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Abstract 

Learning to make predictions is an intrinsically rewarding process for human minds. Yet how we 

map these learned predictions to liking and pleasure remains unclear, particularly in the case of 

abstract rewards, such as music. Here we show that musical preference can be generated de novo 

without extrinsic rewards. To test this, we used digital music technology to create novel melodies 

in the Bohlen-Pierce scale, which is an alternative tuning system different from acoustic 

principles of any established musical culture. Across eight studies (n = 1005 total) we showed 

that systematically manipulating predictions for music composed in this new scale affected self-

report liking ratings. Participants preferred more frequently-presented items that adhered to 

rapidly-learned scale structure, suggesting multiple levels of relationships between familiarity 

and preference. These learning trajectories depended on an individual9s music reward sensitivity, 
and were similar for USA and Chinese participants. Furthermore, fMRI showed that while 

auditory cortical activation reflects predictions, functional connectivity between auditory and 

reward areas encodes preference. Collectively, the results provide a cognitive mechanism by 

which musical sounds become rewarding, through multiple levels of prediction learning process. 

This mechanism, in turn, may underlie the success of music-based interventions for multiple 

clinical populations. 

 
Keywords: new music, auditory learning, statistical learning, medial prefrontal cortex, dopamine 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.06.17.496615doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496615
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

 

Introduction 

Why do we love music? In contrast to other pleasures in life, such as food and sex, music has no 

obvious adaptive value; yet an attraction to music is ubiquitous across cultures and across the 

lifespan. Indeed, both listening to and performing music ranks highly among life9s greatest 
pleasures [1] and reliably engages the dopaminergic reward system [2-4]. One hypothesis for the 

allure of music is that it co-opts a ubiquitous feature of the central nervous system that underlies 

perception, action, and emotion: the continuous learning of reward signals from prediction and 

prediction error [5-8]. Recent findings have converged on the hypothesis that the rewarding 

effect of music comes from making successful predictions and minimizing prediction errors, 

known as the predictive coding of music (PCM) model [9, 10]. Musical predictions can unfold in 

multiple levels, whether they be structural (melody, tonality), temporal (rhythm, meter), and/or 

acoustic (pitch, timbre); and these predictions emerge from repeated exposure, which imparts 

implicit knowledge of statistical properties (frequencies and transitional probabilities) of 

stimulus sequences commonly encountered within one9s own culture [11, 12]. The human ability 
to recognize and learn transitional probabilities has been posited to underlie language learning 

[13, 14] and decision-making [15]. This same statistical learning mechanism is also used to learn 

transitional probabilities in tone sequences [16]. Repeated exposure to sound sequences with 

predictable statistical probabilities can change preferences for those sound sequences [17], 

resulting in a classic inverted-u model that relates preference to familiarity [Chmiel & Schubert, 

2017]. However, the precise relationships between exposure, prediction and error learning, and 

to preference has remained unclear, and the relationship between exposure and prediction to 

activity in the reward system is yet to be quantified. Nor do we know how this relationship varies 

across cultures, or with individual differences in reward sensitivity to music. Understanding the 

relationship between predictive coding and the reward system will provide a mechanistic account 

not only for why people enjoy music, but also the circumstances under which our ability to 

predict leads to reward, a concept that underlies much of motivated behavior [18]. 

 

A fundamental challenge in understanding how predictability inherently relates to learning and 

reward comes from the fact that most stimuli that we encounter, even for the first time, makes 

use of overlearned predictions to which we may have been exposed throughout our lives. This is 

especially the case with musical structures, such as common sets of pitches or musical scales that 

we have implicitly acquired from lifelong exposure [19]. As a concrete example of such 

knowledge, most listeners within the Western culture show implicit knowledge of, and 

preference for, common-practice Western musical scale structures based around the octave, 

which is a doubling of acoustic frequency [20]. As we become exposed to musical sounds 

throughout the lifespan, the brain continuously and automatically learns to form predictions for 

sounds that will likely come next, and the implicit learning of these predictions and minimization 

of prediction errors forms one9s body of knowledge, including of music within the culture. 

 

We circumvent this challenge of overlearned predictions by incorporating a unique and 

unfamiliar musical system: the Bohlen-Pierce (B-P) scale, which is based on a tripling of 

acoustic frequency, thus differing acoustically and statistically from the world9s existing musical 
systems [21]. Here we test the multi-level organization of mapping between predictions and 

reward using naturalistic music composed in grammatical structures defined in the B-P scale 

[17]. In Study 1-4, we ask the degree to which self-reported liking ratings reflect high-level 

predictions (through repeated exposure to full pieces) as well as low-level predictions (through 
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alterations to the endings of exposed melodies). In Study 5, we test the effects of musical reward 

sensitivity, as well as both congenital and acquired music anhedonia, on this mapping between 

predictions and reward. In Study 6, we test the effects of culture on statistical learning by 

comparing groups from the US and China. In Study 7, we reversed the presentation of altered 

and original melodies to ensure that the effects were due to statistical exposure rather than to 

some surface features of the melodic stimuli. Finally, in Study 8, we evaluate brain activation in 

the reward system during the process of learning statistical probabilities and preference-

formation using fMRI. The stimuli are available on https://osf.io/n84d5/, along with the 

preregistration for this study.  

