
Assortative mixing in micro-architecturally annotated brain connectomes

Vincent Bazinet1, Justine Y. Hansen1, Reinder Vos de Wael1,
Boris C. Bernhardt1, Martijn P. van den Heuvel2, Bratislav Misic1∗

1McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
2Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

The wiring of the brain connects micro-architecturally diverse neuronal populations. The conventional
graph model encodes macroscale brain connectivity as a network of nodes and edges, but abstracts
away the rich biological detail of each regional node. Regions are different in terms of their microscale
attributes, many of which are readily available through modern technological advances and data-
sharing initiatives. How is macroscale connectivity related to nodal attributes? Here we investigate the
systematic arrangement of white-matter connectivity with respect to multiple biological annotations.
Namely, we formally study assortative mixing in annotated connectomes by quantifying the tendency
for regions to be connected with each other based on the similarity of their micro-architectural
attributes. We perform all experiments using four cortico-cortical connectome datasets from three dif-
ferent species (human, macaque and mouse), and consider a range of molecular, cellular and laminar
annotations, including gene expression, neurotransmitter receptors, neuron density, laminar thickness
and intracortical myelin. Importantly, we disentangle the relationship between neural wiring, regional
heterogeneity and spatial embedding using spatial autocorrelation-preserving null models. We show
that mixing between micro-architecturally diverse neuronal populations is supported by long-distance
connections. Using meta-analytic decoding, we find that the arrangement of connectivity patterns
with respect to biological annotations shape patterns of regional functional specialization. Specifically,
regions that connect to biologically similar regions are associated with executive function; conversely,
regions that connect with biologically dissimilar regions are associated with memory function. By
bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this
work lays the foundation for next-generation annotated connectomics.

Keywords: brain networks | connectome | cytoarchitectonics | neurotransmitter receptors | transcrip-
tomics

INTRODUCTION

The brain is a complex network of anatomically con-
nected and functionally interacting neuronal populations
[16]. Representing the brain as a graph of grey matter
nodes interconnected by white matter edges allows us to
articulate and quantify its organizational principles. A
compact set of hallmark features has been documented
across organisms, spatial scales and reconstruction tech-
nologies [92]. These include communities of densely in-
terconnected brain regions and disproportionately well
connected hubs [84, 94]. Together, these features pro-
mote a balance between specialization and integration
[83].

An important limitation of the graph model of the
brain is the assumption that all regions are the same.
Yet, regions differ in their intrinsic micro-architectural
attributes [45, 48, 88, 89, 108]. These attributes in-
clude gene expression [18, 28, 32, 33, 43, 50], cellular
morphology [77, 95] and density [21], cell type [78],
neurotransmitter receptor profiles [30, 38, 42, 66], lam-
inar differentiation [59, 67, 105, 107], and myelina-
tion [47]. Understanding how the heterogeneous micro-
architectural attributes of regional nodes are related to
their connectional fingerprint is a fundamental question
in systems neuroscience [51, 69, 89, 102].
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Multiple studies have shown that the arrangement of
connections and regional attributes are related. For ex-
ample, regions with more macroscale connections tend
to have more dendritic spines, larger dendritic trees and
greater neural density [77]. Moreover, regions with
similar attributes are more likely to be connected with
each other [13, 32, 42, 47, 80, 107], suggesting a ten-
dency for homophilic attachment. However, the assess-
ment of the relationship between connectivity and micro-
architecture is complicated by the background influence
of the brain’s spatial embedding on both, whereby spa-
tially proximal regions are likely to have similar micro-
architecture, but also to share anatomical connections
[46, 58, 74, 87]. Disentangling the relationships be-
tween neural wiring, regional heterogeneity and spatial
embedding is a core challenge [1, 65]. Furthermore,
studies are often limited to a constrained set of attributes
in a single organism, precluding discovery of universal
principles of cortico-cortical organization.

Here we apply principled methods from network sci-
ence to construct annotated connectomes. We use
connectomes reconstructed from tract-tracing in model
organisms as well as high-resolution in vivo imag-
ing in humans, and annotate them with multiple
micro-architectural attributes including gene expression,
neuron density, receptor fingerprints and intracortical
myelin. We then systematically quantify the assortativ-
ity of these annotated connectomes: the tendency of
regions with similar attributes to connect with one an-
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Figure 1. Annotated connectomes | We annotated four connectomes with micro-architectural attributes. (a) Connectomes include
a human structural and a human functional connectome reconstructed using data from the HCP [98], a macaque connectome
generated using data from the CoCoMac database and initially introduced in Scholtens et al. [77], and a mouse connectome
reconstructed using data from the Allen Mouse Brain Connectivity Atlas and introduced in Oh et al. [64]. (b) Human connectomes
are annotated with measures of neurotransmitter receptor density, the ratio of excitatory-to-inhibitory neurotransmitter receptors,
the principal axis of gene expression (gene PC1), T1w/T2w ratio and cortical thickness. The macaque connectome is annotated
with neuron density (neuron-to-cell ratio), cortical thickness and T1w/T2w ratio. The mouse connectome is annotated with the
principal axis of gene expression (gene PC1).

other. In particular, we implement a novel null model
to assess the contribution of spatial constraints. We find
a tendency for regions with similar annotations to con-
nect with each other, and highlight the role of long-
distance projections in connecting micro-architecturally
diverse regions. We also generalize the concept of assor-
tative mixing to address two biologically relevant ques-
tions about wiring principles of brain networks. First, we
consider heterophilic assortativity: are regions enriched
with one attribute more likely to be connected with re-
gions enriched with another attribute? Second, we con-
sider local assortativity: how similar is a region to its
connected neighbors in terms of its annotations?

RESULTS

The results are organized as follows. We first use the
assortativity coefficient to explore the relationship be-
tween connectivity and the regional distribution of nodal
attributes. We then specifically look at the assortative
mixing of long-range connections. Finally, we uncover
heterophilic patterns of connectivity between different
micro-architectural properties and extend the general
concept of assortativity to the local level.

We use four different connectomes, namely a human
diffusion-weighted MRI structural connectome, a human
resting-state functional MRI connectome, a macaque

tract-tracing connectome and a mouse tract-tracing con-
nectome (Fig. 1a). Each connectome is annotated with
micro-architectural annotations. In other words, each
node in the connectome is given a local annotation score
associated with a micro-architectural attribute. The hu-
man connectomes are annotated with cortical thickness,
T1w/T2w ratio (a proxy for intra-cortical myelin [36]),
the ratio of excitatory-to-inhibitory neurotransmitter re-
ceptors in a region (E/I ratio), the density of neurotrans-
mitter receptors in a region and the principal axis of gene
expression (gene PC1). The macaque is annotated with
cortical thickness, T1w/T2w ratio and neuron density
while the mouse connectome is annotated with its prin-
cipal axis of gene expression (Fig. 1b).

