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Abstract 

The ability to flexibly adjust beliefs about other people is crucial for human social functioning. 

Dopamine has been proposed to regulate the precision of beliefs, but direct behavioural evidence of 

this is lacking. We investigated how a relatively high dose of the selective D2/D3 dopamine receptor 

antagonist sulpiride impacts learning about other people’s prosocial attitudes in a repeated trust 

game. Using a Bayesian model of belief updating, we show that sulpiride increased the volatility of 

beliefs, which led to higher precision-weights on prediction errors. This effect was entirely driven by 

participants with genetically conferring higher dopamine availability (Taq1a polymorphism). Higher 

precision weights were reflected in higher reciprocal behaviour in the repeated trust game but not in 

single-round trust games. This finding suggests that antipsychotic medication might acutely reduce 

rigidity of pathological beliefs. 

Introduction 

Knowing whom to trust with our money, information, or health is central to our personal well-being 

(Meyer-Lindenberg & Tost, 2012). The ability to form beliefs about other persons’ attitudes from 
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their actions is therefore pivotal for successfully navigating our social world. Inflexible beliefs, 

particularly about intentions of others, can lead to thoughts of persecution or even paranoid 

delusions - a hallmark symptom of psychotic disorders (Diaconescu, Wellstein, Kasper, Mathys, & 

Stephan, 2020; Gromann et al., 2013; Wellstein et al., 2020). Understanding the neurocomputational 

substrates of social inference is therefore essential for informing pharmacological treatments of 

psychotic symptoms. 

When learning whether to trust another person, we often do so by observing their behaviour across 

repeated interactions. How behaviours of others affect our overall beliefs about their 

trustworthiness largely depends on how certain we are about the attitudes that presumably drive 

others’ actions (FeldmanHall & Shenhav, 2019). For instance, if we firmly believe someone is hostile 

towards us, a positive gesture coming from them will not much change our belief about them. On the 

other hand, that same gesture from someone whose intentions we are unsure of, will likely strongly 

shift what we think about them. This process of belief updating under uncertainty has been 

formalized within the Bayesian Inference framework, where beliefs are represented as probability 

distributions and the degree to which new information affects the updating of beliefs is modulated 

by the precision (the inverse of uncertainty) of those beliefs (Mathys, Daunizeau, Friston, & Stephan, 

2011). As in similar computational frameworks (Sutton & Barto, 2017), the belief update is 

proportional to the deviation of the prediction from the actual outcome, termed as a prediction error 

(PE), weighted by the precision of prior beliefs. When prior beliefs are highly uncertain, the weight on 

the PE will be high, and conversely, highly precise prior beliefs lead to a down-regulation of the 

influence of PE on learning. Inflexibility in changing our beliefs about others can therefore result from 

high precision of prior beliefs about others’ attitudes. Yet, the neurocomputational and 

neurochemical mechanisms of regulating uncertainty of beliefs are poorly understood. In this study 

we examined the effects of the commonly used antipsychotic drug sulpiride, a D2/D3 dopamine 

receptor antagonist, on the uncertainty of beliefs about another person’s trustworthiness. 

Seminal studies in animals have established that mesolimbic dopaminergic circuits carry PE signals 

that drive belief updating in various contexts (Matsumoto & Hikosaka, 2009; Montague, Dayan, & 

Sejnowski, 1996; Schultz, 1998). However, dopaminergic midbrain neurons have been shown to be 

involved in various probabilistic computations that go well beyond phasic signalling of surprising 

rewarding events. Dopamine responses scale with outcome variance (Schultz et al., 2008; Tobler, 

Fiorillo, & Schultz, 2005) and reflect temporal and perceptual precision (De Lafuente & Romo, 2011; 

Fiorillo, Newsome, & Schultz, 2008; Fiorillo, Tobler, & Schultz, 2005). Several computational accounts 

of brain function suggest that uncertainty or precision coding is the main unifying feature of 

dopamine’s involvement in belief updating (Friston, Stephan, Montague, & Dolan, 2014; Gershman, 

2018; Gershman & Uchida, 2019; Mikhael & Bogacz, 2016). Through encoding of uncertainty of 

beliefs about the world and what action to perform, dopamine receptors are thought to adjust the 

weights on PEs and control action selection (Adams, Stephan, Brown, Frith, & Friston, 2013; Babayan, 

Uchida, & Gershman, 2018). But while there is evidence for the involvement of dopamine receptors 

in processing uncertainty in action selection (Adams et al., 2020; Eisenegger et al., 2014, 2013; 

Schwartenbeck, FitzGerald, Mathys, Dolan, & Friston, 2015), no study in humans has yet 

demonstrated their causal role in regulating the uncertainty of social beliefs and adjusting weights on 

PEs. 

Dopamine receptors within the corticostriatal circuitry are ideally positioned to regulate the PE-

related signal propagation and encode precision (Friston, 2008; Yao, Spealman, & Zhang, 2008). D1 
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and D2 type dopamine receptors in the striatum are believed to be involved in complementary 

aspects of PE signal propagation (Yao et al., 2008). Whereas D1-type receptors mostly respond to 

phasic dopaminergic bursts and amplify striatal output, the D2 receptor class (including D3 receptors) 

plays a gating role in signal propagation (Frank, 2005) by attenuating phasic dopamine release (Ford, 

2014; Grace, 2016) and thus by regulating corticostriatal excitation (O’Donnell & Grace, 1994; Yin & 
Lovinger, 2006). Blocking D2 receptors could bias the activity of the cortico-striatal loops towards the 

D1 receptor driven pathway and therefore deregulate PE signal propagation, leading to reduced 

precision of prior beliefs (Adams, Vincent, Benrimoh, Friston, & Parr, 2021). 

Although some studies indeed showed that blocking D2-type receptors enhanced learning from 

positive feedback (Frank & O’Reilly, 2006), led to pronounced PE-related activity in the striatum 

(Iglesias et al., 2021), and enhanced performance (Eyny & Horvitz, 2003; Jocham, Klein, & Ullsperger, 

2011), there is also evidence for attenuated PE coding and greater variability in choice selection 

(Eisenegger et al., 2014; Jocham, Klein, & Ullsperger, 2014; Pessiglione, Seymour, Flandin, Dolan, & 

Frith, 2006). The inconsistencies of these findings raise several important considerations. First, when 

alternative choices are available, it is often unclear whether increased switching between available 

choice options arises from drug effects on belief updating per se or from the effects on decision-

making strategies (see for instance (Zhang, Lengersdorff, Mikus, Gläscher, & Lamm, 2020)). Second, 

D2 dopamine receptors have a higher affinity for dopamine (Richfield, Penney, & Young, 1989) and 

doses of D2 antagonists commonly used in studies with healthy volunteers might not be enough to 

sufficiently block the D2 receptor driven regulation of the PE signal (Bressan et al., 2003). Third, 

administration of compounds binding to dopamine receptors can have different and even opposing 

effects on learning and decision-making, depending on genetic variation in baseline dopamine 

function (Cohen, Krohn-Grimberghe, Elger, & Weber, 2007; Cools & D’Esposito, 2011; Eisenegger et 
al., 2013). And finally, beyond the methodological limitations of previous work, most studies with 

dopamine receptor antagonists have looked at learning about abstract stimulus-outcome 

associations using secondary rewards, which makes the translation to more complex social 

interactions questionable. 

