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Abstract

Time series of brain activity recorded from different anatomical regions and in different behavioural
states and pathologies can be summarised by the power spectrum. Recently, attention has shifted to
characterising the properties of changing temporal dynamics in rhythmic neural activity. Here, we
present evidence from electrocorticography recordings made from the motor cortex to show that,
dependent on the specific motor context, the statistics of temporal transients in beta frequency (14-30
Hz) rhythms (i.e., bursts) can significantly add to the description of states such rest, movement
preparation, movement execution, and movement imagery. We show that the statistics of burst duration
and amplitude can significantly improve the classification of motor states and that burst features reflect
nonlinearities not detectable in the power spectrum, with states increasing in order of nonlinearity from
movement execution to movement preparation to rest. Further, we provide mechanistic explanations
for these features by fitting models of the motor cortical microcircuit to the empirical data and

investigate how dynamical instabilities interact with noise to generate burst dynamics. Finally, we
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examine how beta bursting in motor cortex may influence the integration of exogenous inputs to the
cortex and suggest that properties of spontaneous activity cannot be reliably used to infer the response
of the cortex to external inputs. These findings have significance for the classification of motor states,
for instance in novel brain-computer interfaces. Critically, we increase the understanding of how
transient brain rhythms may contribute to cortical processing, which in turn, may inform novel

approaches for its modulation with brain stimulation.

1 Introduction

Rhythmic activity from populations of neurons, as is routinely summarised in the power spectrum, is
often taken to be sufficient to characterise neural activity from different brain regions (Keitel and Gross
2016; Mahjoory et al. 2020), behavioural states (Siegel et al. 2012), and pathologies (Brown et al. 2001;
Schnitzler and Gross 2005). However, when analysed in time, neural rhythms often resolve into a
succession of intermittent, transient events (Baker et al. 2014; van Ede et al. 2018; Fingelkurts and
Fingelkurts 2010; Freeman 2004; Friston 1997) that can appear as sustained oscillations when
investigated using trial averaged analyses (van Ede et al. 2018; Jones 2016). To understand how
alterations in power are underwritten by the temporal dynamics of neural rhythms, it is necessary to

explicitly quantify the duration, amplitude, and rate of transient events (Heideman et al. 2020).

Temporal intermittencies in neural rhythms (i.e., “bursts”) are known to be important in behaviours
such as sleep (Adamantidis et al. 2019) and working memory (Lundqvist et al. 2016). In the healthy
motor system, changes in the temporal patterning of beta frequency (14-30 Hz) activity can predict
behaviour beyond that achieved when using just the amplitude of beta activity (Enz et al. 2021; Hannah
et al. 2020; Shin et al. 2017; Wessel 2020). Further, beta burst dynamics appear to be significantly
altered in Parkinsonism (Cagnan et al. 2019; Deffains et al. 2018; Tinkhauser et al. 2017b), where they
form a major target for adaptive deep brain stimulation (Little et al. 2016; Tinkhauser et al. 2017a). An
important consideration for therapeutic stimulation specificity is discriminating between pathological
and healthy motor activity. Properties of transient activity can, in principle, improve classification

accuracy and thus increase the specificity of stimulation effects.

In the context of motor behaviour, preparation and execution have been conventionally described in
terms of event related synchronization and desynchronization in the beta frequency band (Pfurtscheller
and Lopes da Silva 1999). Movement imagery has also been linked to event related desynchronization
albeit with less power decrease in beta when compared to movement execution (Pfurtscheller and
Neuper 1997). When temporally resolved, changes in the rate and timing of beta bursts are associated
with movement preparation, planning, termination or cancellation (Diesburg et al. 2021; Feingold et al.
2015; Khanna and Carmena 2017; Little et al. 2019; Torrecillos et al. 2018; Tzagarakis et al. 2010;

Wessel 2020). Additionally, the occurrence of beta bursts is associated with effects that persist beyond
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their termination (Khanna and Carmena 2017; Torrecillos et al. 2018). It has been suggested that bursts
reflect a competition between endogenous processing and external sensory responses that bias

perception in the cortex (Karvat et al. 2021).

Taken together, we hypothesize that (1) the temporal properties of beta bursts are altered between
different movement states; (2) these changes in dynamics reflect altered responses of the motor cortex
to stochastic inputs, that arise from a reconfiguration of the underlying microcircuit, and thus (3) bursts

reflect a rebalancing of how the cortex integrates between spontaneous and exogenous inputs.

To date, the mechanisms underlying burst activity have been described using relatively simple models,
such as an excitatory/inhibitory network of Wilson-Cowan populations (Duchet et al. 2021; Powanwe
and Longtin 2019; Xing et al. 2012) that are motivated by pyramidal-interneuron models of beta
generation (Jensen et al. 2005; Kopell et al. 2011). These studies indicate that burst statistics are
determined by interactions between synaptic noise and the connectivity parameters of any given model.
This suggests that models constrained using burst statistics can more accurately infer underlying
connectivity across states, particularly in more complex models of the motor cortex. In models
incorporating a more complete structure, previous work has demonstrated the importance of laminar
specific corticothalamic inputs, which given the right timing can generate short, high amplitude beta
events (Sherman et al. 2016). Whilst these models have been useful in understanding how to either
experimentally or therapeutically modulate the mechanisms that give rise to beta bursts, it is still not
known how changes in burst statistics during different stages of movement are underwritten by

alterations in cortical microcircuitry.

This present work aims to establish how alterations of the cortical microcircuitry during motor
behaviour are manifest in the burst statistics of beta rhythms recorded from large scale neuronal activity.
To this end, we use a library of publicly available electrocorticography (ECoG) data recorded from
participants performing a range of motor tasks (Miller 2019). We first investigated how rhythmic burst
features in these data may enhance the classification of different motor stages—such as movement
preparation, execution, and imagery—by providing information beyond that available in the time
averaged spectra. Secondly, using computational models of the motor cortex microcircuit fitted to the
burst statistics and spectra of the ECoG data, we characterise how biophysical parameters may modulate
bursting dynamics in different brain states and investigate whether the changes in the expression of beta

bursts can reflect the altering balance between spontaneous and exogenous drives to the motor cortex.
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93 2 Methods

94 2.1 Electrocorticography and Experimental Recordings

95  All experimental data was taken from an openly available library (Miller 2019) published for use

96  without restriction (https://searchworks.stanford.edu/view/zk881ps0522). Recordings were made for

97  anatomical mapping in patients with epilepsy at Harborview Hospital, Seattle, WA, USA. All patients

98  provided informed written consent, under experimental protocols approved by the Institutional Review

99  Board of the University of Washington (see supplementary information 1). Data were recorded at the
100  bedside using Synamps2 amplifiers (Compumedics Neuroscan). Visual stimuli were presented using a
101  monitor running BCI2000 stimulus and acquisition programs (Schalk et al. 2004) that were also
102 synchronized to behavioural feedback in the tasks (see below). Electrocorticography was recorded using
103 grids and/or strips of platinum subdural electrodes placed via craniotomy. Electrodes had a 4 mm
104  diameter (2.3 mm exposed), 1 cm interelectrode distance and embedded in silastic (figure 1B). Electrical
105  potentials were recorded at 1 KHz using a scalp/mastoid reference and ground. Hardware imposed a
106  bandpass filter from 0.15 to 200 Hz. Locations of electrodes were confirmed using post-operative

107  radiography. Exact details of the electrode localization methods can be found in Miller (2019).

108 Data were taken from three different tasks as summarised below. For details of task structure and trial
109  definitions please see figure 1A. Subject numbers represent the initial total available for each task, some

110  subjects participated in more than one task. Data selection procedures are given in section 2.2.

111 Dataset 1: Self-Paced Finger Movements (n = 9) — originally reported in Miller et al. (2012).
112 Participants were cued with a word displayed on a bedside monitor indicating which digit to perform a
113 self-paced flexion and extension during a 2 s movement trial. Trials typically comprise 2-5 movements

114 asrecorded using a data glove. Movement blocks were interleaved with 2 s rest trials.

115  Dataset 2: Basic Motor (n = 19) — originally reported in Miller et al. (2007b) and Miller et al. (2010).
116  Participants were asked to make either a simple repetitive flexion and extension of all the fingers, or a
117  protrusion and retraction of the tongue at self-paced rate (~2 Hz). Patients were cued with a picture of

118  the body part to move, presented on a screen.