Assortativity of cortical attributes

We first explore the relationship between micro-
architectural annotations and connectome organization
using the assortativity coefficient. For a given annotated
network, assortativity is defined as the Pearson correla-
tion between the local annotation scores of connected
nodes [63]. In other words, it quantifies the tendency
for nodes with similar annotation scores to be connected
(Fig. 2a). An important challenge for measuring assor-
tativity is that cortical attributes are spatially autocor-
related, and at the same time, connections also tend to
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Figure 2. Assortative mixing | (a) Given an annotated network where each node has a local annotation score, we can quantify
the tendency for nodes with similar scores to be connected using the assortativity coefficient. This coefficient is defined as the
Pearson correlation between the scores of connected nodes [63]. This relationship between the scores of connected nodes can be
visualized with a scatterplot of a network’s edges where the position of each edge is determined by the annotation scores of its two
endpoints. Here, the intersection of the two dashed lines indicates the position of the edge highlighted in the zoomed-in frame of
the network. In this example, the assortativity coefficient (r) is equal to 0.54. (b) To control for spatial constraints, the assortativity
coefficient of an empirical annotation can be compared to the assortativity coefficients of null annotations that preserve the spatial
autocorrelation of the empirical one [2, 19, 58].

form between brain regions that are proximal in space
[87]. As a result, assortativity may be trivially con-
founded by spatial embedding. To assess how cortical
attributes are related to brain connectivity, we control for
this spatial autocorrelation [2, 19, 58]. Namely, we com-
pare empirical assortativity coefficients to the assortativ-
ity coefficients of null annotations with preserved spatial
autocorrelation (Fig. 2b).

We find that all annotations are positively assortative
(i.e. brain regions tend to be connected to other regions
with similar attributes), but that surrogate annotations
also have positive assortativity scores (Fig. 3a). To
account for the influence of spatial autocorrelation on
assortativity, we compute the standardized assortativity
score (z-assortativity) of each attribute relative to the
null distributions of spatial autocorrelation-preserving
surrogates (Fig. 3b). We find that annotations are not
significantly assortative on the human structural connec-
tome, while gene PC1 (z-assort= 2.31, pspin = 0.0142),
T1w/T2w (z-assort= 5.51, pspin < 0.0001) and cortical
thickness (z-assort= 3.21, pspin = 0.0015) are signifi-
cantly assortative on the human functional connectome.
In the macaque connectome, we observe a significant dif-
ference between the assortativity of T1w/T2w and null
annotations (z-assort= 3.95, pmoran = 0.0005) as well as
between neuron density and null annotations (z-assort=
3.98, pmoran < 0.0001). No such significant difference is
observed for the cortical thickness. In the mouse con-
nectome, no significant difference is observed for gene
PC1. To ensure that the results are not sensitive to our
processing choices, we also replicated our experiments
using different parcellation schemes, single-hemisphere
connectomes, an independently acquired dataset and ad-
ditional spatially-autocorrelation preserving nulls mod-
els (Figs. S1, S2, S3).

Our results show that there are numerous instances

where annotations that are prima facie assortative are
actually not significantly assortative when we account
for spatial autocorrelation. We do find instances, how-
ever, where assortativity is significantly larger than ex-
pected from the brain’s spatial embedding and, interest-
ingly, these findings are consistent with recent reports
in the literature. The significant standardized assorta-
tivity of neuron density in the macaque cortex is con-
sistent with reports that neuron density is more related
to the existence of connections than geodesic distance
[14]. Significant assortativity in the functional connec-
tome is also consistent with recent reports that functional
connectivity gradients are closely aligned with multiple
micro-architectural properties [18, 47, 48, 67].

Geometric contributions to assortativity

Recent theories suggest that long-distance connections
in the structural connectome enhance the diversity of a
brain region’s inputs and outputs [11]. Long-distance
connections may thus potentially promote communica-
tion between regions with dissimilar attributes. This
idea, however, has never been formally tested from the
perspective of biological annotations.

We therefore explored how the standardized assorta-
tivity of different attributes, relative to null annotations
with preserved spatial auto-correlation, varies as we con-
sider connections of different lengths. For all four con-
nectomes and for each annotation, we compute the stan-
dardized assortativity across thresholded connectomes
where a given percentile of the shortest connections is
removed. We find that as short-distance connections are
removed — leaving behind the longest connections —
the standardized assortativity of all annotations across
all four connectomes decreases (Fig. 4). Notably, with
75% of the human structural connectome’s connections
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Figure 3. Standardized assortativity of micro-architectural annotations | (a) Assortativity of empirical annotations are com-
pared to null annotations with preserved spatial autocorrelation. For the human connectomes, the nulls were generated using a
spatial permutation model. For the mouse and macaque connectomes, the nulls were generated using a parameterized null model.
(b) Standardized assortativity scores (z-assortativity), computed relative to the spatial autocorrelation-preserving null annotations.
Gene PC1 (pspin=0.0142), T1w/T2w ratio (pspin<0.0001) and cortical thickness (pspin=0.0015) are significantly assortative on the
functional connectome, while T1w/T2w (pmoran=0.0005) and neuron density (pmoran<0.0001) are significantly assortative on the
macaque connectome.

removed, all five annotations become significantly dis-
assortative. In other words, the remaining long-range
connections link regions with attributes that are more
dissimilar than we would expect from the brain’s spatial
embedding. Again, these results are consistent across
multiple methodological choices (Figs. S1, S2, S3). This
confirms the notion that long-distance connections in-
crease the diversity of a region’s inputs and outputs, sup-
porting the integration of information between micro-
architecturally dissimilar regions.

Heterophilic mixing of cortical attributes

In the previous sections, we used the assortativity coef-
ficient to ask if two areas are more likely to be connected
if they are enriched with the same attribute. In other
words, we quantified the homophilic mixing of micro-
architectural attributes. An equally important question
is whether there exists heterophilic mixing in the brain.
In other words, are two regions more likely to be con-
nected if one region is enriched with one attribute while

the other is enriched with a different attribute? Cortico-
cortical connectivity may indeed reflect interactions be-
tween pairs of distinct attributes. For instance, it has
been hypothesised that the noradrenergic and choliner-
gic systems influence in distinct ways large-scale dynam-
ical processes in the brain [81]. Laminar organization
also appears to be closely related to brain connectivity
[34, 39, 75]. We next ask if the heterogeneous distri-
bution of pairs of attributes from multi-member classes
of annotation — neurotransmitter receptor profiles and
laminar differentiation — is reflected in the connectivity
of the brain.

To address these questions, we analyze two datasets
(Fig. 5a). The first is a positron emission tomogra-
phy (PET)-derived atlas of 18 receptors and transporters
from 9 neurotransmitter systems [42]. The second is
the thickness of individual cortical layers in the Merker-
stained BigBrain histological atlas [3, 105]. To quantify
heterophilic mixing, we extend the concept of assorta-
tivity to pairs of annotations. In other words, we com-
pute the assortativity coefficient for pairs of annotations
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Figure 4. Assortative mixing of long-range connections | Assortativity is computed in each of the four connectomes, thresholded
such that a percentile of the shortest connections are removed. These assortativity scores are standardized with respect to a null
distribution of spatial autocorrelation-preserving nulls. Standardized assortativity scores (z-assortativity) for each annotation are
displayed as a function of the percentile of connections removed in the network. For all four connectomes, annotations become
less assortative as short-range connections are removed.

such that the annotation at endpoint i represents an at-
tribute x and the annotation at endpoint j represents
a different attribute y. Fig. 5b shows the heterophilic
mixing matrices of the structural and functional connec-
tomes for both receptor density and laminar thickness.
The assortativity results are standardized with respect to
spatial autocorrelation-preserving null annotations gen-
erated by permuting the attributes on the surface of the
brain (spins). Importantly, these permutations preserve
the correlation between brain maps. By controlling for
both the brain’s spatial embedding and the correlation
between brain maps, our analyses specifically assess the
relationship between brain connectivity and the hetero-
geneous distributions of pairs of micro-architectural at-
tributes. Positive values in each matrix indicate that a re-
gion that scores highly on an annotation x is more likely
to be connected to a region that scores highly on an an-
notation y than expected from the spatial distribution of
each annotation. Negative values indicate that a region
that scores high on an annotation x is more likely to be
connected to a region that scores low on an annotation
y than expected from the spatial distribution of each an-
notation.