 

Results 

Analysis Plan 

For all studies, participants provided familiarity and liking ratings for melodies composed in a 

predefined grammatical structure in the B-P scale that were either 1) presented a variable number 

of times in an exposure phase (effect of number of presentations, a manipulation of prediction 

strength), or 2) altered to have a different ending than the original, grammatical melodies that 

were presented during exposure (effect of alterations, i.e. a prediction error). Familiarity ratings 

were used as the outcome variable to quantify prediction learning, and liking ratings were used 

as the outcome variable to quantify reward. To investigate the effects of number of presentations 

and alterations on these post-exposure familiarity and liking ratings, we constructed linear 

mixed-effect models using the R package lme4 [22]. We included melody alteration (original vs. 

altered) as an interaction term in these models, which was effect-coded such that the main effect 

of number of presentations represents the average effect across both original and altered 

melodies, and the interaction term represents the difference between this effect across conditions. 

This modeling allowed us to separately investigate 1) the effect of prediction strength (main 

effect of number of presentations), 2) the effect of prediction error (main effect of melody 

alteration), and 3) the effect of prediction error on the exposure-familiarity/liking trajectory (the 

interaction between number of presentations and melody alteration). We specified by-participant 

random slopes (including the interaction term) and intercepts and by-item (melody) random 

intercepts. Continuous predictor and dependent variables were standardized before being entered 

into the model. Significance of fixed effects (number of presentations and melody alteration) was 

determined using the Satterthwaite method to approximate the degrees of freedom with the 

lmerTest package [23].  

 

Study 1 

Participants listened to 8 monophonic musical melodies composed in the B-P scale during the 

exposure phase. The number of presentations varied for each melody (either 2, 4, 8, or 16 times 

with two melodies in each condition). After exposure, participants made familiarity and liking 

ratings for each melody, along with two melodies not heard in the exposure phase (thus, 

presented 0 times during exposure), as well as altered versions of the 10 melodies, which were 

identical except for an unexpected ending. For familiarity ratings, there was a significant 

interaction between number of presentations and melody alteration (� = 0.01, t(1883) = 3.99, p < 

0.001): the effect of number of presentations (main effect: � = 0.33, t(171) = 21.23, p < 0.001) 

was stronger for the original melodies compared to the altered ones. Original melodies were also 

rated as more familiar than their altered counterparts (main effect: � = 0.16, t(1169) = 6.33, p < 

0.001). For liking ratings, there was also a significant interaction between number of 
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presentations and melody alteration (� = 0.05, t(1200) = 2.27, p = 0.02): the effect of number of 

presentations on liking ratings (main effect: � = 0.03, t(1169) = 2.05, p = 0.04) was stronger for 

original compared to altered melodies. Original melodies were rated as more liked compared to 

altered melodies (main effect: � = 0.11, t(1793) = 4.94, p < 0.001). Thus, the overall pattern of 

liking ratings mirrored that of the familiarity ratings, with increased predictability at both levels 

mapping onto reward as operationalized by liking ratings. 

 

Study 2 

In Study 2, we extended the findings from Study 1 to determine the degree to which changing the 

specific numbers of presentations during the exposure phase affected liking ratings. In a new 

group of participants, we replicated Study 1 but with melodies that were presented either 0, 2, 4, 

6, 10, or 14 times. For familiarity ratings, there was again a significant interaction between 

number of presentations and melody alteration (� = 0.06, t(3411) = 2.81, p = 0.005): the effect of 

number of presentations (main effect � = 0.3, t(163) = 15.71, p < 0.001) was stronger for the 

original melodies. Original melodies were rated as more familiar than altered ones (main effect � 

= 0.14, t(1545) = 5.87, p < 0.001). For liking ratings, we again found a significant main effect of 

number of presentations (� = 0.02, t(163) = 2.1, p = 0.04). Original melodies were more liked 

compared to altered melodies (� = 0.02, t(171) = 2.1, p < 0.001). We did not detect an 

interaction between melody alteration and number of presentations (� = 0.13, t(3179) = 1.06, p = 

0.29). Thus, changing the specific numbers of presentations from Study 1 removed the 

previously-observed interaction for liking ratings, such that ungrammatical melodies/prediction 

errors still resulted in a similar-sized mere exposure effect as grammatical/original melodies as 

number of presentations increased. 

 

Studies 3 and 4 

Studies 3 and 4 were designed to replicate the findings from Studies 1 and 2 with a new sample. 

Study 3 used the same numbers of presentation as Study 1 (0, 2, 4, 8, 16) and Study 4 used the 

same numbers of presentation as Study 2 (0, 2, 4, 6, 10, 14). For familiarity ratings in Study 3, 

there was a significant interaction between number of presentations and melody alteration (� = 

0.07, t(2305) = 2.79, p = 0.005): again, the effect of number of presentations (main effect � = 

0.33, t(168) = 18.81, p < 0.001) was stronger for the original melodies. Original melodies were 

also rated as more familiar than their altered counterparts (� = 0.14, t(1168) = 5.81, p < 0.001). 

For liking ratings, we also replicated the main effect of number of presentations (� = 0.06, t(169) 

= 3.66, p < 0.001). Again, original melodies were preferred over altered melodies (� = 0.07, 

t(1507) = 3.15, p = 0.002). There was no interaction between melody alteration and number of 

presentations (� = 0.01, t(1434) = 0.56, p = 0.57). For familiarity ratings in Study 4, we 

replicated the main effect of number of presentations on familiarity ratings (� = 0.34, t(163) = 

19.62, p < 0.001). Again, original melodies were rated as more familiar than altered melodies (� 

= 0.17, t(1923) = 7.08, p < 0.001). We did not detect a melody alteration X number of 

presentations interaction (� = 0.04, t(2026) = 1.66, p = 0.1). For liking ratings in Study 4, we 

replicated the significant effect of number of presentations (� = 0.03, t(162) = 2.14, p = 0.03). 

