

Sweepstakes reproductive success via pervasive and recurrent selective sweeps

Einar Árnason,^{1,2*} Jere Koskela,³ Katrín Halldórsdóttir,¹ and Bjarki Eldon⁴

¹Institute of Life- and environmental Sciences, University of Iceland, Sturlugata 7, IS102, Reykjavík, Iceland,

²Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

³Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK

⁴Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, 10115 Berlin, Germany

*To whom correspondence should be addressed; E-mail: einararn@hi.is.

Abstract

Highly fecund natural populations characterized by high early mortality abound, yet our knowledge of such population's recruitment dynamics is rudimentary at best. This knowledge gap has implications for our understanding of genetic variation, population connectivity, local adaptation, and resilience of highly fecund populations. The concept of sweepstakes reproductive success, which posits huge variance in individual reproductive output, is key to understanding recruitment dynamics, the distribution of individual reproductive and recruitment success. However, it is unknown whether highly fecund organisms reproduce by sweepstakes and if they do, the relative roles of neutral and selective sweepstakes. Here we use coalescent-based statistical analysis of genomic population data and show that selective sweepstakes are a strong candidate for explaining recruitment dynamics in the highly fecund Atlantic cod. The sweepstakes result from recurrent and pervasive selective sweeps of new variation generated by mutation. We show that the Kingman coalescent and the Xi-Beta coalescent (modelling random sweepstakes), including complex demography and background selection, are inadequate explanations. Our results show that sweepstakes reproduction processes and multiple-merger coalescent models are relevant and necessary for understanding genetic diversity in highly fecund natural populations. Our findings have fundamental implications for understanding the recruitment variation of fish stocks and general evolutionary genomics of high fecundity.

Introduction

Individual recruitment success is a fundamental demographic object in ecology and evolution. The distribution of individual recruitment success affects the distribution and abundance of organisms (the subject of ecology) and the genotypic and phenotypic changes resulting from the major forces of evolution. Individual recruitment success determines individual fitness, the currency of natural selection. Many marine organisms are highly fecund, producing huge numbers of juvenile offspring that

experience high mortality (type III survivorship) going through numerous developmental stages, 7
fertilization, zygote, larvae, fry, etc. until finally recruiting as adults of the next generation. The concept 8
of sweepstakes reproductive success (Hedgecock, 1994), suggested to have ‘a major role in shaping 9
marine biodiversity’ (Hedgecock and Pudovkin, 2011, p. 971), is a key to understanding the mechanism 10
behind individual recruitment success. Sweepstakes reproduction has few winners and many losers 11
leading to a very high variance and skew in individual reproductive output. High fecundity by itself 12
does not lead to sweepstakes absent a mechanism for generating high-variance and high-skew offspring 13
distribution. Two main ecological mechanisms turn high fecundity into sweepstakes: a random and a 14
selective mechanism. The first is the chance matching of reproduction to a jackpot of temporally 15
favourable conditions, a case of random sweepstakes (Hedgecock and Pudovkin, 2011). The 16
match/mismatch hypothesis (Cushing, 1969) explains the dynamics of recruitment variation and 17
year-class strength by the timing of reproduction with favourable but erratic environmental conditions, 18
such as weather and climatic conditions. As an example, climatic variability leads to random temporal 19
shifts in planktonic blooms that are food for developing fish larvae, a match means reproductive 20
success, mismatch a reproductive failure (Cushing, 1969). By chance a random individual hits a jackpot 21
of favorable environmental conditions that results in a very large reproductive output of reproducing 22
offspring (Schweinsberg, 2003; Eldon and Wakeley, 2006). 23

The second mechanism is selective sweepstakes where the genetic constitution of survivors is different 24
from that of non-survivors (Williams, 1975). Under the second scenario, an organism’s different 25
developmental stages pass through numerous independently acting selective filters with the cumulative 26
effect of a high-variance high-skew offspring distribution. Here, the winning genotypes are Sisyphean 27
(Williams, 1975) (after Sisyphus from Greek mythology, punished with forever pushing a boulder up a 28
hill). They are ephemeral and must be continuously reassembled. By analogy, the population climbs a 29
selective peak by positive selection, but the environment changes continuously because the sequence of 30
selective filters changes. Only a new or a recombined genotype can climb the selective peak the next 31
time around (Williams, 1975). The population is forever tracking an elusive optimum by climbing an 32
adaptive peak. The selective filters can arise from abiotic factors, and biotic density- and 33
frequency-dependent effects arising from inter and intraspecific competition, and from predation and 34
predator avoidance (Reznick, 2016). 35

A third alternative is that random survival hits every family, the offspring of every pair, to the same 36
degree. In this case, there is no mechanism turning high fecundity into sweepstakes reproduction. High 37
fecundity by itself does not lead to sweepstakes absent a mechanism turning high fecundity into a 38
high-variance high-skew offspring distribution. Juvenile mortality might even be compensatory and 39
reduce variance of offspring number via density-dependent competition or predation. In this scenario 40
reproduction does not match favourable conditions by chance, no individual hits a jackpot, nor does 41
selective filtering happen. The resulting offspring distribution has a much smaller variance than in the 42
sweepstakes models, the same low and unchanged coefficient of variation in the distribution of zygotes 43

and the distribution of adult offspring (Nunney, 1996). Such reproduction would result in a similar
44
distribution of reproducing offspring as in the assumed mode of reproduction of low fecundity and
45
model organisms (Wright, 1931; Fisher, 1930). A low variance in individual recruitment success
46
modeled through the Wright-Fisher model (or similar models), is nearly universally assumed in
47
population genetics (Wakeley, 2007).
48

Genomics and coalescent theory offer powerful tools to test our three hypotheses: first of
49
non-sweepstakes versus sweepstakes reproduction and secondly to test the two sweepstakes hypotheses,
50
the random and the selective one. Conducting similar tests would be a daunting task with ecological
51
methods, requiring one to follow the fate of the offspring of different individuals (Grant and Grant,
52
2014). The first question regards identifying non-sweepstakes versus sweepstakes reproduction in our
53
population genomic data. Our second question regards testing the two sweepstakes hypotheses, the
54
random vs the selective sweepstakes, given evidence of sweepstakes reproduction in the data.
55

Here we conduct an extensive, simulation-based analysis of site frequency spectra (SM 1.3) and linkage
56
disequilibrium under various coalescent and individual-based models. The resulting predicted patterns
57
of summary statistics allow us to infer the likely mechanisms of individual reproductive and recruitment
58
success in Atlantic cod.
59

The classical Kingman coalescent (Kingman, 1982; Wakeley, 2007), in essence, models reproduction of
60
low fecundity organisms. Multiple merger coalescents (Donnelly and Kurtz, 1999; Pitman, 1999;
61
Sagitov, 1999; Schweinsberg, 2003, 2000) describe the genealogies for the two kinds of sweepstakes
62
reproduction, the random and the selective sweepstakes. The Xi-Beta coalescent (Schweinsberg, 2000;
63
Birkner et al., 2018) modelling the genealogy of a population with large reproductive events in which a
64
random individual has enormous reproductive success well approximates the random or jackpot
65
sweepstakes hypothesis (Hedgecock and Pudovkin, 2011). The Durrett-Schweinsberg model of
66
recurrent selective sweeps (Durrett and Schweinsberg, 2005), implying a forever changing environment
67
that continuously favors new mutations, well approximates selective sweepstakes (Williams, 1975). The
68
multiple-merger Durrett-Schweinsberg coalescent (SM 1.3) describes the genealogy at a single site, the
69
"neutral" site, that is linked at some recombinational distance to a site hit by a favorable mutation. The
70
population experiences recurrent strongly beneficial mutations at sites linked to a neutral site, and it is
71
assumed that a neutral site never experiences mutation. A beneficial mutation sweeps to fixation in a
72
time measured in $\log N$ time units, where $2N$ is the population size, and the probability of a sweep does
73
not depend on the population size. However, a vital component of the Durrett-Schweinsberg model is
74
an assumption of a high rate of recombination between the neutral and the mutated site, giving ancestral
75
lineages at the neutral site a chance to escape a sweep through recombination.
76

Several recent studies show evidence of reproductive skew. Many marine organisms have star-like gene
77
genealogies of mitochondrial DNA (e.g. Atlantic cod and Japanese sardines (Árnason, 2004; Niwa
78
et al., 2016)) with an excess (relative to predictions of the Kingman coalescent) of the singleton class of
79
the site frequency spectrum (mutations on the external branches of the genealogy). The nuclear *Ckma*
80

gene of Atlantic cod (Árnason and Halldórsdóttir, 2015) shows such an excess of singletons. An excess of singletons can also result from demographic changes such as post-Pleistocene population expansion. However, the overall effect of population growth and low variance in individual recruitment success on the site-frequency spectrum is different from sweepstakes reproduction. This distinguishes between the models. For example, the site frequency spectrum of the *Ckma* gene also shows an excess of mutations in the right tail of the site frequency spectrum as predicted by multiple-merger coalescent models of sweepstakes (Birkner et al., 2013a; Eldon et al., 2015; Blath et al., 2016) and not by the Kingman coalescent under arbitrary population size history (Sargsyan and Wakeley, 2008). Multiple-merger coalescents occur in models of rapidly adapting populations (Neher and Hallatschek, 2013; Schweinsberg, 2017), under both directional selection (Neher, 2013; Sackman et al., 2019) and possibly strong purifying (background) selection (Irwin et al., 2016; Cvijović et al., 2018). However, background selection is generally not expected to mimic selective sweeps. Sweepstakes reproduction may apply to many different organisms and could be more prevalent than previously thought. There is, therefore, a need for a critical examination of the contrasting hypotheses.

Here we compare our genomic data to predictions of three coalescent models: the Kingman coalescent (Kingman, 1982) with arbitrary demographic histories, the neutral Ξ -Beta($2 - \alpha, \alpha$) coalescent (Schweinsberg, 2000, 2003; Birkner et al., 2018) modelling random jackpot sweepstakes in diploid highly fecund organisms, and the Durrett-Schweinsberg coalescent derived from a population model of recurrent selective sweeps (Durrett and Schweinsberg, 2005) in a population (SM 1.3). Under the Durrett-Schweinsberg model, the environment is forever changing favoring a new mutation each time that every so often sweeps to fixation. Thus this model well approximates the selective sweepstakes of Williams (Williams, 1975). The Durrett-Schweinsberg coalescent assumes the Moran model of reproduction, which assumes a single offspring produced at any time, is at face value a low-fecundity model. However, the underlying scaling can be very high and thus the rate of offspring production (e.g. egg laying) can be practically infinite making it a high-fecundity model. Studying the site frequency spectrum under recurrent selective sweeps Kim (2006) stated that “the excess of high-frequency derived alleles, previously shown to be a signature of single selective sweeps, disappears with recurrent sweeps.” This effect is sometimes—incorrectly—taken to mean that the site frequency spectrum is no longer U-shaped under recurrent selective sweeps. However, the excess or deficiency of high-frequency derived alleles is in reference to expectations of the Kingman coalescent (Kim, 2006) and how that affects Fay and Wu’s H statistic (Fay and Wu, 2000). The site frequencies of alleles at intermediate allele frequencies (the alleles contributing most to the variance in fitness) still are reduced under recurrent sweeps (Kim, 2006) preserving the U-shaped site frequency spectrum observed under a single selective sweep.

We analyze whole-genome sequences (at $16\times$ and $12\times$ coverage respectively) of the highly fecund marine fish Atlantic cod (*Gadus morhua*) sampled from two separate localities in Iceland, with the localities serving as statistical replicates (SM Fig. 1). We also consider whether other forces can explain

the observed patterns. We consider population expansion, cryptic population structure, balancing and background selection, and the joint action of several forces. 118
119

Results 120

Neutrality under no sweepstakes? 121

The classical Kingman coalescent, derived from the Wright-Fisher (or similar) model of low-variance reproduction, is the no-sweepstakes model. Several tests of a neutral equilibrium under the Wright-Fisher model of reproduction and the Kingman coalescent use a standardized difference of different estimators of $\theta = 4N_e\mu$ the mutation-rate scaled by population size (Tajima, 1989; Fu and Li, 1993; Fay and Wu, 2000; Zeng et al., 2006; Przeworski, 2002). These tests are sensitive to mutations on different parts of the genealogy and thus of different frequency classes of the site frequency spectrum that also may be influenced by demography, background selection, and selective sweeps (Tajima, 1989; Fu and Li, 1993; Fay and Wu, 2000; Zeng et al., 2006; Przeworski, 2002). A negative Tajima's D indicates an excess of low frequency over intermediate frequency alleles, and a negative Fu and Li's D , which contrasts mutations on internal and external branches of a genealogy, indicates an excess of singletons. Thus these statistics are sensitive to deviations from neutrality affecting the left tail of the site frequency spectrum, such as population expansion and background selection (Nielsen, 2005). In contrast, negative values of Fay and Wu's H (Fay and Wu, 2000) and Zeng's E (Zeng et al., 2006) statistics, which weigh the frequency of high-frequency derived alleles, are sensitive to deviations from neutrality affecting the right tail of the site frequency spectrum such as positive selection and selective sweeps (Fay and Wu, 2000; Przeworski, 2002; Nielsen, 2005). Jointly viewing Tajima's D and Fay and Wu's H (the DH test Zeng et al., 2006) is relatively robust against demographic changes and background selection and thus indicative of effects of positive selection and selective sweeps. Our genomic scan of these test statistics (Fig. 1 **a** and **b** and SM Fig. 2 **a** and **b**, and SM Tables 1 and 2) show extensive and genome-wide deviations from expectations of neutral equilibrium of the classical theory, including indications consistent with selective sweeps occurring throughout the genome (Fay and Wu, 2000; Zeng et al., 2006; Przeworski, 2002). The neutrality index (NI) (Rand and Kann, 1996) derived from the McDonald-Kreitman test (McDonald and Kreitman, 1991) is a ratio of ratios: the number of polymorphic non-synonymous to synonymous sites over the number of fixed non-synonymous to synonymous sites. The log of NI is a log odds ratio. Under neutrality, $NI = 1$, negative values of $-\log(NI)$ indicate negative purifying selection, and a positive values indicate positive selection. Our estimates show both negative and positive selection effects distributed throughout each chromosome (Fig. 1 **c**). The distribution of the neutrality index (Fig. 1 **d**) is heavier on the side of positive selection for all but two chromosomes (10 and 23 for which the median is close to the neutral expectation). Only a minority of individual tests reach a nominal significance (Fig. 1 **e**). Moreover, none is significant, taking multiple testing into account. Overall, however, the cloud of points indicative of positive selection is heavier than the cloud indicative of negative selection, similar to 122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

findings in *Drosophila* and different from humans and yeast where negative selection predominates (Li et al., 2008). Thus the results of these classical tests of neutrality (Fig. 1 and SM Fig. 2) are similar to the deviations from the Ξ -Beta($2 - \alpha, \alpha$) model and are consistent with the operation of pervasive positive selection in the Atlantic cod genome. The classical no-sweepstakes model with population growth (such as post-Pleistocene population expansion, Hewitt, 2004) is known to affect primarily the singleton class and left tail of the site frequency spectrum. We will also show below that plausible demographic scenarios do not materially improve the fit of neutral models without sweepstakes.

Random vs selective sweepstakes?

