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Task-related neural activity is widespread across populations of neurons during goal-directed

behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that

lead to broad activity changes. Here we trained a limited subset of neurons in a spiking network

with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during

a decision-making task. We found that task-related activity, resembling the neural data, emerged

across the network, even in the untrained neurons. Analysis of trained networks showed that strong

untrained synapses, which were independent of the task and determined the dynamical state of the

network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the

motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks.

Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by

spreading the activity from a subset of plastic neurons to the entire network through task-independent

strong synapses.

Introduction

Large-scale measurements of neural activity show that learning can rapidly change the activity of many

neurons, resulting in widespread changes in task-related neural activity [1, 2, 3, 4, 5]. For instance, a goal-

directed behavior involving motor planning produces macroscopic neural dynamics that is coordinated

by multiple cortical areas [1, 3], and neural correlates of action and choice made during a decision-making

task are organized spatially across brain regions [4].
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To gain insights into the circuit mechanism behind the observed widespread activity, it is critical

to understand how interconnected neural circuits modulate their synaptic connections to produce the

observed changes in task-related neural activity. Tracking synaptic modifications during learning [6, 7, 8,

9] and manipulating them to demonstrate a causal link with behavioral outputs [10, 11, 12, 13, 14], show

that synaptic plasticity underlies learned behaviors and changes in neural activity [15, 16]. However, it

is highly challenging to conduct multi-scale experiments that monitor and manipulate learning-specific

synaptic changes at cellular resolution across a wide region of cortical networks, while measuring the

resulting neural activity [17]. Thus, it remains unclear what aspects of the synaptic connections are

modified to produce the widespread changes in task-related neural activity.

Here we investigated if task-related activity, learned locally in a dedicated subset of neurons,

can spread across the network through pre-existing, task-independent, synaptic pathways. Although

distributed neural activity may result from broad changes in synaptic connections across a neural network,

we hypothesized that recruiting only a small subset of neurons is sufficient to generate the distributed

task-related neural activity. To test this hypothesis, we used recurrent neural networks that provide a

powerful data-driven approach for investigating how synaptic modifications can support the observed

task-related neural activity. [18, 19, 20, 21, 22].

In typical implementations of network training, all the neurons in the network are considered to

be plastic, in that the activity of every neuron is fit to the activity of experimentally recorded neurons,

thereby constraining the entire network activity to the neural data [19, 20, 21]. In this study, we instead

trained only a subset of neurons in a biologically plausible network to reproduce the activity of recorded

neurons. The network consisted of excitatory (E) and inhibitory (I) populations of spiking neurons with

sparse and strong connections [23, 24, 25]. Such pre-existing, task-independent, connections made the

network settle into a cortical-like dynamical regime, where excitation and inhibition balanced each other

[23, 25, 26], resulting in temporally irregular spikes and heterogeneous spike rates [27].

We applied our modeling framework to study the spread of task-related activity in the anterior

lateral motor cortex (ALM) of mice performing a memory-guided decision-making task [21]. Similarly

to neurons in the primate motor cortex [28, 29, 30], the activity of many neurons in ALM ramps slowly

during motor preparation and is selective to future actions [21, 31, 32]. These task-related activity

patterns are widely distributed across the ALM and are highly heterogeneous across neurons.

When a small number of synapses was trained to reproduce the ALM activity in a subset of neu-

rons, we found that, surprisingly, the emerging activity in the untrained model neurons closely matched

the responses of ALM neurons held out from training. In other words, the task-related ALM activity,

learned in a subset of neurons, spread to other untrained neurons in the network without further training

and produced activity that resembled the actual responses of ALM neurons. Analysis of the trained

networks revealed that the pre-existing strong synapses between the neurons mediated the propagation

of the task-related activity. The trained activity failed to spread in networks of neurons that were not

strongly coupled. Optogenetic perturbation experiments of ALM activity provided additional evidence
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that the ALM network is strongly coupled, supporting the proposed mechanism for the spread of trained

activity.

Our work provides a general circuit mechanism for spreading activity in cortical networks. It

suggests that task-related activity observed in cortical regions during behavior can emerge from a subset

of neurons with sparse synaptic reorganization and propagate to the rest of the network through the

strong, task-independent synapses.

Results

Training strongly coupled spiking neural networks with sparse synapses

Our spiking network was based on a cortical circuit model that provided mechanistic explanation of

the canonical features of cortical activity, such as temporally irregular spike trains, large trial-to-trial

variability and a wide range of firing rates across neurons [23, 24, 25, 27, 33]. It consisted of excitatory (E)

and inhibitory (I) neurons sparsely and randomly connected by strong synapses. This initial EI network

structure, due to its random connectivity, was independent of the task to be learned. In addition, the

strong excitatory and inhibitory synaptic inputs were dynamically balanced to maintain a stable network

state, known as the balanced regime. As in the cortex, neurons, driven by fast fluctuating synaptic inputs,

emitted spikes stochastically in this network state.

Here we describe a training scheme referred to as Subset Training, which trains a subset of

neurons in the EI spiking network to generate target activity patterns, with the rest of the neurons

untrained (Fig. 1A, left). After training the selected subset of neurons, we can analyze if the learning-

related changes in activity spread throughout the network (Fig. 1A, right).

To model the effects of learning, a relatively small number of plastic synapses connecting to

the subset of neurons was introduced to the existing EI spiking network. We implemented such network

architecture by decomposing the recurrent connectivity into static and plastic components. The static

component was the strongly coupled EI network connectivity that made the network operate in the

balanced regime (Fig. 1A, solid arrows). It remained unchanged throughout network training. For the

plastic component, we added sparse connections, that were sparser than the EI connectivity (Fig. 1A,

magenta dashed arrows). The choice of sparse plastic synapses was, in part, motivated by the synaptic

connectivity found in the cortex that is sparse but functionally biased [34]. For instance, with K = 1000

static synapses, there were of the order of
√
K ≈ 30 plastic synapses per neuron (Table 2). The plastic

synapses were connected only to the trained neurons from randomly selected presynaptic neurons. During

network training, a synaptic learning rule based on recursive least squares [19, 35, 36, 37] optimized the

strength of plastic synapses to generate the target activity patterns in the selected subset of neurons.

This arrangement of plastic synapses, which connected only to the selected subset of neurons,
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allowed us to examine the role of the pre-existing recurrent connections of the EI network in spreading the

trained activity to the untrained neurons, which were not targeted by the plastic synapses. In addition,

due to their sparsity, the plastic synaptic inputs were substantially weaker than the strong excitatory

and inhibitory synaptic inputs of the existing EI network (Fig. 1B). This allowed the network to stay in

the balanced regime after training and supported robust network training, independent of the density of

synaptic connections (Fig. S1; see Methods for full description of the training and details on the sparse

plastic synapses).

In the trained network, the total synaptic input to each trained neuron was able to successfully

follow the target patterns (Fig. 1B, left; Fig. 1C). The statistics of spiking activity of the trained network

were similar to those of untrained, strongly coupled EI networks, thus consistent with the spiking activity

of cortical neurons. Specifically, due to the highly fluctuating balanced input, the spike trains of each

neuron were irregular and exhibited large trial-to-trial variability (Fig. 1D, Fano factor = 1.4) [23, 24, 38].

The firing rate distribution was also highly skewed and was well approximated by a log-normal distribution

(trained model: Fig. 1E, neural data: Fig. S2D) [27].
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Figure 1: Training a subset of neurons in a strongly coupled spiking neural network with sparse

plastic synapses. (A) Schematic of the Subset Training method (left). The network consisted of excitatory

(green) and inhibitory (orange) neurons. Selected neurons (dark magenta, left) were trained to generate task-

related activity patterns, modeled here as 1Hz sine waves with random phases (cyan curves), by modifying plastic

synapses (dashed arrows, magenta) to the selected neurons. The static synapses (solid arrows, excitatory: green,

inhibitory: orange) remained unchanged throughout training. External stimulus (blue pulse) triggered the neurons

to generate the trained activity patterns. After training (right), task-related activity could potentially spread to

the rest of the untrained neurons (light magenta, right) (B) The total synaptic input (left panel) to a trained

neuron followed the target pattern (cyan) when triggered by an external stimulus (blue region). The total input is

the sum of the balanced input, denoted as ubal, from static synapses (black; middle panel) and the plastic input,

denoted as uplas, from plastic synapses (magenta; right panel). The balanced and plastic inputs can be further

divided into excitatory (green) and inhibitory (orange) inputs. The spike-threshold of the neuron is at 1 (red

dotted line). Note the scale difference between the balanced and plastic inputs. (C) Additional examples of the

total synaptic inputs (same as the left panel in (B)) to trained neurons (bottom) following the target patterns

(cyan); the 200ms moving average is shown in gray. Spike trains emitted by the neurons across 30 trials are shown

on the top. (D) Fano factor of spike counts across 30 trials. (E) The log of firing rates of trained neurons. All

neurons in the network were trained in this demonstration of the Subset Training method.
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Spread of trained neural activity to untrained neurons

We applied the Subset Training method to reproduce the firing rate patterns of cortical neurons recorded

from the anterior lateral motor cortex (ALM) during a memory-guided decision-making task [21]. Mice

learned to respond to an optogenetic stimulation of neurons in the vibrissal somatosensory cortex (vS1)

by licking right when stimulated and licking left otherwise (Fig. 2A). For training networks and analysis

of trained networks, we used the electrophysiological recordings in ALM of the spiking activity of putative

pyramidal neurons (excitatory; Npyr = 1824) and putative fast-spiking neurons (inhibitory; Nfs = 306)

when the mice responded correctly to lick-right and lick-left conditions.

We asked what aspects of the network connectivity should change to reproduce the activity

of ALM neurons in a strongly coupled spiking neural network. In previous studies, in which networks

were trained to generate specific patterns of neural activity, all the units in the network were trained

to reproduce the target activity patterns [18, 19, 20, 21]. Here, we trained only a subset of neurons,

embedded in the strongly coupled EI network, to reproduce the spiking activity of ALM neurons. By

analyzing the activity of neurons in the trained network, we found that synaptic reorganization to a

subset of neurons was sufficient to generate the observed ALM activity throughout the entire network,

including the untrained neurons. Importantly, the spread of target activity patterns from the subset

of trained neurons to the rest of neurons was not observed in a network that was not strongly coupled

(Fig. S9). This suggests that the spread of trained activity to untrained neurons is a characteristic of

strongly-coupled networks, but not a general outcome of recurrent networks.

The training targets were the trial-averaged peri-stimulus time histogram (PSTH) of pyramidal

neurons recorded in ALM during the delay period (Fig. 2B, bottom). We trained a subset of excitatory

neurons in the model network to reproduce the target activity patterns (Fig. 2C). Each trained neuron

received recurrent plastic synapses from randomly selected excitatory and inhibitory neurons in the

network and feedforward plastic synapses from external neurons, which accounted for the potential inputs

from outside the ALM. By modifying the plastic synapses, the trained neurons reproduced two PSTHs,

corresponding to lick-right and lick-left conditions, when evoked by two different stimuli. The rest of the

excitatory, as well as all of the inhibitory neurons in the network, were not trained (Fig. 2C).

After training, the firing rate of trained excitatory neurons successfully reproduced the PSTHs

of pyramidal neurons (Fig. 2B, top; Fig. S2A,B), even though the plastic synaptic inputs were sub-

stantially weaker than the excitatory and inhibitory inputs from the static synapses (Fig. S2C, right).

We estimated the correlations between single neuron PSTHs in the model and in the data (Fig. S2C,

left), as well as the similarity in their population activity (Fig. 2E, left) to asses the success of the

training. For the latter, we performed Principal Component Analysis (PCA) on the PSTHs of neurons,

which is a dimensionality reduction technique used for identifying a set of activity patterns that captures

a large fraction of variance in the population activity. The principal components (PCs) of the PSTHs of

the trained excitatory neurons closely matched the PCs of the pyramidal neurons. Moreover, the first

six PCs explained close to 80% of the trained neurons’ activity, thus the recurrent network displayed
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low-dimensional dynamics as in the pyramidal neurons in ALM (Fig. 2E, right) [39].

Next, we examined the activity of the untrained neurons. Similarly to the trained excitatory

neurons, their activity tended to ramp before go-cue and was choice-selective (Fig. 2D, top). The PCs

of their PSTHs were almost identical to the trained excitatory neurons (Fig. 2F, right; Fig. S3E). This

finding showed that cortical-like activity generated within the subset of excitatory neurons spread to the

the rest of the network without additional synaptic reorganization to the untrained neurons.