119 Dataset 3: Motor Imagery (n = 7) — originally reported in Miller et al. (2010). Participants were asked
120  to imagine making a simple repetitive flexion and extension of the fingers, or protrusion/protraction of
121  the tongue at a self-paced rate (~2 Hz), matched to the task described for dataset 2. Imagery was
122 intended to be kinaesthetic rather than visual- i.e., “imagine making the motion, not what it looked like”.

123 Movement blocks lasted 2 or 3 s and were always followed by rest intervals of the same length.
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124 2.2 Pre-processing and Criteria for Data Selection

125  All ECoG recordings were processed as summarised in figure 1C. Large scale artefacts common across
126  sensors were reduced by referencing electrodes to the common average. Channels with significant
127  artefacts or epileptiform activity were visually rejected and excluded from the common average.
128  Finally, data were filtered between 4-98 Hz using a zero-phase (i.e., forward-backward) FIR filter with
129  -60 dB stopband attenuation. A 4 Hz passband was chosen to remove the influence of lower frequency
130  rhythms in the SNR calculations for the beta peak. Data from each task were segmented to 1 second
131 epochs. For each set of recordings, we selected one ECoG channel to carry forward for analysis. Data
132 were selected to identify signals which were relevant to motor cortical activity (i.e., spatially close to
133 primary motor cortex), of sufficient quality (i.e., good signal-to-noise of beta frequency activity), and
134 functionally relevant (i.e., showing task related changes in synchrony). An illustration of the selection
135  process can be seen in figure 1D. Channels were selected based on the following criteria: (1) select
136  channels within 30mm of left or right primary motor cortex (MNI: [+37 -25 62]; Jha et al. (2015)); (2)
137  threshold channels at +5 dB SNR for the beta band (14-30 Hz); (3) select channel based on maximum
138  SNR change between rest and movement/imagery. If no channels were found that matched these criteria
139  the subject was removed from further analysis. The number of subjects whose data was carried forward
140  for further analysis was: 5/9 subjects from dataset 1; 10/19 subjects from dataset 2; and 4/7 from dataset
141 3.

142 Details of epoching are illustrated in figure 1A. For dataset (1), kinematic data was available from a
143 data glove worn during the experiment, and thus data was epoched according to movement onset (finger
144  movements) determined using a threshold crossing on the smoothed movement traces. Data was
145  segmented into movement preparation (-1250 ms to -250 ms relative to movement onset) and movement
146  execution (0 ms to +1000 ms relative to movement onset) and then 1 s interstimulus intervals (IST)
147  blocks taken in between movement cues. ISI blocks were always at least 1 s away from a movement
148  cue or movement termination. Note that we left a 250 ms gap prior to movement onset, as we wanted
149  to avoid non-stationarities while beta exhibited movement related desynchronization. For datasets 2 and
150 3, movement kinematics were not available, and movement or imagination was cued by on-screen
151 instructions. We therefore estimated movement onset using reaction times from dataset 1. If a subject
152 also participated in dataset 1, we used their median subject-specific reaction time. For all other subjects,
153  we used the group median. We took blocks of movement execution and movement imagery starting cue

154 onset + reaction time (lasting for 1 s). Movement preparation was defined as before.

155 2.3 Data Features: Spectra and Distributions of Burst Amplitude/Duration

156  Time series data were summarised using features derived from both spectra and bursts. We computed
157  power spectral densities using Welch’s periodogram method with no overlap and a 1 s Hanning window.

158  Spectra were summarised using their peak frequency, wide-band SNR, and narrow-band SNR within
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159  the beta band (14-30 Hz) (see supplementary methods I). Spectra used for model fitting were pre-
160  processed to remove the 1/f aperiodic background so as to isolate peaks at beta frequency only (see

161  figure 3A and supplementary methods II).

162 Bursts were defined using a threshold on the bandlimited envelope (Cagnan et al. 2019; Tinkhauser et
163 al. 2017b). Note that thresholds were epoch specific (local) to avoid the bias towards burst effects
164  reflecting simple differences in signal to noise that can occur with a common threshold (Schmidt et al.
165  2020). For an illustration of burst definitions and the formation of summary statistics of burst properties,

166  see figure 1E. Details of the procedure are given in supplementary methods III.

167 Overall, spectral features comprised: (1) wide-band SNR, (2) narrow-band SNR, (3) peak frequency.
168  Burst features comprised: (5 and 6) mean and standard deviation of burst duration; (7 and 8) mean and
169 standard deviation of burst amplitude; (9 and 10) mean and standard deviation of the inter-burst
170  intervals. Statistical tests were computed on log transformed data. For all features except peak
171  frequency, a one-way ANOVA and post-hoc t-tests were used to test for changes in means of features
172 between motor states. The distribution of peak frequencies was not found to be normal, therefore, a

173 Kruskal-Wallis test plus post-hoc rank-sum tests were used to determine changes in mean.

174 2.4 Assessing Feature Nonlinearity: Comparison with Linear Surrogate Data

175  To assess the extent to which statistics of burst features in cortical signals encode information beyond
176  that contained in the power spectrum—a data feature sufficient for linear systems—we used a
177  comparison to surrogate data (Theiler et al. 1992). Following previous work characterising the degree
178  of nonlinearity in beta bursts (Duchet et al. 2021), we adopt the use of Iterative Amplitude-Adjusted
179  Fourier Transforms (IAAFT; Schreiber and Schmitz 1996). IAAFT surrogates method improves upon
180  the simpler technique of constructing randomized-phase Fourier surrogates, by not only ensuring the
181  power spectrum is preserved, but also that the signal’s probability density is preserved. This ensures
182  that the surrogate reproduces the linear features of the data whilst destroying potential nonlinearities in
183  the original time series. To compare data with IAFFT surrogates, we constructed 25 surrogate time
184  series for each data set, and then took the feature average, computed in the same way as for the reference
185  (i.e., the empirical or simulated) signals. We then computed the goodness-of-fit in terms of the R%, with
186  R?<< I indicating significant deviation of a data feature from that expected in the equivalent linear

187  process.

188 2.5 Classification of Functional States with a Support Vector Machine

189  To determine the ability of different data features to decode the functional state from neural activity we
190  employed a classification approach. Prior to classification, we applied Linear Discriminant Analysis
191  (LDA) to the data to reduce the dimensionality of the feature space to two LDA components. We then

192 used a multiclass support vector machine (SVM) using error-correcting output codes (ECOC) to
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Figure 1 —Illustrated criteria for selection of ECoG channels and computed data features: spectra, and distributions

of burst amplitudes and durations. (A) Data was taken from three motor tasks, requiring either self-paced

flexion/extension of individual digits (task 1); or flexion/extension of whole hand (task 2); or imagery of whole hand

movement (task 3). Data was epoched according to timings relative to given in figure. (B) Electrocorticography was

recorded with grids of platinum electrodes placed subdurally via craniotomy. Inset schematics give scale: electrodes had a

2.3 mm diameter with 10 mm spacing. (C) Procedures for preprocessing data. (D) Illustration of channel selection

procedure. Candidate ECoG channels (blue open circles) were selected (filled blue circles) using a 30 mm search radius of

the ROI (MNI coordinate: [£37 -25 62]; red circle). All channels were thresholded at a 5 dB SNR threshold for the beak

peak (see methods), finally channels were selected using the maximum movement related beta desynchronization. (E)

Illustration of envelope threshold procedure to identify bursts. Samples of burst amplitudes and durations were used to

construct histograms. The summaries of these distributions were then taken as the kernel estimate to the probability density

function. Image of electrocorticogram in panel (B) is reprinted by permission from Springer Nature, Nature Human

Behaviour (Miller 2019).

28/07/2022


https://doi.org/10.1101/2022.06.22.497199
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.22.497199; this version posted July 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

West et al. (2022): When do bursts matter in the motor cortex? Biorxiv_vl

193 combine binary classifiers into an ensemble and applied this to the LDA feature space. Learners were
194  implemented in MATLAB using iteratively optimized hyperparameters, and a Gaussian kernel set.
195  Model performance was evaluated using five-fold cross validation and the area under the curve (AUC)
196  of receiver operating characteristics (ROCs) across the folds. Plots of SVM decision bounds were
197  computed using posterior probabilities of model predictions applied in a grid search across the feature
198  space. In effect, these measures of classification accuracy constitute an empirical estimate of model
199  evidence or marginal likelihood, where the model in question maps from a functional (motor) state to

200 various data features.