Several salient associations emerge that are consis-
tent with prior intuitions and qualitative descriptions in
the literature (Fig. 5b). For the functional connectome,
we find that layer IV is significantly disassortative with
layers III (z-assort= −2.41, pspin = 0.02), V (z-assort=
−2.15, pspin = 0.03) and VI (z-assort= −2.21, pspin =

0.03). In other words, brain areas with a prominent
layer IV are less likely to be connected to areas that
have prominent layers III, V and VI than what would be
expected from the topographic organization of laminar
thickness gradients. Importantly, layer IV is most promi-
nent in the primary visual cortex, while the thicknesses
of layers III, V and VI increase along the sensory pro-
cessing hierarchy [105]. This result therefore supports
the idea that microscale attributes and macroscale func-
tional connectivity are predominantly arranged along a
core organizing axis from sensory to higher-order associ-
ation brain regions [48].

This general idea also extends to receptors where we
broadly find evidence of disassortative mixing for pairs
of receptors that are predominantly expressed in brain
regions on opposite ends of the processing hierarchy.
For instance, we find disassortative mixing between the
noradrenaline transporter (NAT), and the serotonergic
5HT2a receptors (SC: z-assort= −2.86, pspin = 0.0077;
FC: z-assort= −6.06, pspin < 0.0001). This is in line
with the cortical distribution of these receptors; namely,
NAT has the greatest density in motor cortex [42], while
5HT2a has the greatest density in the primary visual
cortex [111]. We also find a significant assortative re-
lationship between vesicular acetylcholine transporters
(VaChT) and NAT (SC: z-assort= 2.21, pspin = 0.0279;
FC: z-assort= 4.85, pspin = 0.0002). Transporters are gen-
erally expressed pre-synaptically. Thus, our results show
that regions densely innervated by cholinergic neurons
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Figure 5. Heterophilic mixing | (a) Topographic distribution of PET-derived brain maps showing the density of 18 transporters
and receptors [42], as well as the topographic distribution of laminar thicknesses extracted from the Merker-stained BigBrain
histological atlas [3, 105] (b) Heterophilic mixing matrices for the receptors/transporter annotations (left) and for the laminar
thickness annotations (right). Positive values indicate that regions that score highly on an annotation x are more likely to be
connected to regions that score highly on an annotation y than would be expected from the brain’s spatial embedding. Negative
values indicate that regions that score high on an annotation x are more likely to be connected to regions that score low on
an annotation y. Dashed squares highlight specific examples of assortative and disassortative heterophilic relationships: the
significantly disassortative relationship between the noradrenaline transporter (NAT), and the serotonergic 5HT2a receptors (SC:
z-assort= −2.86, pspin = 0.0077; FC: z-assort= −6.06, pspin < 0.0001), the significantly assortative relationship between vesicular
acetylcholine transporters (VaChT) and NAT (SC: z-assort= 2.21, pspin = 0.0279; FC: z-assort= 4.85, pspin = 0.0002) as well as
the disassortative relationships between layer IV thickness and layers III, V and VI. (c) Relationship between the standardized
assortativity of annotation pairs in the structural connectome (SC) and in the functional connectome (FC). We find a strong
relationship between z-assortativity in SC and z-assortativity in FC (r=0.69). Highlighted in red are annotation pairs that are
significantly assortative in both SC and FC. Highlighted in blue are annotation pairs that are significantly disassortative in both SC
and FC.

tend to be connected, both structurally and functionally,
with regions densely innervated by noradrenaline neu-
rons, above and beyond what would be expected from
the brain’s spatial embedding. Our findings therefore
support the idea that these two systems interact with

each other and with the brain’s topology to influence
large-scale dynamical processes [81]. Assortative rela-
tionships tend to be similar in both structural and func-
tional connectomes (Fig. 5c). They are also replica-
ble with alternate parcellations and datasets (Fig. S4).
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Collectively, these complex heterophilic mixing patterns
show evidence of how macroscale white matter projec-
tions support interfacing among neuronal populations
with diverse microscale attributes.

Local assortative mixing

In the previous two sections, we explored how cortical
attributes align with the underlying connectome at the
global level. Here we extend this concept to the local
level and consider the extent to which individual regions
connect to regions with similar attributes. We first com-
pute the absolute difference between the local annota-
tion scores of connected nodes (Fig. 6a, left). To quantify
the local assortativity of a region, we then compute the
weighted average of its annotation differences to its con-
nected neighbours, weighted by the connection weight
between the two nodes (nodal mean difference; Fig. 6a,
right). This local assortativity score represents how dif-
ferent a region is from other regions it is anatomically
connected with in terms of its biological attributes.

Importantly, annotation scores that deviate from the
mean are on average more dissimilar to other scores
(Fig. 6b). To account for this, we define the homophilic
ratio of a node as the ratio between its nodal mean differ-
ence with connected neighbors and the average absolute
difference between its annotation score and the annota-
tion scores of all the other nodes in the network (Fig. 6b).
Nodes that have large homophilic ratios are nodes that
tend to connect to brain regions with more dissimilar
properties (disassortative) while nodes that have small
homophilic ratios tend to connect to regions with more
similar properties (assortative).

The homophilic ratios of all five annotations on the
structural connectome are shown in Fig. 6c. The ho-
mophilic ratios are consistent across parcellations and
datasets (Fig. S6). We also computed the homophilic
ratio of each annotation on the functional connectome
(Fig. S5). For the structural connectome, we summa-
rized the assortativity of each node by computing their
averaged homophilic ratio across all five annotations
and quantified the relationship between homophilic ratio
and mean connection distance as well as node strength
(Fig. 6d). We find a significant relationship for both
mean connection distance (r=0.36, pspin = 0.0001), and
node strength (r=0.27, pspin = 0.003). In other words,
disassortative regions have, on average, longer connec-
tions, which is consistent with our previous findings
that long distance connections tend to be disassortative
(Fig. 4). Also, our finding that disassortative regions
have larger node strength suggests that “hub” nodes that
are more central in the network tend to have more di-
verse connectivity profiles.