Finally, we found that the PCs of the PSTHs of the fast-spiking ALM neurons, whose activity

was not learned by the network, were almost identical to the PCs of the untrained inhibitory model

neurons (Fig. 2F, right). For the lick-left trial, the higher PC modes (i.e., PC4 and PC5) of the

inhibitory model neurons and fast-spiking ALM neurons (Fig. S3E, left) both mildly deviated from the

corresponding PCs of trained neurons (Fig. S3C, left), but still closely resembled each other. A good

agreement between the untrained model neurons and the held-out neural data supported the hypothesis

that cortical-like activity learned within a subset of neurons can spread and produce cortical-like activity

in the entire network. This could explain why the activity of putative fast-spiking neurons in ALM is

heterogeneous, yet is very similar to the activity of putative pyramidal neurons [21].
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Figure 2: Reproducing ALM activity in a subset of neurons and the spread of trained activity

to the entire network. (A) Schematic of experimental setup. Mice learned to lick right when optogenetic

simulation was delivered to somatosensory neurons and to lick left when there was no stimulation. The spiking

activity of ALM neurons was recorded during the task. (B) Trial-averaged firing rates and raster plots of the

spike trains across multiple trials (lick-right: blue, lick-left: red). Trained excitatory model neurons (top) and

pyramidal ALM neurons used for training the excitatory model neurons (bottom). (C) A subset of excitatory

neurons in the spiking neural network learned to reproduce the PSTHs of pyramidal ALM neurons. The rest of

the neurons in the network were not trained. After training, the activity of untrained inhibitory model neurons

was compared to the activity of fast-spiking ALM neurons. (D) Trial-averaged firing rates and raster plots of

the spike trains across multiple trials (lick-right: blue, lick-left: red). Untrained inhibitory model neurons (top)

and fast-spiking ALM neurons (bottom) that best resembled the PSTHs of the inhibitory model neurons (see

also Fig. 3 and Fig. S4). (E, F) The principal components (PCs) of the PSTHs of excitatory/pyramidal and

inhibitory/fast-spiking neurons (model/data) and the cumulative variances explained by the PCs.
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Similarity in the neural activity of untrained model neurons and ALM neurons

To further investigate the similarities between the activities of the untrained inhibitory neurons in the

trained network and the fast-spiking ALM neurons, we compared their PSTHs at the single neuron and

population levels.

At the single neuron level, we identified an untrained inhibitory neuron that best matched each

fast-spiking ALM neuron, based on the mean-squared-error of the PSTHs of all possible pairings between

the ALM neuron and the population of inhibitory model neurons. Figure 3A shows the PSTHs of several

matched pairs and their correlations for the lick-right and lick-left trials (see Fig. S4 for all the matched

pairs). Evaluating the correlations of all the matched pairs showed that they were significantly higher than

the spurious correlations obtained by matching the fast-spiking ALM neurons to inhibitory neurons in an

untrained balanced network (Fig. 3B, left; two sample Kolmogorov-Smirnov tests; p-value < 0.0001).

To elucidate which aspects of the fast-spiking ALM activity were captured by the untrained

inhibitory neurons in the trained network, we examined if certain activity patterns of the fast-spiking

ALM neurons were indicative of the goodness-of-fit to the model neurons. We found that the projection of

the PSTHs of the fast-spiking ALM neurons onto their first PC, a ramping mode that captured over 70%

of the variance in the ALM activity (see PC1 in Fig. 2F), was a good indicator for how well the untrained

model neurons could fit the fast-spiking ALM neurons (Fig. 3B, right). This analysis suggested that the

ramping mode was the dominant component of the trained activity that was transferred to the untrained

inhibitory neurons and shared with the fast-spiking ALM neurons.

We systematically examined the activity patterns shared by the populations of untrained in-

hibitory neurons and fast-spiking ALM neurons, by analyzing the shared-variance between the two pop-

ulation activities. The shared-variance analysis identified population vectors along which two population

activities co-varied maximally and yielded population-averaged activity along those directions (shared

components) and the proportion of variance explained by the shared components (shared variance; see

[40] and Methods for details). The shared components (SCs) were similar to the PCs of the untrained in-

hibitory subnetwork and fast-spiking ALM activities (compare the SCs in Fig. 3C to the PCs in Fig. 2F),

and the first four components captured most of the shared variance (Fig. 3C). In particular, consistent

with the single neuron analysis shown in Fig. 3B, the first shared component was a ramping mode (SC1

in Fig. 3C).

In addition to the spiking activity patterns, we asked if functional properties, such as choice

selectivity, were transferred to the untrained neurons in the trained network. It has been shown that

pyramidal ALM neurons in mice display selectivity to the animal’s choice [21, 39, 41]. As expected, the

excitatory model neurons, trained to reproduce the activity of pyramidal ALM neurons, also displayed

choice selectivity (Fig. S5). Interestingly, we also found that the fast-spiking ALM neurons in the neural

data were choice selective (Fig. 3D,E; see also Supplementary Fig. 2 in [21]). These observations led us

to examine if the untrained inhibitory neurons in the trained network exhibited choice selectivity, as in
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the fast-spiking ALM neurons.

To this end, we analyzed the difference of the PSTHs to two trial types (lick-right versus lick-

left) in all the untrained inhibitory neurons and found that they displayed choice selectivity (Fig. 3D).

Moreover, the distribution of the choice selectivity of fast-spiking ALM neurons and untrained inhibitory

neurons were in good agreement (Fig. 3E). This finding shows that not only the trained neural activity can

propagate throughout the network, but the choice selectivity emerged in a subset of neurons can spread

to the untrained parts of the network as well. In particular, this suggests an alternative mechanism for

how selectivity may emerge in inhibitory neurons. In contrast to previous models that required specific

connectivity between excitatory-inhibitory neurons for selective responses to emerge [42, 43], our model

suggests that choice selectivity in inhibitory neurons can arise in strongly coupled networks even when

the connections to the inhibitory neurons are non-specific.
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Figure 3: Untrained inhibitory neurons in the trained network display similar task-related activity

to the fast-spiking neurons recorded in the ALM. (A) Examples of the PSTHs of untrained inhibitory

neurons (lick-left: red, lick-right: blue) that best fit the PSTHs of fast-spiking ALM neurons (black). Correlations

of the matched pairs are shown in each panel. (B) Correlations between the PSTHs of all the matched inhibitory

model neurons and the fast-spiking ALM neurons for the lick-right and lick-left trial types (left). The null network

shows the correlation between the PSTHs of the fast-spiking ALM neurons and the best-fit neurons in the initial

balanced network, i.e., without training. The PSTHs of the neurons in the trained and the null networks were

both obtained by averaging the spike trains from 400 trials starting at random initial conditions. The p-values of

the Kolmogorov-Smirnov tests between the trained and null networks for both trial types are shown. PC1 (right)

represents the projection of the PSTH of a fast-spiking ALM neuron onto the first PC, i.e., the ramping mode

(see Fig. 2F). R-squared value of the linear regression is shown. (C) Shared components (SC) and the cumulative

shared variance explained by them for the lick-right (top) and lick-left trial types (bottom). The null network

shows the shared variance between the fast-spiking ALM neurons and the initial balanced network. (D) Choice

selectivity of all the untrained inhibitory neurons in the trained network (left) and the fast-spiking ALM neurons

(middle). Choice selectivity was defined at each time point as the difference of the PSTHs to the lick-right and

lick-left trial types, and then normalized by the average firing rate of each neuron. (E) Distribution of choice

selectivity of untrained inhibitory neurons in the trained network (orange) and fast-spiking ALM neurons (black).

Choice selectivity of a neuron shown here was obtained by averaging the choice selectivity over the 2 second time

window shown in (D). 11
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Spreading of trained neural activity improves if the inhibitory subnetwork is

trained

So far, we showed that the cortical-like activity originating from the excitatory neurons can spread to

the untrained inhibitory neurons. Next, we asked how the spreading of trained activity may depend on

the type of neurons being trained. To address this question, we considered two training scenarios where

either the excitatory or the inhibitory subnetwork (but not both) was trained to generate the target

activity patterns (Fig. 4A, right).

The number of fast-spiking ALM neurons recorded from the mice (Nfs = 306) was, however, too

small to train the inhibitory neurons in large-scale spiking neural networks. We thus developed a method

to generate synthetic neural activity that had similar low-dimensional dynamics as the ALM neurons.

Briefly, we first performed principal component analysis on the PSTHs of ALM neurons to obtain the

PCs (Fig. 2E, F) and the empirical distribution of each PC’s loading onto the neurons. To construct a

synthetic target activity for neuron i, we sampled (1) a baseline rate ri from the firing rate distribution

and (2) each PC’s loading on the neuron from the empirical distribution, conditioned on the rate ri (see

Fig. S6 and Methods for details). Applying this method to the lick-left and lick-right trial types and

to pyramidal and fast-spiking neuronal types, we were able to generate unlimited number of cortical-like

PSTHs needed for training large-scale networks consisting of, e.g., N = 30, 000 neurons. In particular,

these synthetic neural activity had statistically identical low-dimensional dynamics as the ALM neurons

(Fig. S6E)

Using the synthetic neural activity as the target activity patterns, we performed the two training

scenarios where we trained a subset of neurons in the excitatory or the inhibitory subnetwork to reproduce

the synthetic neural activity. Following training, we compared the spiking activities of the untrained

neurons in the subnetworks that were not trained.

We first observed that the PCs of synthetic neural activity was transferred to the untrained

neurons when a sufficient number of neurons were trained (Fig. 4D, right). Such transfer of PCs was

similar to what we found in the untrained inhibitory neurons when the excitatory neurons were trained

on the activity of ALM pyramidal neurons (Fig. 2E,F). Based on the transfer of PCs and the low

dimensionality of ALM activity, we used the variance explained by the first six PCs of the PSTHs of

the untrained neurons to quantify the transferred cortical-like activity. In the trained neurons, the first

six PCs explained 80% of the activity, regardless of the trained neuronal type (E or I) or the fraction

of trained neurons (Fig. S7A). On the other hand, the cortical-like activity transferred to the untrained

neurons gradually increased with the fraction of trained neurons. Moreover, the transferred activity

was stronger by 20% when the inhibitory subnetwork was trained, compared to when the excitatory

subnetwork was trained (Fig. 4A, left).

To understand what allowed the activity patterns of inhibitory neurons to spread better to

the untrained neurons, we examined the differences in the spiking activities of the pyramidal and fast-
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spiking ALM neurons. The mean firing rate of each neuron was subtracted from its PSTH to remove

the differences in the baseline firing rates of the pyramidal and fast-spiking ALM neurons (Fig. 4B,

right). The principal component analysis of the centered PSTHs revealed that the strength of every PC

was stronger in the fast-spiking neurons than in the pyramidal neurons, when the loadings on each PC

were averaged over the population of neurons (Fig. 4B, left). This analysis showed that the modulation

of firing rate around the mean rate was larger in the fast-spiking neurons, raising the possibility that

stronger rate modulation leads to stronger activity transfer.

To test if stronger modulations in the trained activity patterns would increase the transferred

activity to the untrained neurons, we adjusted the modulation strength of the synthetic inhibitory activity

and trained a fixed subset of inhibitory neurons to generate target activity patterns with different levels

of rate modulations. We found that, in the untrained excitatory neurons, the variance explained by

the cortical-like activity increased monotonically with the modulation strength of the trained inhibitory

neurons. (Fig. 4C). These results suggested that the stronger rate modulations in the fast-spiking ALM

neurons enabled the trained inhibitory neurons in the model to spread their activity patterns to the

untrained neurons more effectively. It also suggested that inhibitory neurons, whose baseline spiking

rates are typically higher than the excitatory neurons in cortex (e.g., mean firing rates of ALM pyramidal

and fast-spiking neurons were ∼ 4Hz and ∼ 11Hz, respectively, in our data), can support stronger rate

modulations and potentially play a more significant role in spreading the trained activity patterns.

The finding that activity patterns with strong rate modulation spread better was also observed

across the PCs. The lower PC modes of the ALM spiking activity showed stronger modulation than the

higher PC modes, as expected, since the lower PC modes capture more variance (Fig. 4B). To quantify

how well the trained PCs transferred to the untrained neurons, we computed the correlation between the

PC modes of the trained and transferred activity (Fig. 4D, left). The lower PC modes (PC1 to PC3)

transferred with high fidelity even when only 20% of the neurons were trained. On the other hand, the

transfer of the higher PC modes (PC4 to PC6) improved gradually when the fraction of trained neurons

increased. This result suggested that the lower PC modes, due to their strong modulations, can spread

more robustly to the rest of the neurons, promoting low-dimensional neural dynamics across a strongly

coupled network.

Taken together, our results demonstrate that trained activity patterns with stronger rate modu-

lations, which can emerge from the fast-spiking ALM neurons or lower PC modes, have greater influence

on the untrained neurons in the network.
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Figure 4: Trained activity originating from the inhibitory subnetwork spreads more effectively than

the trained activity from the excitatory subnetwork. (A) Schematic of two training scenarios (right).

