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Abstract (250 words)

Past studies have linked differences in white matter tissue properties to reading skills. However,
these studies have reported a range of, sometimes conflicting, results. Some studies suggest that
white matter properties act as individual-level traits predictive of reading skill, whereas others
suggest that reading skill and white matter develop as a function of an individual’s educational
context. In the present study, we tested two hypotheses: a) that diffusion properties of the white
matter reflect stable brain characteristics that relate to reading skills over development or b) that
white matter plays a part in a dynamic system, linked with learning over time. To answer these
questions, we examined the relationship between white matter and reading in a series of
large-scale, single-observation datasets and a four-year longitudinal dataset. We find that gains
in reading skill correspond to longitudinal changes in the white matter. However, in the
single-observation datasets, we find no evidence for the hypothesis that individual differences
in white matter predict reading skill. These findings highlight the link between dynamic

processes in the white matter and learning.

Significance statement (120 words)

Both cross-sectional and longitudinal studies have identified a relationship between white
matter properties and reading skill. However, these effects are inconsistent across studies and
lead to sometimes conflicting conclusions about the relationship between white matter and
reading skills. In a longitudinal dataset, we found that gains in reading skill correspond to
changes in white matter properties of the left arcuate over time. However, we did not identify a
stable link between white matter and reading skill across three large-scale, cross-sectional
datasets. These findings suggest that the relationship between reading skill and white matter

should be considered longitudinally. These findings further suggest that within-subject
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approaches are critical for understanding the dynamic interplay between white matter

development and reading skills.

Introduction

White matter - the tissue that contains the long-range axonal connections among
different brain regions - was historically viewed as static infrastructure critical for healthy
cognitive function(1, 2). However, the field went through a sea change as it became clear that
oligodendrocytes, the glial cells that are responsible for myelination in the white matter, actively
monitor neural activity(3, 4). Through signaling mechanisms that sense neuronal discharges,
oligodendrocytes actively change properties of the white matter in response to fluctuations in
neural activity(5, 6). Indeed, it is now largely appreciated that the white matter not only plays
an essential role in behavior, but also that plasticity in the white matter is a critical component
of the learning process(4).

Given that white matter is sculpted by experience, and that properties of the white
matter can undergo dramatic changes over timescales ranging from hours(7, 8), to days(9), to
years(10, 11), we now must grapple with how to interpret individual differences in white matter
structure. It is often assumed that white matter differences are static traits that explain
differences in behavior and can serve as useful biomarkers of, for example, learning
disabilities(12-15). This perspective is supported by dozens of studies that have: a) observed
correlations between white matter diffusion properties and behavioral measures of academic
skills or b) found group differences in white matter diffusion properties between individuals
with or without learning disabilities(16-18).

Reading serves as a paradigmatic example of the relationship between white matter and
academic abilities. Seminal research by Klingberg and colleagues(19) discovered differences in
white matter diffusion properties between dyslexic and control subjects, inspiring dozens of
labs around the world to try to characterize the white matter phenotype of dyslexia (and
reading abilities more broadly)(18, 20-24). Although many of these studies have identified
white matter differences between strong and struggling readers, some studies have reported a
variety of, and sometimes even conflicting, results (see Supplementary Table 1 for an overview
of past findings). These incongruencies also appear in various meta-analyses, with some
identifying a link between reading ability and the white matter(17) and others finding no
brain-behavior relationship in the domain of reading(25). Regardless of the direction of these
effects, many of these studies have interpreted the observed group differences in the white
matter properties of dyslexic and control participants as a static brain-behavior relationship that
can be used to classify an individual based on intrinsic properties of their brain.

In contrast to studies exploring biomarkers that emphasize static brain-behavior
relationships, longitudinal studies have highlighted the dynamic relationship between white
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matter plasticity and learning(9, 26-28). These studies offer compelling evidence that rates of
white matter development differ dramatically among individuals and are influenced by an
individual’s learning experiences. For example, Yeatman and colleagues (2012) showed that
over a three year period subjects with above-average reading skills showed increases in
fractional anisotropy (FA), a quantity measured with diffusion MRI, in specific white matter
pathways. Struggling readers, on the other hand, showed declines in FA in those same white
matter pathways (27). Similarly, Wang and colleagues (2017) showed divergent developmental
trajectories for the core reading circuitry at the very beginning of reading instruction(28).
Furthermore, intervention studies have identified dramatic changes in the diffusion properties
following intensive reading interventions(29, 30). Even over the course of a couple weeks of
intensive intervention, white matter tissue properties can change with large effect sizes, calling
into question the stability of cross-sectional group comparisons(30). These studies challenge the
assumption that white matter differences observed in poor readers are rooted in static brain
traits, and instead suggest that the white matter is a dynamic, experience-dependent system that
is linked with learning over development.

Until recently, the vast majority of published brain-behavior relationships have relied on
small (n<50), relatively homogenous participant samples, recruited from the community of a
single university(17). As highlighted by recent work(31), results from small and homogenous
samples often do not generalize to a broader population. Resolving this issue has only recently
become possible as the neuroimaging community has come together to produce large, publicly
available, multi-site datasets that sample a much broader swath of the population than
traditional, single-laboratory studies(32-35).

For example, a recent cross-sectional analysis of the Healthy Brain Network (HBN)
dataset(32), representing the largest study of white matter and reading to date, did not reveal
any significant differences in FA between struggling and typical readers nor a significant
relationship between FA and reading scores(36). These findings not only raise questions about
the observed relationships between reading and the white matter in smaller, cross-sectional
studies, but also about the impact of sample makeup on these brain-behavior correlations, as the
HBN dataset is a much more diverse sample than those found in traditional single-lab studies.

In the present study, we seek to adjudicate between two perspectives surrounding the
relationship between white matter and academic skills: a) that individual differences in white
matter diffusion properties reflect stable brain traits that relate to academic skills or b) that
white matter and learning are dynamically linked over time and change in response to an
individual’s educational environment. To do so, we capitalize on a large-scale longitudinal
dataset to explore the longitudinal relationship between changes in white matter properties and
reading development. These data do not reveal any cross-sectional relationships between
reading skill and white matter properties but, rather, show that gains in reading skill and
changes in the white matter are linked longitudinally. This finding supports the idea that white
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matter and learning are part of a dynamic system that changes as a function of educational
experience.

