spectra of the ECoG data, we characterise how biophysical parameters may modulate 90 

bursting dynamics in different brain states and investigate whether the changes in the expression of beta 91 

bursts can reflect the altering balance between spontaneous and exogenous drives to the motor cortex. 92 
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2 Methods 93 

2.1 Electrocorticography and Experimental Recordings 94 

All experimental data was taken from an openly available library (Miller 2019) published for use 95 

without restriction (https://searchworks.stanford.edu/view/zk881ps0522). Recordings were made for 96 

anatomical mapping in patients with epilepsy at Harborview Hospital, Seattle, WA, USA. All patients 97 

provided informed written consent, under experimental protocols approved by the Institutional Review 98 

Board of the University of Washington (see supplementary information 1). Data were recorded at the 99 

bedside using Synamps2 amplifiers (Compumedics Neuroscan). Visual stimuli were presented using a 100 

monitor running BCI2000 stimulus and acquisition programs (Schalk et al. 2004) that were also 101 

synchronized to behavioural feedback in the tasks (see below). Electrocorticography was recorded using 102 

grids and/or strips of platinum subdural electrodes placed via craniotomy. Electrodes had a 4 mm 103 

diameter (2.3 mm exposed), 1 cm interelectrode distance and embedded in silastic (figure 1B). Electrical 104 

potentials were recorded at 1 KHz using a scalp/mastoid reference and ground. Hardware imposed a 105 

bandpass filter from 0.15 to 200 Hz. Locations of electrodes were confirmed using post-operative 106 

radiography. Exact details of the electrode localization methods can be found in Miller (2019). 107 

Data were taken from three different tasks as summarised below. For details of task structure and trial 108 

definitions please see figure 1A. Subject numbers represent the initial total available for each task, some 109 

subjects participated in more than one task. Data selection procedures are given in section 2.2. 110 

 Dataset 1: Self-Paced Finger Movements (n = 9) 3 originally reported in Miller et al. (2012). 111 

Participants were cued with a word displayed on a bedside monitor indicating which digit to perform a 112 

self-paced flexion and extension during a 2 s movement trial. Trials typically comprise 2-5 movements 113 

as recorded using a data glove. Movement blocks were interleaved with 2 s rest trials. 114 

Dataset 2: Basic Motor (n = 19) – originally reported in Miller et al. (2007b) and Miller et al. (2010). 115 

Participants were asked to make either a simple repetitive flexion and extension of all the fingers, or a 116 

protrusion and retraction of the tongue at self-paced rate (~2 Hz). Patients were cued with a picture of 117 

the body part to move, presented on a screen. 118 

Dataset 3: Motor Imagery (n = 7) – originally reported in Miller et al. (2010). Participants were asked 119 

to imagine making a simple repetitive flexion and extension of the fingers, or protrusion/protraction of 120 

the tongue at a self-paced rate (~2 Hz), matched to the task described for dataset 2. Imagery was 121 

intended to be kinaesthetic rather than visual- i.e., <imagine making the motion, not what it looked like=. 122 

Movement blocks lasted 2 or 3 s and were always followed by rest intervals of the same length.  123 
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2.2 Pre-processing and Criteria for Data Selection 124 

All ECoG recordings were processed as summarised in figure 1C. Large scale artefacts common across 125 

sensors were reduced by referencing electrodes to the common average. Channels with significant 126 

artefacts or epileptiform activity were visually rejected and excluded from the common average. 127 

Finally, data were filtered between 4-98 Hz using a zero-phase (i.e., forward-backward) FIR filter with 128 

-60 dB stopband attenuation. A 4 Hz passband was chosen to remove the influence of lower frequency 129 

rhythms in the SNR calculations for the beta peak. Data from each task were segmented to 1 second 130 

epochs. For each set of recordings, we selected one ECoG channel to carry forward for analysis. Data 131 

were selected to identify signals which were relevant to motor cortical activity (i.e., spatially close to 132 

primary motor cortex), of sufficient quality (i.e., good signal-to-noise of beta frequency activity), and 133 

functionally relevant (i.e., showing task related changes in synchrony). An illustration of the selection 134 

process can be seen in figure 1D. Channels were selected based on the following criteria: (1) select 135 

channels within 30mm of left or right primary motor cortex (MNI: [±37 -25 62]; Jha et al. (2015)); (2) 136 

threshold channels at +5 dB SNR for the beta band (14-30 Hz); (3) select channel based on maximum 137 

SNR change between rest and movement/imagery. If no channels were found that matched these criteria 138 

the subject was removed from further analysis. The number of subjects whose data was carried forward 139 

for further analysis was: 5/9 subjects from dataset 1; 10/19 subjects from dataset 2; and 4/7 from dataset 140 

3. 141 

Details of epoching are illustrated in figure 1A. For dataset (1), kinematic data was available from a 142 

data glove worn during the experiment, and thus data was epoched according to movement onset (finger 143 

movements) determined using a threshold crossing on the smoothed movement traces. Data was 144 

segmented into movement preparation (-1250 ms  to -250 ms relative to movement onset) and movement 145 

execution (0 ms to +1000 ms relative to movement onset) and then 1 s interstimulus intervals (ISI) 146 

blocks taken in between movement cues. ISI blocks were always at least 1 s away from a movement 147 

cue or movement termination. Note that we left a 250 ms gap prior to movement onset, as we wanted 148 

to avoid non-stationarities while beta exhibited movement related desynchronization. For datasets 2 and 149 

3, movement kinematics were not available, and movement or imagination was cued by on-screen 150 

instructions. We therefore estimated movement onset using reaction times from dataset 1. If a subject 151 

also participated in dataset 1, we used their median subject-specific reaction time. For all other subjects, 152 

we used the group median. We took blocks of movement execution and movement imagery starting cue 153 

onset + reaction time (lasting for 1 s). Movement preparation was defined as before. 154 

2.3 Data Features: Spectra and Distributions of Burst Amplitude/Duration 155 

Time series data were summarised using features derived from both spectra and bursts. We computed 156 

power spectral densities using Welch9s periodogram method with no overlap and a 1 s Hanning window. 157 

Spectra were summarised using their peak frequency, wide-band SNR, and narrow-band SNR within 158 
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the beta band (14-30 Hz) (see supplementary methods I). Spectra used for model fitting were pre-159 

processed to remove the 1/f aperiodic background so as to isolate peaks at beta frequency only (see 160 

figure 3A and supplementary methods II).  161 

Bursts were defined using a threshold on the bandlimited envelope (Cagnan et al. 2019; Tinkhauser et 162 

al. 2017b). Note that thresholds were epoch specific (local) to avoid the bias towards burst effects 163 

reflecting simple differences in signal to noise that can occur with a common threshold (Schmidt et al. 164 

2020). For an illustration of burst definitions and the formation of summary statistics of burst properties, 165 

see figure 1E. Details of the procedure are given in supplementary methods III. 166 

Overall, spectral features comprised: (1) wide-band SNR, (2) narrow-band SNR, (3) peak frequency. 167 

Burst features comprised: (5 and 6) mean and standard deviation of burst duration; (7 and 8) mean and 168 

standard deviation of burst amplitude; (9 and 10) mean and standard deviation of the inter-burst 169 

intervals. Statistical tests were computed on log transformed data. For all features except peak 170 

frequency, a one-way ANOVA and post-hoc t-tests were used to test for changes in means of features 171 

between motor states. The distribution of peak frequencies was not found to be normal, therefore, a 172 

Kruskal-Wallis test plus post-hoc rank-sum tests were used to determine changes in mean. 173 

2.4 Assessing Feature Nonlinearity: Comparison with Linear Surrogate Data 174 

To assess the extent to which statistics of burst features in cortical signals encode information beyond 175 

that contained in the power spectrum4a data feature sufficient for linear systems4we used a 176 

comparison to surrogate data (Theiler et al. 1992). Following previous work characterising the degree 177 

of nonlinearity in beta bursts (Duchet et al. 2021), we adopt the use of Iterative Amplitude-Adjusted 178 

