

1 **An amino acid transporter AAT1 plays a pivotal role in chloroquine resistance**
2 **evolution in malaria parasites**

3 Alfred Amambua-Ngwa^{1†}, Katrina A. Button-Simons^{2†}, Xue Li^{3†}, Sudhir Kumar^{4†}, Katelyn
4 Vendrely Brenneman^{2†}, Marco Ferrari³, Lisa A. Checkley², Meseret T. Haile⁴, Douglas A.
5 Shoue², Marina McDew-White³, Sarah M. Tindall⁵, Ann Reyes³, Elizabeth Delgado³, Haley
6 Dalhoff², James K. Larbalestier², Roberto Amato⁶, Richard D. Pearson⁶, Alexander B. Taylor⁷,
7 François H. Nosten⁸, Umberto D'Alessandro¹, Dominic Kwiatkowski⁶, Ian H. Cheeseman⁹,
8 Stefan H. I. Kappe^{4,10,11}, Simon V. Avery⁵, David J. Conway¹², Ashley M. Vaughan^{4,10*}, Michael
9 T. Ferdig^{2*}, Timothy J. C. Anderson^{3*}

10

11 ¹MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The
12 Gambia

13 ²Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame,
14 Notre Dame, IN, USA

15 ³Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San
16 Antonio, TX, USA

17 ⁴Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle,
18 WA, USA

19 ⁵School of Life Sciences, University of Nottingham, Nottingham, UK

20 ⁶Wellcome Sanger Institute, Hinxton, UK

21 ⁷Department of Biochemistry & Structural Biology, University of Texas Health Science Center
22 at San Antonio, TX, USA

24 ⁸Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol
25 University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield
26 Department of Medicine Research building, University of Oxford Old Road campus, Oxford,
27 UK

28 ⁹Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX,
29 USA

30 ¹⁰Department of Pediatrics, University of Washington, Seattle, WA, USA

31 ¹¹Department of Global Health, University of Washington, Seattle, WA, USA

32 ¹²Department of Infection Biology, London School of Hygiene and Tropical Medicine, London,
33 UK

35 [†]These authors contributed equally to this work

36 *Corresponding authors

37
38 **Malaria parasites break down host hemoglobin into peptides and amino acids in the**
39 **digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process**
40 **is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine**
41 **(CQ) resistance transporter, *pfcrt*, located in the digestive vacuole membrane, confer CQ**
42 **resistance in *Plasmodium falciparum*, but typically affect parasite fitness. However, the role**
43 **of other parasite loci in the evolution of CQ resistance is unclear. Here we use a**
44 **combination of population genomics, genetic crosses and gene editing to demonstrate that a**
45 **second vacuolar transporter plays a key role in both resistance and compensatory**
46 **evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal**
47 **signatures of selection on an amino acid transporter (*pfaat1*) S258L variant which**

48 increased from 0-87% in frequency between 1984 and 2014 in parallel with *pfcrt1* K76T.
49 Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing
50 *pfaat1* that is selected by CQ treatment. Gene editing demonstrated that *pfaat1* S258L
51 potentiates CQ-resistance but at a cost of reduced fitness, while *pfaat1* F313S, a common
52 Southeast Asian polymorphism, reduces CQ-resistance while restoring fitness. Our
53 analyses reveal hidden complexity in CQ-resistance evolution, suggesting that *pfaat1* may
54 underlie regional differences in the dynamics of resistance evolution, and modulate parasite
55 resistance or fitness by manipulating the balance between both amino acid and drug
56 transport.

57

58 Drug resistance in microbial pathogens complicates control efforts. Therefore, understanding the
59 genetic architecture and the complexity of resistance evolution is critical for resistance
60 monitoring and the development of improved treatment strategies. In the case of malaria
61 parasites, deployment of five classes of antimalarial drugs over the last half century have resulted
62 in well-characterized hard and soft selective sweeps associated with drug resistance, with both
63 worldwide dissemination and local origins of resistance driving drug resistance alleles across the
64 range of *P. falciparum*¹⁻³. Chloroquine (CQ) monotherapy played a central role in an ambitious
65 plan to eradicate malaria in the last century. Resistance to CQ was first observed in 1957 in
66 Southeast Asia (SEA), and subsequently arrived and spread across Africa from the late 1970s,
67 contributing to the end of this ambitious global eradication effort⁴.

68 Resistance to CQ has been studied intensively. The CQ resistance transporter (*pfcrt*,
69 chromosome [chr.] 7) was originally identified using a *P. falciparum* genetic cross conducted
70 between a CQ-resistant SEA parasite and a CQ-sensitive South American parasite generated in a

71 chimpanzee host^{5,6}. Twenty years of intensive research revealed the mechanistic role of CRT in
72 drug resistance^{7,8}, its location in the digestive vacuole membrane, and its natural function
73 transporting short peptides from the digestive vacuole into the cytoplasm⁹. CQ kills parasites by
74 interfering with hemoglobin digestion in the digestive vacuole, preventing conversion of heme, a
75 toxic by-product of hemoglobin digestion, into inert hemozoin crystals. Parasites carrying CQ-
76 resistance mutations at CRT transport CQ out of the food vacuole, away from the site of drug
77 action^{7,8}. The *pfcrt* K76T single nucleotide polymorphism (SNP) is widely used as a molecular
78 marker for CQ resistance¹⁰, while additional variants within *pfcrt* modulate levels of resistance
79 to CQ¹¹ and other quinoline drugs¹², and determine associated fitness costs¹³. While mutations
80 in a second transporter located in the food vacuole membrane, the multidrug resistance
81 transporter (*pfmdr1*), have been shown to modulate CQ resistance in some genetic backgrounds
82¹⁴, the role of other genes in CQ resistance evolution remains unclear. In this work we sought to
83 understand the contribution of additional parasite loci to CQ-resistance evolution using a
84 combination of population genomics, experimental genetic crosses, and gene editing.

85 **Results**

86 ***Strong signatures of selection on pfaat1***

87 Longitudinal population genomic data can provide compelling evidence of the evolution of drug
88 resistance loci¹⁵. We conducted a longitudinal whole genome sequence analysis of 600 *P.*
89 *falciparum* genomes collected between 1984 and 2014 in The Gambia to examine signatures of
90 selection under drug pressure (Supplementary Table 1). Following filtration using genotype
91 missingness (<10%) and minor allele frequency (>2%), we retained 16,385 biallelic SNP loci
92 from 321 isolates (1984 [134], 1990 [13], 2001 [34], 2008 [75], and 2014 [65]). The *pfcrt* K76T
93 allele associated with CQ-resistance increased from 0% in 1984 to 70% in 2014. Intriguingly,

94 there was also rapid allele frequency change on chr. 6: the strongest differentiation is seen at an
95 S258L mutation in a putative amino acid transporter, *pfaat1* (PF3D7_0629500, chr. 6), which
96 increased during the same time period from 0% to 87% (Fig. 1a). Assuming a generation time
97 (mosquito to mosquito) of 6 months for malaria parasites, these changes were driven by selection
98 coefficients of 0.17 for *pfaat1* S258L, and 0.11 for *pfcrt* K76T (Supplementary Fig. 1). Both
99 *pfaat1* S258L and *pfcrt* K76T mutations were absent in 1984 samples, but present in 1990,
100 suggesting that they arose and spread in a short time window. Both *pfaat1* and *pfcrt* showed
101 similar temporal haplotype structures in The Gambia (Supplementary Fig. 2). These were
102 characterized by almost complete replacement of well differentiated haplotypes at both loci
103 between 1984 and 2014. During this period, we also observed major temporal changes in another
104 known drug resistance locus (*pfdhfr*) (chr. 4) (Fig. 1b)¹⁶. That these rapid changes in allele
105 frequency occur at *pfcrt*, *pfaat1* and *pfdhfr*, but not elsewhere in the genome (Fig. 1b), provides
106 unambiguous evidence for strong directional selection.

107 Further evidence of strong selection on *pfaat1* and *pfcrt* came from the analysis of identity-by-
108 descent (IBD) in Gambian parasite genomes. We saw the strongest signals of IBD in the genome
109 around both *pfaat1* and *pfcrt* (Fig. 1c). These signals are dramatic, because there is minimal IBD
110 elsewhere in the genome, with the exception of a strong signal centering on *pfdhfr* after 2008.
111 Interestingly, the strong IBD is observed in all four temporal samples examined including 1984,
112 prior to the spread of either *pfaat1* S258L or *pfcrt* K76T. However, only a single synonymous
113 variant at *pfaat1* (I552I) and none of the CQ-resistant associated mutant variants in *pfcrt* were
114 present at that time. CQ was the first line treatment across Africa from the 1950s. These results
115 are consistent with the possibility of CQ-driven selective sweeps conferring low level CQ-
116 resistance prior to 1984, perhaps targeting promotor regions of resistance-associated genes.
117 *pfaat1* has also been selected in global locations: this is evident from prior population genomic

118 analyses from Africa ¹⁷, SEA ¹⁸ and South America ¹⁹. Plots summarizing IBD in these regions
119 are provided in Supplementary Fig. 3.

120 Patterns of linkage disequilibrium (LD) provide further evidence for functional linkage between
121 *pfcrt* and *pfaat1*. The strongest genome-wide signal of interchromosomal LD was found between
122 these two loci both in our Gambian data (Supplementary Fig. 4) and in samples from across
123 Africa ²⁰. LD between *pfaat1* and *pfcrt* was strongest in 2001, and then decayed in 2008 and
124 2014 (Supplementary Fig. 4&5), consistent with maintenance of LD during intensive CQ usage,
125 and subsequent LD decay after CQ monotherapy was replaced by sulfadoxine-pyrimethamine +
126 CQ combinations in 2004, and then with artemisinin combinations in 2008 ¹⁶.

127 Correlations in allele frequencies are expected between *pfcrt* and *pfaat1* if these loci are
128 interacting or are co-selected. Frequencies of the CVIET haplotype for amino acids 72-76 in
129 CRT are significantly correlated with allele frequencies of *pfaat1* S258L in West Africa ($R^2 =$
130 0.65, $p = 0.0017$) or across all African populations ($R^2 = 0.44$, $p = 0.0021$) (Supplementary Fig.
131 6). This analysis further strengthens the argument for co-evolution or epistasis between these two
132 genes.

133 ***Divergent selection on pfaat1 in Southeast Asia***

134 We examined the haplotype structure of *pfaat1* from *P. falciparum* genomes (MalariaGEN
135 release 6 ²¹) (Fig. 2, Supplementary Table 2). The *pfaat1* S258L SNP is at high frequency in
136 SEA (58%) but is found on divergent flanking haplotypes suggesting an independent origin from
137 the *pfaat1* S258L in The Gambia and elsewhere in Africa (Fig. 2 c & d, Supplementary Fig. 7).
138 Hendon et al ¹⁸ reached the same conclusion for the chr. 6 region using an identity-by-descent
139 analysis of parasites from global locations. Convergent evolution of *pfaat1* S258L provides
140 further evidence for selection, and contrasts with *pfcrt* and *pfdhfr*, where resistance alleles that

141 spread in Africa had an Asian origin ^{1,2}. *Pfaat1* evolution is more complex in SEA than
142 elsewhere in the world. There are three additional common derived amino acid changes in SEA.
143 *Pfaat1* F313S has spread close to fixation in SEA (total 96%, $F_{ST} = 0.91$ compared with African
144 samples) paired with *pfaat1* S258L (55%), Q454E (15%), or K541N (22%). We speculate that
145 these geographically localized *pfaat1* haplotypes have played an important role in CQ-resistance
146 evolution in SEA and could also reflect geographic differences in the historical use of other
147 quinoline drugs (mefloquine, quinine, piperaquine, lumefantrine) in this region ²².

148 ***Parasite genetic crosses using humanized mice identify a QTL containing pfaat1***

149 *P. falciparum* genetic crosses can be achieved with human-liver chimeric mice, reviving and
150 enhancing this powerful tool for malaria genetics ^{23,24}, after use of great apes for research was
151 banned. We conducted three independent biological replicates of a cross between the CQ-
152 sensitive West African parasite, 3D7, and a recently isolated CQ-resistant parasite from the
153 Thailand-Myanmar border, NHP4026 (Supplementary Table 3). We then compared genome-
154 wide allele frequencies in CQ-treated and control-treated progeny pools to identify quantitative
155 trait loci (QTL). This bulk segregant analysis (BSA) ²⁵ of progeny parasites robustly identified
156 the chr. 7 locus containing *pfcrt* as expected, validating our approach (Fig. 3a and Supplementary
157 Fig. 8 & 9). We were also intrigued to see a significant QTL on chr. 6 in each of the replicate
158 crosses (Fig. 3, Supplementary Fig. 8-10). We prioritized genes within the 95% confidence
159 interval of each QTL (Supplementary Table 4) by inspecting the SNPs and indels that
160 differentiated the two parents (Supplementary Table 5). The chr. 6 QTL spanned from 1,013 kb
161 to 1,283 kb (270 kb) and contained 60 genes. Of these, 54 are expressed in blood stages, and 27
162 have non-synonymous mutations that differentiate 3D7 from NHP4026. *pfaat1* was located at the
163 peak of the chr. 6 QTL (Fig. 3c). NHP4026 carried two derived non-synonymous mutations in
164 *pfaat1* (S258L and F313S) compared to 3D7, which carries the ancestral allele at each of these

165 codon sites. We thus hypothesized that one or both of these *pfaat1* SNPs may be driving the chr.
166 6 QTL.

167 We isolated individual clones from the bulk 3D7 × NHP4026 F₁ progeny to recover clones with
168 all combinations of parental alleles at the chr. 6 and chr. 7 QTL loci. We cloned parasites both
169 from a bulk progeny culture that was CQ-selected (96 hours at 250 nM CQ) and from a control
170 culture. This generated 155 clonal progeny: 100 from the CQ-selected culture, 62 of which were
171 genetically unique and 55 from the untreated control culture, of which 47 were unique (Fig. 4a).
172 We compared allele frequencies between these two progeny populations (Fig. 4b), revealing
173 significant differences at both chr. 6 and chr. 7 QTL regions, paralleling the BSA results. We
174 observed a dramatic depletion of the NHP4026 CQ-resistant allele at the chr. 7 QTL in control
175 treated cultures, consistent with strong selection against CQ resistant *pfcrt* alleles in the absence
176 of CQ-selection. Conversely, all progeny isolated after CQ treatment harbored the NHP4026
177 CQ-resistant *pfcrt* allele. The inheritance of the *pfcrt* locus (chr. 7) and the *pfaat1* locus (chr. 6)
178 was tightly linked in the isolated clones (Fig. 4c). To further examine whether the cross data
179 were consistent with epistasis or co-selection, we examined a larger sample of recombinant
180 clones isolated from five independent iterations of this genetic cross in the absence of CQ
181 selection. This revealed significant under-representation of clones with genotype *pfcrt* 76T and
182 *pfaat1* 258S/313F (WT) (Supplementary Table 6, $X^2 = 12.295$, *p*-value = 0.0005). These results
183 are consistent with the strong LD between these loci observed in nature (Supplementary Fig. 4)
184 ²⁰ and suggest a functional relationship between the two loci. A role for *pfaat1* S258L/F313S in
185 compensating for the reduced fitness of parasites bearing *pfcrt* K76T is one likely explanation for
186 the observed results.