We then leverage four additional large-scale public datasets, totaling more than 12,000
children and adults, to examine the cross-sectional correlations between white matter and
reading ability. In this sample, which is more than two orders of magnitude larger than most
previous studies, we find no support for the notion that white matter features serve as static
traits that predict differences in reading ability. Our analysis suggests that previous studies
were detecting characteristics of small, demographically homogeneous samples. Together these
findings suggest that a child's environment exerts a dramatic influence on white matter
development and reject the notion that reading difficulties are explained by a stable white
matter phenotype.

Results
Dynamic changes in the white matter track growth in reading scores

Past longitudinal and intervention studies have suggested that there is not a stable
relationship between white matter properties and reading skills but rather that diffusion
measures of the white matter and reading skill can both change dramatically depending on an
individual’s educational environment(27, 28, 30). To test the hypothesis that the white matter is
part of a dynamic, experience-dependent system that is linked with learning over time, we used
a large, longitudinal sample to model the relationship between changes in white matter
diffusion properties and growth in reading skills. Based on past findings, we focused on the left
arcuate and the left ILF since these tracts are typically considered to be part of the core reading

circuitry (26).

Development of the left arcuate tracks reading development

We first explored the relationship between changes in white matter properties in the left
arcuate and changes in reading scores using data from the Pediatric Longitudinal Imaging,
Neurocognition, and Genetics study (PLING(35)). In this dataset, diffusion properties of the
white matter were calculated using AtlasTrack(37), which provides mean FA and MD (mean
diffusivity) for 37 white matter bundles. To explore the relationship between reading and white
matter in the PLING sample, we fit a longitudinal linear mixed-effects model to predict
mean-centered TOWRE reading scores using time point, initial age, and mean-centered FA in
the left arcuate, and mean FA in the left arcuate as fixed-effects and subject as random effects.
The inclusion of both mean-centered FA at each time point and overall mean FA allowed us to
separate year to year change within an individual from mean FA differences between subjects.

This model revealed significant effects of time point (t(229) =13.98, p <0.001), and
mean-centered FA in the left arcuate (£(299)=2.36, p = 0.019). The effect of mean-centered FA
suggests that, within an individual, changes in the diffusion properties of the left arcuate are
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linked with changes in reading scores across time, even after controlling for age-related
increases in FA and overall FA level (Figure 1A). Interestingly, we find no stable relationship
between reading skill and white matter properties when we examine the correlation between
TOWRE scores and FA in the left arcuate at each time point separately (Supplemental Figure 1).
Taken together, these results suggest that within individual changes in diffusion properties of
the left arcuate fasciculus track gains in learning over time and call into question the notion of

stable individual differences in white matter structure.
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Figure 1: A: Rendering of the seven tracts of interest identified with AtlasTrack B. Upper Panel: Mean-centered FA values at

each time point for the left arcuate correlate with mean centered reading scores assessed at each time point, illustrating the
longitudinal relationship between changes in FA and changes in reading skill. Lower Panel: Relationship between individual rates
of FA development in the left arcuate and rate of raw TOWRE reading score change. C: Relationship between individual rates of FA
development in the right Arcuate, left and right ILF, left and right SLF, and callosum and rate of raw TOWRE reading score change
in the longitudinal PLING dataset.

To estimate growth rates for FA, we fit a linear regression model within each individual,
predicting each subject’s FA value as a function of age in years (similar to Yeatman et al.(27) ).
The coefficients of this linear model serve as an estimate of the rate of change in FA over time
within a given white matter bundle. We applied a similar approach to generate individual
estimates of reading score change over time.

We first examined the correlation between the rate of FA development and the rate of
raw reading score improvement and found a significant relationship between the two (r = 0.27,
adjusted p = 0.02, Figure 1B). Thus, children with more rapid growth in reading abilities also
show more rapid white matter development. We next used the individual growth rates to
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examine the relationship between the rate of FA development and age to see if FA growth rates
in the left arcuate changed as a function of age. This correlation was not significant (r =-0.210, p
= 0.08), suggesting that the rate of FA change in the left arcuate is mostly linear over the age

range present in the sample.

Changes in reading skill predict future FA development in the left arcuate

Given the relationship between changes in FA in the left arcuate and changes in reading
skill, we then tested whether changes in one variable preceded changes in the other or if these
changes occurred in synchrony. To model the longitudinal interplay between white matter
development and reading, we constructed a multi-level vector autoregression model
(mIVAR(38, 39)). Within this model, we used the time series of FA measurements in the left
arcuate and TOWRE reading scores to assess whether reading scores at a given time point are
explained by FA at the previous time point or vice versa. This analysis revealed that FA in the
left arcuate at one time point does not predict reading scores at the next time point (t(162) =
-0.01, p =0.971), but that reading skill at one time point does, in fact, predict FA at the following
time point (t(162) = 5.44, p <0.0001).

To compare the beta-coefficients of the model path connecting past reading scores with
future FA against the path linking past FA with future reading scores, we conducted a
bootstrapped difference test(40). To do so, we generated a bootstrap distribution (n=2,000) of
mlVAR coefficients and constructed a 95% confidence interval around the difference between
the reading to FA coefficient and the FA to reading coefficient. This interval did not include 0
(Bootstrapped 95% CI: [0.804, 0.815]) suggesting that the two coefficients are significantly
different. Thus, growth in reading skills from one year to the next predicts future changes in the
white matter, whereas developmental changes in the white matter do not predict future gains in
reading skill.

The mIVAR model revealed that reading skill at one time point predicts FA in the left
arcuate at the next, however, this model does not provide insight into the relationship between
the rate of reading development and the rate of FA development in the left arcuate. To better
understand this dynamic, we constructed a parallel process latent growth curve model of the
longitudinal growth of reading skill, FA, and the relationship between the two. Figure 2
presents a path diagram illustrating the hypothesized growth trajectories of reading skill and
FA in the left arcuate. To assess the impact of change in reading score on change in FA (and vice
versa), we generated two models incorporating two different regressors (in place of covariance
structures): one predicting the slope of FA from the slope of reading and another predicting the
slope of reading from the slope of FA. Based on modeling of individual growth rates presented
above, we defined this latent growth curve using linear growth rates for both reading and FA.
The overall model fits were acceptable (x2(22) = 33.41, p=0.056, RMSEA = 0.085, TLI = 0.973).
Additionally, the regression predicting FA slope from reading slope was significant (z=1.956,
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p=0.05), whereas the regression predicting reading slope from FA slope was not (z=-1.311,
p=0.190). Taken together, the results from these models suggest that, while both FA and reading
skill develop over time, the rate of individual reading gains predicts the rate of future FA

development, while the rate of FA development does not predict the rate of reading gains.
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Figure 2: A. Path diagram illustrating the mIVAR model capturing the temporal dynamics between the development of reading
and FA in the left arcuate over time. The values represent the beta-weights associated with each path within the model. B. Path
diagram outlining the parallel process latent growth curve model capturing the interplay between longitudinal growth in reading
and FA development in the left arcuate. Rectangles represent observed reading or FA values at a given time point and ovals
represent latent slope and intercept variables. Unidirectional arrows represent regressions within the model and the adjacent
numbers signify the associated beta-coefficients. Bidirectional arrows represent covariance structures and the adjacent numbers

signify the covariance values.