Fourier Transforms (IAAFT; Schreiber and Schmitz 1996). IAAFT surrogates method  improves  upon 179 

the simpler technique of constructing randomized-phase Fourier surrogates, by not only ensuring the 180 

power spectrum is preserved, but also that the signal9s probability density is preserved. This ensures 181 

that the surrogate reproduces the linear features of the data whilst destroying potential nonlinearities in 182 

the original time series. To compare data with IAFFT surrogates, we constructed 25 surrogate time 183 

series for each data set, and then took the feature average, computed in the same way as for the reference 184 

(i.e., the empirical or simulated) signals. We then computed the goodness-of-fit in terms of the R2, with 185 

R2 << 1 indicating significant deviation of a data feature from that expected in the equivalent linear 186 

process. 187 

2.5 Classification of Functional States with a Support Vector Machine 188 

To determine the ability of different data features to decode the functional state from neural activity we 189 

employed a classification approach. Prior to classification, we applied Linear Discriminant Analysis 190 

(LDA) to the data to reduce the dimensionality of the feature space to two LDA components. We then 191 

used a multiclass support vector machine (SVM) using error-correcting output codes (ECOC) to  192 
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Figure 1 –Illustrated criteria for selection of ECoG channels and computed data features: spectra, and distributions 

of burst amplitudes and durations. (A) Data was taken from three motor tasks, requiring either self-paced 

flexion/extension of individual digits (task 1); or flexion/extension of whole hand (task 2); or imagery of whole hand 

movement (task 3). Data was epoched according to timings relative to  given in figure. (B) Electrocorticography was 

recorded with grids of platinum electrodes placed subdurally via craniotomy. Inset schematics give scale: electrodes had a 

2.3 mm diameter with 10 mm spacing. (C) Procedures for preprocessing data. (D) Illustration of channel selection 

procedure. Candidate ECoG channels (blue open circles) were selected (filled blue circles) using a 30 mm search radius of 

the ROI (MNI coordinate: [±37 -25 62]; red circle). All channels were thresholded at a 5 dB SNR threshold for the beak 

peak (see methods), finally channels were selected using the maximum movement related beta desynchronization. (E) 

Illustration of envelope threshold procedure to identify bursts. Samples of burst amplitudes and durations were used to 

construct histograms. The summaries of these distributions were then taken as the kernel estimate to the probability density 

function. Image of electrocorticogram in panel (B) is reprinted by permission from Springer Nature, Nature Human 

Behaviour (Miller 2019). 
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combine binary classifiers into an ensemble and applied this to the LDA feature space. Learners were 193 

implemented in MATLAB using iteratively optimized hyperparameters, and a Gaussian kernel set. 194 

Model performance was evaluated using five-fold cross validation and the area under the curve (AUC) 195 

of receiver operating characteristics (ROCs) across the folds. Plots of SVM decision bounds were 196 

computed using posterior probabilities of model predictions applied in a grid search across the feature 197 

space. In effect, these measures of classification accuracy constitute an empirical estimate of model 198 

evidence or marginal likelihood, where the model in question maps from a functional (motor) state to 199 

various data features. 200 

2.6 Fitting a Model of Motor Cortex Population Activity 201 

We used a neural mass model of population activity in the motor cortex microcircuit (i.e., Bhatt et al. 202 

(2016)). This neural (state space) model formulation follows from the Wilson-Cowan firing rate model 203 

(Vogels et al. 2005), and has been used previously to describe dynamics of beta oscillations in the 204 

cortico-basal ganglia circuit (Oswal et al. 2021; Pavlides et al. 2015). This model delivers the average 205 

firing rate in response to input currents generated by spike trains from connected populations. 206 

Interlaminar projections were modelled using a delayed connectivity matrix reflecting the pattern of 207 

connectivity outlined in figure 4A. The model is driven using 1/fα noise generated using a fractional 208 

Gaussian process (Dietrich and Newsam 1993), with α a free parameter to be fit. For a full description 209 

of the model equations please see the supplementary methods IV. The model comprises three pyramidal 210 

cell layers (superficial SP, middle MP, and deep DP) plus one population of inhibitory interneurons 211 

(II). Each cell layer receives a self-inhibitory connection reflecting local synaptic gain control. The 212 

output of the model is a weighted sum (i.e., a lead field) of the layer specific firing rates with 80% 213 

contribution from deep layers, and 10% from superficial and middle.  214 

Priors on model parameters dictating intrinsic dynamics (e.g., time constants, firing rate properties, etc.) 215 

were chosen using a combination of sources: (1) we preferentially used the Allen Brain Atlas data portal 216 

(https://celltypes.brain-map.org/) and retrieved properties derived from human cortical cells; (2) when 217 

parameters were not available in Allen Brain Atlas, we used the NeuroElectro database 218 

(https://neuroelectro.org/) as an alternative. For both databases, multiple estimates were available per 219 

parameter, and so we used the estimated mean and standard deviation to specify the respective 220 

expectations and precisions on (Gaussian) prior densities. Interlaminar connectivity was parameterized 221 

to match the same ratios of synaptic gains described in Bhatt et al. (2016). Prior covariances between 222 

parameters were assumed to be zero.  223 

Systems of stochastic-delay differential equations (see supplementary methods IV) were solved 224 

numerically using a Euler-Maruyama integration scheme. For details of incorporation of finite 225 

transmission delays, and integration of the resulting system of stochastic-delay differential equations, 226 

see supplementary methods IV. We used an implementation of the sequential Monte-Carlo 227 
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Approximate Bayesian Computation algorithm (SMC-ABC; Toni et al. 2009; West et al. 2021) to fit 228 

models. We take forward the maximum a posteriori (MAP) estimate (the mode of the marginal posterior 229 

distribution) of each parameter for additional simulations. 230 

Model fits were assessed by the data used to fit them: type A 3 using the power spectra only; and type 231 

B 3 using both spectra and burst features (features described in section 2.4 <Data Features: Spectra and 232 

Distributions of Burst Amplitude/Duration=). We fit models to the group averaged data features and 233 

corrected the spectra to isolate peaks using a non-overlapping sum of Cauchy functions (see 234 

supplementary figure 3A and supplementary methods II). When fitting models across different motor 235 

states, the interstimulus interval (ISI) state was treated as a baseline, from which all other states were 236 

modulated. Thus, the ISI state was fit first using all free parameters (i.e., time constants, synaptic gains, 237 

sigmoid characteristics, properties of intrinsic and observation noise). The posteriors of the ISI state 238 

provided empirical priors for the remaining motor state models. These states were fit using a restricted 239 

set of free parameters incorporating laminar specific time constants, synaptic gains, sigmoid 240 

characteristics, and the slope/gain of 1/fα innovation noise. All models were fit to the group averaged 241 

data features for each state. 242 

2.7 Finding Parameters Responsible for Shaping Bursts 243 

The posterior parameter estimates4under models of the motor cortex4were examined to identify 244 

parameters responsible for shaping burst properties. To do this, we individually manipulated the 245 

synaptic gain and gain parameters for the laminar specific inputs (a total of 18 parameters) on a 246 

logarithmic scale from -3 to +3 (equivalent to approximately decreasing or increasing the strength 20 247 

times) in 24 steps. Each model was simulated for 48 seconds, and the following properties were 248 

estimated: the peak frequency of the spectrum, percentage change in power (from base model), mean 249 

burst amplitude, mean burst duration. Parameters correlating with each feature were then identified by 250 

estimating the Spearman9s rank correlation coefficient with the average of each feature (i.e., the 251 

expected value of the kernel approximation to the probability density function). This constitutes a 252 

sensitivity or contribution analysis: in other words, it assesses the degree to which changing synaptic 253 

parameters generate discernible differences in the space of data features. 254 

As features may not correlate across the whole connectivity range due to, for example, the existence of 255 

bifurcations in the model, we computed correlations within a restricted range. The restricted range was 256 

identified by computing the Spearman9s coefficient between the parameter and mean feature value 257 

across all possible ranges, with a minimum window of 1/2 of the whole range examined (i.e., 12 steps 258 

in connectivity strength). Correlations were thresholded using a Benjamini-Hochberg correction to set 259 

the False Discovery Rate to 10%, and the range yielding the largest coefficient was selected. The 260 

correlation between average burst duration and parameter scaling was used to choose the range, as this 261 

feature was found to have the largest association with interlaminar connectivity. Correlations with the 262 
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other three signal features (peak frequency, mean burst amplitude and interval) were taken within this 263 

parameter range. Finally, candidate parameters were found by examining the correlation coefficients. 264 