201 2.6 Fitting a Model of Motor Cortex Population Activity

202  We used a neural mass model of population activity in the motor cortex microcircuit (i.e., Bhatt et al.
203 (2016)). This neural (state space) model formulation follows from the Wilson-Cowan firing rate model
204  (Vogels et al. 2005), and has been used previously to describe dynamics of beta oscillations in the
205  cortico-basal ganglia circuit (Oswal et al. 2021; Pavlides et al. 2015). This model delivers the average
206  firing rate in response to input currents generated by spike trains from connected populations.
207  Interlaminar projections were modelled using a delayed connectivity matrix reflecting the pattern of
208  connectivity outlined in figure 4A. The model is driven using 1/f* noise generated using a fractional
209  Gaussian process (Dietrich and Newsam 1993), with a a free parameter to be fit. For a full description
210  of the model equations please see the supplementary methods IV. The model comprises three pyramidal
211 cell layers (superficial SP, middle MP, and deep DP) plus one population of inhibitory interneurons
212 (II). Each cell layer receives a self-inhibitory connection reflecting local synaptic gain control. The
213 output of the model is a weighted sum (i.e., a lead field) of the layer specific firing rates with 80%

214 contribution from deep layers, and 10% from superficial and middle.

215  Priors on model parameters dictating intrinsic dynamics (e.g., time constants, firing rate properties, etc.)
216  were chosen using a combination of sources: (1) we preferentially used the Allen Brain Atlas data portal

217  (https://celltypes.brain-map.org/) and retrieved properties derived from human cortical cells; (2) when

218 parameters were not available in Allen Brain Atlas, we used the NeuroElectro database

219 (https://neuroelectro.org/) as an alternative. For both databases, multiple estimates were available per
220  parameter, and so we used the estimated mean and standard deviation to specify the respective
221  expectations and precisions on (Gaussian) prior densities. Interlaminar connectivity was parameterized
222 to match the same ratios of synaptic gains described in Bhatt et al. (2016). Prior covariances between

223 parameters were assumed to be zero.

224  Systems of stochastic-delay differential equations (see supplementary methods IV) were solved
225  numerically using a Euler-Maruyama integration scheme. For details of incorporation of finite
226  transmission delays, and integration of the resulting system of stochastic-delay differential equations,

227  see supplementary methods IV. We used an implementation of the sequential Monte-Carlo
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228  Approximate Bayesian Computation algorithm (SMC-ABC; Toni et al. 2009; West et al. 2021) to fit
229  models. We take forward the maximum a posteriori (MAP) estimate (the mode of the marginal posterior

230  distribution) of each parameter for additional simulations.

231 Model fits were assessed by the data used to fit them: type A — using the power spectra only; and type
232 B —using both spectra and burst features (features described in section 2.4 “Data Features: Spectra and
233 Distributions of Burst Amplitude/Duration’). We fit models to the group averaged data features and
234 corrected the spectra to isolate peaks using a non-overlapping sum of Cauchy functions (see
235  supplementary figure 3A and supplementary methods II). When fitting models across different motor
236 states, the interstimulus interval (ISI) state was treated as a baseline, from which all other states were
237  modulated. Thus, the ISI state was fit first using all free parameters (i.e., time constants, synaptic gains,
238  sigmoid characteristics, properties of intrinsic and observation noise). The posteriors of the ISI state
239  provided empirical priors for the remaining motor state models. These states were fit using a restricted
240  set of free parameters incorporating laminar specific time constants, synaptic gains, sigmoid
241  characteristics, and the slope/gain of 1/f* innovation noise. All models were fit to the group averaged

242 data features for each state.

243 2.7 Finding Parameters Responsible for Shaping Bursts

244 The posterior parameter estimates—under models of the motor cortex—were examined to identify
245  parameters responsible for shaping burst properties. To do this, we individually manipulated the
246  synaptic gain and gain parameters for the laminar specific inputs (a total of 18 parameters) on a
247  logarithmic scale from -3 to +3 (equivalent to approximately decreasing or increasing the strength 20
248  times) in 24 steps. Each model was simulated for 48 seconds, and the following properties were
249  estimated: the peak frequency of the spectrum, percentage change in power (from base model), mean
250  burst amplitude, mean burst duration. Parameters correlating with each feature were then identified by
251  estimating the Spearman’s rank correlation coefficient with the average of each feature (i.e., the
252 expected value of the kernel approximation to the probability density function). This constitutes a
253  sensitivity or contribution analysis: in other words, it assesses the degree to which changing synaptic

254  parameters generate discernible differences in the space of data features.

255  As features may not correlate across the whole connectivity range due to, for example, the existence of
256  bifurcations in the model, we computed correlations within a restricted range. The restricted range was
257  identified by computing the Spearman’s coefficient between the parameter and mean feature value
258  across all possible ranges, with a minimum window of 1/2 of the whole range examined (i.e., 12 steps
259  in connectivity strength). Correlations were thresholded using a Benjamini-Hochberg correction to set
260  the False Discovery Rate to 10%, and the range yielding the largest coefficient was selected. The
261  correlation between average burst duration and parameter scaling was used to choose the range, as this

262  feature was found to have the largest association with interlaminar connectivity. Correlations with the
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263  other three signal features (peak frequency, mean burst amplitude and interval) were taken within this
264  parameter range. Finally, candidate parameters were found by examining the correlation coefficients.
265  To identify parameters engendering changes in burst properties—but showing minimal effects on
266  spectra—we looked for those exhibiting clear correlations with burst features but not with spectral

267  frequency/power.

268  To link model parameters more concretely to dynamics, we constructed bifurcation diagrams from
269  deterministic variants of the models using posterior (empirical) parameter estimates. Equilibria were
270  identified from unique points in the steady state solution at which the approximate derivative was equal
271  to zero. Stability of the equilibria was assessed by computing eigenvalues of the (delayed) Jacobian at

272 each fixed point (David et al. 2006). For details, please see supplementary methods V.

273 2.8 Assessment of the Cortical Input/Output Fidelity and Relationship to

274 Expression of Beta Bursts

275  Finally, we used the model to understand how parameters responsible for modifying stochastic burst
276  activity may regulate a trade-off between beta modulation under spontaneous cortical activity versus
277  that in response to exogenous input (e.g., as arising from sensory evoked potentials). To do this we
278  delivered a train of inputs (modulations of asynchronous firing rate) to the middle pyramidal layer- the
279  main recipient of thalamocortical afferents. We then assessed how this modulated beta bursts in deep
280  cell layers — the predominant output layer of cortex (illustrated in figure 7). Inputs were given as a step
281  function with bouts of length in seconds drawn randomly from a normal distribution with mean 500 ms
282 and 150 ms standard deviation, and breaks drawn with mean 700 ms and 150 ms standard deviation.
283  Inputs were multipliers on the stochastic firing rate and were set to 1x on the breaks and 3x (to test
284  response to increase input rate) during bouts of upregulation. Fidelity of modulation was assessed by
285  computing the Spearman’s correlation between the input (square wave of firing rate modulations) and
286  output (square wave reflecting beta burst detection). We thus used this measure of input/output (I/O)
287  fidelity to assess to what extent parameters known to regulate beta bursts also comodulate cortical

288 transmission.

289 3 Results

200 3.1 Beta Burst Features in Motor Cortex are Modulated during Movement and

291 are Better Predictors of Motor State than that of Spectra Features

292  Data features summarising the spectra (e.g., peak frequency, power in band), and characteristics of

293  bursting activity (e.g., median burst duration/amplitude) were constructed from ECoG signals taken
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from the three datasets (see methods) and epoched to yield segments reflecting different motor states:

rest/interstimulus intervals (ISI; colour coded in blue throughout), movement preparation (red),
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Figure 2 — Analysis of recordings from selected ECoG sensors exhibit changes in properties of both spectral and

burst features between motor states. Analyses were split among motor states: interstimulus interval (blue), movement

preparation (red), movement execution (green), and motor imagery (orange). (A) Example 2 second time series of ECoG

recordings for different motor states. Clear bursts of beta activity are apparent in ISI, movement preparation, and imagery

states. (B) Group average of normalized power spectra, (C) probability density of burst amplitudes (given as Z scores), and

(D) probability density of burst durations (ms). Bar plots in (E-G) show data from individuals overlaid, with mean and

standard distributions indicated by error bars. Data is shown for: (E) narrow-band SNR (dB); (F) (F) median burst duration

(ms); (G) mean burst amplitude (Z score). Statistics indicate results of one-way ANOVA with bars indicating respective

significant post-hoc t-tests between pairs of states. An analysis of the predictive value of burst vs spectral features in

classifying motor states can be found in supplementary figure 2.

movement execution (green), and movement imagery (orange). Data were selected from a sensor close

to motor cortex that exhibited the largest movement related beta desynchronization (see methods for

selection criteria). Example time series from the different motor states are shown in figure 2A which

show clear bursts of 14-30 Hz beta activity in data from the different states. Spectra in figure 2B
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300 demonstrate a clear movement related beta desynchronization in the group averaged spectra that is