Rate of FA development in the right arcuate and left ILF are not related to changes in reading
To test whether the same longitudinal relationships existed between reading and
additional white matter tracts, we first constructed the same longitudinal mixed-effects model in

the right arcuate, a bundle that has not been implicated in the literature as a core component of
the reading circuitry. This model revealed significant main effects of initial age (t(66) =7.15, p <
0.00001) and time point (t(165) = 14.92, p < 0.00001) but no effect of FA in the right arcuate
(t(159)=1.104, p = 0.2712). We also conducted the same longitudinal mixed-effect analysis using
FA in the left ILF since past findings have also identified the left ILF as part of the reading
circuitry. Again this model revealed significant main effects of initial age (t(72)=7.46, p <0.00001)
and time point (t(186)=15.16, p < 0.00001). However, we did not observe a significant main effect
of FA in the left ILF (t(198)=0.85, p=0.400). These main effects suggest that neither FA in the right
arcuate nor the left ILF significantly relate to changes in reading skills over time. There was also
no significant relationship between FA in right arcuate or ILF and reading scores when the time

points were examined separately.

No static relationships between white matter properties and reading ability
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After establishing the dynamic, longitudinal relationship between white matter
development and reading development, we then attempted to replicate past findings from the
literature which have suggested that static differences in the white matter explain individual
differences in reading skill. Using the HBN dataset(32), one of the most diverse large-scale
pediatric samples to date, we compared the white matter diffusion properties of struggling
readers (again using a typical cutoff for dyslexia) and a control group. The HBN data was
processed with QSIPrep(41), rigorous quality control was applied to each participant’s data(42),
and tractometry was performed with pyAFQ(43). Group comparisons focused on the left
arcuate, and left ILF, and posterior callosum, which have been most consistently implicated in
past studies examining the relationship between the white matter and reading skill(26). Based
on past cross-sectional findings, the expectation is that children with low reading scores will
show reduced FA values in the left arcuate and left ILF compared to the control group and
increased FA in the posterior callosum. Additionally, we analyzed 15 control tracts to examine
anatomical specificity in the large and diverse HBN sample.

An initial group comparison using minimal quality control and not controlling for age or
SES revealed reduced FA in areas of the left cingulum cingulate, right cerebral spinal tract, and
the callosal motor fibers in struggling readers (corrected p < 0.05, Supplemental Figure 2), but
not in left arcuate, left ILF, or left SLF (all corrected p>0.05). However, after filtering for quality
control (See Methods), performing ComBat harmonization on the tract profile data to remove
the effects of the scan site, and controlling for various confounds, a group comparison at each
node failed to reveal any significant differences in FA (Figure 3, all adjusted p >0.05). Figure 3
shows the effect of reading group controlling for age, SES and geographic location at each node:
there were no nodes with significant group differences.

To validate the surprising lack of group differences observed in the HBN dataset, we
also explored the relationship between white matter and reading in the PING dataset(32-34). As
with the PLING data, tractometry was performed on the PING data using AtlasTrack (as
opposed to pyAFQ; see Methods for overview). Therefore, we used mean FA and MD for 37
white matter bundles in this analysis. In these data, we first looked to see if we could detect
differences in the mean FA across the major white matter bundles identified by AtlasTrack.
After controlling for age and parental income, we again did not find any significant differences
in mean FA between the struggling readers and control groups (Figure 3, all p > 0.05).

After observing no group differences in the HBN and PING datasets, we turned to the
ABCD dataset(32-34), the largest ongoing developmental neuroimaging study. Similar to the
PING dataset, tractometry was performed using AtlasTrack. We constructed a series of
regression models to explore the extent to which reading skills predict FA in the core reading
circuitry. After controlling for demographic factors, such as parental income, neighborhood

deprivation, and school achievement, the addition of reading group to the model had a
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negligible effect on the amount of variance explained between the two models (all AR?<0.003,
all all Cohen’s f* < 0.003, Figure 3).
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Figure 3: A: Rendering of the seven tracts of interest identified with pyAFQ overlaid on the T1-weighted image of the
corresponding hemisphere. B: FA profiles for the core reading circuitry in the HBN data derived by the default pyAFQ pipeline for

reading groups after controlling for age and harmonizing on scanner site. The shaded area around each line represents one standard
error. C: Rain cloud plots showing the distributions of mean FA values for the core reading circuitry by reading group in the PING
data set. There are no significant differences in the diffusion properties between reading score groups across the two datasets. D:
Rain cloud plots showing the distributions of mean FA values for the core reading circuitry by reading group in the ABCD data set.
There is a negligible effect of reading group on FA values across all seven bundles.

Diffusion properties fail to predict reading scores above demographics in three large-scale
datasets

After failing to observe any significant differences between individuals with low and
high reading scores, we explored the idea that white matter differences are not consistently
localized to a single tract but, rather, part of a distributed network that might have a nonlinear
relationship to reading ability. To test this hypothesis, we fit a series of gradient-boosted
random forest models (XGBoost(44)) to determine how well diffusion properties from the entire
white matter, not just the reading circuitry, serve to predict reading scores. For this particular
analysis, we prioritized predictive accuracy (as opposed to interpretability)(45). We chose the
XGBoost algorithm because of its exceptional performance across a wide range of machine
learning applications(46—48) and its ability to capture complex, non-linear relationships that
would be missed by a linear regression model.