Original melodies were once again rated as more liked than altered melodies (� = 0.09, t(3316) = 

4.67, p < 0.001). There was no interaction between melody alteration and number of 

presentations (� = 0.02, t(1801) = 0.87, p = 0.38). Together, these four studies consistently show 

that main effects of presentation and alteration were robust for both familiarity and liking, but the 
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interaction was much more variable especially for liking. Since Studies 1 through 4 used 

different samples of participants but the same stimuli with different numbers of presentations, we 

proceeded to combine the data from these studies for a mini meta-analysis to evaluate the effects 

of alteration and number of presentations on familiarity and liking across a larger sample.  

 

 

Mini Meta-Analyses of Studies 1-4 

 

Prediction shows a logarithmic relationship with number of presentations 

When considering the shape of the relationship between number of presentations and familiarity, 

we expected that familiarity ratings would show a logarithmic relationship with number of 

presentations, (i.e. participants would learn the stimuli after a certain amount of presentations, 

after which subsequent presentations do not make them more familiar), as opposed to a more 

linear relationship (i.e. ratings continue to increase with the number of presentations). We 

compared the fit between logarithmic and linear models for combined data across Studies 1-4 (n 

= 667). These models had the same random effects structure as previous models. Results from 

this mini meta-analysis showed both main effects of number of presentations and alterations, as 

well as significant interactions between alterations and number of presentations, in both linear 

and logarithmic models. Following the suggestion of Zuur et al. [24], parameters were estimated 

using maximum likelihood, and Akaike9s Information Criteria (AIC) was compared across these 

models to compare their fit. This revealed that a logarithmic model (AIC = 31575) was a better 

fit compared to a linear model (AIC = 33986) to model the relationship between number of 

presentations and familiarity ratings (see Table 1 and Figure 1).  

 

Liking ratings show a quadratic relationship with number of presentations 

We used the same approach to best describe the relationship between liking ratings and number 

of presentations. However, as the trajectory between exposure and liking typically shows an 

inverse-U relationship (see Chmiel & Schubert, 2017 for a review), we compared model fits of a 

linear and quadratic model using a Likelihood Ratio test. Both linear and quadratic models 

showed significant main effects of number of presentations and alterations, as well as significant 

interactions between the two. The quadratic model was found to best describe the relationship 

between number of presentations and liking ratings (χ2(13) = 127.03, p < 0.001; see Table 1 and 

Figure 1). 
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Table 1. Standardized Beta coefficients, associated p-values, and R2 values for each model fit for 

familiarity (A) and liking (B) ratings. 
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Figure 1. Best-fit model predictions of familiarity (A) and liking (B) ratings as a function of 

number of presentations and alteration across Studies 1 to 4. Points and associated error bars 

indicate mean ratings and 95% confidence intervals. 

 

Music reward sensitivity influences the learning trajectory 

With the aggregated data from 667 participants across Studies 1-4, we then tested the hypothesis 

that individual differences in music reward sensitivity may be due, in part, to an inability to 

translate statistically-learned predictions into a reward response. Following past work (Martinez-

Molina et al., 2016), we split our sample into tertiles using the Barcelona Music Reward 

Questionnaire (BMRQ), a measure of music reward sensitivity [25]. These tertiles  represent 

relatively high (hyperhedonics, BMRQ = 86-100), medium (hedonics, BMRQ = 76-85), and low 

sensitivity (anhedonics, BMRQ = 26-75) to music reward in our sample. To test this hypothesis, 

we added an interaction term for music reward sensitivity to our best fitting models (logarithmic 

for familiarity ratings; quadratic for liking ratings). For these analyses, this variable was dummy-

coded to treat the hedonic group as the reference level. We interpreted any interaction between 

number of presentations and music reward sensitivity as evidence that the relationship between 

familiarity and/or liking ratings and number of presentations differed across groups.  

 

For familiarity ratings, there were no differences in ratings across the three tertiles. Further, there 

were no significant two-way interactions between music reward sensitivity and number of 

presentations or alteration, and no significant three-way interaction between music reward 

sensitivity, number of presentations, and alteration (for all results, see Table 2, Figure 2). 

 

For liking ratings, there was a significant difference across groups: the hedonic group rated 

melodies as more liked than the anhedonic group (� = 0.17, t(663) = 2.36 p = 0.02). There were 

no significant linear interactions between number of presentations and music reward sensitivity, 

and there were not any interactions between alteration and music reward sensitivity. There was 

no significant three-way interaction between music reward sensitivity, number of presentations, 

and alteration. We did, however, detect an interaction between the quadratic number of 

presentations term and music reward sensitivity (interaction � = 0.06, t(649) = 3.05, p = 0.002): 

while the anhedonic group showed a significant inverse-U relationship between number of 

presentations and liking ratings (� = -0.04, t(650) = -3.12 p = 0.002), the hedonic group did not 

(� = 0.02, t(649) = 0.24) (for all results, see Table 2, Figure 2). 
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Table 2. Standardized Beta coefficients and associated p-values for the three-way (music reward 

sensitivity X number of presentations X alteration) interaction models built on (A) familiarity 

and (B) liking ratings. Only music reward sensitivity terms are shown.  
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Figure 2. Model-predicted  familiarity (A) and liking (B) ratings as a function of number of 

presentations, alteration, and music reward sensitivity (tertile split on BMRQ: anhedonic, 

hedonic, and hyperhedonic groups). Points and associated error bars represent 95% confidence 

intervals. 