The life table of cod (SM 1.2 and SM Table 3), showing an exponential decay of the number of survivors with age and an exponential increase in fecundity with age, implies that fewer and fewer individuals produce a larger and larger number of eggs. A few females may live 25 years still increasing fecundity with age. The life table by itself thus results in a large variance in offspring number. Old surviving females may be the lucky few to be alive or the very fit that have passed all selective filters. We next compared our observations to predictions of the Ξ -Beta($2 - \alpha, \alpha$) coalescent, which models random jackpot sweepstakes reproduction in a diploid highly fecund population. Here the parameter $\alpha \in (1, 2)$ determines the skewness of the offspring distribution, in essence, the size of the jackpot. A lower α essentially means a larger jackpot. We used a range of approximate Bayesian computation (ABC) posterior estimates of the α parameter (SM 1.3.2). The observed site frequency spectra were overall more V-shaped than the U-shape of the expected normalized site-frequency spectrum predicted by this model (SM 1.3.2) (SM Fig. 3a and b). Singletons and low-frequency variants are closest to expectations of an $\alpha = 1.35$ (SM Fig. 3). However, as the derived allele frequency increases, the observations are closer to a lower and lower α (as low as $\alpha = 1.0$) predictions. The expected site-frequency spectrum of this model shows local peaks at intermediate allele frequencies, which represent the expected simultaneous multiple mergers of two, three, and four groups, corresponding to the four parental chromosomes involved in each large reproduction event. In diploid highly fecund populations a single pair of diploid parents may occasionally produce huge numbers of juvenile offspring (Möhle and Sagitov, 2003; Birkner et al., 2013b, 2018). The observations do not show these peaks (SM Fig. 3a and b). The expectations of this model are also mainly outside of the bootstrap error bars of the observations (Fig. 2). However, comparing the observed site frequency spectra to expectations of the haploid Λ -Beta($2 - \alpha, \alpha$) coalescent, a haploid version of random sweepstakes, (SM Fig. 4) shows a better fit. Low-frequency variants fit reasonably well to an $\alpha = 1.35$, however, as the derived allele frequency increases, a lower and lower α (as low as $\alpha = 1.0$, the Bolthausen-Sznitman coalescent) gives a good fit. This is likely a signal of either positive or negative natural selection. Rare alleles (less than 10–12%) contribute little to the variance in fitness. Once an allele (a site) reaches an appreciable and intermediate frequency it can contribute significantly to the variance in fitness such that selection quickly moves it out of intermediate frequency ranges. Negative selection moves it to a low

frequency and positive selection moves it to a high frequency so alleles spend short time at intermediate frequencies (sojourn times are short). The Durrett-Schweinsberg model is haploid and the resulting coalescent is a Lambda-coalescent. The Λ -Beta($2 - \alpha, \alpha$) coalescent for small values of α approximates the Durrett-Schweinsberg coalescent and the fact that the Λ -Beta($2 - \alpha, \alpha$) fits better to our data than Ξ -Beta($2 - \alpha, \alpha$) coalescent is further indication for selection. Furthermore, we used approximate Bayesian computation (ABC) to estimate jointly the parameters α and β , where β denotes a population size rescaled rate of exponential growth of the population forward in time, using the Ξ -Beta($2 - \alpha, \alpha$) coalescent (SM 1.3.2). These processes, reproductive skew and population growth, can account for certain features of the site frequency spectrum. Thus, by jointly estimating α and β we hope to obtain a more accurate description of the observed data. The resulting posterior distribution show low values of both parameters (Fig. 3) implying high reproductive skew and little growth. That the distribution of the growth parameter spreads more with higher reproductive skew (as $\alpha \rightarrow 1$) is not surprising, as population size is known to affect the model only weakly when the reproductive skew is high. Furthermore, the impact of a variable population size vanishes entirely when the reproductive skew is maximum ($\alpha = 1$) (Freund, 2020; Koskela and Wilke Berenguer, 2019). Earlier work (Matuszewski et al., 2017), using a model in which a single individual reproduces each time and occasionally wins the jackpot whose size is constant over time, also found reproductive skew over demographic expansion in Japanese sardines. We used a more realistic model (Schweinsberg, 2003), in which the whole population reproduces simultaneously, however occasionally, a single random female hits a jackpot, whose size will vary over time. The Ξ -Beta($2 - \alpha, \alpha$) model of random sweepstakes shows that reproductive skew is a more likely explanation than demographic expansion under the classical Kingman model and the model predicts an upswing, as observed at the right tail of the site frequency spectrum. It nevertheless cannot adequately explain our data. There were systematic deviations from expectations of the model (see residuals in Fig. 4 a and b and SM Fig. 5 a and b). The deviations were nearly symmetric around a derived allele frequency of 50% (logit of 0), and rare (less than 12%, logit of -2) and common alleles (greater than 88%, logit of 2) were too frequent. In contrast, intermediate alleles were too few compared to model expectations. The deviations immediately suggest the action of positive natural selection by selective sweeps. The path of the allele frequency of a new advantageous mutation can be divided into phases (Barton, 1998). Most new mutations with a selective advantage s are lost from the population in the first few generations when they are scarce (lost with a probability $1 - 2s$). Mutations conditioned to fix will enter a deterministic fate but are at first still rare enough (< 12%; lag phase) that they contribute very little to the variance in fitness, and hence their frequencies change only a little from one generation to the next. When an allele reaches an appreciable frequency it contributes to the variance in fitness, and selection drives it through intermediate frequencies in a short time that is the inverse of the selection coefficient ($1/s$; the exponential phase). In the last (stationary) phase, the variance in fitness is again low, and the mutation lingers in the population at high frequency until fixed (Barton, 1998; Coop and

Ralph, 2012).

227

Therefore, we investigated the hypothesis of selective sweepstakes by comparing our observations to predictions of the Durrett-Schweinsberg coalescent derived from the Durrett-Schweinsberg model (SM 1.3.3). In the Durrett-Schweinsberg model, a random site on a chromosome is hit by a beneficial mutation that goes to fixation in a time measured in $\log N$ coalescent time units, where $2N$ is the population size. The beneficial mutation sweeps with it neutral sites that are some recombinational distance from the selected site (Durrett and Schweinsberg, 2005; Nielsen, 2005). Distant sites are more likely to escape this hitch-hiking effect than neighbouring sites because of the higher recombination rates. Even though the model is built from a whole chromosome undergoing recurrent selective mutations, the resulting coalescent only describes a single site under the joint effect of hitchhiking and recombination (c.f. Nielsen, 2005). Thus, the model cannot make joint predictions about several sites, such as measures of linkage disequilibrium. In the supplementary material (SM 1.3.3), we propose a two-site extension of the Durrett–Schweinsberg model in the restricted case of two sampled sequences, facilitating predictions of linkage disequilibrium. This model of recurrent selective sweeps explains our results for all subsets of the data (Fig. 2 and Fig. 5), and is also consistent with the decay of linkage disequilibrium observed in the data (SM Fig. 6) provided that a small fraction of sweeps (on the order of 10%) are taken to affect the whole chromosome regardless of recombination. Such “sweeps” are characteristic of e.g. population bottlenecks. The compound parameter $c = \delta s^2 / \gamma$ of the Durrett-Schweinsberg model measures the rate of selective sweeps (δ) times the squared selection coefficient (s^2) of the beneficial mutation over the recombination rate (γ) between the selected site and the site of interest. ABC estimates yield similar values across all replicate data sets, an average of about 10 (Fig. 5 and SM Fig. 7). The residuals of the fit to the Durrett-Schweinsberg coalescent (SM Fig. 5 c and d) show deviations that are both smaller and the opposite of the deviations of those of the neutral Ξ -Beta($2 - \alpha, \alpha$) model (Fig. 4 a and b and SM Fig. 5 a and b) with intermediate frequency classes too frequent. The compound parameter c ranges from 5 to 18 for different functional groups (Fig. 5). Actual sweeps may also affect nearly neutral or even slightly deleterious sites in addition to the neutral sites that are linked to the selected site in the model. This means that the rate of selective sweeps is 5–18 times more frequent (Fig. 5) than the coalescence rate of a population with a low variance mode of reproduction described by the classical Kingman coalescence. The Durrett-Schweinsberg model is essentially a haploid model, and we suggest that a diploid model, where dominance generates two phenotypes such that selection acts on pairs of chromosomes jointly rather than single chromosomes as in the Durrett-Schweinsberg model would provide an even better fit. However, developing a diploid multi-locus version of the Durrett-Schweinsberg model is outside the scope of the present work. Nevertheless, a comparison of our data with predictions of the Durrett-Schweinsberg model, in particular in comparison with our additional analysis, is perfectly valid. Overall, the selective sweepstakes hypothesis embodied in the Durrett-Schweinsberg coalescent (Durrett and Schweinsberg, 2005) modelling recurrent selective sweeps, in essence, explains our data, whereas the hypothesis of

low variance reproduction and the one of random sweepstakes do not. 264
To further investigate and take into account the effects of selection and recombination on the observed 265
patterns of allele frequencies, we take several steps. We did a principal component based genome-wide 266
scan of selection (using PCangsd Meisner and Albrechtsen, 2018) and detected several peaks (SM 267
Fig. 8). We used sites that are at least 500 kb away from the selective peaks. We refer to these as 268
non-selection sites. We extracted sites from the genome that are likely under different selective 269
constraints. We thus extracted fourfold degenerate sites (referred to as 4Dsites), intron sites, intergenic 270
sites, promoter sites, 5' UTR sites, 3' UTR sites, and exon sites. The less constrained sites are not 271
necessarily neutral to selection For example, although silent at the protein level, mutations at fourfold 272
degenerate sites could affect transcriptional and translational efficiency and mRNA stability, thus giving 273
rise to selection for or against such sites. However, the first three classes are generally considered less 274
constrained and the other classes more constrained by selection. 275
Furthermore, we used OmegaPlus (Alachiotis et al., 2012) and RAiSD (Alachiotis and Pavlidis, 2018) 276
to detect selective sweeps genome wide. Both methods use local linkage disequilibrium to detect 277
sweeps (Nielsen, 2005) and in addition RAiSD uses a local reduction in levels of polymorphism and 278
shifts in the frequencies of low- and high-frequency derived alleles affecting respectively the left and 279
right tails of the site frequency spectrum. Both methods indicate pervasive selective sweeps on all 280
chromosomes (Fig. 6). We also used SLiM (Haller and Messer, 2019) to simulate positive selection 281
under the no-sweepstakes Wright-Fisher model and under a random sweepstakes model in the domain 282
of attraction of a Xi-Beta coalescent (SM Fig. 9). We tried various forms of dominance of selection 283
among diploid genotypes (semidominance, $h = 0.5$ and full dominance, $h = 1.0$) with different 284
strength of selection (selection coefficient s). The model of successive selective pass or fail filters 285
suggests that lacking a function (a derived allele) is a failing genotype while having a function (derived 286
allele) is a passing genotype as modeled by full dominance. The observation of the heavy mortality of 287
immature (type III survivorship, SM Table 3) therefore suggests a model of selection against a 288
recessive lethal and for a dominant. This is a two-phenotype model for a diploid organism. The results 289
of the SLiM simulations of positive selection (SM Fig. 9) gave site frequency spectra that are 290
qualitatively similar to the observed spectra. Selection for a semidominant produced more U-shaped 291
spectra while selection for a dominant produced more V-shaped spectra similar to the observed. 292
Recurrent hard sweeps interrupting the standard Kingman coalescent (simulated using msprime) 293
produce a U-shaped site-frequency spectra (SM Fig. 10) that is qualitatively similar to our data from the 294
South/south-east coast. 295

Can forces other than selective sweeps better explain the patterns? 296

The effects of demography (changes in population size, population structure, and migration) can be 297
hard to distinguish from various forms of selection (Nielsen, 2005). And different forms of selection 298
can affect the various parts of the site frequency spectrum in similar ways. We now consider whether 299

forces other than selective sweeps can provide better explanations for the observed patterns. 300

Historical demography and low variance reproduction 301

Our estimated demographic history (SM Fig. 11 and SM Fig. 12) show population expansion in the 302 distant past leading to relative stability of population size in the recent past to modern times. In some 303 cases, an apparent population crash in recent times (SM Fig. 11 c), which is chromosome-specific, is an 304 exception to this. Demography produces genome-wide effects and, thus, this is likely a peculiarity of 305 runs of homozygosity of some chromosomes (such as centromeric regions, for example) and not 306 reflecting historical size changes of the population. Based on these population growth curves (SM 307 Fig. 11 and SM Fig. 12) we generated population size change scenarios for simulating site frequency 308 spectra using `msprime` (Kelleher et al., 2016; Baumdicker et al., 2021). The results (SM Fig. 13) show 309 monotonically decreasing frequency with the size of the mutation or L-shaped site frequency spectra 310 that neither capture the singleton class nor the upswing of the right tail of the observed site frequency 311 spectra (Fig. 2, SM Fig. 3 and SM Fig. 14). Thus, there is no evidence in our results for a low-variance 312 no-sweepstakes mode of reproduction modelled by the Kingman coalescent, even taking demographic 313 histories of population expansion or collapse into account. Our simulations are in line with the 314 theoretical proof (see Appendix B of (Sargsyan and Wakeley, 2008)), showing that the normalized 315 expected site-frequency spectrum of a Kingman-coalescent under arbitrary population size history is 316 L-shaped. 317

Potential confounding due to cryptic population structure 318

Here we examine alternative explanations for our observations. In particular, are the site frequency 319 spectra influenced by cryptic population structure? 320

The effect of hidden population structure on the site frequency spectra is expected to look similar to the 321 patterns seen for the inversion chromosomes. These are chromosomes Chr01, Chr02, Chr07, and Chr12 322 known to carry large inversion (Kirubakaran et al., 2016; Berg et al., 2016). They show two peaks in the 323 site frequency spectrum (SM Figs. 17 and 18) at the frequency of the variants's haplotype frequency and 324 show a block of values for neutrality statistics (Fig. 1 and SM Fig. 2). If a sample of size n diploid 325 organisms is composed of two cryptic reproductively isolated populations (sample sizes n_1 and n_2) we 326 expect to see peaks in the site frequency spectra at the relative frequencies of the two groups. If 327 $n_1 = n_2 = n$ we expect a sharp peak at $n/(2n)$. This peak would include all fixed sites in both 328 populations (n_1/n and n_2/n) and spread over neighboring frequency classes 329 ($((n_1 - 1)/n, (n_1 - 2)/n, (n_2 - 1)/n, (n_2 - 2)/n$ and so on). If the frequencies of the two groups differ 330 ($n_1 \neq n_2$) two peaks will appear, but are expected to be narrow. They will always include all sites fixed 331 in either population (because fixed sites in either population will appear to be segregating in the sample 332 as a whole). 333

To study the potential effects of population structure, we used `msprime` (Kelleher et al., 2016; 334
Baumdicker et al., 2021) to simulate the Kingman coalescent with two isolated populations exchanging 335
a varying number of migrants under population growth as determined by the growth parameter β . Thus 336
we examined the effects of cryptic structure on the site frequency spectrum by varying the growth rate 337
and the effective number of migrants between subpopulations ($4N_e m$), and varied the number of 338
individuals sampled from the population with fewer individuals represented (referred to as the minor 339
population). Parameters of the simulations were the number of individuals from the minor population 340
($k \in \{4, 3, 2, 1\}$), the migration rate ($m = 10^{-5} \dots 10^{-3}$), and growth rate ($g = 10^{-4} \dots 10^{-1}$). The 341
effective size was set at $N_e = 500$ and thus the effective number of migrants per subpopulation per 342
generation was $4N_e m = 0.02 \dots 2$. 343

We use a two-island model with exponential growth under the Kingman coalescent as a simple tool for 344
assessing the qualitative, joint effect of demography and substructure on the site frequency spectrum 345
(SM Figs. 15 and 16). Two narrow peaks at opposite allele frequencies are evident (much like the two 346
narrow peaks for the inversion chromosomes, SM Figs. 17 and 18) becoming smaller with increasing 347
migration. Only if the sample contained a single individual of the minor population is there a remote 348
resemblance to the observed data (SM Fig. 15 g, h, and j). Nevertheless, even in this case, doublets are 349
more common than singletons, and it is hard to find combinations of growth and migration rates to 350
mimic the observed data. We used the Xi-Beta coalescent for similar simulations (SM Fig. 16) and got 351
the same results qualitatively. Therefore, population structure in a population evolving according to the 352
Wright-Fisher (or a similar) low-fecundity model or in a population evolving under a neutral 353
sweepstakes model is an improbable explanation for our results. Both simulations (SM Figs. 15 and 16) 354
show that only for a minor sample size of one diploid individual do the models show a remote 355
resemblance to our data. To further address this issue, we, therefore, estimated the site frequency 356
spectra with a leave-one-out approach (SM Fig. 19). The leave-one-out approach is model-free: 357
whichever model is correct, one of the leave-one-out samples should behave differently if a cryptic 358
population structure with a minor sample size of one is present in our data. None of them do. There is 359
no indication that our sample from the South/south-east coast is composed of 67 individuals from one 360
population and a single individual from a divergent population. 361