Our first model contained only age, SES, and geographic location as predictor variables;
the second model only contained diffusion properties (FA, MD, AWF, MK) from all 18 bundles
delineated in the dataset; the third model contained both demographic variables and white
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matter properties as predictors. Each predictor was first demeaned and then scaled to unit
variance before being entered into the XGBoost models.

Cross-validated model R* (Figure 4) showed that the demographics-only and
white-matter-only models explain roughly the same amount of variance in reading scores. The
combination of white matter features and demographic information as predictors did not
improve model fit above the models with only demographic information or only white matter
features. Thus, as expected, differences in demographics (e.g., SES) did explain some variance in
reading scores(49-51). However, white matter diffusion properties did not explain additional
variance in reading ability above and beyond demographics.

To further examine the surprising finding that individual differences in the white matter
do not, in fact, predict reading abilities, we reprocessed the data from scratch using a different
approach to tractography. Specifically, we re-calculated tractometry properties using
tractography data generated by QSIPrep(52) using anatomically constrained tractography(53)
(ACT; see Methods) to see if the lack of reading ability prediction stemmed from our choice of
tractography parameters during the initial processing pipeline. These new tractometry
properties again revealed group differences in the tract profiles before quality control, but these
differences disappeared when we applied more rigorous quality control and harmonized the
data across scanner sites (Supplemental Figure 3). We then conducted the same XGBoost
modeling approach with these data and again found that white matter properties did not
predict reading scores above and beyond demographic information (Supplemental Figure 4).

Finally, we then used the PING data and the ABCD to train a series of XGBoost models
to predict reading scores from either demographic factors, diffusion properties of the white
matter, or both demographic factors and white matter. The models trained on the PING data
showed that demographic features, namely socioeconomic status, predicted reading scores
(cross-validated R’= 0.040) and that the addition white matter features to the model did not
increase predictive power (cross-validated R*=0.045 , t(9)=0.383, p = 0.36, Figure 4C). The
models trained on the ABCD data also revealed that demographic features explained roughly
8% of the variance in reading scores (cross-validated R*= 0.080), and white matter features did

not improve predictive power of the model (cross-validated R?<0.073).
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Figure 4: A. Predicted vs observed reading scores of the test data generated by the XGBoost model trained on white matter

features from the HBN data (R=0.059). B. Predicted vs. observed age from XGBoost model trained on white matter features from
HBN data (R*=0.64). C. Train and test R’ scores for XGBoost models predicting reading (red) and age (green) in the HBN (left panel)
and PING (center panel) and ABCD (right panel) datasets.

Maturational differences in white matter properties predict age

To ensure that the lack of replication of the cross-sectional effects did not reflect poor
data quality or modeling errors, we sought to benchmark our models against a finding with a
well-established effect size. The largest and most consistent effect in the diffusion MRI literature
is that FA increases and MD decreases with age(10, 11, 54)*°. Based on this, we would expect to
be able to explain a significant portion of the variance in age in the present sample using
diffusion data. To evaluate the signal quality of the diffusion data, we fit models to predict each
subject’s age using the same XGBoost models. As expected, the demographics-only model failed
to predict age above chance confirming that there was not a sampling bias. The white matter
model, on the other hand, predicted 64% of the variance in age in the HBN dataset and 70% of
the variance in age in the PING dataset (Figure 4C). These predictions are consistent with the
state-of-the-art in “brain age” calculations (56) confirming, first, that the diffusion MRI data was
sufficiently high quality to accurately index white matter maturation and, second, that our
modeling approach was able to accurately capture these effects.

In contrast to the HBN and PING datasets, white matter properties only predicted about
7% of the variance in age in the ABCD dataset. However, all the participants in the ABCD
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sample are within two years of age of each other and, therefore, there is not much maturational

variation in the white matter properties for the model to learn.

Reading score - white matter relationships are sample-dependent

The present analysis leveraged the largest diffusion MRI sample to date to explore the
relationship between white matter and reading abilities. Contrary to the compendium of small,
single-observation studies, this large sample did not reveal any stable predictors of reading
ability in the white matter. One potential explanation for this discrepancy is that previous
studies were picking up on real effects that reflected specific characteristics of the small,
homogenous samples that do not generalize to the population at large. The HBN dataset is an
extremely neurodiverse sample of children from a variety of demographic backgrounds, with
87% of participants having at least one diagnosis and 53% of participants having more than one
diagnosis.

To test the hypothesis that seemingly conflicting results across studies reflects specific
features of the participant recruitment strategies, we tested whether we could predict reading
scores using a small, homogeneous sub-sample of the entire HBN dataset that excluded
participants based on strict quality control measures and co-occurring diagnoses. We began by
selecting all the participants between the ages of 8 and 12 years old from one site (CBIC) and
excluding any participants diagnosed with autism, anxiety, or ADHD, as these diagnoses have
been shown to correlate with reading skills in different ways(57-59). Within this limited
sub-sample, we then identified the 40 top and bottom readers to create groups that differed
dramatically in terms of reading ability. The resulting, single-site sample was skewed towards
high SES participants, as are many single-laboratory studies. We split this sub-sample into a
training set of 60 subjects and a test set of 20 subjects. We again trained XGBoost models on the
train set using 5-fold cross-validation before predicting reading scores in the test set. The model
trained on white matter data from this sub-sample predicts roughly 24% of the variance in
reading scores in the test set (Table 2).

Next, we examined the relationship between white matter and reading ability in a
large-scale, dataset consisting of healthy, college-aged young adults (HCP). The original HCP
recruitment screened for many different developmental, neurological and psychiatric disorders
and reflects a more homogenous sample than, for example, the HBN data(60, 61) and is
substantially less diverse than the US population. Using an XGBoost model, we found that
diffusion properties of the white matter were able to predict 7.9% of the variance in reading
scores in the top and bottom 100 readers, which is in line with other predictions of cognitive
ability made using the HCP dataset(62). Thus, in these two cases representing samples that were
a) more demographically homogeneous, b) differed substantially in terms of reading ability
and, arguably c) are more similar to a typical sample collected by a single university research
group, white matter properties did predict individual differences in reading ability.
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However, in the PING dataset, we were unable to predict reading scores from diffusion
properties using a subsample of the data. Similar to the HBN data, we generated this subsample
by taking the 40 highest vs lowest scoring readers between the ages of 8 and 12 years old. We
again trained XGBoost models on the data from this subset and were unable to predict reading
scores from the average diffusion properties of the white matter (Table 2). The lack of prediction
in the PING subset suggests that mean diffusion properties may not be suitable for generating

behavioral predictions, even in homogenous samples.