To identify parameters engendering changes in burst properties4but showing minimal effects on 265 

spectra4we looked for those exhibiting clear correlations with burst features but not with spectral 266 

frequency/power.  267 

To link model parameters more concretely to dynamics, we constructed bifurcation diagrams from 268 

deterministic variants of the models using posterior (empirical) parameter estimates. Equilibria were 269 

identified from unique points in the steady state solution at which the approximate derivative was equal 270 

to zero. Stability of the equilibria was assessed by computing eigenvalues of the (delayed) Jacobian at 271 

each fixed point (David et al. 2006). For details, please see supplementary methods V. 272 

2.8 Assessment of the Cortical Input/Output Fidelity and Relationship to 273 

Expression of Beta Bursts 274 

Finally, we used the model to understand how parameters responsible for modifying stochastic burst 275 

activity may regulate a trade-off between beta modulation under spontaneous cortical activity versus 276 

that in response to exogenous input (e.g., as arising from sensory evoked potentials). To do this we 277 

delivered a train of inputs (modulations of asynchronous firing rate) to the middle pyramidal layer- the 278 

main recipient of thalamocortical afferents. We then assessed how this modulated beta bursts in deep 279 

cell layers 3 the predominant output layer of cortex (illustrated in figure 7). Inputs were given as a step 280 

function with bouts of length in seconds drawn randomly from a normal distribution with mean 500 ms 281 

and 150 ms standard deviation, and breaks drawn with mean 700 ms and 150 ms standard deviation. 282 

Inputs were multipliers on the stochastic firing rate and were set to 1x on the breaks and 3x (to test 283 

response to increase input rate) during bouts of upregulation. Fidelity of modulation was assessed by 284 

computing the Spearman9s correlation between the input (square wave of firing rate modulations) and 285 

output (square wave reflecting beta burst detection). We thus used this measure of input/output (I/O) 286 

fidelity to assess to what extent parameters known to regulate beta bursts also comodulate cortical 287 

transmission. 288 

3 Results 289 

3.1 Beta Burst Features in Motor Cortex are Modulated during Movement and 290 

are Better Predictors of Motor State than that of Spectra Features 291 

Data features summarising the spectra (e.g., peak frequency, power in band), and characteristics of 292 

bursting activity (e.g., median burst duration/amplitude) were constructed from ECoG signals taken 293 
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from the three datasets (see methods) and epoched to yield segments reflecting different motor states: 294 

rest/interstimulus intervals (ISI; colour coded in blue throughout), movement preparation (red),  295 

movement execution (green), and movement imagery (orange). Data were selected from a sensor close 296 

to motor cortex that exhibited the largest movement related beta desynchronization (see methods for 297 

selection criteria). Example time series from the different motor states are shown in figure 2A which 298 

show clear bursts of 14-30 Hz beta activity in data from the different states. Spectra in figure 2B 299 

 

Figure 2 3 Analysis of recordings from selected ECoG sensors exhibit changes in properties of both spectral and 

burst features between motor states. Analyses were split among motor states: interstimulus interval (blue), movement 

preparation (red), movement execution (green), and motor imagery (orange). (A) Example 2 second time series of ECoG 

recordings for different motor states. Clear bursts of beta activity are apparent in ISI, movement preparation, and imagery 

states. (B) Group average of normalized power spectra, (C) probability density of burst amplitudes (given as Z scores), and 

(D) probability density of burst durations (ms). Bar plots in (E-G) show data from individuals overlaid, with mean and 

standard distributions indicated by error bars. Data is shown for: (E) narrow-band SNR (dB); (F) (F) median burst duration 

(ms); (G) mean burst amplitude (Z score). Statistics indicate results of one-way ANOVA with bars indicating respective 

significant post-hoc t-tests between pairs of states. An analysis of the predictive value of burst vs spectral features in 

classifying motor states can be found in supplementary figure 2.  
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demonstrate a clear movement related beta desynchronization in the group averaged spectra that is 300 

reflected in the change in 14-30 Hz narrow-band SNR from +18 dB to +11 dB from preparation to  301 

 

Figure 3 3 Comparison of empirical ECoG data with linear surrogates show that burst features represent significant 

signal nonlinearity that is modulated across conditions (A) The Iterative amplitude adjusted Fourier transform (IAFFT; 

see methods) was used to construct spectra-matched, linear surrogates (right) for each of the ECoG recordings (left).  

Spectral and burst features were computed for each signal, and the difference between the surrogate and empirical features 

were compared to assess the extent to which nonlinearities were present in data from the four motor states. (B) Plots showing 

the averaged difference between surrogate and empirical power spectra (computed as a percentage change). (C) Same as 

(B) but for distributions of burst amplitudes. (D) Same as (B) but for burst duration distributions. (E)  Bar chart indicating 

the median goodness-of-fit of the surrogate to the empirical data feature with IQR shown by error bars. (F) Same as (E) but 

for burst amplitude distributions. (G) Same as (E) but for burst duration distributions.  Statistics indicate results of one-way 

ANOVA with bars indicating respective significant post-hoc t-tests between pairs of states. 
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execution of movement (figure 2E; post-hoc t-test (40), P = 0.007). Changes were found in the wide 302 

band SNR (i.e., level of background noise indicating the overall signal quality) and corresponded to 303 

worsened recording quality during movement epochs (supplementary figure 1B). Beta 304 

desynchronization associated with movement is reflected also in a reduction in burst amplitudes (figure 305 

2C and F; one-way ANOVA P = 0.011) and a shortening of beta burst durations (figure 2D and G; one-306 

way ANOVA P = 0.004), although no significant changes were found in terms of the peak beta 307 

frequency or inter-burst intervals (supplementary figure 1 C and D, respectively).  308 

To compare the predictive value of either spectral or burst features, we trained an ensemble of binary 309 

SVM classifiers to predict different motor states (supplementary figure 2). Decision boundaries 310 

(indicating > 50% prediction success) between all four motor states were present for classification with 311 

burst features, and AUCs of the receiver operating characteristics (ROCs) showed good predictive value 312 

(AUC > 0.80). In contrast, classifiers using only features derived from the power spectra could only 313 

separate features from movement preparation and movement execution states with AUCs > 0.5 (greater 314 

than chance level) and could not classify features derived from movement preparation or imagery states. 315 

These results suggest that, when using band restricted information (i.e., within 14-30 Hz), the properties 316 

of bursting activity can significantly augment the prediction of motor states from brain activity. 317 

3.2 Burst Features are not Predicted by Linear Models of the Data 318 

To further determine whether beta burst features reflect meaningful information about the underlying 319 

motor state, beyond that contained in the spectra, we compared empirical features with those computed 320 

from spectrally matched IAAFT surrogates (see methods). In figure 3, we show a comparison between 321 

empirical data features and the average feature derived from surrogate data (n = 25) for each of the 322 

motor states. By design, the surrogates matched well to the power spectra of the data (figure 3B and E). 323 

Differences between the distributions of burst amplitudes and durations computed from the data or from 324 

linear surrogates (figure 3C/F and D/G, respectively) show that both features deviate significantly 325 

(median R2 < 0.80) from that expected under linear assumptions. Comparisons of the goodness of fits 326 

(R2) to linear surrogates showed that deviations of burst duration distributions from linearity were not 327 

equal for each motor state (figure 3G, one-way ANOVA P = 0.001), with movement preparation and 328 

ISI states showing reduced R2 values when compared to movement execution. Similarly, burst durations 329 

exhibited significant changes between states (figure 3G, one-way ANOVA P = 0.002) with data from 330 

the ISI and movement preparation providing the greatest evidence for nonlinearity among all the motor 331 

states. These data suggest that burst features represent underlying nonlinearities in the data that are not 332 

captured in the power spectra alone. Further, states associated with ISI and movement preparation are 333 

associated with a higher degree of nonlinearity, especially when compared to movement execution. We 334 

next use a neural mass model to investigate the potential biophysical explanations for these differences. 335 
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3.3 Biophysical Models of Motor Cortex Fit Constrained to Fit Power Spectra 336 

do not Predict Distributions of Burst Features 337 

We used the Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) algorithm to fit 338 

a biophysical (neural mass) model of the motor cortex microcircuit to key data features (i.e., power 339 

spectra and distributions of burst duration/amplitude) from each of the four motor states. We fit the 340 

group averaged data features and further reduced spectra to their peaks using a sum of Cauchy functions 341 

