

1 **The *Aedes aegypti* peritrophic matrix controls arbovirus vector** 2 **competence through HPx1, a heme–induced peroxidase.**

3 Octavio A. C. Talyuli^{1*}, Jose Henrique M. Oliveira², Vanessa Bottino-Rojas^{1,3}, Gilbert O.
4 Silveira⁴, Patricia H. Alvarenga^{1,5,6}, Asher M. Kantor⁵, Gabriela O. Paiva-Silva^{1,6}, Carolina Barillas-Mury⁵,
5 Pedro L. Oliveira^{1,6*}.

6

7 1. Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro – Brazil
8 2. Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis
9 – Brazil
10 3. Departments of Microbiology and Molecular Genetics and of Molecular Biology and Biochemistry, University of
11 California, Irvine, CA – USA
12 4. Laboratório de Expressão Genica em Eucariotos, Instituto Butantan and Departamento de Bioquímica, Instituto de
13 Química, Universidade de São Paulo, São Paulo – Brazil
14 5. Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes
15 of Health, Rockville, MD – USA
16 6. Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular

17 *Corresponding authors: Octavio A. C. Talyuli – talyuli@bioqmed.ufrj.br, and Pedro L. Oliveira – pedro@bioqmed.ufrj.br

25 **Abstract**

26 *Aedes aegypti* mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an
27 extracellular layer that surrounds the blood bolus and acts as an immune barrier that prevents
28 direct contact of bacteria with midgut epithelial cells during blood digestion. Here, we describe a
29 heme-dependent peroxidase, hereafter referred to as heme peroxidase 1 (HPx1). HPx1 promotes
30 PM assembly and antioxidant ability, modulating vector competence. Mechanistically, the heme
31 presence in a blood meal induces HPx1 transcriptional activation mediated by the E75
32 transcription factor. HPx1 knockdown increases midgut reactive oxygen species (ROS) production
33 by the DUOX NADPH oxidase. Elevated ROS levels reduce microbiota growth while enhancing
34 epithelial mitosis, a response to tissue damage. However, simultaneous HPx1 and DUOX silencing
35 was not able to rescue bacterial population growth, as explained by increased expression of
36 antimicrobial peptides (AMPs), which occurred only after double knockdown. This result revealed
37 hierarchical activation of ROS and AMPs to control microbiota. HPx1 knockdown produced a 100-
38 fold decrease in Zika and Dengue 2 midgut infection, demonstrating the essential role of the
39 mosquito PM in the modulation of arbovirus vector competence. Our data show that the PM
40 connects blood digestion to midgut immunological sensing of the microbiota and viral infections.

43

Introduction

44 Mosquito-borne viruses are emerging as global threats to public health. Female mosquitos ingest
45 infected blood from a host and transmit the virus to another host during the next blood-feeding. As the
46 first insect tissue infected by the virus, the midgut is the initial barrier that the virus must overcome to
47 establish itself in the mosquito (Black IV et al., 2002). Because blood digestion occurs in the midgut
48 concomitantly with viral infection of epithelial cells, digestion-triggered physiological events have a major
49 influence on the course of intestinal infection (Talyuli et al., 2021).

50 The peritrophic matrix (PM) in mosquitoes is a semi-permeable chitinous acellular layer secreted
51 by intestinal cells after blood feeding. The PM completely envelopes the blood bolus, and its structure
52 avoids direct contact of the digestive bolus with the midgut epithelia (Lehane, 1997; Shao et al., 2001).
53 The PM is the site of deposition of most of the heme produced from blood hemoglobin hydrolysis, thus
54 limiting exposure of the midgut cells to harmful concentrations of heme, a pro-oxidant molecule (Pascoa
55 et al., 2002). Extensive gut microbiota proliferation occurs in most hematophagous insects after a blood
56 meal. Therefore, the PM is a barrier that limits interaction of the tissue with the intestinal microbiota
57 (Kuraishi et al., 2013; Oliveira et al., 2011; Terra et al., 2018), playing a role analogous to the mammalian
58 intestinal mucous layer (Terra et al., 2018). The PM is mainly composed of chitin and proteins, and correct
59 assembly of this structure is crucial to its barrier function. Additionally, the PM is a barrier for parasites
60 such as *Plasmodium*, *Trypanosoma brucei*, and *Leishmania major*, which must attach to or traverse the
61 PM to complete their development in an insect vector (Coutinho-Abreu et al., 2010; Rose et al., 2020;
62 Shahabuddin et al., 1995; Weiss et al., 2014).

63 There are several studies on the role of reactive oxygen species (ROS) and redox metabolism on
64 the gut immune response to pathogens. In *Drosophila melanogaster*, ROS production by a dual oxidase
65 enzyme (DUOX, an NADPH oxidase family member) is triggered by pathogenic bacteria. The self-inflicted
66 oxidative damage arising from DUOX activation is prevented by hydrogen peroxide scavenging via an
67 immune-regulated catalase (IRC) (Ha, Oh, Bae, et al., 2005; Ha, Oh, Ryu, et al., 2005). In *Anopheles
68 gambiae*, *Plasmodium* ookinete midgut invasion triggers a complex epithelial response mediated by nitric
69 oxide and hydrogen peroxide that is crucial to mount an effective mosquito antiplasmoidal response
70 (Kumar & Barillas-Mury, 2005). Furthermore, an *Anopheles gambiae* strain genetically selected to be
71 refractory to *Plasmodium* infection exhibits enhanced activation of JNK-mediated oxidative stress
72 responses (Garver et al., 2013; Jaramillo-Gutierrez et al., 2010). In *Aedes aegypti*, it has been proposed
73 that the Dengue NS1 viral protein decreases hydrogen peroxide levels, preventing an oxidative intestinal
74 environment, which is an adverse condition for both Dengue and Zika viral infection (Bottino-Rojas et al.,
75 2018; Liu et al., 2016). Catalase silencing in the *Aedes aegypti* gut reduces the dengue infection prevalence
76 rate (Oliveira et al., 2017). The ROS generation by DUOX plays a key role in modulating proliferation of the
77 indigenous microbiota, growth of opportunistic pathogenic bacteria, and Dengue virus infection (Ha et al.,
78 2009; Liu et al., 2016; Oliveira et al., 2011).

79 Kumar et al. (2010) showed that heme peroxidase 15 (HPx15), also referred to as
80 immunomodulatory peroxidase (IMPer), is expressed in the *A. gambiae* midgut and uses the hydrogen
81 peroxide generated by DUOX as a substrate to crosslink proteins of the mucous layer in the

82 ectoperitrophic space, limiting diffusion of immune elicitors from the gut microbiota and thus preventing
83 activation of midgut antimicrobial responses to commensal bacteria. IMPer silencing results in constant
84 activation of epithelial immune responses against both bacteria and *Plasmodium* parasites (Kumar et al.,
85 2010). A similar immune barrier role for the PM against parasite infection has also been shown in tsetse
86 flies infected with *T. brucei* and sandflies infected with Leishmania (Ramalho-Ortigao, 2010; Rose et al.,
87 2020). Therefore, most of the studies on the PM of insect disease vectors have focused on its role as a
88 barrier for parasites, but much less is known about the influence of PM on viral infections or its
89 contribution to gut homeostasis and immune responses in *A. aegypti*.

90 Here, we show that HPx1, a heme peroxidase associated with the *A. aegypti* PM, has a dual role,
91 acting in the PM assembly crucial for its barrier function and as an antioxidant hydrogen peroxide-
92 detoxifying enzyme. This role of HPx1 in midgut physiology and immunity highlights that dietary heme is
93 a signal that by triggering HPx1 expression and PM function, produces a homeostatic response that
94 controls ROS and AMP immune effectors, microbiota expansion, and viral infection.

95 **Materials and Methods**

96 **Ethics Statement**

97 All the animal care and experimental protocols were conducted following the guidelines of the
98 institutional care and use committee (Comissão de Ética no Uso de Animais, CEUA-UFRJ) and the NIH
99 Guide for the Care and Use of Laboratory Animals. The protocols were approved under the registry #CEUA-
100 UFRJ 149/19 for rabbit use and 075/18 for mice immunization and antiserum production. The animal
101 facility technicians at the Instituto de Bioquímica Médica Leopoldo de Meis (UFRJ) carried out all aspects
102 related to rabbit and mice husbandry under strict guidelines to ensure humane animal handling.

103 **Mosquitos**

104 The *Aedes aegypti* females (Red-Eye strain) used in this study were raised in an insectary of Universidade
105 Federal do Rio de Janeiro. Approximately 200 larvae were reared in water-containing trays and fed dog
106 chow. Pupae were transferred to plastic cages, and adults were fed *ad libitum* with 10% sucrose solution
107 in cotton pads. The insects were kept in a 12 h dark/light period-controlled room at 28 °C and 80%
108 humidity. Blood feeding was performed using rabbit ears or artificially through glass feeders sealed with
109 Parafilm and connected in a circulated water bath at 37 °C. Substitute of blood meal (SBM) is a previously
110 described artificial diet with a chemically defined composition (Talyuli et al., 2015) and was used in
111 experiments in which the presence of heme was modulated. For this study, only bovine albumin and
112 gamma-globulin were used as protein sources, and no hemoglobin was added. Hemin was solubilized in
113 0.1 M NaOH and neutralized with 0.01 M sodium phosphate buffer (pH 7.4). Antibiotics (penicillin 200
114 U/ml and streptomycin 200 µg/mL) in autoclaved 5% sucrose solution were supplied for 3 days before
115 feeding with blood or SBM.

116 **Catalase activity**

117 Midguts were dissected in cold 50% ethanol, and epithelia were separated from the blood bolus
118 surrounded by the PM. The samples were immediately transferred to tubes with a protease inhibitor
119 cocktail (50 µg/mL SBTI, 1 mM benzamidine, 1 mM PMSF). The midgut epithelial samples were directly
120 homogenized, but the PM-enriched fraction samples were centrifuged 3x at 10000 × g for 5 min at 4 °C to
121 remove as much of the blood bolus as possible. Hydrogen peroxide detoxification activity was measured
122 based on peroxide absorbance (240 nm for 1 min) in the presence of mosquito homogenates (Aebi, 1984),
123 and the protein concentration was determined according to Lowry (LOWRY et al., 1951). For *in vitro*
124 inhibition experiments, samples were incubated with different concentrations of 3-amino- 1,2,4-triazole
125 for 30 min at 4 °C before enzymatic activity assays (Oliveira et al., 2017).

126 **Double-strand RNA synthesis and injections**

127 To synthesize dsRNA, a first PCR was performed using mosquito whole-body cDNA as a template. The
128 product was diluted 100x and used in a second reaction with T7 primers. dsLacZ was used as a control and
129 amplified from a cloned plasmid containing the LacZ gene. Double-strand RNA synthesis was performed
130 using a MEGAscript T7 transcription kit (Ambion/Thermo Fisher Scientific, MA - USA). The reaction was

131 performed overnight at 37 °C. Each product was precipitated with 1 volume of isopropanol and 1:10
132 volume of 3 M sodium acetate (pH 3). Four-day-old females were cold-anesthetized, and a double shot of
133 69 nl of 3 µg/µL dsRNA was injected into the mosquito thorax using a Nanoject II (Drummond Scientific,
134 PA - USA). For double-silencing experiments, the dsRNA mixture containing both dsHPx1 and dsDUOX was
135 lyophilized and then resuspended to half of the original volume. One day after injection, the females were
136 blood-fed.