In light of these considerations, the present study administered a relatively high dose of the selective 

D2/D3 receptor antagonist sulpiride (800 mg) or placebo in a randomized double-blind parallel group 

design to 78 male participants, preselected based on their Taq1a polymorphism. The drug dose was 

chosen to maximise the blockade of postsynaptic dopamine D2 receptors while still being safe 

(Takano et al., 2006). Most previous work used doses of 400 mg which leads to an occupation of 

approximately 30% of D2 receptors (Mehta, Montgomery, Kitamura, & Grasby, 2008). Using 800 mg 

leads to more than 60% occupancy and increases the likelihood of sufficiently blocking the effect of 

D2 receptors. Furthermore, as mentioned above, the effect of D2 antagonists often interacts with 

baseline variation on dopamine function (Cohen et al., 2007; Westbrook et al., 2020). Taq1a 

polymorphism is one of the most widely investigated genetic variations of the D2 receptor. 

Individuals with at least one A1 minor allele have been shown to have higher presynaptic dopamine 

availability (Laakso et al., 2005) and reduced D2 receptor density in some subdivisions of the striatum 

(Gluskin & Mickey, 2016; Smith et al., 2017). Blocking D2 receptors might therefore have a stronger 

effect on belief updating in that genetic subgroup. 

We investigated social learning by asking the participants to learn about other players’ 
trustworthiness through a repeated trust game (Fig 1a). In the trust game the investor may choose to 

transfer any portion of their monetary endowment to the trustee (Berg, Dickhaut, & McCabe, 1995). 
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The transferred points are then multiplied by the experimenter before being passed on to the 

trustee. The trustee can then either reciprocate in a way that equalizes the payoff of the two players 

or betray and keep everything. Participants in our study played 25 rounds of the trust game as 

investors against two other players that were preprogramed to mostly equalize (<good trustee=) or 
mostly betray (<bad trustee=). Importantly, we told the participants that the other players had given 

their answers weeks prior to the study day and therefore their decision to equalize or betray did not 

depend on the participant’s investment. With this procedure we increased the likelihood that their 

investments reflected the degree of uncertainty they had about the other player’s response and 
were not confounded by strategic investment strategies, or exploratory action policies. 

The main goal of the study was to test the assertion that blocking D2-type receptors increases belief 

updates by reducing the precision of beliefs about others, whereby we hypothesized that this effect 

will be more pronounced in participants with genetically conferring higher endogenous dopamine 

levels. The results section of the paper is structured as follows: we first looked at how sulpiride 

affects investment updates and how this effect is moderated by the Taq1a genotype. We then 

examined how the updates relate to the back-transfer of the trustee, by looking at the effects of the 

drug and genotype on reciprocal behaviour. We then turn to computational modelling to determine 

how sulpiride affects the course of each participant’s uncertainty around the other player’s 
trustworthiness. Finally, to control for effects of our drug manipulation on sensitivity to social 

feedback unrelated to learning, we surveyed data from two single-round social interaction tasks, 

targeting positive and negative reciprocal behaviour. 

Results 

D2/D3 receptor antagonism increases investment updates 

We employed a Bayesian multi-level linear model predicting absolute change in investment from the 

previous trial, including variables for Treatment (sulpiride or placebo), Trial and their interaction as 

predictors (refer to supplementary material for outcomes of alternative models). Fig 1b shows that, 

following sulpiride administration, participants on average updated their investments more than 

participants in the placebo group (b = 0.633, 95% Credibility Interval (CrI) [0.117, 1.115], proportion 

of the posterior distribution of the regression coefficient below 0 being P(b<0) = 0.005), with an 

effect size d = 0.239 (95% CrI [0.045, 0.42]). The difference in investment updates was most apparent 

in the last trial of the task (b = 0.863, 95% CrI [0.289, 1.411], P(b<0) = 0.002, d = 0.325, 95% CrI 

[0.109, 0.531]) and we also found a small effect size on the Trial*Treatment interaction (b = 0.457, 

95% CrI [-0.069, 0.99], P(b<0) = 0.047, d = 0.172, 95% CrI [-0.026, 0.373]). As participants learned 

about the trustees, changes of investments from one to the next trial reduced, and this decrease 

across time was less pronounced in the sulpiride group. 

To examine whether the effects of the drug were moderated by the Taq1a polymorphism we ran 

another model including a variable for Taq1a-specific genotype and Trustee as predictors with the 

four-way interaction between the two new variables, Treatment and Trial, including a random 

intercept and slope for the Trustee (Supplementary Fig. 1a, Supplementary Table 4). Again, we found 

a main effect of treatment (b = 0.595, 95% CrI [0.112, 1.098], P(b<0) = 0.008), and a significant three-

way interaction between Treatment, Genotype and Trial number (b = 0.053, 95% CrI [0.01, 0.098], 

P(b<0) = 0.007), while the two-way interaction Treatment x Genotype was not significant (b = -0.284, 

95% CrI [-1.266, 0.708], P(b>0) = 0.287). These analyses suggest that on average sulpiride affected 

investment updates comparably across both genotype groups, but in contrast to the A2 

homozygotes, the effect in the A1+ group was time dependent. 
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D2/D3 receptor antagonism increases sensitivity to social feedback in the A1+ group 

To further understand how investment updates related to back-transfer from the trustee, we defined 

reciprocal trials as trials where participants either increased investments (or repeated the maximal 

investment of 10 points) following positive feedback and decreased investments (or repeated an 

investment of 0 points) following a betrayal (Fig. 1c, for exact definition see Supplementary Note 2). 

We found that sulpiride led to a higher proportion of reciprocal trials (ĀþĀ�ĀýýĀ= 0.339, 95% CrI 

[0.048, 0.661], P(ĀþĀ�ĀýýĀ <0) = 0.012), and this effect was significant in the A1+ group (ĀþĀ�ĀýýĀ= 

0.469, 95% CrI [0.052, 0.914], P(ĀþĀ�ĀýýĀ<0) = 0.015) but not in the A1- group (ĀþĀ�ĀýýĀ= 0.209, 95% 

CrI [-0.212, 0.643], P(ĀþĀ�ĀýýĀ<0) = 0.162); however, the interaction between the drug and genotype 

was not significant (ĀþĀ�ĀýýĀ = -0.263, 95% CrI [-0.867, 0.329], P(ĀþĀ�ĀýýĀ>0) = 0.186). Furthermore, 

we found some support for a dose response effect, whereby sulpiride serum levels in the blood 

correlated with reciprocal trials in the A1+ group (b = 0.185, 95% CrI [-0.04, 0.41], P(r<0) = 0.05), but 

not in the A1- group (Supplementary Table 1). Similar, albeit weaker, effects were found when we 

examined to what extent the signed investment update was dependent on the back-transfer and 

how this differed across the drug and genotype groups (Supplementary Fig. 1b). Note that this higher 

change of investments from one trial to the next did not lead to different investments on average 

across the four drug/genotype groups across the entire duration of the task (Supplementary Fig 2).  