187 We next measured *in vitro* CQ IC₅₀ values for 18 parasites (a set of 16 progeny and both parents),
188 carrying all combinations of the chr. 6 and chr. 7 QTL alleles (Supplementary Fig. 11,

189 Supplementary Table 7). The NHP4026 parent was the most CQ-resistant parasite tested. All
190 progeny that inherited NHP4026 *pfcrt* showed a CQ-resistant phenotype while all progeny that
191 inherited 3D7 *pfcrt* were CQ-sensitive, consistent with previous reports. The effect of *pfcrt*
192 alleles on parasite CQ resistance was significant based on a two-way ANOVA test ($p=7.52 \times 10^{-11}$). We did not see an impact of the *pfaat1* genotypes on IC₅₀ in clones carrying *pfcrt* 76T ($p = 0.06$) or *pfcrt* 76K ($p = 0.19$). This analysis has limited power because only two progeny
193 parasites were recovered with *pfaat1* 258S/313F (WT) in combination with *pfcrt* 76T (Fig.4a,
194 Supplementary Fig. 11), but is consistent with the *pfAAT1* QTL being driven by parasite fitness
195 in our genetic crosses. We therefore focused on gene manipulation of isogenic parasites for
196 functional analysis.

199 ***Functional validation of the role of *pfaat1* in CQ resistance***

200 We utilized CRISPR/Cas9 modification of the NHP4026 CQ-resistant parent to investigate the
201 effects of mutations in *pfaat1* on CQ IC₅₀ drug response and parasite fitness (Fig. 5). NHP4026
202 *pfaat1* carries the two most common SEA non-synonymous changes (S258L and F313S) (Fig.
203 2), relative to the sensitive 3D7 parent. We edited these positions back to the ancestral state both
204 singly and in combination and confirmed the modifications in three clones isolated from
205 independent CRISPR experiments for each allelic change (Fig. 5a). We then determined CQ IC₅₀
206 and measured fitness using pairwise competition experiments for parental NHP4026^{258L/313S}, the
207 single mutations NHP4026^{258L/313F}, NHP4026^{258S/313S} and the ancestral allele NHP4026^{258S/313F}.
208 This revealed a highly significant impact of the S258L mutation, which increased CQ IC₅₀ 1.5-
209 fold, and a more moderate but significant impact of F313S and the double mutation
210 (S258L/F313S) (Fig. 5b, Supplementary Table 8). The observation that 258L shows an elevated
211 IC₅₀ only in combination with the ancestral 313F allele reveals an epistatic interaction between
212 these amino acid variants (Fig 5B).

213 We also examined the impact of the S258L and F313S substitutions on responses to other
214 quinoline drugs. The results revealed significant impacts of PfAAT1 substitutions on quinine,
215 amodiaquine and lumefantrine IC₅₀ responses, and no impact on mefloquine IC₅₀ (Supplementary
216 Fig. 12). Notably, these IC₅₀ value shifts were well below the threshold associated with clinical
217 resistance. Consequently, although mutations in *pfaat1* can subtly impact susceptibility to a range
218 of compounds, these results are consistent with CQ treatment being the primary selective force
219 that drove the *pfaat1* S258L and F313S mutations along with those in *pfCRT*.

220 Mutations conferring drug resistance often carry fitness costs in the absence of drug treatment.
221 We thus examined parasite fitness by conducting pairwise competition experiments with the
222 parental NHP4026 parasite against the same mutant *pfaat1* parasites created above. This revealed
223 significant differences in fitness (Fig. 5c). The 258L/313F allele that showed a selective sweep in
224 The Gambia, was the least fit of all genotypes, the ancestral allele (258S/313F) carried by the
225 3D7 parent was the most fit, while the 258S/313S mutation, showed a similar fitness to the
226 NHP4026 parent (258L/313S). These results also revealed strong epistatic interactions in fitness.
227 While the 258L/313F allele that conferred high CQ IC₅₀ (Fig. 5b), carried a heavy fitness penalty
228 (Fig. 5c), fitness was partially restored by addition of the 313S mutation to generate the
229 258L/313S allele that predominates in SEA. Together these results show that the *pfaat1* S258L
230 substitution underpins a 1.5-fold increase in CQ-resistance that likely drove its selective spread
231 in The Gambia. However, S258L carries a high fitness cost that in SEA parasites was likely
232 mitigated by addition of the compensatory substitution, F313S. Overall, these results
233 demonstrate a large impact of *pfaat1* mutations on fitness of parasites carrying *pfCRT* K76T
234 resistance alleles.

235 The editing experiments reveal that clones carrying the ancestral *pfaat1* allele in combination
236 with *pfCRT* K76T show the highest fitness. In contrast, the close association of *pfaat1*

237 S258L/F313S with *pfcrt* K76T in progeny from the genetic crosses revealed the opposite
238 relationship. We speculate that these opposing results may reflect differing selection pressures in
239 blood stage parasites in the case of CRISPR experiments, or in the mosquito and liver stages of
240 the life cycle in the case of genetic crosses.

241 To further understand how *pfaat1* S258L impacts parasite phenotype, we used a yeast
242 heterologous expression system. WT *pfaat1* is expressed in the yeast plasma membrane²⁶, where
243 it increases quinine and CQ uptake conferring sensitivity to quinoline drugs, resulting in reduced
244 growth. CQ uptake can be competitively inhibited by the aromatic amino acid tryptophan,
245 suggesting a role for *pfaat1* in drug and amino acid transport²⁶. We therefore expressed *pfaat1*
246 S258L in yeast, which restored yeast growth in the presence of high levels of CQ
247 (Supplementary Fig. 13). Interestingly, expression of another amino acid variant (T162E),
248 responsible for CQ-resistance in rodent malaria parasites (*Plasmodium chabaudi*)²⁷, also
249 prevents accumulation of quinoline drugs within yeast cells and restores cell growth in the
250 presence of CQ²⁶. Together, these new and published results suggest that yeast expression of
251 *pfaat1* mutations impact resistance and fitness by altering the rates of amino acid and CQ
252 transport.

253 We evaluated three-dimensional structural models based on the 3D7 PfAAT1 amino acid
254 sequence using AlphaFold²⁸ and I-TASSER²⁹ (Supplementary Fig. 14). While CRT has ten
255 membrane-spanning helices³⁰, AAT1 has eleven; this was corroborated using the sequence-
256 based membrane topology prediction tool TOPCONS³¹. The common AAT1 mutations S258L,
257 F313S and Q454E are situated in membrane-spanning domains, while K541L is in a loop linking
258 domains 9 and 10. The location of these high frequency non-synonymous changes in membrane
259 spanning domains has strong parallels with CRT evolution³⁰ and is consistent with a functional
260 role for these amino acids in transporter function.

261

Discussion

262

Identification of *pfcrt* as the major determinant of CQ resistance was a breakthrough that transformed the malaria drug resistance research landscape, but the contribution of additional genetic factors in the evolution and maintenance of CQ resistance remained unclear^{32,33}. By combining longitudinal population genomic analysis spanning the emergence of CQ resistance in The Gambia, analysis of bulk populations and progeny from controlled genetic crosses, and functional validation using both yeast and *P. falciparum*, we find clear evidence that a second locus, *pfaat1*, has played a central role in CQ resistance. This powerful combination of approaches allowed us to examine critical *pfaat1* variants that contribute to the architecture of CQ-resistance and interactions between *pfcrt* and *pfaat1*.

271

Our results provide compelling evidence that consolidates disparate observations from several systems suggesting a role for *pfaat1* in drug resistance evolution. In the rodent malaria parasite *P. chabaudi*, a mutation (T162E) in the orthologous amino acid transporter (*pcaat1*) was found to be a determinant of low level CQ resistance in laboratory-evolved resistance²⁷. In *P. falciparum* genome-wide association studies (GWAS), the S258L mutation of *pfaat1* was associated with CQ resistance in field isolates collected along the China-Myanmar border³⁴, while *pfcrt* K76T and *pfaat1* S258L show the strongest LD between physically unlinked chromosomes genome-wide²⁰. In addition, mutations in *pfaat1* have been linked to the *in vitro* evolution of resistance in *P. falciparum* to three different drug scaffolds³⁵. Previous work identified strong signatures of recent selection in parasites in Africa at regions surrounding *pfcrt*, *pfaat1*, and other drug resistance loci^{16,17,36}; similar signatures of selection are seen in Asia and South America^{18,19}, while *pfaat1* was highlighted in a list of *P. falciparum* genes showing extreme geographical differentiation²¹.

284 The different *pfaat1* haplotypes in Africa and Asia may be partly responsible for the contrasting
285 evolution of CQ-resistance in these two continents. CQ-resistant parasites, carrying both *pfcrt*
286 K76T and *pfaat1* S258L spread across Africa, but after removal of CQ as the first line drug, the
287 prevalence of CQ resistant parasites declined in many countries³⁷⁻³⁹. This is consistent with the
288 low fitness of parasites carrying *pfcrt* K76T and *pfaat1* S258L in the absence of drug pressure,
289 and intense competition within malaria parasite infection in Africa⁴⁰.

290 In contrast, *pfcrt* K76T has remained at or near fixation in many SEA countries^{21,41} (Fig. 2). On
291 the Thailand-Myanmar border, CQ-resistance has remained at fixation since 1995, when CQ was
292 removed as first line treatment of *P. falciparum* malaria⁴¹. Our *pfaat1* mutagenesis results
293 demonstrate that parasites bearing *pfaat1* 258L/313S show reduced IC₅₀, but elevated fitness
294 relative to *pfaat1* 258L/313F. The restoration of fitness by F313S may help to explain retention
295 of CQ-resistant *pfcrt* K76T alleles in SEA. The alternative hypothesis – that high frequencies of
296 F313S mutations are driven by widespread use of other quinoline partner drugs in SEA⁴² is not
297 supported, because we see only minor impacts of this substitution on response to lumefantrine,
298 quinine, mefloquine and amodiaquine (Supplementary Fig. 12).

299 Mutations in *pfcrt* confer CQ-resistance by enabling efflux of CQ across the digestive vacuole
300 membrane, away from its site of action⁸. PfAAT1 is also located in the digestive vacuole
301 membrane, where it likely acts as a bidirectional transporter of aromatic amino acids^{9,43}. Given
302 the structural similarity of quinoline drugs and aromatic amino acids, *pfaat1* mutations may
303 modulate the ability of PfAAT1 to transport CQ and/or amino acids^{26,43}. The *pfaat1* S258L
304 mutation could potentiate resistance by either increasing efflux of CQ out of the digestive
305 vacuole or reducing the rate of entry into the vacuole. Given that this *pfaat1* mutation blocks
306 entry of quinoline drugs into yeast cells when heterologously expressed in the yeast cell
307 membrane²⁶, we hypothesize that the *pfaat1* S258L mutation reduces CQ uptake into the food

308 vacuole (Fig. 6). Our mutagenesis analyses show that the S258L allele has a high fitness cost,
309 perhaps due to a decreased capacity for the amino acid transport from the vacuole. Interestingly,
310 comparison of the *pfaat1* S258L/F313S haplotype segregating in our genetic cross with the WT
311 *pfaat1* allele generated using gene editing, revealed only marginal increases in IC₅₀ and limited
312 reductions in fitness. This is consistent with the F313S mutation restoring the natural *pfaat1*
313 function of transporting amino acids, thereby reducing osmotic stress and starvation, while also
314 partially reducing levels of CQ-resistance (Fig. 6). That this haplotype has reached high
315 frequency in SEA, may contribute to the maintenance of *pcfcr* K76T alleles long after the
316 removal of CQ as a first line drug.

317 Our results reveal hidden complexity in CQ-resistance evolution: drug treatment has driven
318 global selective sweeps acting on mutations in an additional transporter (PfAAT1) located in the
319 *P. falciparum* digestive vacuole membrane, which fine tune the balance between nutrient and
320 drug transport, revealing evidence for epistasis and compensation, and impacting both drug
321 resistance and fitness.

322

323

References

324 1 Wootton, J. C. *et al.* Genetic diversity and chloroquine selective sweeps in Plasmodium
325 falciparum. *Nature* **418**, 320-323, doi:10.1038/nature00813 (2002).

326 2 Roper, C. *et al.* Intercontinental spread of pyrimethamine-resistant malaria. *Science* **305**,
327 1124, doi:10.1126/science.1098876 (2004).

328 3 Ariey, F. *et al.* A molecular marker of artemisinin-resistant Plasmodium falciparum
329 malaria. *Nature* **505**, 50-55, doi:10.1038/nature12876 (2014).

330 4 Wellem, T. E. & Plowe, C. V. Chloroquine-resistant malaria. *J Infect Dis* **184**, 770-776,
331 doi:10.1086/322858 (2001).

332 5 Su, X., Kirkman, L. A., Fujioka, H. & Wellem, T. E. Complex polymorphisms in an
333 approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in
334 Southeast Asia and Africa. *Cell* **91**, 593-603, doi:10.1016/s0092-8674(00)80447-x
335 (1997).

336 6 Wellem, T. E., Walker-Jonah, A. & Panton, L. J. Genetic mapping of the chloroquine-
337 resistance locus on Plasmodium falciparum chromosome 7. *Proc Natl Acad Sci U S A* **88**,
338 3382-3386, doi:10.1073/pnas.88.8.3382 (1991).

339 7 Fidock, D. A. *et al.* Mutations in the P. falciparum digestive vacuole transmembrane
340 protein PfCRT and evidence for their role in chloroquine resistance. *Mol Cell* **6**, 861-871,
341 doi:10.1016/s1097-2765(05)00077-8 (2000).

342 8 Ecker, A., Lehane, A. M., Clain, J. & Fidock, D. A. PfCRT and its role in antimalarial
343 drug resistance. *Trends Parasitol* **28**, 504-514, doi:10.1016/j.pt.2012.08.002 (2012).

344 9 Shafik, S. H. *et al.* The natural function of the malaria parasite's chloroquine resistance
345 transporter. *Nat Commun* **11**, 3922, doi:10.1038/s41467-020-17781-6 (2020).

346 10 Djimde, A. *et al.* A molecular marker for chloroquine-resistant falciparum malaria. *N
347 Engl J Med* **344**, 257-263, doi:10.1056/NEJM200101253440403 (2001).

348 11 Pelleau, S. *et al.* Adaptive evolution of malaria parasites in French Guiana: Reversal of
349 chloroquine resistance by acquisition of a mutation in pf crt. *Proc Natl Acad Sci U S A*
350 **112**, 11672-11677, doi:10.1073/pnas.1507142112 (2015).