301  reflected in the change in 14-30 Hz narrow-band SNR from +18 dB to +11 dB from preparation to

A Empirical ECoG Data
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Figure 3 — Comparison of empirical ECoG data with linear surrogates show that burst features represent significant
signal nonlinearity that is modulated across conditions (A) The Iterative amplitude adjusted Fourier transform (IAFFT;
see methods) was used to construct spectra-matched, linear surrogates (right) for each of the ECoG recordings (left).
Spectral and burst features were computed for each signal, and the difference between the surrogate and empirical features
were compared to assess the extent to which nonlinearities were present in data from the four motor states. (B) Plots showing
the averaged difference between surrogate and empirical power spectra (computed as a percentage change). (C) Same as
(B) but for distributions of burst amplitudes. (D) Same as (B) but for burst duration distributions. (E) Bar chart indicating
the median goodness-of-fit of the surrogate to the empirical data feature with IQR shown by error bars. (F) Same as (E) but
for burst amplitude distributions. (G) Same as (E) but for burst duration distributions. Statistics indicate results of one-way

ANOVA with bars indicating respective significant post-hoc t-tests between pairs of states.
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302  execution of movement (figure 2E; post-hoc t-test (40), P = 0.007). Changes were found in the wide
303  band SNR (i.e., level of background noise indicating the overall signal quality) and corresponded to
304  worsened recording quality during movement epochs (supplementary figure 1B). Beta
305  desynchronization associated with movement is reflected also in a reduction in burst amplitudes (figure
306  2C and F; one-way ANOVA P =0.011) and a shortening of beta burst durations (figure 2D and G; one-
307 way ANOVA P = 0.004), although no significant changes were found in terms of the peak beta

308  frequency or inter-burst intervals (supplementary figure 1 C and D, respectively).

309  To compare the predictive value of either spectral or burst features, we trained an ensemble of binary
310 SVM classifiers to predict different motor states (supplementary figure 2). Decision boundaries
311  (indicating > 50% prediction success) between all four motor states were present for classification with
312 burst features, and AUCs of the receiver operating characteristics (ROCs) showed good predictive value
313  (AUC > 0.80). In contrast, classifiers using only features derived from the power spectra could only
314  separate features from movement preparation and movement execution states with AUCs > 0.5 (greater
315  than chance level) and could not classify features derived from movement preparation or imagery states.
316  These results suggest that, when using band restricted information (i.e., within 14-30 Hz), the properties

317  of bursting activity can significantly augment the prediction of motor states from brain activity.

318 3.2 Burst Features are not Predicted by Linear Models of the Data

319  To further determine whether beta burst features reflect meaningful information about the underlying
320  motor state, beyond that contained in the spectra, we compared empirical features with those computed
321  from spectrally matched IAAFT surrogates (see methods). In figure 3, we show a comparison between
322  empirical data features and the average feature derived from surrogate data (n = 25) for each of the
323 motor states. By design, the surrogates matched well to the power spectra of the data (figure 3B and E).
324  Differences between the distributions of burst amplitudes and durations computed from the data or from
325  linear surrogates (figure 3C/F and D/G, respectively) show that both features deviate significantly
326  (median R*< 0.80) from that expected under linear assumptions. Comparisons of the goodness of fits
327 (R?) to linear surrogates showed that deviations of burst duration distributions from linearity were not
328  equal for each motor state (figure 3G, one-way ANOVA P = 0.001), with movement preparation and
329  ISI states showing reduced R* values when compared to movement execution. Similarly, burst durations
330  exhibited significant changes between states (figure 3G, one-way ANOVA P = 0.002) with data from
331 the IST and movement preparation providing the greatest evidence for nonlinearity among all the motor
332 states. These data suggest that burst features represent underlying nonlinearities in the data that are not
333 captured in the power spectra alone. Further, states associated with ISI and movement preparation are
334  associated with a higher degree of nonlinearity, especially when compared to movement execution. We

335  nextuse a neural mass model to investigate the potential biophysical explanations for these differences.
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Figure 4 — Comparison between type A (spectra only) and type B (spectra + burst features) fits of the motor cortex
microcircuit demonstrates that spectral features are not sufficient to accurately constrain simulated burst
parameters. Data features were constructed by simulating data using draws from the posterior distributions over parameters
(n =256). (A) Schematic of the motor cortex microcircuit model. Each black node represents a neural mass that is coupled
with either excitatory (red) or inhibitory connections (blue). There are three pyramidal cell layers: superficial (SP), middle
(MP), and deep (DP), plus an inhibitory interneuron (II) population. Model parameters were constrained using either pre-
processed spectra (type A) or both spectra and burst features (type B) (B) Summary of the median +SEM goodness of fit
(R?) of the model to data from each state resulting from type A model fits. (C) Same as (A) but for type B model fits. (D)
Difference in the goodness-of-fit (AR?) between type A and B fits. Negative values accuracy was greater in type B that type
A fits.

336 3.3 Biophysical Models of Motor Cortex Fit Constrained to Fit Power Spectra

337 do not Predict Distributions of Burst Features

338  We used the Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) algorithm to fit
339  a biophysical (neural mass) model of the motor cortex microcircuit to key data features (i.e., power
340  spectra and distributions of burst duration/amplitude) from each of the four motor states. We fit the
341  group averaged data features and further reduced spectra to their peaks using a sum of Cauchy functions

342  (see supplementary figure 3D-F and supplementary methods II). To assess the value of the power
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343  spectra in predicting burst features, fitting procedures were split into two groups depending upon the
344  data features used: fype A - constrained exclusively using the spectra, or type B — constrained using a
345  combination of the spectra and distributions of burst amplitude and duration (figure 4A). Samples of
346  the simulated time series using posterior estimates, as well as the fitted features are shown in

347  supplementary figure 3.

348  Type A models fit well to spectra (figure 4B; all states R* > 0.95) but showed that spectra were not
349  sufficient to predict burst features accurately. Further analysis of the fitted features (supplementary
350  figure 3E and F) showed that predicted distributions of burst amplitudes were attributable to smaller
351  amplitude bursts than those observed in the experimental data, and burst durations were shorter than
352  predicted in the case of ISI and movement preparation (blue and red, respectively; R? < 0.90). However,
353 type A fits were sufficient to accurately recover the empirical distributions of burst amplitude in

354  movement execution/imagery (figure 4C; green and orange, R*> 0.90).

355  In contrast, type B fits demonstrate that the model parameters could reproduce burst features (figure
356  4C), with a median fit of ~95% for all features. Complementary to the analyses of feature nonlinearity
357  in figure 3, we show that the ISI and movement preparation (the motor states exhibiting the highest
358  degree of nonlinearity) gained the most (in terms of accurate predictions) from the explicit inclusion of
359  burst features (difference of type A and B fits shown in figure 4D). In contrast, for data from movement

360 imagery and execution there was less gain in accuracy when explicitly incorporating burst features.

361  The inadequacy of type A fits in predicting burst features (withheld from model inversion) suggests that
362  burst characteristics are the product of circuit mechanisms (and associated biophysical parameters) that
363  are either independent or at least only weakly associated with those governing the power spectral
364  amplitude and implies that features summarising temporal patterning of bursts are important for
365  informing neural models. Furthermore, burst features from periods of ISIs and preparation appear most
366  different from those predicted using type A fits out of all of the other motor states. In the next section
367  we aim to identify parameters of the fitted microcircuit models of motor cortex underlying these changes

368  in burst properties.