A subset of neurons in the excitatory subnetwork (top) or the inhibitory subnetwork (bottom) was trained to

reproduce synthetic neural activity. The fraction equals 1 (left) if all the neurons in the trained subnetwork are

trained. The transferred activity was defined as the variance explained by the first six PCs of the PSTHs of all

the neurons in the untrained subnetwork. (B) The strength of PCs of the PSTHs of pyramidal and fast-spiking

ALM neurons (left). The absolute value of the loading of each PC on all the neurons in the population was

averaged to obtain the average strength of each PC, denoted as k. Examples of centered PSTHs (right), i.e.,

mean rate subtracted, showing that the strength of the ith PC, denoted as ki, was stronger in the fast-spiking

ALM neurons. (C) The modulation of the trained synthetic inhibitory rate was adjusted by scaling the centered

PSTH by a multiplicative factor, referred to as the relative strength of modulation. For instance, it equals 2 if the

centered PSTHs are doubled. As in (A), the transferred activity was defined as the variance explained by the first

six PCs of the PSTHs of all the untrained excitatory neurons. The fraction of trained inhibitory neurons in the

inhibitory subnetwork was 0.4. (D) The fidelity of transferred PCs (left) was defined by the correlation between

the PCs of the trained and transferred activity. A subset of neurons in the excitatory subnetwork was trained,

and the activity of the untrained inhibitory subnetwork was analyzed to obtain the transferred PCs. Examples

of transferred PCs in the untrained inhibitory neurons (right) are shown, as the fraction of trained neurons is

varied.
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Network mechanism for distributing trained neural activity in strongly cou-

pled networks

In a recurrent neural network, in which neurons are highly inter-connected, it may seem obvious that

task-related activity can spread from one part of the network to another part through the connections

that are not optimized for the task. However, this intuition becomes less clear when the activity of a

neuron is determined by integrating a large number of heterogeneous presynaptic activities, as considered

in our network model and is the case in the cortical network.

A close examination of networks with a large number of connections reveals that whether the

task-related activity can spread depends on the operating regime of the network. If the synaptic con-

nections to an untrained neuron randomly sample and sum a large number of heterogeneous activity

patterns, one could expect that the activity patterns will be averaged-out at the level of the synaptic

input. Then, the untrained neuron will not display any activity patterns, as shown in Fig. S9. In this

section, we give an intuitive explanation that this is not the case if the network is strongly coupled and

operates in the balanced regime (Fig. 5). In this regime, heterogeneities of presynaptic activities can be

preserved in the synaptic inputs to untrained neurons because of the strong synapses and then mani-

fested in the post-synaptic rate of the untrained neurons due to the dynamic cancellation of the large,

unmodulated components of the excitatory and inhibitory inputs. A detailed explanation, together with

a mathematical analysis, is given in the Methods.

To explain the network mechanism underlying the spreading of trained activity patterns to

the untrained neurons in the balanced regime, we considered a training setup where all the excitatory

neurons were trained, while the inhibitory neurons were not. We chose the target activity to be 2Hz

sine functions with random phases. After training, the temporal modulation of synaptic inputs to the

excitatory neurons followed the target activity patterns (Fig. 5A, top). As a result, the first two PCs

of the trained activities were 2Hz sine and cosine functions and were the dominant PCs of the trained

activities (Fig. 5A, bottom).

The synaptic connections to an untrained neuron consisted of only the static synapses from

randomly selected trained and untrained presynaptic neurons. Due to the large number of static synapses

and their strong weights, the mean excitatory (Fig. 5C, uE
t ) and inhibitory (Fig. 5D, uI

t ) inputs to the

untrained neuron were much larger, in absolute value, than their temporal modulations around the

mean inputs (Fig. 5C, δutrained
t ; Fig. 5D, δutransfer

t ). However, in the balanced regime, the large mean

excitatory and inhibitory inputs dynamically canceled each other, resulting in the net mean input to

the untrained neuron being around the spike-threshold (Fig. 5E, ut). Then, the spiking pattern of the

untrained neuron was determined by the temporal modulation of the synaptic input around the net mean

input, i.e., the sum of δutrained
t and δu

transfer
t .

To better understand how the trained activity patterns spread, we further examined the excita-

tory and inhibitory components of the temporal modulation of the synaptic input. Analysis of the input

15

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496618
http://creativecommons.org/licenses/by/4.0/


from trained excitatory neurons (Fig. 5C, δutrained
t ) showed that its temporal modulation was domi-

nated by the same PCs the excitatory neurons were trained to generate (Fig. 5A). The modulated input

from trained excitatory neurons then led the total input to the untrained neuron to be modulated as well

(Fig. 5E, ut). As a result, the untrained neurons produced modulated activity (Fig. 5B), which provided

modulated input to neurons in the network (Fig. 5D, δutransfer
t ). The temporal modulations of the total

input to the untrained neurons (Fig. 5E, bottom) and the inputs the untrained neurons provided to

other neurons (Fig. 5D, right) were both dominated by the same PCs acquired from training.

One of the predictions of this network mechanism is that the loadings of the PCs, at the level

of the synaptic inputs to untrained neurons, are normally distributed. This is because the summation of

a large number of randomly distributed PC loadings, determining the trained activity patterns, results

in a Gaussian distribution when the synaptic weights are strong (see Methods). Indeed, this was the

case for the loadings of the first two PCs in the example network trained on sine functions (Fig. 5G).

Then we analyzed the loadings of the dominant PC mode in the ALM data, which were the slopes of the

ramping activity of the synaptic inputs. Since the synaptic inputs to ALM neurons were not available, we

estimated them by finding inputs to the transfer function of the model neuron that yielded the observed

firing rates of ALM neurons. We found that the statistics of these loadings were also well fitted by a

Gaussian distribution, supporting that the proposed mechanism may be biologically plausible (Fig. 5H).

The same network mechanism also provides an explanation for how functional properties, such

as choice selectivity, can spread from neurons trained to be choice-selective to other neurons that are not

trained (Fig. 3E). It stems from the fact that the differences in the activity of the lick-left and lick-right

trials in the trained neurons spread through the random connections and are realized into two different

responses in the untrained neurons, producing choice selectivity in them (see Methods for details). In

addition, our mathematical analysis of the network mechanism is consistent with the findings that, due to

their strong temporal modulations, inhibitory activity patterns spread more effectively than the excitatory

activity patterns (Fig. 4A), and lower PC modes transfer with better fidelity than the higher PC modes

(Fig. 4D; see Methods).

The results of our analysis show that the spreading of trained activity to untrained neurons is a

general and robust circuit mechanism for strongly-coupled networks operating in the balanced regime. It

is independent of the number of presynaptic inputs per neuron. Moreover, the slopes of ramping activity

in the ALM neurons displayed statistics that agreed with the model prediction, providing an evidence

for the biological plausibility of the proposed mechanism.
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Figure 5: Network mechanism for distributing trained neural activity to untrained neurons through

strong, non-specific connections. (A) Excitatory neurons were trained to generate 2Hz sinusoidal synaptic

activity patterns with random phases. Examples (top) of trained synaptic inputs (black) to the excitatory neurons

and their moving averages over 200ms window (magenta). The absolute value of the loading of each PC on trained

synaptic activities (bottom) was averaged over all the excitatory neurons to obtain the average strength of the

PCs. The first two PCs, which are the Fourier modes of 2Hz sine waves, are highlighted (magenta) and shown in

the inset (PC1, PC2). fi’s in the circles (right) represent the spiking activity of trained neurons. Arrows (green)

to an untrained neuron represent random, static, excitatory synapses with the synaptic weight JE . (B) Inhibitory

neurons in the network were not trained. Examples of untrained synaptic inputs to inhibitory neurons (left). ri’s

in the circles (right) represent the spiking activity of untrained neurons. Arrows (orange) to an untrained neuron

represent random, static, inhibitory synapses with the synaptic weight JI . (C) Aggregate synaptic input from

trained excitatory neurons to an untrained inhibitory neuron (uE
t ) and its temporal modulation (δutrained

t ) around

the mean activity. The PCs (right) show the average strength of each PC in δutrained
t . The PCs corresponding to

the trained activity in panel (A) are highlighted (magenta). (D) Same as in (C) but for the aggregate synaptic

input from untrained inhibitory neurons in the network to the same untrained inhibitory neuron shown in (C).

(E) The total synaptic input (ut or the sum of uE
t and uI

t ) to the untrained inhibitory neuron (black) with the

moving average (magenta). More examples are shown in panel (B). The PCs (bottom) show the strength of each

PC in ut, averaged over all the untrained inhibitory neurons. The PCs corresponding to the trained activity

in panel (A) are highlighted (magenta) and shown in the inset (PC1, PC2). (F) Schematic of synaptic inputs

shown in panels (A) to (E). Total synaptic input to trained excitatory neurons (A: black arrow) is the sum of

inputs from excitatory and inhibitory neurons (gray arrows). Total synaptic input to untrained inhibitory neurons

(B,E: black arrow) is the sum of inputs from excitatory (C: gray arrow) and inhibitory neurons (D: gray arrow).

(G) Distributions (magenta) of PC1 (k1) and PC2 (k2) loadings on the total synaptic input to the untrained

inhibitory neurons (i.e., ut in panels (B) and (E)), overlaid with the Gaussian fits (black). The PCs are shown

in panel (E), bottom. (H) Distribution (blue) of PC1 (k1) loadings on the estimated synaptic inputs to ALM

pyramidal neurons for the lick-right trial type, overlaid with the Gaussian fit (black). The transfer function of

the model neuron was used to estimate the synaptic input that yielded ALM neuron’s firing rate (see Methods).

PC1ramp
t was a ramping mode, similarly to PC1 in Fig. 2E.
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Perturbation responses suggest that the ALM network operates in the bal-

anced regime

We showed that when a subset of neurons was trained to reproduce the ALM activity, the task-related

activity spread to the untrained neurons, which then also generated spiking activity resembling the ALM

data (Figs. 2, 3). Such spreading of activity from trained to untrained neurons is a general mechanism

for spreading activity in strongly coupled spiking networks (Figs. 4, 5). These results suggested that

the observed task-related activity was produced in the ALM while it operated in the balanced regime.

Here we used optogenetic perturbations to test if ALM activity displayed the characteristics of strongly

coupled networks.

Specifically, we considered the activity modes of population of neurons responding to perturba-

tions applied during the delay period (Fig. 6A,B). In strongly coupled networks consisting of excitatory

and inhibitory populations, the projection of the population activity on the homogeneous mode (i.e. the

average firing rate of the excitatory or inhibitory populations, Fig. 6A) is expected to recover rather fast

from any perturbation. This is because the network dynamics of strongly coupled networks are extremely

stable along the homogeneous mode [23]. To understand this phenomenon, one should consider changes

to the average firing rate of the excitatory population in the network. This will result in a strong change

(on the order of square root the number of inputs per neuron) to the excitatory drive to each of the neu-

rons, which unless immediately suppressed by a strong inhibitory current, will destabilize the network.

Therefore, to maintain the stability of network dynamics in strongly-coupled networks, a perturbation

to the homogeneous mode is expected to decay quickly to its pre-perturbed value due to the strong and

fast inhibition (a phenomenon known as ’fast tracking’ [23, 44]).

We verified this prediction by analyzing the responses of the motor cortex to optogenetic per-

turbations, and compared them with the responses of the trained strongly coupled network to similar

perturbations. Consistent with our prediction, following a perturbation to the activity of neurons in

the strongly coupled network (Fig.2), the projection on the homogeneous mode quickly returned to the

baseline (Fig. 6D, black). In contrast, the projection of the activity on the choice mode (Fig. 6B),

a mode that maximally separates trial-averaged activity with respect to licking directions (see [21, 41]

and Methods), returned to the baseline after the perturbation with a significantly longer recovery time

(Fig. 6D, blue; Fig. 6F, paired Student t-test, p-value=0.016). The slow recovery suggested that a

dynamic attractor, which formed around the target trajectory due to training, was able to retract the

perturbed activity at a slow timescale along the coding mode [21, 45]. Importantly, the network was

trained only on the unperturbed ALM activity. Therefore, the fast and slow responses to perturbations

were not dynamical properties acquired directly from the perturbed ALM activity, but instead they

emerged from the strongly coupled network, when it was trained just on the unperturbed ALM activity.

To test the model prediction and verify that the ALM network operated in a similar dynamical

regime, we conducted the same analysis on single sessions of simultaneously recorded ALM neurons

(Fig. 6G-J). We found that the response time of the homogeneous mode in ALM was significantly
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faster than that of the choice mode (Fig. 6H-J, paired Student t-test, p-value=0.025). Thus, the fast

recovery of the homogeneous mode of ALM network, relative to the slow recovery of the choice mode, to

optogenetic perturbations suggests that the ALM network operated in the same dynamical regime as the

strongly coupled network. These findings suggest that the ALM network has the potential to be endowed

with a network level mechanisms for generating widespread task-related activity, with limited synaptic

reorganization on only a subset of neurons during learning.
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Figure 6: Fast and slow responses of the network to perturbations (model and data). (A) Schematic

of the homogeneous mode, which averages the activity of the neurons. (B) Schematic of trial-averaged activity

for lick-left (red) and lick-right (blue) trial types together with the choice mode in the neural activity space.