137 **RNA extraction, cDNA synthesis, and qPCR**

138 Total RNA was extracted from midgut samples using TRIzol reagent following the manufacturer's protocol.
139 The RNA (1 µg) was treated for 30 min at 37 °C with DNase, and cDNA was synthesized with a High-
140 Capacity cDNA Reverse Transcription Kit (Applied Biosystems/Thermo Fisher Scientific, MA - USA) using
141 random primers. Quantitative PCR (qPCR) was performed with a StepOnePlus Real-Time PCR System
142 (Applied Biosystems/Thermo Fisher Scientific, MA - USA) using Power SYBR-green PCR master MIX
143 (Applied Biosystems/Thermo Fisher Scientific, MA - USA). The RP49 gene was used as an endogenous
144 control, and the primers used in the qPCR analyses are listed in Supplemental Table 1.

145 **HPx1 antiserum**

146 *Aedes aegypti* HPx1 (AAEL006014) was cloned into pET15b at the NdeI (5') and BamHI (3') restriction sites.
147 The export signal predicted by SignalP software (Petersen et al., 2011) was removed from the purchased
148 codon-optimized sequence (GenScript, NJ - USA). Plasmid pET15b containing the HPx1 protein-coding
149 sequence was transformed into the *Escherichia coli* BL21(DE3) strain. Cells were grown at 37 °C in 2xYT
150 medium containing 100 µg/L ampicillin. After reaching OD₆₀₀ 0.4, the cells were cooled and supplemented
151 with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and the cells were incubated at 25 °C
152 overnight. The cells were then harvested and resuspended in buffer A (200 mM Tris pH 8.0, 500 mM NaCl,
153 5 mM imidazole, 1% Triton X-100, 10% glycerol, 10 mM β-mercaptoethanol) supplemented with 2 mg/mL
154 lysozyme. After breaking the cells by ultrasonic treatment, the insoluble fraction was collected by
155 centrifugation. Because the recombinant HPx1 obtained by this protocol was not soluble, the
156 corresponding protein band was cut from the SDS-PAGE gel, and the protein was extracted from the gel
157 (Retamal et al., 1999). Immunization of BalB/C mice was performed by injecting two shots of 50 and 25
158 µg of antigen intraperitoneally, spaced by 21 days, using Freund's complete and incomplete adjuvant,
159 respectively, in a 1:1 ratio (1 antigen:1 adjuvant). Two weeks after the second shot, blood was extracted
160 by cardiac puncture, and the serum was isolated and frozen for further use.

161 **HPx1 Western Blotting**

162 Pools of midgut epithelia and PMs were dissected and immediately placed in tubes containing a protease
163 inhibitor cocktail. The samples were denatured at 95 °C in the presence of SDS sample buffer, and a
164 volume equivalent to 1 midgut/slot was resolved by SDS-PAGE. The gel was blotted onto PVDF
165 membranes (Bjerrum Schafer-Nielsen buffer - 48 mM Tris, 39 mM glycine, 0.037% SDS - pH 9.2, 20%
166 methanol) for 1 h at 100 V and blocked with 5% albumin in TBS-T (Tris 50 mM, pH 7.2, NaCl 150 mM, 0.1%
167 Tween 20) overnight (ON) at 4 °C. The membranes were incubated with 1:5000 anti-HPx1 primary
168 antiserum diluted in blocking solution for 5 h at room temperature. The primary antibody solution was

169 removed, and the membrane was washed with TBS-T (3X) before incubation with alkaline phosphatase-
170 conjugated anti-mouse secondary antibody (1:7500 in blocking solution) for 1 h at room temperature (RT).
171 The membrane was washed and developed using NBT/BCIP alkaline phosphatase substrates.

172 **Putative HPx1 gene promoter *in silico* analysis**

173 The MEME motif-based algorithm (Bailey et al., 2009) was used to analyze a 2500 bp sequence upstream
174 of the 5' transcription start site of the HPx1 gene (*Aedes aegypti* genome, version AaegL3.4). The Fimo
175 tool (Grant et al., 2011) was used to specifically search for cis-regulatory elements associated with
176 ecdysone molecular signaling, as previously described (Kokoza et al., 2001).

177 **PM permeability**

178 HPx1-silenced mosquitoes were artificially fed rabbit blood containing 1 mg/ml dextran-FITC (Sigma, FD4),
179 and the midguts were dissected 18 h after feeding. The midguts were fixed in 4% paraformaldehyde
180 solution in 0.1 M cacodylate buffer for 2 h and placed ON in a 15% sucrose solution in phosphate-buffered
181 saline (PBS; 10 mM Na-phosphate buffer, pH 7.2, 0.15 M NaCl) at RT. Then, they were incubated in a 30%
182 sucrose solution for 30 h. The following day, the midguts were infiltrated with 50% Optimal Cutting
183 Temperature/OCT (Tissue-TEK, Sakura Finetek, CA - USA) in 30% sucrose solution for 24 h and then ON in
184 100% OCT. The samples were frozen at -70°C until use, and serial 14-μm-thick transverse sections were
185 obtained using an MEV Floor Standing Cryostat (SLEE Medical, Nieder-Olm - Germany). The slices were
186 placed on glass slides and mounted with Vectashield containing DAPI mounting medium (Vector
187 laboratories, CA - USA). The sections were examined in a Zeiss Observer.Z1 with a Zeiss Axio Cam MrM
188 Zeiss through excitation BP 546/12 nm, beam splitter FT 580 nm, and emission LP 590 nm.

189 **Reactive oxygen species measurement**

190 Midguts were dissected at 18 h after blood feeding and incubated with 50 μM dihydroethidium
191 (hydroethidine; DHE; Invitrogen/Thermo Fisher Scientific, MA - USA) diluted in 5% fetal bovine serum-
192 supplemented Leibovitz 15 medium for 20 min at room temperature in the dark. The dye medium was
193 removed, and the midguts were gently washed in dye-free medium. The fluorescence of the oxidized DHE
194 was acquired using a Zeiss Observer.Z1 with a Zeiss Axio Cam MrM Zeiss, and the data were analyzed
195 using AxioVision software in a Zeiss-15 filter set (excitation BP 546/12 nm; beam splitter FT 580 nm;
196 emission LP 590 nm) (Oliveira et al., 2011).

197 **Mitosis labeling**

198 HPx1-silenced mosquitoes were blood-fed, and the midguts were dissected 18 h after feeding. The
199 midguts were fixed in 4% paraformaldehyde solution for 30 min, permeabilized with 0.1% Triton X-100
200 for 15 min at RT, and blocked ON at room temperature in a solution containing PBS, 0.1% Tween 20, 2.5%
201 BSA, and 10% normal goat serum. All samples were incubated overnight with a mouse anti-PH3 primary
202 antibody (1:500, Merck Millipore, Darmstadt - Germany) diluted in blocking solution at 4 °C and then
203 washed 3x for 20 min each in washing solution (PBS, 0.1% Tween 20, 0.25% BSA). The midguts were
204 incubated with a secondary goat anti-mouse antibody conjugated with Alexa Fluor 546 (Thermo Fisher

205 Scientific, MA - USA) for 1 h at room temperature at a dilution of 1:2000, and nucleic acids were stained
206 with DAPI (1 mg/ml, Sigma) diluted 1:1000. PH3-positive cells were visualized and counted using the Zeiss
207 fluorescence microscope mentioned above (Taracena et al., 2018).

208 **Virus infection and titration**

209 Zika virus (ZKV; Gen Bank KX197192) was propagated in the *Aedes albopictus* C6/36 cell line for 7 days in
210 Leibovitz-15 medium (Gibco #41300-039, Thermo Fisher Scientific, MA - USA; pH 7.4) supplemented with
211 5% fetal bovine serum, tryptose 2.9 g/L, 10 mL of 7.5% sodium bicarbonate/L; 10 mL of 2% L-glutamine/L,
212 1% nonessential amino acids (Gibco #11140050, Thermo Fisher Scientific, MA - USA) and 1%
213 penicillin/streptomycin (Oliveira et al., 2017) at 30 °C. Dengue 2 virus (DENV, New Guinea C strain) was
214 propagated in C6/36 in MEM media (GIBCO #11095080, Thermo Fisher Scientific, MA - USA)
215 supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin for 6 days (Jupatanakul et al.,
216 2017). The cell supernatants were collected, centrifuged at 2,500 × g for 5 min, and stored at -70 °C until
217 use. Mosquitoes were infected with 10⁵ PFU/ml ZKV or 2x10⁷ PFU/ml DENV in a reconstituted blood meal
218 prepared using 45% red blood cells, 45% of each virus supernatant, and 10% rabbit serum (preheated at
219 55 °C for 45 min). Four days after Zika infection or seven days after Dengue infection, the midguts were
220 dissected and stored at -70 °C in 1.5 ml polypropylene tubes containing glass beads and DMEM
221 supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The samples were thawed
222 and homogenized, serially diluted in DMEM, and incubated in 24-well plates with a semiconfluent culture
223 of Vero cells (for ZKV samples) or BHK21 cells (for DENV) for 1 h at 37 °C and then incubated with DMEM
224 2% fetal bovine serum + 0.8% methylcellulose (Sigma, M0512) overlay for 4 days at 37 °C and 5% CO₂ in
225 an incubator. The plates were fixed and stained for 45 min with 1% crystal violet in ethanol/acetone 1:1
226 (v:v).

227

228 **Statistical analyses and experimental design**

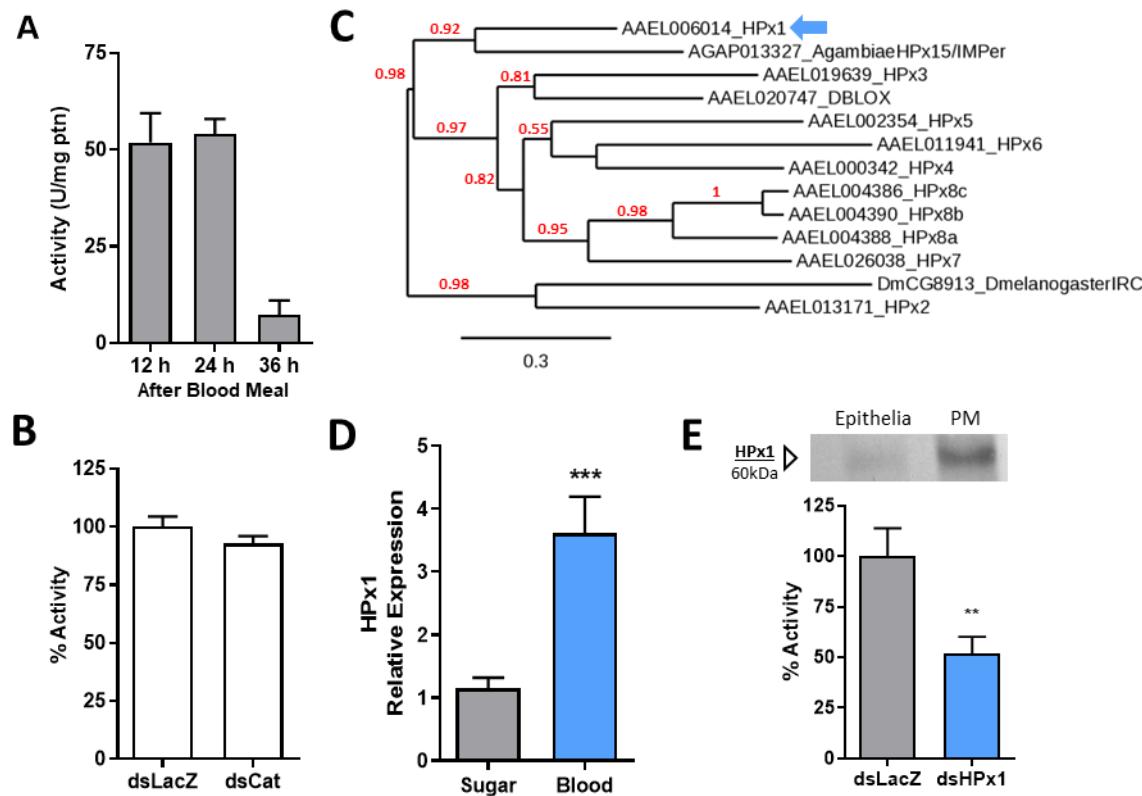
229 All experiments were performed in at least three biological replicates, and samples correspond to pools
230 of 5–10 insects. The graphs and statistical analyses were performed using GraphPad 8 software. For qPCR
231 experiments, relative gene expression was calculated by the Comparative Ct Method (Pfaffl, 2001), and
232 the result is expressed as the mean of ΔΔCt values compared to a housekeeping gene (RP-49, AAEL003396)
233 (Gentile et al., 2005).