369 3.4 Analysis of Parameter Modulations Between Motor States and Correlations

370 with Burst Features

371  Parameters of the fitted models exhibited significant deviation from the empirical priors provided by
372  the model fit to movement preparation (i.e., the baseline state), indicate changes in cortical
373  microcircuity between motor states predicted by the model (figure SA and B). Parameter estimates
374  based on ISI, movement imagery, and movement execution data showed significant changes in drive to

375 inhibitory interneurons (II input gain), with the latter two showing an increase in inhibition. Movement
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Figure 5 — Results of the motor cortex model fits to ECoG data from motor tasks. Analysis shows posterior model
estimates, as well as modulations in parameters from the baseline condition (movement preparation.), as well as
correlation analysis of circuit parameters with the statistics of spectral and burst features resulting from posterior
simulations. (A) Parameters of the model of motor cortex microcircuit were estimated from fits to group averaged data
features from all four motor states using ABC-SMC. (B) Changes in parameters from the baseline, movement preparation
state (red- zero for all parameters indicating usage of empirical priors for the remaining states) show statistically significant
modulations (posterior Z-test P < 0.05, indicated by asterisk), particularly for features estimated from movement execution
and imagery. (C) Connections exhibiting a significant modulation are shown on the colour coded circuit diagram. (D)
Modulations in parameters were estimated by first fitting to movement preparation data as a baseline state (using a wider
set of free parameters, see methods), and then using these as empirical priors on the remaining models (using a smaller set
of free parameters, see methods). (E) Parameters of the posterior models dictating interlaminar connectivity, and laminar
specific inputs were then systematically examined for correlation with different data features. Correlations were performed
on a restricted range (see methods). Parameter significance was determined using False Discovery Rate correction (10%).
Grey bands highlight parameters that modulated both power and burst features. Parameters in light grey reflect those
predominantly acting on burst features. (F) Connections and inputs exhibiting a significant correlation with either spectral
and burst features (highlighted in grey) or exclusively burst features (blue) are shown on the colour coded circuit.

376  preparation, execution, and movement imagery were also associated with changes in self inhibition of

377  deep layers (DP — DP).

378  To identify the parameters responsible for shaping beta burst features, we systematically altered
379  interlaminar connection strengths and input gains, and then applied a restricted-window correlation
380  analysis (see methods) to detect co-modulation of the parameter with the predicted spectral frequency,
381  beta power, mean burst duration, or mean burst amplitude (figure 5D). The results in figure SE show
382  that common parameters affect these data features in models fitted across the motor states. Parameters
383  modulating both burst and spectral features (highlighted in grey in figure SE) included: MP self-

384  inhibition; II — SP; SP input gain. With respect to beta burst features, three parameters were found to
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Figure 6 — Detailed model analysis of bifurcation diagrams associated deep pyramidal layer (DP) self-inhibition
strength and corresponding correlations with signal features in terms of burst duration and nonlinearity. The level
of deep layer self-inhibition was taken forward as a control parameter following from the correlation analysis presented in
figure 6F. Simulations were performed on a range of parameter values spanning -3 to +3 (log scaling from posterior). (A)
1.5 seconds of sample data simulated from each model of a motor state at either low (-2 scaling), fitted (0 scaling), or high
(+2 scaling). (B) Bifurcation diagrams estimated from the deterministic variant of the model (see methods). Dashed lines
indicate correspondence between stochastic model dynamics and level of control parameter. All states show fixed point
dynamics. (C) The median burst duration is plot against the strength of DP cell input. All states excluding movement
execution indicate existence of negative correlation between control parameter and burst duration. For bifurcation analysis
and analysis of DP self-inhibition effects on signal nonlinearity (using IAAFT?2 surrogates) please see supplementary figure
5.
predominantly modulate burst amplitude and durations (highlighted in light blue in figure SE).
Interestingly, all three parameters correspond to self-inhibitory connections for SP, DP and II. To
investigate how these parameters shape beta dynamics, we chose an example parameter—DP self-
inhibition gain—that we took forward for further analysis. This was because: (A) it shows strong

modulation between motor states (figure 5B); and (B) it negatively correlates with both burst amplitude

and duration but exhibits only limited effects on spectral peak frequency or power (figure 5E).
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391 3.5 Analysis of the Fitted Models Demonstrates that Bursting Intermittencies

392 are Shaped by Dynamical Stability of the Motor Cortex

393  We used DP self-inhibitory gain as a control parameter to investigate its effects on temporal dynamics
394  in the simulated model (figure 6A) and to construct bifurcation diagrams (figure 6B). To understand
395  how this control parameter may change the system’s response to small perturbations (such as that

396  provided by small amplitude noise), we performed a stability analysis of the estimated equilibria.

397  All models—across the motor states—exhibited stable fixed-point dynamics for at least some of the
398  range investigated. Sustained oscillatory activity is observed in models fit to the data recorded during
399  ISI, movement preparation and movement imagery states. This oscillatory activity was present for DP
400  self-inhibition in the range -2.5 to +2.5 (log-scaling factor; shown in traces figure 6A, in blue, red, and
401  yellow). Analysis of the deterministic system showed that this change correlated with a reduction in
402  amplitude of the system’s equilibria (figure 6B) and a change in the stability of the equilibria (analysis
403  shown in supplementary figure 4B). Corresponding intermittencies in beta rhythms were graded, with
404  burst durations shortening continuously as DP self-inhibition was increased (figure 6C; blue, red, and
405  yellow). In the model fit to data recorded during movement execution (in green), there was no periodic
406  behaviour in the simulated traces generated by the model (figure 6A, green) and DP self-inhibition
407  showed no modulation in the equilibria or eigenvalues of the system (figure 6B and supplementary
408  figure 4). There was also no modulation in burst duration with this parameter. We also analysed changes
409  in feature nonlinearity (using comparison to IAAFT?2 surrogate method introduced in section 3.2) but
410  found that the high variance of the estimator impaired any detection of modulation by the control
411  parameter (supplementary figure 4A). These analyses demonstrates that the duration of temporal
412  intermittencies of beta rhythms in the model, can be explained by the effects of biophysical parameters
413 on the system, in this instance, DP self-inhibition reduces the magnitude of the oscillatory response to

414  perturbation, such as that occurring due to noise in the stochastic model.

415 3.6 Statistics of Beta Burst Expression Cannot Reliably Inform the Receptivity

416 of the Cortex to Exogenous Inputs

417  Finally, we investigated the hypothesis that cortical beta burst properties reflect a trade-off between
418  integration of spontaneous endogenous activity, versus that arising due to structured exogenous inputs
419  (Karvat et al. 2021) (i.e., from sensory or higher order thalamus). In figure 7A and B we illustrate an
420  in-silico experiment conducted on the models fit to different motor states in which we delivered
421  patterned modulations of asynchronous (i.e., noisy) inputs to the middle layer of cortex (the main
422 recipient of thalamic projections). We considered beta burst detections in deep layer (the main
423  projection layer of cortex) as the cortical output. We then measured the correlation between the input

424 and output as an estimate of transmission fidelity. This analysis was repeated separately for all three
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Figure 7 — Parameters responsible for modulating burst properties do not uniformly alter the fidelity of synchronous
cortical responses to exogenous inputs. (A) To probe the fidelity of cortical beta responses to changes in exogenous input,
fitted models were used in an in-silico experiment. Asynchronous (stochastic) inputs to the middle layer were modulated
with a square wave of random intervals. Beta burst detections in signals simulated in deep cell layers were taken as the
outputs. The total “fidelity” of input/output (I/O) transmission was estimated using the rank correlation/mutual information
between these two square waves. (B) Example waveforms of the spontaneous (unperturbed; grey) activity, overlaid with
perturbed (in red) activity matching the perturbation (i.e., modulation in noise to middle layer) seen below (black square
wave). The output of the system matches the beta burst detections (red square wave) (C) Self inhibition in superficial (SP),
deep (DP), and inhibitory interneurons (II) layers negatively correlates with burst duration (given on right axes; dots; see
figure 5 and 6). However, modulations in I/O fidelity (shaded lines) do not align with burst duration: SP self. decreases I/O

fidelity, DP self. exhibits no correlation with I/O fidelity, and II self. increases fidelity.
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425  self-inhibition strengths known to negatively correlate with beta burst amplitude and duration (shown

426 in figure 5): SP self., DP self., and II self.

427  The results in figure 7C show that whilst strengthening all three of these parameters decreased mean
428  burst duration (right axes; shown by dots), the relationship with I/O fidelity was not consistent between
429 different self-inhibitions. For instance, in the models fit to ISI data, SP self-inhibition associated
430  shortening of bursts correlated with a decrease in I/O fidelity. The opposite was true for modulations of
431  II self-inhibition gain. These data suggest that burst statistics are not sufficient to infer the integration
432 of endogenous and exogenous information in the cortex as shortening of bursts can be associated with
433 both increased and decreased translation between exogenous inputs and modulation of beta frequency

434 transients.