Table 2: Cross-validated R” test scores for reading score predictions made from XGBoost models trained on
white matter properties of homogenous datasets or subsamples. The diffusion properties used to train the models
vary due to differences in the tractography software used on the three datasets.

Dataset Diffusion Predictors Cross-validated R* Score
HBN FA, MD, MK, AWF 0.240

HCP-YA FA, MD, MK, AWF 0.079
PING Mean FA, Mean MD -0.044

Discussion

We explored two hypotheses surrounding the relationship between white matter and
reading skills: a) that white matter and reading skill are dynamically linked over time and
change with factors such as an individual’s educational environment and b) that white matter
properties act as static biomarkers that predict differences in reading abilities. To explore the
first hypothesis, we examined a five-year longitudinal dataset, which revealed that individual
growth rates in the left arcuate are linked to growth in reading scores over time. Further
modeling revealed that gains in reading predict future changes in FA in the left arcuate. These
models suggest that individual differences in learning influence white matter development
rather than white matter differences serving as constraints on the learning process.

To explore the second hypothesis, we analyzed three large-scale (HBN: n=777, PING:
n=1,119, ABCD: n=11,080) cross-sectional datasets and found no stable relationship between
white matter diffusion properties and reading scores. To capitalize on the strengths of both
explanatory and predictive modeling(45), we conducted group comparisons to explore the
specific white matter properties underlying differences in reading skill and also leveraged
high-dimensional models to predict reading scores from white matter properties. Across all
three of these datasets, univariate group comparisons revealed no differences between poor and
skilled readers and XGBoost models were unable to predict reading scores from diffusion
features. However, analysis of another large-scale dataset (HCP: n =1,200) and a subset of the

HBN data revealed that diffusion properties of the white matter serve to predict reading scores


https://paperpile.com/c/iEKNAM/91DI
https://doi.org/10.1101/2022.06.21.497048
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.21.497048; this version posted June 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in more homogenous samples, suggesting that group differences in the white matter between
strong and struggling readers may depend on the makeup of the sample. All together, these
results suggest that properties of the white matter may not necessarily serve as static traits that
differentiate individuals but, rather, that white matter and reading skill may be part of a
dynamically linked system that changes over time.

The longitudinal dynamics between reading skill and white matter properties observed
in the PLING dataset serve to highlight the role that an individual’s environment may play in
driving the development of brain-behavior relationships. In these data, not only did changes in
reading skill track changes in FA in the left arcuate, the rate of individual reading gains
predicted increases in FA in the left arcuate, suggesting gains in reading precede, and
potentially influence, changes in the white matter. Other longitudinal studies have shown that
skilled readers demonstrate positive rates of FA development in the left arcuate and ILF,
whereas poor readers demonstrate shallower developmental slopes in the same tracts(27, 28),
but the present study is the first to examine temporal precedence of longitudinal relationships.

Although these longitudinal studies did not capture the educational environments of the
participants, we might hypothesize that individuals showing gains in FA and reading were
fortunate to be in more engaging learning environments compared to individuals who did not
show as dramatic changes in FA or reading scores. A stimulating educational environment may
increase the activity within the reading circuitry and drive changes in the white matter
properties through glial-mediated growth and/or pruning(5, 63, 64). White matter plasticity has
emerged as a critical mechanism in learning(4, 64), and our findings lend further support to the
notion that white matter plays a part in a dynamic system that adapts and changes in response
to an individual’s environment(26, 30). Nevertheless, questions remain as to how growth
opportunities within an individual’s learning environment lead to changes in both academic
skills and brain properties. Future intervention studies will be critical for working out these
causal relationships.

The longitudinal interplay between white matter growth and reading gains raises
questions about the static link between white matter structure and reading skills. Many studies
have found differences in the white matter properties of dyslexic versus typical readers based
on single observations of small samples(17, 23). However, the present analysis of the HBN,
PING and ABCD datasets (totaling nearly 13,000 participants) failed to reveal any meaningful
group differences in the white matter properties of struggling and typical readers. Furthermore,
state-of-the art machine learning models were unable to predict reading scores from white
matter properties above and beyond demographic factors. This observation is in line with recent
work showing that the effect sizes of many brain-behavior relationships are much smaller (or
non-existent) than estimates from small samples(31).

These results are also generally in line with those reported by Meisler and Gabrieli(36)
which did not find any significant relationship between FA and reading skills in a subset of the
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HBN dataset. Though the authors observed a relationship between FA and phonemic decoding
in the right SLF and the left ICP in participants above age 9, their analysis focused on a different
measure of reading skill (TOWRE) and relied on a different analytic pipeline (TractSeg(65)),
which may explain the subtle differences between their findings and the present results.
Regardless of the differences between these independent analyses of the HBN dataset, both sets
of results suggest that the relationship between the white matter and reading skill may not
necessarily be reducible to static, individual differences in the diffusion properties of the white
matter. White matter properties are highly plastic and changes in the diffusion signal have been
detected both on the scale of hours(8) and months(29, 66) after a learning experience. Therefore,
it is possible that these datasets serve as a snapshot of a dynamic, experience-dependent system
in flux and do not capture the longitudinal relationships between brain, behavior, and
environment. This interpretation is further supported by the reliable relationship between
environmental factors such as parental income, neighborhood deprivation, and school
achievement and white matter properties.

However, the lack of meaningful group differences in the HBN, PING, and ABCD
samples do not necessarily serve to dismiss past findings linking properties of the white matter
to reading skill but, rather, present new challenges for the field consider in order to reconcile the
seemingly conflicting findings from large-scale data sets, small single-lab studies, and
meta-analyses. As highlighted in recent work using large-scale fMRI datasets, the effect size of
various brain-behavior relationships decreases as a function of sample size and makeup(31).
Moreover, models that are fit on a biased demographic group often do not generalize to more
diverse samples(67). It is possible that sampling procedures impact the relationship between
diffusion properties of the white matter and academic skills and may explain the seemingly
contradictory results between the present study and past findings.