This suggests that sulpiride increases sensitivity to social feedback when learning about others. To 

determine whether and how this how this behavioural pattern relates to the uncertainty of 

participants’ beliefs about the other persons’ trustworthiness, we explicitly modelled the 

participants’ trial by trial evolution of beliefs with a Bayesian belief model. In our modelling 

approach, we considered that a similar behavioural pattern could also have emerged from increased 

uncertainty around investment selection, or simply have been due to the degree to which the beliefs 

about the other player were used to guide investment selection. 

Computational framework  

The belief model generates a trial-wise sequence of our participants' beliefs about the 

trustworthiness of two trustees as well as the uncertainty (or precision) surrounding those beliefs 

(Fig 2, (Mathys et al., 2011, 2014)). We estimated a participant-specific parameter Ā, called belief 

volatility, that describes how each participant’s precision of beliefs evolved across time and 

consequently determined the relative rigidity (or flexibility) of beliefs. Higher belief volatility Ā 

implies higher uncertainty (lower precision) of prior beliefs, meaning higher learning rates and 

stronger shifts in beliefs throughout the task (see two example participants with different Ā values in 

Fig. 2b). The belief model was fitted to the data through an ordinal logistic response model with two 

additional participant-level parameters. The choice uncertainty parameter Ā is a probability weight 

that determines how feedback probability maps on the investment. Higher values imply an 

investment distribution centred around extremes (i.e., investing 0 and 10) and lower values imply a 

more dispersed investment distribution and more uncertainty or stochasticity in action selection. It 

thus mirrors the inverse temperature parameter in the softmax equation often used in non-ordinal 

(e.g., binary) choice tasks. The trustworthiness slope (�) determines to what degree inferred 

trustworthiness correlates with investments. Crucially, the computational parameters of the model 

represent distinct behavioural patterns and can be recovered reliably (Fig. 2c). To determine how 

noisy trials are represented in the model, we defined mistake trials as trials where participants either 

decreased their investment after a positive back-transfer or increased their investment after a 

betrayal (for exact definition see Supplementary Note 1). Importantly, we observed that belief 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.496956doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496956
http://creativecommons.org/licenses/by-nc/4.0/


volatility Ā correlates with reciprocity (r = 0.277, t = 2.476, df = 74, p = 0.016, Fig. 2d) and that the log 

transformed choice uncertainty parameter Ā correlates negatively with the proportion of mistake 

trials (r = -0.592, t = -6.3254, df = 74, p < 10e-3, Fig. 2d) implying higher randomness in investment 

selection. We also predicted data from the posterior distributions of parameters and confirmed that 

the model captures the crucial aspects of behaviour (Supplementary Fig. 3a,b) as well as compared 

the model to an HGF model without the Ā parameter and a Rescorla-Wagner model and found that it 

outperforms both models (Supplementary Fig. 3c). 

Genotype-dependent effects of D2/D3 receptor antagonism on belief volatility and 

precision-weights 

For parameter estimation, we embedded the HGF derived equations in a hierarchical Bayesian model 

which allowed us to estimate the drug and genotype effects on all computational parameters in one 

inferential step (Kruschke, 2014; McElreath, 2018). Through this analysis, we found a main effect of 

sulpiride on volatility of beliefs (b = 0.831, 95% CrI [0.115, 1.533], P(b<0) = 0.01, d = 0.65, 95% CrI 

[0.088, 1.283], Fig. 3a), and an interaction effect of sulpiride with the genotype (b = -1.506, 95% CrI [-

2.649, -0.411], P(b>0) = 0.004, d = -1.175, 95% CrI [-2.238, -0.306]). In fact, the effect of sulpiride on 

belief volatility is driven by the A1+ allele carriers (b = 1.598, 95% CrI [0.727, 2.465], d = 1.25, 95% CrI 

[0.533, 2.119]) and is not present in A1- group (b = 0.076, 95% CrI [-0.874, 0.985], d = 0.06, 95% CrI [-

0.683, 0.783]).  

The key consequence of higher belief volatility is that it leads to lower precision of prior beliefs and 

therefore of predictions, which has a direct effect on the learning rates. Indeed, what we find is that 

participants under sulpiride have higher average precision-weights (d = 0.452, 95% CrI [0.081, 0.704], 

P(d<0) = 0.008, Fig. 3b), an effect again significantly more pronounced by A1+ participants (d = 1.042, 

95% CrI [0.225, 1.424], P(d<0) = 0.003), and not present in the A2 homozygotes (d = -0.202, 95% CrI [-

0.482, 0.103], P(d>0) = 0.089) with a significant interaction effect (d = 1.244, 95% CrI [0.335, 1.714], 

P(d<0) = 0.001). Importantly, in the A1+ group, this effect of sulpiride on precision-weighting 

correlated with the degree of serum levels in the blood (b = 0.356, 95% CrI [0.045, 0.663], P(b<0) = 

0.013, Fig. 3c). 

At this point we also note that there were no differences in initial beliefs (�0) about the 

trustworthiness (b = -0.143, 95% CrI [-0.68, 0.389], P(b>0) = 0.301). Looking at potential asymmetries 

when dealing with uncertainty about positive or negative outcomes, we find that in the A1+ group 

the difference in Ā between placebo in sulpiride is apparent in interactions with both trustees (bbad = 

2.093, 95% CrI [1.103, 3.103], P(bbad <0) = 10e-3, bgood = 1.094, 95% CrI [0.09, 2.06], P(bgood <0) = 

0.014), but is marginally higher for the bad trustee (bgood-bad = -1.009, 95% CrI [-1.962, -0.047], P(bgood-

bad >0) = 0.021, Supplementary Fig. 4). Interestingly, this analysis also showed, that in the A1- group 

there is a significant interaction of sulpiride and trustee effects (bgood-bad = -1.696, 95% CrI [-2.758, -

0.615], P(bgood-bad >0) = 0.001), whereby in that genetic group the effects of sulpiride on belief 

volatility are marginally significant for the bad trustee (bbad = 0.921, 95% CrI [-0.188, 1.995], P(bbad <0) 

= 0.048), but not for the good trustee(bgood = -0.771, 95% CrI [-1.832, 0.26], P(bgood >0) = 0.075). 