To further study the potential effects of cryptic population structure, we note that principal component 362
analysis (PCA) of variation at each of the four chromosomes harbouring large inversions reveal two or 363
three groups that likely represent genotypes of the inversion alleles. There are three groups for Chr01 364
(which we refer to as Chr01-AA, Chr01-AB, and Chr01-BB), Chr02 (Chr02-CC, Chr02-CD, and 365
Chr02-DD), and Chr07 (Chr07-EE, Chr07-EF, and Chr07-FF), and two groups for Chr12 (Chr12-GG 366
and Chr12-GH), which has a low frequency of one inversion allele (Fig. 20 and SM Figs. 17 and 18). If 367
we take these groups as representing the haplotypes of the inversions the genotypic frequencies at each 368
chromosome do not deviate from Hardy-Weinberg equilibrium, and there is thus no evidence for 369
breeding structure (no Wahlund effects, SM Table 4). However, as the inversions effectively suppress 370

recombination between the inversion alleles, we can also look at the chromosomes of the inversion genotypes as effectively isolated populations with no recombination (migration) between them and estimate the site frequency spectra within genotypes for the inversion chromosomes. Furthermore, we conjecture that the PCA groups observed at inversion chromosomes represent reproductively isolated but cryptic populations. Because demography has genome-wide effects the cryptic structure should be evident in the rest of the genome. We, therefore, estimate the site frequency spectra for the 19 non-inversion chromosomes (chromosome 3–6, 8–11, 13–23) for these groups. 371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

Principal component analysis (PCA) did not show any structure for the non-inversion chromosomes. However, the four inversion chromosomes each showed two narrow peaks at intermediate allele frequencies (SM Figs. 17 and 18) indicative of either balancing selection or cryptic population breeding structure. If this is breeding structure it should affect the whole genome. To disentangle the effects of balancing selection and potential breeding structure we used the groups defined by PCA at the inversion chromosomes to investigate the inversion chromosomes themselves and the non-inversion chromosomes. We thus conjecture that the PCA groups represent cryptic breeding units. PCA revealed three (or two) groups on the first principal axis that explains 4–36% of the variation at the inversion chromosomes (SM Fig. 20 a, d, g, and j). The PCA groups most likely represent genotypes of inversion haplotypes. Taking membership in PCA groups to represent inversion genotype, their frequencies fit the Hardy-Weinberg equilibrium (SM Table 4) and thus there is no evidence of heterozygote deficiency or Wahlund effect (Wahlund, 1928) indicative of breeding structure. The only exception is chromosome 7 in the *Pistilfjörður* population, which shows a slight heterozygote excess (SM Table 4). Furthermore, the site frequency spectra of the PCA groups (SM Fig. 20 b, e, h, and k) show the same overall V-shape pattern as the site frequency spectra for the overall data (Fig. 2). Additionally, the intermediate PCA group shows a sharp peak at a derived allele frequency of $n/(2n)$ (an equal frequency of two types or 0 on the logit scale) as expected for a group composed of heterozygotes only. Similarly, the site frequency spectra of these PCA groups for the 19 non-inversion chromosomes combined (Fig. 20 c, f, i, and l) show a pattern characteristic of the site frequency spectra for the overall data. There is not the slightest hint of a Kingman coalescent-like behaviour for any of these PCA groups. Similarly, expectations of the Ξ -Beta($2 - \alpha, \alpha$) coalescent do not explain the data. Overall, the shape of the site frequency spectra for each of the inversion chromosomes (SM Figs. 17 and 18) and for the PCA groups of each of the inversion chromosomes (SM Fig. 20) is the same as the shape of the site frequency spectra of the non-inversion chromosomes (Fig. 2). This shape is well explained for all PCA groups by the Durrett-Schweinsberg coalescent (Durrett and Schweinsberg, 2005), for which we estimated the c parameter using ABC for the PCA group of the respective inversion chromosome (SM Fig. 20). The observed V-shaped site frequency spectra are inconsistent with an amalgamation of cryptic units reproducing under a Wright-Fisher model. The PCA groups are not cryptic breeding units, and we reject the above conjecture. Instead, we consider them to represent polymorphic inversion genotypes

maintained by some form of balancing selection such as frequency-dependent fitnesses arising from the 408
accumulation of deleterious recessives on homokaryotypes (Jay et al., 2021) or other mechanisms of 409
balancing selection (Faria et al., 2019). 410

Balancing and background selection and functional constraints 411

Besides the Durrett-Schweinsberg model, various mechanisms of selection may influence the results. 412
Here we examine the effects of balancing selection, different selective constraints, and background 413
selection. 414

There are several signs that natural selection affects the observed patterns. Balancing selection retains 415
linked neutral or nearly neutral variants at intermediate frequencies. The tighter the linkage and less the 416
recombination, the longer the coalescent time of the neutral variants (Charlesworth, 2006). The 417
observed site frequency of intermediate frequency alleles is higher among the four inversion 418
chromosomes than the 19 non-inversion chromosomes. All comparisons of the four inversion 419
chromosomes and the 19 non-inversion chromosomes show this effect (SM Figs. 17, 18 and 2). 420

However, balancing selection does not affect the overall V-shape of the site frequency spectrum of the 421
inversion chromosomes (SM Figs. 17 and 18). 422

The selection scan is model-free and is based on finding genes or genomic regions that are outliers 423
relative to the overall genome-wide allele frequencies and taking potential population structure into 424
account. A principal components based genomic scan of selection (SM Fig. 8) showed many peaks that 425
are likely indicative of recent and strong positive selection. A few peaks were population-specific, but 426
the two populations share most peaks. The region under a peak ranged from a single site to about 2 427
Megabases (Mb). We extracted sites 500 kb or more away from the peaks (referred to as no-selection) 428
and included with genomic regions under different selective constraints. We extracted fourfold 429
degenerate sites, introns, intergenic sites as less constrained regions, promoter regions, exons, 3'-UTR, 430
and 5'-UTR as more selectively constrained regions. The mean, median and mode of the estimated 431
compound parameter c of the Durrett-Schweinsberg model for the different genomic regions ranked 432
from least constrained to most constrained sites (Fig. 5). The ABC-MCMC was well mixed in all cases. 433
There are two possible explanations for the rank order of the compound parameter c with functional 434
genomic regions. First, the more functionally important a region of the genome is, the stronger the 435
selection coefficient of a new advantageous mutation will be. Such mutations will sweep through the 436
population and carry with them tightly linked neutral mutations in these same regions (c being inversely 437
proportional to the recombination rate γ). Alternatively, different functional regions are preserved and 438
constrained by purifying (negative) selection. If the sites are tightly linked, a positively selected 439
mutation sweeping through will affect neutral, nearly neutral, and even deleterious sites. A tug of war 440
between the effects of the sweep and purifying selection at a site results in a net effective selection 441
coefficient for that site. The compound parameter c of the Durrett-Schweinsberg model estimates the 442
net effective selection coefficient squared over the recombination rate, which may generate the observed 443

rank order. Of course, both explanations may apply to different positive mutations. Thus selective 444 sweeps permeate the genome affecting most if not all sites (Pouyet et al., 2018). 445
To study the effects of background selection, we carried out forward-in-time simulations of the 446 Wright-Fisher model (using SLiM (Haller and Messer, 2019)). Simulations that ran for a relatively 447 short number of generations (on the order of the population size) produced V-shaped site frequency 448 spectra (SM Fig. 13 **d**). However, when simulations of the same parameter values ran for a large 449 number of generations (up to ten times the population size of 10^5 chromosomes) they accumulated 450 more variation (SM Table 5) and produced monotone L-shaped site frequency spectra. Thus only in a 451 narrow window of non-equilibrium between the input of mutation and its removal by purifying 452 selection or loss by drift can background selection site frequency spectra resemble our observed spectra. 453 In general, however, background selection does not fit our data. 454

The joint action of several evolutionary forces 455

The analysis thus has shown that considered singly, the various factors such as demography and 456 background selection do not provide a good fit, particularly not involving the derived alleles at the right 457 tail of the site frequency spectrum. Analysing the joint action of demography, purifying and background 458 selection with or without random sweepstakes on the genome level is computationally prohibitive. We, 459 therefore, resorted to simulations using SLiM (Haller and Messer, 2019) of a sizeable fragment of a 460 chromosome evolving under the joint action of several forces of evolution (SM Fig. 13). As is common 461 in complex, multi-component simulations, it may be possible to tweak parameters to obtain results 462 matching the observed data. Nevertheless, a comprehensive model-fitting search is infeasible in our 463 setting. However, the combined effect of negative background selection without selective sweeps did 464 not produce qualitatively accurate, U-shaped site frequency spectra for any parameter combination we 465 tested. Furthermore, a combination of random sweepstakes, randomly occurring bottlenecks, and 466 background selection (SM Fig. 13, **e** and **f**) did not produce a qualitatively similar U-shaped pattern as 467 the data. Hence, even if best-fit parameters could match the data, we expect the fit would not be robust 468 to small changes in either parameter values or observed data, thus having low predictive and explanatory 469 power. In contrast, scenarios involving selective sweeps routinely produced the right qualitative shape 470 of the site frequency spectra. Hence, we expect a (hypothetical) best-fit analysis to be far more robust. 471

Synopsis of results 472

We have shown that the Durrett-Schweinsberg coalescent modelling recurrent selective sweeps 473 affecting linked sites gives a best fit to our observations (Fig. 2). By extension the hypothesis of 474 reproduction by selective sweepstakes is best supported by our data. The Kingman coalescent and the 475 Wright-Fisher model of reproduction, without strong positive selection of recurrent strongly beneficial 476 mutations (SM Figs. 9 and 10), cannot explain our data. Similarly, the model of random sweepstakes, 477 the Xi-Beta coalescent, in which a random individual has windfall reproductive success, although 478

fairing better than the Kingman coalescent nevertheless cannot explain the observations. Furthermore, 479
through analysis and forward and backward simulations we study whether other evolutionary forces can 480
adequately explain the data. Historical demographic expansions or contractions do not explain our data 481
(SM Fig. 11). Analysis of potential cryptic population structure does not provide answers to our 482
patterns (SM Fig. 20). Similarly, modelling sampling from divergent populations a combination of 483
extreme parameter values can produce patterns similar to the observed patterns (SM Figs. 15 and 16). 484
However, a leave-one-out analysis of our sample shows that our sample was not produced under such 485
extreme parameter values (SM Fig. 19). There are clear signals of balancing selection of large 486
inversions at four chromosomes (SM Figs. 17 and 18). However, balancing selection does not change 487
the overall shape of the site frequency spectrum of these chromosomes, which is the summary statistic 488
that we use for our analysis. Simulations of background selection show that a narrow window of 489
parameter space can resemble observed patterns but in general background selection does not fit our 490
results (SM Figs. 9 d and 13). Finally, simulations of the joint action of several evolutionary forces, 491
notably of demography and background selection with or without selective sweeps do not produce 492
qualitatively accurate U-shaped site frequency spectra similar to the observed except in simulations that 493
included selective sweeps (SM Fig. 13). 494

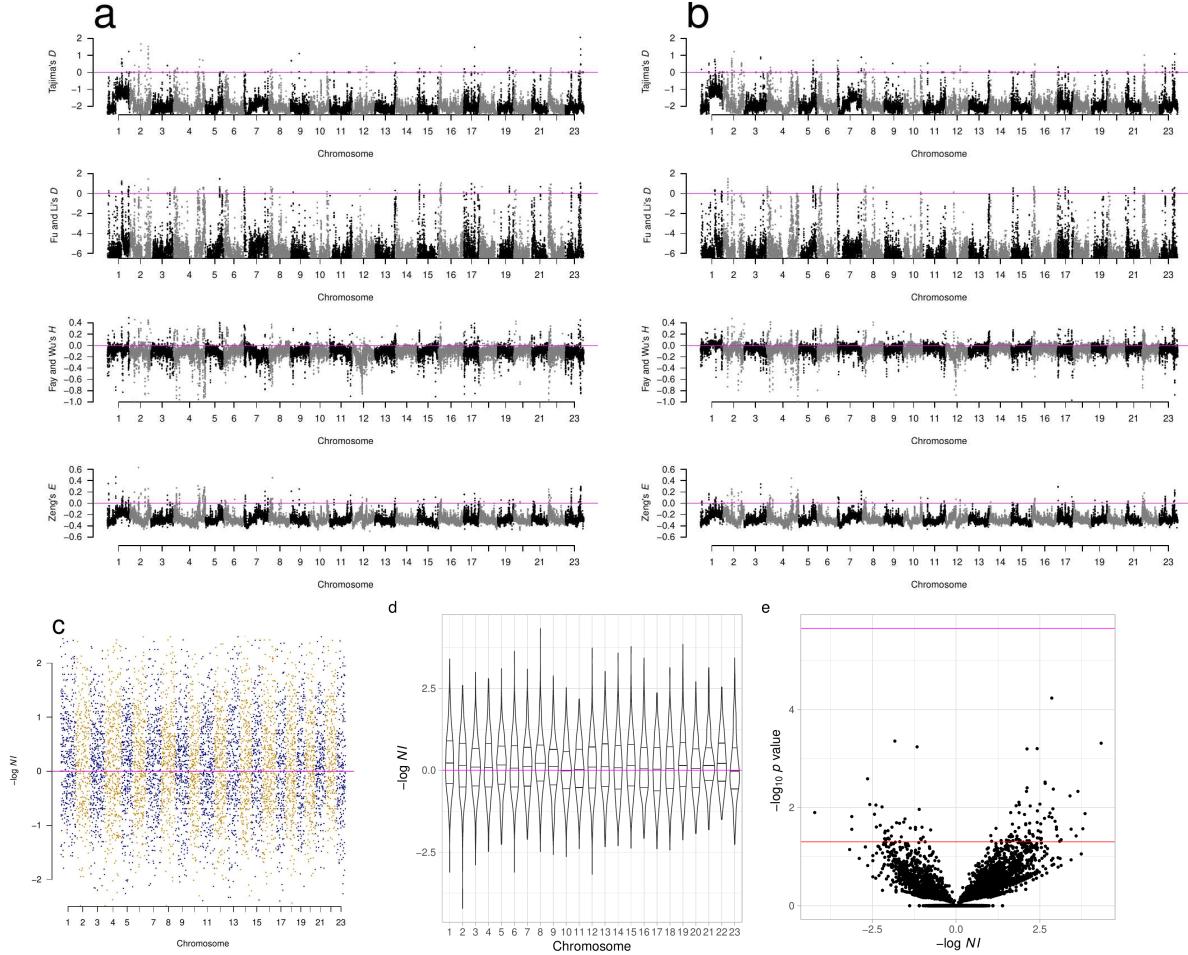
Discussion 495

Understanding recruitment dynamics and what shapes the distribution of individual reproductive and 496
recruitment success is a fundamental challenge in evolutionary genomics of high fecundity and is key to 497
further understanding metapopulation and community dynamics, predicting response to anthropogenic 498
challenges, for conservation and management, and further development of ecological and evolutionary 499
theory (Eldon, 2020). We show that selective sweepstakes, modeled by a particular example of the 500
Durrett-Schweinsberg multiple-merger coalescent derived from a population model of recurrent 501
selective sweeps (Durrett and Schweinsberg, 2005), essentially explains our data. Even a model of 502
recurrent but incomplete selective sweeps (Coop and Ralph, 2012) similarly leads to U-shaped site 503
frequency spectra generated by a multiple-merger coalescent model similar to the Durrett-Schweinsberg 504
model. We further show that neither no-sweepstakes reproduction nor random-sweepstakes 505
reproduction can explain our data. Our results indicate that strong pervasive positive natural selection is 506
pivotal in reproductive sweepstakes, more so than windfall sweepstakes (Hedgecock and Pudovkin, 507
2011). 508