234

235

236 **Results**

237


238 ***Aedes aegypti* PM detoxifies hydrogen peroxide**

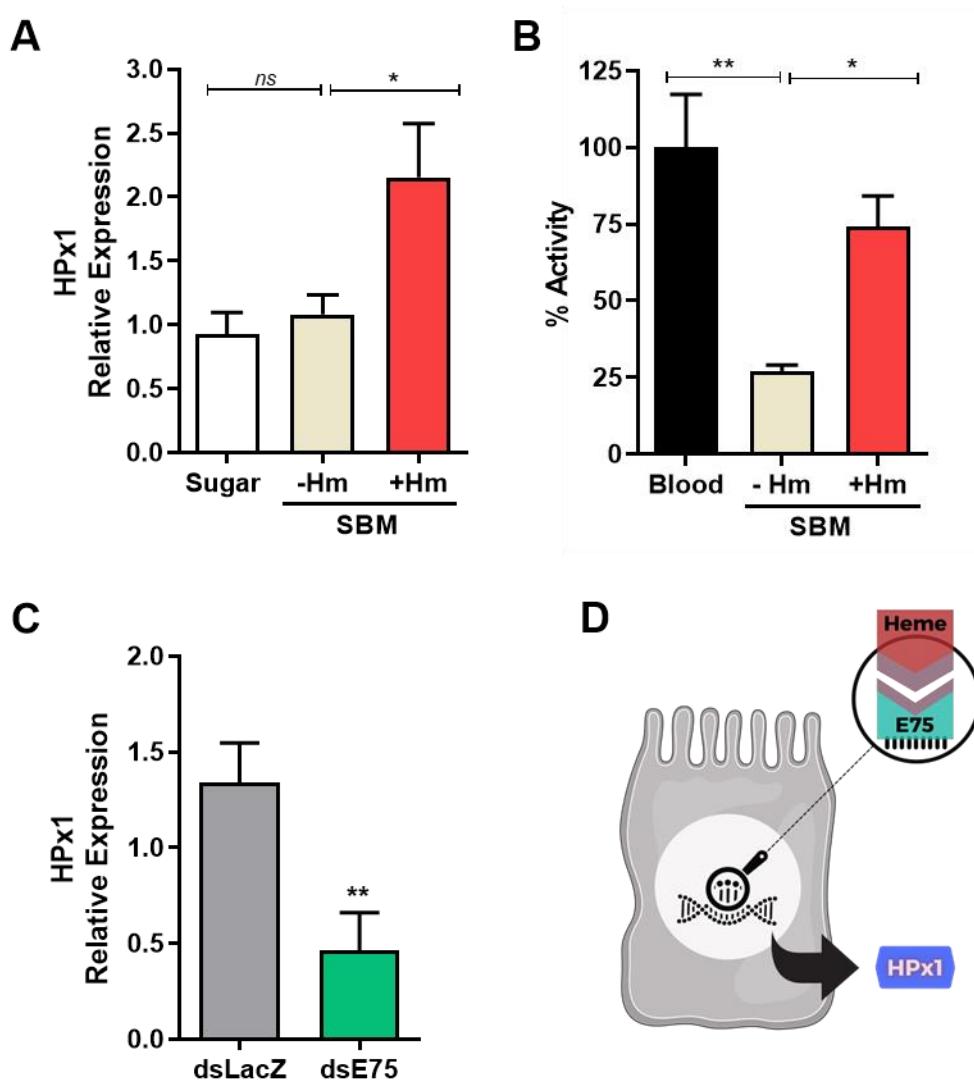
239 After a blood meal, the antioxidant capacity of the *Aedes aegypti* midgut is increased by expressing
240 enzymes and low molecular weight radical scavengers (Sterkel et al., 2017). These protective mechanisms
241 are complemented by the capacity of the PM to sequester most of the heme produced during blood
242 digestion, which has been proposed to be a preventive antioxidant defense, as heme is a pro-oxidant
243 molecule (Devenport et al., 2006; Pascoa et al., 2002). Figure 1A shows that *A. aegypti* PM exhibited
244 hydrogen peroxide detoxifying activity up to 24 h ABM followed by a sharp decrease at 36 h, close to the
245 end of blood digestion. The specific activity of the PM hydrogen peroxide scavenging activity was
246 comparable to the activity found in the midgut epithelia 24 h after blood-feeding, which is attributed to a
247 canonical intracellular catalase (SUP1A). However, silencing of the “canonical” intracellular catalase
248 (AAEL013407-RB) did not alter the PM’s ability to detoxify hydrogen peroxide at 24 h after feeding (Fig
249 1B), suggesting that this activity in the PM is not due to the midgut intracellular catalase (AAEL013407-
250 RB) (Oliveira et al., 2017). This hypothesis received support from the observation that the hydrogen
251 peroxide decomposing activity of the PM and midgut epithelia showed distinct *in vitro* sensitivity to the
252 classical catalase inhibitor amino triazole (SUP1B). Moreover, neither depletion of the native microbiota
253 by antibiotic treatment (SUP1C) nor feeding the insect an artificial diet (cell-free meal) devoid of catalase
254 (SUP1D) altered PM hydrogen peroxide detoxification, additionally excluding the hypothesis of an enzyme
255 originating from the microbiota or host red blood cells.

256

257 **HPx1-dependent hydrogen peroxide scavenging by the PM**

258 We hypothesized that the observed PM hydrogen peroxide detoxifying activity should be attributed to
259 another enzyme encoded by the mosquito genome. Peroxidases are a multigene family of enzymes and
260 the genome of *A. aegypti*, as with most other organisms, has many peroxidases. Peroxidases are grouped
261 in three large families: glutathione, heme, and thioredoxin peroxidases. As the PM is an extracellular
262 structure, we initially searched for peroxidases with a predicted signal peptide. Interestingly, this search
263 identified ten peroxidases, all of them belonging to the heme peroxidase family, which also includes the
264 secreted peroxidases of *Anopheles gambiae* (Kumar et al., 2010) and *Drosophila melanogaster* (Ha, Oh,
265 Ryu, et al., 2005). Phylogenetic analysis showed that *A. aegypti* heme peroxidase 1 (HPx1) is a close
266 homolog of the peroxidase HPx15/IMPer that promotes the crosslink of extracellular proteins in the gut
267 lumen of *A. gambiae* (FIG 1C). As the HPx15/IMPer from *A. gambiae* was shown to be secreted by the
268 midgut epithelia, we used the presence of a secretion signal peptide as an additional feature to indicate
269 HPx1 as the *A. aegypti* PM enzyme responsible for decomposing hydrogen peroxide. Fig. 1D shows that
270 the blood meal induced HPx1 gene expression in the gut. Moreover, western blotting showed that most
271 of the HPx1 in the midgut was bound to the PM, with a minor fraction being associated with the epithelia
272 (Fig. 1 E), and RNAi silencing of HPx1 expression significantly decreased hydrogen peroxide detoxification
273 by the PM (Fig. 1 E; HPx1 silencing efficiency: SUP1F).