D2/D3 receptor antagonism increases choice uncertainty 

In addition to the effect on belief volatility, sulpiride also increases choice uncertainty, by decreasing 

the parameter Ā (b = -1.049, 95% CrI [-1.6, -0.502], P(b<0) < 10e-3, d = -0.979, 95% CrI [-1.535, -

0.455], Fig. 4a), with smaller effects in the A1+ group (b = -0.646, 95% CrI [-1.272, -0.033], P(x>0) = 

0.02, d = -0.608, 95% CrI [-1.206, -0.031]) and more prominent effects in the A2 group (b = -1.44, 95% 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.496956doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496956
http://creativecommons.org/licenses/by-nc/4.0/


CrI [-2.261, -0.639] , P(b<0) = 10e-3, d = -1.351, 95% CrI [-2.133, -0.601]). Since lower values of Ā 

correlated with higher proportion of mistake trials we examined how sulpiride affected the 

proportion of mistake trials and found that it on average increased the number of mistake trials 

(blogodds = 1.172, 95% CrI [0.443, 1.992], P(blogodds <0) < 10e-3, Fig. 4b), an effect driven by the A1- 

group (blogodds = 1.876, 95% CrI [0.781, 3.032], P(blogodds <0) < 10e-3) and was not present in the A1+ 

group (blogodds = 0.468, 95% CrI [-0.535, 1.537], P(blogodds <0) = 0.184) , with a marginally significant 

interaction (blogodds = 0.885, 95% CrI [-0.041, 1.857], P(blogodds <0) = 0.03). The effect of sulpiride on the 

proportion of mistake trials in the A1- group was proportional to the blood serum levels (blogodds = 

0.607, 95% CrI [0.089, 1.142], P(blogodds <0) = 0.011) with no correlation of the A1+ group (blogodds = -

0.328, 95% CrI [-0.818, 0.143], P(blogodds >0) = 0.085). This parameter also determines the skew in the 

distribution of investments, whereby higher values make extreme investments more likely (Fig. 4c, 

d). At this stage we also note that from a perspective of an expected utility maximising agent, 

extreme investments are most optimal (Supplementary Note 2). Individuals with higher Ā therefore 

behave more as rational agents and take the uncertainty of the outcome less into consideration 

when choosing investments. Sulpiride also increased the � parameter (b = 1.459, 95% CrI [0.532, 

2.42], P(b<0) < 10e-3, d = 0.941, 95% CrI [0.331, 1.58]), further advocating for the assertion that 

sulpiride increased the degree to which beliefs about trustworthiness influenced participants’ 
investments. 

In sum, the overall results from the computational modelling suggest that sulpiride treatment led to 

higher choice uncertainty, which was related to increased mistakes in the in the A1- group 

specifically. Sulpiride also increased belief volatility and precision-weights on PEs, an effect that was 

driven by the A1+ group, and in the A1- group was only marginally present for the bad trustee, but 

not present overall. An important final step was to exclude the possibility that this increase in 

updating was due to increased sensitivity to social feedback in general, or due to decreased desire to 

maximise outcomes. For this, we turned to data from single-round social interaction games that 

measure learning-independent positive and negative reciprocity. 

No effect of D2/D3 receptor antagonism on single-round reciprocal behaviour 

In the single-round interaction games the participants played a slightly modified versions of the trust 

game. In the positive reciprocity game, they played the trustee and could reward the investor for 

their decision (Fig. 5a). In the negative reciprocity game, they played as investor and could punish the 

trustee (Fig. 5b). We found no differences between sulpiride and placebo, neither in the amount of 

reward (Back-transfer) in the positive reciprocity game (b = -0.023, 95% CrI [-6.605, 6.263], d = 0.000, 

95% CrI [-0.032, 0.03], Fig. 5c) nor in punishing behaviour in the negative reciprocity game (b = 1.552, 

95% CrI [-0.903, 3.98], P(x<0) = 0.106, d = 0.2, 95% CrI [-0.114, 0.513], Fig. 5d). This implies that the 

drug effect on reciprocal behaviour in the Repeated Trust Game was not due to higher sensitivity to 

social-feedback, or to less rational behaviour. 

Discussion 

Inferring attitudes of others is fundamental to our social functioning, but the neurocomputational 

mechanisms of the updating of beliefs about others are not well understood. We show that blocking 

D2/D3 dopamine receptors has a profound effect on how healthy participants process uncertainty in 

a social context. When playing as investors in the Repeated Trust Game, participants given a high 

dose of sulpiride changed their investment more from one trial to the next. Using a hierarchical 

Gaussian filter to explicitly model the evolution of participants’ beliefs about the trustworthiness of 
the trustees, we show that sulpiride increased belief volatility. This implies that for the participants 
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under sulpiride, the beliefs about the trustworthiness of others were held with less precision (i.e., 

with higher uncertainty), which in turn caused increased precision weights on PEs. This effect was 

more pronounced in participants with at least one minor A1 allele of the Taq1a polymorphism, 

associated with higher endogenous dopamine levels. The increase in precision weights on PEs in that 

genetic subgroup scaled with the sulpiride serum levels in the blood. As a consequence, sulpiride led 

to higher reciprocal behaviour (increased investment after negative back-transfer and decreased 

investment after positive back-transfer), but in the repeated trust game and not when interacting 

with individuals in single-round interactions. Moreover, sulpiride decreased the value of the 

parameter of the model that codes for deterministic action selection policies (Ā), implying higher 

uncertainty about investment selection. The effect was present in both genotype groups. 

On the neurophysiological level, it has been proposed that precision is encoded through the post-

synaptic gain (i.e. amplification or stifling of presynaptic neuronal input) of neurons that propagate 

PE signals (Friston et al., 2012). Our results are in-line with the idea that dopamine binding to D1 

receptors of the medium spiny neurons in the striatum increases the gain on PE signals, while binding 

to D2 receptors decreases gain through disinhibition of the so called indirect pathway (Frank, 2005; 

Yao et al., 2008). Within this framework increased precision-weights following D2 antagonism can be 

explained by more dopamine being available to bind to D1-like receptors, a claim that is further 

substantiated by the observation that the effect of sulpiride was stronger in participants with 

genetically conferring higher presynaptic dopamine availability and lower D2 receptor density. These 

findings extend previous studies highlighting the role of dopamine receptors in coding precision or 

uncertainty in various contexts, such as perceptual and risk-based decision making (Guggenmos, 

Wilbertz, Hebart, & Sterzer, 2016; Schwartenbeck et al., 2015). In particular, previous work has 

shown that sulpiride decreased the perceived precision of temporal expectations (Tomassini, Ruge, 

Galea, Penny, & Bestmann, 2016). In a task where participants were explicitly told about the variance 

of outcomes, they adapted their behaviour accordingly, which led to more optimal choice 

performance (Diederen, Spencer, Vestergaard, Fletcher, & Schultz, 2016). This behavioural pattern 

was accompanied by adaptive PE signals in the midbrain and the ventral striatum. Under 600 mg of 

sulpiride, both the PE scaling as well as the adaptive PE coding in the midbrain and partially in the 

striatum were reduced (Diederen et al., 2017). This suggests that D2 receptors likely play a general 

role in uncertainty coding across various task modalities and contexts. 

Our findings that blocking D2/D3 receptors increases learning rates may seem to be at odds with 

previous work showing that D2/D3 antagonists reduced performance in learning tasks and 

attenuated prediction error signals in the striatum (Jocham et al., 2014; Pessiglione et al., 2006) as 

well as with studies showing no effect of D2/D3 antagonism on learning rates (Jocham et al., 2011, 

2014), even when using similar computational frameworks (Iglesias et al., 2021; Marshall et al., 

2016). It is thus important to consider that the A1 is considered a minor allele of the Taq1a 

polymorphism, meaning that in most other studies participants were likely predominantly A2 

homozygotes. We observed a more general effect of D2/D3 receptor antagonism on choice 

uncertainty that was more prominent in A2 homozygotes and was related to a higher number of 

mistake trials in that subgroup of participants, although the number of mistakes was not high enough 

to reduce investment on average. Furthermore, participants could invest on an ordinal 11-point 

scale, which allowed us to capture smaller belief shifts that might either be missed in learning tasks 

with categorical choice options or be attributed to a different choice selection policy. For example, 

the participants in our study also performed a standard probabilistic two-bandit task afterwards , 

where participants in the A1+ group under sulpiride compared to placebo continued to switch 
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between choice options, which was explained by increased choice stochasticity, parametrized 

through the soft-max decision temperature (Eisenegger et al., 2014). 