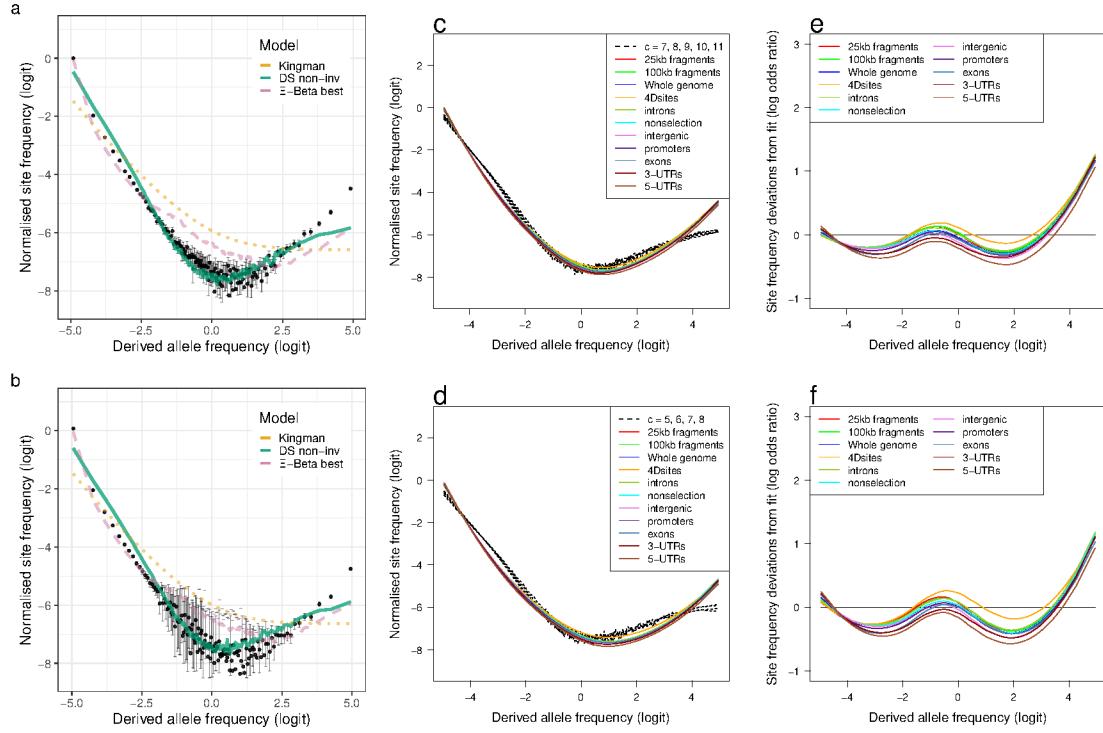
Interpreting the Durrett-Schweinsberg model as approximating selective sweepstakes, we conclude that 509
our findings are strong evidence for selective sweepstakes (Williams, 1975) characterizing the 510
distribution of individual recruitment success of the highly fecund Atlantic cod. Under the 511
Durrett-Schweinsberg coalescent of recurrent selective sweeps, of a new mutation each time, happen 512
very fast compared to the coalescent timescale. The continuous input of new beneficial mutations 513
represent the Sisyphean genotypes that forever climb a selective peak under Williams' concept of 514

selective sweepstakes (Williams, 1975). By extension, selective sweepstakes is the life history of highly fecund organisms with skewed offspring distribution. 515
516

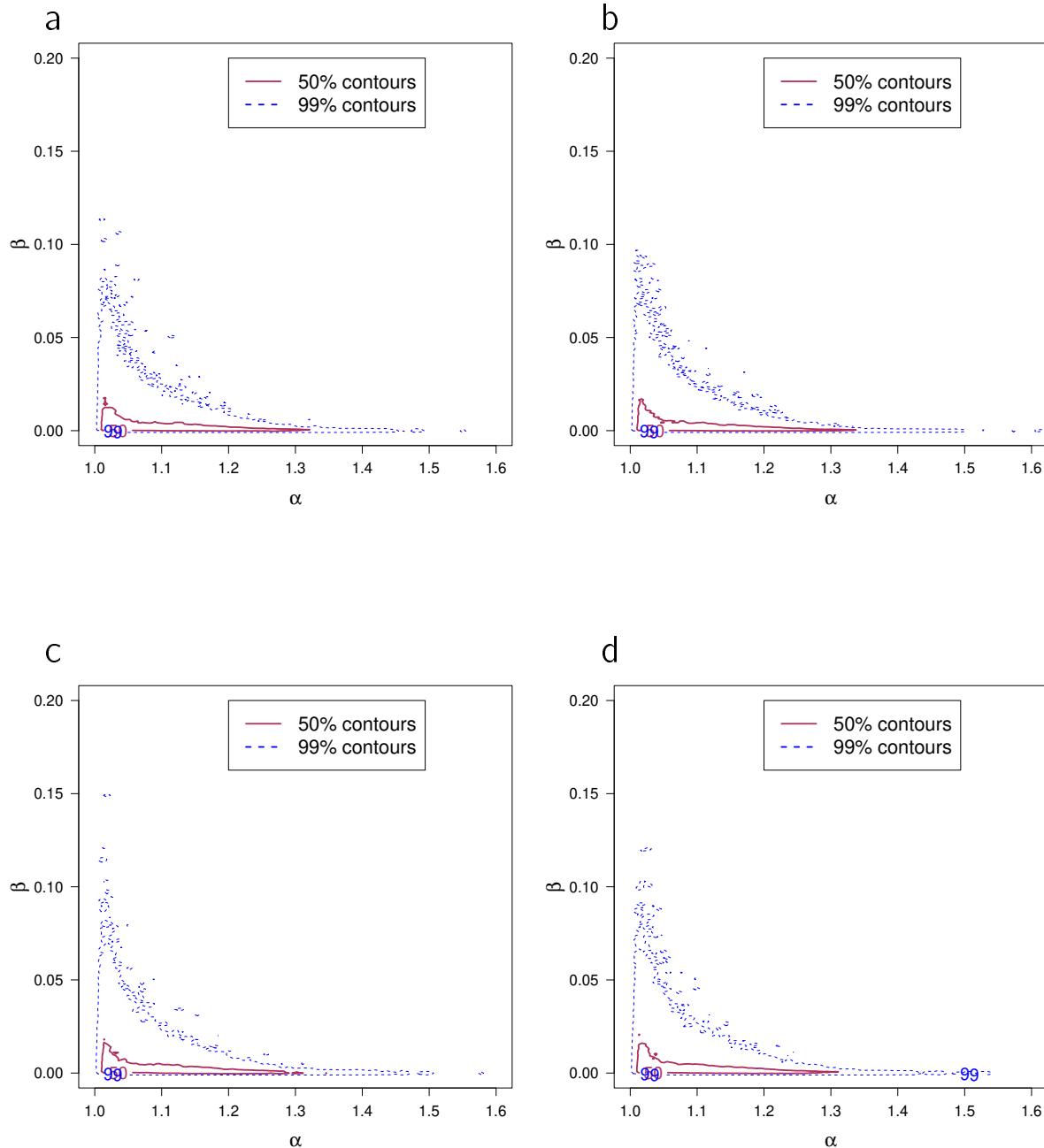
Recurrent bottlenecks may mimic the effects of recurrent selective sweeps (Galtier et al., 2000). The duration, depth, and rate of recovery of a bottleneck (Nei et al., 1975) relative to the coalescent log N timescale of recurrent sweeps under the Durrett-Schweinsberg model is an important issue. A small number of individuals having large numbers of descendants due to a bottleneck and rapid recovery or due a selective sweep will in both cases lead to multiple mergers in the genealogy. Our simulations of random sweepstakes with recurrent bottlenecks yield roughly a U-shaped site frequency spectrum but the fit is not as good as for the selective sweepstakes model. In the Durrett-Schweinsberg model, interpreting a small fraction of sweeps (on the order of 10%) as population bottlenecks resulted in a model which was able to explain the decay of linkage disequilibrium observed in Atlantic cod, without affecting the good fit of the site frequency spectrum. Overall, therefore, the Durrett-Schweinsberg model explains our data although it is formally only applicable to single-locus data from a haploid species (the resulting coalescent process traces the genealogy of a single site), assumes a constant population size, disallows competing, simultaneous sweeps (Kim and Stephan, 2003), and only models hard sweeps. 517
518
519
520
521
522
523
524
525
526
527
528
529
530


High fecundity matters in two ways in this process. First, each round of replication results in many new mutations in the genome of a new gamete. Even though the probability of a positive mutation is very low, the millions of gametes produced by each female multiplied by the billions of individuals in a population ensure a steady input of new positive mutations to each generation. Second, high fecundity makes available a high reproductive excess which permits substitutions to occur at high rates by natural selection without the population going extinct (Felsenstein, 1971). Reproduction of a high fecundity organism compares with reproduction of a virus in an epidemic. Each infected individual produces hundreds of billions of viral particles. Even with a tiny proportion of positive mutations the numbers of new mutations are so enormous that it is all but certain that an epidemic produces a steady stream of more contagious and fitter viral variants that sweep to fixation by selection. If the population crashes (Hutchings, 2000) the mutational input of adaptive variation diminishes. The population may run out of fuel for responding to environmental challenges via selective sweeps and go extinct (Felsenstein, 1971). Kimura's neutral theory of molecular evolution and polymorphisms (Kimura, 1968) relied on excessive genetic load based on Haldane's dilemma (Haldane, 1957) that the cost of adaptive substitution would limit the rate of evolution lest the population go extinct (Felsenstein, 1971). Truncation selection of continuously distributed characters, where genetic and nongenetic factors independently affect the probability of survival and act cumulatively in each individual (Williams, 1975), mitigates the genetic load (King, 1967; Sved et al., 1967). Our considerations above of full dominance with selection against a lethal homozygote would entail a large genetic load. However, there can be strong selection in one patch and near neutrality in another due to differences in competition and predation. The marginal fitness differences would then be less but such 531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

soft selection (Wallace, 1975; Reznick, 2016) would not drive the population extinct (Charlesworth, 552
2013). Marginal fitnesses would still preserve full dominance and a two phenotype selection scheme 553
and thus behave similarly to the haploid Durrett-Schweinsberg model. The high fecundity and 554
consequent excessive reproductive capacity in our study organism may also alleviate the genetic load 555
problem. However, both loss of mutational input and genetic load (a case of selective extinction) may 556
nevertheless be a factor in the non-recovery of a population following a crash (Hutchings, 2000). 557
Our estimate of the rate of selective sweeps (SM 1.5) amounts to mergers of ancestral lineages of our 558
sample happening because sweeps occur at 5 to 18 times higher rates than mergers due to ordinary 559
low-variance reproduction (Fig. 5). In the classical model, the coalescence rate is on the order of the 560
population size, or N generations, but the duration of selective sweeps is on the order of $\log N$ 561
generations. If we assume that there are a billion cod in the Icelandic population, this is some 20 562
generations or about 100 years from when a beneficial mutation arises until fixation. The sigmoid 563
nature of the positive selection curve, with a lag phase followed by an exponential phase and ending in a 564
stationary phase, the main action of selection bringing an allele from a low frequency to a high 565
frequency during the exponential phase may only take a few generations, say 15–20 years. Erratic 566
climatic variability, such as the great salinity anomalies (Cushing, 1969; Dickson et al., 1988) in the 567
North Atlantic, which can greatly affect cod reproduction and ecology, is detectable over decadal time 568
scales, similar to the exponential phase of our estimated selective sweeps. 569
We estimate that each chromosome in Atlantic cod is affected by a selective sweep every 23 to 50 years 570
on average (SM 1.5). Since we also see evidence of rapid recombination (SM Fig. 6), we expect that 571
any one sweep will not strongly affect a large region of a chromosome. The rapid recombination will 572
modulate the genomic footprints of sweeps. There is clear evidence that sweeps happen everywhere 573
along the genome (in chromosomal fragments of different sizes, different functional groups, and on all 574
chromosomes (Fig. 5 and SM Figs. 3, 17, and 18). It is, therefore, likely that the true rate of sweeps is 575
even faster than our estimate. For example, if an average sweep were to affect, say, 10% of a 576
chromosome, we would expect to see sweeps every three to four years or roughly once a generation to 577
explain our results. Building a fully quantitative, data-informed picture of the rate of sweeps requires 578
the development of a diploid, genomic version of the Durrett-Schweinsberg model, which is currently 579
absent from the literature, and for which task our results provide strong applied motivation. 580
Our findings provide a new perspective on coalescent models in population genetics and genomics. For 581
the first time, a test involving genomic data, i.e. using copies of chromosomes from several pairs of 582
homologous chromosomes, is made on the contrasting hypotheses of reproduction using multiple 583
merger coalescents in a diploid organism. It is also the first time multiple merger coalescent models 584
based on neutral evolution and selection are contrasted. Previously, two neutral Λ -coalescents have 585
been compared to data of outbreaks of the tuberculosis bacterium and used the Bolthausen-Sznitman 586
coalescent ($\alpha = 1$) to model rapid selection (Menardo et al., 2019) Our findings have repercussions for 587
and give impetus to further theoretical development of multiple merger coalescents, particularly for 588


multiple merger coalescent models of strong selection.

589


We suggest that sweepstakes reproduction is much more common than previously thought. It is
590
essential to understand sweepstakes and the natural and anthropogenic ecological processes conducive
591
to sweepstakes (Hedgecock and Pudovkin, 2011; Williams, 1975). Are selective sweepstakes
592
(Williams, 1975) the rule or is there a role for random sweepstakes (Hedgecock and Pudovkin, 2011;
593
Vendrami et al., 2021)? It is possible that big-bang, the semelparous reproductive strategy of
594
reproducing once and die, is sweepstakes reproduction if there are ecological mechanisms generating a
595
high-variance highly skewed offspring distribution. This mode of reproduction characterizes many
596
annual plants, a myriad of insects, and vertebrates such as the Pacific salmon (*Oncorhynchus*) and the
597
Arctic cod (*Boreogadus saida*), a close relative of the Atlantic cod. We further posit that sweepstakes
598
may be the mode of reproduction of viruses (Timm and Yin, 2012) as inferred from overdispersion of
599
offspring distribution from superspreaders individuals and events (Endo et al., 2020), some cancer cells
600
(Kato et al., 2017), and various bacteria (Wright and Vetsigian, 2019; Menardo et al., 2019; Ypma et al.,
601
2013). Fungi and plant pathogens, which cause extensive crop losses of great economic importance
602
(Pimentel et al., 2000), may also reproduce by sweepstakes. Similarly, many repeat-reproducers, the
603
iteroparous reproductive strategy, produce vast numbers of tiny eggs in each reproductive season. It
604
applies to many marine organisms such as oysters (Hedgecock and Pudovkin, 2011), and the Atlantic
605
cod and its Pacific relatives (Árnason and Halldórsdóttir, 2019) that support large fisheries of great
606
economic importance. The dynamics of all these systems can be profitably studied using multiple
607
merger coalescents (Freund et al., 2022), be they generated by random or selective sweepstakes.
608