One of the strengths of these large scale datasets, especially the HBN sample, is that they
include participants from a wide range of geographic, racial, and socioeconomic backgrounds
representing diversity that is rarely present in the samples collected by a single lab. The HBN
sample is also extremely neurodiverse: nearly all the individuals in the dataset have some sort
of clinical diagnosis. In the final sample used in our analysis, only 35 of 777 participants (4.5%)
had no diagnosis whatsoever. Some of these co-occurring diagnoses can impact reading scores
and white matter properties. For example, many individuals diagnosed with autism have been
shown to have hyperlexia(57), whereas ADHD or anxiety diagnoses have been linked to lower
reading scores(58, 59). On the other hand, past studies conducted by single laboratories that
have linked differences in white matter properties to reading skill based on a single observation
typically rely on smaller, more demographically homogeneous samples, usually recruited from
the surrounding community of a university, and often exclude individuals with certain
diagnoses. Inconsistent sampling procedures may explain why some studies report increased

FA in struggling readers(68, 69) and others report reduced FA in struggling readers(28, 29, 70).
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Interestingly, when we generate a small (n=80) homogenous subsample of the HBN
data, excluding subjects with autism, ADHD, or anxiety diagnoses, we find that
high-dimensional models trained on diffusion properties of the white matter do predict some
variance in reading scores. However, it should also be noted that this subset of the data is highly
skewed in terms of socioeconomic status, with most of the participants coming from upper SES
households and is, arguably, more similar to a typical university sample. This finding parallels
the results observed in the HCP data, which also revealed that properties of the white matter
served to predict reading scores in a large, relatively homogenous sample of adults. The
homogenous sampling practices found in many single-lab studies may lead to more discernible
relationships between individual differences in white matter properties and reading skill but
these results might not generalize beyond the sample. In fact, for individuals with high SES
backgrounds, genetic factors have been shown to exert more of an influence on FA than those
from lower SES backgrounds(71). This finding suggests that in homogenous, high SES samples,
genetic factors may influence the diffusion properties of white matter tracts in a manner that
may not replicate in more diverse study populations. All together, these results suggest that
static, individual-level differences may predict reading scores in more homogenous samples but
not in diverse and representative samples. This interpretation could serve to explain a) the
discrepancies between past findings and the present analysis of the HBN, PING, and ABCD
datasets and b) why relationships between white matter development and reading emerge in
longitudinal studies but not data from a single observation.

It also bears mention that these large-scale datasets generally consist of data collected
using multiple scanners, often made by different manufacturers. Subtle differences across
scanners may introduce an additional source of variability to the data despite efforts to
harmonize scan sequences across sites(32-34). We employed state-of-the-art approaches to
harmonize the neuroimaging data across scanner sites(72-74) and reduce the impact of scanner
site on the variability of the diffusion measures. Nevertheless, subtle differences in scanners and
pulse sequences may obscure subtle differences in the white matter that do relate to reading
skill.

As the field of developmental cognitive neuroscience moves into the era of Big Data
with diverse groups of participants, longitudinal measurements will be of particular importance
to answer questions surrounding the relationship between the brain, academic environment,
and learning. Past meta-analyses have failed to identify reliable neurological profiles for
individuals labeled as “learning disabled” (25, 75), suggesting that a more individualized
approach to studying learning may be important, and densely sampled functional
neuroimaging studies have found that an individual’s neurobiology is often distinct from
group-level patterns(76). A single snapshot of a dynamic system can be misleading and
longitudinal studies are critical for capturing the within-individual interplay between

environmental factors, brain development and learning.
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Historically, the field of developmental cognitive neuroscience has relied on
cross-sectional samples based on a single observation of each participant to draw connections
between brain properties and cognitive skills such as reading. A brief review of the literature
reveals that there are at least 27 studies on the neuroanatomical underpinnings of reading skill
and of these, only 3 studies consist of more than 2 observations per participant. Furthermore, of
the five large-scale, publicly-funded, developmental datasets that we are aware of, only 1
includes observations at four different time points. Unfortunately, a dynamic system cannot be
studied with cross-sectional data - at least four time points are necessary to resolve the dynamic
interactions that we discovered in the current work. The present findings provide strong
evidence for the dynamic nature of brain-behavior associations and suggest that the field should

prioritize longitudinal, within-subjects designs.

Conclusion

In summary, we tested two hypotheses surrounding the relationship between white
matter and reading: that individual differences in white matter properties are stable traits that
serve to predict reading ability and that white matter and reading ability are part of a
dynamically linked system that changes over time in response to an individual’s environment.
In three of the largest single-observation diffusion MRI datasets to date, we were unable to
detect stable relationships between properties of the white matter and reading scores using both
group comparisons and high-dimensional machine learning algorithms. However, in a fourth,
more homogenous large-scale dataset and a homogenous subset of the HBN dataset, we were
able to predict reading scores from the diffusion properties of the white matter, suggesting that
the relationship between white matter and reading skills depends heavily on the specific
characteristics of the sample.

On the other hand, in a four-year longitudinal sample, we did observe a significant
relationship between the development of FA in the core reading circuitry and reading scores.
Multiple modeling approaches revealed that the development of white matter and reading skills
are linked over time and, more specifically, that gains in reading scores precede increases in FA
in the left arcuate. This pattern of behavioral learning gains leading to changes in white matter
properties suggests that educational factors may jointly influence brain development and
learning. These findings open the door for future studies to examine longitudinal
brain-behavior relationships in tandem with information about an individual’s educational
context to better understand how learning opportunities directly lead to different patterns of
brain development.

All together, these results suggest that white matter and reading skill comprise a
dynamic system that changes over the course of development. This is not to discount the value
of past findings statically linking differences in white matter properties and academic skills.
However, these single-site observations greatly depend on sample makeup and do not always
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generalize to broader populations. On the other hand, longitudinal, within subject approaches
examining the link between white matter and academic skills necessarily control for
confounding demographic and environmental factors and better describe these relationships
across different portions of the population. In the context of education and learning, these
longitudinal studies will help uncover how a learner’s educational environment influences the
relationship between the white matter and academic skills and open the door for refined,

developmentally appropriate learning interventions and pedagogical strategies.