Finally, we ask whether the homophilic ratio of a
brain region shapes its functional specialization. We
extracted brain maps of probabilistic associations be-
tween functional keywords and individual voxels using
the Neurosynth meta-analytic engine [109] and corre-

lated the brain maps associated with 123 cognitive and
behavioural terms [70] with the averaged homophilic ra-
tios. We find significant negative correlations (pspin <
0.05) between average homophilic ratio and terms asso-
ciated with higher-order executive functions (e.g. plan-
ning, working memory, intelligence; Fig. 6e, right) and
significant positive correlations between the average ho-
mophilic ratio brain map and terms associated with in-
formation consolidation and memory (e.g. sleep, seman-
tic memory and navigation; Fig. 6e, left). This suggests
that executive functions are subtended by a network of
areas that tend to connect to other areas with similar
microscale attributes. Conversely, integrative functions
such as consolidation and memory are subtended by a
set of medial temporal structures that project to regions
with diverse microscale attributes.

DISCUSSION

In the present report we investigate the link between
connectome architecture and microscale biological an-
notations. More specifically, we ask whether brain re-
gions with similar attributes are more likely to be con-
nected with each other above and beyond the role of
spatial proximity. We systematically assess the tendency
for global and local homophilic mixing across a vari-
ety of attributes. We show that mixing between micro-
architecturally diverse neuronal populations is supported
by long-distance connections. Finally, we highlight how
brain connectivity supports heterophilic mixing patterns
between neurotransmitter systems and cortical layers.

The present work builds upon an exciting new di-
rection in network neuroscience to jointly consider
macroscale networks and microscale attributes [51, 65,
77, 88, 95]. Contemporary theories emphasize the link
between cytoarchitectonic similarity and synaptic con-
nectivity [6, 34, 39, 44, 75]. Numerous recent reports re-
lated macroscale connectivity to microscale annotations,
including gene expression [5, 29, 32, 73, 101], cytoar-
chitecture [13, 14, 47, 67, 107] and neurotransmitter
receptor profiles [30, 42]. While some of these stud-
ies have shown evidence of global assortative mixing for
specific attributes and connectomes types, the extent to
which these findings can be generalized to wiring prin-
ciples across network reconstruction techniques, species,
spatial scales and annotations remains unknown. By con-
sidering a broad range of annotation in multiple connec-
tome datasets, the present work comprehensively studies
how connectivity between neural populations depends
on their micro-architecture.

Importantly, the spatial embedding of the brain con-
strains its organization [87]. Microscale attributes are
graded across the cortex [48, 57, 89], which means
that most cortical attributes are spatially autocorrelated
[18, 19, 31, 58]. There is also a concomitant preva-
lence of short-distance connections compared to long-
distance connections [17], with connection probability
and strength typically decaying exponentially with spa-
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Figure 6. Local assortative mixing | We quantified the assortative properties of individual brain regions. (a). For each brain
region, we computed the weighted average of the absolute differences between its local annotation score and the local annotation
scores (nodal mean differences) of its directly-connected neighbors. (b) Annotation scores that deviate from the mean of the
distribution are on average more dissimilar to other scores. This can be shown with a scatterplot of the relationship between nodal
mean difference and annotation score. The average absolute difference between a node’s annotation score and the annotation
scores of all the other nodes in the network (black points) is directly related to its annotation score. We see a similar relationship
if we only consider connected neighbors (gray points). A node’s homophilic ratio is therefore defined as its nodal mean difference
with connected neighbors, divided by the average of the differences between its annotation score and the annotation scores of
all the nodes in the network. Nodes with large homophilic ratios tend to connect to brain regions with dissimilar properties
(disassortative) while nodes with small homophilic ratios tend to connect to other regions with similar properties (assortative).
(c) Homophilic ratios, for the human structural connectome, are shown for five micro-architectural attributes. (d) Homophilic
ratio averaged across the five micro-architectural attributes shown in panel c, is compared to the mean connection distance of a
node (right) and to nodal strength (left). We find significant relationships between homophilic ratio and both measures (mean
connection distance: r=0.36, pspin = 0.0001; nodal strength: r=0.27, pspin = 0.003. (e) We correlated 123 parcellated brain maps
of probabilistic associations between functional keywords and individual voxel activation [109] with the average homophilic ratio
of each node. We find 11 significantly positive relationships and 7 significantly negative relationships (pspin < 0.05). Brain maps
that are significantly and positively related to homophilic ratio are associated to functional keywords related to executive functions
(e.g. planning, working memory, intelligence). In other words, regions that show large activation during these tasks tend to have
a small homophilic ratio and therefore tend to be connected to regions with similar microscale attributes. Brain maps that are
significantly but negatively related to homophilic ratio are associated to functional keywords related to memory and integrative
functions (e.g. insight, semantic memory, episodic memory, navigation). In other words, regions that show large activation during
these tasks tend to have diverse connectivity profiles.
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tial distance [27, 37, 46, 61, 74]. Collectively, these prin-
ciples of cortical organization necessitate careful con-
sideration and methodological control of spatial effects
when studying the relationship between connectivity and
annotations [2, 18, 19, 31, 58, 99].

Here, we rigorously assess how network wiring, micro-
architectural features and spatial embedding are inter-
twined from the perspective of assortativity. Although
degree assortativity – whether nodes with similar de-
grees are more likely to be connected with each other –
has previously been studied in brain networks [8, 9, 41,
62, 96], the fundamental idea is more general and can
be applied to any nodal features. In this sense, assorta-
tivity, combined with spatially-constrained null models,
is the ideal framework to study connectome annotations.

For the functional connectome, we find a signifi-
cant relationship between connectivity and gene PC1,
T1w/T2w and cortical thickness. This is consistent
with previous reports that these three properties are re-
lated to the principal gradient of functional connectivity
[18, 47, 48], which can be thought of as the dominant
pattern of “assortativity” in functional connectomes [55].
For the structural connectome, we find that assortative
connectivity heavily depends on the annotation itself.
While we find significant assortativity in the macaque for
T1w/T2w and neuron density (consistent with previous
reports [14]), we find also numerous counter-examples
of annotations that are not assortative beyond the back-
ground effect of spatial embedding. For instance, we find
that receptor density and E/I ratio, T1w/T2w ratio, cor-
tical thickness and gene PC1 are not assortative in the
human connectome, nor is gene PC1 assortative on the
mouse connectome. Collectively, these results support
a general tendency for cytoarchitectonically similar re-
gions to be connected, but also highlight the fact that
not all features conform to this wiring principle.

By definition, assortativity means that brain regions
will be connected to regions that are similar to them-
selves; a functional consequence is that regions are less
likely to be exposed to diverse inputs. Importantly, we
find that long distance connections are an architectural
feature that potentially serves to diversify inputs to a
brain region. Indeed, the longest connections, in struc-
tural (diffusion and tract-tracing) and functional connec-
tomes are significantly disassortative, meaning that they
are more likely to connect dissimilar regions than ex-
pected from the brain’s spatial embedding. This is in line
with the notion that greater prevalence of short-range
connections [27, 37, 46, 61, 74], which presumably en-
tail lower material and metabolic cost [17], is counter-
balanced by a small number of high-cost, high-benefit
long-range connections that support communication be-
tween regions with diverse functions [10, 53]. Previous
studies have found that long-range connections, which
are heterogeneously distributed along microarchitectural
and cognitive hierarchies [79, 106], help to shorten com-
munication pathways [94], and bridge specialized mod-
ules [11]. Our results build on this literature by showing

that long-range connections are also more likely to be
placed between regions that are biologically distinct.