The increase in choice uncertainty or stochasticity under sulpiride that we observed, could have been 

due to participants being less motivated to maximise outcome, and therefore less likely to behave as 

a rational <homo economicus= (Camerer, 2003). D2 receptors do play a role in motivation. For 

example, optogenetic excitation and inhibition of D2 receptors in the ventral striatum of rats is 

reported to respectively increase and decrease motivation (Soares-Cunha et al., 2016). Were that the 

case in our study, one would expect a different behavioural pattern in the single shot trust games, 

where rational agents would not punish betrayals nor reward trusting behaviour (Fehr, Fischbacher, 

& Gächter, 2002), which we did not. Alternatively, it is possible that the increased action variability 

resulted from noise in belief updating and not in choice selection per se (Findling, Skvortsova, 

Dromnelle, Palminteri, & Wyart, 2019). What speaks against this interpretation is that the overall 

performance in the task was not reduced following sulpiride administration for neither of the genetic 

subgroups, suggesting that the investment selection under sulpiride was not random, but only less 

precise. 

Indeed, variability in investment selection following sulpiride administration is well in line with what 

we know about the role of dopamine receptors in action selection. In particular, whereby the D1 

receptor expressing cells on the direct pathway facilitate action execution, the D2 receptor 

expressing cells on the indirect pathway suppress action selection (Frank, 2005). Stimulation of D2 

receptors through endogenous dopamine leads to inhibition of the indirect pathway and increases 

the probability of repeating the same action. Accordingly, blockade of postsynaptic D2 receptors 

increases the probability of performing competing actions and therefore promotes randomness in 

action selection (Sridharan, Prashanth, & Chakravarthy, 2006). For example in macaques, 

microinfusion of D2 (but not D1) receptor antagonists into the dorsal striatum led to increased choice 

stochasticity (Lee, Seo, Dal Monte, & Averbeck, 2015) and a similar pattern was observed in D2 

receptor knockout mice (Kwak, Huh, Seo, Lee, & Han, 2014). In humans, a recent positron emission 

tomographic imaging study showed that D2 receptor availability in the striatum correlated with 

deterministic decision-making strategies represented either through decision temperature within 

reinforcement learning as well as with policy precision within active inference (Adams et al., 2020).  

The key idea of active inference models is to extend the Bayesian generative models of beliefs about 

the states of the world, to include beliefs about preferred states, therefore casting both action and 

perception as an inference problem (Friston et al., 2015, 2013). An active inference agent thus 

prefers actions that minimize the statistical distance (relative entropy) between the distributions of 

desired and predicted future states. The expected precision of a policy, in the context of our task, 

controls the confidence with which the participants selected a certain action, which can explain the 

more variable investment we observed in the sulpiride group. Within this framework, we can 

interpret the effects of sulpiride in our study as reflecting a more general role of D2 receptors in 

coding precision of both beliefs and action policies, thus extending previous theoretical and 

experimental work on the involvement of dopamine in modulating precision in predictive coding 

schemes (Friston et al., 2012; Nour et al., 2018; Schwartenbeck et al., 2015). 

Our findings are particularly relevant for understanding the effects of antipsychotic medication in 

patients with psychosis, a disorder characterized by rigid beliefs of persecution, underlined by a 

profound lack of trust in others (Freeman, 2016; Fuchs, 2015). Previous studies with repeated trust 
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games showed that patients with psychosis have lower initial trust and find it hard to change their 

beliefs (Fett et al., 2012; Gromann et al., 2013). Neurocomputational accounts of delusions suggest 

that patients are impaired in forming higher level models and making accurate predictions (Adams et 

al., 2013; Sterzer et al., 2018), leading to a world that is constantly surprising and full of salient 

events that need explanation (Kapur, 2003). As a consequence, patients rely more on internal 

sources of information (Schmack, Schnack, Priller, & Sterzer, 2015; Teufel et al., 2015) and negative 

self-schemas (Bentall, Kaney, & Dewey, 1991; Fuchs, 2015; Rossi-Goldthorpe, Leong, Leptourgos, & 

Corlett, 2021), leading them to <jump to conclusions= (Garety, Hemsley, & Wessely, 1991; Van Der 

Leer & McKay, 2014), and form rigid convictions held with high confidence (Moritz et al., 2014; Rossi-

Goldthorpe et al., 2021; Woodward, Moritz, Menon, & Klinge, 2008). In our data, acute 

administration of an antipsychotic increased belief volatility and reduced deterministic choice 

strategies. Our findings thus support the view that antipsychotics help to reduce the impact of 

distressing beliefs and therefore offer a therapeutic window within which adjunct therapies might be 

more efficient in helping the patients to resolve their issues (Bentall, Kinderman, & Kaney, 1994; 

Hole, Rush, & Beck, 1979; Kapur, 2003). It is however up to future studies to directly test this 

proposal in patients. 

In conclusion, we show that blocking D2 dopamine receptors increases the flexibility of beliefs when 

learning about others. This finding importantly contributes to our understanding of how the brain 

infers the attitudes of other people. By mapping out the connection between alterations in the 

dopaminergic system with specific computational substrates this study not only contributes to the 

advancement of our knowledge of how the brain performs inference, but also to our understanding 

of when it fails appropriately to do so. 
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Figure w Captions 

Fig. 1 | Effects of sulpiride on behaviour in the Repeated Trust Game. a, The participants played 25 

trials with two trustees. Each trial started with an endowment of 10 points to both players. On each 

trial they could invest any integer between 0 and 10. The trustee received a tripled amount of the 

investment and could decide to either equalize payoff or betray the other player and keep all the 

points for himself. The trustees were pre-programmed to be either <good= or <bad=. b, Mean and 