Methods

To explore questions surrounding the properties of the white matter networks
underlying reading skill, we leveraged five large-scale, publicly available datasets. These
datasets included the Pediatric Longitudinal Imaging, Neurocognition, and Genetics
(PLING(35)) dataset, the Child Mind Insitute’s Healthy Brain Network (HBN) dataset (32), the
University of California San Diego’s Pediatric, Imaging, Neurocognition, and Genetics
(PING(33)), and the Human Connectome Project’s (HCP) Young Adult dataset(77). All five of
these datasets provide both neuroimaging data and a variety of behavioral assessments,
including raw and age-standardized reading. Code to reproduce all the results in the notebook,
along with pre-processed data derivatives (e.g., tract profiles) for the HBN data, are available:

https://github.com/earoy/longitudinal_wm

PLING

The PLING dataset was used to explore the relationship between changes in white
matter properties and changes in academic skills over time. This dataset tracked 176 individuals
over the course of 5 years, although not all subjects participated at all 5 time points. We
excluded all subjects who did not participate in at least 3 time points and those that did not pass
quality control, we were left with a sample of 73 individuals. At the time of the first observation,
subjects were between 5 and 10 years old.

At each time point, participants completed an MRI scanning session as well as an
assortment of behavioral tasks. dMRI data was collected at each time point and analyzed with
AtlasTrack. This processed diffusion data contains mean FA and MD values for 37 major white
matter bundles. The behavioral measures we used in this analysis included a composite reading
score derived from the Test of Word Reading Efficiency (TOWRE) Sight Word Efficiency and
Phonetic Decoding Efficiency subtests(78).

To explore the longitudinal dynamics between reading skill and diffusion properties of
the white matter, we constructed a series of longitudinal models. First, we generated a
linear-mixed effects model predicting mean-centered TOWRE reading scores from time point,
initial age, mean-centered FA at each time point, and overall mean FA as fixed effects, and

participants as a random effect. The use of mean-centered FA allowed us to discern year-to-year
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change in FA from overall FA within each participant. To better understand the time series of
FA and reading score change, we used a multi-level vector autoregression model (mIVAR(3S,
39)). This model used time series data to test if FA at a given time point predicted reading scores
at the subsequent time point or vice versa. Finally, we generated a parallel-process latent
growth curve model to understand the relationship between the rate of reading score change
and the rate of FA development. We constructed this latent growth curve model using the

lavaan package in R(79).

HBN

The HBN dataset consists of diffusion MRI and phenotypic data from over 1,500
participants ranging from 5 to 21 years of age from the greater New York City area. In the HBN
sample, neuroimaging data were collected at four different scanner sites, however the present
analysis only included data from the three sites that used 3T scanners: Rutgers University Brain
Imaging Center, the CitiGroup Cornell Brain Imaging Center, and the CUNY Advanced Science
Research Center. The sample analyzed in the present study consisted of 777 subjects who
passed quality control and had both neuroimaging data and various phenotypic measures,
including reading scores and socioeconomic status. To determine reading, we calculated an age
standardized composite score for various subsections of the Wechsler Individual Achievement
Test (WIAT(80)). Individuals were labeled as struggling readers if their composite score was
below 85 (one standard deviation from the mean). The raw diffusion MRI data were
preprocessed using gsiprep(41) and quality control was performed on the entire dataset using a
neural network trained on ratings generated by a combination of diffusion imaging experts and
community scientist on two subsets of the HBN dataset(42). Any subjects who did not meet
quality control standards were excluded from the analysis.

Once the diffusion imaging data were preprocessed, pyAFQ was used to calculate
tractometry properties(43). Briefly, constrained spherical deconvolution(81), implemented in
DIPY(82) was used to estimate fiber orientation distributions in every voxel, and probabilistic
tractography was used to propagate streamlines throughout the white matter. 18 major white
matter tracts were identified as originally described by Yeatman and colleagues (2012)(83). Each
tract was sampled to 100 nodes. Fractional anisotropy (FA), mean diffusivity (MD), and mean
kurtosis (MK) were calculated at each node using the Diffusional Kurtosis Model (DKI(84, 85)
and axonal water fraction (AWF) was calculated using the White Matter Tract Integrity Model
(WMTI(86)). To assess the extent to which our computational pipeline impacted the results, we
also implemented a pipeline that generated the streamlines using anatomically-constrained
tractography (53) implemented in MRTRIX3 (87). Bundle identification proceeded as above. We
then grouped the data based on the behavioral data to make group comparisons across the

various bundles. These diffusion features were also used as input to machine learning
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algorithms to predict reading scores. The results of both tractography pipelines were similar
and, ultimately, the DIPY tractography was used.

With neuroimaging data, there are often differences between scanners, which can create
variation in data quality and the scale of diffusion properties. This makes comparing images
acquired from different sites challenging. To account for between-scanner variation, ComBat
harmonization was performed on the tractometry data to correct for any scanner-related
variance from the data(72-74). Specifically, we employed the neurocombat_sklearn library in
the present analysis to perform ComBat harmonization on the data and remove any scanner or

site related variation from the neuroimaging data.

PING

Data used in the preparation of this article were obtained from the Pediatric Imaging,
Neurocognition and Genetics (PING) Study database (http://ping.chd.ucsd.edu/). PING was
launched in 2009 by the National Institute on Drug Abuse (NIDA) and the Eunice Kennedy
Shriver National Institute Of Child Health & Human Development (NICHD) as a 2-year project
of the American Recovery and Reinvestment Act. The primary goal of PING has been to create a
data resource of highly standardized and carefully curated magnetic resonance imaging (MRI)
data, comprehensive genotyping data, and developmental and neuropsychological assessments
for a large cohort of developing children aged 3 to 20 years. The scientific aim of the project is,
by openly sharing these data, to amplify the power and productivity of investigations of healthy
and disordered development in children, and to increase understanding of the origins of
variation in neurobehavioral phenotypes. For up-to-date information, see
http://ping.chd.ucsd.edu/.

The PING dataset consists of neuroimaging and behavioral data from 1,119 subjects
between 3 and 20 years old. The imaging protocols and processing steps are outlined in Jernigan
et al.(33). In the present analysis, we used the diffusion tensor imaging (DTI) data provided by
the authors of the PING study, which was processed using AtlasTrack(37). This processed
diffusion data includes the mean FA and MD values in 37 major white matter bundles, as well
as the mean FA and MD values for the left hemisphere, right hemisphere, and the whole brain.
In addition to the neuroimaging data, the PING dataset also provides behavioral assessments
from the NIH Toolbox(88, 89). We looked at age standardized scores on this reading assessment
and classified individuals who scored below one standard deviation from the mean as

struggling readers.