(see supplementary figure 3D-F and supplementary methods II). To assess the value of the power 342 

 

Figure 4 – Comparison between type A (spectra only) and type B (spectra + burst features) fits of the motor cortex 

microcircuit demonstrates that spectral features are not sufficient to accurately constrain simulated burst 

parameters. Data features were constructed by simulating data using draws from the posterior distributions over parameters 

(n = 256). (A) Schematic of the motor cortex microcircuit model. Each black node represents a neural mass that is coupled 

with either excitatory (red) or inhibitory connections (blue). There are three pyramidal cell layers: superficial (SP), middle 

(MP), and deep (DP), plus an inhibitory interneuron (II) population. Model parameters were constrained using either pre-

processed spectra (type A) or both spectra and burst features (type B) (B) Summary of the median ±SEM goodness of fit 

(R2) of the model to data from each state resulting from type A model fits. (C) Same as (A) but for type B model fits. (D) 

Difference in the goodness-of-fit (ΔR2) between type A and B fits. Negative values accuracy was greater in type B that type 

A fits.  
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spectra in predicting burst features, fitting procedures were split into two groups depending upon the 343 

data features used: type A - constrained exclusively using the spectra, or type B 3 constrained using a 344 

combination of the spectra and distributions of burst amplitude and duration (figure 4A). Samples of 345 

the simulated time series using posterior estimates, as well as the fitted features are shown in 346 

supplementary figure 3. 347 

Type A models fit well to spectra (figure 4B; all states R2 > 0.95) but showed that spectra were not 348 

sufficient to predict burst features accurately. Further analysis of the fitted features (supplementary 349 

figure 3E and F) showed that predicted distributions of burst amplitudes were attributable to smaller 350 

amplitude bursts than those observed in the experimental data, and burst durations were shorter than 351 

predicted in the case of ISI and movement preparation (blue and red, respectively; R2 < 0.90). However, 352 

type A fits were sufficient to accurately recover the empirical distributions of burst amplitude in 353 

movement execution/imagery (figure 4C; green and orange, R2 > 0.90).  354 

In contrast, type B fits demonstrate that the model parameters could reproduce burst features (figure 355 

4C), with a median fit of ~95% for all features. Complementary to the analyses of feature nonlinearity 356 

in figure 3, we show that the ISI and movement preparation (the motor states exhibiting the highest 357 

degree of nonlinearity) gained the most (in terms of accurate predictions) from the explicit inclusion of 358 

burst features (difference of type A and B fits shown in figure 4D). In contrast, for data from movement 359 

imagery and execution there was less gain in accuracy when explicitly incorporating burst features. 360 

The inadequacy of type A fits in predicting burst features (withheld from model inversion) suggests that 361 

burst characteristics are the product of circuit mechanisms (and associated biophysical parameters) that 362 

are either independent or at least only weakly associated with those governing the power spectral 363 

amplitude and implies that features summarising temporal patterning of bursts are important for 364 

informing neural models. Furthermore, burst features from periods of ISIs and preparation appear most 365 

different from those predicted using type A fits out of all of the other motor states. In the next section 366 

we aim to identify parameters of the fitted microcircuit models of motor cortex underlying these changes 367 

in burst properties. 368 

3.4 Analysis of Parameter Modulations Between Motor States and Correlations 369 

with Burst Features 370 

Parameters of the fitted models exhibited significant deviation from the empirical priors provided by 371 

the model fit to movement preparation (i.e., the baseline state), indicate changes in cortical 372 

microcircuity between motor states predicted by the model (figure 5A and B). Parameter estimates 373 

based on ISI, movement imagery, and movement execution data showed significant changes in drive to 374 

inhibitory interneurons (II input gain), with the latter two showing an increase in inhibition. Movement  375 
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preparation, execution, and movement imagery were also associated with changes in self inhibition of 376 

deep layers (DP → DP).  377 

To identify the parameters responsible for shaping beta burst features, we systematically altered 378 

interlaminar connection strengths and input gains, and then applied a restricted-window correlation 379 

analysis (see methods) to detect co-modulation of the parameter with the predicted spectral frequency, 380 

beta power, mean burst duration, or mean burst amplitude (figure 5D). The results in figure 5E show 381 

that common parameters affect these data features in models fitted across the motor states. Parameters 382 

modulating both burst and spectral features (highlighted in grey in figure 5E) included: MP self-383 

inhibition; II → SP; SP input gain. With respect to beta burst features, three parameters were found to  384 

Figure 5 – Results of the motor cortex model fits to ECoG data from motor tasks. Analysis shows posterior model 

estimates, as well as modulations in parameters from the baseline condition (movement preparation.), as well as 

correlation analysis of circuit parameters with the statistics of spectral and burst features resulting from posterior 

simulations. (A) Parameters of the model of motor cortex microcircuit were estimated from fits to group averaged data 

features from all four motor states using ABC-SMC. (B) Changes in parameters from the baseline, movement preparation 

state (red- zero for all parameters indicating usage of empirical priors for the remaining states) show statistically significant 

modulations (posterior Z-test P < 0.05, indicated by asterisk), particularly for features estimated from movement execution 

and imagery. (C) Connections exhibiting a significant modulation are shown on the colour coded circuit diagram. (D) 

Modulations in parameters were estimated by first fitting to movement preparation data as a baseline state (using a wider 

set of free parameters, see methods), and then using these as empirical priors on the remaining models (using a smaller set 

of free parameters, see methods). (E)  Parameters of the posterior models dictating interlaminar connectivity, and laminar 

specific inputs were then systematically examined for correlation with different data features. Correlations were performed 

on a restricted range (see methods). Parameter significance was determined using False Discovery Rate correction (10%). 

Grey bands highlight parameters that modulated both power and burst features. Parameters in light grey reflect those 

predominantly acting on burst features. (F) Connections and inputs exhibiting a significant correlation with either spectral 

and burst features (highlighted in grey) or exclusively burst features (blue) are shown on the colour coded circuit. 
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predominantly modulate burst amplitude and durations (highlighted in light blue in figure 5E). 385 

Interestingly, all three parameters correspond to self-inhibitory connections for SP, DP and II. To 386 

investigate how these parameters shape beta dynamics, we chose an example parameter4DP self-387 

inhibition gain4that we took forward for further analysis. This was because: (A) it shows strong 388 

modulation between motor states (figure 5B); and (B) it negatively correlates with both burst amplitude 389 

and duration but exhibits only limited effects on spectral peak frequency or power (figure 5E).  390 

 

Figure 6 – Detailed model analysis of bifurcation diagrams associated deep pyramidal layer (DP) self-inhibition 

strength and corresponding correlations with signal features in terms of burst duration and nonlinearity. The level 

of deep layer self-inhibition was taken forward as a control parameter following from the correlation analysis presented in 

figure 6F. Simulations were performed on a range of parameter values spanning -3 to +3 (log scaling from posterior). (A) 

1.5 seconds of sample data simulated from each model of a motor state at either low (-2 scaling), fitted (0 scaling), or high 

(+2 scaling). (B) Bifurcation diagrams estimated from the deterministic variant of the model (see methods). Dashed lines 

indicate correspondence between stochastic model dynamics and level of control parameter. All states show fixed point 

dynamics. (C) The median burst duration is plot against the strength of DP cell input. All states excluding movement 

execution indicate existence of negative correlation between control parameter and burst duration. For bifurcation analysis 

and analysis of DP self-inhibition effects on signal nonlinearity (using IAAFT2 surrogates) please see supplementary figure 