 

Study 5 

Study 5 consisted of two case studies that include participants with congenital and acquired 

music-specific anhedonia, a condition in which listeners derive no pleasure from listening to 

music [26]. Both participants underwent a streamlined version of our study paradigm, with 

melodies presented 0, 4, 10, and 14 times, and only one melody per condition. We calculated the 

mean squared error (MSE) for liking and familiarity ratings of both the original and altered 

versions of these melodies using model predictions from the three-way (number of presentations 

X alteration X music reward sensitivity) interaction models at all three levels of music reward 

sensitivity. For familiarity ratings, the model prediction at the hyperhedonic level best matched 

music-specific anhedonics9 responses (i.e. the model showed the lowest MSE of 18.13 at the 
hyperhedonic level), followed by the hedonic (19.95) and anhedonic (20.18) levels. In contrast, 

for liking ratings, the model had the lowest MSE (3.66) from the anhedonic level when 

predicting the music-specific anhedonics9 data, compared to both the hedonic (4.97) and 
hyperhedonic (5.01) levels. These case studies provide further support for the idea that both 

cases of congenital and acquired musical anhedonia had difficulty mapping predictions to 

reward.  

 

Study 6 

Study 6 extends the findings from Studies 1-4 to investigate possible cultural effects on the 

process of learning musical structure and subsequent reward. To this end, we recruited 156 

participants from China to complete the identical procedure as Study 4. For familiarity ratings,  

there was a significant interaction between number of presentations and melody alteration (� = 

0.08, t(1758) = 3.13, p = 0.002): the effect of number of presentations (main effect: � = 0.3, 

t(154) = 14.9, p < 0.001) was stronger for original compared to altered melodies.Original 

melodies were rated as more familiar than altered melodies (main effect � = 0.11, t(2437) = 4.49, 

p < 0.001). For liking ratings, we replicated the significant effect of number of presentations (� = 
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0.06, t(155) = 4, p = 0.001). Again, original melodies were rated as more liked than their altered 

counterparts (� = 0.12, t(189) = 5.29, p < 0.001). There was no interaction between melody 

alteration and number of presentations (� = 0.007, t(971) = 0.32, p = 0.75). 

 

To further test whether familiarity and liking rating trajectories matched that of the US sample, 

we again fit two classes of models (logarithmic and linear for familiarity ratings; linear and 

quadratic for liking ratings) to these data. This revealed that, again, a logarithmic model best fit 

familiarity ratings (linear model AIC = 8958.3; logarithmic model AIC = 8376.9). A likelihood 

ratio test also indicated that a quadratic model fit to the liking rating data was better fit than a 

linear model (χ2(13) = 127.03, p < 0.001; see Figure 3). 

 

 

 
Figure 3. Cross-cultural replication of the effects of alterations and number of presentations on 

familiarity and liking ratings. Best fitting model predictions with mean ratings and 95% 

confidence intervals. 

 

Study 7 

To ensure that our results regarding the effects of alteration were due to statistical exposure to 

the original melodies and their underlying harmonic or grammatical structure (as opposed to 

specific features of these melodies), we ran an additional follow-up study in which the altered 

melodies were presented in the exposure phase (at 0, 2, 4, 8, and 16 times) and the original 

melodies were presented in the post-exposure rating phase. For familiarity ratings, we replicated 

the significant effect of number of presentations (� = 0.31, t(161) = 15.19, p < 0.001), but no 

main effect of alteration (� = 0.01, t(2129) = 0.48, p = 0.63) and no interaction between melody 

alteration and number of presentations ( � = -0.04, t(2786) = -1.77, p = 0.08). For liking ratings, 

there was again a significant effect of number of presentations (� = 0.03, t(159) = 2.36, p = 0.02) 

and altered melodies were preferred over original melodies (� = 0.05, t(2595) = 2.27, p = 0.02). 
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We did not detect a melody alteration X number of presentations interaction (� = -0.007, t(2519) 

= -0.31, p = 0.75). This study suggests that the grammatical structure underlying the original 

melodies aided with predictions, leading to increased familiarity and liking for grammatical 

melodies. Repeatedly presenting the ungrammatical, altered melodies led to increased familiarity 

of those melodies, but not to differential learning of their structure or stronger mapping of those 

structures to reward. 

 

Study 8 

In Study 8, we relate prediction learning to fMRI activity in the reward system. 21 young adults 

participated in the same study design as in Study 6 outside of the scanner, and then listened to 

the 8 melodies during fMRI as part of a larger-scale study in the lab looking at effects of music-

based interventions in young adults and older adults (Quinci et al, 2022). Whole-brain, univariate 

analyses showed greater activation for original vs. altered melodies in the right Heschl9s gyrus 
(Figure 4A), suggesting that the auditory cortex is sensitive to the predictions. 

 

The functional connectivity between auditory and reward areas was quantified by correlating the 

time series of beta-values extracted from Heschl9s gyrus (the same ROI as in Figure 4A) and 

reward-sensitive regions including the nucleus accumbens and the medial prefrontal cortex (see 

Materials and Methods). A two-way within-subjects ANOVA with the dependent variable of 

auditory-reward functional connectivity, with the factors of alterations and number of 

presentations, showed a significant main effect of alteration (F(1,20) = 5.24, p = .033, ηp² = .21) 

and a significant main effect of number of presentations (F(3,60) = 3.31, p = .026, ηp² = .14). 

Figure 4B shows a linear relationship for original melodies as well as the effect of alteration. The 

same pattern was not observed for functional connectivity between Heschl9s gyrus and the 
nucleus accumbens (alteration: F(1,20) = 1.61, p = .22, ηp² = .074; number of presentations: 

F(3,60) = .30, p = .83, ηp² = .015.)  
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Figure 4. fMRI results. A) Greater activation for original than for altered melodies in Heschl's 

gyrus, confirming that auditory regions implement predictions. B) Higher functional 

connectivity, as quantified by correlations in beta-series, between auditory regions (Heschl’s 
gyrus) and reward regions (mPFC) for original melodies than for altered melodies (B) which 

increases with number of presentations for original but not for altered melodies.  