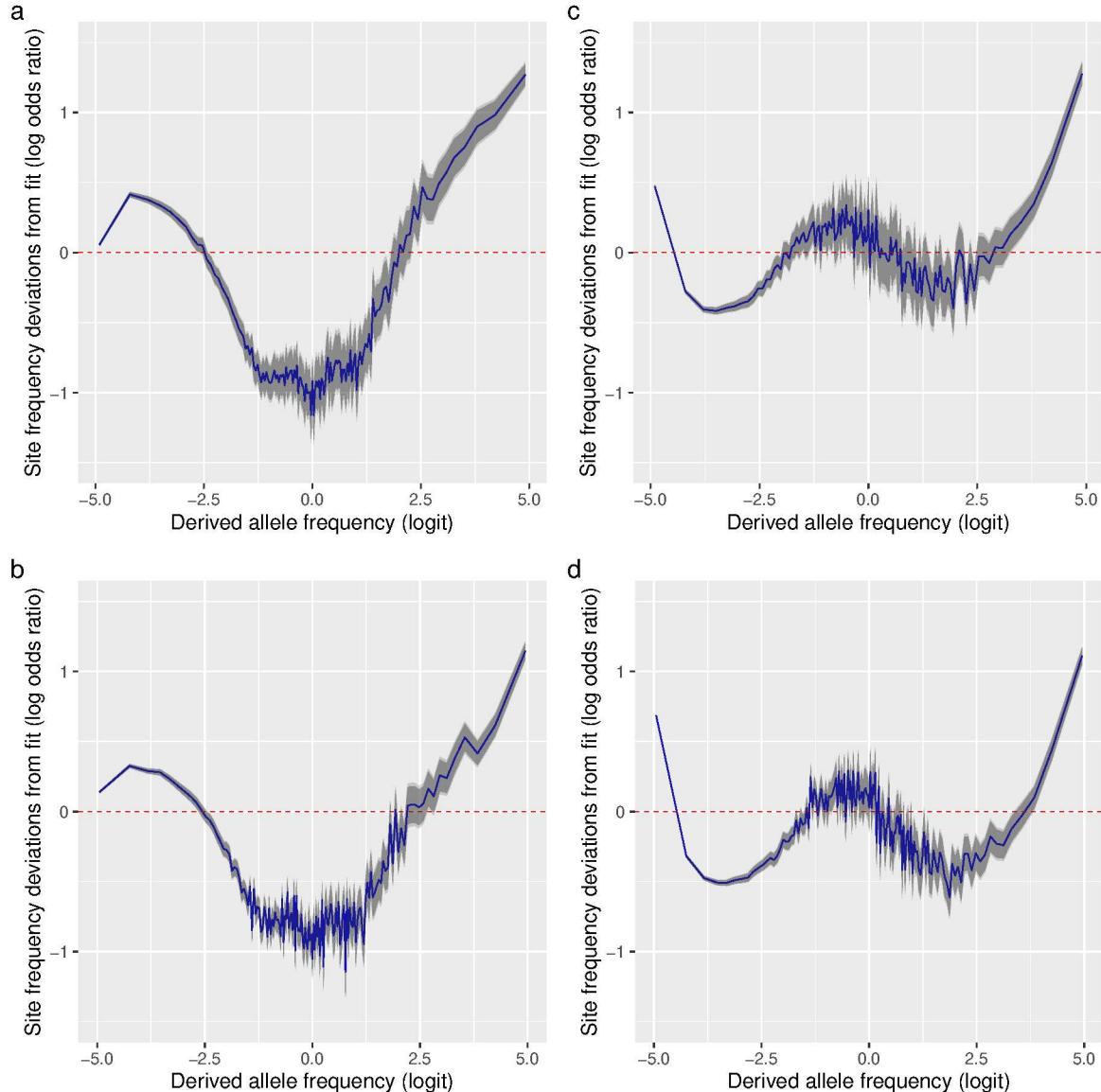

Figure 1: Neutrality test statistics and neutrality index across all chromosomes. **a, b**, Manhattan plots of Tajima's D (Tajima, 1989), Fu and Li's D (Fu and Li, 1993), Fay and Wu's H (Fay and Wu, 2000), and Zeng's E (Zeng et al., 2006) show mostly negative values at all chromosomes implying deviations from neutrality. Sliding window estimates (window size 100 kb with 20 kb step size) using GL1 genotype likelihoods for the South/south-east population and the *Pistilfjörður* population. **c**, The neutrality index (Rand and Kann, 1996) associated with the McDonald-Kreitman test (McDonald and Kreitman, 1991) $NI = (P_n \times D_s) / (P_s \times D_n)$ where P_n , P_s , D_n , and D_s are the number of non-synonymous and synonymous polymorphic and fixed sites respectively for all genes of each chromosome. Negative values of $-\log NI$ implying purifying (negative) selection and positive values implying positive selection (selective sweeps) are distributed throughout each chromosome. The outgroup is Pacific cod (Gma) and the magenta horizontal line is at neutral equilibrium. **d**, The distribution of $-\log NI$ per chromosome (violin plots with quartiles) are heavier on the positive side. **e**, The $-\log_{10} p$ value significance of Fisher's exact test for the McDonald-Kreitman test (McDonald and Kreitman, 1991) for all genes in the genome plotted against the $-\log NI$ neutrality index (Rand and Kann, 1996). Overall, the cloud of positive values is denser than the cloud of negative values. The outgroup is Pacific cod (Gma). The red horizontal line is at nominal significance level of 0.05 for individual tests and the magenta line is $0.05/n$ the Bonferroni adjustment for multiple testing. Neutrality index of data from the South/south-east population.

Figure 2: Fit of observations to models: the no-sweepstakes model, the random sweepstakes model, and the selective sweepstakes model. **a, b**, Mean observed site frequency spectra for the 19 non-inversion chromosomes combined estimated with GL1 likelihood for the South/south-east and Þistilfjörður replicate populations respectively. Error bars of observed data are ± 2 standard deviations of the bootstrap distribution. Expected site frequency spectra are the Kingman coalescent modelling non-sweepstakes, the best approximate maximum likelihood estimates (Eldon et al., 2015) of the Ξ -Beta model modelling random sweepstakes, and the ABC estimated Durrett-Schweinsberg coalescent (DS) modelling selective sweepstakes. The observed site frequency spectra of different sized fragments and various functional classes compared to expectations of the Durrett-Schweinsberg coalescent (DS) ABC estimated for the non-inversion chromosomes for the South/south-east population (**c**) and the Þistilfjörður population (**d**). The compound parameter c ranges from 5 to 11. The different functional groups are four-fold degenerate sites (4Dsites), intronic sites, non-selection sites (sites more than 500 kb away from peaks of selection scan, SM Fig. 8), intergenic sites, promoters, exons, 3'-UTR sites (3-UTRs), and 5'-UTR sites in order of selective constraints. **e** and **f** Deviations from expectations of the Durrett-Schweinsberg model of recurrent selective sweeps of different sized fragments and functional groups for the South/south-east population and the Þistilfjörður population respectively.

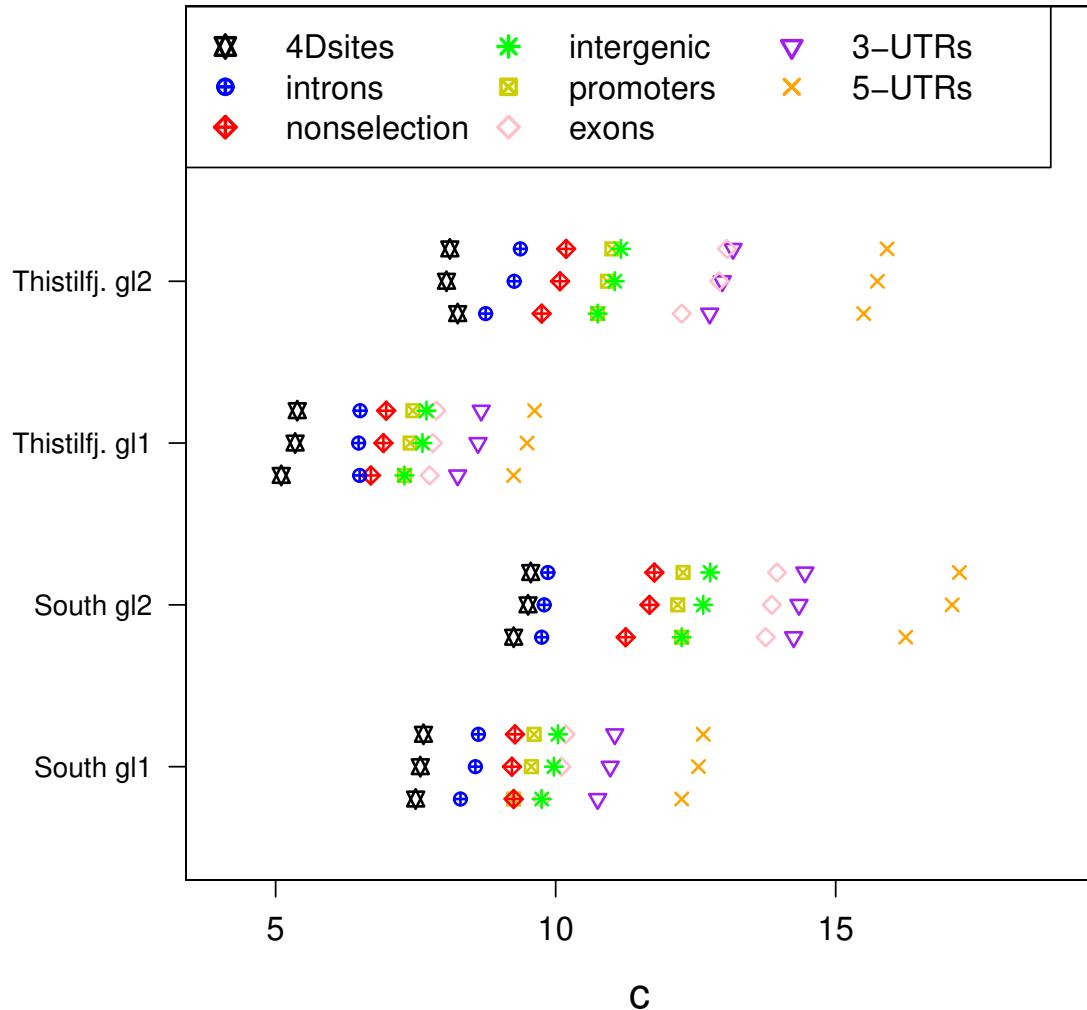


Figure 3: Approximate Bayesian computation (ABC) joint estimation of parameters of the neutral Ξ -Beta($2 - \alpha, \alpha$) coalescent (random sweepstakes) and of population growth. **a, b, c, d** A kernel density estimator for the joint ABC-posterior density of $(\alpha, \beta) \in \Theta_B$. The parameter α determines the skewness of the offspring distribution in the neutral Beta($2 - \alpha, \alpha$) coalescent model, and the β is a population-size rescaled rate of exponential population growth. Estimates are for the GL1 (**a**) and GL2 (**b**) for the South/south-east population and for the GL1 (**c**) and GL2 (**d**) for the Pjstilfjörður population. A bivariate model-fitting analysis adding exponential population growth to the Ξ -Beta($2 - \alpha, \alpha$) coalescent does not improve model fit.

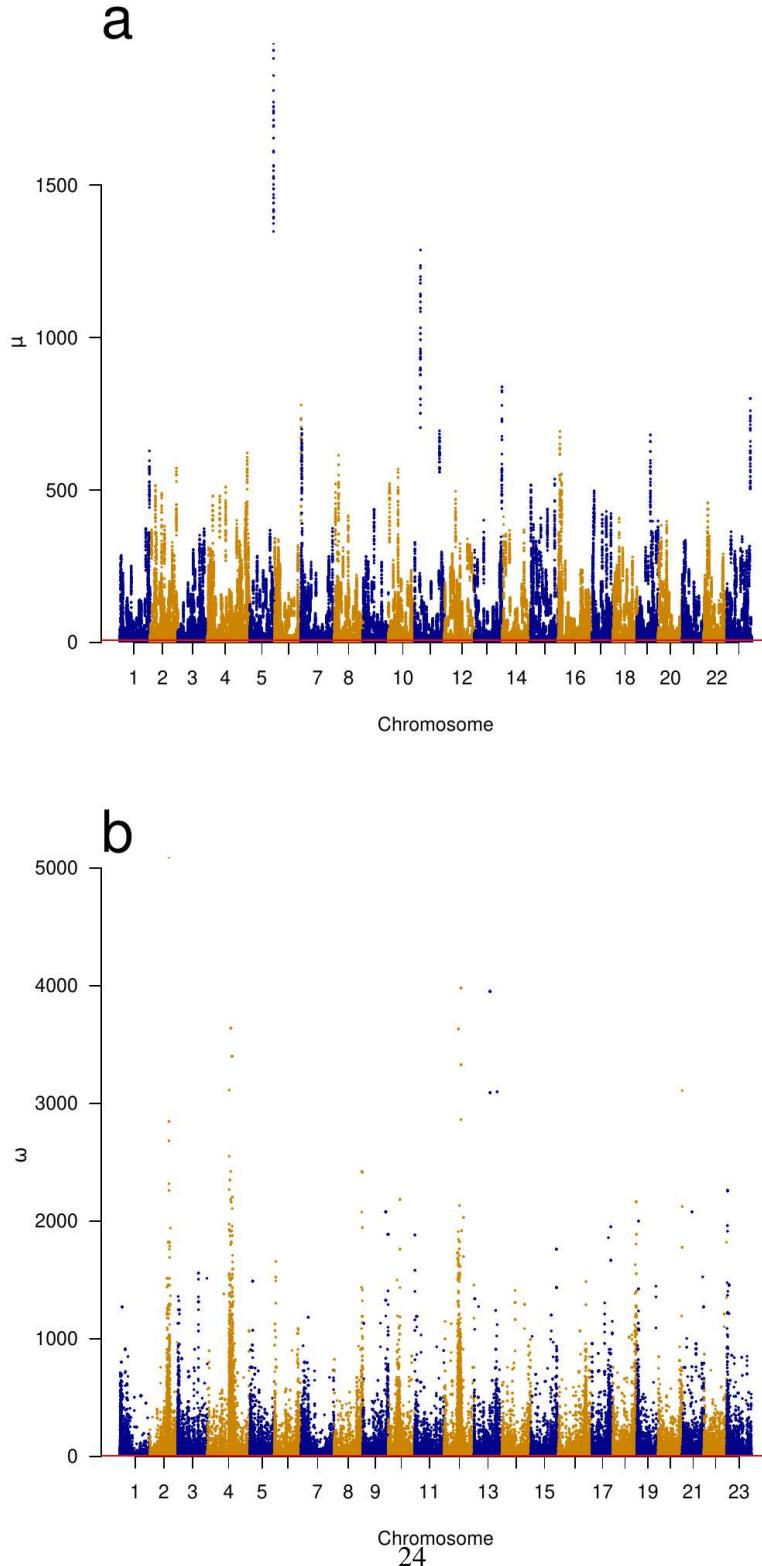


Figure 4: Deviations from fit to the random sweepstakes model and the selective sweepstakes model.

a, b, Deviations of site frequencies from approximate maximum likelihood best-fit expectations of the neutral Ξ -Beta($2 - \alpha, \alpha$) coalescent modelling random sweepstakes. Deviations of the mean site frequencies of non-inversion chromosomes 3–6, 8–11, and 13–23 estimated with genotype likelihoods GL1 from best fit expectations of the Ξ -Beta($2 - \alpha, \alpha$) coalescent with $\hat{\alpha} = 1.16$ for the South/south-east population (**a**) and with $\hat{\alpha} = 1.16$ for the Pistilfjörður population (**b**). Deficiency of intermediate allele frequency classes and excess mainly at right tail of site frequency spectrum. **c, d,** Deviations of GL1 estimated site frequencies from expectations of the Durrett-Schweinsberg model of recurrent selective sweeps for the South/south-east population with a compound parameter $c = 8.25$ and the Pistilfjörður population with a compound parameter $c = 6.3$ respectively. Better fit than random model but also with excess at right tail of site frequency spectrum. Deviations reported as the log of the odds ratio (in blue), the difference of the observed and expected logit of site frequencies. The dashed red line at zero represents the null hypothesis of no difference. The darker and lighter shaded gray areas represent the 95% and the 99% confidence regions of the approximately normally distributed log odds ratio.

Figure 5: Approximate Bayesian computation (ABC) estimation of parameters of the Durrett-Schweinsberg coalescent (Durrett and Schweinsberg, 2005) (the selective sweepstakes model) for various functional regions of the genome. For each category from top to bottom the mean, the median, and the mode of the ABC-posterior distribution of the compound parameter $c \in \Theta_{DS}$ using SFSs computed from likelihood GL1 and GL2 for the South/south-east and Þistilfjörður populations. The different functional groups are fourfold degenerate sites (4Dsites), intronic sites, non-selection sites (sites more than 500 kb away from peaks of selection scan, SM Fig. 8), intergenic sites, promoters, exons, 3'-UTR sites (3-UTRs), and 5'-UTR sites (5-UTRs), regions ranging from less to more constrained by selection.

Figure 6: Genomic scans of selective sweeps by two methods. a Manhattan plots from detection of selective sweeps using RAiSD Alachiotis and Pavlidis (2018) and by using **b** OmegaPlus Alachiotis et al. (2012). Chromosomes with alternating colors. Indications of selective sweeps are found throughout each chromosome.