This mode maximally separates trial-averaged activity with respect to licking directions (See Methods). (C)

Schematic of a trained network receiving perturbation. (D) Change in projection on choice mode (blue) and

homogeneous mode (black) against time, averaged over all 10 sessions. Each session consisted of sampling 50

neurons from the network. The change in projection was calculated as the trial-averaged activity for perturbed

trials minus unperturbed trials (see Methods), with a 50ms smoothing. Mean± s.e.m. Shaded red: time of applied

perturbation for perturbed trials. Dashed lines: exponential fit. (E) Projection of neural activity on homogeneous

(left) and choice (right) modes for an example session, normalized by subtracting the average projection over the

first 0.5 second of the delay period. Orange: significant differences between perturbed and unperturbed trials,

starting from the perturbation time (see Methods). Dashed red: recovery time of perturbation, estimated as

the first time the change was not significant following the perturbation (see Methods). (F) Recovery time for

all sessions. Recovery of the homogeneous mode was significantly faster (p-value, by paired Student t-test) (G)

Schematic of optogenetic perturbation in the mouse cortex. (H)-(J) Same as (D-F), but for putative excitatory

neurons in ALM. Here each session corresponds to simultaneous recordings of ALM neurons on different days.

Optogenetic perturbation in the data was applied to somatosensory cortex [21], whereas in the network model

the stimulus that triggered the lick-left response was used to perturb the lick-right trials.
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Discussion

In this study, we presented a circuit mechanism for distributing task-related activity in cortical networks.

We have shown that neural activity learned by a subset of neurons can spread to the untrained parts

of the network through pre-existing random connectivity, without additional training. This spread of

activity occurs as long as the pre-existing random connections are strong and the network operates in the

balanced regime. When a subset of neurons in the spiking network was trained to reproduce the activity

of ALM neurons, the activity of untrained neurons in the network also displayed surprising similarity to

the activity patterns of neurons in ALM. Single neuron activity patterns of the untrained neurons were

ramping and selective to future choices, as was observed in ALM. Our work suggests that only a subset

of neurons may be actively engaged in learning and the rest of the neurons are driven by the structured

activity generated from the trained neurons.

Accumulating evidence show that inhibition in cortex is highly plastic (e.g. see review by [46]).

We found that the fidelity of spreading the activity is higher when the inhibitory neurons are trained

instead of the excitatory ones. For example, all of the excitatory neurons needs to be trained to explain

70% of the variance in the untrained inhibitory neurons, while training only 60% of the inhibitory neurons

is enough to induce the same 70% variance in the untrained excitatory neurons (Fig. 4A). We speculate

that this is a characteristic of the operating regime of cortical networks, in which typically the baseline

spiking rates of inhibitory neurons is higher than the excitatory neurons. Inhibitory neurons can thus

support stronger rate modulations (Fig. 4B), which in turn improves the fidelity of the spread (Fig. 4A,

Fig. 5, Methods). Our results suggest that synaptic plasticity in inhibitory neurons can lead to wider

spread of task-related activity in the motor cortex. Interestingly, this result is consistent with recent

theoretical and computational studies showing that patterns of neural activity are primarily determined

by inhibitory connectivity [47, 48].

In recent studies, the authors of [43, 49] argued that specific connectivity between excitatory and

inhibitory neurons is necessary for choice selectivity to emerge in these two populations, based on com-

putational models of their data. Our work suggests an alternative mechanism in which choice selectivity

emerges in one population during training and spreads to the other population, without any reorganiza-

tion of specific connections from the trained to the untrained populations. The network mechanism that

spreads the task-related activity through random connectivity, as in our trained networks, is based on the

susceptibility of neurons to modulations of synaptic inputs in strongly coupled networks (Fig. 5). This

is a similar mechanism that explains how, without training or functional structure, orientation-selective

neurons can emerge in primary visual cortex with a ’salt-and-pepper’ organization [50, 51, 52].

While we studied the spreading of activity in recurrent spiking networks, a similar phenomena

might generalize to other network architectures. For example, recent studies suggested that information

can propagate through random connections in deep feedforward artificial networks [53, 54]. This suggests

that the spreading of structured activity through unstructured connectivity is not restricted to local

recurrent networks, but is applicable to other neural architectures and may provide the substrate for
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spreading information between brain areas.

Our study is related to and complements previous studies that trained rate-based units to

reproduce neural activity in recurrent networks [19, 20, 21, 22]. In contrast to our spiking networks, each

unit in these rate-based networks was paired with a target neuron activity for training, such that they

could not investigate the effects of trained neurons on untrained neurons as we did here. We note that [19]

(Supp. Fig. 3) examined what happened to the trained neurons when untrained neurons were included,

but did not analyze the activity of untrained neurons. Furthermore, our network model consisted of

spiking EI neurons operating in the balanced regime, and thus exhibited large temporal irregularity of

spikes and trial-to-trial fluctuations, which is a key characteristic of cortical neurons. These properties

stayed intact following learning. This contrasts with the commonly used rate-based chaotic networks

that do not obey Dale’s law [55] and that suppress the trial-to-trial fluctuations that emerge due to the

strong recurrent connectivity after training [35].

While our training algorithm requires only an order of square root of the pre-existing static

connections to be plastic, the specific number of plastic connections may vary with the complexity of

the trained neural activity. Indeed, almost three times more plastic synapses were needed to train the

neurons to reproduce ALM activity, in which six PCs explained about 80% of the variance, compared to

the number of plastic synapses needed to train sine waves, in which two PCs explained the same amount

of the variance (Table 2). It is beyond the scope of this paper to determine exactly how the prefactor

of the square root term depends on the complexity of the neural activity. However, previous studies

suggest that the number of plastic connections might depend on the dimensionality (i.e., decay rate of

the singular values) [56] or decorrelation time of the trained neural activity [37].

Several recent studies considered training spiking networks with dynamically balanced excita-

tion and inhibition. In [57] the authors had to break the EI balance in order to achieve non-linear

computations. With our training procedure, individual neurons can be trained to perform complex

tasks, such as generating the spiking activity of cortical neurons, without leaving the balanced regime.

The work by [58, 59] trained all the recurrent weights of the dynamically balanced spiking networks.

To maintain strong excitatory-inhibitory activities after training, they considered weight regularizations

that constrained the trained weights close to strong initial EI weights. Instead, in our training setup, the

strong initial EI connections were left unchanged throughout training, thus always provided the strong

excitation and inhibition. The trained neurons additionally received sparse plastic synapses, that were

sparser than the initial EI connectivity. Such training scheme, which modifies only sparse synapses to

trained neurons, is consistent with recent findings that build functional neural networks through weak,

sparse, or low-dimensional synaptic modifications [19, 35, 60, 61, 62, 63]. It is also consistent with recent

experimental evidence that hints for sparse, but functionally biased, synaptic connectivity in cortex [34].

There is an ongoing debate if cortex operates in the balanced regime [64]. Experimental evidence

that are inconsistent with the balanced regime hypothesis mainly relies on data from sensory cortices.

Here we present evidence that the motor cortex operates in the balanced regime by analyzing the recovery
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of neurons in the motor cortex to optogenetic perturbations. The presence of two recovery time scales,

i.e., fast for the homogeneous mode and slow for the choice mode, is consistent with the prediction

of the balance state on the ability of the homogeneous mode to rapidly track inputs, a phenomenon

termed ’fast tracking’ [23, 44]. Our analysis is different from the paradoxical effect observed in excitatory-

inhibitory networks, where strong recurrent excitation must be compensated by strong feedback inhibition

to maintain a stable network state [52, 65, 66, 67, 68].

We note that, with the use of moderate plastic inputs in our trained network, the plastic input

was on the order of the spike-threshold. The network can thus implement non-linear computations at

the individual neuron level. It can also support non-linear computations at the population level, as long

as the computation is held by subpopulations, such that the overall excitatory and inhibitory population

rates are unchanged after training [58, 62, 69]. Thus, the only mode that is strictly linear with the inputs

to the network is the homogeneous mode. This is different from recent works that portrayed that the

strict linear input-output relationship of balanced networks limits their computational power [57, 64].

To conclude, our work shows that while large changes in network dynamics can be observed

during learning, attributing such changes to synaptic reorganization between neurons must be taken with

care. In networks that operate in the balanced regime, in which motor cortex might operate, widespread

changes in neuronal activity can be mainly a result of distributing learned activity from a dedicated

subset of neurons to the rest of the network through strong but mostly unstructured connectivity.

Acknowledgements

We would like to thank Larry Abbott and Sandro Romani for their valuable feedback. A.F., K.S. and

R.D. were supported by the Howard Hughes Medical Institute. C.M.K. and C.C.C were supported by

the Intramural Research Program at the NIDDK/NIH. C.M.K. would like to thank the Visiting Scientist

Program at Janelia Research Campus for their support.

25

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496618
http://creativecommons.org/licenses/by/4.0/


Methods

Data analysis

Principal component analysis of population rate dynamics. To obtain the PSTHs of neurons in

a trained network, we repeated the simulation of a trained network 400 times starting at random initial

conditions and applied the same external stimulus to trigger the trained activity patterns. Subsequently,

for each neuron, the spikes emitted over multiple trials were placed in 20ms time bins, which ranged over

the Ttarget long training window, and averaged across trials to compute the instantaneous spike rates.

Given the PSTHs, r1, ..., rM ∈ R
T , of a population of M neurons, we subtracted the mean rate

of every neuron from its PSTH to remove differences in the baseline firing rates. In the following, we use

the same notation ri to refer to the mean subtracted PSTH of neuron i.

We then performed principal component analysis on the population rate dynamicsR = (r1, ..., rM ),

which is an T ×M matrix, to obtain the principal components v1, ...,vT ∈ R
T and the principal values

λ1, ..., λT . This is equivalent to finding the eigenvectors and eigenvalues of the covariance matrix, RR>.

The variance explained by the kth principal component was λ2

k/
∑

i λ
2

i .

The same procedure was applied to all the principal component analyses performed in this study.

Shared variance analysis. We identified population vectors along which the population activities of

inhibitory model neurons and fast-spiking ALM neurons co-varied maximally [40]. We also quantified

the fraction of variance that can be explained by the projected population-averaged activities (Fig. 3).

We first computed the correlation Cij = corr(fi,gj), which an M1 × M2 matrix, between the

PSTH’s of inhibitory model neurons fi ∈ R
T , 1 ≤ i ≤ M1 and fast-spiking ALM neurons gj ∈ R

T , 1 ≤ j ≤
M2 where M1 = 2500, M2 = 306 and T = 100. Then the singular-value decomposition C = UΣV of the

correlation matrix was performed, where U is an M1×M1 matrix and V is an M2×M2 matrix, to obtain

the left singular vectors U = (u1, ...,uM1
) with uk ∈ R

M1 and the right singular vectors V = (v1, ...,vM2
)

with vk ∈ R
M2 .

To obtain the population-averaged activity along the singular vectors, the matrices of population

rate, i.e., F = (f1, ..., fM1
) ∈ R

T×M1 for the inhibitory model neurons and G = (g1, ...,gM2
) ∈ R

T×M2

for the fast-spiking ALM neurons, were projected to the corresponding kth singular vectors uk and

vk, respectively, to obtain the kth shared components, αk = Fuk ∈ R
T and βk = Gvk ∈ R

T . The

variance explained by the kth shared component was defined as ‖αk‖2/
∑

k ‖αk‖2 and ‖βk‖2/
∑

k ‖βk‖2,
respectively.
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Defining the choice and homogeneous modes Trial-averaged spike rate of a neuron i, ri(t, k) ,

were calculated for each trial, k, using 1ms bin size and were filtered with a 200ms boxcar filter.

We then analyzed the population dynamics of N simultaneously recorded neurons in a session.

During each trial, the population activity of these neurons, r(t, k) , drew a trajectory in theN -dimensional

activity space. We identified the choice mode as N × 1 vector of trial-averaged spike rate differences of

N neurons during trials with lick-right and lick-left outcomes, averaged within a 1sec window at the end

of the delay epoch, before the go cue [21]:

C =
1√

N‖〈rR〉t,k − 〈rL〉t,k‖

{

〈rR〉t,k − 〈rL〉t,k
}

with the L2 norm, ‖x‖, and 〈x〉t,k which is averaging over trials and time. The
√
N term was introduced

to ensure that the projection of the neural activity is independent of the number of recorded neurons and

for consistency with the homogeneous mode below. Projections of the neural activity along the choice

mode were:

PC(t, k) = C · r(t, k) (1)

Similarly, the projection over the homogeneous mode was given by PH(t, k) = 1

N
1 · r(t, k), with 1 being

a vector of ones.