 

Discussion 

Across eight studies, we showed that listeners from two different cultures can rapidly learn 

multiple levels of predictions in novel music, and that this learning subsequently maps onto 

liking, is conserved across cultures and is related to the reward system of the brain. In Studies 1-

4, we established that changing the number of presentations (prediction strength) and altering the 

endings of melodies (prediction errors) both changed predictions in ways that affected self-report 

preferences for music. Meta-analysis across Studies 1-4 and neuropsychological results from 

Study 5 confirmed that individuals with musical anhedonia formed predictions in the same way 

as controls, but did not derive preferences from predictions in the same way as their more 

hedonic counterparts. Study 6 established that both Chinese and American participants were 

affected by prediction strength and prediction errors in this system that was unfamiliar to both 

cultures. Study 7 showed that reversing the exposure to altered versions reversed the liking 

ratings for altered and original melodies, but did not change the effect of number of 

presentations. Finally, Study 8 ties this relationship between prediction and reward to increasing 

functional connectivity between the auditory and reward system. 
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Taken together, results provide support for the PCM model, while extending it in three key 

directions: 1) towards its applicability to prediction and reward in the case of unfamiliar, 

statistically and probabilistically novel music; 2) towards its relevance in more culturally-

independent context via a cross-cultural comparison, and 3) towards its specific disruption in the 

special case of musical anhedonia.  

 

The PCM model proposes that musical expectations can form from learning statistical 

regularities and patterns in music (schematic expectations) as well as familiarity with a particular 

piece of music or genre of music (veridical expectations; [10, 11]). However, the degree to which 

these two types of expectations influence musical reward has been difficult to assess, given that 

adult humans are usually overexposed to particular musical genres that follow the same 

statistical patterns. Here we explicitly test the influence of different types of predictions on 

musical reward and preference by using novel melodies written in an unfamiliar musical key, 

and simultaneously manipulating prediction errors and prediction strength. Participants9 
consistent preference for original over altered melodies and those which were presented more 

often demonstrate the importance of the confirmation of these expectations following brief 

exposure. The fact that participants in Study 7 preferred altered melodies heard during the 

exposure phase (which were grammatically invalid) over their original counterparts in Study 7 

suggests the effect of alteration identified in Studies 1-4 and 6 arose not only because these 

alterations violated our predefined grammatical structure (i.e. schematic expectation violation), 

but also because they ended differently than the these melodies (i.e. veridical expectation 

violation). Unlike in the meta-analysis of Studies 1-4 and the cross-cultural replication in Study 

6, there was no main effect of melody alteration on familiarity ratings in Study 7, nor was there a 

melody alteration X number of presentations interaction (as in Studies 1-3 and 6), however there 

was a main effect of number of presentations. This suggests that when the melodies in the 

exposure phase adhere to an artificial grammar (as they do in Studies 1-4 and 6), there is an 

effect of grammatical regularities (i.e. an effect of schematic expectations) in generating musical 

predictions. Though the evidence of a melody alteration X number of presentations interaction 

on liking ratings is mixed across Studies 1-4, results from our meta-analysis indicate that a 

significant interaction does exist, such that the linear effect of number of presentations is 

stronger for original compared to altered melodies. This provides further evidence that, along 

with prediction error and strength, the presence of artificial harmonic regularities in novel 

musical melodies does impact reward.  

 

Furthermore, while the PCM model posits that the brain's ability to make real-time predictions in 

music depends on prior experience, cultural background, musical competence, and individual 

traits, the degree to which these factors contribute to musical reward is not yet clear. Our results 

show that predictive learning of music occurs across cultures when using novel musical stimuli 

that are unfamiliar to both cultures. Both American and Chinese participants showed the same 

effect of local and global manipulations on preference ratings, suggesting that the influence of 

culture on music reward learning may apply in situations in which there are differences in 

implicit knowledge of familiarized musical structure.  

 

Individual differences in reward sensitivity to music, on the other hand, does seem to be an 

important factor in the process of linking predictive coding with musical reward, in that 

participants who experience less pleasure from music in general did not continue to like pieces 
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after more presentations. While familiarity ratings were not affected by individual differences in 

music reward sensitivity, liking ratings were strongly affected, suggesting that the musical 

anhedonics9 differential exposure-liking trajectory was not due to an inability to form 

predictions, but rather to a difference in mapping predictions to reward. The fact that musical 

anhedonics still preferred original over altered melodies, despite not showing effects of number 

of presentations, suggests that the pleasure they derive listening to music is sensitive to 

prediction errors, but not to prediction strength. As an additional follow-up to the individual 

differences approach, we also found evidence that musical sophistication (as assessed by the 

Goldsmith Musical Sophistication Index [34]) impacted the trajectory of post-exposure liking 

ratings (see Supplemental Materials). Further research, possibly an fMRI study with a large 

population of musical anhedonics, will be needed to isolate the key mechanism by which the 

mapping between predictive coding and reward is altered in individuals with musical anhedonia.   

 

Importantly, our study is the first to show that forming predictions of novel music de novo is 

associated with changes in the reward circuitry of the brain. Electrocortical (EEG and ECoG) 

recordings have demonstrated that cortical signal in the middle Heschl9s gyrus is sensitive to 
melodic expectations [27], and fMRI studies have found that auditory and reward-related areas 

of the brain (including the amygdala, hippocampus, and ventral striatum) show increased 

activation during musical prediction errors [9] as well as during unexpected and/or unpredictable 

chord sequences [28]. However, as previous studies used familiar musical stimuli rooted in the 

Western musical tradition with exclusively Western participants, it was not possible to determine 

when in the process of statistical and reward learning the auditory and reward systems of the 

brain become engaged. Here, we observed that predictions emerge specifically in the middle 

Heschl9s gyrus, which showed sensitivity to melodic alterations, thus extending previous 

EEG/ECoG results. Furthermore, increased functional connectivity between the Heschl9s gyrus 
and mPFC was observed when listening to pieces that were presented more frequently, 

suggesting that the influence of repeated exposure on liking is subserved by changes in 

communication between the auditory and reward network.  