274

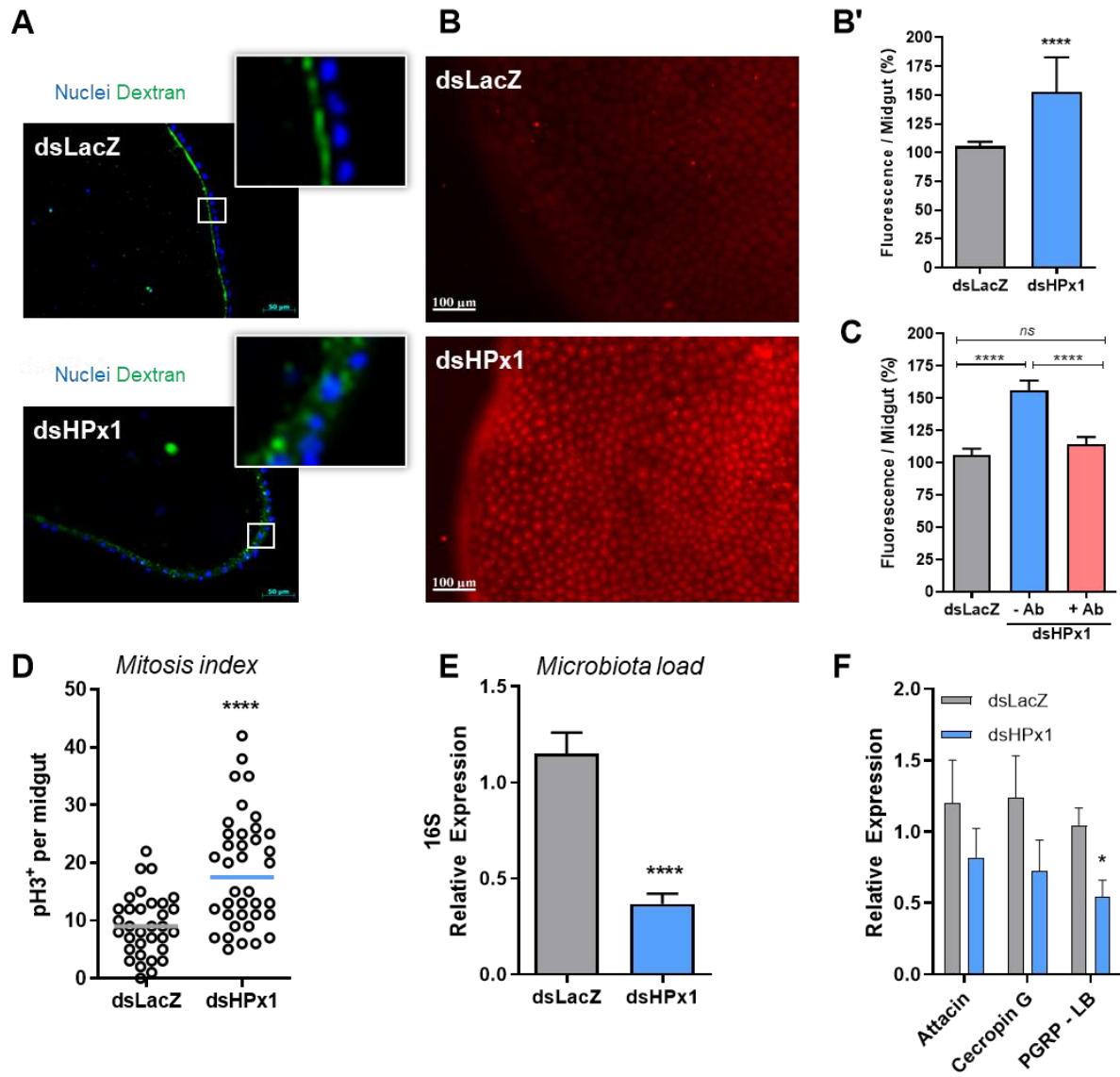

275 **Figure 1.** Hydrogen peroxide scavenging by the *Aedes aegypti* peritrophic matrix. A) PMs were dissected
276 at different times after a blood meal (ABM), and their catalase specific activity was measured (12 h n=3,
277 24 h n=3; 36 h n=2). B) Catalase activity of PMs dissected from control (dsLacZ-injected) and catalase
278 (AAEL013407-RB)-knockdown insects at 24 h AMB (dsLacZ n=9; dsCat n=9). C) Phylogenetic tree of heme
279 peroxidases from *Aedes aegypti* (AAEL), *Anopheles gambiae*, and *Drosophila melanogaster*. Maximum
280 likelihood analysis was performed, and the numbers in each branch represent bootstraps. (D) HPx1
281 expression in midguts at 24 h ABM relative to the sugar-fed control (Sugar n=11; Blood n=11). (E) Western
282 blot of the HPx1 protein in 20 μ g of gut epithelia and PM extracts at 18 h ABM and catalase activity of PMs
283 dissected from control and HPx1-knockdown insects (dsLacZ n=8; dsHPx1 n=13). The full western blot
284 membrane is shown in Supplementary Figure 1E. Data are the mean +/- SEM. **p> 0.005, ***p<0.001 for
285 the T test for D and E.

286

287 The E75 transcription factor mediates heme-induced HPx1 midgut expression

288 A blood meal triggers large changes in the gene expression pattern of *A. aegypti* and, among several
289 factors, the heme released upon hemoglobin proteolysis acts as a pleiotropic modulator of transcription
290 (Bottino-Rojas et al., 2015). Feeding the insects with SBM with or without heme revealed that heme
291 significantly regulated HPx1 gene expression (Fig. 2A). Accordingly, lower hydrogen peroxide
292 decomposition activity was observed in the PM secreted by females fed SBM without heme compared to

293 the blood-fed insects, a phenotype rescued by heme supplementation (Fig. 2B). *In silico* analysis of the
294 HPx1 promoter gene region revealed putative binding sites for E75, a hormone-responsive transcription
295 factor that functions as a heme and redox sensor (SUP2A) (Cruz et al., 2012). E75 knockdown significantly
296 reduced HPx1 gene expression in the midgut after blood feeding, revealing a molecular mechanism for
297 triggering HPx1 by heme (Fig. 2C; E75 silencing efficiency: SUP2B). Proliferation of the gut microbiota in
298 response to blood feeding is known to induce expression of several genes in the midgut. However, neither
299 microbiota depletion by oral administration of antibiotics (aseptic) nor reintroduction of a bacterial
300 species (*Enterobacter cloacae*) into antibiotic-treated mosquitoes affected HPx1 gene expression (SUP2C).
301 Thus, we propose the molecular signaling model shown in Fig. 2D.

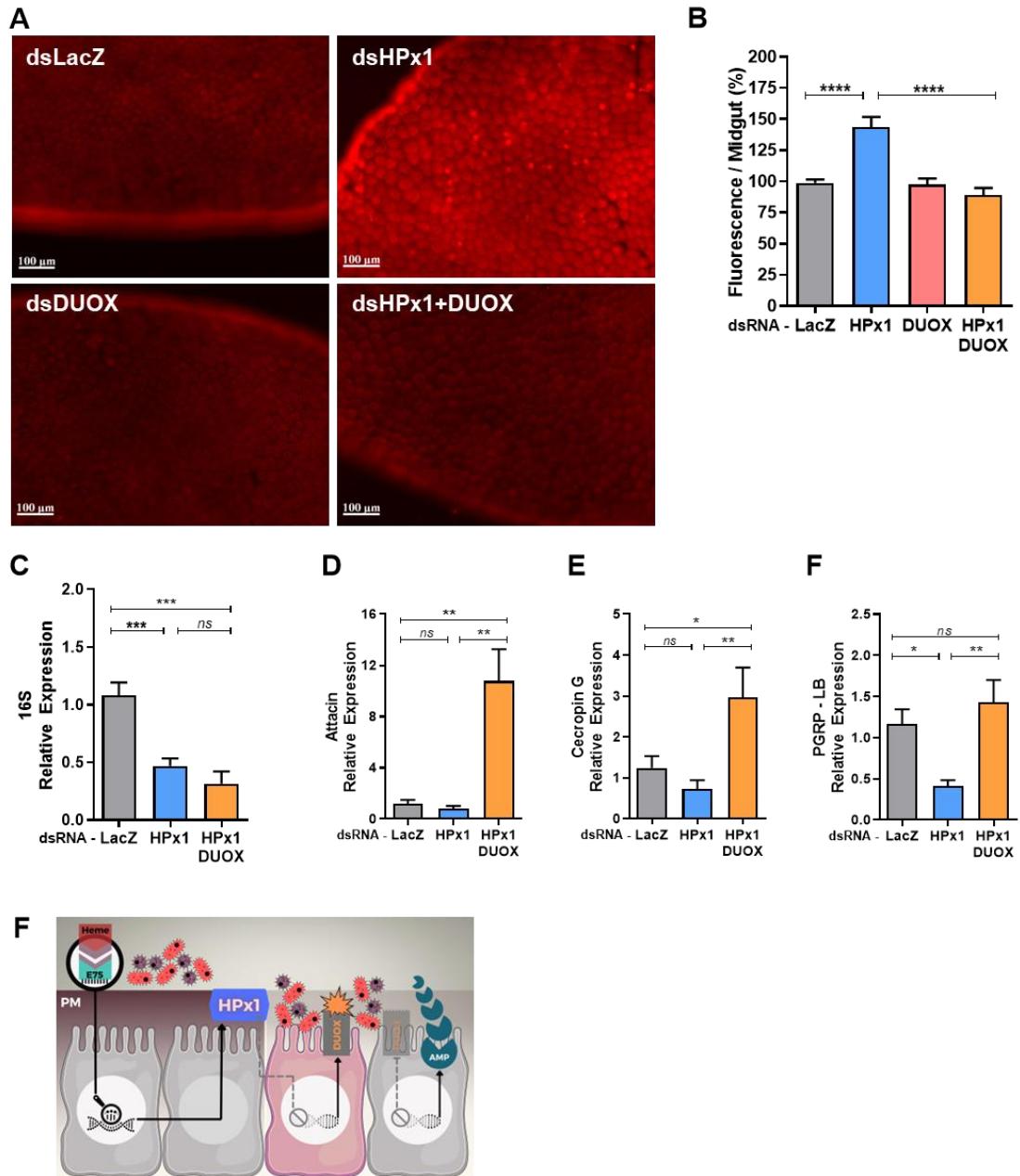

302
303 **Figure 2.** HPx1 expression is controlled by dietary heme and the E75 transcription factor. A) HPx1
304 expression in the midgut of sugar-fed or at 24 h after SBM feeding (without heme or supplemented with
305 50 μ M of heme) (Sugar n=5; -Hm n=14; +Hm n=14). B) Catalytic activity of PMs from mosquitoes fed

306 different diets at 24 h postfeeding (Blood n=3 pools of 10 PM each; -Hm n=4 pools of 10 PM each; +Hm
307 n=4 pools of 10 PM each). C) HPx1 expression in midguts from control (dsLacZ) and dsE75-injected
308 mosquitoes at 24 h ABM (dsLacZ n=3; dsE75 n=4). D) Schematic model of molecular signaling for HPx1
309 expression in the mosquito midgut. *p<0.05, **p<0.005, ns = not significant. Data are the mean +/- SEM.
310 One-way ANOVA with Dunnett's post-test for A and B and the T test for C.

311

312 **HPx1 contributes to PM assembly and regulation of the gut bacterial population**

313 The PM is a semipermeable matrix that controls traffic of molecules between the intestinal lumen and the
314 epithelia, and its correct assembly is essential to fulfilling its barrier function. Fig. 3A shows that control
315 mosquitoes fed fluorescent dextran retained the polymer on the gut luminal side, a proxy of the barrier
316 function of the PM. In contrast, HPx1-silenced mosquitoes presented strong fluorescence in the epithelial
317 layer, suggesting a role for HPx1 in the proper assembly of the PM, as its permeability barrier function was
318 compromised by HPx1 silencing. As this alteration in permeability might expose the epithelium to bacterial
319 elicitors from the proliferative microbiota, we evaluated ROS production, known as an antimicrobial
320 defense. Figs. 3B and 3B' show that HPx1 silencing increased ROS levels in the midgut. The increase in ROS
321 in HPx1-silenced mosquitoes was due to increased contact of the gut epithelia with the microbiota
322 because oral administration of the antibiotics prevented the increase in the ROS levels, as observed in
323 HPx1-silenced mosquitos (Fig. 3C). Exposure to damage signals and elevated ROS has been shown to
324 activate intestinal stem cell mitosis (30). Indeed, HPx1 silencing increased phosphorylated H3-histone
325 levels (Fig. 3D) in midgut epithelial cells, indicative of mitotic activity and suggestive of epithelial
326 remodeling in response to oxidative imbalance. This highlights the key role of HPx1 in tissue homeostasis.
327 The native midgut bacterial load was significantly reduced after HPx1 silencing (Fig. 3E). However, this was
328 not due to canonical immune signaling pathways, as neither expression of two antimicrobial peptides,
329 Attacin and Cecropin G, nor the bacterial sensor PGRP-LB by midgut cells was significantly different from
330 that of dsLacZ controls (Fig. 3F), suggesting that ROS levels control microbiota proliferation.