95% CrI of absolute change of investment from one trial to the next for both treatment groups based 

on a Bayesian multilevel model, plotted over raw means for each participant (△). Corresponding 

effect sizes show a main effect of sulpiride, a larger effect of sulpiride on the last trial and a marginal 

effect of sulpiride on the slope across trials. c, Mean and 95% CrI of reciprocal trials (defined as trials 

where investment was increased following positive feedback, or decreased following negative 

feedback) based on a Bayesian logistic multilevel model, plotted over raw proportion of reciprocal 

trials for each participant. Effect sizes in logodds, show a main effect of the drug, driven by the A1+ 

group. 
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Fig. 2 | Computational modelling. a, We defined a generative model that describes the evolution of 

participants’ beliefs about the other person’s trustworthiness as Gaussian random walks. We then 

invert the model using the Hierarchical Gaussian Filter (HGF) and combined the inverted model with 

an ordinal logistic response model to obtain the likelihood function. The HGF generates trial-level 

estimations of participants’ beliefs about the trustworthiness of others as Gaussian variables with 
mean �(ā) and standard deviation �(ā). The precision-weights ÿ(ā) on the prediction error in each 

trial are determined by the precision (inverse variance) of beliefs about the other player’s 
trustworthiness. The evolution of the variances is in turn determined by the belief volatility 

parameter Ā. Initial trustworthiness belief is estimated per participant (�0). How beliefs about the 

others’ trustworthiness map on to investments is governed by the ordinal logistic link function with 
two additional subject-level parameters: choice uncertainty (Ā) and the slope (�). The parameter 

estimation is done through hierarchical Bayesian inference, where we estimate all individual and 

group level parameters as well as drug effects on all parameters in one inferential step. b, Two 

example participants portrays the different behaviours that the model can capture. The participants 

have different belief volatilities for the bad trustee (ĀĀÿý), which determine the degree of 

uncertainty surrounding the trustworthiness beliefs (�(ā)), which in turn determines the degree of 
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belief shifts. c, For each participants we randomly draw parameters from their individual posterior 

distribution, simulate data, and re-estimate the parameters 5 times. Relative high correlations 

indicate that the model parameters are well defined. d, The two main parameters of interest, belief 

volatility and choice uncertainty correlate with distinct features of behaviour.  

 

Fig. 3 | Effects of sulpiride on belief volatility and precision weights. a, Belief volatility boxplots over 

individual means of posterior distributions. Belief volatility is higher in the sulpiride group, and this 

effect is driven by the A1+ group (50% and 95% CrI of effect sizes below). b Precision-weights on PEs. 

Scattered points are meaned precision weights across all trials for each participant. Overlayed group 

level medians with 50% and 95% CrI. The effect sizes were calculated from posterior distributions of 

differences in means across four groups. c, Precision weights correlate with log transformed serum 

levels in the blood. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.496956doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496956
http://creativecommons.org/licenses/by-nc/4.0/


 

Fig. 4 | Effect of sulpiride on choice uncertainty. a, Effects of sulpiride on choice uncertainty, 

estimated in log – space (hence the prime). Dots are participant-level posterior means. The 95% and 

50% CrI of effect sizes show a main effect of sulpiride, driven pa the A1- group. b, Proportion of 

mistake trials is higher following sulpiride administration in the A1- group, but not in the A1+ group. 

Means and 95% quantiles of posterior distributions across the four groups are plotted based on a 

logistic regression model. Corresponding effect sizes below. c-d, The choice uncertainty parameter 

determines the probability weight (c) and therefore the investment distribution (d). Higher values for 

the placebo group (the A1 group in particular) indicate more extreme investment choices and higher 

belief inflexibility. 
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Fig. 5 | Single-round reciprocity games. a, In the positive reciprocity task, participants played as 

trustees were paired with 7 other players. The investor in this version of the game received 800 

points and could either keep everything or give everything to the trustee, who could then decide 

how to split the points. The investors were pre-programmed so that 5 out of 7 transferred everything 

to the trustee. b, In the single-round negative reciprocity game, the participants played the investor. 

In the beginning of the round both players were given 10 points. The investor could then decide to 

transfer everything or nothing. The transferred investment got multiplied by a factor of four and the 

trustee could them decide to either equalize or betray. Crucially, after the choice of the trustee, both 

players received another 20 points and the investor could use his points to punish the trustee, with a 

factor of three. c, d, Mean and 95% CrI of Back-transfer (c) and punishment (d) across the four 

groups, plotted over raw means per participant, with no differences across groups, as evident from 

the means and 95% CrI of effect sizes shown below.  
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Methods 

The data and analysis scripts are available online (https://github.com/nacemikus/belief-volatility-da-

trustgame.git). 

Participants 

Data were collected from 78 male participants, aged between 19 and 44 years (mean= 32.1), 

recruited from a large panel of volunteers, that were genotyped and screened for mental and 

physical health (Cambridge BioResource). Only participants with no history of neurological or 

psychiatric disorder were included in the study. Participants were stratified based on the Taq1A 

genotype into two groups: participants carrying at least one A1 allele (A1+), and A2 allele 

homozygotes (A1-). The study was performed in accordance with the Declaration of Helsinki and 

approved by the National Research Ethics Committee of Hertfordshire (11/EE/0111).  

Procedure 

After arrival participants underwent another psychiatric screening and an alcohol test to exclude 

alcohol consummation on the study day. After an assessment of general intelligence (National Adult 

Reading Test) participants signed an informed consent before they were administered a single oral 

dose of either 800 mg of sulpiride or placebo in a randomized, double-blind fashion. We used the  

parallel group design, because complex behavioural tasks (like the trust game) have practice 

(repetition) effects that can confound the results of within group pharmacological experiments. 

Before behavioural testing participants waited for three hours in a quiet room, where they were 

allowed to read a newspaper. To monitor the effects of the pharmacological manipulation, blood 

pressure and heart rate and mood and drug effects were assessed prior to drug administration and 

after the waiting period. Similarly, blood samples to determine the serum levels were taken at both 

time points. The social interaction tasks presented here included a repeated trust game, and positive 

and negative reciprocity tasks and were part of a test battery that included a working memory task 

and an instrumental learning task, both published elsewhere (Eisenegger et al., 2014; Naef et al., 

2017). Two participants were excluded from the analysis: one felt uncomfortable in the room, and 

one did not sufficiently understand the instructions of the social interaction tasks. This led to the 

following group distributions: 17 A1 allele carriers received placebo, and 21 received sulpiride, and 

21 A2 homozygotes received placebo, and 17 received sulpiride. Participants were matched across 

the four groups for age, body mass index, general and verbal intelligence (Table 1, all p>0.30). 

Participants received a monetary compensation of £50 plus the extra money earned in the 

behavioural tasks. 

Table 1 | Demographic information  

Genotype Treatment N IQ sd Verbal IQ sd BMI sd 

A1+ Placebo 17 120.2 5.333 120.335 5.913 26.098 3.125 

A1+ Sulpiride 21 120.21 7.334 120.355 8.133 26.595 5.74 

A1- Placebo 21 120.05 6.089 120.17 6.76 24.604 4.415 

A1- Sulpiride 17 117.659 7.494 117.518 8.318 25.064 5.393 

sd, standard deviation 

Sulpiride Serum Concentration Measurements 

The level of serum sulpiride was determined by high-performance liquid chromatography. This 

method utilizes fluorescence endpoint detection with prior solvent extraction. The excitation and 
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emission wavelengths were 300 and 360 nm, respectively. Both intra- and inter-assay coefficients of 

variation (CVs) were 10% and the limit of detection was 5–10 ng/ml. 

Prolactin level assessment 

The prolactin level was measured using a commercial immunoradiometric assay (MP Biomedicals, 

Santa Ana, CA, USA), 3h after capsule ingestion. Prolactin levels were expected to increase with 

blocking postsynaptic D2 receptors (Wiesel, Alfredsson, Ehrnebo, & Sedvall, 1982). The intra- and 

inter-assay coefficients of variation were 4.2% and 8.2%, respectively, and the limit of detection was 

0.5 ng ml−1 (Eisenegger et al., 2014). We found that sulpiride administration significantly increased 

blood plasma prolactin levels (Δ = 33.1 mg/ml, p < 10e-3), and this increase was significantly higher 

(p < 10e-3) than the changes in the placebo group (Δ = -0.91 mg/ml, Mann Whitney test for 

differences p < 10e-3). Data for three volunteers were excluded due to blood contamination. 