5. 
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3.5 Analysis of the Fitted Models Demonstrates that Bursting Intermittencies 391 

are Shaped by Dynamical Stability of the Motor Cortex 392 

We used DP self-inhibitory gain as a control parameter to investigate its effects on temporal dynamics 393 

in the simulated model (figure 6A) and to construct bifurcation diagrams (figure 6B). To understand 394 

how this control parameter may change the system9s response to small perturbations (such as that 395 

provided by small amplitude noise), we performed a stability analysis of the estimated equilibria.  396 

All models4across the motor states4exhibited stable fixed-point dynamics for at least some of the 397 

range investigated. Sustained oscillatory activity is observed in models fit to the data recorded during 398 

ISI, movement preparation and movement imagery states. This oscillatory activity was present for DP 399 

self-inhibition in the range -2.5 to +2.5 (log-scaling factor; shown in traces figure 6A, in blue, red, and 400 

yellow). Analysis of the deterministic system showed that this change correlated with a reduction in 401 

amplitude of the system9s equilibria (figure 6B) and a change in the stability of the equilibria (analysis 402 

shown in supplementary figure 4B). Corresponding intermittencies in beta rhythms were graded, with 403 

burst durations shortening continuously as DP self-inhibition was increased (figure 6C; blue, red, and 404 

yellow). In the model fit to data recorded during movement execution (in green), there was no periodic 405 

behaviour in the simulated traces generated by the model (figure 6A, green) and DP self-inhibition 406 

showed no modulation in the equilibria or eigenvalues of the system (figure 6B and supplementary 407 

figure 4). There was also no modulation in burst duration with this parameter. We also analysed changes 408 

in feature nonlinearity (using comparison to IAAFT2 surrogate method introduced in section 3.2) but 409 

found that the high variance of the estimator impaired any detection of modulation by the control 410 

parameter (supplementary figure 4A). These analyses demonstrates that the duration of temporal 411 

intermittencies of beta rhythms in the model, can be explained by the effects of biophysical parameters 412 

on the system, in this instance, DP self-inhibition reduces the magnitude of the oscillatory response to 413 

perturbation, such as that occurring due to noise in the stochastic model. 414 

3.6 Statistics of Beta Burst Expression Cannot Reliably Inform the Receptivity 415 

of the Cortex to Exogenous Inputs 416 

Finally, we investigated the hypothesis that cortical beta burst properties reflect a trade-off between 417 

integration of spontaneous endogenous activity, versus that arising due to structured exogenous inputs 418 

(Karvat et al. 2021) (i.e., from sensory or higher order thalamus). In figure 7A and B we illustrate an 419 

in-silico experiment conducted on the models fit to different motor states in which we delivered 420 

patterned modulations of asynchronous (i.e., noisy) inputs to the middle layer of cortex (the main 421 

recipient of thalamic projections). We considered beta burst detections in deep layer (the main 422 

projection layer of cortex) as the cortical output. We then measured the correlation between the input 423 

and output as an estimate of transmission fidelity. This analysis was repeated separately for all three  424 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.06.22.497199doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497199
http://creativecommons.org/licenses/by-nc/4.0/


West et al. (2022): When do bursts matter in the motor cortex?  Biorxiv_v1 

28/07/2022  19 

 

 

Figure 7 – Parameters responsible for modulating burst properties do not uniformly alter the fidelity of synchronous 

cortical responses to exogenous inputs. (A) To probe the fidelity of cortical beta responses to changes in exogenous input, 

fitted models were used in an in-silico experiment. Asynchronous (stochastic) inputs to the middle layer were modulated 

with a square wave of random intervals. Beta burst detections in signals simulated in deep cell layers were taken as the 

outputs. The total <fidelity= of input/output (I/O) transmission was estimated using the rank correlation/mutual information 

between these two square waves. (B) Example waveforms of the spontaneous (unperturbed; grey) activity, overlaid with 

perturbed (in red) activity  matching the perturbation (i.e., modulation in noise to middle layer) seen below (black square 

wave). The output of the system matches the beta burst detections (red square wave) (C) Self inhibition in superficial (SP), 

deep (DP), and inhibitory interneurons (II) layers negatively correlates with burst duration (given on right axes; dots; see 

figure 5 and 6). However, modulations in I/O fidelity (shaded lines) do not align with burst duration: SP self. decreases I/O 

fidelity, DP self. exhibits no correlation with I/O fidelity, and II self. increases fidelity.  
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self-inhibition strengths known to negatively correlate with beta burst amplitude and duration (shown 425 

in figure 5): SP self., DP self., and II self. 426 

The results in figure 7C show that whilst strengthening all three of these parameters decreased mean 427 

burst duration (right axes; shown by dots), the relationship with I/O fidelity was not consistent between 428 

different self-inhibitions. For instance, in the models fit to ISI data, SP self-inhibition associated 429 

shortening of bursts correlated with a decrease in I/O fidelity. The opposite was true for modulations of 430 

II self-inhibition gain. These data suggest that burst statistics are not sufficient to infer the integration 431 

of endogenous and exogenous information in the cortex as shortening of bursts can be associated with 432 

both increased and decreased translation between exogenous inputs and modulation of beta frequency 433 

transients. 434 

Discussion 435 

3.7 Summary of Findings 436 

Temporal dynamics of rhythmic activity in the brain contain significant information regarding cortical 437 

information processing. Here, we have shown that motor states can be decoded from 438 

electrocorticography using features computed from narrow-band beta activity (figure 2). Our results 439 

show that these features aid classification (supplementary figure 2) and arise from signal nonlinearities 440 

that are not detectable in the power spectrum (figure 3). Further, evidence for nonlinearity was found 441 

to be greatest in data recorded during rest and movement preparation, indicating that the increase in 442 

information, beyond that available in the spectrum, and contained in the distributions of burst 443 

amplitude/duration, is highest in these states. Using a neural mass model, we then delved into the 444 

potential mechanisms and their functional significance. As expected, we found that neural mass models 445 

fit exclusively to spectra were not sufficient to accurately recapitulate the features of cortical beta bursts 446 

(figure 4). Analysis of the fitted model parameters between motor states found that burst properties 447 

could be modulated by specific interlaminar couplings, and independently of spectral amplitude or 448 

frequency (figure 5). These parameters were predominantly self-inhibitory connections to deep, 449 

superficial, and inhibitory interneuron populations. Using deep self-inhibition as an exemplar control 450 

parameter, we showed how changes to the equilibria and dynamical stability of the deterministic model, 451 

could in turn shape the properties of spontaneous beta bursts when noise was added (figure 6). Finally, 452 

using simulations of the fitted models, we showed that changes in burst duration and amplitude cannot 453 

reliably infer receptivity of the cortex to input, as the relationship was dependent upon the specific 454 

connection responsible for altering bursting (figure 7). 455 
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3.8 Intermittencies in Bursts can Discriminate Brain States Associated with 456 

Movement 457 

Transient fluctuations in neural oscillations can contribute to the understanding of the organization of 458 

brain activity (Bonaiuto et al. 2021; van Ede et al. 2018; Feingold et al. 2015; Lundqvist et al. 2016; 459 

Sherman et al. 2016; Shin et al. 2017). Transients in beta oscillations, the focus of this study, are found 460 

in healthy sensorimotor cortex (Feingold et al. 2015; Hannah et al. 2020; Little et al. 2019; Rule et al. 461 

2017; Wessel 2020), and also play a prominent role in Parkinsonian electrophysiology (Cagnan et al. 462 

2019; Tinkhauser et al. 2017b). Quantification of these intermittencies is beginning to build a taxonomy 463 

of bursts by identifying changes associated with different brain states and diseases (Deffains et al. 2018; 464 

Enz et al. 2021; Khawaldeh et al. 2020; Shin et al. 2017; Torrecillos et al. 2018). The discrimination of 465 

brain states by temporal features, as well as their transitory nature, makes them attractive targets for 466 

closed-loop approaches to neuromodulation, for instance using either beta frequency (Little et al. 2016; 467 

Tinkhauser et al. 2017a), or theta and gamma (Kanta et al. 2019; Knudsen and Wallis 2020) biomarkers.  468 

The results reported here support this approach, by providing direct evidence that quantification of burst 469 

duration and amplitude, from narrow-band information can aid classification of motor states, in a way 470 

that is superior to that achieved when using spectral measures of beta power or peak frequency alone. 471 