We also extend the conventional framework of assorta-
tivity to ask two biologically important questions about
heterophilic and local homophilic mixing. The notion
of heterophilic mixing becomes particularly convenient
when we study a multi-member class of annotations, and
wish to know whether a node enriched with one attribute
is likely to be connected to a node enriched with another
attribute. In the brain, two notable examples are recep-
tor profiles and laminar differentiation, both of which
have been associated to patterns of synaptic connectivity
[39, 42]. For instance, ascending cholinergic and nora-
drenergic neuromodulatory systems are thought to pro-
vide complementary mechanisms to balance segregation
(cholinergic) and integration (noradrenergic) [81]. Our
results highlight a tendency for cortical areas that are
rich in cholinergic and noradrenergic transporters to be
connected, offering a potential anatomical mechanism to
maintain this balance. We also find that the thickness of
granular layer IV, which is more prominent in sensory
regions, is disassortative with the thickness of the other
layers of the cortex. This is in line with previous findings
that have shown that sensory regions, such as visual cor-
tex, form segregated modules in macroscale structural
and functional networks [41, 60, 72, 110]. How het-
erophilic mixing is organized between different classes
(e.g. areas enriched with specific layers connected to ar-
eas enriched with specific receptors [111]) remains an
exciting question that could be readily addressed with
the present framework.

Finally, we “zoom in” to specific regions and assess the
extent to which their local biological annotations con-
form to the annotations of their connected neighbours,
thereby generalizing the concept of global assortativity
to the local level. Using meta-analytic decoding, we
find that regions that connect to biologically similar re-
gions tend to be associated with executive function. This
may reflect the fact that these areas (e.g. dorsolateral
prefrontal cortex), which are cytoarchitecturally distinct
from other prefrontal regions [7], form a highly inter-
connected module in the structural connectome [41].
Conversely, regions that connect with biologically dis-
similar regions tend to be associated with memory func-
tion. This may reflect the idea that these regions (e.g.
medial temporal cortex) are involved in integrating sig-
nals from multiple specialized circuits [62]. Collectively,
these results show that the arrangement of connectivity
patterns with respect to biological annotations may ulti-
mately shape patterns of regional functional specializa-
tion.

The present results should be interpreted with respect
to important methodological limitations. First, human
structural connectomes were reconstructed using diffu-
sion imaging, a technique that is known to yield mul-
tiple false positives and false negatives [54, 90], and
which cannot be used to infer directionality. Although
we replicated the results using high fidelity tract-tracing
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and histology in multiple animal models, further devel-
opment in reconstructing human white-matter connec-
tomes is needed. Second, although we tried to be as
extensive and comprehensive as possible in our choice
of annotations, spanning molecular, cellular and laminar
attributes, the final set is obviously incomplete. Exciting
technological and data-sharing advances will eventually
permit even more detailed and comprehensive biological
annotations to be studied using this framework. Rela-
tionship between connectivity and attributes depend on
how brain regions are defined (i.e. parcellations). We
systematically studied multiple parcellations, but how
best to delineate functional territories of the cortex re-
mains an open challenge in the field [15, 26].

In summary, the present work bridges scales of cortical
organization, from microscale attributes to macroscale
connectivity. By carefully controlling the background
effect of spatial embedding, we systematically assess
how connectivity is interdigitated with a broad range of
micro-architectural attributes and empirically test multi-
ple theories about the wiring of cortical networks. This
work lays the foundation for next-generation annotated
connectomics.

METHODS

Connectomes

Human connectomes (HCP)

The human connectomes were generated using data
from the Human Connectome Project S900 release [98].
Scans from N=201 unrelated participants were used to
reconstruct a consensus structural and functional con-
nectome. Informed consent was obtained for all subjects
(the protocol was approved by the Washington Univer-
sity Institutional Review Board as part of the HCP). The
participants were scanned in the HCP’s custom Siemens
3T “Connectome Skyra” scanner, and the acquisition
protocol included a high angular resolution imaging
(HARDI) sequence and four resting state fMRI sessions.
Briefly, the dMRI data was acquired with a spin-echo
EPI sequence (TR=5,520 ms; TE=89.5 ms; FOV=210
× 180 mm2; voxel size=1.25 mm3; b-value=three dif-
ferent shells i.e., 1,000, 2,000, and 3,000 s/mm2; num-
ber of diffusion directions=270; and number of b0
images=18) and the resting-state fMRI data was ac-
quired using a gradient-echo EPI sequence (TR=720 ms;
TE=33.1 ms; FOV=208 × 180 mm2; voxel size=2 mm3;
number of slices=72; and number of volumes=1,200).
Additional information regarding the acquisition proto-
col is available at [98].

The data was pre-processed according to the HCP min-
imal preprocessing pipelines [35] and structural con-
nectomes were reconstructed from the dMRI data us-
ing the MRtrix3 package [91]. Grey matter was parcel-
lated into 800 cortical regions according to the Schae-
fer functional atlas [76] and fiber orientation distribu-

tions were generated using a multi-shell multi-tissue con-
strained spherical deconvolution algorithm [24, 49]. The
initial tractogram was generated with 40 million stream-
lines, with a maximum tract length of 250 and a frac-
tional anisotropy cutoff of 0.06. Spherical-deconvolution
informed filtering of tractograms (SIFT2) was used to
reconstruct whole brain streamlines weighted by cross-
section multipliers [82]. More information regarding the
individual network reconstructions is available at [68].

A group consensus structural network was then built
such that the mean density and edge length distribution
observed across individual participants was preserved
[12]. The weights of the edges in the consensus net-
works correspond to the log-transform of the number of
streamlines in the parcels, averaged across participants
for whom these edges existed. A group-average func-
tional connectivity matrix was constructed by concate-
nating the regional fMRI BOLD time series of all four
resting-state sessions from all participants and comput-
ing the zero-lag Pearson correlation coefficient between
each pair of brain regions. To threshold this matrix,
we generated 1000 bootstrapped connectivity matrices
by randomly sampling 276 points from the concatenated
time series and by computing the correlation between
these pairs of bootstrapped time series. Using these boot-
strapped samples, we then estimated confidence inter-
vals and retained the correlations between pairs of re-
gions that were consistently positive or negative. In-
consistent correlations were set to 0. Experiments were
also replicated using connectomes parcellated into 400
cortical regions, again according to the Schaefer func-
tional atlas [76], and without log-transforming the edge
weights.