Side-effects and mood assessments 

Side effects were assessed with a neurovegetative list (Rush, Stoops, Hays, Glaser, & Hays, 2003), 3 h 
after drug intake. Mood was assessed with a visual analogue scale at baseline and 3 h after drug 
intake. Items in the visual analogue scales (VAS) were alert/drowsy, calm/excited, strong/feeble, 

muzzy/clear-headed, well coordinated/clumsy, lethargic/energetic, contented–discontented, 

troubled–tranquil, mentally slow/quick-witted, tense/relaxed, attentive/dreamy, 

incompetent/proficient, happy/sad, antagonistic/amicable, interested/bored and 

withdrawn/gregarious. The factors <alertness=, <contentedness=, and <calmness= were calculated 

from these items (Eisenegger et al., 2010). Data from one volunteer were excluded due to technical 

issues. We found no apparent drug effects on mood, heart rate, blood pressure or self-reported side-

effects (for details see Supplementary Material). 

Repeated trust game 

In the trust game (Berg et al., 1995) an investor (Player A) decides on how much money they want to 

transfer to the other player, called the trustee (Player B). The trustee receives the investment that is 

however tripled by the experimenter and decides on how to split the acquired sum. We used a multi-

round version of the task (King-Casas, 2005), where the interchange between the investor and the 

trustee repeated across 25 trials. In the beginning of each trial both players were endowed with 10 

points, to avoid investments motivated by inequality aversion. Each point converted to two pence at 

the end of the experiment. The participants could invest points on a scale from 0 to 10 and the 

trustee could respond in a binary fashion, by either equalizing the payoff, or defecting by keeping all 

the points in the trial for themselves. Participants played as investors against two pre-programmed 

trustees: one defected in 7 out of 25 trials (the good agent) and the other defected in 18 out of 25 

trials (the bad agent). To increase ecological validity, the participants were led to believe that they 

play against two actual people that have already given their answers in advance several weeks before 

the testing, and that their decision will impact the payoff of these participants. 

Positive and negative reciprocity games 

In the positive reciprocity game, the two players need to distribute 800 points. First, player A is 

offered a distribution whereby they get 800 points and player B gets 0 points. They can decide to 

either keep all the points or delegate the decision on how to divide the points to player B. If the 

decision was to delegate, to player B can decide on any point distribution between the two players. 

Participants in our study played as player B sequentially against 7 different people playing as player 

A. The negative reciprocity game is like a trust game in which defecting behaviour of the trustee can 
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be punished by the investor. Both players are first endowed with 10 points. Player A then decides to 

either transfer his endowment (all the 10 points) all transfer nothing. The transfer of player A is 

quadrupled by the experimenter. Player B can then decide to either keep everything to themselves 

or to equalize the payoff. Following the decision of player B, both players get endowed with another 

20 points and player A can spend each of these 20 points to penalize player B’s outcome, whereby 

each penalty point of player A spent this way deducts three times as many points from player B’s 
outcome. Participants in our study played as player A against 7 different people playing as player B. 

The actions of people playing player B were pre-programmed so that 5 out of 7 defected. 

In both games the participants were told that the players have given their answers already days 

before the testing. Each point converts to 0.2 pence for the positive reciprocity game and 4 pence for 

the negative reciprocity game. 

Behavioural analysis 

Behavioural analysis was done with Bayesian multilevel (generalized) linear regression (McElreath, 

2018), fitted with the brms package in R (Bürkner, 2017). All models were run with 4 chains, 3000 

iterations each with 800 warmup. The quality of chain convergence was inspected visually based on 

trace plots of main fixed effects, and a threshold on Gelman-Rubin R̂ Statistic for each parameter was 

set to 1.01 (Gelman & Rubin, 1992). Throughout the behavioural analysis we z-scored the dependent 

variables, coded the Treatment variable as 0 (placebo) and 1 (sulpiride), Back-transfer as 1 (equalize) 

and -1 (betray), Genotype as 0 (A1-) and 1 (A1+) and centred the trustee variable (0.5 for good, and -

0.5 for bad trustee). All random effects were modelled as a multivariate normal distribution, thereby 

evaluating the correlation between the effects as well as pooling information across the effects. 

Priors used are depicted in Table 2. The effect sizes where calculated by dividing the regression 

coefficients with the square root of summed variances of the residuals and of all random effects 

(Nalborczyk, Batailler, Loevenbruck, Vilain, & Bürkner, 2019). All models were redone also in the 

lme4 package (Bates, Mächler, Bolker, & Walker, 2014) or nlme package (Pinheiro, Bates, DebRoy, 

Sarkar, & Team, 2007), and the results of those models are reported in the supplementary material. 

Analysing investment behaviour 

All model summary tables are in the supplementary material. The effect of sulpiride on absolute 

change from one trial to the next was evaluated with a model predicting effects on absolute change 

of sulpiride and trials with random intercepts for each participant. We also rerun the model including 

a participant-level slope for the trial and found that it does not affect inference about the main 

effect, but does increase the uncertainty around the interaction term. Next, the Genotype and 

Trustee as group level predictors were included as well as a random slope for the Trustee for each 

participant. Since the dependent variable is bounded at 0, the same analysis was done again with the 

dependent variable shifted by 1 and log transformed. This did not affect the conclusion of the model.  

To analyse relative changes in investment the z-scored relative change from one trial to the next was 

predicted from the variable for Back-transfer (coded as -1 and 1), Treatment, Genotype, Trustee as 

well as their interactions, with a participant-level random intercept and slope for the Trustee.  

The reciprocal and mistake trials were analysed with a multilevel logistic regression model including 

predictors Treatment, Genotype, Trustee, and their interaction, again with a random intercept and 

slope for the effects of the Trustee for each participant. 
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To analyse average investments, we used a multilevel ordinal-logistic regression model, with 

Treatment, Genotype, Trustee, Trial and their interaction, with a random intercept and slope for the 

effects of the Trustee for each participant. 

Models analysing the single-round reciprocity tasks predicted Punishment (negative reciprocity) and 

Back transfer (positive reciprocity) from Treatment, Genotype and their interaction, including a 

random intercept per participant. 

Table 2: Prior distributions for the analysis of investment changes 

Standard Deviations �~ ����������(�,�) 
Regression Coefficients ÿ~ Ć(0,3) 
Prior for the correlation matrix  ý~ĄăĂāāĄĄ(2) 

 

Computational modelling 

We first defined a generative model of the evolution of beliefs about the other players’ 
trustworthiness as a Gaussian random walk. The belief volatility parameter Ā describes the degree to 

which these beliefs can change from one trial to the next. We then used the Hierarchical Gaussian 

Filter (HGF) to invert this model (Mathys et al., 2011). 