351 12 Ross, L. S. *et al.* Emerging Southeast Asian PfCRT mutations confer Plasmodium
352 falciparum resistance to the first-line antimalarial piperaquine. *Nat Commun* **9**, 3314,
353 doi:10.1038/s41467-018-05652-0 (2018).

354 13 Dhingra, S. K. *et al.* Global Spread of Mutant PfCRT and Its Pleiotropic Impact on
355 Plasmodium falciparum Multidrug Resistance and Fitness. *mBio* **10**,
356 doi:10.1128/mBio.02731-18 (2019).

357 14 Shafik, S. H., Richards, S. N., Corry, B. & Martin, R. E. Mechanistic basis for multidrug
358 resistance and collateral drug sensitivity conferred to the malaria parasite by
359 polymorphisms in PfMDR1 and PfCRT. *PLoS Biol* **20**, e3001616,
360 doi:10.1371/journal.pbio.3001616 (2022).

361 15 Cerqueira, G. C. *et al.* Longitudinal genomic surveillance of Plasmodium falciparum
362 malaria parasites reveals complex genomic architecture of emerging artemisinin
363 resistance. *Genome Biol* **18**, 78, doi:10.1186/s13059-017-1204-4 (2017).

364 16 Nwakanma, D. C. *et al.* Changes in malaria parasite drug resistance in an endemic
365 population over a 25-year period with resulting genomic evidence of selection. *J Infect
366 Dis* **209**, 1126-1135, doi:10.1093/infdis/jit618 (2014).

367 17 Amambua-Ngwa, A. *et al.* Major subpopulations of Plasmodium falciparum in sub-
368 Saharan Africa. *Science* **365**, 813-816, doi:10.1126/science.aav5427 (2019).

369 18 Henden, L., Lee, S., Mueller, I., Barry, A. & Bahlo, M. Identity-by-descent analyses for
370 measuring population dynamics and selection in recombining pathogens. *PLoS Genet* **14**,
371 e1007279, doi:10.1371/journal.pgen.1007279 (2018).

372 19 Carrasquilla, M. *et al.* Resolving drug selection and migration in an inbred South
373 American *Plasmodium falciparum* population with identity-by-descent analysis. *bioRxiv*,
374 2022.2002.2018.480973, doi:10.1101/2022.02.18.480973 (2022).

375 20 Band, G. *et al.* Malaria protection due to sickle haemoglobin depends on parasite
376 genotype. *Nature* **602**, 106-111, doi:10.1038/s41586-021-04288-3 (2022).

377 21 MalariaGen *et al.* An open dataset of *Plasmodium falciparum* genome variation in 7,000
378 worldwide samples. *Wellcome Open Res* **6**, 42, doi:10.12688/wellcomeopenres.16168.2
379 (2021).

380 22 Martin, R. E., Shafik, S. H. & Richards, S. N. Mechanisms of resistance to the partner
381 drugs of artemisinin in the malaria parasite. *Curr Opin Pharmacol* **42**, 71-80,
382 doi:10.1016/j.coph.2018.07.010 (2018).

383 23 Vendrely, K. M., Kumar, S., Li, X. & Vaughan, A. M. Humanized Mice and the Rebirth
384 of Malaria Genetic Crosses. *Trends Parasitol* **36**, 850-863, doi:10.1016/j.pt.2020.07.009
385 (2020).

386 24 Vaughan, A. M. *et al.* *Plasmodium falciparum* genetic crosses in a humanized mouse
387 model. *Nat Methods* **12**, 631-633, doi:10.1038/nmeth.3432 (2015).

388 25 Brenneman, K. V. *et al.* Optimizing bulk segregant analysis of drug resistance using
389 *Plasmodium falciparum* genetic crosses conducted in humanized mice. *iScience* **25**,
390 104095, doi:10.1016/j.isci.2022.104095 (2022).

391 26 Tindall, S. M. *et al.* Heterologous Expression of a Novel Drug Transporter from the
392 Malaria Parasite Alters Resistance to Quinoline Antimalarials. *Sci Rep* **8**, 2464,
393 doi:10.1038/s41598-018-20816-0 (2018).

394 27 Modrzynska, K. K. *et al.* Quantitative genome re-sequencing defines multiple mutations
395 conferring chloroquine resistance in rodent malaria. *BMC Genomics* **13**, 106,
396 doi:10.1186/1471-2164-13-106 (2012).

397 28 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
398 583-589, doi:10.1038/s41586-021-03819-2 (2021).

399 29 Yang, J. *et al.* The I-TASSER Suite: protein structure and function prediction. *Nat
400 Methods* **12**, 7-8, doi:10.1038/nmeth.3213 (2015).

401 30 Kim, J. *et al.* Structure and drug resistance of the *Plasmodium falciparum* transporter
402 PfCRT. *Nature* **576**, 315-320, doi:10.1038/s41586-019-1795-x (2019).

403 31 Tsirigos, K. D., Peters, C., Shu, N., Kall, L. & Elofsson, A. The TOPCONS web server
404 for consensus prediction of membrane protein topology and signal peptides. *Nucleic
405 Acids Res* **43**, W401-407, doi:10.1093/nar/gkv485 (2015).

406 32 Callaghan, P. S., Hassett, M. R. & Roepe, P. D. Functional Comparison of 45 Naturally
407 Occurring Isoforms of the *Plasmodium falciparum* Chloroquine Resistance Transporter
408 (PfCRT). *Biochemistry* **54**, 5083-5094, doi:10.1021/acs.biochem.5b00412 (2015).

409 33 Patel, J. J. *et al.* Chloroquine susceptibility and reversibility in a *Plasmodium falciparum*
410 genetic cross. *Mol Microbiol* **78**, 770-787, doi:10.1111/j.1365-2958.2010.07366.x (2010).

411 34 Wang, Z. *et al.* Genome-wide association analysis identifies genetic loci associated with
412 resistance to multiple antimalarials in *Plasmodium falciparum* from China-Myanmar
413 border. *Sci Rep* **6**, 33891, doi:10.1038/srep33891 (2016).

414 35 Cowell, A. N. *et al.* Mapping the malaria parasite druggable genome by using in vitro
415 evolution and chemogenomics. *Science* **359**, 191-199, doi:10.1126/science.aan4472
416 (2018).

417 36 Amambua-Ngwa, A. *et al.* SNP genotyping identifies new signatures of selection in a
418 deep sample of West African *Plasmodium falciparum* malaria parasites. *Mol Biol Evol*
419 **29**, 3249-3253, doi:10.1093/molbev/mss151 (2012).

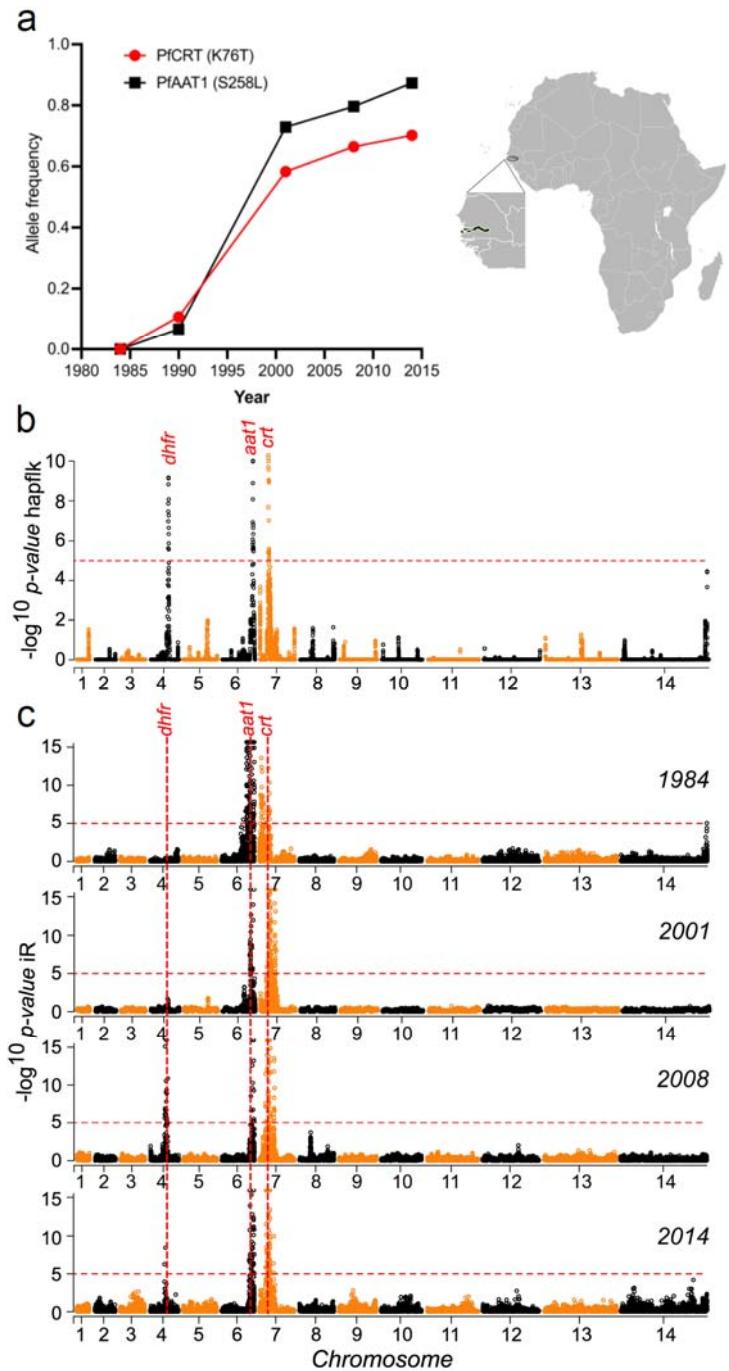
420 37 Laufer, M. K. *et al.* Return of chloroquine-susceptible *falciparum* malaria in Malawi was
421 a reexpansion of diverse susceptible parasites. *J Infect Dis* **202**, 801-808,
422 doi:10.1086/655659 (2010).

423 38 Kublin, J. G. *et al.* Reemergence of chloroquine-sensitive *Plasmodium falciparum*
424 malaria after cessation of chloroquine use in Malawi. *J Infect Dis* **187**, 1870-1875,
425 doi:10.1086/375419 (2003).

426 39 Mharakurwa, S. *et al.* Steep Rebound of Chloroquine-Sensitive *Plasmodium falciparum*
427 in Zimbabwe. *J Infect Dis* **223**, 306-309, doi:10.1093/infdis/jiaa368 (2021).

428 40 Anderson, T. J. *et al.* Microsatellite markers reveal a spectrum of population structures in
429 the malaria parasite *Plasmodium falciparum*. *Mol Biol Evol* **17**, 1467-1482,
430 doi:10.1093/oxfordjournals.molbev.a026247 (2000).

431 41 Anderson, T. J. *et al.* Geographical distribution of selected and putatively neutral SNPs in
432 Southeast Asian malaria parasites. *Mol Biol Evol* **22**, 2362-2374,
433 doi:10.1093/molbev/msi235 (2005).


434 42 Ashley, E. A. & Phy, A. P. Drugs in Development for Malaria. *Drugs* **78**, 861-879,
435 doi:10.1007/s40265-018-0911-9 (2018).

436 43 Martin, R. E. The transportome of the malaria parasite. *Biol Rev Camb Philos Soc* **95**,
437 305-332, doi:10.1111/brv.12565 (2020).

438

439

Figures

440

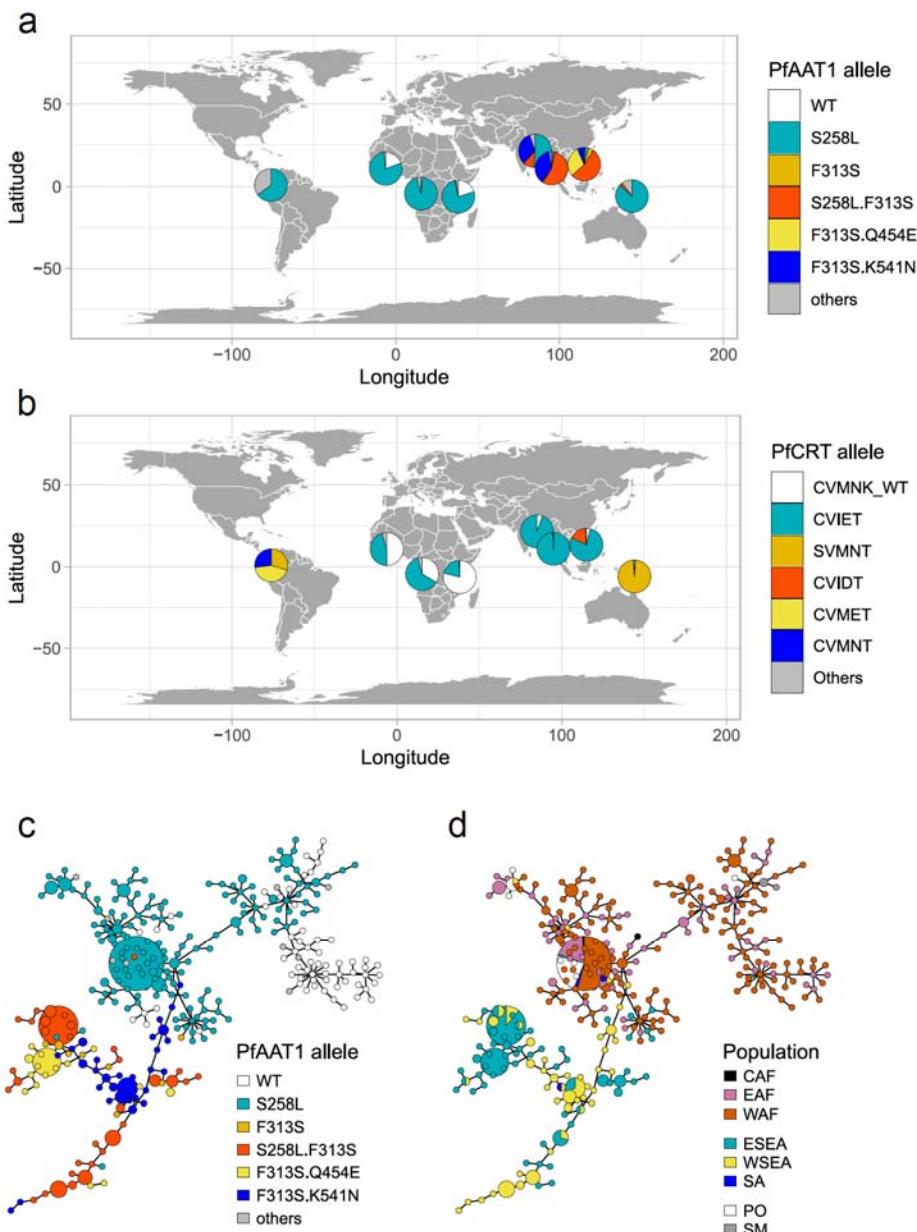
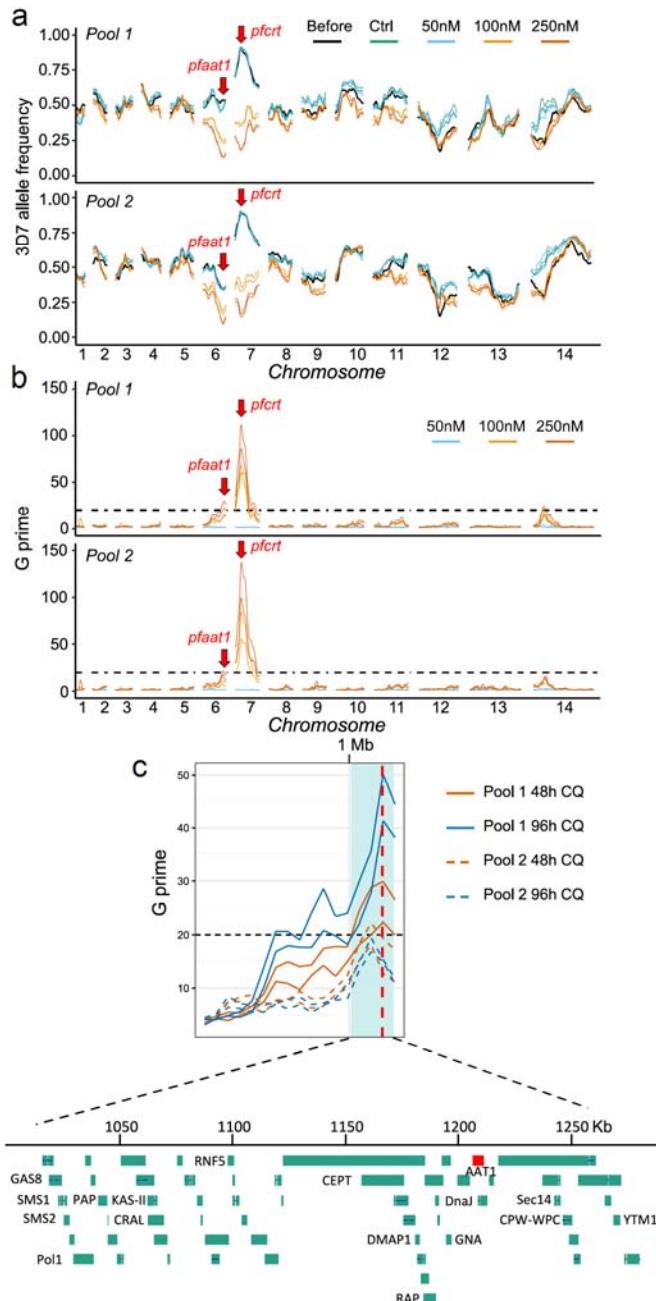