Notably, we were able to discriminate between periods of rest and movement preparation, despite 472 

similar beta SNR observed across these states. These burst features are good candidates for control 473 

signals in closed loop neuromodulation, as they can be readily computed from narrowband data such as 474 

that available on current sensing devices such as Percept (Van Rheede et al. 2022) and they are known 475 

to be modulated by deep brain stimulation (Pauls et al. 2022). Additionally, motor state discrimination 476 

was enhanced compared to linear surrogates, with the degree of nonlinearity largest during rest and 477 

movement preparation (figure 3). This technique has previously been deployed to show that 478 

Parkinsonian beta bursts are more nonlinear when compared to a medicated control state (Duchet et al. 479 

2021). This suggests the possibility that biomarkers relating to signal nonlinearity can also form the 480 

basis for novel closed loop control algorithms (Jelfs et al. 2010) for neuromodulation. 481 

3.9 Mechanisms and Functional Implications of Bursts in the Motor Cortex 482 

If the statistics of bursts in rhythmic neural activity are discriminating features of brain states, then they 483 

may provide a window into the underlying changes in the generative neural circuitry. Existing models 484 

show that interactions between synchronous subthreshold inputs to proximal and distal dendrites of 485 

pyramidal neurons can explain high amplitude, short duration bursts of beta recorded in sensorimotor 486 

cortex (Bonaiuto et al. 2021; Sherman et al. 2016). Strong inputs to distal dendrites may then halt 487 

information processing by recruitment of inhibitory interneurons in the supragranular layers (Jones et 488 

al. 2009), that can lead to a reduction in pyramidal firing rates following cortical beta bursts (Karvat et 489 
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al. 2021). Our model also suggests that the strength of projections from superficial to deep lamina is an 490 

important determinant of total beta power, yet this parameter does not explain changes in the temporal 491 

dynamics of bursts. It is likely that the high amplitude waveforms chosen in these previous studies to 492 

maximize signal SNR,  form only a subset of the total beta activity as there is good evidence for motor 493 

cortical bursts lasting  > 300ms in duration (Seedat et al. 2020). Thus, a focus on high amplitude beta 494 

events may occlude alternative mechanisms by which recurrent and delayed interlaminar interactions 495 

may either seed the genesis of beta bursts and/or sustain them across multiple cycles. For instance, our 496 

work suggests an important role for laminar specific inhibitory interneuron activity, with deep layer 497 

self-inhibitory loops acting to curtail burst durations. 498 

As changes in temporal patterning of beta activity between motor states are ascribable to alterations in 499 

interlaminar connectivity, it thus follows that the amplitude modulation of beta oscillations may reflect 500 

changes in the response to driving inputs to the cortex. The cortex is known to exhibit context dependent 501 

changes in interlaminar propagation and laminar specific inputs (Kirchgessner et al. 2020; Takeuchi et 502 

al. 2011) yet limited information is known regarding the changes occurring during movement (Inagaki 503 

et al. 2022), and even less about how this relates to the frequency of activity. Our simulations 504 

demonstrate that input/output relationships between exogenous modulations in firing rates and beta 505 

entrainment may change between brain states. However, there was no consistent finding that burst 506 

properties (i.e., burst elongation) corresponded changes in integration of exogenous inputs (figure 7), 507 

as the relationship changed dependent upon whether bursts were elongated by superficial or inhibitory 508 

inhibition, for instance. Thus this model is unable to provide evidence in support of the idea that 509 

spontaneous beta bursts in sensorimotor cortex reflect a competition with sensory evoked potentials 510 

(Karvat et al. 2021). 511 

In the cases that beta bursts do reflect sensory gating (Van Ede et al. 2011; Limanowski et al. 2020; 512 

Spitzer and Haegens 2017), then high amplitude or elongated beta events arising from increased 513 

stability of beta generators (as suggested by our analysis in figure 6) could reflect a down weighting of 514 

sensory inputs in favour of maintenance of the existing motor program and enhanced robustness to 515 

sensorimotor <noise= (Cocchi et al. 2017). Our simulated experiment (presented in figure 7) suggests 516 

that the fidelity of cortical responses to external perturbation should change dependent upon motor 517 

states. This could be validated, for instance, by providing patterned optogenetic stimulation to specific 518 

layers, and then measuring the fidelity of the cortical response. 519 

3.10 Model Inference and Intermittent Dynamics 520 

This work also provides evidence that power spectra alone may contain insufficient information to 521 

accurately constrain parameters of nonlinear and/or stochastic models. Existing dynamic causal models  522 

of large scale temporal dynamics such as Parkinsonian beta bursts (Reis et al. 2019) or epileptic seizures 523 

(Rosch et al. 2018) appeal to fast-slow separation of time scales (i.e., the adiabatic approximation) in 524 
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which changes in dynamics (i.e., bursting to quiescence) can be approximated by a model of fast (i.e., 525 

oscillatory) dynamics, with slow variables regulating the transition between states (Jafarian et al. 2021). 526 

In a similar vein, many phenomenological or statistical models describe bursts as a transition between 527 

discrete dynamical states (Heideman et al. 2020; Seedat et al. 2020). Other modelling approaches, such 528 

as that of Sherman et al. (2016), described above, take well constrained compartmental models that can 529 

describe high amplitude beta events, albeit with a specific pattern of input.  530 

In this paper we take a different approach and treat bursts as the product of stochastic <quasi-cycles= 531 

that arise from noise driving a stable system such as a damped oscillator (Powanwe and Longtin 2019), 532 

that exhibit amplitude envelopes that can be modelled in terms of a drift-diffusion process (Duchet et 533 

al. 2021). Thus we use a model incorporating the full nonlinear transfer functions, and fit parameters of 534 

the resultant stochastic differential equations (West et al. 2021). Given the full breadth of information 535 

summarised by both the spectra and distributions of burst features, these models can well describe 536 

temporal dynamics of ECoG data in a parsimonious way without needing to appeal to modelling 537 

multiple states separately.  538 

The distinction between generative models in which synaptic parameters fluctuate slowly and our model 539 

based upon stochastic dynamics speaks to an important distinction between explanations for itinerant 540 

dynamics of which beta bursts provide a good example. Technically, the first kind of generative model 541 

rests upon structural instability, where the itinerant changes in fast neuronal dynamics4and ensuing 542 

transients4are generated by changes in the fixed points of a system with the parameters of the equations 543 

of motion. In contrast, the second kind of generative model relies upon dynamical instability; namely, 544 

unstable (or weakly stable) fixed points to produce transient dynamics. This formal distinction has 545 

importance for understanding the biophysical mechanisms that generate bursts in population activity, 546 

as well informing stimulation approaches that aim to modulate them. For instance, in the case that bursts 547 

are the direct product of slow changes in neural circuits (i.e., invoking neural plasticity), then 548 

stimulation should directly target these mechanisms, whereas in terms of dynamical instability, 549 

stimulation can be patterned to with the aim of suppressing transient burst activity, or disrupting neural 550 

states that preclude them. Formally, this question could be answered in terms of a Bayesian model 551 

comparison between generative models incorporating either dynamic and structural instability.  552 

3.11 Limitations 553 

A major problem when investigating changes in temporal dynamics between brain states arises from 554 

potential confounds that arise from the trivial effects of changes in signal to noise. We note that we 555 

found changes in the wide-band SNR (i.e., the overall signal quality - compared to the amplifier noise 556 

floor) between states (supplementary figure 1). However, the variance of the wide-band SNR between 557 

subjects was very high and showed smaller effect sizes than that observed when comparing distributions 558 

of burst amplitude and duration, suggesting that SNR was not the main contributing factor. Further, 559 
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alterations in burst amplitude did not correlate with either wide- or narrow-band SNR. The segregation 560 

in burst amplitude and duration effects between states was also sufficient to provide superior 561 

classification of states to that achieved when using SNR. Further, bursts were defined using a window-562 

specific threshold, which prevents burst properties from predominantly reflecting SNR differences- a 563 

problem that is encountered when using a common (i.e., across states) threshold (Schmidt et al. 2020). 564 