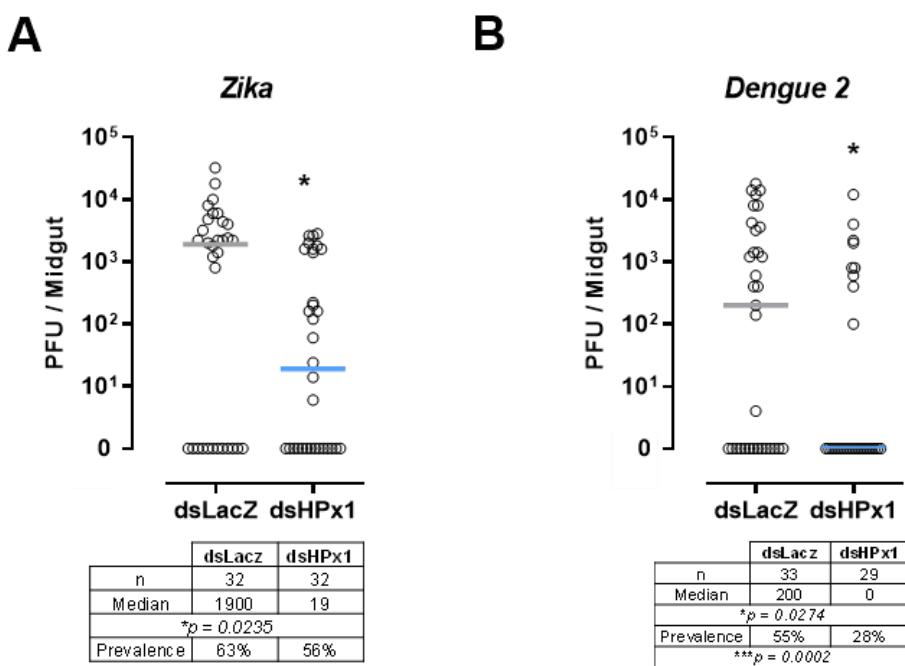


331

332 **Figure 3.** The role of HPx1 in PM assembly. A) Midgut transverse slices at 18 h ABM supplemented with
333 dextran. Green: dextran – FITC. Blue: DAPI nuclear staining. Insets highlight dextran localization. B)
334 Representative images of ROS levels measured by DHE oxidation in individual midguts at 18 h ABM. B')
335 Quantitative analysis of the fluorescence intensity of oxidized DHE (dsLacZ, n=35; dsHPx1, n=39). C)
336 Quantitative analysis of the fluorescence intensity of oxidized DHE from individual midguts at 18 h ABM
337 (dsLacZ, n=32; dsHPx1 - Ab, n=34; dsHPx1 + Ab, n=27). D) Mitosis index in the mosquito midgut at 18 h
338 ABM (phospho-histone H3) (dsLacZ n=33; dsHPx1 n=38). E) The intestinal microbiota load analyzed
339 through eubacterial ribosomal 16S gene expression by qPCR at 24 h ABM (dsLacZ n=6; dsHPx1 n=7). F)
340 Immune-related gene expression upon HPx1 silencing at 24 h ABM by qPCR (dsLacZ n=8; dsHPx1 n=7).
341 *p<0.05, ***p<0.0001, ns = not significant. Data are the mean +/- SEM. The T test for B', D, E and F, and
342 one-way ANOVA with Tukey's posttest for C.

343 **HPx1 and DUOX coordinate intestinal immunity**

344 NADPH-oxidases are a family of ROS-producing enzymes related to the immune system. Members of the
345 dual oxidase (DUOX) group have been shown to play an essential role against bacterial challenge in the
346 insect intestinal environment (Ha, Oh, Bae, et al., 2005; Kumar et al., 2010; Oliveira et al., 2011). Silencing
347 HPx1 alone significantly increased ROS levels (Fig. 4A). In contrast, ROS levels were similar to those of
348 dsLacZ controls in females in which HPx1 and DUOX were co-silenced (Fig. 4A and 4B), indicating that
349 DUOX activity is the source of ROS when HPx1 is silenced. Unexpectedly, despite lowered ROS levels in
350 double-silenced mosquitoes, bacterial levels remained reduced (Fig. 4C). This antibacterial response
351 appears to be mediated by activation of canonical immune signaling pathways, as evidenced by increased
352 expression of antimicrobial peptides and PGRP-LB in HPx1/DUOX co-silenced females (Fig. 4D-F).



353

354 **Figure 4.** DUOX activation upon HPx1 silencing and hierarchical mode of activation of innate immunity in
 355 the mosquito midgut. A) Representative images of ROS levels measured by DHE oxidation in individual
 356 midguts at 18 h ABM. B) Quantitative analysis of the fluorescence intensity of oxidized DHE (dsLacZ, n=38;
 357 dsHPx1, n=43; dsDUOX, n=21; dsHPx1+DUOX, n=31). C) The intestinal microbiota load analyzed through
 358 eubacterial ribosomal 16S gene expression by qPCR at 24 h ABM (dsLacZ n=6; dsHPx1 n=6; dsHPx1+DUOX
 359 n=4). D-F) Immune-related gene expression upon HPx1 silencing at 24 h ABM by qPCR (at least n=5 for
 360 each condition). F) Schematic panel of intestinal immune activation showing that the PM integrity
 361 mediated by HPx1 activity isolates the gut microbiota, and once this integrity is lost, DUOX and
 362 antimicrobial peptides (AMPs) are activated. **p<0.005, ***p<0.001, ****p<0.0001, ns = not significant.
 363 Data are the mean +/- SEM. One-way ANOVA with Tukey's post-test for A', B, and C.

364 **Intestinal homeostasis impacts Zika and Dengue virus infection**

365 The midgut epithelium is the first tissue that a virus must invade to establish a successful infection. By
366 modulating diffusion of immune elicitors, HPx1 is crucial to maintaining gut homeostasis, allowing the
367 proliferation of bacteria from the gut microbiota without triggering an immune response. Investigation of
368 the effect of HPx1 silencing on midgut infection with Zika (ZKV) and Dengue virus (DENV) showed that
369 silencing HPx1 expression dramatically reduced ZKV and DENV midgut infection at 4 and 7 days
370 postfeeding, respectively (Fig. 5A and B). Titers of ZKV and DENV decreased approximately 100-fold in the
371 gut of HPx1-silenced mosquitoes, along with a reduction in infection prevalence.

372

373 **Figure 5.** Viral infection in HPx1-silenced insects. A) Zika titers in midguts at 4 days postinfection. B)
374 Dengue 2 titers in midguts at 7 days postinfection. Viral titers were assessed by the plaque assay. Each
375 dot represents an individual mosquito gut, and bars indicate the median. * $p < 0.05$; Mann–Whitney test
376 for A and B. The prevalence statistical analysis was performed by the Chi-square test followed by Fisher's
377 exact test.

378

379

380

381

382

383 **Discussion**

384 The *Aedes aegypti* PM is an acellular layer that surrounds the blood bolus throughout the
385 digestion process and limits direct contact of the epithelium with the midgut content and the intestinal
386 microbiota, which undergoes massive proliferation upon blood feeding. In female mosquitoes, PM
387 formation occurs in response to ingestion of a blood meal, following a time course that is finely
388 coordinated with the pace of blood digestion. However, the signaling pathways that trigger PM secretion
389 in adult mosquito females have not been elucidated nor has the impact of this structure on viral infection.
390 Here, we characterize an intestinal secreted peroxidase (HPx1) that functions in PM assembly,
391 contributing to its barrier function and promoting microbiota growth by preventing an antimicrobial
392 response. This PM function has a permissive role for viral replication in the mosquito gut, thus constituting
393 a novel determinant of vector competence. Importantly, dietary heme triggers HPx1 gene expression
394 using the heme-dependent transcription factor E75, allowing synchronization of PM maturation with
395 blood digestion by sensing the free heme released as hemoglobin is digested.

396 Similar to all blood-feeding organisms, mosquitoes face an oxidative challenge due to large
397 amounts of heme – a pro-oxidant molecule – released by hemoglobin degradation. Therefore, preventing
398 oxidative damage through ROS detoxification is a hallmark of their physiology (Sterkel et al., 2017). HPx1
399 mediates a novel mechanism to promote redox balance in the *Aedes* midgut through its hydrogen
400 peroxide scavenging activity and by modulating PM barrier function. We also show that HPx1 allows
401 proliferation of the gut microbiota without activating a DUOX-mediated oxidative burst by limiting
402 exposure of gut epithelial cells to microbial immune elicitors. We have previously shown that *Aedes*
403 *aegypti* catalase (AAEL013407-RB), the main intracellular hydrogen peroxide scavenger, is induced in the
404 blood-fed midgut of females (Oliveira et al., 2017). Here, we demonstrate that HPx1 contributes to the
405 overall peroxide scavenging capacity of the gut in a way that is independent of epithelial intracellular
406 catalase but at comparable activity levels (Fig 1). Although peroxidases are less efficient in decomposing
407 hydrogen peroxide than catalases, it is known that some heme peroxidases also have high catalase activity
408 (Vidossich et al., 2012; Vlasits et al., 2010).

409 *A. gambiae* IMPer/HPx15 belongs to anopheline-specific expansion of the heme peroxidase family
410 (Kajla et al., 2016) nested in the same branch of the peroxidase family of *A. aegypti* HPx1 and immune-
411 regulated catalase (IRC; CG8913) of *D. melanogaster* (Ha, Oh, Ryu, et al., 2005; Konstandi et al., 2005;
412 Waterhouse et al., 2007). However, *Drosophila* IRC has a conserved heme peroxidase domain structure
413 (Pfam PF03098) but lacks a catalase domain (Pfam PF00199), despite having a high hydrogen peroxide
414 dismutation activity (Ha, Oh, Ryu, et al., 2005), which is a feature of catalases but uncommon among
415 peroxidases. Interestingly, IMPer/HPx15 of *Anopheles* is also expressed in the female reproductive tract,
416 induced by the ecdysone transferred along with the sperm during insemination, due to ecdysone-
417 responsive elements present in the promoter region (Shaw et al., 2014). Ecdysone-responsive element
418 sequences close to the *Aedes* HPx1 gene have been identified *in silico* (Zhao et al., 2001). Therefore, *Aedes*
419 HPx1, IRC, and AgIMPer are secreted enzymes that modulate interactions of the midgut with commensal
420 and pathogenic bacteria. Nevertheless, their role in the biology of the reproductive organs has not been
421 well established. Although our data reveal that HPx1, IRC, and IMPer share sequence and functional

422 homology, it is not possible at present to speculate which roles are ancestral and which were acquired
423 secondarily during the evolution of dipterans.

424 *A. gambiae* IMPer has been proposed to crosslink external matrix proteins by forming di-tyrosine
425 bridges, reducing the accessibility of microbial elicitors to the intestinal cells (Kumar et al., 2010). In
426 *Drosophila*, however, a transglutaminase enzyme crosslinks PM proteins, also protecting the midgut
427 epithelia from damage (Kuraishi et al., 2011; Shibata et al., 2015). In this study, we show that HPx1
428 associates with the PM and modulates gut permeability in *A. aegypti* (Fig. 4). When the PM structure was
429 compromised by HPx1 silencing, we observed immediate responses from the epithelium that increased
430 ROS levels, which was attributed mainly to DUOX activation by microbial elicitors. The role of PM in
431 preventing elevated ROS production in the gut epithelium was also observed when the PM was
432 compromised by the chitin inhibitor diflubenzuron administered in a blood meal for *A. aegypti* females
433 (Taracena et al., 2018). A simple hypothesis to explain how elevated ROS might lower virus infection is
434 that they directly attack the virus. However, arbovirus infection of midgut cells is thought to occur early
435 during digestion, several hours before proliferation of microbiota occurs and before the PM is secreted
436 (Franz et al., 2015). Therefore, it is unlikely that extracellular ROS produced in response to bacterial
437 elicitors in HPx1-silenced insects would directly attack virus particles that will be localized intracellularly
438 when these molecules start to increase in the lumen. In general, cellular antiviral mechanisms are most
439 plausibly responsible for hampering viral infection upon HPx1 silencing. Among these possible
440 mechanisms, the elevated extracellular ROS levels derived from DUOX activation are indeed sensed by
441 the gut as a danger signal, evoking a tissue-repairing response the hallmark of which is stem cell
442 proliferation (Fig. 4), a homeostatic response coupled to cell death in response to insult and damage.
443 Interestingly, Taracena et al. proposed that different degrees of resistance to infection among mosquito
444 strains are related to different capacities to promote a rapid increase in stem cell proliferation; hence,
445 faster cell death, followed by cell renewal from stem cell activation, is a process that reduces viral infection
446 (Taracena et al., 2018). One could hypothesize that this mechanism is responsible for the decrease in ZKV
447 and DENV infection promoted by HPx1 silencing.