441

Fig. 1. Rapid allele frequency change and strong signals of selection around *pfaat1* in The Gambia. (a) Temporal allele frequency change at SNPs coding for *pfaat1* S258L and *pfcrt* K76T between 1984 and 2014. The map and expanded West African region show the location of The

442

443

444 Gambia. **(b)** Significance of haplotype differentiation across temporal populations of *P.*
445 *falciparum* parasites determined using hapFLK. Significance thresholds at $-\log_{10}(\text{FDR-corrected}$
446 $p\text{-value}) = 5$ are indicated with red dotted horizontal lines. Regions within the top 1% tail of
447 FDR-corrected p -values are marked with gene symbols. The strongest signals genome-wide seen
448 are around *pfcrt*, *pfaat1*, and *pfdhfr* (which is involved in pyrimethamine resistance). **(c)** Identity-
449 by-descent (IBD), quantified with the isoRelate (iR) statistic, for temporal populations sampled
450 from The Gambia. Consistently high peaks of IBD around *pfcrt* and *pfaat1* are seen for parasite
451 populations in all years of sampling. The 1990 sample (n=13) is not shown in panel C.



452

453 **Fig. 2. Distinctive trajectory of *pfaat1* evolution in Southeast Asia. (a)** Global distribution of
454 *pfaat1* alleles. **(b)** Comparable maps showing percentages of *pfCRT* haplotypes for amino acids
72-76. The colored segments show the major *pfCRT* haplotypes varying the K76T mutation. We
455 used dataset from MalariaGEN release 6 for *pfaat1* and *pfCRT* allele frequency analysis. Data used
456 for the figure is contained in Supplementary Table 2. Only samples with monoclonal infections
457 (N = 4051) were included (1233 from West Africa [WAF], 415 from East Africa [EAF], 170
458

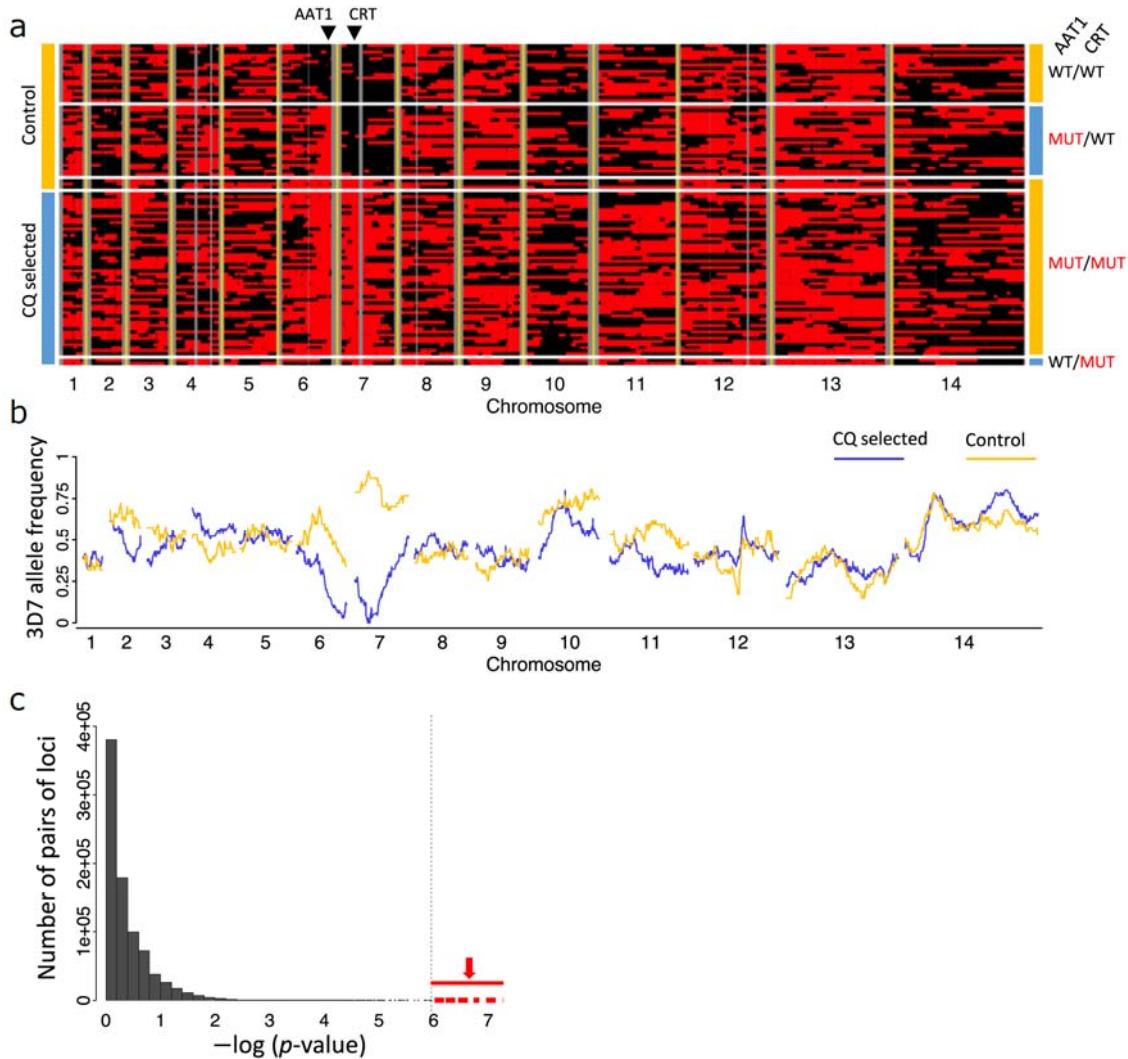
459 from Central Africa [CAF], 994 from east Southeast Asia [ESEA], 998 from west Southeast Asia
460 [WSEA], 37 from South Asia [SA], 37 from South America [SM], and 167 from the Pacific
461 Ocean region [PO]). (C and D) show minimum spanning networks of haplotypes colored by
462 *pfaat1* allele (**c**) and geographical location (**d**), respectively. Networks were constructed from 50
463 kb genome regions centered by *pfaat1* (25 kb up- and down-stream. This spans the genome
464 regions showing LD around *pfaat1* (Fig S5). 581 genomes with the highest sequence coverage
465 were used to generate the network. The networks were generated based on 1847 SNPs (at least
466 one mutant in the full dataset - MalariaGEN release 6). Circle size indicates number of samples
467 represented (smallest, 1; largest, 87). Haplotypes from the same region (Asia or Africa) were
468 clustered together, indicating independent origin of *pfaat1* alleles.

469

470

471 **Fig. 3. Genetic crosses and bulk segregant analysis reveal two QTL after CQ selection. (a)**

472 Allele frequency plots across the genome before and after CQ treatment. Lines with the same

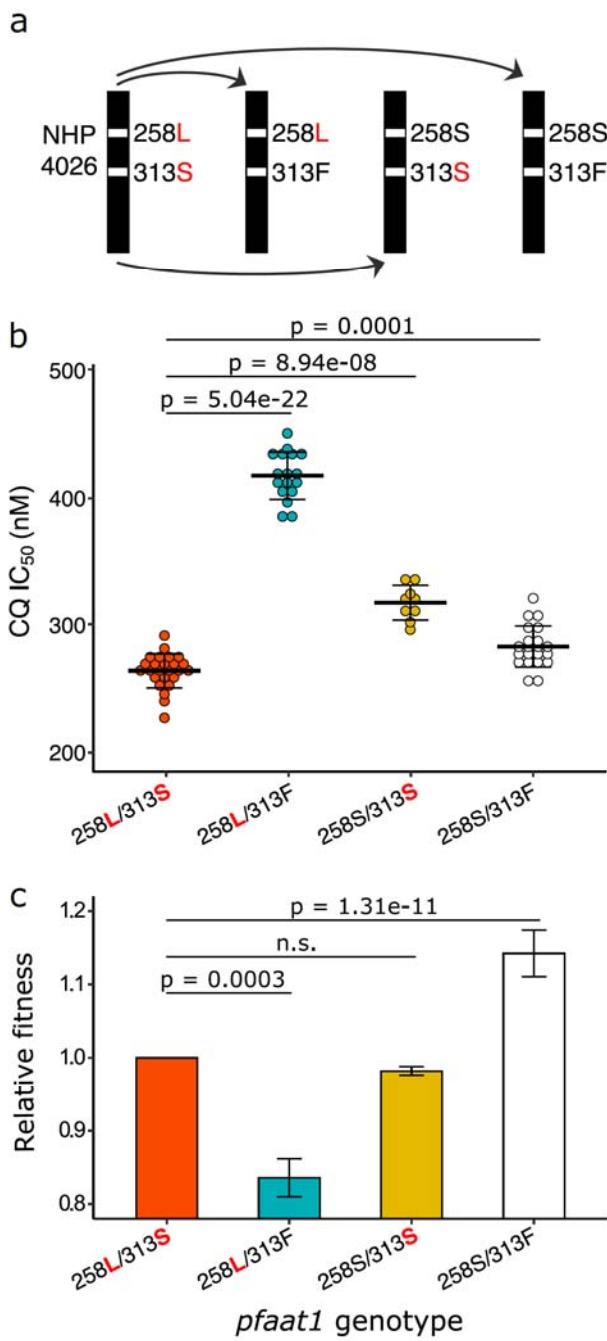

473 color indicate results from technical replicates. (b) QTLs identified using the G' approach. Lines

474 with the same color indicate results from technical replicates. Panels (a) and (b) include results

475 from BSA with 48 hour CQ treatment with samples collected at day 4. See Figures S8 and S9 for

476 the complete BSA from different collection time points and drug treatment duration under
477 different CQ concentrations. **(c)** Fine mapping of the chr. 6 QTL. The 95% confidence intervals
478 (CIs) were calculated from the 250 nM CQ treated samples, including data from different
479 collection time points (day 4 for 48 hour CQ treatment and day 5 for 96 hour CQ treatment),
480 pools (pool 1 and pool 2), and drug treatment duration (48 hour and 96 hour). Light cyan shadow
481 shows boundaries of the merged CIs of all the QTLs. Each line indicates one QTL; black dashed
482 line indicates threshold for QTL detection ($G \ prime = 20$). The vertical red dashed line indicates
483 *pfaat1* location.

484

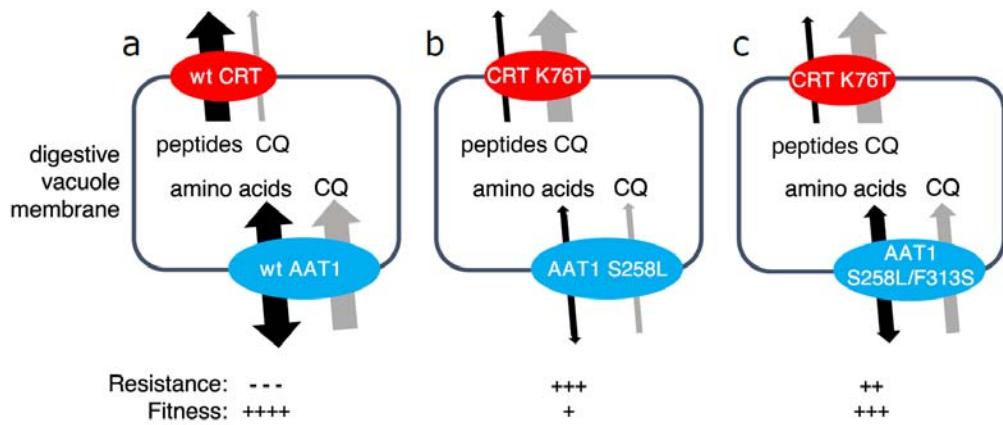


485

486 **Fig. 4. Analysis of cloned progeny reveals linkage and epistatic interactions between *pfaat1***
487 **and *pfcrt*.** (a) Allelic inheritance of 109 unique recombinant progeny. Black and red blocks
488 indicate alleles from 3D7 and NHP4026, separately. Vertical grey lines show non-core regions
489 where no SNPs were genotyped. Clones isolated from recombinant progeny pools with or
490 without CQ treatment are labeled on the left side of the panel. *pfaat1* and *pfcrt* alleles are labeled
491 on the right side of the panel. WT indicates *pfaat1* and *pfcrt* alleles from 3D7 and MUT indicates
492 alleles from NHP4026. The location of *pfaat1* and *pfcrt* are marked using black triangles on the
493 top of the panel. (b) Genome-wide 3D7 allele frequency plot of unique progeny cloned from

494 pools after 96-hours of CQ (250 nM) treatment (blue) or from control pools (gold). **(c)** Linkage
495 between loci on different chromosomes measured by Fisher's exact test. The dotted vertical line
496 marks the Bonferroni corrected significance threshold, while points shown in red are
497 comparisons between SNPs flanking *pfaat1* and *pf crt*. Supplementary Table 6 shows non-
498 random associations between genotypes in parasite clones recovered from untreated cultures.