 

Several outstanding questions stem from these studies that warrant future exploration. First, it 

remains to be seen whether preference ratings would continue to increase with more than 16 

exposures. It is quite possible that the positive relationships found between presentation and 

liking is reflective of the positive side of a quadratic function, and that if we were to extend the 

number of repetitions in this paradigm, we would see preference ratings begin to decrease at an 

inflection point. Given that we chose to optimize for longer, more dynamic pieces of music, it 

was not feasible to increase the number of presentations beyond 16 without altering other key 

aspects of the design, introducing fatigue or habituation, or otherwise increasing cognitive 

demand in ways that would confound the study. Future studies with shorter stimuli may be able 

to assess the full extent of the relationship between liking and repetition in B-P stimuli and the 

degree to which relative frequencies (14 relative to 10 vs 14 relative to 2) play a part.  

 

Second, while the current fMRI study shows sensitivity to prediction in the reward system, it is 

not sufficiently powered to assess possible individual differences in neurobiology between 

musical anhedonics and hedonics. Previous neuroimaging studies that included participants with 

musical anhedonia have shown reduced structural and functional connectivity between auditory 

cortex, reward and emotion-processing areas of the brain in musical anhedonics [29, 30] and that 
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alterations of fronto-striatal pathways can lead to either increases or decreases in subjective 

liking ratings of music [31]. Future neuroimaging studies are needed in this special population, 

and also across cultures, to establish the role of this auditory-subcortical-prefrontal network in 

the mapping between musical prediction and reward.  

 

In sum, we developed an innovative paradigm to assess prediction-reward learning of music de 

novo across cultures and in special populations. Our results are the first to show the multiple 

levels by which predictions and prediction errors in music generate reward, and provide strong 

evidence for this learning process across cultures. Individuals with musical anhedonia did not 

show the same pattern of reward learning, offering a testable mechanism by which the human 

brain learns to predict sounds from our environment and to map those predictions onto reward. 

As the relationship between predictions and reward underlie much of motivated behavior [7, 8, 

18], examining the emergence of this relationship during the course of a study may provide a 

better understanding of how these foundational neurocognitive systems may go awry in a variety 

of psychiatric and neurological diseases. 

 

Materials and Methods 

Stimuli 

The stimuli used in all studies were composed in the Bohlen-Pierce Scale. While most musical 

systems around the world are based around the octave, which is a 2:1 ratio in frequency, the B-P 

scale is based on a 3:1 ratio (tritave rather than octave) that is divided into 13 logarithmically 

even steps. This 13-tone scale can be used to generate musical intervals and chords which have 

low-integer ratios and are perceived as psychoacoustically consonant (Mathews, 1988). While 

music in B-P scale is known to some composers, performers, conductors and scholars, it is 

considered <non-standard music= (Hajdu, 2015) and has not been adopted into any mainstream 
musical culture to date. Monophonic melodies were composed in the B-P scale by a musician 

and research assistant in the lab (E.Z.) in the digital audio workstation Ableton Live on a Korg 

nanoPAD2 USB MIDI and played on a MIDI clarinet instrument from the plugin library 

Xpand!2 by Air Music Tech. The clarinet was chosen because its timbre has higher energy at 

odd harmonics than at even harmonics; this spectral distribution is easier to learn due to its 

congruence with the B-P scale [21]. In total, 14 20s Bohlen-Pierce melodies were composed that 

followed the same artificially-derived harmonic structure from past studies [17]. Light 

compression and reverb were applied to all stimuli to bring them to the same volume, and were 

subsequently exported as 44.1kHz .mp3 files. To generate melodies that contained an error in 

local prediction, an altered version of each melody was also created, which was identical to the 

original piece except for the ending, which was changed to violate the musical structure of the B-

P scale. Specifically, violations consisted of deviations from the chordal tones of the last chord 

[17, 32, 33], such that they disrupt the harmonic structure of the established melody. The original 

and altered melodies are available online at https://osf.io/n84d5/. In all studies, the altered 

melodies were presented only once, during the post-exposure phase. Finally, two of the melodies 

were used only as part of the perceptual cover task (during the exposure phase). A vibrato effect 

was added to a single note in these two melodies and during the task, participants were asked to 

press a key whenever they heard the vibrato note. To decrease expectations, we created six 

versions of each, where the location of this vibrato note varied across each version.    
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Study 1 

Participants 

A priori power analysis using pilot data (n = 46) indicated that a sample size of 165 would 

achieve 0.80 power to detect a medium effect size (Cohen9s f = 0.27) of the effect of the number 

of presentations on liking ratings at a significance level of 0.05. Participants were Prolific 

workers in the United States between the ages of 18-65. We recruited 234 participants for Study 

1, of which 66 participants were excluded for failing our perceptual cover task (see Procedure 

below), resulting in a final sample size of N = 169 (104 female; mean age = 32.03).  