Human connectomes (Lausanne)

Our experiments were also replicated in a second
dataset collected at the Lausanne University Hospital
(N = 67; age 28.8 ± 9.1 years, 40% females) [40]. Par-
ticipants were scanned in a 3-Tesla MRI Scanner (Trio,
Siemens Medical, Germany). Informed consent was ob-
tained for all subjects (the protocol was approved by
the Ethics Committee of Clinical Research of the Fac-
ulty of Biology and Medicine, University of Lausanne,
Switzerland). Details regarding data acquisition, pre-
processing and network reconstruction are available at
[40]. Briefly, the data acquisition protocol included a
magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence (1mm in-plane resolution, 1.2mm
slice thickness), a diffusion spectrum imaging (DSI)
sequence (128 diffusion-weighted volumes and a sin-
gle b0 volume, maximum b-value 8,000 s/mm2, 2.2 ×
2.2 × 3.0 mm voxel size), and a gradient echo-planar
imaging (EPI) sequence sensitive to blood-oxygen-level-
dependent (BOLD) contrast (3.3 mm in-plane resolution
and slice thickness with a 0.3-mm gap, TR 1,920 ms,
resulting in 280 images per participant). Grey matter
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was parcellated into either 219 and 1000 equally sized
parcels [20]. The Connectome Mapper Toolkit was used
for the initial signal processing [22] while gray and white
matter were segmented from the MPRAGE volume using
freesurfer [23]. Structural connectivity matrices were re-
constructed for individual participants using determinis-
tic streamline tractography on reconstructed DSI data.
32 streamline propagations were initiated per diffusion
direction and per white matter voxel.

Again, a group consensus structural network was built
such that the mean density and edge length distribution
observed across individual participants was preserved
[12]. The weights of the edges correspond to the log-
transform of the streamline densities, averaged across
participants and scaled to values between 0 and 1. fMRI
volumes were corrected for physiological variables (re-
gression of white matter, cerebrospinal fluid, as well as
motion), BOLD time series were subjected to a lowpass
filter and motion “scrubbing” [71] was performed. A
group-average functional connectivity matrix was recon-
structed using the same procedure as described above.

Macaque connectome

The macaque connectome was initially introduced in
Scholtens et al. [77] and was generated using data
from the CoCoMac database, an online repository of
tract-tracing experiments [86]. The parcellation used
for the network reconstruction is an hybrid between the
Walker-von Bonin and Bailey atlases [85] and contains
39 non-overlapping cortical regions. The network was
constructed such that a connection is assigned to pairs of
brain regions if i) a tract is reported in a least five stud-
ies in the database and ii) at least 66% of the reports
are positive. The connectome is directed and each edge
is weighted between 1 and 3 based on the averaged re-
ported strength of the connection.

Mouse connectome

The mouse connectome was generated by Oh et al.
[64] using data from the Allen Mouse Brain Connectiv-
ity Atlas. This connectivity atlas contains high-resolution
images acquired from 469 injection experiments per-
formed in the right hemisphere of C57BL/6J male
mice. Each experiment produced 140 high-resolution
(0.35µm) coronal sections of EGFP-labelled axonal pro-
jections which were then registered to the Allen Mouse
Brain Atlas [52]. A weighted directed connectome of
213 brain regions was constructed. The strength of each
connection was obtained by fitting a linear connectivity
model to the data. The connectivity data, the name of the
213 brain regions as well as the euclidean distance be-
tween each region was obtained from the supplemental
material of Oh et al. [64]. The spatial coordinates used

for visualization were obtained from the Allen Mouse
Reference Atlas, version 2 (2011).

Annotations

Human annotations

Cortical thickness and T1w/T2w ratio were ex-
tracted from high-resolution structural scans made avail-
able by the Human Connectome Project [98]. For the
HCP connectomes, the morphometric measures were ob-
tained for each one of the 201 individuals used to recon-
struct the connectomes and averaged, for each node of
the parcellations, across subjects. For the Lausanne con-
nectomes, the morphometric measures, averaged across
subjects of the S1200 release, were fetched and parcel-
lated using neuromaps [57].

The principal axis of transcriptional variation across
the human cortex (gene PC1) was computed using the
Allen Human Brain Atlas (AHBA; https://human.brain-
map.org/) [43], which provides regional microarray
expression data from six post-mortem brains (1 fe-
male, ages 24-57, 42.5 ± 13.38). The AHBA
data was pre-processed and mapped to the par-
cellated brain regions using the abagen toolbox
(https://github.com/rmarkello/abagen) [56]. Dur-
ing pre-processing, the MNI coordinates of tissue
samples were updated to those generated via non-
linear alignment to the ICBM152 template anatomy
(https://github.com/chrisgorgo/alleninf). Microarray
probe information was re-annotated for all genes us-
ing data provided by Arnatkeviciute and colleagues [4].
For bilateral connectomes, microarray expression sam-
ples were mirrored across hemispheres to increase spa-
tial coverage. Then, probes were filtered by only re-
taining those that have a proportion of signal to noise
ratio greater than 0.5. When multiple probes indexed
the expression of the same gene, the one with the most
consistent pattern of regional variation across donors
was selected. Samples were then assigned to individ-
ual regions in the parcellations. If a sample was not
found directly within a parcel, the nearest sample, up
to a 2mm-distance, was selected. If no samples were
found within 2mm of the parcel, the sample closest to
the centroid of the empty parcel across all donors was
selected. To reduce the potential for misassignment,
sample-to-region matching was constrained by hemi-
sphere and gross structural divisions (i.e., cortex, subcor-
tex/brainstem, and cerebellum, such that e.g., a sample
in the left cortex could only be assigned to an atlas par-
cel in the left cortex). All tissue samples not assigned
to a brain region in the provided atlas were discarded.
Tissue sample expression scores were then normalized
across genes using a scaled robust sigmoid function [32],
and were rescaled to a unit interval. Expression scores
were also normalized across tissue samples using the
same procedure. Microarray samples belonging to the
same regions were then aggregated by computing the
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mean expression across samples for individual parcels,
for each donor. Regional expression profiles were finally
averaged across donors to obtain a single genes × brain
regions matrix. From the 15,632 genes listed in this ma-
trix, 1,906 brain-specific genes were used to compute the
principal axis of transcriptional variation using Principal
component analysis. The list of brain-specific genes was
obtained from [18].

Receptor density information was collected for 18
different neurotransmitter receptors and transporters
from a total of 25 different studies as described in
[42]. Positron emission tomography (PET) images reg-
istered to the MNI space were parcellated and recep-
tors/transporters with more than one mean image of the
same tracer (5-HT1b, D2, VAChT) were combined using
a weighted average. Tracer maps, each corresponding
to a single receptor/transporter where then normalized
across regions to values between 0 and 1. Receptor den-
sity was computed as the average density, across all 18
receptors while an excitatory/inhibitory ratio was com-
puted as the ratio between the mean density of excita-
tory receptors and the mean density of inhibitory recep-
tors. Excitatory receptors include: 5HT2a, 5HT4, 5HT6,
A4B2, D1, M1, mGLuR5. Inhibitory receptors include:
5HT1a, 5HT1b, CB1, D2, GABAa, H3, MU.

Laminar thickness information was extracted from
the Merkel-stained BigBrain histological atlas [3, 105].
Individual cortical layers were individually segmented
with a convolutional neural network, as described
in Wagstyl et al. [105], and the laminar surfaces
were made available on the BigBrain Project website
(https://ftp.bigbrainproject.org/). Laminar thickness
was computed as the Euclidean distance between each
pair of corresponding vertices on each 3D surfaces. The
data was then parcellated to the Schaefer (800 nodes)
parcellation [76] using surface parcellation files in the
BigBrain space that are also available on the BigBrain
Project website.