499



500

501 **Fig. 5. Allelic replacement impacts drug response and parasite fitness. (a)** CRISPR/Cas9
502 gene editing. Starting with the NHP4026 parent, we generated all combinations of the SNP-states
503 at *pfaat1*. **(b)** Drug response. Each dot indicates one replicate IC₅₀ measurement: we used 2-4
504 independent CRISPR edited clones for each haplotype examined. Haplotypes are shown on the
505 x-axis with derived amino acids shown in red. Bars show means (± 1 s.e.), while significant

506 differences between haplotypes are marked. **(c)** Fitness. The bars show relative fitness measured
507 in replicated competition experiments conducted in the absence of CQ. See Fig S17 for allele
508 frequency changes for each competition experiment. n.s., not significant.

509

510

Fig. 6. Model for involvement of *pfaat1* haplotypes in chloroquine resistance and fitness.

511 PfCRT (red) and PfAAT1 (blue) are both situated in the digestive vacuole (DV) membrane. (a)
512 Wildtype PfCRT and PfAAT1 transport peptides and aromatic amino acids respectively as well
513 as chloroquine (CQ). (b) PfCRT K76T exports CQ from the DV away from its site of action,
514 leading to elevated resistance but transports peptides inefficiently leading to a loss of fitness.
515 PfAAT1 S258L reduces entry of CQ into the DV, leading to elevated resistance, but amino acid
516 flux is affected leading to a loss of fitness. (c) The PfAAT1 S258L/F313S double mutation
517 increases CQ influx in comparison to the S258L alone but the amino acid transport function is
518 restored, leading to reduced IC₅₀ and increased fitness in the absence of drug treatment.
519

520

521

Methods

522

Ethics approval and consent to participate

523

The study was performed in strict accordance with the Guide for the Care and Use of Laboratory
524 Animals of the National Institutes of Health (NIH), USA. The Seattle Children's Research
525 Institute (SCRI) has an Assurance from the Public Health Service (PHS) through the Office of
526 Laboratory Animal Welfare (OLAW) for work approved by its Institutional Animal Care and
527 Use Committee (IACUC). All of the work carried out in this study was specifically reviewed and
528 approved by the SCRI IACUC.

529

Project design

530

The project design is summarized in Supplementary Fig. 15. In brief, we use (i) population
531 genomic analyses (ii) genetic crosses and quantitative genetics analysis followed by (iii)
532 functional analyses to investigate the role of additional loci in CQ resistance.

533

Gambia population analysis

534

***P. falciparum* genome sequences.** *P. falciparum* infected blood samples collected from central
535 (Farafenni) and coastal (Serrekunda) Gambia in 1984 and 2001 respectively, were processed for
536 whole blood DNA and *P. falciparum* genomes and deep sequenced at the Wellcome Trust
537 Sanger Institute. Data from isolates collected from coastal Gambia in 2008 and 2014 had been
538 published previously^{44,45} (see Supplementary Table 1 for details). Prior to sequencing, *P.*
539 *falciparum* genomes were amplified from whole blood DNA of each sample from 1984 and 2001
540 using selective whole genome amplification (sWGA) and then subjected to paired-end short-read
541 sequencing on the Illumina HiSeq platform⁴⁶. Short sequencing reads were mapped to the *P.*
542 *falciparum* 3D7 reference genome using *bwa mem* (<http://bio-bwa.sourceforge.net/>). Mapping
543 files (BAM) were sorted and deduplicated by Picard tools v2.0.1
544 (<http://broadinstitute.github.io/picard/>), and single-nucleotide polymorphism (SNP) and indel

545 were called with GATK Haplotype Caller (<https://software.broadinstitute.org/gatk/>) following
546 the best practices endorsed by the Pf3K project (<https://www.malariagen.net/data/pf3K-5>). Only
547 SNP genotypes were used for this study. VCF files were generated by chromosome, and then
548 were merged using *bcftools* (<https://samtools.github.io/bcftools/bcftools.html>) and filtered using
549 *vcftools* (<https://vcftools.sourceforge.net/>). After filtration, only biallelic SNP variants with a
550 VQSLOD score of at least 2, a map quality >30, and supported by no less than 5 reads per allelic
551 variant were remained. SNPs with minor allele frequency <2% were further removed from our
552 analysis. We also removed samples with > 10% genotypes missing. In the final dataset, there
553 were in total of 16,385 biallelic SNP loci and 321 isolates (1984 [134], 1990 [13], 2001 [34],
554 2008 [75], and 2014 [65]) remained for further analysis. The complexity of infection
555 (monogenomic or polygenomic) was estimated as the inbreeding coefficient *Fws* from the
556 merged VCF file using R package *Biomix*. The short-read sequence data for all isolates and those
557 from across Africa that have been previously published are available from the European
558 Nucleotide Archive, and sample identifiers are given in Supplementary Table 1.

559 ***Allele frequencies and pairwise differentiation.*** For each sample with a complexity of infection
560 greater than 1, the allele with most reads was retained for mixed-allele genotypes to create a
561 virtual haploid genome variation dataset. Allele frequencies were calculated in plink and
562 pairwise differences between temporal populations and genetic clusters were estimated by *Fst*
563 using Weir and Cockerham's method applied in the *hierfstat* package in R. The likelihood ratio
564 test for allele frequency difference pFST was further calculated using *vcflib*. For a combined
565 pFST *p*-value, the fisher method was performed in R *metaseq* package. The summary *p*-values
566 were corrected for multiple testing using Benjamini-Hochberg (BH) method.

567 ***Genome scans for selection.*** We considered samples collected in the same year as a single
568 population irrespective of the location of collection. We used the hapFLK approach to detect

569 signatures of positive selection through haplotype differentiation following hierarchical
570 clustering of Gambian temporal population groups compared to an outgroup from Tanzania, as
571 described by Fariello et al., 2013⁴⁷. *P*-values were computed for each SNP-specific value using
572 the Python script provided with the hapFLK program, and values were corrected for multiple
573 testing using the BH method. Secondly, we used pairwise relatedness based on identity by
574 descent to derive an iR statistic for each SNP as implemented by the *IsoRelate*¹⁸ package in R.
575 Regions with overlapping iR and hapFLK -log10 *p*-values > 5 were considered as regions of
576 interest.

577

578 Population analysis on *pfaat1* and *pfcrt* evolution

579 **Datasets.** We included two datasets in this study: **1)** genotypes of 7,000 world-wide *P.*
580 *falciparum* samples from MalariaGEN Pf community project (version 6.0)²¹. This dataset
581 includes samples from South America (SM), West Africa (WA), Central Africa (CA), East
582 Africa (EA), South Asia (SA), the western part of Southeast Asia (WSEA), the eastern part of
583 Southeast Asia (ESEA) and Pacific Oceania (PO). **2)** We also included 194 Thailand samples
584 with whole genome sequencing data available from Cerqueira et al.¹⁵, and merged them into the
585 WSEA population. Duplicate sequences were removed according to the sample's original ID
586 (Hypercode). Only samples with single parasite infections (within-host diversity $F_{WS} > 0.90$) and
587 >50% of SNP loci genotyped were included for further analysis. A total of 4051 samples
588 remained after filtration (Supplementary Table 2). Non-biallelic SNPs and heterozygous variant
589 calls were further removed from the dataset. We then extracted genotype data at *pfaat1* and *pfcrt*
590 gene regions and calculated the allele frequencies (Fig 2A).

591 ***Pfaat1* haplotypes and evolutionary relationships.** To minimize the effect from recombination,
592 we extracted 1847 SNPs distributed within 25kb upstream and 25kb downstream of the *pfaat1*

593 gene. For clarity, only samples with all 1847 SNPs genotyped (581/4051) were used for
594 evolutionary analysis. To visualize the population structure, we calculated the genetic distance
595 between every two samples and generated a minimum spanning network (MSN, Fig 2B and
596 Supplementary Fig. 4), using R package *poppr*. We compared genome sequences (PlasmoDB,
597 version 46) between *P. falciparum* and *Plasmodium reichenowi* and extracted genotypes at
598 1803/1847 common loci. We then built a UPGMA tree rooted by *P. reichenowi* using the 581
599 haplotypes and 1803 SNPs (Supplementary Fig. 7), using the R packages *ape* and *phangorn*
600 under default parameters. MSN network and UPGMA tree were plotted with *ggplot2*.

601

602 Genetic cross and bulk segregant analysis

603 **Genetic cross preparation.** We generated genetic crosses between parasite 3D7 and NHP4026⁴⁸,
604 using FRG NOD huHep mice with human chimeric livers and *A. stephensi* mosquitoes as
605 described previously^{23-25,49,50}. 3D7 has been maintained in the lab for decades and is CQ
606 sensitive; while NHP4026 was recently cloned from a patient visiting the Shoklo Malaria
607 Research Unit (SMRU) clinic on the Thailand-Myanmar border in 2007 and is CQ resistant
608 (Supplementary Table 3). For the genetic cross 3D7×NHP4026, we generated three recombinant
609 pools using independent cages of infected mosquitoes: these are independent pools of
610 recombinants⁴⁸. The estimated number of recombinant genotypes in each pool was ~2800⁴⁸. We
611 used two of the pools (pool 1 and pool 2) that were maintained in culture media containing
612 AlbuMAX for this study.

613 **Drug treatment and sample collection.** For each recombinant pool, the parasite culture was
614 expanded under standard culture conditions as described in Brenneman et al.²⁵. Briefly, cultures
615 were maintained in complete media (CM) at 5% hematocrit in O⁺ red blood cells (RBC)
616 (Biochemed Services, Winchester, VA) at 37°C between a pH of 7.0-7.5 in an atmosphere of 5%

617 CO₂, 5% O₂ and 90% N₂. Media changes were performed every 48 hours and cultures were
618 expanded to keep the parasitemia at ~1%. Once expanded sufficiently, each recombinant pool
619 was divided into sixteen 0.5 ml aliquots while diluting to 1% parasitemia. The aliquots were then
620 maintained in 48-well plates and treated with CQ (Supplementary Fig. 16). In total, we had 32
621 cultures: 2 pools × 4 CQ concentrations (0 [control], 50, 100 or 250 nM) × 2 drug duration time
622 (48 hour or 96 hour) × 2 technical replicates. We define the day when drug was applied as day 0.
623 After two days (48 hour) of drug treatment, the infected RBCs were washed with Phosphate-
624 buffered saline (PBS) solution twice to remove residual drug. For the plate assigned for 48 hour
625 CQ treatment (48-well plate 1), cultures were then maintained in complete media (CM); and
626 samples were collected at day 0, 4 and 7. For the plate assigned for 96 hour CQ treatment (48-
627 well plate 2), fresh CQ was added back to the culture media and treated for another 48 hour; and
628 after a total of 96 hour CQ treatment, drug was removed and samples were collected at day 0, 5
629 and 10. CQ was dissolved in H₂O and diluted in incomplete media (ICM) (Gibco, Life
630 Technologies). Culture medium was changed every 48 hours. Parasitemia was monitored using
631 20% Giemsa-stained slides and cultures were diluted to 1% parasitemia if the parasitemia was
632 higher than 1%. Approximately 15 µl packed RBCs was collected per sample.

633 ***Library preparation and sequencing.*** We prepared Illumina libraries and sequenced both parents
634 and the 96 segregant pools collected above. We extracted and purified genomic DNA using the
635 Qiagen DNA mini kit and quantified the amount of DNA with Quant-iT™ PicoGreen® Assay
636 (Invitrogen). For samples with less than 50 ng DNA obtained, we performed whole genome
637 amplification (WGA) following Nair et al.⁵¹. WGA products were cleaned with KAPA Pure
638 Beads (Roche Molecular Systems, Inc.) at a 1:1 ratio. We prepared sequencing libraries using
639 50-100 ng DNA or WGA product using KAPA HyperPlus Kit following the instruction with 3-

640 cycles of PCR. All libraries were sequenced at 150bp pair-end using Illumina Novaseq S4 or
641 Hiseq X sequencers, to get $>100\times$ genome coverage per sample.

642 **Mapping and genotyping.** We mapped the sequencing reads against the 3D7 reference genome
643 (PlasmoDB version 46) using BWA mem (<http://bio-bwa.sourceforge.net/>), and deduplicated
644 and trans-formatted the alignment files using picard tools v2.0.1
645 (<http://broadinstitute.github.io/picard/>). We recalibrated the base quality score based on a set of
646 verified known variants ⁵² using *BaseRecalibrator*, and called variants through *HaplotypeCaller*.
647 Both functions were from Genome Analysis Toolkit GATK v3.7
648 (<https://software.broadinstitute.org/gatk/>). Only variants located in the core genome regions
649 (defined in ⁵²) were called and used for further analysis.

650 **Genotype of parents.** We merged calls from the two parents using *GenotypeGVCFs* in GATK,
651 and applied *standard* filtration to the raw variant dataset as described in ⁵³. We recalibrated the
652 variant quality scores (VQSR) and removed loci with VQSR < 1 . The final variants in VCF
653 format were annotated using snpEff v4.3 (<https://pcingola.github.io/SnpEff/>) with 3D7
654 (PlasmoDB, release46) as the reference. After filtration and annotation, we selected SNP loci
655 that are distinct in the two parents and used those SNPs for further bulk segregant analysis.

656 **Bulk segregant analysis.** We used statistical methods described previously in ^{25,48,50} for bulk
657 segregant analysis. The variant calls from segregant progeny pools were merged together.
658 Additionally, SNP loci with coverage $< 30\times$ were removed. We counted reads with genotypes of
659 each parent and calculated allele frequencies. Allele frequencies of 3D7 were plotted across the
660 genome, and outliers were removed following Hampel's rule ⁵⁴ with a window size of 100 loci.
661 We performed the bulk segregant analysis using the R package *QTLseqr* ⁵⁵. Extreme-QTLs were
662 defined as regions with G prime > 20 ⁵⁶. Once a QTL was detected, we calculated an
663 approximate 95% confidence interval using Li's method ⁵⁷ to localize causative genes.