 

To measure individual differences in music reward sensitivity and identify musical anhedonics, 

participants completed the BMRQ, a 20-item questionnaire based on five factors: musical 

seeking, emotion evocation, mood regulation, sensory-motor, and social reward. Participants also 

completed the Goldsmith Musical Sophistication Index (Gold-MSI), a self-report measure of 

musical skills and behaviors [34], the Revised Physical Anhedonia Scale (PAS), a self-report 

measure of general anhedonia [35], and the Ten-Item Personality Inventory (TIPI), a brief 

measure of the Big-Five personality traits [36]. All scales were scored in accordance with the 

original publication.  

 

Procedure 

After consenting, participants were screened using an online headphone check [37] to ensure that 

they were using headphones and could hear our stimuli properly before undergoing the three 

phases of our study. In phase 1 (pre-exposure), participants listened to 8 of the B-P melodies, one 

at a time, and provided liking ratings, using a Likert-scale ranging from 1(8strongly dislike9) to 6 
(8strongly like9) and familiarity ratings, from 1 (8not familiar at all9)  to 6 (8very familiar9) for 
each melody. As the pre-exposure ratings are intended for a different analysis on the effects of 

novelty rather than reward learning, they will be presented in a separate report; here we focus on 

post-exposure ratings. 

 

In phase 2 (exposure), the 8 melodies heard in phase 1 were played for participants a varying 

number of times (either 2, 4, 8 or 16 with two melodies in each condition). The specific melodies 

in each of the 4 exposure conditions was counterbalanced across participants. Furthermore, the 

presentation order was pseudorandomized so that no melody was heard consecutively. During 

this phase, participants were asked to complete a perceptual cover task, in which they were 

instructed to listen for notes that contained a <warble= sound (vibrato) and to press the <v= key 
on their keyboard as soon as they heard one. Six of the trials (created from two different B-P 

melodies) heard in the exposure phase contained vibrato notes, with the vibrato occurring at 

different points of the melody. In total, participants heard 66, 20s melodies during phase 2, 

resulting in an exposure phase that lasted 22 minutes.  

 

During phase 3, participants heard each of the 8 melodies again (without vibrato), along with 2 

new melodies that they had not heard in phase 1 or 2 (0 presentation condition) as well as the 

altered versions (different endings) of these ten melodies. Participants provided liking and 

familiarity ratings for each of these 20 trials, using the same scale as in phase 1.   
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After completing phase 3, participants were redirected to an online survey where they provided 

demographic information and completed individual difference measures including the BMRQ 

and PAS. 

 

Exclusion criteria  

Participants who did not accurately perform the surface task of identifying the warble/vibrato 

notes during exposure were removed from all subsequent analyses. Specifically, for each 

participant, we calculated d-prime from the total number of hits (number of vibrato melodies for 

which a 8v9 was pressed), misses (number of vibrato melodies for which a 8v9 was not pressed), 
false alarms (number of vibrato melodies for which a 8v9 was not pressed) and correct rejections 
(number of non-vibrato melodies for which a 8v9 was not pressed). D-prime was calculated from 

the difference between z-transformed hit and false-alarm rates, with the adjustment where 0.5 

errors were assumed for participants who made no errors [38]. The d-prime measure therefore 

indicates how well participants could discriminate between a warble note and a non-warble note 

and was used to remove participants who did not follow instructions for the surface task. Any 

participant who had a d-prime measure of less than 1 was removed from subsequent analyses 

[38], as was specified in our pre-registration. However, in follow-up analyses we did explore 

whether keeping the participants who did not reach the d-prime criterion changed the results; 

these exploratory analyses are included in Supplementary Materials. 

 

Study 2 

Participants 

To maintain consistency, we used the same target sample size from our a priori power analysis 

for Study 1 for Studies 2-4. We recruited 221 participants. 57 participants were excluded for 

failing a perceptual cover task, resulting in a total sample size of 164 (93 female, mean age = 

32.67).  

Procedure 

Participants underwent the same procedure as in Study 1, with the exception that 10 melodies 

were presented either 0, 2, 4, 6, 10, or 14 times during the exposure phase (2 melodies in each 

condition).  

 

Study 3 

Participants 

We recruited 214 participants, 45 of whom were excluded for failing our perceptual cover task, 

resulting in a total sample size of 169 (89 female; mean age = 32.27). 

Procedure 

Participants underwent the exact same procedure as in Study 1, with the exception that the order 

of melodies heard in the pre-exposure phase was completely randomized.  

 

Study 4 

Participants 

We recruited 222 participants, 57 of whom were excluded for failing our perceptual cover task, 

resulting in a total sample size of 165 (83 female; mean age: 31.78).  
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Procedure 

Participants underwent the exact same procedure as in Study 2, with the same 10 melodies 

during exposure phase, with the exception that the order of melodies heard in the pre-exposure 

phase were randomized and counterbalanced across participants. 

 

Study 5 

Participants 

The congenital music specific anhedonic (initials BW, 58-year-old male) had participated in a 

previous case study in our lab [30]. The acquired music specific anhedonic (initials NA, 53-year-

old female) had reached out to the final author after self-reporting a loss in pleasure derived from 

music listening after having received rTMS treatment for depression after the death of a loved 

one. As both of these cases were self-identified as musically anhedonic, rather than recruited 

online using Prolific, they were treated as separate case studies rather than included in the same 

group for Studies 1 through 4. Both of these cases had low scores on the extended BMRQ 

(eBMRQ BW = 30; NA = 43; [39] but normal PAS scores (PAS-auditory: BW = 8, NA = 4; 

PAS-non-auditory: BW = 14, NA = 15).  

Stimuli 

We used a subset of four non-altered melodies which were rated, on average, the highest in post-

exposure liking ratings across Studies 1-4 for Study 5. These, along with their altered versions, 

resulted in eight unique melodies presented to participants in this study. Participants also 

completed an updated version of the BMRQ: the extended Barcelona Music Reward 

Questionnaire (eBMRQ), which includes an additional sixth factor consisting of 4 additional 

items which measures experiences of absorption in music listening [39]. 