Materials and Methods

609

Sampling

610

We randomly sampled adults from our extensive tissue collection (Árnason and Halldórsdóttir, 2015; 611
Halldórsdóttir and Árnason, 2015) from two localities in Iceland, the South/south-east coast ($n = 68$) 612
and Þistilfjörður on the north-east coast ($n = 71$) (SM Fig. 1). The Icelandic Marine Research collected 613
the fish during spring spawning surveys (Árnason and Halldórsdóttir, 2015). All fish selected here had 614
running gonads (eggs and milt with maturity index 3), indicating that they were spawning at the capture 615
locality. 616

Ethics statement

617

The Icelandic Committee for Welfare of Experimental Animals, Chief Veterinary Officer at the Ministry 618
of Agriculture, Reykjavik, Iceland has determined that the research conducted here is not subject to the 619
laws concerning the Welfare of Experimental Animals (The Icelandic Law on Animal Protection, Law 620
15/1994, last updated with Law 157/2012). DNA was isolated from tissue taken from dead fish on 621
board research vessels. Fish were collected during the yearly surveys of the Icelandic Marine Research 622
Institute (and other such institutes as already described (Árnason and Halldórsdóttir, 2019)). All 623
research plans and sampling of fish, including the ones for the current project, have been evaluated and 624
approved by the Marine Research Institute Board of Directors, which serves as an ethics board. The 625
Board comprises the Director-General, Deputy Directors for Science and Finance and heads of the 626
Marine Environment Section, the Marine Resources Section, and the Fisheries Advisory Section. 627

Molecular analysis

628

We shipped tissue samples of cod from the South/south-east coast population of Iceland to Omega 629
Bioservices. Omega Bioservices isolated genomic DNA using the E-Z 96 Tissue DNA Kit (Omega 630
Bitek), made picogreen DNA sample quality checks, made sequencing libraries using Kapa Hyper 631
Prep WGS (Kapa Biosystems), used Tapestation (Agilent Technologies) for sizing libraries, and 632
sequenced libraries on a 4000/X Ten Illumina platform with a 2×150 bp read format, and returned 633
demultiplexed fastq files. 634

Genomic DNA was isolated from the tissue samples of Þistilfjörður population using the E-Z 96 Tissue 635
DNA Kit (Omega Bitek) according to the manufacturer's recommendation. The DNA was normalized 636
with elution buffer to 10 ng/ul. The normalized DNA was analyzed at the Bauer Core of Harvard 637
University. According to the manufacturer's recommendation, the Bauer Core used the Kapa HyperPrep 638
Plus kit (Kapa Biosystems) for enzymatic DNA fragmentation and adapter ligation, except that the 639
reaction volume was 1/4 of the recommended volume. The target insert size was 350 base pairs (bp) 640
with a resulting average of 487 bp. The libraries were indexed using IDT (Integrated DNA 641
Technologies) unique dual 8 bp indexes for Illumina. The Core uses Tapestation (Agilent Technologies) 642

and Picogreen qPCR for sizing and quality checks. Multiplexed libraries were sequenced on NovaSeq (Illumina) S4 lanes at the Broad Institute with a 2×150 bp read format, and demultiplexed fastq files were returned. 643
644
645

Bioinformatic analysis 646

The sequencing centers returned de-multiplexed fastq files for different runs of each individual. Data processing followed the Genome Analysis Toolkit (GATK) best practices (Auwer et al., 2013) as implemented in the fastq_to_vcf pipeline of Alison Shultz (github.com/ajshultz/comp-pop-gen). Using the pipeline the raw reads were adapter trimmed using NGmerge (Gaspar, 2018), the trimmed fastq files aligned to the gadMor3.0 chromosome-level reference genome assembly (NCBI accession ID: GCF_902167405.1) using bwa mem (Li and Durbin, 2009), and the resulting bam files deduplicated, sorted, and indexed with gatk (Auwer et al., 2013). 647
648
649
650
651
652
653
654

The deduplicated bam files were used for population genetic analysis with ANGSD (Korneliussen et al., 2014). Outgroup fasta sequences were generated with -dofasta 3, which chooses a base using an effective depth algorithm (Wang et al., 2013). A high coverage specimen (Árnason and Halldórsdóttir, 2019) from each of Pacific cod *Gadus macrocephalus* (labeled Gma), walleye pollock, also from the Pacific, *G. chalcogrammus* (labeled Gch), Greenland cod *G. ogac* (labeled Gog), and Arctic cod *Boreogadus saida* (labeled Bsa) were each taken as an outgroup. To estimate site frequency spectra the site allele frequency likelihoods based on genotype likelihoods were estimated using ANGSD and polarized with the respective outgroup using the -anc flag with -doSaf 1 and -doMajorMinor 1 for both genotype likelihoods 1 and 2 (the SAMtools genotype likelihood, -GL 1 and the GATK genotype likelihood, -GL 2). Filtering was done on sequence and mapping quality -minMapQ 30 -minQ 20, indel realignment -baq 1 -C 50, quality checks -remove_bads 1 -uniqueOnly 1 -only_proper_pairs 1 -skipTriallelic 1, and finally the minimum number of individuals was set to the sample size (e.g. -minInd 68) so that only sites present in all individuals are selected. Errors at very low-coverage sites maybe called as heterozygotes. Similarly, sites with very high-coverage (more than twice or three times the average) may represent alignment issues of duplicated regions such that paralogous sites will be called as heterozygous. We addressed the issues of coverage with two steps. First, we screened out individuals with an average genome-wide coverage less than $10 \times$ giving samples sizes of $n = 68$ and $n = 71$ for the South/south-east and the Þistilfjörður populations, respectively. This resulted in an average coverage of $16 \times$ and $12 \times$ for the South/south-east and the Þistilfjörður populations, respectively. Second, we determined the overall coverage of all sites in the genome that passed the quality filtering. We then used the minimum and maximum of the boxplot statistics ($Q_1 - 1.5 \text{IQR}$ and $Q_3 + 1.5 \text{IQR}$, which represent roughly $\mu \pm 2.7\sigma$ for a normal distribution) to filter sites using the ANGSD flags -setMinDepth $Q_1 - 1.5 \text{IQR}$ and -setMaxDepth $1.5Q_3 + \text{IQR}$ thus removing sites with a boxplot outlier coverage. We did this 655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

filtering separately for each chromosome. All our site frequency spectra are estimated using these flags. 679
The site frequency spectra of the full data for each chromosome were then generated with `realSFS` 680
using default flags. Site frequency spectra for genomic regions used the `-sites` flag of `realSFS` 681
with the sample allele frequency files (`saf`) files estimated with the above filtering and was thus based 682
on the same filtering. 683

We use the logit transformation, the log of the odds ratio $\log(p/(1-p))$, to analyse the site frequency 684
spectra. We transform both the derived allele frequency and the normalized site frequency. Under this 685
transformation, the overall shape of the site frequency spectrum (L-shape, U-shape, V-shape) is 686
invariant. 687

To investigate divergence among gadid taxa we used `ANGSD` to generate beagle likelihoods (`-GL 1`, 688
`-doGlf 2`) and the quality filtering above. We then used `ngsDist` (Vieira et al., 2015) to estimate 689
the p -distance as nucleotide substitutions per nucleotide site between Atlantic cod and walleye pollock. 690
The number of sites (`-n_sites`) was set to the number of variable sites and the total number of sites 691
(`-tot_sites`) was set equal to the number of sites that passed the quality filtering in the estimation of 692
the site frequency spectra above (SM Table 6). A tree (SM Fig. 21) was generated with `fastME` (Lefort 693
et al., 2015) and displayed using `ggtree` (Yu et al., 2016). 694

To evaluate deviations from neutrality, we used `ANGSD` to estimate the neutrality test statistics Tajima's 695
 D (Tajima, 1989), Fu and Li's D (Fu and Li, 1993), Fay and Wu's H (Fay and Wu, 2000), and Zeng's 696
 E (Zeng et al., 2006) in sliding windows (window size 100 kb with 20 kb step size). 697

We generated `vcf` files for the South/south-east population using `GATK` (Auwera et al., 2013). We used 698
the genomic features files (`gt.f`) of the `Gadmor3` assembly to extract sites belonging to different 699
functional groups. We used `ReSeqTools` (He et al., 2013) to extract fourfold degenerate sites, 700
`bedtools` (Quinlan and Hall, 2010) to extract exon and intron sites using genomic feature files (`gt.f`), 701
and we used the `GenomicFeatures` Bioconductor package (Lawrence et al., 2013) for 702
extracting other functional regions. We then used the `-sites` flag of `realSFS` to estimate site 703
frequency spectra from the sample allele frequency (`saf`) files of the entire data for each chromosome, 704
thus keeping the quality and coverage filtering applied to the full data (SM). We used `PopLDdecay` 705
(Zhang et al., 2018) to estimate the decay of linkage disequilibrium. To perform the 706
McDonald-Kreitman test of selection (McDonald and Kreitman, 1991) we used `SnpEff` (Cingolani 707
et al., 2012) to estimate the number of polymorphic non-synonymous and synonymous (P_n and P_s) 708
sites of protein-coding genes. To estimate the number of fixed non-synonymous and synonymous (D_n 709
and D_s) sites, we used a single individual with the highest coverage ($32\times$) from the South/south-east 710
population and a single high coverage ($31\times$) Pacific cod individual and counted homozygous sites. We 711
used the neutrality index $NI = (P_n/P_s)/D_n/D_s$ (Rand and Kann, 1996) transformed as $-\log NI$ as 712
an index of selection with negative values implying negative (purifying and background) selection and 713
positive values implying positive selection (selective sweeps). 714

We did a principal components (PC) based scan of selection using `PCangsd` (Meisner and 715

Albrechtsen, 2018) (`python pcangsd.py -selection`). We then removed regions of 500 kb on either side of selective peaks that exceeded $\log_{10} p \geq 4$ (SM Fig. 8) to define regions of no selection that we compared with other genomic regions (e.g. Fig. 5). 716
717
718

We used OmegaPlus (Alachiotis et al., 2012) and RAiSD (Alachiotis and Pavlidis, 2018) scanning for selective sweeps genome-wide. Both methods use local linkage disequilibrium to detect sweeps 719
720
(Nielsen, 2005) and in addition RAiSD uses a local reduction in levels of polymorphism and shifts in 721
the frequencies of low- and high-frequency derived alleles affecting respectively the left and right tails of 722
the site frequency spectrum. 723

Methods for analyzing coalescent models 724

This section describes the model fitting procedure we used for each family of models discussed in 725
SM 1.3. Where possible, we have resorted to documented state-of-the-art simulators and inference 726
packages, though that was not possible in all cases, particularly for the Durrett-Schweinsberg model. A 727
description of various terms is given in SM Table 7. All custom code has been made available via 728
GitHub, with links below. 729

Kingman coalescent 730

There are numerous, well-documented packages for inferring population size profiles from 731
whole-genome data under the Kingman coalescent, typically relying on the sequentially Markovian 732
coalescent approximation (McVean and Cardin, 2005). We used `scm++` 733
(<https://github.com/popgenmethods/smcpp>) (Terhorst et al., 2016) to produce best-fit 734
profiles. We also used the stairway plot 735
(<https://github.com/xiaoming-liu/stairway-plot-v2>) (Liu and Fu, 2015, 2020) 736
that uses the site frequency spectra for a model-flexible demographic inference. Both packages were 737
installed according to their respective documentations, and run using default settings. To treat runs of 738
homozygosity, which may represent centromeric regions, as missing, we set the flag 739
-missing-cutoff 10 in `smc++` runs. 740

Ξ -Beta($2 - \alpha, \alpha$) coalescent 741

At the time of writing there are no off-the-shelf inference packages capable of estimating α or a 742
population size profile from whole-genome data under the Ξ -Beta($2 - \alpha, \alpha$) coalescent. However, 743
synthetic data from the model can be simulated using `msprime` (Kelleher et al., 2016). Hence, we fit 744
our model using approximate Bayesian computation (ABC), in which model fitting is accomplished by 745
comparing summary statistics of simulated and observed data under various parameters. 746

We used the logit transform of the normalized site frequency spectrum (SFS) as our summary statistic. 747
The `msprime` package is not well-optimized for simulating multiple chromosomes, so we used 748

chromosome 4 as our observed data. To simulate observations, we set the chromosome length to 3.5 megabases, and used respective per-site per-generation mutation and recombination probabilities of 10^{-7} and 10^{-8} respectively.

A proposed parameter combination was accepted whenever the simulated statistic was within a specified tolerance of the observed statistic. To avoid tuning the tolerance and other hyperparameters, and to focus computational effort on regions of Θ_B of good model fit automatically, we used the adaptive ABC-MCMC method of (Vihola and Franks, 2020) with a target acceptance rate of 10%, which the authors recommend.

Durrett-Schweinsberg coalescent

To our knowledge, there are no off-the-shelf inference packages for the Durrett-Schweinsberg model, and also no packages for simulating it. Hence we implemented a basic, single locus simulator in C++, based on the exact rejection sampling mechanism which is used in both the `msprime` and `Beta-Xi-Sim` simulation packages (see the Appendix in (Koskela, 2018)). Since the Durrett-Schweinsberg coalescent is a single locus model, we computed an observed site frequency spectra separately for 25kb lengths of genome separated by 500kb gaps. This was done across all 19 non-inversion chromosomes, and the mean of the resulting ensemble was taken to be the observed SFS. Simulated values were calculated as the mean of 10,000 independent, single-locus replicates. This number was found to be high enough in trial runs to avoid zero entries in the averaged SFS, and hence infinite values in the logit transform.

Then we used the same ABC-MCMC pipeline outlined above for the Ξ -Beta($2 - \alpha, \alpha$) coalescent to infer an approximate posterior distribution of values for the compound parameter c of the Durrett-Schweinsberg model.

Computations

The computations in this paper were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University. Some computations were run on the Mimir bioinformatics server and the Assa bioinformatics computer at the University of Iceland.

Acknowledgments

We thank John Wakeley and W. Stewart Grant for comments on the manuscript and Kristján Kristinsson and the Icelandic Marine Research Institute for help in sampling. **Funding:** The work was supported by an Icelandic Research Fund Grant of Excellence no. 185151-051 to EÁ, KH, Alison Etheridge, Wolfgang Stephan, and BE. BE also acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project number 273887127 through DFG grant STE 325/17 to Wolfgang Stephan through DFG Priority Program (SPP) 1819: Rapid

evolutionary adaptation, a DFG SPP1819 start-up module grant to JK, Maite Wilke Berenguer, and BE, 782
and JK acknowledges financial support from Engineering and Physical Sciences Research Council 783
(EPSRC) grants EP/R044732/1 and EP/V049208/1. **Author contributions:** Design of the experiment: 784
all authors. Molecular work, data acquisition, bioinformatic work, estimation of the site-frequency 785
spectra: EÁ and KH. Data analysis: all authors. Writing manuscript: all authors. **Competing interests:** 786
The authors declare that they have no competing interests. 787

Data and materials availability 788

All data needed to evaluate the conclusions of the paper are presented in the paper and/or the 789
supplementary materials. The `bam` files of the whole genome sequencing of each individual aligned to 790
the Gadmor3 reference genome (NCBI accession ID: GCF_902167405.1) are available from the NCBI 791
SRA Sequence Read Archive under accession number BioProject ID: PRJNA663624 at time of 792
publication. 793

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) 794
licence to any Author Accepted Manuscript version arising from this submission. 795

Code availability 796

Simulations of background selection were done with `SLiM` 3 (Haller and Messer, 2019) available at 797
<https://messerlab.org/slim/>. Estimates of population size histories for the Kingman 798
coalescent were produced using the 799
`stairwayplot` (Liu and Fu, 2015; Liu, 2020) and `smc++` (Terhorst et al., 2016) available via Github 800
at <https://github.com/xiaoming-liu/stairway-plot-v2> and 801
<https://github.com/popgenmethods/smcpp> respectively. Based on the estimated 802
population size histories site frequency spectra under the Kingman and the Ξ -Beta($2 - \alpha, \alpha$) 803
coalescents were simulated using `msprime`, available via GitHub at 804
<https://github.com/tskit-dev/msprime>, with documentation at 805
<https://tskit.dev/msprime/docs/stable/>. Our `msprime` simulations also make use of 806
the `tskit` library, available via GitHub at <https://github.com/tskit-dev/tskit>, with 807
documentation at <https://tskit.dev/tskit/docs/>. To our knowledge, no prior 808
implementation of the Durrett-Schweinsberg coalescent is available. Hence, we wrote a simulator, 809
which is available via GitHub at <https://github.com/JereKoskela/ds-tree>. This 810
repository also contains documentation of the Durrett-Schweinsberg implementation, as well as Python 811
and shell scripts for the i) ABC pipelines we used to conduct model fitting for both the Ξ -Beta($2 - \alpha, \alpha$) 812
and Durrett-Schweinsberg coalescents, and ii) the simulation pipelines for sampling site frequency 813
spectra under the best-fit Kingman, Ξ -Beta($2 - \alpha, \alpha$), and Durrett-Schweinsberg coalescents. C++ 814

code and python scripts implementing the sampling schemes described in 815
<https://github.com/eldonb/coalescents>. C code using recursions (Birkner et al., 2013a) 816
for computing the exact expected branch length spectrum for Examples 2.3 and 2.4 of the 817
Durrett-Schweinsberg model (Durrett and Schweinsberg, 2005) is available at 818
https://github.com/eldonb/Durrett_Schweinsberg_Expected_SFS. 819