448 In mammals, the mucus layer allows commensal bacteria from the gut microbiota to thrive
449 without eliciting microbicidal immune responses by the intestinal mucosa. In other words, the mammalian
450 mucus layer acts as a physical barrier that leads to “immunological ignorance” by preventing a state of
451 constant immune activation and chronic inflammation of the intestine in response to immune elicitors
452 from the normal microbiota (Chassaing et al., 2015; Hooper, 2009; Macpherson et al., 2005). In mosquitos,
453 the PM is secreted when the microbiota peaks in number to approximately 100-1000 times the population
454 found before a blood meal (Oliveira et al., 2011), representing a potential massive immune challenge to
455 this tissue. Hixson et al. suggested that immune tolerance to the indigenous microbiota might be
456 mediated by high expression of caudal and PGRP genes, leading to low expression of antimicrobial
457 peptides in epithelial cells from the posterior gut (Hixson et al., n.d.). Here, we highlight the role of PM-
458 associated HPx1 in limiting exposure of the epithelium to immune elicitors from the expanded microbiota
459 observed postfeeding. Before blood feeding, the PM is absent, and bacteria interact with the epithelium,
460 leading to ROS generation and damage-induced repair (Oliveira et al., 2011; Taracena et al., 2018). When
461 the first line of immediate response to immune elicitors (redox mediated) is further prevented by

462 simultaneous DUOX silencing, a reaction is activated (antibacterial peptides expression) to limit microbial
463 growth. These data suggest hierachal immune activation in the *A. aegypti* midgut fundamentally
464 orchestrated by the PM integrity. This is similar to what was reported for *A. gambiae*, whereby bacterial
465 elicitors lead to DUOX-mediated activation of IMPer, which promotes cross-linking of extracellular
466 proteins (Kumar et al., 2010). However, in this report, an epithelial cell mucous layer (and not the PM)
467 was indicated as the site of action of the peroxidase. Regarding the mode of activation of this pathway,
468 the findings shown herein are also fairly similar to those for *Drosophila*, with ROS produced by DUOX being
469 primarily triggered by bacterial pathogens, and the IMD pathway induces antimicrobial peptide
470 production upon activation failure (Buchon et al., 2009; Ha et al., 2009; Hixson et al., n.d.; Ryu et al., 2006).

471 Traditionally, immunology has focused on how hosts eliminate pathogens while fighting
472 infections, but in the last decade, there has been a growing interest in how hosts endure infection by
473 utilizing disease tolerance, including diminishing both the direct damage caused by the pathogen and the
474 self-inflicted damage due to the host immune reaction directed at the elimination of the pathogen. In this
475 study, we showed that PM-associated HPx1 is pivotal to maintaining gut immune homeostasis, acting as
476 a tolerance mechanism that prevents responses to the microbiota. Additionally, the fact that HPx1/PM
477 disruption causes a drastic reduction in the viral load within the gut epithelia suggests that this mechanism
478 is essential to the tolerogenic status of the gut to viral replication and directly contributes to vector
479 competence.

480 Together, our results indicate that the *A. aegypti* PM supports midgut homeostasis during blood
481 digestion. Heme derived from blood hemoglobin digestion regulates expression of HPx1, an enzyme that
482 has a central role in the assembly of a fully functional PM, through the heme-sensitive E75 transcription
483 factor. Thus, HPx1 maintains immunological ignorance of the midgut epithelia toward the microbiota,
484 allowing a state of microbiota and viral tolerance and preventing tissue damage.

485

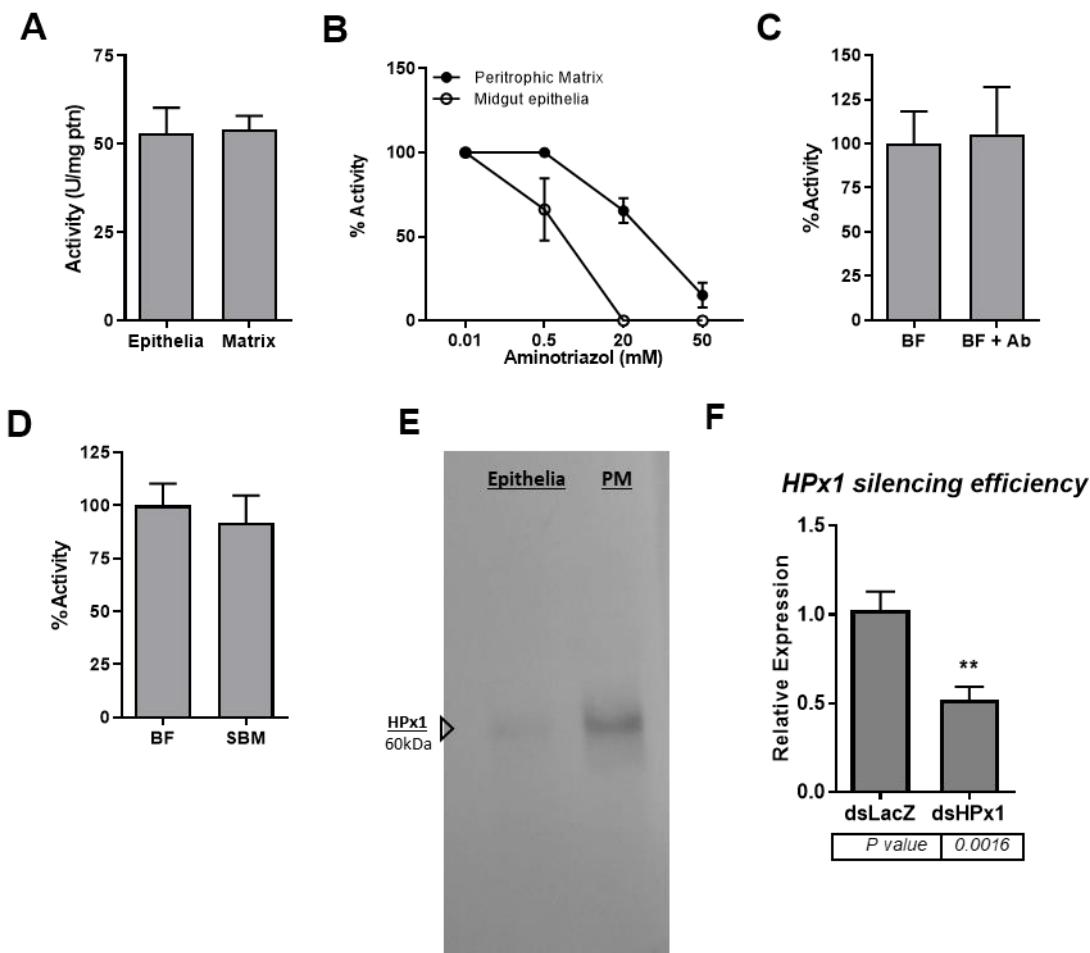
486

487 **Acknowledgments**

488 We thank all members of the Laboratory of Biochemistry of Hematophagous Arthropods, especially
489 Jaciara Miranda Freire, for rearing the insects and Patricia Ingridis S. Cavalcante, João Marques, Charlion
490 Cosme and S.R. Cassia for providing technical assistance. This work was supported by grants from the
491 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de
492 Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP) and
493 Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ).

494

495

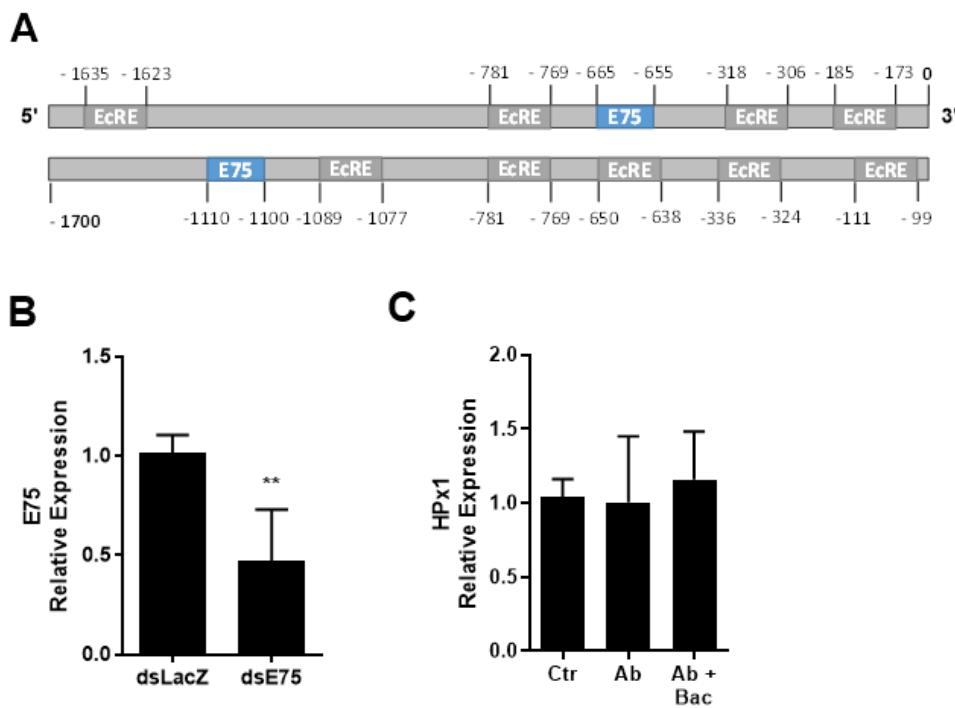

496

497 **Supplementary figures**

498

499 **Supplementary Figure 1**

500


501

502

503 SUP1: A) Catalase-specific activity comparison of the intestinal epithelia and PM at 24 h ABM. B) *In vitro*
504 sensitivity of midgut epithelia and PM samples to aminotriazole, a catalase/peroxidase inhibitor. C)
505 Mosquitos were treated with (or without) an antibiotic cocktail in a sugar meal, and PM catalase activity
506 was assayed at 24 h ABM (BF n=10; +AB n=11). (D) Catalase activity comparison of the PM at 24 h ABM
507 for mosquitoes fed blood or SBM, a chemically defined artificial diet (BF n=21; +AB n=17). E) HPx1 western
508 blot of midgut epithelia and PM protein extracts, referring to Fig. 1E.