If an individual neuron was not recorded during a particular trial, its weight in Eq.(1) was set

to zero, and for the analysis we selected trials with at least 10 simultaneously recorded neurons.

Response of the modes to perturbations To assess the impact of vS1 photostimulation during the

delay on the homogeneous and choice modes in the ALM, we computed for each session the single-trial

projections on each of the modes, PC(t, k) and PH(t, k), for correct lick-right trials both with and without

the photostimulation. The trial-averaged activity was plotted for one example session in Fig. 6E,I along

with the SD, after subtracting the average projection over the first 0.5 seconds of the delay period.

We used a statistical hypothesis test (Student t-test) to estimate the decay time back to the

non-perturbed trajectories for the projections on the modes. Specifically, for each time bin we tested

the null hypothesis that the perturbed and unperturbed trials were from the same distribution and

rejected the null hypothesis with a p-value< 0.05 (orange dots in Fig. 6E,I). We only analyzed sessions

in which the photostimulation resulted in a significant change in at least 10% of the time points during

the photostimulation period ([−1.6, 1.2]sec, 13/17 sessions). To calculate the decay time, we then used

the last significant time bin within the time window of [−1.2, 0]sec for which the derivative was smaller

than 10ms (dashed red lines in Fig. 6E,I). The perturbations in 2/13 sessions were biased and were not

included in the analysis, leaving 11 sessions of simultaneously recorded neurons.

To calculate the decay time over all sessions (Fig. 6D) we averaged the projection in each

of the 11 analyzed sessions and calculated the difference in the projection between the perturbed and

unperturbed trials (∆ projection). We then took the absolute value and averaged over all sessions (Fig.

6D, mean± SEM). Finally, we estimated the decay rate by an exponential fit.
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Spiking neural networks

Network connectivity. The spiking neural network consisted of randomly connected NE excitatory

and NI inhibitory neurons. The recurrent synapses consisted of static weights J that remained constant

throughout training and plastic weights W that were modified by the training algorithm. The static

synapses connected neuron j in population β to neuron i in population α with probability pαβ = Kαβ/Nβ

and synaptic weight J̄αβ/
√

Kαβ , where Kαβ is the average number of static connections from population

β to α:

Pr(Jαβ
ij 6= 0) =

Kαβ

Nβ

.

The strength of plastic synapses, W̄αβ/
√

Kαβ , was of the same order as the static weights. However, the

plastic synapses connected neurons with a smaller probability:

Pr(Wαβ
ij 6= 0) =

Lαβ

Nβ

with Lαβ = c
√

Kαβ

which made the plastic synapses much sparser than the static synapses [62]. Here, c is an order 1

parameter that depends on training setup.

The static and plastic connections were non-overlapping in that any two neurons in the network

can have only one type of synapse.

Jαβ
ij Wαβ

ij = 0.

Keeping them disjoint allowed us to maintain the initial network dynamics generated by the static

synapses and, subsequently, introduce trained activity to the initial dynamics by modifying the plas-

tic synapses.

The static recurrent synapses were strong in that the coupling strength between two connected

neurons scaled as 1√
Kαβ

, while the average number of synaptic inputs scaled as Kαβ . This is in contrast

to the weak, 1/Kαβ , coupling we considered in Fig. S9. As a result of this strong scaling, the excitatory

(uE
bal) and inhibitory (uI

bal) synaptic inputs to a neuron from static synapses increased as
√

Kαβ , thus

were much larger than the spike-threshold for a large Kαβ . However, uE
bal and uI

bal were dynamically

canceled, and the sum (ubal) was balanced to be around the spike-threshold ([23], Fig. 1B, middle).

In contrast to the static synapses, each trained neuron received only about
√

Kαβ plastic

synapses. This made the plastic synapses much sparser than the sparse static EI connectivity (e.g., with

K = 1000 static synapses, there are of the order of
√
K ≈ 30 plastic synapses per neuron). Consequently,

the EI plastic inputs (uE
plas, u

I
plas) of the initial network were independent ofKαβ and substantially weaker

than the EI balanced inputs (uE
bal, u

I
bal) for a large Kαβ . After training the plastic synapses, the total

synaptic input (u = ubal + uplas) to each trained neuron was able to follow the target patterns (Fig. 1B,

left; Fig. 1C), while the plastic input (uplas) stayed around the spike-threshold (Fig. 1B, right). With

this scaling of plastic synapses, training was robust to variations in the number of synaptic connections,
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Kαβ . Network trainings were successful even when Kαβ was increased, such that the excitatory and

inhibitory balanced inputs were tens of orders of magnitude larger than the plastic inputs (Fig. S1).

From a technical point of view, the choice to train only a very sparse number of plastic synapses

made the plastic inputs to be on the order of the spike-threshold (i.e. order one, independent of the

number of connections). Therefore, they could not affect the mean firing rates of the excitatory and

inhibitory neurons in the network. These were fully determined by a linear equation, termed the ’balanced

equation’ [23, 70], that only involves the strength of the static connections, J̄αβ , and the external inputs.

Alternatively, if the plastic synapses were more abundant in the network, on the order of the number of

static connections, they could interfere with the the ability of the strong inhibition to balance the strong

excitation for each neuron in the network. Such interference significantly limits the ability to train the

spiking networks. Taking the number of plastic connections to be on the order of
√

Kαβ thus allowed to

both train the networks, and keep it in the balanced regime.

Network dynamics. We used integrate-and-fire neuron to model the membrane potential dynamics

of the i’th neuron:

τmv̇αi = −vαi + uα
i +Xα

i

where a spike is emitted and the membrane potential is reset to vreset when the membrane potential

crosses the spike-threshold vthr.

Here, uα
i is the total synaptic input to neuron i in population α that can be divided into static

and plastic inputs incoming through the static and plastic synapses, respectively:

uα
i = uα

bal,i + uα
plas,i.

Xα
i is the total external input that can be divided into constant external input, plastic external input,

and the stimulus:

Xα
i = Xα

bal,i +Xα
plas,i +Xα

stim,i.

Xα
bal,i is a constant input associated with the initial balanced network. It scales with the number of

connections, i.e., proportional to
√

Kαβ , determines the firing rate of the initial network and stays

unchanged [23]. Xα
plas,i is plastic input provided to trained neurons in the recurrent network from

external neurons that emit stochastic spikes with pre-determined rate patterns. The synaptic weights

from the external neurons to the trained neurons were modified by the training algorithm. Xα
stim,i is the

pre-determined stimulus, generated independently from the Ornstein-Ulenbeck process for each neuron,

and injected to all neurons in the network to trigger the learned responses in the trained neurons.

The synaptic activity was modeled by instantaneous jump of the synaptic input due to presynap-

tic neuron’s spike, followed by exponential decay. Since the static and plastic synapses did not overlap,
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we separated the total synaptic input into static and plastic components as mentioned above:

τbalu̇
α
bal,i = −uα

bal,i +
∑

β∈{E,I}

∑

j∈β

Jαβ
ij

∑

t
j

k
<t

δ(t− tjk)

τplasu̇
α
plas,i = −uα

plas,i +
∑

β∈{E,I}

∑

j∈β

Wαβ
ij

∑

t
j

k
<t

δ(t− tjk).
(2)

Alternatively, the synaptic activity can be expressed as a weighted sum of filtered spike trains because

the synaptic variable equations (Eq. 2) are linear in J and W:

uα
bal,i =

∑

β,j

Jαβ
ij rβbal,j

uα
plas,i =

∑

β,j

Wαβ
ij rβplas,j

(3)

where

τbalṙ
β
bal,i = −rβbal,i +

∑

ti
k
<t

δ(t− tik)

τplasṙ
β
plas,i = −rβplas,i +

∑

ti
k
<t

δ(t− tik)

describe the dynamics of synaptically filtered spike trains.

Each external neuron emitted spikes stochastically at a pre-defined rate that changed over time.

The rate patterns, followed by the external neurons, were randomly generated from an Ornstein-Ulenbeck

process with mean rate of 5 Hz. The synaptically filtered external spikes were weighted by plastic synapses

WX and injected to trained neurons:

Xα
plas,i =

∑

j

WX
ij r

X
j (4)

where

τplasṙ
X
plas,i = −rXplas,i +

∑

ti
k
<t

δ(t− tik)

Similarly, the external stimulus Xstim,i applied to each neuron i in the network to trigger the learned

response is generated independently from the Ornstein-Ulenbeck process.

In the following section, we will use the linearity of W,WX in Eqs. 3 and 4 to derive the training

algorithm that modifies plastic synaptic weights.

Network training scheme

Overview. Prior to training the network, neurons were connected by the recurrent static synapses and

emitted spikes asynchronously at constant rates. This asynchronous state of the initial network has been

investigated extensively in previous studies [23, 25, 70].
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Starting from this asynchronous state, the goal of training was to produce structured spiking

rate patterns in a subset of neurons selected from the network. Specifically, our training scheme modified

the recurrent and external plastic synapses projecting to the selected neurons, so that they generated

target activity patterns when evoked by a brief external stimulus. To this end, we first selected M

neurons to be trained from a network consisting of N neurons, and then prepared M target functions

f1(t), ..., fM (t) defined on a time interval t ∈ [0, Ttarget] to be learned by the selected neurons. The plastic

synapses projecting to each selected neuron i were then modified by the training algorithm such that the

total synaptic input ui(t) to neuron i followed the target pattern fi(t) on the time interval t ∈ [0, Ttarget]

after the training.

Initialization of plastic synapses. For each trained neuron, we randomly selected L excitatory and

L inhibitory presynaptic neurons that projected plastic synapses to the trained neuron. When the exci-

tatory subpopulation was trained, the presynaptic excitatory neurons were sampled from other trained

excitatory neurons while the presynaptic inhibitory neurons were sampled from the entire inhibitory popu-

lation. Similarly, when the inhibitory subpopulation was trained, the presynaptic inhibitory neurons were

sampled from other trained inhibitory neurons while the presynaptic excitatory neurons were sampled

from the entire excitatory population. The untrained neurons did not receive any plastic synapses.

Each trained neuron also received inputs from all the LX external neurons. The plastic weights

from the external neurons to each trained neuron were trained by the learning algorithm.

Cost function. Each trained neuron i had its own private cost function defined by

Ci[w
rec
i ,wX

i ] =
1

2

∫ Ttarget

0

(fi(t)− ui(t)−Xi(t))
2dt+

1

2
Reg[wrec

i ,wX
i ]

where wrec
i = (Wii1 , ...,WiiL) is a vector of recurrent plastic synapses to neuron i from other presynaptic

neurons in the network indexed by i1, ..., iL. Similarly, wX
i = (WX

i1 , ...,W
X
iLX

) is vector of plastic synapses

to neuron i from the external neurons. The regularization of plastic weights Reg[wi,w
X
i ] consisted of

two terms

Reg[wrec
i ,wX

i ] = λ(‖wrec
i ‖2 + ‖wX

i ‖2) + µ
∑

α∈{E,I}
(wrec

i · 1α
i )

2.

The first term is a ridge regression that evaluates the L2-norm of the plastic weights. The second term is

called ROWSUM regularization where the elements of the vector 1α
i = (iα

1
, ..., iαL) are defined to be iαk = 1

if the presynaptic neuron ik belongs to population α and 0 otherwise [59]. The inner productswrec
i ·1E

i and

wrec
i · 1I

i are the aggregate plastic weights to neuron i from the excitatory and inhibitory populations,

respectively. Including the ROWSUM regularization allowed us to keep the aggregate excitatory and

inhibitory plastic weights fixed throughout the training.

Training algorithm. We derived a synaptic update rule that modified the plastic synapses to learn

the target activities. The learning rule was based on recursive least squares algorithm (RLS) that was
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previously applied to train the read-outs to perform tasks [35, 36] and the individual neurons to generate

target activity patterns [19, 37, 45]. The derivation presented here closely follows previous papers [37, 59].

For notational simplicity, we dropped the index i in wi and other variables, e.g., fi, ui. We note that the

same synaptic update rule was applied to all the trained neurons.

The gradient of the cost function with respect to the vector of full plastic weightsw = (wrec,wX)

was

∇wC =
1

2
∇w

[

∑

t

(ft − ubal,t − uplas,t −Xbal −Xplas,t)
2 + λ‖w‖2 + µ

∑

α∈E,I

(w · 1α)
2

]

=
∑

t

(−ft + ubal,t +Xbal + r′tw)rt + λw + µ
∑

α∈E,I

1α1
′
αw.