The robustness of using a fixed threshold of 75th percentile is well supported following reports that 565 

specific threshold values do not qualitatively change outcomes of burst analyses (Lofredi et al. 2019; 566 

Tinkhauser et al. 2017b). 567 

To ensure good data quality, we applied stringent selection criteria (described in methods section 2.2) 568 

that lead to the rejection of significant portions of the available data. Data quality vs beta desync. Get 569 

both. Focus on robust effects 570 

The existence of non-identifiability in models (i.e., a redundancy in parameter to output mappings) will 571 

always limit the degree of confidence with which parameter estimates can be interpreted. In terms of 572 

Bayesian models such as that presented here, the existence of prior densities over parameters can reduce 573 

these concerns to some extent, by providing an a priori restriction on the values to which parameters 574 

may take. This comes with the caveat that the mechanistic conclusions must only be interpreted in terms 575 

of the model architecture (the product of a previous model comparison study in (Bhatt et al. 2016)) and 576 

the specified priors (many of which are ascertainable from electrophysiological studies: see 577 

supplementary table). 578 

Lastly, model inversion with Approximate Bayesian computation is susceptible to issues arising due to 579 

insufficiency of the summary statistics (i.e., the power spectrum, or distributions of burst 580 

duration/amplitude used here). More complete descriptions may be achievable with the bispectra (i.e., 581 

the Fourier transform of the third-order cumulant) (Halliday et al. 1995). Although there are dynamic 582 

causal models of cross-frequency coupling4implicit in the nonlinear mechanisms that underwrite 583 

dynamical itinerancy (Chen et al. 2009; Friston et al. 2006)4they are not generative models of 584 

bispectra, or indeed the statistics of bursts or transients. The results of the current study clearly call for 585 

development of generative models of these kinds of data features. 586 

3.12 Conclusions 587 

This work provides significant evidence that the temporal properties of bursting intermittencies in brain 588 

rhythms contain unique information about the underlying circuits that generate them, beyond that more 589 

conventionally inferred from the power spectra of electrophysiological data. Furthermore, we have 590 

shown that burst features are nonlinear and are not simple predictions of the power spectra. Using a 591 

model of motor cortex microcircuitry, we show that bursts can arise from stochastic dynamics, with 592 

properties that are predominantly modulated by local laminar specific inhibitory loops. We have shown 593 
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that this has important consequences for understanding information processing in cortical microcircuits, 594 

although simulations exhibit a non-trivial relationship between burst duration and amplitude versus the 595 

responsivity of the cortex to exogenous inputs. These findings inform novel paradigms to understand 596 

the role of external perturbations such as electrical brain stimulation, in manipulating cortical 597 

computations when in the presence of spontaneous fluctuations in neural rhythms.  598 
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 790 

6 Supplementary Figures  791 

6.1 Supplementary Figure 1 792 

  793 

 

Supplementary Figure 1 - Additional ECoG signal features compared between motor states. (A) Probability densities 

of interburst intervals. (B) Bar chart to compare changes in the wide-band SNR of the selected ECoG channel. (C) Same 

as (B) but for peak beta frequency. (D) Same as (B) but for the mean interburst intervals.  
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6.2 Supplementary Figure 2 794 

  795 

 

Supplementary Figure 2 - Classification of movement states is superior when using beta burst features over that 

performed when using spectral features only. (A) (left) Features of the ECoG power spectra (n=3) were projected onto 

a two-dimensional space using linear-discriminant analysis (LDA). Classification was then performed using ensembles of 

support vector machines on the first and second components of the LDA. The classification boundaries for each state are 

overlaid on the scatter plots of LDA features, at P = 0.5; and P = 0.75. (right) The receiver operating characteristics of each 

binary classifier are shown, with the area under the curve is inset. (B) Same as for (A) but when using burst features (n=6). 
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6.3 Supplementary Figure 3 796 

  797 

 

Supplementary Figure 3 – Summary of model fits of motor microcircuit model to group averaged data features 

across motor states. (A) Illustration of spectral preprocessing performed to isolate main peaks of spectra from 1/f 

background. (B) Schematic of the motor cortex microcircuit model. Each black node represents a neural mass that is coupled 

with either excitatory (red) or inhibitory connections (blue). There are three pyramidal cell layers: superficial (SP), middle 

(MP), and deep (DP), plus an inhibitory interneuron (II) population. Model parameters were constrained using either pre-

processed spectra (type A) or both spectra and burst features (type B). (C) 1.5 second of example empirical data is shown 

from each motor state ( top; dark shade ), alongside those simulated from the posterior type A (middle; medium shade), or 

type B (bottom; light shade) fits. Data is shown from the interstimulus interval (blue), movement preparation (red), 

movement execution (green), and movement imagery (orange). Data features from the posterior model fits are shown for: 

(D) power spectra, (E) distributions of burst amplitudes, and (F) distributions of burst durations.  
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6.4 Supplementary Figure 4 798 

  799 

Supplementary Figure 4 – Bifurcation diagrams of system shown in figure 6. (A) The goodness of fit between burst 

duration distributions estimated from simulated data and linear surrogates indicates that the degree of nonlinearity in the 

signals is anticorrelated to changes in the burst durations. (B) Birfurcation diagrams indicate changes in either the real (top 

row) or imaginary (bottom row) components of the eigenvalues computed from the delay corrected Jacobian for each of 

the equilibria in each of the four models (parameterised to fit data from each of the four motor states). 
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6.5 Supplementary Methods 800 

6.5.1 Supplementary Methods I 3Wide/Narrow-band SNR Calculations 801 

6.5.2 Supplementary Methods II 3 Spectral Reduction 802 

Spectra were preprocessed prior to ABC model fitting in order to remove the aperiodic 1/f background 803 

such that fits were focussed on beta band activity. Peaks in the power spectrum in the beta frequency 804 

range were found using the findpeaks algorithm implemented in MATLAB. Prior to peak finding, 805 

spectra were smoothed with a 5 Hz wide Gaussian kernel. Inflection points (i.e., the troughs separating 806 

peaks) were then determined by finding the nearest sign change of the approximate derivative 807 

(difference) from each peak. This then defined the frequency range over which a Cauchy function was 808 

fit. This procedure was formed for each peak. The composite spectra were then formed from the non-809 

overlapping sum of each fitted model. 810 

6.5.3 Supplementary Methods III 3 Definition of Bursts 811 

Bursts were defined by setting a threshold on the bandlimited envelope. The filter passband was set at 812 

±5 Hz of the peak frequency and implemented using a zero-phase FIR filter. Filtered data were then Z-813 

normalised. The analytic signal was constructed using the Hilbert transform to estimate instantaneous 814 

amplitude. Bursts were defined as periods exceeding the 75th percentile of this envelope and the 815 

minimum burst length was set to 2 periods of a 30 Hz oscillation (the upper limit of the band). Bursts 816 

found at the boundaries of epochs were discarded from the analysis. Burst amplitudes were taken as the 817 

maximum of the envelope within each burst, whilst burst duration reflects the amount of time that the 818 

envelope exceeds the threshold. Inter-burst intervals represent the time spent sub-threshold between 819 

each event. To summarise burst features, we estimated distributions of burst duration, amplitude, and 820 

inter-burst intervals using binned histograms. Distributions were then estimated using a kernel density 821 

estimate of the probability density function specifying a standard normal function for the kernel. 822 

6.5.4 Supplementary Methods IV 3Model Formulation 823 

The model uses the firing rate equations (Vogels et al. 2005; Wilson and Cowan 1972) constructed with 824 

the same architecture outlined in (Bhatt et al. 2016). The average firing rate of each laminar population 825 

(middle MP, superficial SP, inhibitory interneuron II, deep DP) is given by the following state 826 

equations: 827 ýý��ý� = 1ÿ�� (2ý�� + þ({� 2��→�� ý�� 2 ���→��ý�� + ���→��ý��}, ý�� , þ�� , ���)) 828 

ýý��ý� = 1ÿ�� (2ý�� + þ({2���→��ý�� + ���→��ý�� 2 ���→��ý�� + ���→��ý��}, ý�� , þ��, ���)) 829 