Generative Model 

The generative model describes the evolution of beliefs about the other person’s trustworthiness as 

a Gaussian random walk with a step size of exp(Ā). In particular, at trial Ć the belief on the other 

player’s trustworthiness is defined as  þ(ā)~ ĆāĄÿÿþ(þ(ā21), e�), 
where Ā is a participant level parameter. The mapping from the trustworthiness beliefs to the 

probability of a positive Back transfer (ýÿ) occurs through a sigmoid transform ą(. ). So, at trial Ć we 

define: ýÿ(ā) = ýăĄĀāćþþ�(ą(þ(ā)), ą(þ) = 1/(1 + ă�) 
Model inversion and update equations 

To define the inferred participant level belief trajectories the generative model is inverted using 

Hierarchical Gaussian Filtering (Mathys et al., 2011, 2014). The HGF approximates full Bayesian 

inference using variational Bayes to derive at trial level update equations that resemble those of a 

Kalman filter (Gershman, 2015; Kakade & Dayan, 2002). In particular, the weights (learning rates) on 

the PEs are determined by the precision of prior beliefs as well as the uncertainty about the 

outcome. The HGF provides inferred posterior distributions of participants’ belief trajectories as 

Gaussians through the mean �(ā) and variance �(ā)2 or its inverse, the precision �(ā) in the update 

equations for both time series:  Ă(ýÿ(ā) = ăăćÿþ�Āă) = ą(�(ā)) ā(ā) = ýÿ(ā) 2 ą(�(ā)) �(ā+1) = �(ā) + ÿāĈĀ 
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ÿā = 1/�(ā+1) �(ā+1) = 1/( 1�(ā) + exp(Ā)) + (ą(�(ā)) ∗ (1 2 ą(�(ā))) 
This is a so-called recognition or perceptual model and describes our beliefs about the belief of the 

participants. To map these beliefs on to the behaviour of the participant a response model is defined 

through a likelihood function. Because investments occur on an ordinal scale we used the ordered 

logistic link function (Bürkner & Vuorre, 2019): Ĉ(ā(ā) = ý)~ćĄĂăĄăĂ 2 Ąāą�Ć(ÿ ∗ Ăý(ą(�(ā))), þ) 
Ăý(þ, Ā) = þ�þ� + (1 2 þ)� 

Where þ is a vector of intercepts and Ăý(. ) is a probability weighting function on the unit interval. 

The ordered-logit estimates 10 intercepts, that determine the mapping from the linear term to the 

ordinal investments. In an ideal case, we would estimate all 10 intercepts for each subject, which was 

not feasible with our data. We therefore estimate the 10 intercepts for all subjects, add one subject-

level intercept in the linear term and assist the model in accounting for the various investment 

distributions with the probability weighting (Ăý). We compared this model to an HGF model without 

the probability weighting function and a simple Rescorla-Wagner model (Rescorla & Wagner, 1972) 

with separate learning rates for positive and negative feedback. 

Parameter Estimation 

The model parameters were estimated in one hierarchical Bayesian model. This approach reduces 

overfitting (McElreath, 2018), pools information across different levels (drug groups, and 

participants) and allows us to estimate both participant and group level parameters in one inferential 

step. Meaning, we estimate the effects of our drug manipulation on all relevant computational 

parameters in one model, while at the same time, leading to more stable parameter estimates (Ahn, 

Haines, & Zhang, 2017). Models were implemented in Stan (Carpenter et al., 2017) using R as the 

interface. Each candidate model with four independent chains and 3200 iterations (800 warm-up). 

Convergence of sampling chains was estimated through the Gelman-Rubin ý̂ statistic (Gelman & 

Rubin, 1992), whereby we considered ý̂ values smaller than or equal to 1.01 as acceptable. 

The intercepts from the response model, āý , ý = 1,& ,10, were estimated on the group level. This 

determined a general mapping from the probability to Investment. The participant level parameters 

(Ā, ΔĀ, Ā, � and �0) were modelled as a multivariate Gaussian distribution: 

( 
 ωΔĀĀ′��0) 

 ~ą�ĆāĄÿÿþ(μ,   þ) 
Where þ is the covariance matrix and � is the vector of means. The ΔĀ parameter denotes the 

modelled difference in Ā between the good and the bad Trustee. The matrix þ was factored into a 

diagonal matrix with standard deviations and the correlation matrix ý (Bürkner, 2017; McElreath, 

2018). The prime denotes the parameters in estimation space, whereby Ā was estimated in log 

space, due to it being lower bound by 0. The vector � included all group level regression coefficients 
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for the drug, genotype, and their interaction. Meaning, that participant level Ā parameters were 

drawn from a distribution with the following mean: �1 = �� + ÿýÿĂ�� ∗ ÿĄćą + ÿ�þÿþ� ∗ ÿăĀāĆÿĂă + ÿĀĂþ∗�þÿþ� ∗ ÿĄćą ∗ ÿăĀāĆÿĂă + ÿĄćąĆăă ∗(�Δω +  ÿýÿĂ�∗āÿĂĀāþþ� ∗ ÿĄćą + ÿ�þÿþ∗āÿĂĀāþþ� ∗ ÿăĀāĆÿĂă + ÿĀĂþ∗�þÿþ∗āÿĂĀāþþ� ∗ ÿĄćą ∗ ÿăĀāĆÿĂă) 

And the means of the rest of the parameters were defined as: �2,3,4 = �∗ + ÿýÿĂ�∗ ∗ ÿĄćą + ÿ�þÿþ∗ ∗ ÿăĀāĆÿĂă + ÿĀĂþ∗�þÿþ∗ ∗ ÿĄćą ∗ ÿăĀāĆÿĂă 

Using the following priors  ÿ∗ ~ Ć(0,1)   ��~Ć(22,1) �Δω~ Ć(0,1)  �� ~ Ć(10,1) ��~Ć(0.0.5) ��0~ Ć(0,1)  āý~Ć(0,5) �~ĀĆ(0,0.2) ý~ĄăĂāāĄĄ(2) 
where ÿ2 ∗  are coefficients, drawn from Ć(0,1). The priors for group-level means for non-

transformed parameters were weakly informative, for Ā, estimated in log-space, the prior was Ć(0,0.5), the prior for group-level standard deviations were more regularizing, with �  ~ĀÿþĄĆāĄÿÿþ(0,0.2), and the prior for the correlation matrix was ý~ĄăĂāāĄĄ(2). The prior for 

group level � was set to something above 0, because chains that sampled from areas too close to 0 

usually got stuck in that area. 

Model Validation and Comparison  

For parameter recovery 5 parameter sets were drawn from each participant’s mean and standard 

deviation and used to simulate data. Simulated data were then estimated with the same model and 

the re-estimated parameters were correlated with the simulated ones. Further, posterior 

distributions of parameters were used to simulate data and check whether the crucial aspects of 

behaviour are captured by the model. A trial based Leave-One-Out Information Criterion (LOOIC) was 

used to compare the three models (Vehtari, Gelman, & Gabry, 2017) using the loo package in R. The 

LOOIC approximates out-of-sample predictive accuracy of each trial, with lower LOOIC scores 

indicating better prediction accuracy out of sample. 
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