References 820

N. Alachiotis, A. Stamatakis, and P. Pavlidis. OmegaPlus: a scalable tool for rapid detection of selective 821
sweeps in whole-genome datasets. *Bioinformatics*, 28(17):2274–2275, July 2012. doi: 822
10.1093/bioinformatics/bts419. URL 823
<https://doi.org/10.1093/bioinformatics/bts419>. 824

Nikolaos Alachiotis and Pavlos Pavlidis. RAiSD detects positive selection based on multiple signatures 825
of a selective sweep and SNP vectors. *Communications Biology*, 1(1), June 2018. doi: 826
10.1038/s42003-018-0085-8. URL <https://doi.org/10.1038/s42003-018-0085-8>. 827

Einar Árnason. Mitochondrial cytochrome *b* DNA variation in the high fecundity Atlantic cod: 828
Trans-Atlantic clines and shallow gene-genealogy. *Genetics*, 166:1871–1885, 2004. doi: 829
10.1534/genetics.166.4.1871. URL <https://doi.org/10.1534/genetics.166.4.1871>. 830

Einar Árnason and Katrín Halldórsdóttir. Nucleotide variation and balancing selection at the *Ckma* gene 831
in Atlantic cod: analysis with multiple merger coalescent models. *PeerJ*, 3:e786, 2015. doi: 832
10.7717/peerj.786. URL <http://dx.doi.org/10.7717/peerj.786>. 833

Einar Árnason and Katrín Halldórsdóttir. Codweb: Whole-genome sequencing uncovers extensive 834
reticulations fueling adaptation among Atlantic, Arctic, and Pacific gadids. *Science Advances*, 5(3): 835
eaat8788, March 2019. doi: 10.1126/sciadv.aat8788. URL 836
<https://doi.org/10.1126/sciadv.aat8788>. 837

Geraldine A. Auwera, Mauricio O. Carneiro, Christopher Hartl, Ryan Poplin, Guillermo del Angel, 838
Ami Levy-Moonshine, Tadeusz Jordan, Khalid Shakir, David Roazen, Joel Thibault, Eric Banks, 839
Kiran V. Garimella, David Altshuler, Stacey Gabriel, and Mark A. DePristo. From FastQ data to 840
high-confidence variant calls: The genome analysis toolkit best practices pipeline. *Current Protocols in Bioinformatics*, 43(1), October 2013. doi: 10.1002/0471250953.bi1110s43. URL 841
<https://doi.org/10.1002/0471250953.bi1110s43>. 842

N. H. Barton. The effect of hitch-hiking on neutral genealogies. *Genetical Research*, 72(2):123–133, 843
October 1998. doi: 10.1017/s0016672398003462. URL 844
<https://doi.org/10.1017/s0016672398003462>. 845

Franz Baumdicker, Gertjan Bisschop, Daniel Goldstein, Graham Gower, Aaron P Ragsdale, Georgia Tsambos, Sha Zhu, Bjarki Eldon, E Castedo Ellerman, Jared G Galloway, Ariella L Gladstein, Gregor Gorjanc, Bing Guo, Ben Jeffery, Warren W Kretzschmar, Konrad Lohse, Michael Matschiner, Dominic Nelson, Nathaniel S Pope, Consuelo D Quinto-Cortés, Murillo F Rodrigues, Kumar Saunack, Thibaut Sellinger, Kevin Thornton, Hugo van Kemenade, Anthony W Wohns, Yan Wong, Simon Gravel, Andrew D Kern, Jere Koskela, Peter L Ralph, and Jerome Kelleher. Efficient ancestry and mutation simulation with msprime 1.0. *Genetics*, December 2021. doi: 10.1093/genetics/iyab229. URL <https://doi.org/10.1093/genetics/iyab229>. 847

Paul R. Berg, Bastiaan Star, Christophe Pampoulie, Marte Sodeland, Julia M. I. Barth, Halvor Knutsen, Kjetill S. Jakobsen, and Sissel Jentoft. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. *Scientific Reports*, 6:23246, mar 2016. doi: 10.1038/srep23246. URL <http://dx.doi.org/10.1038/srep23246>. 855

M Birkner, J Blath, and M Steinrücken. Analysis of DNA sequence variation within marine species using Beta-coalescents. *Theoretical Population Biology*, 87:15–24, 2013a. doi: 10.1016/j.tpb.2013.01.007. URL <https://doi.org/10.1016/j.tpb.2013.01.007>. 859

Matthias Birkner, Jochen Blath, and Bjarki Eldon. An ancestral recombination graph for diploid populations with skewed offspring distribution. *Genetics*, 193(1):255–290, January 2013b. doi: 10.1534/genetics.112.144329. URL <https://doi.org/10.1534/genetics.112.144329>. 862

Matthias Birkner, Huili Liu, and Anja Sturm. Coalescent results for diploid exchangeable population models. *Electronic Journal of Probability*, 23(0), 2018. doi: 10.1214/18-ejp175. URL <https://doi.org/10.1214/18-ejp175>. 866

Jochen Blath, Mathias Christensen Cronjäger, Bjarki Eldon, and Matthias Hammer. The site-frequency spectrum associated with ξ -coalescents. *Theoretical Population Biology*, 110:36–50, 2016. doi: 10.1016/j.tpb.2016.04.002. URL <https://doi.org/10.1016/j.tpb.2016.04.002>. 869

Brian Charlesworth. Why we are not dead one hundred times over. *Evolution*, 67(11):3354–3361, July 2013. doi: 10.1111/evo.12195. URL <https://doi.org/10.1111/evo.12195>. 872

Deborah Charlesworth. Balancing selection and its effects on sequences in nearby genome regions. *PLoS Genetics*, 2(4):e64, April 2006. doi: 10.1371/journal.pgen.0020064. URL <https://doi.org/10.1371/journal.pgen.0020064>. 874

P. Cingolani, A. Platts, M. Coon, T. Nguyen, L. Wang, S.J. Land, X. Lu, and D.M. Ruden. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w^{1118} ; *iso-2*; *iso-3*. *Fly*, 6(2):80–92, 2012. 877

Graham Coop and Peter Ralph. Patterns of neutral diversity under general models of selective sweeps. *Genetics*, 192(1):205–224, September 2012. doi: 10.1534/genetics.112.141861. URL <https://doi.org/10.1534/genetics.112.141861>. 880
881
882

D. H. Cushing. The regularity of the spawning season of some fishes. *ICES Journal of Marine Science*, 33(1):81–92, November 1969. doi: 10.1093/icesjms/33.1.81. URL <https://doi.org/10.1093/icesjms/33.1.81>. 883
884
885

Ivana Cvijović, Benjamin H Good, and Michael M Desai. The effect of strong purifying selection on genetic diversity. *Genetics*, 209(4):1235–1278, May 2018. doi: 10.1534/genetics.118.301058. URL <https://doi.org/10.1534/genetics.118.301058>. 886
887
888

Robert R Dickson, Jens Meincke, Svend-Aage Malmberg, and Arthur J Lee. The “great salinity anomaly” in the Northern North Atlantic 1968–1982. *Progress in Oceanography*, 20(2):103–151, January 1988. doi: 10.1016/0079-6611(88)90049-3. URL [https://doi.org/10.1016/0079-6611\(88\)90049-3](https://doi.org/10.1016/0079-6611(88)90049-3). 889
890
891
892

P Donnelly and T G Kurtz. Particle representations for measure-valued population models. *Annals of Probability*, 27:166–205, 1999. doi: 10.1214/aop/1022677258. URL <http://doi.org/10.1214/aop/1022677258>. 893
894
895

Rick Durrett and Jason Schweinsberg. A coalescent model for the effect of advantageous mutations on the genealogy of a population. *Stochastic Processes and their Applications*, 115(10):1628–1657, October 2005. doi: 10.1016/j.spa.2005.04.009. URL <https://doi.org/10.1016/j.spa.2005.04.009>. 896
897
898
899

B. Eldon, M. Birkner, J. Blath, and F. Freund. Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents? *Genetics*, 199(3):841–856, jan 2015. doi: 10.1534/genetics.114.173807. URL <http://dx.doi.org/10.1534/genetics.114.173807>. 900
901
902
903

Bjarki Eldon. Evolutionary genomics of high fecundity. *Annual Review of Genetics*, 54(1):213–236, November 2020. doi: 10.1146/annurev-genet-021920-095932. URL <https://doi.org/10.1146/annurev-genet-021920-095932>. 904
905
906

Bjarki Eldon and John Wakeley. Coalescent processes when the distribution of offspring number among individuals is highly skewed. *Genetics*, 172(4):2621–2633, February 2006. doi: 10.1534/genetics.105.052175. URL <https://doi.org/10.1534/genetics.105.052175>. 907
908
909
910

Akira Endo, Sam Abbott, Adam J. Kucharski, and Sebastian Funk and. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. *Wellcome Open Research*, 5:67, July 911
912

2020. doi: 10.12688/wellcomeopenres.15842.3. URL 913
<https://doi.org/10.12688/wellcomeopenres.15842.3>. 914

Rui Faria, Kerstin Johannesson, Roger K. Butlin, and Anja M. Westram. Evolving inversions. *Trends in Ecology & Evolution*, 34(3):239–248, March 2019. doi: 10.1016/j.tree.2018.12.005. URL 915
<https://doi.org/10.1016/j.tree.2018.12.005>. 916
917

Justin C Fay and Chung-I Wu. Hitchhiking under positive Darwinian selection. *Genetics*, 155(3): 918
1405–1413, July 2000. doi: 10.1093/genetics/155.3.1405. URL 919
<https://doi.org/10.1093/genetics/155.3.1405>. 920

Joseph Felsenstein. On the biological significance of the cost of gene substitution. *The American Naturalist*, 105(941):1–11, January 1971. doi: 10.1086/282698. URL 921
<https://doi.org/10.1086/282698>. 922
923

R. A. Fisher. *The Genetical Theory of Natural Selection*. Clarendon Press, Oxford, 1930. 924

Fabian Freund. Cannings models, population size changes and multiple-merger coalescents. *Journal of Mathematical Biology*, 80(5):1497–1521, February 2020. doi: 10.1007/s00285-020-01470-5. URL 925
<https://doi.org/10.1007/s00285-020-01470-5>. 926
927

Fabian Freund, Elise Kerdoncuff, Sebastian Matuszewski, Marguerite Lapierre, Marcel Hildebrandt, 928
Jeffrey D. Jensen, Luca Ferretti, Amaury Lambert, Timothy B. Sackton, and Guillaume Achaz. 929
Interpreting the pervasive observation of U-shaped site frequency spectra. *BioRxiv*, April 2022. doi: 930
10.1101/2022.04.12.488084. URL <https://doi.org/10.1101/2022.04.12.488084>. 931

Y X Fu and W H Li. Statistical tests of neutrality of mutations. *Genetics*, 133(3):693–709, March 1993. 932
doi: 10.1093/genetics/133.3.693. URL 933
<https://doi.org/10.1093/genetics/133.3.693>. 934

Nicolas Galtier, Frantz Depaulis, and Nicholas H Barton. Detecting bottlenecks and selective sweeps 935
from DNA sequence polymorphism. *Genetics*, 155(2):981–987, June 2000. doi: 936
10.1093/genetics/155.2.981. URL <https://doi.org/10.1093/genetics/155.2.981>. 937

John M. Gaspar. NGmerge: Merging paired-end reads via novel empirically-derived models of 938
sequencing errors. *BMC Bioinformatics*, 19(1), December 2018. doi: 10.1186/s12859-018-2579-2. 939
URL <https://doi.org/10.1186/s12859-018-2579-2>. 940

Peter R. Grant and B. Rosemary Grant. *40 Years of Evolution: Darwin's Finches on Daphne Major Island*. Princeton University Press, Princeton, NJ, 2014. 941
942

John Burton Sanderson Haldane. The cost of natural selection. *Journal of Genetics*, 55:511–524, 1957. 943

Katrín Halldórsdóttir and Einar Árnason. Whole-genome sequencing uncovers cryptic and hybrid species among Atlantic and Pacific cod-fish. *bioRxiv*, 2015. doi: 10.1101/034926. URL <https://doi.org/10.1101/034926>. 944
945
946

Benjamin C Haller and Philipp W Messer. SLiM 3: Forward genetic simulations beyond the wright–fisher model. *Molecular Biology and Evolution*, 36(3):632–637, January 2019. doi: 10.1093/molbev/msy228. URL <https://doi.org/10.1093/molbev/msy228>. 947
948
949

W. He, S. Zhao, X. Liu, S. Dong, J. Lv, D. Liu, J. Wang, and Z. Meng. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis. *Genetics and Molecular Research*, 12(4):6275–6283, 2013. doi: 10.4238/2013.december.4.15. URL <https://doi.org/10.4238/2013.december.4.15>. 950
951
952
953

Dennis Hedgecock. Does variance in reproductive success limit effective population size of marine organisms? In A Beaumont, editor, *Genetics and Evolution of Aquatic Organisms*, pages 122–134. Chapman & Hall, London, 1994. 954
955
956

Dennis Hedgecock and Alexander I Pudovkin. Sweepstakes reproductive success in highly fecund marine fish and shellfish: A review and commentary. *Bulletin of Marine Science*, 87(4):971–1002, October 2011. doi: 10.5343/bms.2010.1051. URL <https://doi.org/10.5343/bms.2010.1051>. 957
958
959
960

G. M. Hewitt. Genetic consequences of climatic oscillations in the Quaternary. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 359(1442):183–195, February 2004. doi: 10.1098/rstb.2003.1388. URL <https://doi.org/10.1098/rstb.2003.1388>. 961
962
963
964

Jeffrey A. Hutchings. Collapse and recovery of marine fishes. *Nature*, 406(6798):882–885, August 2000. doi: 10.1038/35022565. URL <https://doi.org/10.1038/35022565>. 965
966

K K Irwin, S Laurent, S Matuszewski, S Vuilleumier, L Ormond, H Shim, C Bank, and J D Jensen. On the importance of skewed offspring distributions and background selection in virus population genetics. *Heredity*, 117(6):393–399, September 2016. doi: 10.1038/hdy.2016.58. URL <https://doi.org/10.1038/hdy.2016.58>. 967
968
969
970

Paul Jay, Mathieu Chouteau, Annabel Whibley, Héloïse Bastide, Hugues Parrinello, Violaine Llaurens, and Mathieu Joron. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. *Nature Genetics*, 53(3):288–293, January 2021. doi: 10.1038/s41588-020-00771-1. URL <https://doi.org/10.1038/s41588-020-00771-1>. 971
972
973
974

Mamoru Kato, Daniel A. Vasco, Ryuichi Sugino, Daichi Narushima, and Alexander Krasnitz. Sweepstake evolution revealed by population-genetic analysis of copy-number alterations in single 975
976

genomes of breast cancer. *Royal Society Open Science*, 4(9):171060, September 2017. doi: 977
10.1098/rsos.171060. URL <https://doi.org/10.1098/rsos.171060>. 978

Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coalescent simulation and 979
genealogical analysis for large sample sizes. *PLoS Computational Biology*, 12(5):1–22, 05 2016. doi: 980
10.1371/journal.pcbi.1004842. URL 981
<https://doi.org/10.1371/journal.pcbi.1004842>. 982

Yuseob Kim. Allele frequency distribution under recurrent selective sweeps. *Genetics*, 172(3): 983
1967–1978, March 2006. doi: 10.1534/genetics.105.048447. URL 984
<https://doi.org/10.1534/genetics.105.048447>. 985

Yuseob Kim and Wolfgang Stephan. Selective sweeps in the presence of interference among partially 986
linked loci. *Genetics*, 164(1):389–398, 2003. 987

Motoo Kimura. Evolutionary rate at the molecular level. *Nature*, 217(5129):624–626, February 1968. 988
doi: 10.1038/217624a0. URL <https://doi.org/10.1038/217624a0>. 989

Jack Lester King. Continuously distributed factors affecting fitness. *Genetics*, 55(3):483–492, March 990
1967. doi: 10.1093/genetics/55.3.483. URL 991
<https://doi.org/10.1093/genetics/55.3.483>. 992