509

510 **Supplementary Figure 2**

511

512

513 SUP2: A) Schematic illustration of the E75 and ecdysone receptor-binding motifs in the promoter region
514 of HPx1. Numbers refer to nucleotide positions relative to the transcription start site. B) E75 silencing
515 efficiency in midguts at 24 h ABM. C) HPx1 expression in midguts at 24 h ABM. Control mosquitoes were
516 fed a regular sucrose solution before blood feeding. Ab mosquitoes were pretreated with antibiotics
517 before blood feeding. Ab + Bac mosquitoes were pretreated with antibiotics and fed blood containing
518 *Enterobacter cloacae* at 1 OD/ml (Ctr n=6; Ab n=6; Ab+Bac n=5). Data are the mean +/- SEM.

519

520

521

522

523

524

525

526 **Supplementary Table 1**

527 **Primer list**

528

RP-49 AAEL003396-RA	For	GCTATGACAAGCTTGC
	Rev	CCCCCA
dsCatalase AAEL013407 -RB	For	TCATCAGCACCTCCAGCT
	Rev	taatacgactcaactatagggACTCCACTTGCTGTGCGTT
HPx1 AAEL006014-RA	For	taatacgactcaactatagggTCTCCCTTAGCAATAGCGTTG
	Rev	TCCTGTGCATCCTGACTGAG
dsHPx1 AAEL006014-RA	For	CGTTGTCCGCAGAAGATACGA
	Rev	taatacgactcaactatagggAGATGTTGTACCGACGATGG
16S	For	taatacgactcaactatagggATTGGTGGCCACTCGTATC
	Rev	TCCTACGGGAGGCAGCAGT
	For	GGACTACCAGGGTATCTAAC
dsE75 AAEL007397	Rev	TCCTGTGTT
	For	taatacgactcaactatagggGCTACCCTGTCCGGTCAAT
	Rev	taatacgactcaactatagggCTCGGCTTCACCTTCCTGT
E75 AAEL007397	For	TGTCTGCAGTCGATCGTT
	Rev	TGCTGCCGTAGGAGTTCTT
Attacin AAEL003389-RA	For	TTGGCAGGCACGGAATGTCTT
	Rev	GG
Cecropin G AAEL015515-RA	For	TGTTGTCGGGACCGGGAAAGTG
	Rev	TCACAAAGTTATTCTCCTGATCG
PGRP-LB AAEL010171-RA	For	CGATGTAGCATTGGTGATG
	Rev	TTTAACGTCGTGGAGCAC
DUOX AAEL007563-RA	For	TCAC
	Rev	GGATTGTGCCATCCTATG
dsDUOX AAEL007563-RA	For	AACCGTGTAGATCGCTGCTT
	Rev	taatacgactcaactatagggATAATGTGGTCGCCAAGAGG
	For	taatacgactcaactatagggTGGGACCGAACAGTTTATCC

529

530

531

532

533

534

535

536

537 **References**

538

539 Aebi, H. (1984). Catalase in vitro. In *Methods in Enzymology* (Vol. 105, Issue 1947, pp. 121–126).
540 [https://doi.org/10.1016/S0076-6879\(84\)05016-3](https://doi.org/10.1016/S0076-6879(84)05016-3)

541 Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S.
542 (2009). MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Research*, 37(Web
543 Server), W202–W208. <https://doi.org/10.1093/nar/gkp335>

544 Black IV, W. C., Bennett, K. E., Gorrochótegui-Escalante, N., Barillas-Mury, C. v., Fernández-Salas, I.,
545 Muñoz, M. D. L., Farfán-Alé, J. A., Olson, K. E., & Beaty, B. J. (2002). Flavivirus susceptibility in Aedes
546 aegypti. *Archives of Medical Research*, 33(4), 379–388. [https://doi.org/10.1016/S0188-4409\(02\)00373-9](https://doi.org/10.1016/S0188-4409(02)00373-9)

547

548 Bottino-Rojas, V., Talyuli, O. A. C., Carrara, L., Martins, A. J., James, A. A., Oliveira, P. L., & Paiva-Silva, G.
549 O. (2018). The redox-sensing gene Nrf2 affects intestinal homeostasis, insecticide resistance, and
550 Zika virus susceptibility in the mosquito Aedes aegypti. *Journal of Biological Chemistry*, 293(23),
551 9053–9063. <https://doi.org/10.1074/jbc.RA117.001589>

552 Bottino-Rojas, V., Talyuli, O. A. C., Jupatanakul, N., Sim, S., Dimopoulos, G., Venancio, T. M., Bahia, A. C.,
553 Sorgine, M. H., Oliveira, P. L., & Paiva-Silva, G. O. (2015). Heme signaling impacts global gene
554 expression, immunity and dengue virus infectivity in Aedes aegypti. *PLoS ONE*, 10(8).
555 <https://doi.org/10.1371/journal.pone.0135985>

556 Buchon, N., Broderick, N. a., Poidevin, M., Pradervand, S., & Lemaitre, B. (2009). Drosophila intestinal
557 response to bacterial infection: activation of host defense and stem cell proliferation. *Cell Host &
558 Microbe*, 5(2), 200–211. <https://doi.org/10.1016/j.chom.2009.01.003>

559 Chassaing, B., Koren, O., Goodrich, J. K., Poole, A. C., Srinivasan, S., Ley, R. E., & Gewirtz, A. T. (2015).
560 Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome.
561 *Nature*, 519(7541), 92–96. <https://doi.org/10.1038/nature14232>

562 Coutinho-Abreu, I. v., Sharma, N. K., Robles-Murguia, M., & Ramalho-Ortigao, M. (2010). Targeting the
563 Midgut Secreted PpChit1 Reduces Leishmania major Development in Its Natural Vector, the Sand
564 Fly Phlebotomus papatasii. *PLoS Neglected Tropical Diseases*, 4(11), e901.
565 <https://doi.org/10.1371/journal.pntd.0000901>

566 Cruz, J., Mane-Padros, D., Zou, Z., & Raikhel, A. S. (2012). Distinct roles of isoforms of the heme-ligated
567 nuclear receptor E75, an insect ortholog of the vertebrate Rev-erb, in mosquito reproduction.
568 *Molecular and Cellular Endocrinology*, 349(2), 262–271. <https://doi.org/10.1016/j.mce.2011.11.006>

569 Devenport, M., Alvarenga, P. H., Shao, L., Fujioka, H., Bianconi, M. L., Oliveira, P. L., & Jacobs-Lorena, M.
570 (2006). Identification of the *Aedes aegypti* peritrophic matrix protein AeIMUCI as a heme-binding
571 protein. *Biochemistry*, 45(31), 9540–9549. <https://doi.org/10.1021/bi0605991>

572 Franz, A., Kantor, A., Passarelli, A., & Clem, R. (2015). Tissue Barriers to Arbovirus Infection in
573 Mosquitoes. *Viruses*, 7(7), 3741–3767. <https://doi.org/10.3390/v7072795>

574 Garver, L. S., de Almeida Oliveira, G., & Barillas-Mury, C. (2013). The JNK Pathway Is a Key Mediator of
575 *Anopheles gambiae* Antiplasmodial Immunity. *PLoS Pathogens*, 9(9), e1003622.
576 <https://doi.org/10.1371/journal.ppat.1003622>

577 Gentile, C., Lima, J., & Peixoto, A. (2005). Isolation of a fragment homologous to the rp49 constitutive
578 gene of *Drosophila* in the Neotropical malaria vector *Anopheles aquasalis* (Diptera: Culicidae).
579 *Memórias Do Instituto Oswaldo Cruz*, 100(October), 545–547.
580 http://www.scielo.br/scielo.php?pid=S0074-02762005000600008&script=sci_arttext

581 Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: scanning for occurrences of a given motif.
582 *Bioinformatics*, 27(7), 1017–1018. <https://doi.org/10.1093/bioinformatics/btr064>

583 Ha, E.-M., Lee, K.-A., Seo, Y. Y., Kim, S.-H., Lim, J.-H., Oh, B.-H., Kim, J., & Lee, W.-J. (2009). Coordination
584 of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes
585 in *drosophila* gut. *Nature Immunology*, 10(9), 949–957. <https://doi.org/10.1038/ni.1765>

586 Ha, E.-M., Oh, C.-T., Bae, Y. S., & Lee, W.-J. (2005). A direct role for dual oxidase in *Drosophila* gut
587 immunity. *Science (New York, N.Y.)*, 310(5749), 847–850. <https://doi.org/10.1126/science.1117311>

588 Ha, E.-M., Oh, C.-T., Ryu, J.-H., Bae, Y.-S., Kang, S.-W., Jang, I.-H., Brey, P. T., & Lee, W.-J. (2005). An
589 Antioxidant System Required for Host Protection against Gut Infection in *Drosophila*.
590 *Developmental Cell*, 8(1), 125–132. <https://doi.org/10.1016/j.devcel.2004.11.007>

591 Hixson, B., Bing, X.-L., Yang, X., Bonfini, A., & Nagy, P. (n.d.). *A transcriptomic atlas of Aedes aegypti*
592 *reveals detailed functional organization of major body parts and gut regional specializations in*
593 *sugar-fed and blood-fed adult females*. <https://doi.org/10.1101/2021.12.19.473372>

594 Hooper, L. v. (2009). Do symbiotic bacteria subvert host immunity? *Nature Reviews. Microbiology*, 7(5),
595 367–374. <https://doi.org/10.1038/nrmicro2114>

596 Jaramillo-Gutierrez, G., Molina-Cruz, A., Kumar, S., & Barillas-Mury, C. (2010). The *Anopheles gambiae*
597 Oxidation Resistance 1 (OXR1) Gene Regulates Expression of Enzymes That Detoxify Reactive
598 Oxygen Species. *PLoS ONE*, 5(6), e11168. <https://doi.org/10.1371/journal.pone.0011168>

599 Jupatanakul, N., Sim, S., Angleró-Rodríguez, Y. I., Souza-Neto, J., Das, S., Poti, K. E., Rossi, S. L., Bergren,
600 N., Vasilakis, N., & Dimopoulos, G. (2017). Engineered *Aedes aegypti* JAK/STAT Pathway-Mediated
601 Immunity to Dengue Virus. *PLOS Neglected Tropical Diseases*, 11(1), e0005187.
602 <https://doi.org/10.1371/journal.pntd.0005187>

603 Kajla, M., Biol, J. P. E., Kajla, M., Gupta, K., Kakani, P., Dhawan, R., Choudhury, T. P., Gupta, L., & Gakhar,
604 S. K. (2016). *Identification of an Anopheles Lineage-Specific Unique Heme Peroxidase HPX15: A*
605 *Plausible Candidate for Arresting Malaria Parasite Development.* 3(4).
606 <https://doi.org/10.4172/2329-9002.1000160>

607 Kokoza, V. A., Martin, D., Mienaltowski, M. J., Ahmed, A., Morton, C. M., & Raikhel, A. S. (2001).
608 Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade.
609 *Gene*, 274(1–2), 47–65. [https://doi.org/10.1016/S0378-1119\(01\)00602-3](https://doi.org/10.1016/S0378-1119(01)00602-3)

610 Konstandi, O. A., Papassideri, I. S., Stravopodis, D. J., Kenoutis, C. A., Hasan, Z., Katsorchi, T., Wever, R.,
611 & Margaritis, L. H. (2005). The enzymatic component of *Drosophila melanogaster* chorion is the
612 Pxd peroxidase. *Insect Biochemistry and Molecular Biology*, 35(9), 1043–1057.
613 <https://doi.org/10.1016/j.ibmb.2005.04.005>