435 Discussion

436 3.7 Summary of Findings

437  Temporal dynamics of rhythmic activity in the brain contain significant information regarding cortical
438  information processing. Here, we have shown that motor states can be decoded from
439  electrocorticography using features computed from narrow-band beta activity (figure 2). Our results
440  show that these features aid classification (supplementary figure 2) and arise from signal nonlinearities
441  that are not detectable in the power spectrum (figure 3). Further, evidence for nonlinearity was found
442 to be greatest in data recorded during rest and movement preparation, indicating that the increase in
443 information, beyond that available in the spectrum, and contained in the distributions of burst
444 amplitude/duration, is highest in these states. Using a neural mass model, we then delved into the
445  potential mechanisms and their functional significance. As expected, we found that neural mass models
446  fitexclusively to spectra were not sufficient to accurately recapitulate the features of cortical beta bursts
447  (figure 4). Analysis of the fitted model parameters between motor states found that burst properties
448  could be modulated by specific interlaminar couplings, and independently of spectral amplitude or
449  frequency (figure 5). These parameters were predominantly self-inhibitory connections to deep,
450  superficial, and inhibitory interneuron populations. Using deep self-inhibition as an exemplar control
451  parameter, we showed how changes to the equilibria and dynamical stability of the deterministic model,
452  could in turn shape the properties of spontaneous beta bursts when noise was added (figure 6). Finally,
453  using simulations of the fitted models, we showed that changes in burst duration and amplitude cannot
454  reliably infer receptivity of the cortex to input, as the relationship was dependent upon the specific

455  connection responsible for altering bursting (figure 7).
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456 3.8 Intermittencies in Bursts can Discriminate Brain States Associated with

457 Movement

458  Transient fluctuations in neural oscillations can contribute to the understanding of the organization of
459  brain activity (Bonaiuto et al. 2021; van Ede et al. 2018; Feingold et al. 2015; Lundqvist et al. 2016;
460  Sherman et al. 2016; Shin et al. 2017). Transients in beta oscillations, the focus of this study, are found
461  in healthy sensorimotor cortex (Feingold et al. 2015; Hannah et al. 2020; Little et al. 2019; Rule et al.
462  2017; Wessel 2020), and also play a prominent role in Parkinsonian electrophysiology (Cagnan et al.
463  2019; Tinkhauser et al. 2017b). Quantification of these intermittencies is beginning to build a taxonomy
464  of bursts by identifying changes associated with different brain states and diseases (Deffains et al. 2018;
465 Enz et al. 2021; Khawaldeh et al. 2020; Shin et al. 2017; Torrecillos et al. 2018). The discrimination of
466  brain states by temporal features, as well as their transitory nature, makes them attractive targets for
467  closed-loop approaches to neuromodulation, for instance using either beta frequency (Little et al. 2016;

468 Tinkhauser et al. 2017a), or theta and gamma (Kanta et al. 2019; Knudsen and Wallis 2020) biomarkers.

469  The results reported here support this approach, by providing direct evidence that quantification of burst
470  duration and amplitude, from narrow-band information can aid classification of motor states, in a way
471  that is superior to that achieved when using spectral measures of beta power or peak frequency alone.
472 Notably, we were able to discriminate between periods of rest and movement preparation, despite
473  similar beta SNR observed across these states. These burst features are good candidates for control
474  signals in closed loop neuromodulation, as they can be readily computed from narrowband data such as
475  that available on current sensing devices such as Percept (Van Rheede et al. 2022) and they are known
476  to be modulated by deep brain stimulation (Pauls et al. 2022). Additionally, motor state discrimination
477  was enhanced compared to linear surrogates, with the degree of nonlinearity largest during rest and
478  movement preparation (figure 3). This technique has previously been deployed to show that
479  Parkinsonian beta bursts are more nonlinear when compared to a medicated control state (Duchet et al.
480  2021). This suggests the possibility that biomarkers relating to signal nonlinearity can also form the

481  basis for novel closed loop control algorithms (Jelfs et al. 2010) for neuromodulation.

482 3.9 Mechanisms and Functional Implications of Bursts in the Motor Cortex

483  If the statistics of bursts in rhythmic neural activity are discriminating features of brain states, then they
484  may provide a window into the underlying changes in the generative neural circuitry. Existing models
485  show that interactions between synchronous subthreshold inputs to proximal and distal dendrites of
486  pyramidal neurons can explain high amplitude, short duration bursts of beta recorded in sensorimotor
487  cortex (Bonaiuto et al. 2021; Sherman et al. 2016). Strong inputs to distal dendrites may then halt
488  information processing by recruitment of inhibitory interneurons in the supragranular layers (Jones et

489  al. 2009), that can lead to a reduction in pyramidal firing rates following cortical beta bursts (Karvat et
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490  al. 2021). Our model also suggests that the strength of projections from superficial to deep lamina is an
491  important determinant of total beta power, yet this parameter does not explain changes in the temporal
492 dynamics of bursts. It is likely that the high amplitude waveforms chosen in these previous studies to
493  maximize signal SNR, form only a subset of the total beta activity as there is good evidence for motor
494 cortical bursts lasting > 300ms in duration (Seedat et al. 2020). Thus, a focus on high amplitude beta
495  events may occlude alternative mechanisms by which recurrent and delayed interlaminar interactions
496  may either seed the genesis of beta bursts and/or sustain them across multiple cycles. For instance, our
497  work suggests an important role for laminar specific inhibitory interneuron activity, with deep layer

498  self-inhibitory loops acting to curtail burst durations.

499  As changes in temporal patterning of beta activity between motor states are ascribable to alterations in
500 interlaminar connectivity, it thus follows that the amplitude modulation of beta oscillations may reflect
501  changes in the response to driving inputs to the cortex. The cortex is known to exhibit context dependent
502 changes in interlaminar propagation and laminar specific inputs (Kirchgessner et al. 2020; Takeuchi et
503  al. 2011) yet limited information is known regarding the changes occurring during movement (Inagaki
504 et al. 2022), and even less about how this relates to the frequency of activity. Our simulations
505  demonstrate that input/output relationships between exogenous modulations in firing rates and beta
506  entrainment may change between brain states. However, there was no consistent finding that burst
507  properties (i.e., burst elongation) corresponded changes in integration of exogenous inputs (figure 7),
508 as the relationship changed dependent upon whether bursts were elongated by superficial or inhibitory
509  inhibition, for instance. Thus this model is unable to provide evidence in support of the idea that
510  spontaneous beta bursts in sensorimotor cortex reflect a competition with sensory evoked potentials

511 (Karvat et al. 2021).

512 In the cases that beta bursts do reflect sensory gating (Van Ede et al. 2011; Limanowski et al. 2020;
513 Spitzer and Haegens 2017), then high amplitude or elongated beta events arising from increased
514  stability of beta generators (as suggested by our analysis in figure 6) could reflect a down weighting of
515  sensory inputs in favour of maintenance of the existing motor program and enhanced robustness to
516  sensorimotor “noise” (Cocchi et al. 2017). Our simulated experiment (presented in figure 7) suggests
517  that the fidelity of cortical responses to external perturbation should change dependent upon motor
518  states. This could be validated, for instance, by providing patterned optogenetic stimulation to specific

519  layers, and then measuring the fidelity of the cortical response.

520 3.10 Model Inference and Intermittent Dynamics

521  This work also provides evidence that power spectra alone may contain insufficient information to
522 accurately constrain parameters of nonlinear and/or stochastic models. Existing dynamic causal models
523  of large scale temporal dynamics such as Parkinsonian beta bursts (Reis et al. 2019) or epileptic seizures

524  (Rosch et al. 2018) appeal to fast-slow separation of time scales (i.e., the adiabatic approximation) in
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525  which changes in dynamics (i.e., bursting to quiescence) can be approximated by a model of fast (i.e.,
526  oscillatory) dynamics, with slow variables regulating the transition between states (Jafarian et al. 2021).
527  In a similar vein, many phenomenological or statistical models describe bursts as a transition between
528  discrete dynamical states (Heideman et al. 2020; Seedat et al. 2020). Other modelling approaches, such
529 as that of Sherman et al. (2016), described above, take well constrained compartmental models that can

530  describe high amplitude beta events, albeit with a specific pattern of input.

531  In this paper we take a different approach and treat bursts as the product of stochastic “quasi-cycles”
532 that arise from noise driving a stable system such as a damped oscillator (Powanwe and Longtin 2019),
533 that exhibit amplitude envelopes that can be modelled in terms of a drift-diffusion process (Duchet et
534  al.2021). Thus we use a model incorporating the full nonlinear transfer functions, and fit parameters of
535 the resultant stochastic differential equations (West et al. 2021). Given the full breadth of information
536  summarised by both the spectra and distributions of burst features, these models can well describe
537  temporal dynamics of ECoG data in a parsimonious way without needing to appeal to modelling

538  multiple states separately.