J.F.C. Kingman. The coalescent. *Stochastic Processes and their Applications*, 13(3):235–248, 993
September 1982. doi: 10.1016/0304-4149(82)90011-4. URL 994
[https://doi.org/10.1016/0304-4149\(82\)90011-4](https://doi.org/10.1016/0304-4149(82)90011-4). 995

Tina Graceline Kirubakaran, Harald Grove, Matthew P. Kent, Simen R. Sandve, Matthew Baranski, 996
Torfinn Nome, Maria Cristina De Rosa, Benedetta Righino, Torild Johansen, Håkon Otterå, Anna 997
Sonesson, Sigbjørn Lien, and Øivind Andersen. Two adjacent inversions maintain genomic 998
differentiation between migratory and stationary ecotypes of Atlantic cod. *Molecular Ecology*, 2016: 999
2130–2143, feb 2016. doi: 10.1111/mec.13592. URL 1000
<http://dx.doi.org/10.1111/mec.13592>. 1001

Thorfinn Sand Korneliussen, Anders Albrechtsen, and Rasmus Nielsen. ANGSD: Analysis of next 1002
generation sequencing data. *BMC Bioinformatics*, 15(1), nov 2014. doi: 1003
10.1186/s12859-014-0356-4. URL <http://dx.doi.org/10.1186/s12859-014-0356-4>. 1004

Jere Koskela. Multi-locus data distinguishes between population growth and multiple merger 1005
coalescents. *Statistical Applications in Genetics and Molecular Biology*, 17(3), June 2018. doi: 1006
10.1515/sagmb-2017-0011. URL <https://doi.org/10.1515/sagmb-2017-0011>. 1007

Jere Koskela and Maite Wilke Berenguer. Robust model selection between population growth and multiple merger coalescents. *Mathematical Biosciences*, 311:1–12, May 2019. doi: 10.1016/j.mbs.2019.03.004. URL <https://doi.org/10.1016/j.mbs.2019.03.004>. 1008
1009
1010

Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyou, Marc Carlson, Robert Gentleman, Martin T. Morgan, and Vincent J. Carey. Software for computing and annotating genomic ranges. *PLoS Computational Biology*, 9(8):e1003118, August 2013. doi: 10.1371/journal.pcbi.1003118. URL <https://doi.org/10.1371/journal.pcbi.1003118>. 1011
1012
1013
1014

Vincent Lefort, Richard Desper, and Olivier Gascuel. FastME 2.0: Comprehensive, accurate, and fast distance-based phylogeny inference program: Table 1. *Molecular Biology and Evolution*, 32(10): 2798–2800, June 2015. doi: 10.1093/molbev/msv150. URL <https://doi.org/10.1093/molbev/msv150>. 1015
1016
1017
1018

H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*, 25(14):1754–1760, may 2009. doi: 10.1093/bioinformatics/btp324. URL <http://dx.doi.org/10.1093/bioinformatics/btp324>. 1019
1020
1021

Yong Fuga Li, James C. Costello, Alisha K. Holloway, and Matthew W. Hahn. “reverse ecology” and the power of population genomics. *Evolution*, 62(12):2984–2994, December 2008. doi: 10.1111/j.1558-5646.2008.00486.x. URL <https://doi.org/10.1111/j.1558-5646.2008.00486.x>. 1022
1023
1024
1025

Xiaoming Liu and Yun-Xin Fu. Exploring population size changes using SNP frequency spectra. *Nature Genetics*, 47(5):555–559, April 2015. doi: 10.1038/ng.3254. URL <https://doi.org/10.1038/ng.3254>. 1026
1027
1028

Xiaoming Liu and Yun-Xin Fu. Stairway plot 2: Demographic history inference with folded SNP frequency spectra. *Genome Biology*, 21(1), November 2020. doi: 10.1186/s13059-020-02196-9. URL <https://doi.org/10.1186/s13059-020-02196-9>. 1029
1030
1031

Sebastian Matuszewski, Marcel E. Hildebrandt, Guillaume Achaz, and Jeffrey D. Jensen. Coalescent processes with skewed offspring distributions and nonequilibrium demography. *Genetics*, 208(1): 323–338, November 2017. doi: 10.1534/genetics.117.300499. URL <https://doi.org/10.1534/genetics.117.300499>. 1032
1033
1034
1035

John H. McDonald and Martin Kreitman. Adaptive protein evolution at the *Adh* locus in *Drosophila*. *Nature*, 351(6328):652–654, June 1991. doi: 10.1038/351652a0. URL <https://doi.org/10.1038/351652a0>. 1036
1037
1038

Gilean A.T McVean and Niall J Cardin. Approximating the coalescent with recombination. 1039
Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1459):1387–1393, July 1040
2005. doi: 10.1098/rstb.2005.1673. URL <https://doi.org/10.1098/rstb.2005.1673>. 1041

Jonas Meisner and Anders Albrechtsen. Inferring population structure and admixture proportions in low 1042
depth NGS data. *Genetics*, 2018. ISSN 0016-6731. doi: 10.1534/genetics.118.301336. URL <http://www.genetics.org/content/early/2018/08/21/genetics.118.301336>. 1043
<https://doi.org/10.1534/genetics.118.301336>. 1044

F. Menardo, S. Gagneux, and F. Freund. Multiple merger genealogies in outbreaks of *Mycobacterium* 1045
tuberculosis. *BioRxive*, December 2019. doi: 10.1101/2019.12.21.885723. URL 1046
<https://doi.org/10.1101/2019.12.21.885723>. 1047

M Möhle and S Sagitov. Coalescent patterns in diploid exchangeable population models. *Journal of* 1048
Mathematical Biology, 47:337–352, 2003. doi: 10.1007/s00285-003-0218-6. URL 1049
<http://doi.org/10.1007/s00285-003-0218-6>. 1050

R. A. Neher and O. Hallatschek. Genealogies of rapidly adapting populations. *Proceedings of the* 1051
National Academy of Sciences, 110(2):437–442, December 2013. doi: 10.1073/pnas.1213113110. 1052
<https://doi.org/10.1073/pnas.1213113110>. 1053

Richard A. Neher. Genetic draft, selective interference, and population genetics of rapid adaptation. 1054
Annual Review of Ecology, Evolution, and Systematics, 44(1):195–215, November 2013. doi: 1055
10.1146/annurev-ecolsys-110512-135920. URL 1056
<https://doi.org/10.1146/annurev-ecolsys-110512-135920>. 1057

Masatoshi Nei, Takeo Maruyama, and Ranajit Chakraborty. The bottleneck effect and genetic variability 1058
in populations. *Evolution*, 29(1):1–10, March 1975. doi: 10.1111/j.1558-5646.1975.tb00807.x. URL 1059
<https://doi.org/10.1111/j.1558-5646.1975.tb00807.x>. 1060

Rasmus Nielsen. Molecular signatures of natural selection. *Annual Review of Genetics*, 39(1):197–218, 1061
December 2005. doi: 10.1146/annurev.genet.39.073003.112420. URL 1062
<https://doi.org/10.1146/annurev.genet.39.073003.112420>. 1063

Hiro-Sato Niwa, Kazuya Nashida, and Takashi Yanagimoto. Reproductive skew in Japanese sardine 1064
inferred from DNA sequences. *ICES Journal of Marine Science*, 2016:fsw070, may 2016. doi: 1065
10.1093/icesjms/fsw070. URL <http://dx.doi.org/10.1093/icesjms/fsw070>. 1066

Leonard Nunney. The influence of variation in female fecundity on effective population size. *Biological* 1067
Journal of the Linnean Society, 59(4):411–425, December 1996. doi: 1068
10.1111/j.1095-8312.1996.tb01474.x. URL 1069
<https://doi.org/10.1111/j.1095-8312.1996.tb01474.x>. 1070

David Pimentel, Lori Lach, Rodolfo Zuniga, and Doug Morrison. Environmental and economic costs of nonindigenous species in the United States. *BioScience*, 50(1):53, 2000. doi: 10.1641/0006-3568(2000)050[0053:eacon]2.3.co;2. URL [http://doi.org/10.1641/0006-3568\(2000\)050\[0053:eacon\]2.3.co;2](http://doi.org/10.1641/0006-3568(2000)050[0053:eacon]2.3.co;2). 1071
1072
1073
1074

J Pitman. Coalescents with multiple collisions. *Annals of Probability*, 27:1870–1902, 1999. doi: 10.1214/aop/1022874819. URL <https://doi.org/10.1214/aop/1022874819>. 1075
1076

Fanny Pouyet, Simon Aeschbacher, Alexandre Thiéry, and Laurent Excoffier. Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences. *eLife*, 7:e36317, aug 2018. ISSN 2050-084X. doi: 10.7554/eLife.36317. URL <https://doi.org/10.7554/eLife.36317>. 1077
1078
1079
1080

Molly Przeworski. The signature of positive selection at randomly chosen loci. *Genetics*, 160(3): 1179–1189, 2002. ISSN 0016-6731. URL <https://www.genetics.org/content/160/3/1179>. 1081
1082
1083

Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26(6):841–842, January 2010. doi: 10.1093/bioinformatics/btq033. URL <https://doi.org/10.1093/bioinformatics/btq033>. 1084
1085
1086

D. M. Rand and L. M. Kann. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from *Drosophila*, mice, and humans. *Molecular Biology and Evolution*, 13(6):735–748, July 1996. doi: 10.1093/oxfordjournals.molbev.a025634. URL <https://doi.org/10.1093/oxfordjournals.molbev.a025634>. 1087
1088
1089
1090

David Reznick. Hard and soft selection revisited: How evolution by natural selection works in the real world. *Journal of Heredity*, 107(1):3–14, January 2016. doi: 10.1093/jhered/esv076. URL <https://doi.org/10.1093/jhered/esv076>. 1091
1092
1093

Andrew M. Sackman, Rebecca B. Harris, and Jeffrey D. Jensen. Inferring demography and selection in organisms characterized by skewed offspring distributions. *Genetics*, 211(3):1019–1028, January 2019. doi: 10.1534/genetics.118.301684. URL <https://doi.org/10.1534/genetics.118.301684>. 1094
1095
1096
1097

S Sagitov. The general coalescent with asynchronous mergers of ancestral lines. *Journal of Applied Probability*, 36:1116–1125, 1999. doi: 10.1239/jap/1032374759. URL <https://doi.org/10.1239/jap/1032374759>. 1098
1099
1100

Ori Sargsyan and John Wakeley. A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms. *Theoretical Population Biology*, 74: 1101
1102

(1):104–114, August 2008. doi: 10.1016/j.tpb.2008.04.009. URL 1103
<https://doi.org/10.1016/j.tpb.2008.04.009>. 1104

J Schweinsberg. Coalescents with simultaneous multiple collisions. *Electronic Journal of Probability*, 5:1–50, 2000. doi: 10.1214/EJP.v5-68. URL <http://doi.org/10.1214/EJP.v5-68>. 1105
1106

Jason Schweinsberg. Coalescent processes obtained from supercritical Galton–Watson processes. 1107
Stochastic Processes and their Applications, 106(1):107–139, July 2003. doi: 1108
10.1016/s0304-4149(03)00028-0. URL 1109
[https://doi.org/10.1016/s0304-4149\(03\)00028-0](https://doi.org/10.1016/s0304-4149(03)00028-0). 1110

Jason Schweinsberg. Rigorous results for a population model with selection II: genealogy of the 1111
population. *Electronic Journal of Probability*, 22(0), 2017. doi: 10.1214/17-ejp58. URL 1112
<https://doi.org/10.1214/17-ejp58>. 1113

John A Sved, T Edward Reed, and Walter F Bodmer. The number of balanced polymorphisms that can 1114
be maintained in a natural population. *Genetics*, 55(3):469–481, March 1967. doi: 1115
10.1093/genetics/55.3.469. URL <https://doi.org/10.1093/genetics/55.3.469>. 1116

F Tajima. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. 1117
Genetics, 123(3):585–595, November 1989. doi: 10.1093/genetics/123.3.585. URL 1118
<https://doi.org/10.1093/genetics/123.3.585>. 1119

Jonathan Terhorst, John A Kamm, and Yun S Song. Robust and scalable inference of population history 1120
from hundreds of unphased whole genomes. *Nature Genetics*, 49(2):303–309, dec 2016. doi: 1121
10.1038/ng.3748. URL <https://doi.org/10.1038/ng.3748>. 1122

Andrea Timm and John Yin. Kinetics of virus production from single cells. *Virology*, 424(1):11–17, 1123
mar 2012. doi: 10.1016/j.virol.2011.12.005. URL 1124
<https://doi.org/10.1016%2Fj.virol.2011.12.005>. 1125

David L. J. Vendrami, Lloyd S. Peck, Melody S. Clark, Bjarki Eldon, Michael Meredith, and Joseph I. 1126
Hoffman. Sweepstake reproductive success and collective dispersal produce chaotic genetic 1127
patchiness in a broadcast spawner. *Science Advances*, 7(37), September 2021. doi: 1128
10.1126/sciadv.abj4713. URL <https://doi.org/10.1126/sciadv.abj4713>. 1129

Filipe G. Vieira, Florent Lassalle, Thorfinn S. Korneliussen, and Matteo Fumagalli. Improving the 1130
estimation of genetic distances from next-generation sequencing data. *Biological Journal of the 1131
Linnean Society, London*, 117:139–149, mar 2015. doi: 10.1111/bij.12511. URL 1132
<http://dx.doi.org/10.1111/bij.12511>. 1133

Matti Vihola and Jordan Franks. On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction. *Biometrika*, 107(2):381–395, February 2020. doi: 10.1093/biomet/asz078. URL <https://doi.org/10.1093/biomet/asz078>. 1134

S. Wahlund. Zuzammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. *Hereditas*, 11:65–106, 1928. 1135

John Wakeley. *Coalescent Theory: An Introduction*. Roberts & Company Publishers, Greenwood Village, CO, 2007. ISBN 978-0974707754. 1136

Bruce Wallace. Hard and soft selection revisited. *Evolution*, 29(3):465–473, September 1975. doi: 10.1111/j.1558-5646.1975.tb00836.x. URL <https://doi.org/10.1111/j.1558-5646.1975.tb00836.x>. 1137

Y. Wang, J. Lu, J. Yu, R. A. Gibbs, and F. Yu. An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data. *Genome Research*, 23(5):833–842, jan 2013. doi: 10.1101/gr.146084.112. URL <http://dx.doi.org/10.1101/gr.146084.112>. 1138

George C Williams. *Sex and Evolution*. Princeton University Press, Princeton, New Jersey, 1975. 1139

Erik S. Wright and Kalin H. Vetsigian. Stochastic exits from dormancy give rise to heavy-tailed distributions of descendants in bacterial populations. *Molecular Ecology*, 28(17):3915–3928, August 2019. doi: 10.1111/mec.15200. URL <https://doi.org/10.1111/mec.15200>. 1140

Sewall Wright. Evolution in Mendelian populations. *Genetics*, 16:97–159, 1931. 1141

Rolf J. F. Ypma, Hester Korthals Altes, Dick van Soolingen, Jacco Wallinga, and W. Marijn van Ballegooijen. A sign of superspreading in tuberculosis. *Epidemiology*, 24(3):395–400, May 2013. doi: 10.1097/ede.0b013e3182878e19. URL <https://doi.org/10.1097/ede.0b013e3182878e19>. 1142

Guangchuang Yu, David K. Smith, Huachen Zhu, Yi Guan, and Tommy Tsan-Yuk Lam. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology and Evolution*, 8(1):28–36, September 2016. doi: 10.1111/2041-210x.12628. URL <https://doi.org/10.1111/2041-210x.12628>. 1143

Kai Zeng, Yun-Xin Fu, Suhua Shi, and Chung-I Wu. Statistical tests for detecting positive selection by utilizing high-frequency variants. *Genetics*, 174(3):1431–1439, November 2006. doi: 10.1534/genetics.106.061432. URL <https://doi.org/10.1534/genetics.106.061432>. 1144

Chi Zhang, Shan-Shan Dong, Jun-Yang Xu, Wei-Ming He, and Tie-Lin Yang. PopLDdecay: a fast and 1164
effective tool for linkage disequilibrium decay analysis based on variant call format files. 1165
Bioinformatics, 35(10):1786–1788, October 2018. doi: 10.1093/bioinformatics/bty875. URL 1166
<https://doi.org/10.1093/bioinformatics/bty875>. 1167