614 Kumar, S., & Barillas-Mury, C. (2005). Ookinete-induced midgut peroxidases detonate the time bomb in
615 anopheline mosquitoes. *Insect Biochemistry and Molecular Biology*, 35(7), 721–727.
616 <https://doi.org/10.1016/j.ibmb.2005.02.014>

617 Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J., & Barillas-Mury, C. (2010). A Peroxidase/Dual
618 Oxidase System Modulates Midgut Epithelial Immunity in *Anopheles gambiae*. *Science*, 327(5973),
619 1644–1648. <https://doi.org/10.1126/science.1184008>

620 Kuraishi, T., Binggeli, O., Opota, O., Buchon, N., & Lemaitre, B. (2011). Genetic evidence for a protective
621 role of the peritrophic matrix against intestinal bacterial infection in *Drosophila melanogaster*.
622 *Proceedings of the National Academy of Sciences*, 108(38), 15966–15971.
623 <https://doi.org/10.1073/pnas.1105994108>

624 Kuraishi, T., Hori, A., & Kurata, S. (2013). Host-microbe interactions in the gut of *Drosophila*
625 *melanogaster*. *Frontiers in Physiology*, 4(December), 1–8.
626 <https://doi.org/10.3389/fphys.2013.00375>

627 Lehane, M. J. (1997). Peritrophic Matrix Structure and Function. *Annual Review of Entomology*, 42(1),
628 525–550. <https://doi.org/10.1146/annurev.ento.42.1.525>

629 Liu, J., Liu, Y., Nie, K., Du, S., Qiu, J., Pang, X., Wang, P., & Cheng, G. (2016). Flavivirus NS1 protein in
630 infected host sera enhances viral acquisition by mosquitoes. *Nature Microbiology*, 1(9), 16087.
631 <https://doi.org/10.1038/nmicrobiol.2016.87>

632 LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L., & RANDALL, R. J. (1951). Protein measurement with the
633 Folin phenol reagent. *The Journal of Biological Chemistry*, 193(1), 265–275.
634 <http://linkinghub.elsevier.com/retrieve/pii/S0003269784711122>

635 Macpherson, A. J., Geuking, M. B., & McCoy, K. D. (2005). Immune responses that adapt the intestinal
636 mucosa to commensal intestinal bacteria. *Immunology*, 115(2), 153–162.
637 <https://doi.org/10.1111/j.1365-2567.2005.02159.x>

638 Oliveira, J. H. M., Gonçalves, R. L. S., Lara, F. A., Dias, F. A., Gandara, A. C. P., Menna-Barreto, R. F. S.,
639 Edwards, M. C., Laurindo, F. R. M., Silva-Neto, M. a C., Sorgine, M. H. F., & Oliveira, P. L. (2011).
640 Blood meal-derived heme decreases ROS levels in the midgut of *Aedes aegypti* and allows
641 proliferation of intestinal microbiota. *PLoS Pathogens*, 7(3), e1001320.
642 <https://doi.org/10.1371/journal.ppat.1001320>

643 Oliveira, J. H. M., Talyuli, O. A. C., Goncalves, R. L. S., Paiva-Silva, G. O., Sorgine, M. H. F., Alvarenga, P. H.,
644 & Oliveira, P. L. (2017). Catalase protects *Aedes aegypti* from oxidative stress and increases midgut
645 infection prevalence of Dengue but not Zika. *PLOS Neglected Tropical Diseases*, 11(4), e0005525.
646 <https://doi.org/10.1371/journal.pntd.0005525>

647 Pascoa, V., Oliveira, P. L., Dansa-Petretski, M., Silva, J. R., Alvarenga, P. H., Jacobs-Lorena, M., & Lemos,
648 F. J. A. (2002). *Aedes aegypti* peritrophic matrix and its interaction with heme during blood
649 digestion. *Insect Biochemistry and Molecular Biology*, 32(5), 517–523.
650 [https://doi.org/10.1016/S0965-1748\(01\)00130-8](https://doi.org/10.1016/S0965-1748(01)00130-8)

651 Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal
652 peptides from transmembrane regions. *Nature Methods*, 8(10), 785–786.
653 <https://doi.org/10.1038/nmeth.1701>

654 Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. *Nucleic
655 Acids Research*, 29(9), e45.
656 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55695/>&tool=pmcentrez&rendertype=abstract
657

658 Ramalho-Ortigao, M. (2010). Sand Fly-*Leishmania* Interactions: Long Relationships are Not Necessarily
659 Easy. *The Open Parasitology Journal*, 4(1), 195–204.
660 <https://doi.org/10.2174/1874421401004010195>

661 Retamal, C. A., Thiebaut, P., & Alves, E. W. (1999). Protein Purification from Polyacrylamide Gels by
662 Sonication Extraction. *Analytical Biochemistry*, 268(1), 15–20.
663 <https://doi.org/10.1006/abio.1998.2977>

664 Rose, C., Casas-Sánchez, A., Dyer, N. A., Solórzano, C., Beckett, A. J., Middlehurst, B., Marcello, M.,
665 Haines, L. R., Lisack, J., Engstler, M., Lehane, M. J., Prior, I. A., & Acosta-Serrano, Á. (2020).
666 *Trypanosoma brucei* colonizes the tsetse gut via an immature peritrophic matrix in the
667 proventriculus. *Nature Microbiology*, 2. <https://doi.org/10.1038/s41564-020-0707-z>

668 Ryu, J.-H., Ha, E.-M., Oh, C.-T., Seol, J.-H., Brey, P. T., Jin, I., Lee, D. G., Kim, J., Lee, D., & Lee, W.-J. (2006).
669 An essential complementary role of NF-κB pathway to microbicidal oxidants in *Drosophila* gut
670 immunity. *The EMBO Journal*, 25(15), 3693–3701. <https://doi.org/10.1038/sj.emboj.7601233>

671 Shahabuddin, M., Kaidoh, T., Aikawa, M., & Kaslow, D. C. (1995). *Plasmodium gallinaceum*: Mosquito
672 peritrophic matrix and the parasite-vector compatibility. *Experimental Parasitology*, 81(3), 386–
673 393. <https://doi.org/10.1006/expr.1995.1129>

674 Shao, L., Devenport, M., & Jacobs-lorena, M. (2001). The Peritrophic Matrix of Hematophagous Insects.
675 *Archives of Insect Biochemistry and Physiology*, 47(November 2000), 119–125.
676 <https://doi.org/10.1002/arch.1042>

677 Shaw, W. R., Teodori, E., Mitchell, S. N., Baldini, F., Gabrieli, P., Rogers, D. W., & Catteruccia, F. (2014).
678 Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in
679 *Anopheles gambiae*. *Proceedings of the National Academy of Sciences*, 111(16), 5854–5859.
680 <https://doi.org/10.1073/pnas.1401715111>

681 Shibata, T., Maki, K., Hadano, J., Fujikawa, T., Kitazaki, K., Koshiba, T., & Kawabata, S. I. (2015).
682 Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. *PLoS*
683 *Pathogens*, 11(10), 1–15. <https://doi.org/10.1371/journal.ppat.1005244>

684 Sterkel, M., Oliveira, J. H. M., Bottino-Rojas, V., Paiva-Silva, G. O., & Oliveira, P. L. (2017). The Dose
685 Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods.
686 *Trends in Parasitology*, 33(8), 633–644. <https://doi.org/10.1016/j.pt.2017.04.008>

687 Talyuli, O. A. C., Bottino-Rojas, V., Polycarpo, C. R., Oliveira, P. L., & Paiva-Silva, G. O. (2021). Non-
688 immune Traits Triggered by Blood Intake Impact Vectorial Competence. In *Frontiers in Physiology*
689 (Vol. 12). Frontiers Media S.A. <https://doi.org/10.3389/fphys.2021.638033>

690 Talyuli, O. A. C., Bottino-Rojas, V., Taracena, M. L., Soares, A. L. M., Oliveira, J. H. M., & Oliveira, P. L.
691 (2015). The use of a chemically defined artificial diet as a tool to study *Aedes aegypti* physiology.
692 *Journal of Insect Physiology*, 83, 1–7. <https://doi.org/10.1016/j.jinsphys.2015.11.007>

693 Taracena, M. L., Bottino-Rojas, V., Talyuli, O. A. C., Walter-Nuno, A. B., Oliveira, J. H. M., Angleró-
694 Rodriguez, Y. I., Wells, M. B., Dimopoulos, G., Oliveira, P. L., & Paiva-Silva, G. O. (2018). Regulation
695 of midgut cell proliferation impacts *Aedes aegypti* susceptibility to dengue virus. *PLOS Neglected*
696 *Tropical Diseases*, 12(5), e0006498. <https://doi.org/10.1371/journal.pntd.0006498>

697 Terra, W. R., Dias, R. O., Oliveira, P. L., Ferreira, C., & Venancio, T. M. (2018). Transcriptomic analyses
698 uncover emerging roles of mucins, lysosome/secretory addressing and detoxification pathways in
699 insect midguts. *Current Opinion in Insect Science*, 29, 34–40.
700 <https://doi.org/10.1016/j.cois.2018.05.015>

701 Vidossich, P., Alfonso-Prieto, M., & Rovira, C. (2012). Catalases versus peroxidases: DFT investigation of
702 H₂O₂ oxidation in models systems and implications for heme protein engineering. *Journal of*
703 *Inorganic Biochemistry*, 117, 292–297. <https://doi.org/10.1016/j.jinorgbio.2012.07.002>

704 Vlasits, J., Jakopitsch, C., Bernroitner, M., Zamocky, M., Furtmüller, P. G., & Obinger, C. (2010).
705 Mechanisms of catalase activity of heme peroxidases. *Archives of Biochemistry and Biophysics*,
706 500(1), 74–81. <https://doi.org/10.1016/j.abb.2010.04.018>

707 Waterhouse, R. M., Kriventseva, E. v., Meister, S., Xi, Z., Alvarez, K. S., Bartholomay, L. C., Barillas-Mury,
708 C., Bian, G., Blandin, S., Christensen, B. M., Dong, Y., Jiang, H., Kanost, M. R., Koutsos, A. C.,

709 Levashina, E. A., Li, J., Ligoxygakis, P., MacCallum, R. M., Mayhew, G. F., ... Christophides, G. K.
710 (2007). Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector
711 Mosquitoes. *Science*, 316(5832), 1738–1743. <https://doi.org/10.1126/science.1139862>

712 Weiss, B. L., Savage, A. F., Griffith, B. C., Wu, Y., & Aksoy, S. (2014). The Peritrophic Matrix Mediates
713 Differential Infection Outcomes in the Tsetse Fly Gut following Challenge with Commensal,
714 Pathogenic, and Parasitic Microbes. *The Journal of Immunology*, 193(2), 773–782.
715 <https://doi.org/10.4049/jimmunol.1400163>

716 Zhao, X., Smartt, C. T., Li, J., & Christensen, B. M. (2001). *Aedes aegypti* peroxidase gene characterization
717 and developmental expression. *Insect Biochem Mol Biol*, 31(4–5), 481–490.
718 <https://doi.org/S0965174800001557> [pii]

719

720