Here we substituted the expressions uplas,t = wrec · rplas,t and Xplas,t = wX · rXplas,t in the first line

to evaluate the gradient with respect to w. In the second line, we used a condensed expression rt =

(rplas,t, r
X
plas,t) to denote the synaptically filtered spike trains from all plastic inputs. The vectors 1α

apply only to the recurrent plastic weights wrec and take zero elements on wX .

To derive the synaptic update rule, we computed the gradient at two consecutive time points

0 = ∇wn
C =

n
∑

t=1

(−ft + ubal,t +Xbal + r′twn)rt + λwn + µ
∑

α∈E,I

1α1
′
αwn (5)

and

0 = ∇wn−1
C =

n−1
∑

t=1

(−ft + ubal,t +Xbal + r′twn−1)rt + λwn−1 + µ
∑

α∈E,I

1α1
′
αwn−1. (6)

Subtracting Eqs (5) and (6) yielded

wn = wn−1 + enPnrn

en = fn − ubal,n −Xbal −wn−1 · rn
(7)

where

Pn =

[ n
∑

t=1

rtr
′
t + λI+ µ

∑

α∈E,I

1α1
′
α

]−1

for n ≥ 1 (8)

with the initial value

P0 = [λI+ µ
∑

α∈E,I

1α1
′
α]

−1. (9)

To update Pn iteratively, we used the Woodbury matrix identity

(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1 (10)

where A is invertible and N ×N , U is N ×T , C is invertible and T ×T and V is T ×N matrices. Then

Pn can be calculated iteratively

Pn = Pn−1 − Pn−1rnr
′
nP

n−1

1 + r′nP
n−1rn

.
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External stimulus triggering target activity patterns. To trigger the target activity patterns

learned by the trained neurons, a brief external stimulus (200ms long) was applied to every neuron in the

network immediately before generating the activity patterns. Two different sets of stimuli were prepared

to trigger the lick-left and lick-right population responses. One set of stimulus was used during and after

training to trigger the lick-left response and the other set of stimulus was used for the lick-right response.

The stimulus Xc
stim,i(t) to each neuron i and trial type c = L,R was generated independently from the

Ornstein-Ulenbeck process: Xc
stim,i(t + δt) = Xc

stim,i(t) + τ−1Xc
stim,iδt + σ

√
δtξ(t) where τ = 20ms,

σ = 0.2 and ξ(t) was uncorrelated Gaussian distribution with zero mean and unit variance.

Generating sinusoidal activity patterns. For demonstrating the Subset Training method (Fig. 1)

and the network mechanism for spreading trained activity (Fig. 5), neurons in the network were trained

to follow sine functions with random phases. Specifically, neuron i in the network learned the target

pattern fi(t) = a sin(ωt + φi) + bi on the time interval t = [0, 1]sec, where the amplitude a = 0.5,

the frequency ω = 1rad/sec (Fig. 1) and 2rad/sec (Fig. 5), the phase φi was sampled from a uniform

distribution [0, 2π], and the offset bi was the mean synaptic input to the neuron in the initial balanced

network prior to training.

Generating target neural trajectories. A subset of excitatory neurons in the network learned to

reproduce the PSTHs of pyramidal neurons recorded from ALM in [21]. For each pyramidal neuron,

the spikes emitted across multiple experiment trials were placed in ∆t = 20ms time bins that ranged

over the Ttarget = 2 second delay period. The PSTHs were then smoothed by a moving average over a

300ms time window centered at each time bin. We obtained two sets of PSTHs rL
1
, ..., rLM and rR

1
, ..., rRM

from M = 1824 pyramidal neurons for the lick-left and lick-right trial types. Each PSTH rci ∈ R
T for

neuron i and trial-type c ∈ L,R was an T = Ttarget/∆t = 100 dimensional vector defined on time points

t = [−2 + ∆t, ...,−∆t, 0]sec, where 0 is the onset of go-cue.

Next, we converted the PSTHs to target synaptic activities to be used for training the synaptic

inputs to selected neurons. For each spike rate rcit where i = 1, ...,M , c = L,R and t = −2+∆t, ..., 0, we

obtained the mean synaptic input f c
it that needs to be applied to the the leaky integrate-and-fire neuron

to generate the desired spike rate. To this end, we numerically solved the nonlinear rate equation

rcit = φ(f c
it, σ

2)

where φ(m,σ) = τ−1

m [
√
π
∫

Vthr−m

σ
Vreset−m

σ

dwew
2

erfc(−w)]−1 is the transfer function of the leaky integrate-

and-fire neuron given mean input, m, and variance of the input, σ2 [27, 71]. We obtained the synaptic

fluctuation σ from the synaptic noise in the neurons of the initial network since the slow plastic inputs

did not significantly change the fast noise fluctuation. This conversion yielded two sets of target synaptic

inputs fL
1
, ..., fLM and fR

1
, ..., fRM ∈ R

T for M excitatory neurons to be trained.

We chose the parameters of the initial network connectivity such that the mean rate of the

excitatory and inhibitory populations in the network was close to estimated mean rates of the ALM data
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(mean excitatory rate was 4.2 Hz and inhibitory rate was 11.0 Hz). To select the subset of excitatory

neurons to be trained, we compared the mean firing rates of the neurons in the initial network with the

firing rates of pyramidal neurons and identified the excitatory neuron whose firing rate’s was closest to

the pyramidal neuron. This process was repeated until all the pyramidal neurons were matched to the

excitatory neurons uniquely.

Generating target synthetic trajectories. To generate synthetic data that shared similar statistics

and low-dimensional dynamics as the neural data, we performed PCA on the PSTHs of pyramidal ALM

neurons to identify the principal components v1, ...,vD ∈ R
T that explained majority of their variance.

We found that D = 9 was large enough to explain over 95% of the variance. The same procedure was

applied to the PSTHs of the fast-spiking ALM neurons to obtain their principal components.

We sought to construct synthetic trajectories rsynth ∈ R
T that resembled the PSTHs of the

pyramidal and fast-spiking ALM neurons (Fig. S6). To this end, we expressed the synthetic trajectory

rsynth as a weighted sum of the principal components: rsynth =
∑D

n=1
csynthn vn. To find the distribution

of the coefficients cneuraln of the neural data, we projected the PSTHs of pyramidal neurons onto the PCs

and obtained the empirical distribution of cneuraln = rneural ·vn. Bootstrapping the synthetic coefficients

csynthn from the empirical distribution of cneuraln was performed in two steps. First, the mean firing rate of

synthetic target was sampled from the empirical rate distribution to generate synthetic PSTHs that had

rate distribution statistically identical to the empirical distribution (Fig. S6A,B). Next, since cneuraln

depended strongly on the mean firing rate of neurons, csynthn was bootstrapped from a subset of cneuraln

whose underlying firing rate was close to the firing rate of synthetic target (Fig. S6C). In this way, the

distributions of the firing rates and PC loadings of the synthetic and neural data were almost identical

(Fig. S6E).

In addition, we generated the synthetic PSTHs in pairs for the lick right and lick left trials.

First, the PSTHs for the lick right and lick left conditions were generated independently. Then, we

sorted the PSTH’s of each condition separately and paired them, to ensure the pairs had similar level of

mean firing rates. Subsequently, we added Gaussian noise with zero mean and standard deviation equal

to the difference of lick right and lick left mean firing rates, to the PSTH’s of the lick left condition. This

allowed us to introduce choice selectivity to the synthetic PSTHs.

The synthetic PSTHs were then converted into target synaptic inputs following the same pro-

cedure applied to the neural PSTHs.

Mathematical analysis of the effects of trained inputs on untrained neurons

In this part of the methods we use mathematical analysis to show how random inputs from trained

neurons can drive the untrained neurons to follow the trained activity, without further training, if the

network operates in the balanced regime.
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To simplify the analysis, we assumed that only the excitatory population was trained and the

inhibitory population was not. In addition, we assumed that the target functions, fit for neuron i and

t ∈ [0, Ttarget], were slower than the slow plasticity signal and that training was perfect. In this case, we

can approximate the total synaptic input to a trained excitatory neuron using the fixed point equation:

uE
i (t) ≈

∑

β∈{E,I}

Nβ
∑

j=1

JEβ
ij φ(xβ

j (t)) +
∑

β∈{E,I}

Nβ
∑

j=1

WEβ
ij φ(xβ

j (t)) +
√
KXE

with
√
KXE the strong external input associated with the balanced network [23]. The transfer function,

φ(xα
i ) = Φ(xα

i ;σα), was the Riccardi function [27, 71], with σ2

E = J̄2

EEφE + J̄2

EIφI . The population

rate was given by φα = [〈φα
it〉], with 〈x〉 denoting the average over the time and [x] the average over the

neurons.

Similarly, the total synaptic input to an untrained neuron, which lacked plastic connections,

followed:

uI
i (t) ≈

∑

β∈{E,I}

Nβ
∑

j=1

JIβ
ij φ(xβ

j (t)) +
√
KXI

with σ2

I = J̄2

IEφE + J̄2

IIφI .

Our goal was to analyze the synaptic drive from the trained (excitatory) neurons to untrained

(inhibitory) neurons to make specific predictions about what aspects of the trained inputs allowed them

to spread effectively to the untrained neurons.

Statistics of random inputs from the trained neurons to an untrained neuron If an excitatory

neuron i is successfully trained, its firing rate closely follows the target activity fit. We used a shorthand

notation φα
it = φ(xα

i (t)) and expressed the firing rate of the trained neuron in the form φE
it = 〈φE

it〉+ δφE
it ,

with the temporal modulation δφE
it . We next considered the singular value decomposition of the temporal

modulation:

δφE
it =

T
∑

n=1

Uin

√

λE
n Vnt (11)

which is N×T matrix, and where U is a N ×N matrix of the left singular vectors and V is T × T matrix

of the right singular vectors. Here, we considered a discretized version of time with T = Ttarget/∆t, such

that the matrices are of finite size. The values
√

λE
n are the singular values (SVs) and λE

n are the elements

of the spectrum of the covariance matrix of the trained excitatory neurons. For instance, if we choose

the target activity to be sinusoidal functions with random phases (Fig. 5A), the covariance matrix is

stationary and the right singular vectors are the Fourier modes (e.g., V1t ∝ sin(ωt), V2t ∝ cos(ωt)).

Untrained (inhibitory) neurons do not receive plastic synapses. Thus, the aggregate input from

the trained neurons to an untrained neuron, uIE
it , is a random summation of trained neurons’ activity. It

is given by:

uIE
it =

∑

j

JIE
ij φE

jt = [〈uIE
it 〉] + ∆uIE

i + δuIE
it (12)
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with the average population input [〈uIE
it 〉] =

√
KJ̄IEφ1. The second term in Eq.(12) is the quenched

disorder [44] and its variance is given by:

[(∆uIE
i )2] = J̄2

IE [〈φE
it〉2] = qIE (13)

The last term in Eq.(12) is the temporal modulation of the aggregate trained input, δuIE
it =

∑

JIE
ij δφE

jt.

Using Eq.(11), it is given by:

δuIE
i (t) = J̄IE

T
∑

n=1

ãin

√

λE
n Vnt. (14)

Here, due to the Central Limit Theorem, the coefficients ãin = 1√
K

∑

j Unj are Gaussian vectors

with zero mean and unit variance in the large K limit (see Prediction 1 below), if the left singular

vectors Uin’s are random variables with zero mean and unit variance. Importantly, we emphasize that it

is the strong coupling (i.e., synaptic weights scale as 1/
√
K) that allows the coefficients ãin’s to have finite

variance. This is not the case if synaptic weights are weak (see Prediction 2 below). In addition, the

variance of the coefficients of temporal modulation is J̄2

IEλ
E
n , which shows that the SVs,

√

λE
n , determine

the strength of temporal modulation (see Prediction 3 below).

With this, the synaptic input to an untrained neuron from the trained population can be written

in the following form:

uIE
it =

√
KJ̄IEφE +

√
qIEz

E
i + δuIE

it (15)

with zEi being a Gaussian random variable with zero mean and unit variance.

For example, when the target functions are sinusoidal functions with random phases (Figs. 1,5)

these temporal modulations are:

δuIE
it = J̄IE

T
∑

n=1

√

λE
n [ani cos(nωt) + bni sin(nωt)] (16)

where we replaced ãni in Eq.(14) with the even and odd coefficients of the cosine and sine functions,

ani, bni, respectively.

Similarly, in the case of the ALM data, the dominant right singular vector is a ramping mode

(Fig. 2E,F), i.e. V1t ∝ t and the temporal modulations are dominated by:

δuIE
it ≈ J̄IE

√

λE
1
ã1it (17)

with ã1i ∼ N (0, 1).