664

665 Progeny cloning and phenotyping

666 **Progeny cloning.** Individual progeny were cloned via limiting dilution at 0.3 cells per well from
667 bulk cultures on day 10 after 96 hours of control/250nM CQ treatment. Individual wells with
668 parasites were determined by qPCR (as described in Button-Simons et al.⁴⁹) and expanded to
669 larger cultures under standard culture conditions to obtain enough material for both
670 cryopreservation and genome sequencing.

671 **Sequencing and genotyping.** Cloned progeny were sequenced and genotyped as described above
672 in the Genetic cross and bulk segregant analysis section, with these modifications: 1) the cloned
673 progeny were sequenced at 25× genome coverage; 2) SNP calls were filtered out if the coverage
674 was < 3 reads per sample.

675 **Cloned progeny analysis.** Unique recombinant progeny were identified from all cloned progeny
676 using a pipeline described in Button-Simons et al.⁴⁹. Non-clonal progeny were identified based
677 on the number and distribution of heterozygous SNP calls. Selfed progeny were identified as
678 having greater than 90% sequence similarity to either parent. Unique recombinant progeny that
679 were sampled multiple times during cloning were identified as clusters of individual clonal
680 progeny with greater than 90% sequence similarity. We plotted frequencies of 3D7 alleles across
681 the genome in progeny populations with and without CQ treatment. Heatmaps were generated to
682 visualize inheritance patterns in individual unique recombinant progeny (Fig 4A). We selected
683 sixteen unique recombinant progeny with different allele combination at chromosome 6 and
684 chromosome 7 QTL regions for further CQ IC₅₀ measurement (Fig S11).

685 **Genome-wide linkage analysis on *pfaat1* in cloned progeny.** Fisher's exact test was used to test
686 for linkage between all inter-chromosomal pairs of loci across the set of 109 unique recombinant

687 progeny. The distribution of the -log of the resulting *p*-values was plotted in Fig 4C and the
688 significance cut-off was calculated based on a Bonferroni correction for the number of loci.

689 ***IC₅₀* measurement for cloned progeny.** Cryopreserved stocks of 3D7, NHP4026,
690 3D7×NHP4026 progeny were thawed and grown in CM under standard culture conditions as
691 described above. Cultures were kept below 3% parasitemia with media changes every 48 hours.
692 Parents and progeny IC₅₀ was assessed via a standard 72 hour SYBR Green 1 fluorescence assay
693 ⁵⁸. Cultures were assessed daily for parasitemia and stage. Cultures that were at least 70% ring
694 were loaded into CQ dose-response assays of a series of 2 fold drug dilutions across 10 wells at
695 0.15% parasitemia. Drug stocks (1mg/ml) for CQ were prepared in H₂O as single-use aliquots
696 and stored at -20°C until use. Drug dilutions were prepared in incomplete media. Biological
697 replicates were conducted with at least two cycles of culturing between load dates. IC₅₀ values
698 were calculated in GraphPad Prism 8 using a 4 parameter curve from two technical replicates
699 loaded per plate.

700

701 **CRISPR/Cas9 editing at *pfaat1* and parasite phenotyping**

702 ***CRISPR/Cas9 editing.*** We designed plasmids for CRISPR/Cas9 editing using the approach
703 described in ⁵⁹. The guide RNA (GAAATTAAATACATAAAAGA) was designed to target *pfaat1* in
704 NHP4026. Edits (258L/313F, 258S/313S and 258S/313F, Fig. 5A) were introduced to NHP4026
705 through homology arm sequence with target and shield mutations. The parasites were transfected
706 at ring stages with 100 µg plasmid DNA, and successful transfectants were selected by treatment
707 with 24 nM WR99210 (gifted by Jacobus Pharmaceuticals, Princeton, NJ) for 6 days. The
708 parasites were recovered after ~3 weeks. To determine if recovered parasites contained the
709 expected mutations, we amplified the target region (forward primer,
710 AGTACGGTACTTTTATATGTACAGCT; reverse primer,

711 TGCATTTGGTTGTTGAGAGAAGG) and confirmed the mutation with Sanger sequencing.
712 We cloned parasites from successful transfection experiments: independent edited parasites
713 (from different transfection experiments) were recovered for each *pfaat1* genotype. Edited
714 parasites were then genome sequenced to identify off-target edits elsewhere in the genome. We
715 were not able to find any SNP or indel changes between the original NHP4026 and any CRISPR
716 edited parasites other than the target and shield mutations.

717 ***IC₅₀ measurement for CRISPR/Cas9 edited parasites.*** Parasite IC_{50s} for CQ, AMD, LUM, MQ
718 and QN were measured for 3-5 clones per CRISPR/Cas9 modified line and for NHP4026 across
719 multiple load dates as described above for cloned progeny, except that each plate included two
720 NHP4026 technical replicates as controls. This replication of genotype within each load date
721 allowed for detection of batch effects due to load date.

722 ***Batch correction for IC₅₀ data.*** Analysis of Variance (ANOVA) was used to account for batch
723 effects and to test for differences in IC₅₀ between all genotype groups and for each contrast
724 between each CRISPR/Cas9 modified line and NHP4026 for each drug tested⁶⁰. A linear model
725 with load date (batch) and genotype as explanatory variables was utilized to generate batch
726 corrected IC₅₀ values for visualization of the impact of CRISPR/Cas9 modifications (Fig 5B and
727 Supplementary Fig. 12).

728 ***Measurement of parasite fitness using competitive growth assays.*** Parasites were synchronized
729 to late stage schizonts using a density gradient⁶¹. The top layer of late stage schizonts was
730 removed and washed twice with RPMI. Synchronized cultures were suspended in 5 ml of CM at
731 5% hematocrit and allowed to reinvoke overnight with gentle shaking. Parasitemia and parasite
732 stage were quantified using flow cytometry. Briefly, 80 μ l of culture and an RBC control were
733 stained with SYBR Green I and SYTO 61 and measured on a guava easyCyte HT (Luminex
734 Co.). 50,000 events were recorded to determine relative parasitemia and stage. When 80% of

735 parasites were in the ring stage, the head-to-head competition experiments were set-up as
736 previously described⁶². Competition assays were set up between CRISPR/Cas9 edited parasites
737 and NHP4026 in a 1:1 ratio at a parasitemia of 1% in a 96-well plate (200 μ l per well) and
738 maintained for 30 days. Each of the assays contained three biological replicates (three
739 independent clones from different CRISPR/Cas9 editing experiments) and two technical
740 replicates (two wells of culture). Every two days, the parasitemia was assessed by microscopy
741 using Giemsa-stained slides, samples were taken and stored at -80°C and the cultures were
742 diluted to 1% parasitemia with fresh RBCs and media. The proportion of parasite in each
743 competition (Supplementary Fig. 17) was measured using a rhAmp SNP Assay (IDT, Integrated
744 DNA Technologies, Inc.) with primers targeting the CRISPR/Cas9 edited region in *pfaat1*.

745 **Selection coefficient.** We measured selection coefficient (*s*) by fitting a linear model between the
746 natural log of the allele ratio (freq [allele edited parasite]/freq [NHP4026]) and time (measured in
747 48 hour parasite asexual cycles). The slope of the linear model provides a measure of the driving
748 *s* of each mutation⁶³. To compare relative fitness of parasites carrying different *pfaat1* alleles,
749 we normalized the fitness of NHP4026 to 1 and used slope + 1 to quantify the fitness of
750 CRISPR/Cas9 edited parasites (Fig 5C).

751

752 Overexpression of PfAAT1 in yeast

753 To generate pfAAT1 expressing yeast, plasmid carrying the *pfaat1* coding sequence was
754 transformed into yeast *Saccharomyces cerevisiae* (BY4743) as described in²⁶. The doubling
755 time (h) was measured for strains carry empty vector, wild-type pfAAT1, or S258L mutant
756 pfAAT1. We measured doubling time under two culture conditions: control or with 5 mM CQ.
757 Three independent experiments were performed for each assay.

759 PfAAT1 protein structure analysis

760 Three-dimensional homology models for PfAAT1 were predicted using AlphaFold ^{28,64} and I-
761 TASSER ^{29,65,66} and analyzed with PyMol software (v2.3.0; Schrödinger, LLC). At the primary
762 sequence level, we used TOPCONS ³¹ to predict transmembrane helix topology for comparison.
763 We plotted a cartoon version of the protein transmembrane topology based on the
764 computationally predicted structures and membrane topology (Supplementary Fig. 14). Models
765 were truncated to exclude amino-terminal residues 1-166, likely positioned outside of the
766 membrane, because AlphaFold assigns low confidence to this N-terminal stretch. Furthermore,
767 mutations of interest map only to transmembrane helices according to both 3-D models and
768 TOPCONS. I-TASSER generated models with topology similar to AlphaFold with the highest
769 variations in AlphaFold low-confidence regions 1-166 and 475-516. The top five I-TASSER
770 models superimpose on the AlphaFold model with a root-mean-square-deviation (RMSD) range
771 of 2.4-2.8 Å over 303-327 of 440 aligned residues using the PDBeFold Server
772 (<http://www.ebi.ac.uk/msd-srv/ssm>). The four common SNPs (S258L, F313S, Q454E and
773 K541L) overlay closely between the homology models. We evaluated the impact of different
774 mutations on protein stability using the mutagenesis function in PyMol.

775

776 Data Availability

777 All raw sequencing data have been submitted to the NCBI Sequence Read Archive (SRA,
778 <https://www.ncbi.nlm.nih.gov/sra>) or European Nucleotide Archive (ENA) with accession
779 numbers available in supplementary Table 1. All other data are available in the main text or
780 supplementary materials. The code used in analysis and data analyzed are available at GitHub
781 through the following links: <https://github.com/emilyli0325/CQ.AAT1.git> (XL),

782 <https://github.com/MPB-mrcg?tab=repositories> (AAN), and

783 <https://github.com/kbuttons/CQ.AAT1.progeny.git> (KBS).

784

785

786

References for Methods

787 44 Amambua-Ngwa, A. *et al.* Consistent signatures of selection from genomic analysis of
788 pairs of temporal and spatial *Plasmodium falciparum* populations from The Gambia. *Sci
789 Rep* **8**, 9687, doi:10.1038/s41598-018-28017-5 (2018).

790 45 Amambua-Ngwa, A. *et al.* Population genomic scan for candidate signatures of balancing
791 selection to guide antigen characterization in malaria parasites. *PLoS Genet* **8**, e1002992,
792 doi:10.1371/journal.pgen.1002992 (2012).

793 46 Manske, M. *et al.* Analysis of *Plasmodium falciparum* diversity in natural infections by
794 deep sequencing. *Nature* **487**, 375-379, doi:10.1038/nature11174 (2012).

795 47 Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M. & Servin, B. Detecting signatures
796 of selection through haplotype differentiation among hierarchically structured
797 populations. *Genetics* **193**, 929-941, doi:10.1534/genetics.112.147231 (2013).

798 48 Kumar, S. *et al.* A Malaria Parasite Cross Reveals Genetic Determinants of *Plasmodium
799 falciparum* Growth in Different Culture Media. *Front Cell Infect Microbiol* **12**, 878496,
800 doi:10.3389/fcimb.2022.878496 (2022).

801 49 Button-Simons, K. A. *et al.* The power and promise of genetic mapping from
802 *Plasmodium falciparum* crosses utilizing human liver-chimeric mice. *Commun Biol* **4**,
803 734, doi:10.1038/s42003-021-02210-1 (2021).

804 50 Li, X. *et al.* Genetic mapping of fitness determinants across the malaria parasite
805 *Plasmodium falciparum* life cycle. *PLoS Genet* **15**, e1008453,
806 doi:10.1371/journal.pgen.1008453 (2019).

807 51 Nair, S. *et al.* Single-cell genomics for dissection of complex malaria infections. *Genome
808 Res* **24**, 1028-1038, doi:10.1101/gr.168286.113 (2014).

809 52 Miles, A. *et al.* Indels, structural variation, and recombination drive genomic diversity in
810 *Plasmodium falciparum*. *Genome Res* **26**, 1288-1299, doi:10.1101/gr.203711.115 (2016).

811 53 McDew-White, M. *et al.* Mode and Tempo of Microsatellite Length Change in a Malaria
812 Parasite Mutation Accumulation Experiment. *Genome Biol Evol* **11**, 1971-1985,
813 doi:10.1093/gbe/evz140 (2019).

814 54 Davies, L. & Gather, U. The identification of multiple outliers. *Journal of the American
815 Statistical Association* **88**, 782-792 (1993).

816 55 Mansfeld, B. N. & Grumet, R. QTLseqr: An R Package for Bulk Segregant Analysis with
817 Next-Generation Sequencing. *Plant Genome* **11**, doi:10.3835/plantgenome2018.01.0006
818 (2018).

819 56 Magwene, P. M., Willis, J. H. & Kelly, J. K. The statistics of bulk segregant analysis
820 using next generation sequencing. *PLoS Comput Biol* **7**, e1002255,
821 doi:10.1371/journal.pcbi.1002255 (2011).

822 57 Li, H. A quick method to calculate QTL confidence interval. *J Genet* **90**, 355-360 (2011).

823 58 Rason, M. A., Randriantsoa, T., Andrianantenaina, H., Ratsimbasoa, A. & Menard, D.
824 Performance and reliability of the SYBR Green I based assay for the routine monitoring
825 of susceptibility of *Plasmodium falciparum* clinical isolates. *Trans R Soc Trop Med Hyg*
826 **102**, 346-351, doi:10.1016/j.trstmh.2008.01.021 (2008).

827 59 Goswami, D. *et al.* A replication-competent late liver stage-attenuated human malaria
828 parasite. *JCI Insight* **5**, doi:10.1172/jci.insight.135589 (2020).

829 60 Taioli, E. *et al.* Application of reliability models to studies of biomarker validation.
830 *Environ Health Perspect* **102**, 306-309, doi:10.1289/ehp.94102306 (1994).

831 61 Davis, S. Z. *et al.* The extended recovery ring-stage survival assay provides a superior
832 association with patient clearance half-life and increases throughput. *Malar J* **19**, 54,
833 doi:10.1186/s12936-020-3139-6 (2020).

834 62 Tirrell, A. R. *et al.* Pairwise growth competitions identify relative fitness relationships
835 among artemisinin resistant *Plasmodium falciparum* field isolates. *Malar J* **18**, 295,
836 doi:10.1186/s12936-019-2934-4 (2019).

837 63 Dykhuizen, D. & Hartl, D. L. Selective neutrality of 6PGD allozymes in *E. coli* and the
838 effects of genetic background. *Genetics* **96**, 801-817, doi:10.1093/genetics/96.4.801
839 (1980).

840 64 Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the
841 structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids
842 Res* **50**, D439-D444, doi:10.1093/nar/gkab1061 (2022).