539  The distinction between generative models in which synaptic parameters fluctuate slowly and our model
540  based upon stochastic dynamics speaks to an important distinction between explanations for itinerant
541 dynamics of which beta bursts provide a good example. Technically, the first kind of generative model
542 rests upon structural instability, where the itinerant changes in fast neuronal dynamics—and ensuing
543  transients—are generated by changes in the fixed points of a system with the parameters of the equations
544 of motion. In contrast, the second kind of generative model relies upon dynamical instability; namely,
545  unstable (or weakly stable) fixed points to produce transient dynamics. This formal distinction has
546  importance for understanding the biophysical mechanisms that generate bursts in population activity,
547  as well informing stimulation approaches that aim to modulate them. For instance, in the case that bursts
548  are the direct product of slow changes in neural circuits (i.e., invoking neural plasticity), then
549  stimulation should directly target these mechanisms, whereas in terms of dynamical instability,
550  stimulation can be patterned to with the aim of suppressing transient burst activity, or disrupting neural
551  states that preclude them. Formally, this question could be answered in terms of a Bayesian model

552 comparison between generative models incorporating either dynamic and structural instability.

553  3.11 Limitations

554 A major problem when investigating changes in temporal dynamics between brain states arises from
555  potential confounds that arise from the trivial effects of changes in signal to noise. We note that we
556  found changes in the wide-band SNR (i.e., the overall signal quality - compared to the amplifier noise
557  floor) between states (supplementary figure 1). However, the variance of the wide-band SNR between
558  subjects was very high and showed smaller effect sizes than that observed when comparing distributions

559  of burst amplitude and duration, suggesting that SNR was not the main contributing factor. Further,
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560  alterations in burst amplitude did not correlate with either wide- or narrow-band SNR. The segregation
561  in burst amplitude and duration effects between states was also sufficient to provide superior
562  classification of states to that achieved when using SNR. Further, bursts were defined using a window-
563  specific threshold, which prevents burst properties from predominantly reflecting SNR differences- a
564  problem that is encountered when using a common (i.e., across states) threshold (Schmidt et al. 2020).
565  The robustness of using a fixed threshold of 75™ percentile is well supported following reports that
566  specific threshold values do not qualitatively change outcomes of burst analyses (Lofredi et al. 2019;

567  Tinkhauser et al. 2017b).

568  To ensure good data quality, we applied stringent selection criteria (described in methods section 2.2)
569 that lead to the rejection of significant portions of the available data. Data quality vs beta desync. Get

570 both. Focus on robust effects

571  The existence of non-identifiability in models (i.e., a redundancy in parameter to output mappings) will
572 always limit the degree of confidence with which parameter estimates can be interpreted. In terms of
573  Bayesian models such as that presented here, the existence of prior densities over parameters can reduce
574  these concerns to some extent, by providing an a priori restriction on the values to which parameters
575  may take. This comes with the caveat that the mechanistic conclusions must only be interpreted in terms
576  of the model architecture (the product of a previous model comparison study in (Bhatt et al. 2016)) and
577  the specified priors (many of which are ascertainable from electrophysiological studies: see

578  supplementary table).

579  Lastly, model inversion with Approximate Bayesian computation is susceptible to issues arising due to
580  insufficiency of the summary statistics (i.e., the power spectrum, or distributions of burst
581  duration/amplitude used here). More complete descriptions may be achievable with the bispectra (i.e.,
582  the Fourier transform of the third-order cumulant) (Halliday et al. 1995). Although there are dynamic
583  causal models of cross-frequency coupling—implicit in the nonlinear mechanisms that underwrite
584  dynamical itinerancy (Chen et al. 2009; Friston et al. 2006)—they are not generative models of
585  bispectra, or indeed the statistics of bursts or transients. The results of the current study clearly call for

586  development of generative models of these kinds of data features.

587 3.12 Conclusions

588  This work provides significant evidence that the temporal properties of bursting intermittencies in brain
589  rhythms contain unique information about the underlying circuits that generate them, beyond that more
590  conventionally inferred from the power spectra of electrophysiological data. Furthermore, we have
591  shown that burst features are nonlinear and are not simple predictions of the power spectra. Using a
592 model of motor cortex microcircuitry, we show that bursts can arise from stochastic dynamics, with

593  properties that are predominantly modulated by local laminar specific inhibitory loops. We have shown
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594 that this has important consequences for understanding information processing in cortical microcircuits,
595  although simulations exhibit a non-trivial relationship between burst duration and amplitude versus the
596  responsivity of the cortex to exogenous inputs. These findings inform novel paradigms to understand
597  the role of external perturbations such as electrical brain stimulation, in manipulating cortical

598  computations when in the presence of spontaneous fluctuations in neural rhythms.
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Supplementary Figure 1 - Additional ECoG signal features compared between motor states. (A) Probability densities
of interburst intervals. (B) Bar chart to compare changes in the wide-band SNR of the selected ECoG channel. (C) Same

as (B) but for peak beta frequency. (D) Same as (B) but for the mean interburst intervals.
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Supplementary Figure 2 - Classification of movement states is superior when using beta burst features over that

performed when using spectral features only. (A) (left) Features of the ECoG power spectra (n=3) were projected onto

a two-dimensional space using linear-discriminant analysis (LDA). Classification was then performed using ensembles of

support vector machines on the first and second components of the LDA. The classification boundaries for each state are

overlaid on the scatter plots of LDA features, at P = 0.5; and P = 0.75. (right) The receiver operating characteristics of each

binary classifier are shown, with the area under the curve is inset. (B) Same as for (A) but when using burst features (n=6).
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796 6.3 Supplementary Figure 3
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Supplementary Figure 3 — Summary of model fits of motor microcircuit model to group averaged data features
across motor states. (A) Illustration of spectral preprocessing performed to isolate main peaks of spectra from 1/f
background. (B) Schematic of the motor cortex microcircuit model. Each black node represents a neural mass that is coupled
with either excitatory (red) or inhibitory connections (blue). There are three pyramidal cell layers: superficial (SP), middle
(MP), and deep (DP), plus an inhibitory interneuron (II) population. Model parameters were constrained using either pre-
processed spectra (type A) or both spectra and burst features (type B). (C) 1.5 second of example empirical data is shown
from each motor state ( top; dark shade ), alongside those simulated from the posterior type A (middle; medium shade), or
type B (bottom; light shade) fits. Data is shown from the interstimulus interval (blue), movement preparation (red),
movement execution (green), and movement imagery (orange). Data features from the posterior model fits are shown for:

(D) power spectra, (E) distributions of burst amplitudes, and (F) distributions of burst durations.
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Supplementary Figure 4 — Bifurcation diagrams of system shown in figure 6. (A) The goodness of fit between burst
duration distributions estimated from simulated data and linear surrogates indicates that the degree of nonlinearity in the
signals is anticorrelated to changes in the burst durations. (B) Birfurcation diagrams indicate changes in either the real (top
row) or imaginary (bottom row) components of the eigenvalues computed from the delay corrected Jacobian for each of

the equilibria in each of the four models (parameterised to fit data from each of the four motor states).
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800 6.5 Supplementary Methods

801  6.5.1 Supplementary Methods I ~-Wide/Narrow-band SNR Calculations
802  6.5.2 Supplementary Methods II — Spectral Reduction

803  Spectra were preprocessed prior to ABC model fitting in order to remove the aperiodic 1/f background
804  such that fits were focussed on beta band activity. Peaks in the power spectrum in the beta frequency
805  range were found using the findpeaks algorithm implemented in MATLAB. Prior to peak finding,
806  spectra were smoothed with a 5 Hz wide Gaussian kernel. Inflection points (i.e., the troughs separating
807  peaks) were then determined by finding the nearest sign change of the approximate derivative
808  (difference) from each peak. This then defined the frequency range over which a Cauchy function was
809 fit. This procedure was formed for each peak. The composite spectra were then formed from the non-

810  overlapping sum of each fitted model.

811  6.5.3 Supplementary Methods III — Definition of Bursts

812  Bursts were defined by setting a threshold on the bandlimited envelope. The filter passband was set at
813 %5 Hz of the peak frequency and implemented using a zero-phase FIR filter. Filtered data were then Z-
814  normalised. The analytic signal was constructed using the Hilbert transform to estimate instantaneous
815  amplitude. Bursts were defined as periods exceeding the 75" percentile of this envelope and the
816  minimum burst length was set to 2 periods of a 30 Hz oscillation (the upper limit of the band). Bursts
817  found at the boundaries of epochs were discarded from the analysis. Burst amplitudes were taken as the
818  maximum of the envelope within each burst, whilst burst duration reflects the amount of time that the
819  envelope exceeds the threshold. Inter-burst intervals represent the time spent sub-threshold between
820 each event. To summarise burst features, we estimated distributions of burst duration, amplitude, and
821  inter-burst intervals using binned histograms. Distributions were then estimated using a kernel density

822  estimate of the probability density function specifying a standard normal function for the kernel.