The recurrent untrained inputs and implications The synaptic input to an untrained inhibitory

neuron consists of a large, O(
√
K), and positive mean drive from the excitatory neurons. The untrained

neurons will thus fire with high rates and regular spiking, unless the network operates in the balanced
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regime, in which the recurrent inhibition cancels most of this large excitatory drive [23]. In this case, the

untrained neuron will be driven by the temporal modulations originating from the random summation of

the activity of trained neurons, which are of O(1) due to the strong coupling. This input is spanned by

the principal components (or, equivalently, the right singular vectors) of the trained population according

to Eq.(14).

A similar analysis on the recurrent inputs from the untrained inhibitory population, uII
it , needs

to be done to infer the statistics of the temporal fluctuations of the net input, δuI
it, and rates, δφI

it, of the

untrained inhibitory neurons. This analysis needs to be done in a self-consistent way to determine the

statistics of δφI
it [56]. While this analysis is beyond the scope of the current paper, several observations

can be made already by examining the statistics of the inputs from the trained population.

Prediction 1. No matter what the right singular vectors (which we refer to as the PCs in the main

text) are, their coefficients are expected to be Gaussian. This prediction is shown in Fig. 5F for artificial

target functions of sine functions with random phases, as well as in Fig. 5G for the coefficients of the

dominant ramping mode in the neural data.

Prediction 2. The spread of activity in the network is possible only because the variance of ãit’s in

Eq.(14) is finite. It is a result of the strong coupling in the network, i.e. the 1√
K

scaling of the synapses,

which guarantees, due to the Central Limit Theorem, that the variance of the aggregate input from the

trained neurons converge is finite. This is in contrast to the case of weak synapses (e.g., scaling of
J̄αβ

K

instead of
J̄αβ√
K
), where the variance of ãit converges to zero in the large K limit (Fig. S9, no spreading

of trained activity in a weakly coupled network).

Prediction 3. The strength of the transfer of the trained activity to the untrained neurons depends

on the variance of the trained population through Eq.(14). As shown in Fig. 4B, in the ALM data the

variance of the temporal modulations of the inhibitory neurons is larger than those of the excitatory

neurons. This result suggests why the fidelity of the spread improved when the inhibitory population

was trained instead of the excitatory population. It also explains why lower mode PCs of the activity

can spread better in the network, as their corresponding SVs (
√

λE
n in Eq.(14)) are, by definition, larger

than those of the higher mode PCs.

Prediction 4. This framework provides additional insights into how excitatory neurons trained to be

choice-selective can impart the learned selectivity to the untrained inhibitory neurons through nonspecific,

strong synaptic connections (see Fig. 3E). To show this, one can estimate the statistics of the difference

in the input to an untrained inhibitory neuron from the trained population for the lick-right and lick-

left trials. For instance, if we consider the target functions to be defined by the dominant ramping

mode that captures over 70% of the variance (Fig. 2E), the relevant basis function would be V1t ∝ t for

t ∈ [0, Ttarget], and the selectivity of the trained inputs (SIE) yields

SIEi = uIE,right
it − uIE,left

it ≈ A∆zi +B∆ã1it (18)

where A and B determine the variance in the baseline inputs and ramping rates, respectively. From
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Eq.(15), the quenched disorder yields Gaussian variables ∆zi = zE,right
i − zE,left

i , with a finite variance

A2. From Eq.(17), the temporal modulation yields a Gaussian variables ∆ã1i = ãright
1i −ãleft

1i , with a finite

variance B2. Because ∆zi and ∆ã1i are random variables with finite variances, the trained inputs develop

choice selectivity, which can then elicit choice selectivity in the untrained inhibitory neurons (Fig. 3D).

The good agreement of the distribution of choice-selectivity in the untrained neurons in the model and

the putative fast-spiking neurons in the neural data (Fig. 3D) is consistent with this prediction.

Simulation parameters
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Neuron parameters Values

δt simulation time step 0.1 ms

τm membrane time constant 10 ms

vthr spike threshold 1

vreset voltage reset after spike 0

Network parameters

N number of neurons 30000

NE number of excitatory neurons N/2

NI number of inhibitory neurons N/2

p connection probability 0.2

Synaptic parameters

τbal static synaptic time constant 3 ms

τplas plastic synaptic time constant 150 ms

K average number of static synapses to a neuron pN

KE average number of excitatory static synapses to a neuron pNE

KI average number of inhibitory static synapses to a neuron pNI

L number of plastic synapses to a neuron see Table2

JE excitatory synaptic weight 2.0/
√
KE

JI inhibitory synaptic weight −2.0/
√
KI

X external input 0.08
√
KI

JEE E to E static synaptic weight γEJE

JIE E to I static synaptic weight JE

JEI I to E static synaptic weight γIJI

JII I to I static synaptic weight JI

XE external input to excitatory neurons γXX

XI external input to inhibitory neurons X

γE relative strength of WEE to WIE 0.15

γI relative strength of WEI to WII 0.75

γX relative strength of XE to XI 1.5

Training parameters

λ penalty for L2-regularization 0.05

µ penalty for ROWSUM-regularization 8.0

Niter number of training iterations 200

Ttarget length of target patterns 2 sec

Table 1: Default simulation and training parameters. Any differences from the above parameters are described

in Table2.
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Figure 2 Figure 4 Figures 1 & 5

Target functions Neural PSTH Synthetic PSTH Sine function

Neurons

N # neurons 5·103 3·104 3·104
Ntrained # trained neurons 1824 3·103 to 1.5 · 104 3·104 & 1.5 · 104

Static synapses to a neuron

p conn prob of static synapses 0.2 0.2 0.213

K = pN # static synapses to a neuron 1,000 6,000 6,400

Plastic synaptic weights to a trained neuron

JE , JI see Table 1

WEE E to E plastic synaptic weight 0.66JE JE 2JE

WIE E to I plastic synaptic weight 0.66JE JE 2JE

WEI I to E plastic synaptic weight 0.33JI 0.5JI JI

WII I to I plastic synaptic weight 0.33JI 0.5JI JI

Number of plastic synapses to a trained neuron√
K order of # plastic synapses 32 77 80

Lrec = c
√
K # recurrent plastic synapses 264 440 226

Lffwd = c
√
K # ffwd plastic synapses 300 200 0

L = Lrec +Lffwd # total plastic synapses 564 640 226

Sparsity of plastic synapses

L/K # plastic / # static synapses 0.564 0.106 0.035

Table 2: The number of total neurons, trained neurons and plastic synapses in the simulated networks.
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Figure S1: Training is robust to scaling of synaptic weights and inputs. All neurons in a network

consisting of N = 30, 000 excitatory and inhibitory neurons were trained to learn sine functions with random

phases. The average number of static synapses to a neuron, K, in the initial network was varied over a wide

range to demonstrate that the training scheme is robust to the increased strength of static synapses. (A) Typical

performance of neurons in a trained network. Average performance in dashed line. Here, the performance was

quantified as the correlation between the target patterns and the synaptic input to a neuron that learned the

target. (B) The number of plastic synapses was increased proportionally to
√
K and the strength of plastic

synapse by 1/
√
K. Therefore, the total weight of plastic synapses to a neuron remained constant in the initial

network, independent of K (WE : total weight of plastic excitatory synapses to neurons). In contrast, the total

weight of static synapses to a neuron increased as
√
K ([44];JE : average weight of static excitatory synapses to

neurons). (C) Strength of different types of synaptic inputs to neurons in networks trained over a wide range of

K. For each K, networks were trained until the network performance reached 0.6. Trained networks showed that

learning was successful even as the excitatory (uE
bal) and inhibitory (uI

bal) balanced inputs coming through the

static synapses increased with
√
K, while the plastic inputs (uplas) coming through the plastic synapses and total

balanced inputs (ubal = uE
bal − uI

bal) remained constant, on the order of threshold (dashed red line), independent

of K.
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Figure S2: Spiking activity of excitatory neurons trained to reproduce the PSTHs of pyramidal

ALM neurons. (A) Normalized PSTHs of trained excitatory neurons (top) and the normalized PSTHs of

pyramidal ALM neurons (bottom) that were used to train the excitatory neurons. Neurons were sorted in

decreasing order according to their performance in the lick right trials. (B) PSTHs of trained excitatory and

pyramidal ALM neurons were compared for the lick-right (top) and lick-left (bottom) trials. Panels in the same

position represent the activity of same neurons during the lick-right and lick-left trials. The correlation between

two PSTHs are shown on each panel. (C) Performance (left) of all the trained excitatory neurons (average

performance in dashed lines), quantified as the correlation between the PSTHs of the trained neuron and target

ALM neuron. Distribution of mean synaptic inputs (right) to trained excitatory neurons. Here, uE
bal, u

I
bal are the

excitatory and inhibitory balanced inputs, respectively, to the trained neurons through the static synapses. ubal

is the sum of uE
bal and uI

bal. uplas is the plastic input to the trained neurons through the plastic synapses. (D)

Distribution of the firing rates of neurons in a trained network (left) and ALM neurons (right).
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Figure S3: PCA on the PSTHs of the initial network, trained excitatory neurons, untrained

excitatory neurons and untrained inhibitory neurons. (A) Schematic of the Subset Training, where only

1824 excitatory neurons out of total 2500 excitatory neurons were trained. It is the same trained network presented

in Fig. 2. (B) The first six PCs of PSTHs of the inhibitory neurons in the initial network before training (left).

The cumulative variance explained by the PCs (right). (C) PCA on the PSTHs of the trained excitatory model

neurons and pyramidal ALM neurons for the lick-left and lick-right trial types. (D) PCA on the PSTHs of the

untrained excitatory model neurons and pyramidal ALM neurons for the lick-left and lick-right trial types. (E)

PCA on the PSTHs of the untrained inhibitory model neurons and fast-spiking ALM neurons for the lick-left and

lick-right trial types.
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Figure S4: Spiking activity of untrained inhibitory neurons that best match the spiking activity

of fast-spiking ALM neurons. (A) Normalized PSTHs of the untrained inhibitory neurons (top) selected

from the inhibitory population to match the PSTHs of fast-spiking ALM neurons (bottom). Neurons were sorted

in decreasing order according to the goodness-of-fit for the lick-right trial. (B) Example PSTHs of untrained

inhibitory neurons and the matched fast-spiking ALM neurons. Panels in the same position represent the activity

of same neurons during the lick-right (top) and lick-left (bottom) trials. The correlation between the matched

PSTHs are shown on each panel.
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Figure S5: Selectivity of null network neurons, trained excitatory neurons and pyramidal ALM

neurons. The null network is the initial balanced network with no training. (A) Selectivity of excitatory neurons

in the null network (left). Selectivity of excitatory neurons trained to generate the activity of pyramidal ALM

neurons (middle). Selectivity of pyramidal ALM neurons (right). (B) Distributions of neurons’ choice selectivity

in the null network (left), the trained excitatory model neurons and pyramidal ALM neurons (right).
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Figure S6: Constructing synthetic neural data. (A) Firing rate distribution of fast-spiking ALM neurons

for the lick-left and lick-right trials (left). Comparison of neuron’s firing rate for two conditions (right). (B) Firing

rate distribution of synthetic neurons. The firing rate of a synthetic neuron for the lick-right trial is sampled from

ALM neuron’s empirical rate distribution shown in (A, left). To get the firing rate of lick left-trials that has

choice selectivity similar to (A, right), we selected fast-spiking ALM neurons whose lick-right firing rate was close

to the sampled rate, and added a noise term with mean 0 and variance identical to the empirical variance of

chosen ALM neuron’s lick left rates. (C) PC loading vs. firing rate of fast-spiking ALM neurons for the lick-right

trials. Based on the sampled rates from (B), the PC loadings to each synthetic neuron were bootstrapped from

the empirical distribution of fast-spiking ALM neuron’s PC loadings. (D) Synthetic PSTHs were constructed by

rsynth = r0 +
∑

6

n=1
csynth
n vn where r0 is the baseline firing rate from (B), csynth

n is the nth PC’s loading from

(C) and vn is the nth PC of fast-spiking ALM neurons. (E) PCA on the PSTHs of fast-spiking ALM neurons

and fast-spiking synthetic neurons. The first six PCs (top) and the distributions of PC loadings (bottom) were

identical. See also methods for detailed explanation.
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Figure S7: Spreading of trained synthetic neural activity. Extended results from the network trained on

synthetic neural data in Fig. 4. A network of size N = 30000 was trained using the synthetic neural data. The

fraction of trained neurons within the subnetwork was varied, where the fraction equals to 1 if all the neurons

within the (excitatory or inhibitory) subnetwork are trained. We considered two training scenarios (top row)

where either the excitatory or the inhibitory neurons, but not both, were trained. Explained variance refers to

the variance explained by the first six PCs of the PSTHs of neurons that were either trained (panel (A)) or not

trained (panels (B) and (C)). (A) Variance explained by the subsets of trained neurons in two training scenarios for

the lick-right (middle) and lick-left (bottom) trial types. (B) Variance explained by the untrained neurons within

the subnetwork that was not trained. Two training scenarios for the lick-right (middle) and lick-left (bottom)

trial types are shown. (C) Variance explained by the untrained neurons within the trained subnetwork. (D) PCs

of the PSTHs transferred from the trained excitatory neurons within the trained excitatory subnetwork to the

untrained excitatory neurons within the same trained excitatory subnetwork. The fraction of trained neurons was

varied. This corresponds to the scenarios shown in (C). (E) Same as in (D), but now considered the PCs of the