Procedure 

Participants underwent the same procedure as previous studies, with the exception that melodies 

were presented either 0, 4, 10, or 14 times during the exposure phase and that there was only one 

melody assigned to each condition. 

 

Study 6 

Participants 

Participants were recruited via WeChat, a Chinese instant messaging app. A poster containing a 

QR code was sent in several group messages of students of Beijing Normal University, who 

subsequently shared this code via word of mouth and personal WeChat messages. We recruited 

216 participants. 56 were excluded for failing our perceptual cover task and 4 for completing the 

task twice, for a total of 156 (106 female; mean age: 23.09). 

Stimuli 

The same stimuli used in Studies 2 and 4 were used in Study 6. Participants in Study 6 also 

completed the eBMRQ instead of the BMRQ.  

Procedure 

The QR code led to a questionnaire that recorded participants' name and email address. An email 

was then sent to the address participants provided, which contained a link to the experiment. This 

link redirected participants to our experiment, in which they subsequently underwent the same 

Procedure as Study 3. 
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Study 7 

Participants 

We recruited 279 participants, 116 of whom were excluded for failing our perceptual cover task, 

resulting in a total sample size of 163 (64 female; mean age: 35.46).  

Procedure 

Participants completed the same procedure as in Study 1, with the exception that altered 

melodies were presented in the pre-exposure and exposure phase of the study. Along with this, 

original melodies were only presented in the post-exposure phase. 

Stimuli 

The same stimuli used in Studies 1 and 3 were used in Study 8. Participants in Study 7 also 

completed the eBMRQ instead of the BMRQ.  

 

Study 8 

Participants 

Participants in this study were either undergraduates at Northeastern University who completed 

the study (both the online task and an in-person fMRI scan) for course credit or young adults 

recruited via word-of-mouth from the Boston area. A total of 21 participants (15 female, mean 

age = 19.8) completed the fMRI version of our task. 

Stimuli 

The same stimuli and materials that were used in Study 6 were used in Study 7, including the 

eBMRQ. 

Procedure 

Participants underwent the same procedure as in Study 6 as well as an fMRI scan immediately 

after completing the online behavioral study. During the scan, participants listened to 24 clips of 

music once. Eight of the clips were Bohlen-Pierce melodies that participants had heard 

previously during the task (at 0/4/10/14 presentations; both original and altered melodies). The 

remaining trials acquired were not in the Bohlen-Pierce scale and were not used in the analysis 

for the present study. Each trial consisted of 20s of passive listening, followed by 2s to rate the 

melody for liking (on a scale of 1-4), and 2s to rate the melody for familiarity (also 1-4 scale).  

fMRI Data Acquisition 

Images were acquired using a Siemens Magnetom 3T MR scanner with a 64-channel head coil at 

Northeastern University Biomedical Imaging Center. fMRI data were acquired as echo-planar 

imaging (EPI) functional volumes covering the whole brain in 48 axial slices (fast TR = 475 ms, 

TE = 30 ms, flip angle = 60°, FOV = 240mm, voxel size = 3 x 3 x 3 mm3, slice thickness = 3 

mm, anterior to posterior, z volume = 14.4 mm) in a continuous acquisition protocol of 1440 

volumes for a total acquisition time of 11.4 minutes. T1 images were also acquired using a 

MPRAGE sequence, with one T1 image acquired every 2400 ms, for approximately 7 minutes. 

Sagittal slices (0.8 mm thick, anterior to posterior) were acquired covering the whole brain (TR = 

2400 ms, TE = 2.55 ms, flip angle = 8°, FOV= 256, voxel size = 0.8 x 0.8 x 0.8 mm3). As part of 

the existing protocol we also acquired resting state and DTI sequences, but these were not used 

for this study. 

fMRI Data Analysis 

Pre-processing. fMRI data were preprocessed using the Statistical Parametric Mapping 12 

(SPM12) software [40] with the CONN Toolbox [41]. Preprocessing steps included functional 
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realignment and unwarping, functional centering, slice time correction, outlier detection using 

the artifact detection tool, functional and structural segmentation and normalization to MNI 

template, and functional smoothing to an 8mm gaussian kernel [42]. Denoising steps for fMRI 

data included white matter and cerebrospinal fluid confound correction [43], and bandpass 

filtering to 0.008– 0.09 Hz.  

First-level analysis. First- and second-level analyses were completed in SPM12. For each 

participant, data were converted from 4D to 3D images, resulting in 1440 scans. The model was 

specified using the following criteria: interscan interval = 0.475 seconds, microtime resolution = 

16, microtime onset = 8, duration = 42. Only data from the time while the participant was 

listening to the musical excerpt were included in this model. Each of the 8 trial types (0/4/10/14 

presentations of both original and altered melodies) was modeled separately, and trials during 

which participants were listening to non-BP melodies were included as a  separate, condition so 

as to be regressed out of the model9s intercept. The resulting first-level contrasts were then 

analyzed using a one-sample t-test across all participants at the second level. Whole-brain results 

were rendered to a standard MNI brain. Results from the second-level analyses were statistically 

corrected using a voxel threshold of p < 0.05 (FDR-corrected) through CONN Toolbox. Beta-

weights for ROIs in the Heschl9s gyrus (HG) and  medial prefrontal cortex (mPFC) were 
extracted from participants9 first-level SPM.mat files using the CONN Toolbox atlas and 

correlated separately for each trial to test for the effects of alteration and number of presentations 

on the functional connectivity between auditory and reward-sensitive regions. 
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