ABCD

The ABCD dataset consists of neuroimaging and behavioral data from the first
observation of a ten-year longitudinal study. This time point includes data from 11,080 subjects
between 8 and 11 years old. The imaging protocols and processing steps are outlined in Casey et
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al. (34). In the present analysis, we used the diffusion tensor imaging (DTI) data provided in
ABCD annual release 4.0, which was performed using AtlasTrack(37). This processed diffusion
data includes the mean FA and MD values in 37 major white matter bundles, as well as the
mean FA and MD values for the left hemisphere, right hemisphere, and the whole brain. In
addition to the neuroimaging data, the ABCD dataset also provides the same NIH toolbox
reading assessment (88, 89) found in the PING dataset. We looked at age standardized scores on
this reading assessment and classified individuals who scored below one standard deviation

from the mean as struggling readers.

HCP-YA

The HCP-YA dataset(77) consists of neuroimaging and behavioral data from 1,200
healthy young adults between the ages of 22 and 35. As with the HBN dataset, we used pyAFQ
to perform tractometry on these data. For this analysis, specified parameters that yielded tract
profiles for 18 major white matter pathways and four diffusion properties, FA, MD, MK (mean
kurtosis), and AWF (axonal water fraction) for each bundle. As a behavioral measure, we used
the NIH Toolbox Oral Reading Recognition Test to explore the relationship between the white

matter and reading skill in this sample.

High-dimensional modeling of the relationship between reading and white matter in HBN,
PING, ABCD, and HCP-YA

To generate reading score predictions from diffusion properties of the white matter, we
fit a series of gradient-boosted random forest models (XGBoost(44)). For each dataset, we fit
three XGBoost models using either demographic information, white matter properties, or both
demographic information and white matter properties as predictor variables. For all three
datasets, we used age, SES, and geographic location (if available) as predictors. The white
matter predictors we used depended on the dataset and the tractometry software used to
calculate diffusion properties. For the HBN and HCP-YA datasets, we used FA, MD, AWF, and
MK in the 18 bundles identified by pyAFQ, while in the PING dataset we used the mean FA and
MD values in the 37 bundles identified by AtlasTrack. Before being entered into the XGBoost
models, each predictor variable was demeaned and scaled to unit variance. For each model,
hyperparameter tuning was performed using a Bayesian optimization procedure (90) that
samples over the hyperparameter space and performs 5-fold cross-validation to identify the best
model fit. The final model fits were assessed using a held out test set that was counterbalanced

with the training data to have similar demographic properties.
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Supplemental 1: Relationship between FA in the left arcuate and raw TOWRE score at each
time point in the PLING data.
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Supplemental 2: Group differences in naive comparison of reading score groups in a pyAFQ
pipeline using anatomically constrained tractography to calculate diffusion properties.
Average/Above Average readers (gray) demonstrate reduced FA in parts of the left and right

IFO. Red dots indicate nodes where the difference in FA is significantly different (adjusted p <
0.05)
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Supplemental 3: Tract profiles for the left and right arcuate fasciculus, ILF, and SLF as derived
from two different py AFQ pipelines. The default pipeline (left) reveals some differences in FA in
some of the bundles between the top and bottom 100 readers.
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Supplemental 4: Train and test R* values for the models predicting reading and age using

demographic and white matter features generated from an alternate py AFQ pipeline.
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Supplementary Table 1: Selective overview of cross-sectional and longitudinal studies
investigating the relationship between properties of the white matter and reading skills.

Study Sample Size Findings

FA is positively correlated with
Niogi and McCandliss (2006) N =31 word reading skill in left
temporo-parietal regions (r = 0.64, p
<0.001)

Dyslexic adults demonstrate
Steinbrink et al. (2008) N=16 reduced FA in fronto-temporal and
temporo-parietal regions (corrected
p <0.05)

Poor readers show reduced FA in
left anterior centrum semiovale
compared to good readers (t(70) =
4.66, p <0.05). FA in this region
significantly increased in poor
readers following an intensive
intervention program (t(34) =5.12, p
<0.05).

Keller and Just (2009)

Z
I
N

FA negatively correlates with letter
word identification in the corpus
Hasan et al. (2011) N =50 callosum (r =-0.387, p = 0.006) and
MD positively correlates with letter
word identification in the same tract
(r=0.349, p=0.01

FA in the left arcuate fasciculus
Yeatman et al. (2011) N =55 negatively correlates with
phonological awareness (r =-.33, p <
0.01)

Initial reading skill is negatively
correlated with FA in the left
arcuate (r =-0.40, p = 0.02) and left
Yeatman et al. (2012) N =55 ILF (r=-0.49, p <0.01). Growth in
these two tracts was associated with
improvement in reading scores over
a three year period.

Pre-reading children with a family
history of dyslexia displayed
reduced FA in the left arcuate and
Wang et al. (2017) N=78 increased FA in the left SLF
compared to children without a
family history of dyslexia (all p <
0.05)

MD in the left arcuate, ILF, and
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posterior corpus callosum is
positively correlated with reading
Huber et al. (2018) N=43 skill prior to intervention. Decreases
in the same bundles are associated
with gains in reading scores over
the course of an intensive reading
intervention.

Supplemental Text:

Prediction of reading scores based on connectivity matrices

Tractometry is one of many approaches to summarizing anatomical properties of the
white matter. An alternative approach to analyzing diffusion data is to construct connectivity
matrices summarizing the number of streamlines connecting each cortical region. These
“structural connectivity matrices” have been used to infer differences in connectivity among
cortical regions and also differences in connectivity patterns across subjects. To ensure that the
lack of prediction was not specific to our analysis approach (tractometry), we also explored an
alternative analysis pipeline that sought to predict reading scores from the structural
connectivity matrices generated with the gsiprep reconstruction implementing anatomically
constrained tractography based on the multi-shell, multi-tissue model(52, 91). For this approach,
we used the same gradient boosted forest pipeline outlined above but, rather than FA and MD
values, we used streamline counts from the AAL-VOIs atlas(92) as our white matter predictors.
Again, this model did not predict additional variance in reading scores above the demographics

only model (Supplemental Table).

Predictors Target Train Test
SES + Age Reading 0.145 0.046
Connectivity Reading 0.456 -0.006
SES + Age + Reading 0.584 -0.004
Connectivity
SES Age 0.029 -0.082
Connectivity Age 0.846 0.587
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