PSTHs transferred from the trained inhibitory neurons within the trained inhibitory subnetwork to the untrained

inhibitory neurons within the same trained inhibitory subnetwork.
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Figure S8: Trained plastic weights are similarly strong as the static weights and correlated to

ramping activity. (A) Trained plastic weights (recurrent and feedforward), normalized by the average static

weights. Left: trained network in Fig. 2 where the 1824 excitatory neurons (out of NE = 2500) were trained

on neural PSTHs. Right: trained network in Fig. 4 where 40% of excitatory neurons (out of NE = 15000) were

trained on synthetic PSTH. Dale’s principle was not respected by the plastic weights in both trained networks. SD

shows the standard deviation of the normalized plastic weight distributions. (B) Temporal average of excitatory

and inhibitory synaptic inputs to trained neurons from the network shown in (A, right). Even though the

plastic weights were moderately strong, the excitatory-inhibitory plastic inputs were around spike-threshold and

significantly weaker than the balanced inputs. Since the plastic weights did not respect the Dale’s principle,

synaptic inputs to a neuron through the positive and negative plastic weights are defined as uE
plas and uI

plas,

respectively. (C) Schematic showing that ramppre and ramppost are the slopes of the linear fit on pre- and post-

synaptic neuron’s PSTH, respectively. ∆ramp is the difference of the slopes. (D) Correlated structure between

∆ramp (i.e., difference between the ramping rates of pre- and post-synaptic neurons) and the normalized W rec
plastic

(i.e., strength of the plastic synapse connecting two neurons). Strong plastic weights around ∆ramp = 0 gradually

decreased as the absolute value of ∆ramp increases. (E) Unlike the plastic weights shown in (D), the static weights

only depended on four connection types (i.e. E → E,E → I, I → E, I → I). We tested if the ramping activity

in untrained neurons might have emerged from preferential inputs from presynaptic neurons sharing similar

ramping activity. We evaluated ∆ramp between untrained postsynaptic neurons and their presynaptic neurons.

The density of static synapses as a function of ∆ramp is shown in black. Next, ramppost was randomly shuffled

and ∆ramp was re-evaluated. The density of static synapses as a function of the shuffled ∆ramp is shown in

red. Two distributions were identical, showing the absence of strong correlation between the ramping activity of

neurons connected by static synapses.
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Figure S9: Trained neural activity fails to spread to untrained neurons if the static synapses are

weak. To create a weakly connected network, the weights of static synapses were scaled by 1

K
, instead of 1

√

K
.

The external inputs were adjusted to be around the spike-threshold such that the excitatory and inhibitory firing

rates were around 5Hz and 12Hz, respectively, before training. Gaussian noise with mean 0 and standard deviation

0.5 was injected to the membrane equation to emulate the noisy spiking activity of the balanced network. The

excitatory neurons were trained to learn sine waves with frequency 2Hz and random phases, but the inhibitory

neurons were not trained. (A) The synaptic activities of trained excitatory neurons followed the target sine

waves (top). The PCs of the trained excitatory neurons’ synaptic activity (bottom). The Fourier modes of sine

waves are highlighted (magenta) and the corresponding PCs (i.e., PC1, PC2) are shown. The loading of each

PC on synaptic activity was averaged over all excitatory neurons to obtain the average strength of the PCs. The

first two PCs explained close to 99% of the variance. (B) Synaptic activity of untrained inhibitory neurons had

no temporal structure. (C) Aggregate excitatory synaptic input to an untrained inhibitory neuron (left, uE
t ).

The PCs of the temporal modulation of excitatory input (right, δutrained
t ) with the corresponding PCs in panel

(A) highlighted (magenta). The strength of the trained PCs (i.e., PC1 and PC2) was weak. (D) Same as in

(C), but the aggregate untrained inhibitory input to the same untrained inhibitory neuron is shown. (E) The

total synaptic input to the untrained inhibitory neuron (top) with the Gaussian noise shown in the background

(gray). The PCs of the total input to untrained inhibitory neurons (bottom) with the transferred PCs highlighted

(magenta). Again, the strength of the transferred PCs was weak.
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Mrsic-Flogel. Functional specificity of local synaptic connections in neocortical networks. Nature,

473(7345):87–91, 2011.

[35] David Sussillo and Larry Abbott. Generating Coherent Patterns of Activity from Chaotic Neural

Networks. Neuron, 63(4):544–557, 2009.

[36] Wilten Nicola and Claudia Clopath. Supervised learning in spiking neural networks with force

training. Nature communications, 8(1):2208, 2017.

[37] Christopher M Kim and Carson C Chow. Learning recurrent dynamics in spiking networks. eLife,

7:e37124, 2018.

[38] Ashok Litwin-Kumar and Brent Doiron. Slow dynamics and high variability in balanced cortical

networks with clustered connections. Nature neuroscience, 15(11):1498–1505, 2012.

[39] Hidehiko K Inagaki, Lorenzo Fontolan, Sandro Romani, and Karel Svoboda. Discrete attractor

dynamics underlies persistent activity in the frontal cortex. Nature, 566(7743):212–217, 2019.

[40] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, and

Kenneth D Harris. Spontaneous behaviors drive multidimensional, brainwide activity. Science,

364(6437), 2019.

52

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496618
http://creativecommons.org/licenses/by/4.0/


[41] Nuo Li, Tsai-Wen Chen, Zengcai V Guo, Charles R Gerfen, and Karel Svoboda. A motor cortex

circuit for motor planning and movement. Nature, 519(7541):51–56, 2015.

[42] Adil G Khan, Jasper Poort, Angus Chadwick, Antonin Blot, Maneesh Sahani, Thomas D Mrsic-

Flogel, and Sonja B Hofer. Distinct learning-induced changes in stimulus selectivity and interactions

of gabaergic interneuron classes in visual cortex. Nature neuroscience, 21(6):851–859, 2018.

[43] Farzaneh Najafi, Gamaleldin F Elsayed, Robin Cao, Eftychios Pnevmatikakis, Peter E Latham,

John P Cunningham, and Anne K Churchland. Excitatory and inhibitory subnetworks are equally

selective during decision-making and emerge simultaneously during learning. Neuron, 105(1):165–

179, 2020.

[44] Carl van Vreeswijk and Haim Sompolinsky. Chaotic balanced state in a model of cortical circuits.

Neural computation, 10(6):1321–1371, 1998.

[45] Rodrigo Laje and Dean V Buonomano. Robust timing and motor patterns by taming chaos in

recurrent neural networks. Nature Neuroscience, 16(7):925–933, may 2013.

[46] Dimitri M Kullmann, Alexandre W Moreau, Yamina Bakiri, and Elizabeth Nicholson. Plasticity of

inhibition. Neuron, 75(6):951–962, 2012.

[47] Gianluigi Mongillo, Simon Rumpel, and Yonatan Loewenstein. Inhibitory connectivity defines the

realm of excitatory plasticity. Nature neuroscience, 21(10):1463–1470, 2018.

[48] Robert Kim and Terrence J Sejnowski. Strong inhibitory signaling underlies stable temporal dynam-

ics and working memory in spiking neural networks. Nature Neuroscience, 24(1):129–139, 2021.

[49] Sonja B Hofer, Ho Ko, Bruno Pichler, Joshua Vogelstein, Hana Ros, Hongkui Zeng, Ed Lein,

Nicholas A Lesica, and Thomas D Mrsic-Flogel. Differential connectivity and response dynamics

of excitatory and inhibitory neurons in visual cortex. Nature neuroscience, 14(8):1045–1052, 2011.

[50] David Hansel and Carl van Vreeswijk. The mechanism of orientation selectivity in primary visual

cortex without a functional map. Journal of Neuroscience, 32(12):4049–4064, 2012.

[51] Cengiz Pehlevan and Haim Sompolinsky. Selectivity and sparseness in randomly connected balanced

networks. PloS one, 9(2):e89992, 2014.

[52] Alexandre Mahrach, Guang Chen, Nuo Li, Carl van Vreeswijk, and David Hansel. Mechanisms

underlying the response of mouse cortical networks to optogenetic manipulation. Elife, 9:e49967,

2020.

[53] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-

tial expressivity in deep neural networks through transient chaos. Advances in neural information

processing systems, 29, 2016.

[54] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information

propagation. arXiv preprint arXiv:1611.01232, 2016.

53

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496618
http://creativecommons.org/licenses/by/4.0/


[55] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural networks.

Physical review letters, 61(3):259, 1988.

[56] Ran Darshan and Alexander Rivkind. Learning to represent continuous variables in heterogeneous

neural networks. Cell Reports, 39(1):110612, 2022.

[57] Cody Baker, Vicky Zhu, and Robert Rosenbaum. Nonlinear stimulus representations in neural cir-

cuits with approximate excitatory-inhibitory balance. PLoS computational biology, 16(9):e1008192,

2020.

[58] Alessandro Ingrosso and LF Abbott. Training dynamically balanced excitatory-inhibitory networks.

PloS one, 14(8):e0220547, 2019.

[59] Christopher M. Kim and Carson C. Chow. Training Spiking Neural Networks in the Strong Coupling

Regime. Neural Computation, 33(5):1199–1233, 04 2021.

[60] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and computations

in low-rank recurrent neural networks. Neuron, 99(3):609–623, 2018.

[61] Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri Barak.

The interplay between randomness and structure during learning in rnns. arXiv preprint

arXiv:2006.11036, 2020.

[62] Lior Lebovich, Ran Darshan, Yoni Lavi, David Hansel, and Yonatan Loewenstein. Idiosyncratic

choice bias naturally emerges from intrinsic stochasticity in neuronal dynamics. Nature Human

Behaviour, 3(11):1190–1202, 2019.

[63] Ben Engelhard, Ran Darshan, Nofar Ozeri-Engelhard, Zvi Israel, Uri Werner-Reiss, David Hansel,

Hagai Bergman, and Eilon Vaadia. Neuronal activity and learning in local cortical networks are

modulated by the action-perception state. bioRxiv, page 537613, 2019.

[64] Yashar Ahmadian and Kenneth D Miller. What is the dynamical regime of cerebral cortex? Neuron,

109(21):3373–3391, 2021.

[65] Misha V Tsodyks, William E Skaggs, Terrence J Sejnowski, and Bruce L McNaughton. Paradoxical

effects of external modulation of inhibitory interneurons. Journal of neuroscience, 17(11):4382–4388,

1997.

[66] Alessandro Sanzeni, Bradley Akitake, Hannah C Goldbach, Caitlin E Leedy, Nicolas Brunel, and

Mark H Histed. Inhibition stabilization is a widespread property of cortical networks. Elife, 9:e54875,

2020.

[67] Sadra Sadeh and Claudia Clopath. Patterned perturbation of inhibition can reveal the dynamical

structure of neural processing. Elife, 9:e52757, 2020.

[68] Agostina Palmigiano, Francesco Fumarola, Daniel P Mossing, Nataliya Kraynyukova, Hillel Adesnik,

and Kenneth D Miller. Structure and variability of optogenetic responses identify the operating

regime of cortex. bioRxiv, 2020.

54

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496618
http://creativecommons.org/licenses/by/4.0/


[69] Ran Darshan, William E Wood, Susan Peters, Arthur Leblois, and David Hansel. A canonical neural

mechanism for behavioral variability. Nature communications, 8(1):1–13, 2017.

[70] Ran Darshan, Carl Van Vreeswijk, and David Hansel. Strength of correlations in strongly recurrent

neuronal networks. Physical Review X, 8(3):031072, 2018.

[71] Henry Clavering Tuckwell. Introduction to theoretical neurobiology: linear cable theory and dendritic

structure, volume 1. Cambridge University Press, 1988.

55

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496618doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496618
http://creativecommons.org/licenses/by/4.0/

	Training strongly coupled spiking neural networks with sparse synapses
	Spread of trained neural activity to untrained neurons
	Similarity in the neural activity of untrained model neurons and ALM neurons
	Spreading of trained neural activity improves if the inhibitory subnetwork is trained
	Network mechanism for distributing trained neural activity in strongly coupled networks
	Perturbation responses suggest that the ALM network operates in the balanced regime
	Discussion
	Acknowledgements
	Spiking neural networks
	Network training scheme
	Mathematical analysis of the effects of trained inputs on untrained neurons
	Simulation parameters
	Supplementary material