ýý��ý� = 1ÿ�� (2ý�� + þ({2���→��ý�� + ���→��ý�� + ���→��ý�� + ���→��ý��}, ý�� , þ��, ���)) 830 
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ýý��ý� = 1ÿ�� (2ý�� + þ({2���→��ý�� 2 ���→��ý�� + ���→��ý��}, ý�� , þ��, ���)) 831 

Where T gives the population time constant, G gives the weight of the (delayed) synaptic connection, 832 

and S(I,M,S,B) reflects the sigmoidal transfer function for the total input I given within the curly braces: 833 

þ(�, ý, þ, �) = ý1 + þ��2� �� ⋅ (ý 2 �)�  834 

where M reflects the maximum firing rate, S the slope of the sigmoid, and D the spontaneous firing rate 835 

(i.e., baseline firing rate in the absence of input). Many of the values of these parameters can be 836 

ascertained from empirical estimates available from online databases (see supplementary table I). The 837 

model includes finite transmission delays using delayed values of R, i.e., the delayed input from the jth
 838 

to the ith population is given by: 839 �Ā→ÿ = �Ā→ÿýĀ(� 2 �Ā→ÿ)) 840 

where �Ā→ÿ  reflects the finite time delay. Each state receives stochastic innovations added to the 841 

deterministic equations (given above). Delays were discretized and rounded to the nearest integration 842 

step size. Stochastic inputs were given by rescaling the variance of the noise to match the square root 843 

of the integration step h (i.e., ý�� = ��+/ 2 ��~þ(0, /), where �� is a Wiener process, and  þ refers 844 

to the normal distribution. The system of equations was then integrated using an Euler-Maruyama 845 

scheme with fixed step size of 0.5 ms. 846 

6.5.5 Supplementary Methods V3 Construction of Bifurcation Diagrams 847 

Stability analysis was performed on a deterministic version of the model. This was achieved by setting 848 

the input constant and equal to the mean of the stochastic process. Initial conditions were found by 849 

running the stochastic model for 30s simulation time (by which models are at steady state) and taking 850 

the mean activity over states for the last 2s. To find equilibria, this deterministic model was simulated 851 

again for 30s, and inflection points in the states were identified by finding points at which the derivative 852 

was approximately zero. Unique equilibria (again determined within a set tolerance to the difference 853 

between equilibria) were then plot against the control parameter to construct bifurcation diagrams. We 854 

assessed the stability of the equilibria by computing eigenvalues λ of the (delayed adjusted) Jacobian at 855 

each fixed point (David et al. 2006). For the four state model of the motor cortex, this yields 4 856 

(potentially complex-valued) eigenvalues for each value of the control parameter. 857 

6.6 Supplementary Information 1 3 Full ethics statements 858 

The following ethics statements appear in their original, unmodified state supplied alongside the data 859 

repository.  860 
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Cued Finger Movements 861 

<All patients participated in a purely voluntary manner, after providing informed written consent, under 862 

experimental protocols approved by the Institutional Review Board of the University of Washington 863 

(#12193). All patient data was anonymized according to IRB protocol, in accordance with HIPAA 864 

mandate. These data originally appeared in the manuscript <Human Motor Cortical Activity Is 865 

Selectively Phase- Entrained on Underlying Rhythms= published in PLoS Computational Biology in 866 

2012 (Miller et al. 2012).= 867 

Movement Imagery 868 

<All patients participated in a purely voluntary manner, after providing informed written consent, under 869 

experimental protocols approved by the Institutional Review Board of the University of Washington 870 

(#12193). Portions of these data originally appeared in the manuscript <Cortical activity during motor 871 

execution, motor imagery, and imagery-based online feedback= published in PNAS in 2010 (Miller et 872 

al. 2010). Portions of these patient data was anonymized according to IRB protocol, in accordance with 873 

HIPAA mandate. It was made available through the library described in <A Library of Human 874 

Electrocorticographic Data and Analyses= by Kai Miller (Miller 2019), freely available at 875 

https://searchworks.stanford.edu/view/zk881ps0522.= 876 

Basic Motor 877 

<Ethics statement: All patients participated in a purely voluntary manner, after providing informed 878 

written consent, under experimental protocols approved by the Institutional Review Board of the 879 

University of Washington (#12193). All patient data was anonymized according to IRB protocol, in 880 

accordance with HIPAA mandate. It was made available through the library described in <A Library of 881 

Human Electrocorticographic Data and Analyses= by Kai Miller (Miller 2019), freely available at 882 

https://searchworks.stanford.edu/view/zk881ps0522. All patient data was anonymized according to 883 

IRB protocol, in accordance with HIPAA mandate. These data originally appeared in the manuscript 884 

<Spectral Changes in Cortical Surface Potentials during Motor Movement= published in Journal of 885 

Neuroscience in 2007 (Miller et al. 2007).= 886 

6.7 Supplementary Table I 3 Prior Model Parameters 887 

Where possible we derived prior estimates from empirical sources available from either the Allen Brain 888 

Atlas, or Neuroelectro.org. Estimates derived from human cells were preferred, but when not available, 889 

estimates in animals were also used. Estimates of prior precision (i.e., inverse variance) were obtained 890 

by looking at the variance in independently reported measurements. 891 

Parameter mean  variance units reference(s) 
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Synaptic weights    Scaled to match Bhatt 

et al. (2016) 

SP → II_SP 4 0.1 

 

mv.s  

SP → MP 4 0.175 mv.s  

SP → DP 18 0.1 mv.s  

SP → SP 4 0.1 mv.s  

II_SP → SP 7.2 0.2 mv.s  

MP → MP 4 0.1 mv.s  

MP → SP 6 0.1 mv.s  

DP → SP 6 0.1 mv.s  

DP → II_DP 4 0.125 mv.s  

DP → DP 4 0.1 mv.s  

II_DP → DP 4.5 0.5 mv.s  

     

Transmission delays     

MP → MP 0.001 0.0005 s  

MP → SP 0.002 0.0005 s  

II → MP 0.002 0.0005 s  

II → II 0.001 0.0005 s  

MP → II 0.002 0.0005 s  

DP → II 0.002 0.0005 s  

SP → SP 0.001 0.0005 s  

SP → MP 0.002 0.0005 s  

II → DP 0.002 0.0005 s  

DP → DP 0.001 0.0005 s  

SP → DP 0.003 0.0005 s  

II → SP 0.002 0.0005 s  

SP → II 0.002 0.0005 s  

DP → SP 0.003 0.0005 s  

     

Time constants     

τmp 0.025 0.020 s Allen Cell Atlas: 

 L4 Spiny Human 

τsp 0.020 0.012 s Allen Cell Atlas: 

L2 Spiny Human 

τii 0.015 0.006 s Allen Cell Atlas: 

L2/3/4/5 Aspiny 

Human 

τdp 0.030 0.015 s Allen Cell Atlas: 

L5/6 Spiny Human 

     

Input gain     

Cmp 20  sp.s-1  
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Csp 20  sp.s-1  

Cii 0  sp.s-1   

Cdp 20  sp.s-1  

     

Maximum firing rates    Taken from 

Neuroelectro.org 

Mnmp 67 11 sp.s-1  

Mnsp 64 55 sp.s-1  

Mnii 131 106 sp.s-1  

Mndp 44 17 sp.s-1  

     

Slope of the sigmoid     

Snmp 0.1 0.1 sp.s-1.pA-1 Allen Cell Atlas: 

 L4 Spiny Human 

Snsp 0.2 0.2 sp.s-1.pA-1 Allen Cell Atlas: 

 L2/3 Spiny Human 

Snii 0.4 0.2 sp.s-1.pA-1 Allen Cell Atlas: 

L2/3/4/5 Aspiny 

Human 

Snsp 0.1 0.15 sp.s-1.pA-1 Allen Cell Atlas: 

 L5/6 Spiny Human 

     

Basal firing rates    Taken from 

Neuroelectro.org 

Bnmp 15 5 sp.s-1  

Bnsp 5 5 sp.s-1  

Bnii 20 20 sp.s-1  

Bndp 10 5 sp.s-1  

     

Observation noise gain     

Cobs 0.2  Scalar  

     

     

Leadfield     

Lobs [0.1 0.3 0.1 0.5]    

 892 
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