Macaque annotations

Three macaque annotations were obtained. The
cortical thickness and T1w/T2w ratio cortical maps
are originally from Donahue et al. [25] and were ex-
tracted from the structural MRI scans of 19 adult
macaques (T1w and T2w, 0.5mm isotropic). These brain
maps were publicly shared in the BALSA database [97]
(https://balsa.wustl.edu/study/show/W336). The corti-
cal maps were first parcellated using a 91 regions parcel-
lation scheme (M132). The data was then further par-
cellated to the WBB atlas using a region-wise mapping
provided in [93]. Neuron density information was ex-
tracted from brain tissues of an Old World macaque mon-
key [21] and mapped to the WBB atlas using a mapping
provided in [77].

Mouse annotations

The principal axis of gene expression variation (gene
PC1) was computed using data from the Allen Mouse
Brain Atlas [52]. This atlas contains gene expression
profiles, obtained using in-situ hybridization, from more
than 20,000 genes. Expression density within each
of the 213 structures defined in the oh2014 connec-
tome was computed by combining/unionizing grid vox-
els with the same 3-D structural label. The data was ob-
tained using the mouse module of the abagen toolbox
(https://github.com/rmarkello/abagen) [56]. To facili-
tate comparison between genes, we normalized expres-
sion levels for each gene. We then computed the princi-
pal axis of gene expression variation across brain regions
using principal component analysis.

Spatial autocorrelation-preserving null annotations

We controlled for the brain’s spatial constraints using
null models that preserve the spatial autocorrelation of
the empirical attributes. Three different null models
were used. For the human networks, the results pre-
sented in the main text relied on a spatial permutation
model (spin nulls) [2]. They were also replicated with
a parameterized null model that uses Moran spectral
randomization (Moran nulls) [103] and with a third null
model originally proposed by Burt and colleagues (Burt
nulls) [19]. In the animal connectomes, results pre-
sented in the main text used the Moran nulls and were
replicated using the Burt nulls. The spin, Moran and
Burt nulls were respecively implemented with the neu-
romaps (https://github.com/netneurolab/neuromaps)
[57], brainspace (https://github.com/MICA-
MNI/BrainSpace) and brainSMASH
(https://github.com/murraylab/brainsmash) [19]
toolboxes.

Spin nulls

The original framework for this spatial permutation
model was introduced in Alexander-Bloch et al. [2]
and consists in generating null distributions by applying
random rotations to spherical projections of the brain.
Here, we use a framework adapted to parcellated data
originally proposed in Vázquez-Rodríguez et al. [100].
Namely, we select for each parcel the vertex closest to its
center of mass on the spherical projection of the fsaver-
age surface. We then apply a rotation to the coordinates
of these centers of mass and reassign to each parcel the
value of the closest rotated parcel. To preserve homotopy
across hemispheres, the rotations are generated indepen-
dently for one hemisphere and then mirrored across the
anterior-posterior axis for the other. This procedure is
repeated 10,000 times.
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Moran nulls

The generation of spatially constrained nulls using
Moran spectral randomization was first proposed in
the ecology literature [104] and relies on a spatially-
informed weight matrix W. The eigenvectors of W pro-
vide an estimate of the autocorrelation in the brain and
are used to impose a similar spatial structure on random,
normally distributed surrogate data. Here, W is defined
as the inverse of the distance matrix between brain re-
gions. For the human connectomes, the distance be-
tween pairs of parcels was defined as the mean geodesic
distance between every vertex pair in both parcels. In
the animal connectomes, it was defined as the euclidean
distance between both parcels. Data was generated sep-
arately for each hemisphere using the same random seed
to obtain null annotations that preserve homotopy across
hemispheres.

Burt nulls

This parameterized null model was originally pro-
posed in Burt et al. [19]. First, the empirical brain map
is randomly permuted. Then, this permuted brain map is
spatially smoothed and re-scaled to re-introduce the spa-
tial autocorrelation (SA) of the empirical brain map. The
smoothing process is achieved via the following transfor-
mation:

y = |β|
1/2

x+ |α|
1/2

z, (1)

where y is the surrogate map, x is the permuted data
and z is a vector of random gaussian noise. The α and
β parameters are estimated via a least-square optimiza-
tion between variograms of the original and permuted
data. By maximizing the fit between the variograms
of the original and permuted data, we ensure that the
SA of the surrogate map matches the SA of the empiri-
cal map. Again, the distances between pairs of parcels
in the human connectomes were obtained by averag-
ing the geodesic distance between every vertex in the
two parcels while they were obtained by computing the
euclidean distance between each parcel in the animal
connectomes. Also, data was generated separately for
each hemisphere using the same random seed to obtain
null annotations that preserve homotopy across hemi-
spheres. The hyper-parameters used were the default
parameters provided by the brainSMASH software [19]
(https://github.com/murraylab/brainsmash).

Assortativity

To study the relationship between distributions of cor-
tical attributes and the topological architecture of our
connectomes, we relied on the assortativity coefficient,
which is defined as the Pearson correlation between the

annotations of connected nodes [63]. More precisely,
given an adjacency matrix A, where aij represents the
strength of the connection between brain regions i and
j, and a vector of annotations x, where xi represents the
annotation attributed to node i, the assortativity of a net-
work, with respect to x is defined as:

rx =
∑

ij

aij

2m
x̃ix̃j , (2)

where 2m corresponds to the sum of the edge weights in
the network and x̃i represents the standardized score of
the annotation attributed to node i:

x̃i =
xi − x̄

σx

, (3)

x̄ corresponds to the expected value of x and σx corre-
sponds to the standard deviation of x:

x̄ =
1

2m

∑

i

kixi (4)

σx =

√

1

2m

∑

i

ki(xi − x̄)2. (5)

ki corresponds to the strength of node i.

Heterophilic mixing

The assortativity coefficient can also measure the het-
erophilic mixing between pairs of annotations. We de-
fine heterophilic mixing as the tendency for nodes with
a given standardized scores for an attribute x to connect
to nodes with similar standardized scores for another at-
tribute y. The assortativity coefficient, for pairs of anno-
tations x and y is defined as:

rx,y =
∑

ij

aij

2m
x̃iỹj , (6)

Homophilic ratio

To quantify the extent to which individual regions con-
nect to regions with similar attributes, we computed the
homophilic ratio of each node. This measure is a ratio
between the weighted average of the absolute difference
of a node’s annotation with its neighbors and the aver-
aged absolute difference of this node’s annotation with
all the other nodes in the network. More precisely, the
homophilic ratio h of a given node i for an annotation x

is defined as

hx(i) =

∑

j
aij

ki
|xi − xj |

1

n

∑

j |xi − xj |
, (7)

where n is the number of nodes in the connectome.
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Mean connection distance

The mean homophilic ratio of each node was com-
pared to its mean connection distance. This measure
is defined as the average distance between a node and
its connected neighbors, weighted by the weight of each
connection. More precisely, the mean connection dis-
tance (MCD) of a node i is defined as

MCD(i) =
1

2m

∑

j

dijaij , (8)

where dij corresponds to the Euclidean distance be-
tween nodes i and j.