823  6.5.4 Supplementary Methods IV —Model Formulation

824  The model uses the firing rate equations (Vogels et al. 2005; Wilson and Cowan 1972) constructed with
825  the same architecture outlined in (Bhatt et al. 2016). The average firing rate of each laminar population
826  (middle MP, superficial SP, inhibitory interneuron II, deep DP) is given by the following state
827  equations:

828 i T (=Rup + SUG —ympomp Bup — GriompRi + GsponpRspl, Myp, Sup, Bup))
Mp
829 i T (_RSP + S{~GspospRsp + GupspRup — GirsspRir + GppospRpp}, Msp, Ssp, BSP))
Sp
830 9 T, (—=Ry + SU=GyyRis + GypiiRup + GppoiiRpp + GspoiiRsp}, My, Sip, Bip))
11
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831 Tt

(_RDP + S({_GDPADPRDP - GII—>DPRII + GSP%DPRSP}' MDP!SDP' BDP))

832  Where T gives the population time constant, G gives the weight of the (delayed) synaptic connection,

833  and S(I,M,S,B) reflects the sigmoidal transfer function for the total input / given within the curly braces:

M

=3I (M -B)
l+exp M S -

834 S(U,M,S,D) =

835  where M reflects the maximum firing rate, S the slope of the sigmoid, and D the spontaneous firing rate
836  (i.e., baseline firing rate in the absence of input). Many of the values of these parameters can be
837  ascertained from empirical estimates available from online databases (see supplementary table I). The
838  model includes finite transmission delays using delayed values of R, i.e., the delayed input from the j*

839  to the i population is given by:
840 Ij—>i = G}_)IR](t - Tj—>i))

841  where 7;_,; reflects the finite time delay. Each state receives stochastic innovations added to the
842  deterministic equations (given above). Delays were discretized and rounded to the nearest integration
843  step size. Stochastic inputs were given by rescaling the variance of the noise to match the square root
844  of the integration step A (i.e., dW; = W, — W;~N (0, h), where W; is a Wiener process, and N refers
845  to the normal distribution. The system of equations was then integrated using an Euler-Maruyama

846  scheme with fixed step size of 0.5 ms.

847  6.5.5 Supplementary Methods V— Construction of Bifurcation Diagrams

848  Stability analysis was performed on a deterministic version of the model. This was achieved by setting
849  the input constant and equal to the mean of the stochastic process. Initial conditions were found by
850  running the stochastic model for 30s simulation time (by which models are at steady state) and taking
851  the mean activity over states for the last 2s. To find equilibria, this deterministic model was simulated
852  again for 30s, and inflection points in the states were identified by finding points at which the derivative
853  was approximately zero. Unique equilibria (again determined within a set tolerance to the difference
854  between equilibria) were then plot against the control parameter to construct bifurcation diagrams. We
855  assessed the stability of the equilibria by computing eigenvalues A of the (delayed adjusted) Jacobian at
856  each fixed point (David et al. 2006). For the four state model of the motor cortex, this yields 4

857  (potentially complex-valued) eigenvalues for each value of the control parameter.

858 6.6 Supplementary Information 1 — Full ethics statements

859  The following ethics statements appear in their original, unmodified state supplied alongside the data

860  repository.
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861  Cued Finger Movements

862  “All patients participated in a purely voluntary manner, after providing informed written consent, under
863  experimental protocols approved by the Institutional Review Board of the University of Washington
864  (#12193). All patient data was anonymized according to IRB protocol, in accordance with HIPAA
865 mandate. These data originally appeared in the manuscript “Human Motor Cortical Activity Is
866  Selectively Phase- Entrained on Underlying Rhythms” published in PLoS Computational Biology in
867 2012 (Miller et al. 2012).”

868  Movement Imagery

869  “All patients participated in a purely voluntary manner, after providing informed written consent, under
870  experimental protocols approved by the Institutional Review Board of the University of Washington
871 (#12193). Portions of these data originally appeared in the manuscript “Cortical activity during motor
872  execution, motor imagery, and imagery-based online feedback™ published in PNAS in 2010 (Miller et
873  al. 2010). Portions of these patient data was anonymized according to IRB protocol, in accordance with
874  HIPAA mandate. It was made available through the library described in “A Library of Human
875  Electrocorticographic Data and Analyses” by Kai Miller (Miller 2019), freely available at
876 https://searchworks.stanford.edu/view/zk881ps0522.”

877 Basic Motor

878  “Ethics statement: All patients participated in a purely voluntary manner, after providing informed
879  written consent, under experimental protocols approved by the Institutional Review Board of the
880  University of Washington (#12193). All patient data was anonymized according to IRB protocol, in
881  accordance with HIPAA mandate. It was made available through the library described in “A Library of
882  Human Electrocorticographic Data and Analyses” by Kai Miller (Miller 2019), freely available at
883  https://searchworks.stanford.edu/view/zk881ps0522. All patient data was anonymized according to
884  IRB protocol, in accordance with HIPAA mandate. These data originally appeared in the manuscript
885  “Spectral Changes in Cortical Surface Potentials during Motor Movement” published in Journal of

886  Neuroscience in 2007 (Miller et al. 2007).”

887 6.7 Supplementary Table I — Prior Model Parameters

888  Where possible we derived prior estimates from empirical sources available from either the Allen Brain
889 Atlas, or Neuroelectro.org. Estimates derived from human cells were preferred, but when not available,
890  estimates in animals were also used. Estimates of prior precision (i.e., inverse variance) were obtained

891 by looking at the variance in independently reported measurements.

Parameter mean variance units reference(s)
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Synaptic weights Scaled to match Bhatt
et al. (2016)

SP — II_SP 4 0.1 mv.s
SP — MP 4 0.175 mv.s
SP — DP 18 0.1 mv.s
SP — SP 4 0.1 mv.s
II_SP — SP 7.2 0.2 mv.s
MP — MP 4 0.1 my.s
MP — SP 6 0.1 mv.s
DP — SP 6 0.1 mv.s
DP — II_DP 4 0.125 mv.s
DP — DP 4 0.1 my.s
II_DP — DP 4.5 0.5 mv.s

Transmission delays

MP — MP 0.001 0.0005 S
MP — SP 0.002 0.0005 s
II - MP 0.002 0.0005 S
-1 0.001 0.0005 s
MP — I 0.002 0.0005 S
DP — II 0.002 0.0005 s
SP — SP 0.001 0.0005 S
SP — MP 0.002 0.0005 s
II — DP 0.002 0.0005 S
DP — DP 0.001 0.0005 s
SP — DP 0.003 0.0005 S
II— Sp 0.002 0.0005 s
SP — II 0.002 0.0005 S
DP — SP 0.003 0.0005 s

Time constants

Tmp 0.025 0.020 S Allen Cell Atlas:
L4 Spiny Human

Tsp 0.020 0.012 S Allen Cell Atlas:
L2 Spiny Human

Tii 0.015 0.006 S Allen Cell Atlas:
L2/3/4/5 Aspiny
Human

Tdp 0.030 0.015 S Allen Cell Atlas:
L5/6 Spiny Human

Input gain

Crp 20 sp.s!
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Csp
Cii
Cdp

Maximum firing rates

Mnmp
Mnsp
Mnii

Ml’ldp

Slope of the sigmoid

Snmp

Snsp

Sniji

Sl’lsp

Basal firing rates

Bl’lmp
anp
Bhnii

Bnap

Observation noise gain

Cobs

Leadfield
Lobs

28/07/2022

made available under aCC-BY-NC 4.0 International license.

20

0

20

67 11
64 55
131 106
44 17
0.1 0.1
0.2 0.2
0.4 0.2
0.1 0.15
15 5

5 5
20 20
10 5
0.2

[0.1 0.3 0.10.5]

Biorxiv_vl

sp.s!

sp.s™!

sp.s!
Taken from
Neuroelectro.org

sp.s’!

sp.s’!

sp.s!

sp.s!

sp.sL.pAl Allen Cell Atlas:
L4 Spiny Human

sp.s.pA’! Allen Cell Atlas:
L2/3 Spiny Human

sp.sL.pA’l Allen Cell Atlas:
L2/3/4/5 Aspiny
Human

sp.s1.pA’l Allen Cell Atlas:
L5/6 Spiny Human
Taken from
Neuroelectro.org

sp.s’!

sp.s!

sp.s!

sp.s’!
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