843 65 Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein
844 structure and function prediction. *Nat Protoc* **5**, 725-738, doi:10.1038/nprot.2010.5
845 (2010).

846 66 Zhang, Y. I-TASSER server for protein 3D structure prediction. *BMC Bioinformatics* **9**,
847 40, doi:10.1186/1471-2105-9-40 (2008).

848 67 Ringwald, P., Bickii, J. & Basco, L. K. In vitro activity of antimalarials against clinical
849 isolates of *Plasmodium falciparum* in Yaounde, Cameroon. *Am J Trop Med Hyg* **55**, 254-
850 258, doi:10.4269/ajtmh.1996.55.254 (1996).

851 68 Nzila, A., Okombo, J., Ohuma, E. & Al-Thukair, A. Update on the in vivo tolerance and
852 in vitro reduced susceptibility to the antimalarial lumefantrine. *J Antimicrob Chemother*
853 **67**, 2309-2315, doi:10.1093/jac/dks252 (2012).

854

855

856

Acknowledgments

857

We thank past and present staff and visiting researchers at the MRC Unit in The Gambia involved in studies from which samples were archived, including those under the earlier directorships of Prof Brian Greenwood and Prof Tumani Corrah. Work at Texas Biomedical Research Institute was conducted in facilities constructed with support from Research Facilities Improvement Program grant C06 RR013556. SMRU is part of the Mahidol Oxford University Research Unit supported by the Wellcome Trust of Great Britain. We thank the staff of the Wellcome Trust Sanger Institute Sample Logistics, Sequencing and Informatics facilities for their contributions. The Structural Biology Core at The University of Texas Health Science Center at San Antonio is a part of Institutional Research Cores supported by the Office of the Vice President for Research and the Mays Cancer Center Drug Discovery and Structural Biology Shared Resource (National Institutes of Health grant P30 CA054174).

868

869

Author Contributions

870

AAN, KBS, XL, SK, and KVB contributed equally to this work.

871

Conceptualization: MTF, TA, IC, AV, AAN, DC

872

Methodology: AV, SK, SVA, ABT

873

Investigation: AAN, UDA, DK, DC, RA, RDP, KBS, KVB, LC, HD, JKL, AR, ED, SK, DS, ST,

874

MF, ABT, TA

875

Analysis: XL, KBS, AAN

876

Visualization: XL, KBS, AAN

877

Funding acquisition : MTF, TA, DC, AAN, DK, SVA, FN

878 Project administration: MF, DK, AAN, DC, SVA

879 Supervision: MF, AV, TA, IC, SHIK, SVA, DK, DC

880 Writing – original draft: KVB, TA, KBS, XL

881 Writing – review & editing: MTF, AV, IC, SK, AAN, DC, DK, UDA, RDP, SHIK, FN, ABT,

882 TA

883

884 **Competing Interests**

885 Authors declare that they have no competing interests.

886

887 **Additional Information**

888 Supplementary Information is available for this paper.

889

890 Correspondence and requests for materials should be addressed to Timothy J. C. Anderson

891 (tanderso@txbiomed.org).

892

893 Reprints and permission information is available at www.nature.com/reprints.

894

895 **Funding:**

896 National Institutes of Health grant P01 12072248 (MTF)

897 National Institutes of Health grant R37 AI048071 (TA)

898 MRC Career Development Fellowship MC_EX_MR/K02440X/1 (AAN)

899 MRC malaria program grant MC_EX_MR/J002364/1 (UDA)

900 European Research Council grant AdG-2011-294428 (DC and AAN)

901 MRC grant MR/S009760/1 (DC)

902 Wellcome Trust (206194, 204911) and the Bill & Melinda Gates Foundation

903 (OPP1204628, INV-001927) (DK)

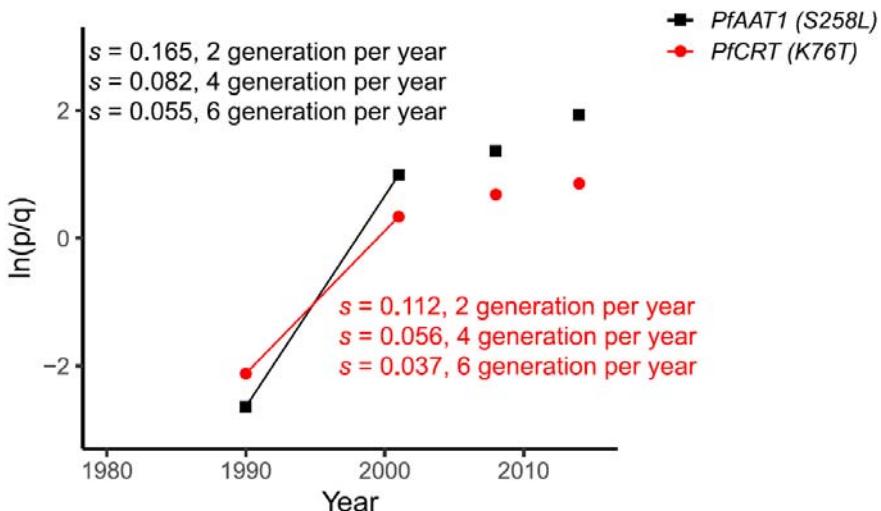
904 Biotechnology and Biological Sciences Research Council grant BB/M022161/1 (SVA)

905 Wellcome Trust [Grant number 220221] (FN); For the purpose of open access, the author

906 has applied a CC BY public copyright license to any Author Accepted Manuscript

907 version arising from this submission.

908


909

910

Supplementary Figures

911

Figure S1

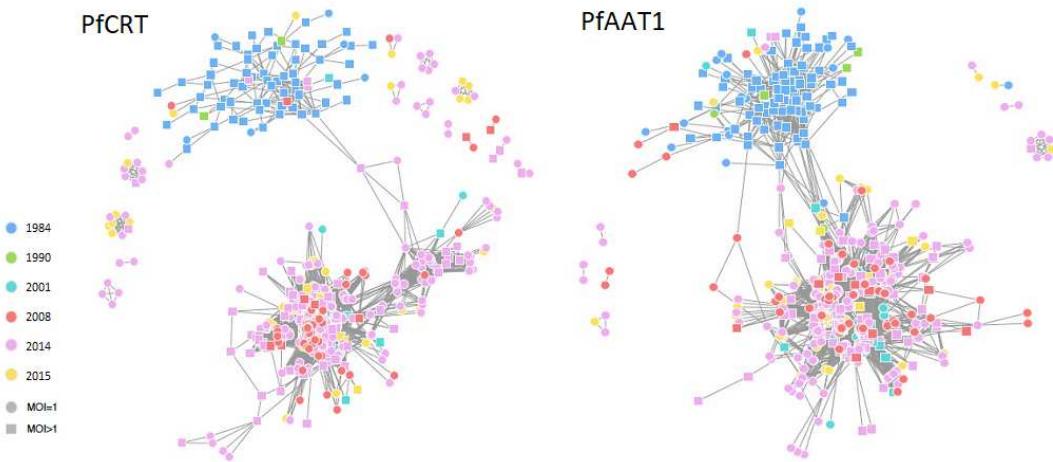
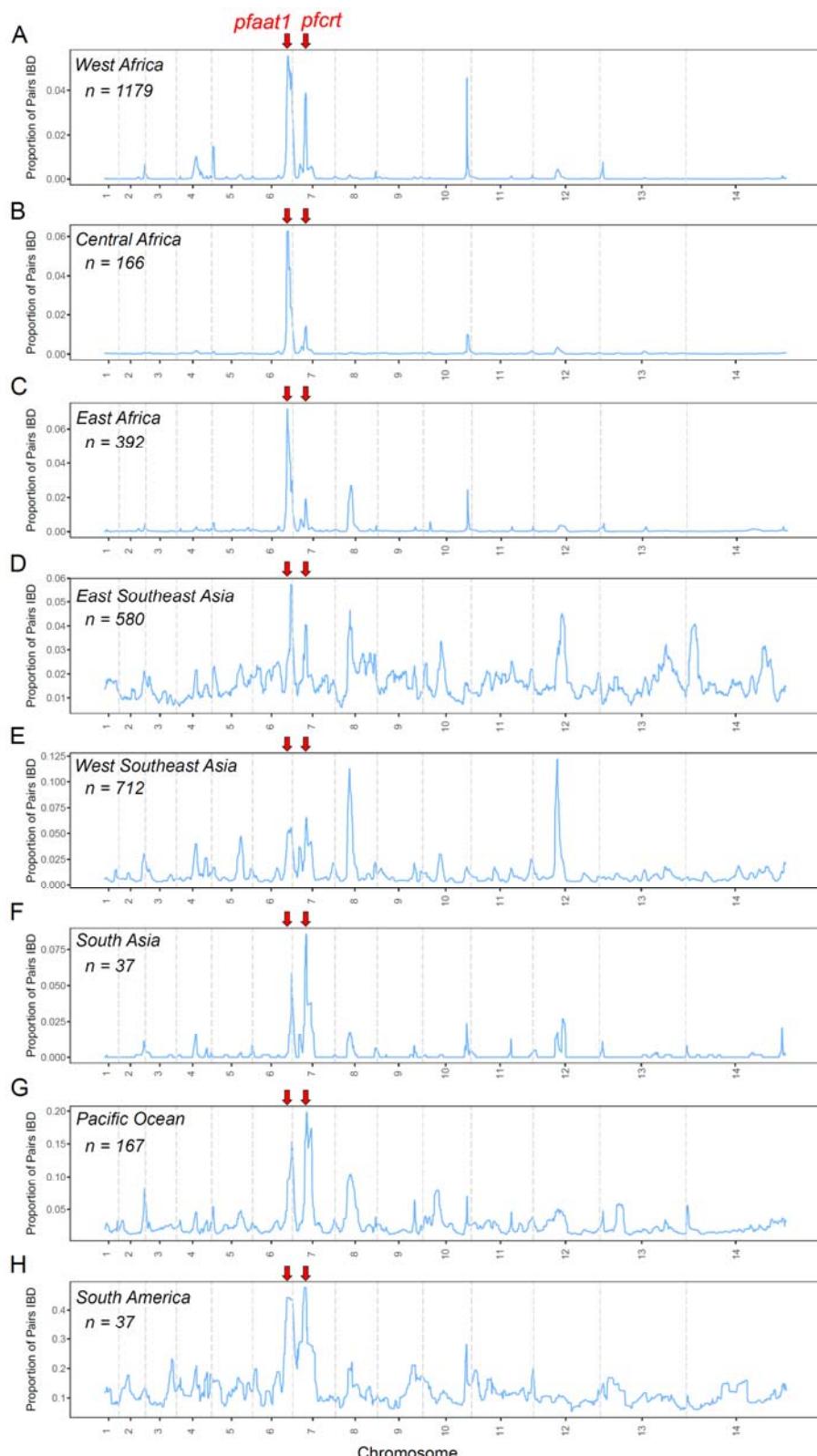

912

Fig. S1. Estimation of selection coefficient (s) for *pfaat1* (S258L) and *pfcrt* (K76T) alleles.

p is the frequency of mutant alleles (*pfaat1* S258L or *pfcrt* K76T) as indicated in Fig. 1A, and *q* (=1-*p*) is the inferred frequency of wild-type (3D7) alleles. The x-axis indicates parasite generations (labeled with sample collection year). We estimated selection coefficients (*s*) based on allele frequency from year 1990 and 2001, as CQ monotherapy was stopped in Gambia in 2004. *s* indicates the changes in relative growth per parasite generation (i.e. the duration of the complete lifecycle in both mosquito and human host). The calculation was based on estimates of 2, 4, or 6 generations per year.

921

Figure S2

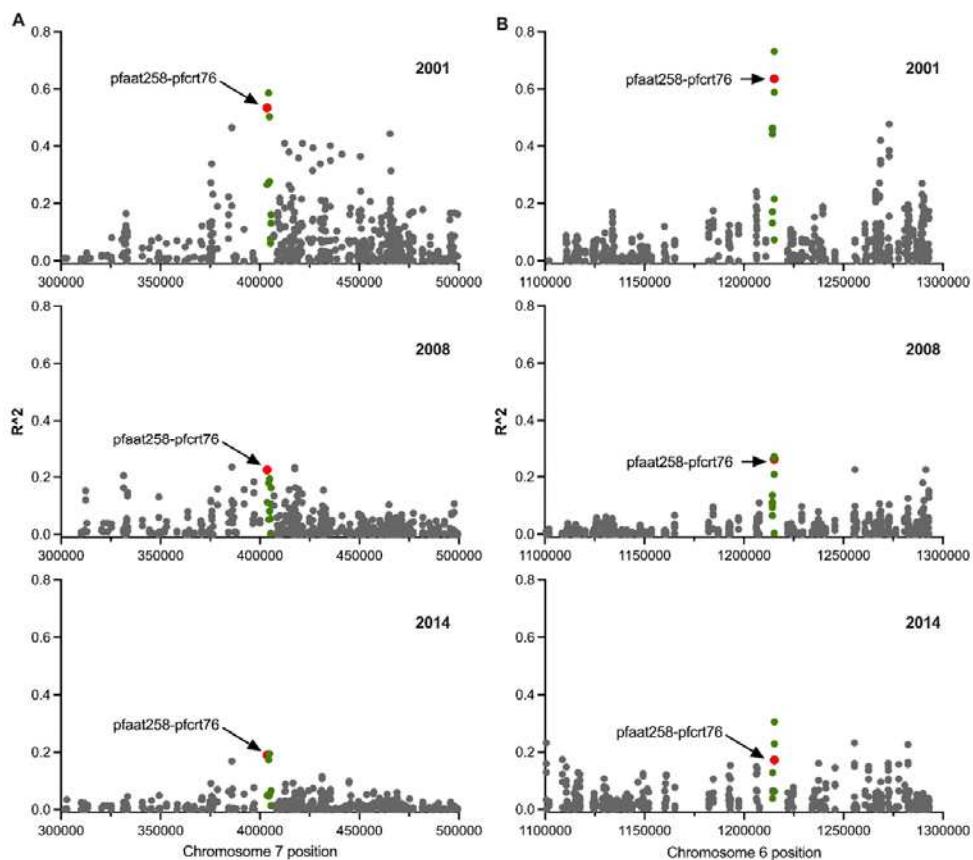

922

923 **Fig. S2. Haplotype structure at the *pfcrt* (left panel) and *pfaat1* (right panel) regions.** Each
924 point depicts an isolate with point colors representing the years from which they were sampled.
925 Square points represent complex infections and circles represent monoclonals. MOI, multiplicity
926 of infection.