Probabilistic activation maps

Using the Neurosynth meta-analytic engine [109] we
extracted brain maps of probabilistic associations be-
tween functional key words and individual voxels, syn-
thesized from results from more than 15,000 published
fMRI studies. The probabilistic measures quantify the
probability that a given term is reported in a study and
that there is activation observed in a given voxel. It can
be interpreted as a quantitative representation of how
regional fluctuations in activity are related to psycholog-
ical processes. We analyzed the functional maps asso-
ciated to 123 cognitive and behavioural terms from the
Cognitive Atlas ([70], ranging from umbrella terms (“at-
tention”, “emotion”) to specific cognitive processes (“vi-
sual attention”, “episodic memory”), behaviours (“eat-

ing”, “sleep”), and emotional states (“fear”, “anxiety”).

Data and code availability

The data and code used to conduct the anal-
yses presented in this paper are available at
https://github.com/netneurolab/bazinet_assortativity.
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[18] Burt, J. B., Demirtaş, M., Eckner, W. J., Navejar, N. M.,
Ji, J. L., Martin, W. J., Bernacchia, A., Anticevic, A.,
and Murray, J. D. (2018). Hierarchy of transcriptomic
specialization across human cortex captured by struc-
tural neuroimaging topography. Nature neuroscience,
21(9):1251–1259.

[19] Burt, J. B., Helmer, M., Shinn, M., Anticevic, A., and
Murray, J. D. (2020). Generative modeling of brain maps
with spatial autocorrelation. NeuroImage, 220:117038.

[20] Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P.,
Sporns, O., Do, K. Q., Maeder, P., Meuli, R., and Hag-
mann, P. (2012). Mapping the human connectome at
multiple scales with diffusion spectrum MRI. Journal of
Neuroscience Methods, 203(2):386–397.

[21] Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B.,
and Kaas, J. H. (2010). Neuron densities vary across
and within cortical areas in primates. Proceedings of the
National Academy of Sciences, 107(36):15927–15932.

[22] Daducci, A., Gerhard, S., Griffa, A., Lemkaddem, A.,
Cammoun, L., Gigandet, X., Meuli, R., Hagmann, P., and
Thiran, J.-P. (2012). The connectome mapper: an open-
source processing pipeline to map connectomes with
mri. PloS one, 7(12):e48121.

[23] Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dick-
erson, B. C., Blacker, D., Buckner, R. L., Dale, A. M.,
Maguire, R. P., Hyman, B. T., Albert, M. S., and Killiany,
R. J. (2006). An automated labeling system for subdivid-
ing the human cerebral cortex on MRI scans into gyral
based regions of interest. NeuroImage, 31(3):968–980.

[24] Dhollander, T., Raffelt, D., and Connelly, A. (2016). Un-
supervised 3-tissue response function estimation from
single-shell or multi-shell diffusion mr data without a
co-registered t1 image. In ISMRM Workshop on Breaking
the Barriers of Diffusion MRI, volume 5, page 5.

[25] Donahue, C. J., Sotiropoulos, S. N., Jbabdi, S.,
Hernandez-Fernandez, M., Behrens, T. E., Dyrby, T. B.,
Coalson, T., Kennedy, H., Knoblauch, K., Van Essen,
D. C., et al. (2016). Using diffusion tractography to pre-
dict cortical connection strength and distance: a quanti-
tative comparison with tracers in the monkey. Journal of
Neuroscience, 36(25):6758–6770.

[26] Eickhoff, S. B., Yeo, B., and Genon, S. (2018). Imaging-
based parcellations of the human brain. Nature Reviews
Neuroscience, 19(11):672–686.

[27] Ercsey-Ravasz, M., Markov, N. T., Lamy, C., Van Essen,
D. C., Knoblauch, K., Toroczkai, Z., and Kennedy, H.
(2013). A predictive network model of cerebral cor-
tical connectivity based on a distance rule. Neuron,

80(1):184–197.
[28] Fornito, A., Arnatkevičiūtė, A., and Fulcher, B. D.
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Figure S1. Sensitivity and replication (homophilic mixing) | To ensure that the results obtained in the structural connectome
are not sensitive to our processing choices, we replicated our experiments using the 400 nodes Schaefer parcellation, using the
left-hemisphere connectome, using edge weights that were not log-transformed, using Moran nulls and Burt nulls instead of the
spin nulls and using an additional independently-acquired dataset, parcellated at a low- (219 nodes) and high-resolution (1000
nodes). For each sensitivity and replication experiment, and for each annotations, we re-computed the standardized assortativity
scores (left). We also re-computed the standardized assortativity across thresholded connectomes where a given percentile of the
shortest connections are removed (right).
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Figure S2. Sensitivity and replication (homophilic mixing) | To ensure that the results obtained in the functional connectome
are not sensitive to our processing choices, we replicated our experiments using the 400 nodes Schaefer parcellation, using the left-
hemisphere connectome, using Moran nulls and Burt nulls instead of the spin nulls, and using an additional independently-acquired
dataset parcellated at a low- (219 nodes) and high-resolution (1000 nodes). For each sensitivity and replication experiment, and
each annotations, we re-computed the standardized assortativity scores (left). We also re-computed the standardized assortativity
across thresholded connectomes where a given percentile of the shortest connections are removed (right).

Figure S3. Sensitivity and replication (homophilic mixing) | To ensure that the results obtained in the animal connectomes are
not sensitive to the spatial autocorrelation-preserving null model used, we replicated our experiments using Burt nulls. For each
sensitivity and replication experiment, and for each annotations, we re-computed the standardized assortativity scores (left).
We also re-computed the standardized assortativity across thresholded connectomes where a given percentile of the shortest
connections are removed (right).
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Figure S4. Sensitivity and replication (heterophilic mixing) | To ensure that the heterophilic relationships of receptors and
transporters uncovered in Fig. 5 are replicable, we correlated the z-assortativity scores presented in Fig. 5, which were obtained
using the HCP dataset and the Schaefer 800-nodes parcellation, with the z-assortativity scores obtained using an alternate parcel-
lation namely, the 400-nodes Schaefer parcellation (right). We also correlated the z-assortativity scores presented in Fig. 5 with
z-assortativity scores obtained when considering only the left-hemisphere nodes of the connectome (middle), and when using an
alternate dataset and parcellation, namely the Lausanne dataset and the 219-nodes Cammoun parcellation (left). Scatterplots of
the correlations are presented for the human structural connectome (a) and for the human functional connectome (b). We find
significant correlations for all sensitivity and replication experiments.

Figure S5. Homophilic ratios in the functional connectome | Homophilic ratios are shown for the human functional connec-
tome. Micro-architectural attributes include the density of neurotransmitter receptors, the ratio of excitatory/inhibitory receptors,
the principal axis of gene transcription variation, the T1w/T2w ratio and cortical thickness.
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Figure S6. Sensitivity and replication (homophilic ratios) | To ensure that our results are not confounded by processing choices,
we computed the homophilic ratios of each micro-architectural attribute in a structural connectome generated using the 400 nodes
Schaefer parcellation, in a structural connectome of the brain’s left-hemisphere, and in a structural connectome reconstructed using
an independently acquired diffusion imaging dataset and parcellated into 219 and 1000 brain regions. The micro-architectural
attributes include the density of neurotransmitter receptors, the ratio of excitatory/inhibitory receptors, the principal axis of gene
transcription variation, the T1w/T2w ratio and cortical thickness.
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