927

928

Figure S3

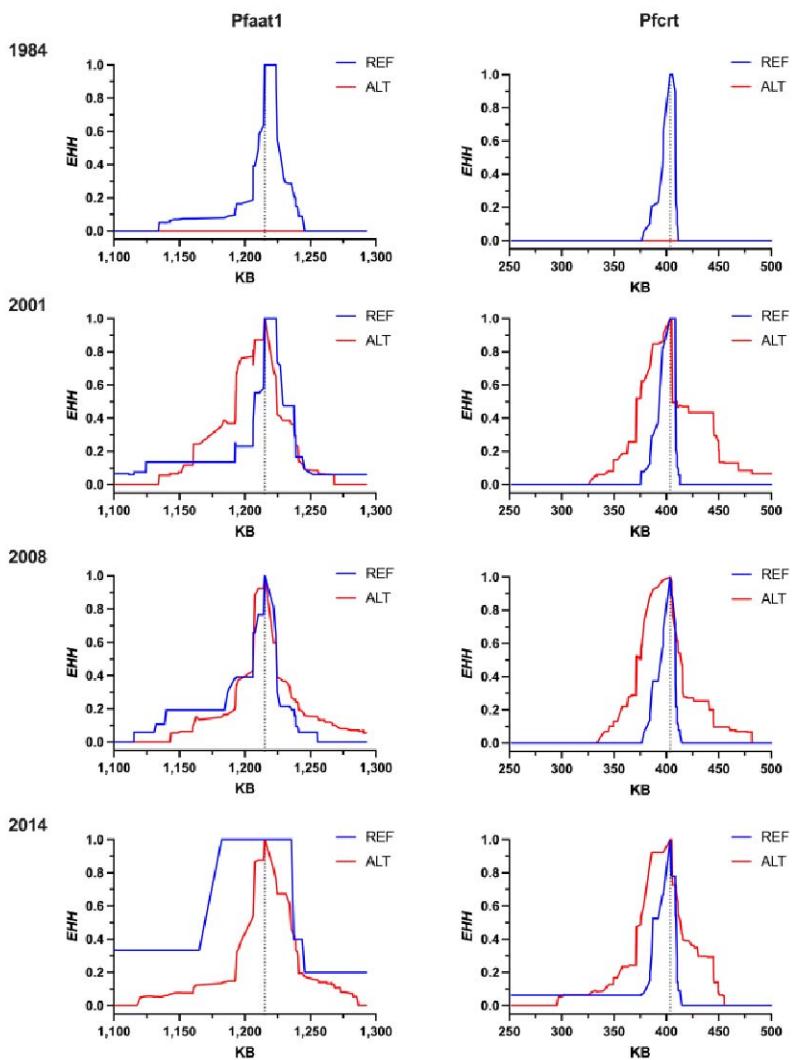


929

930 **Fig. S3.** The proportion of pairs identical by descent (IBD) within populations from global
931 locations. For samples with >90% of the genomes are IBD, only one representative sample with
932 the highest genotype rate was selected and used for IBD analysis. Sample numbers are showed in
933 each panel. Chromosome boundaries are indicated with grey dashed vertical lines. The location
934 of *pfaat1* and *pfcrt* are indicated with red arrows on top of each panel. See also analysis by
935 Amambua-Ngwa et al ¹⁷, Hendon et al ¹⁸, and Carrasquilla et al ¹⁹.
936

937

Figure S4



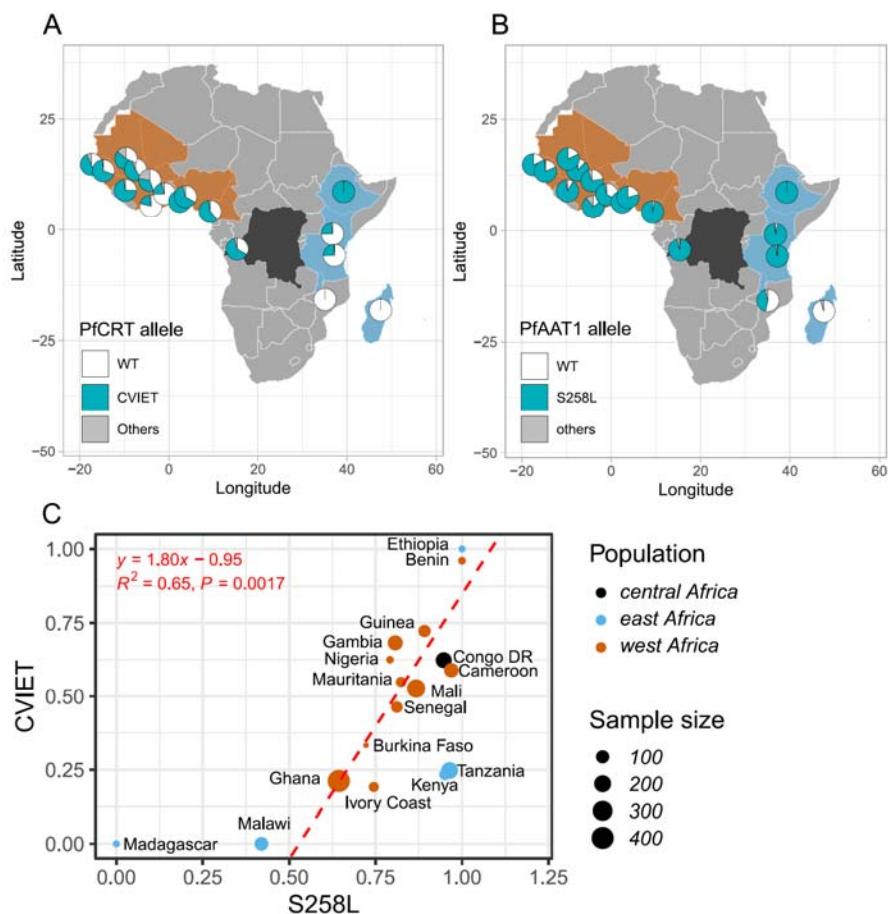
938

939 **Fig. S4.** Interchromosomal linkage disequilibrium (LD) analysis. A. R^2 between *pfaat1* (SNP
940 pfaat258 located at Pf3D7_06_v3:1215233) and a 200 kb region around the *pfcrt* gene on chr. 7.
941 B. R^2 between *pfcrt* (SNP pfcrt76 located at Pf3D7_07_v3:403625) and a 200kb region around
942 the *pfaat1* gene on chr. 6. R^2 values against SNPs within gene *pfcrt* (in panel A) or *pfaat1* (in
943 panel B) are shown as green or red points, while the red points are LDs between SNPs pfaat258
944 and pfcrt76. For both panel A and B, from top to bottom, rows represent LD analysis for
945 populations from year 2001, 2008, and 2014, respectively. Samples from 1984 are not shown,
946 because neither *pfaat1* S258L nor *pfcrt* K76T were present. 1990 was omitted because only 13
947 samples were available. The highest LDs were observed between gene *pfaat1* and *pfcrt*.
948

949

Figure S5

950


951 **Fig. S5.** Extended haplotype homozygosity (EHH) analysis of Gambian samples. Graphs show
952 EHH surrounding *pfaat1* S258L (left panels), or *pfcrt* K76T (right panels) in samples collected in
953 1984, 2001, 2008 and 2014. 1990 was omitted because only 13 samples were available. Samples
954 from 1984 show EHH around the ancestral allele only (blue), because neither *pfaat1* S258L nor
955 *pfcrt* K76T were sampled at that time.

956

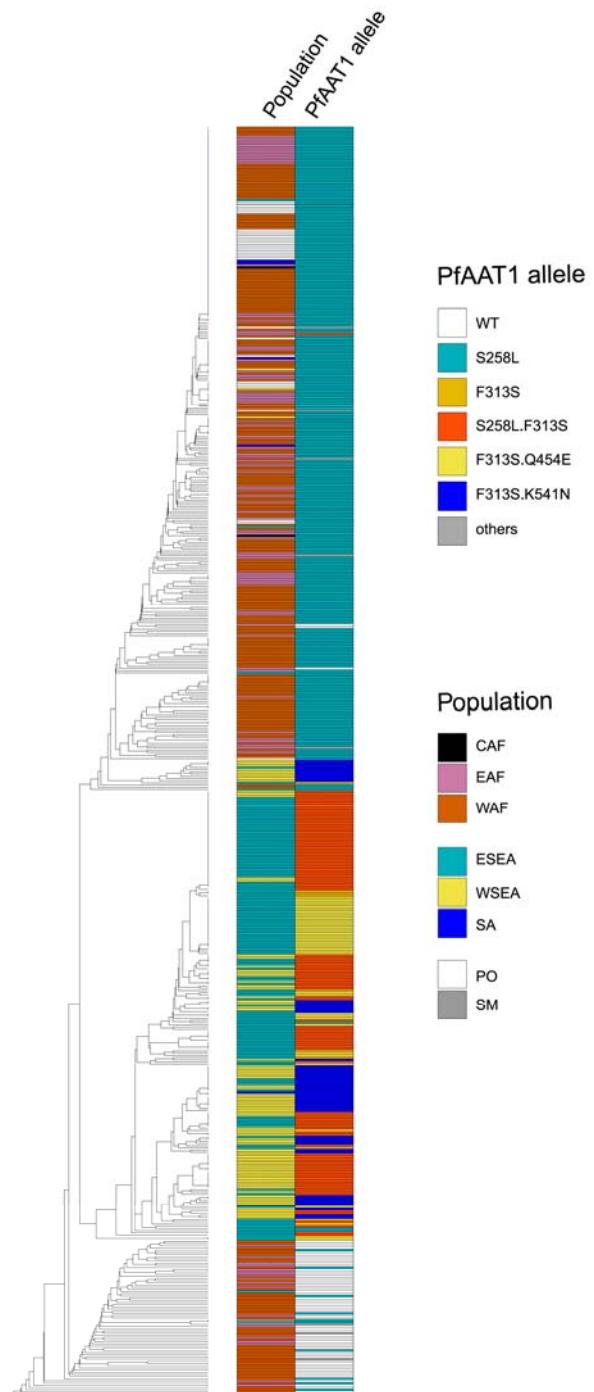
957

958

Figure S6

959

960


Fig. S6. *pfcrt* and *pfaat1* allele frequency distributions and correlations in African countries. A. *pfcrt* allele distribution in African countries. B. *pfaat1* allele distribution in African countries. C. Correlations in allele frequencies between *pfcrt* (CVIET) and *pfaat1* (S258L). Frequencies of the CVIET haplotype for amino acids 72-76 in *pfcrt* are significantly correlated with allele frequencies of *pfaat1* S258L in West Africa ($R^2 = 0.65, p = 0.0017$, red dashed line) or across all African populations ($R^2 = 0.44, p = 0.0021$). Point size indicates sample numbers, while color indicates sampling locations.

961

962

968

Figure S7

969

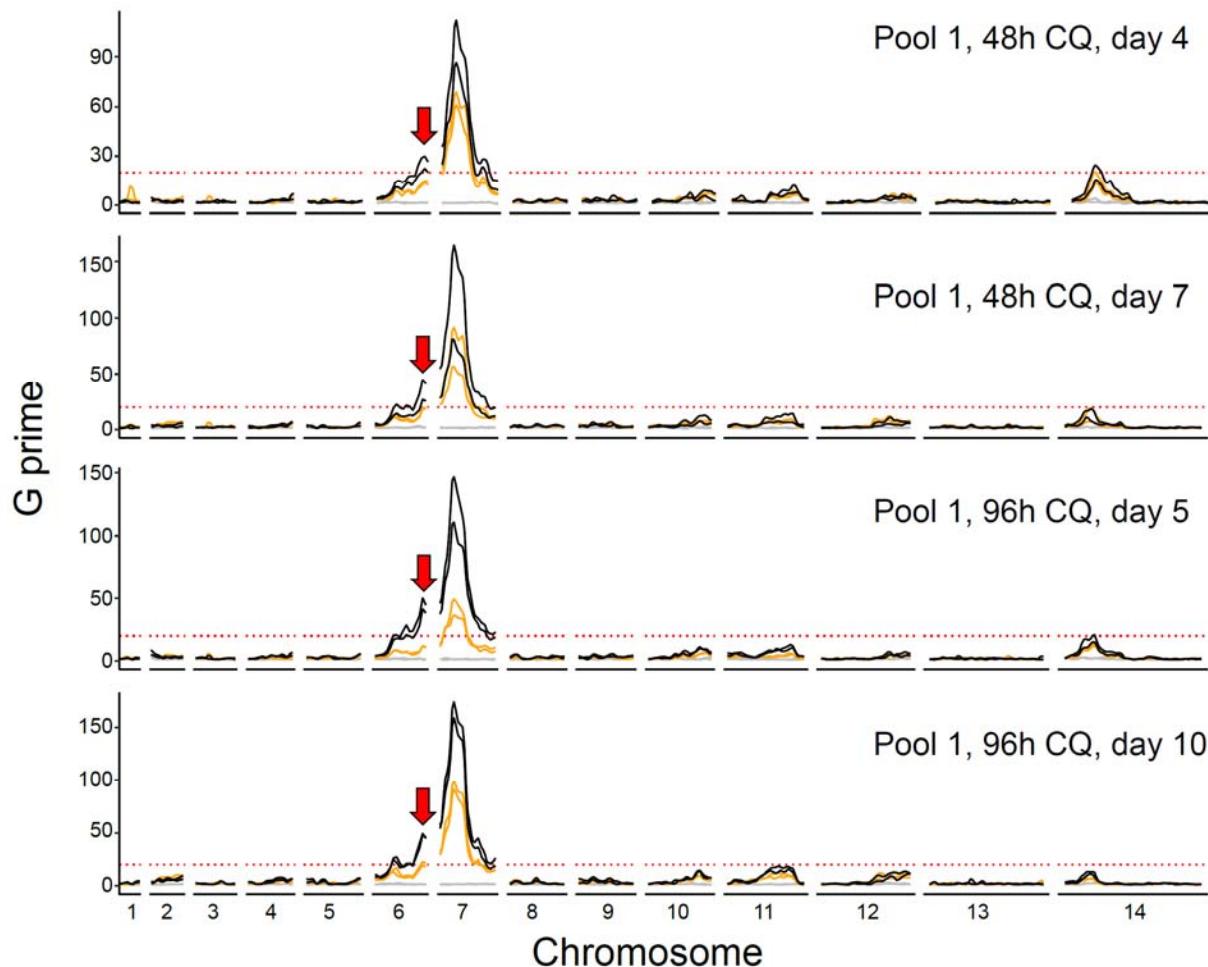

970

Fig. S7. UPGMA tree showing the relationship of 581 haplotypes based on SNPs inside the 971 50 kb region surrounding *pfaat1*. The tree was rooted with *Plasmodium reichenowi* (not shown

972 in the tree). WAF: west Africa, EAF: east Africa, CAF: central Africa, SM: south America,
973 ESEA: east Southeast (SE) Asia, SA: south Asia, WSEA: west SE Asia, PO: Pacific Ocean.
974

975

Figure S8

976

977 **Fig. S8. Mapping CQ resistance loci with cross 3D7×NHP4026 using recombinant progeny**

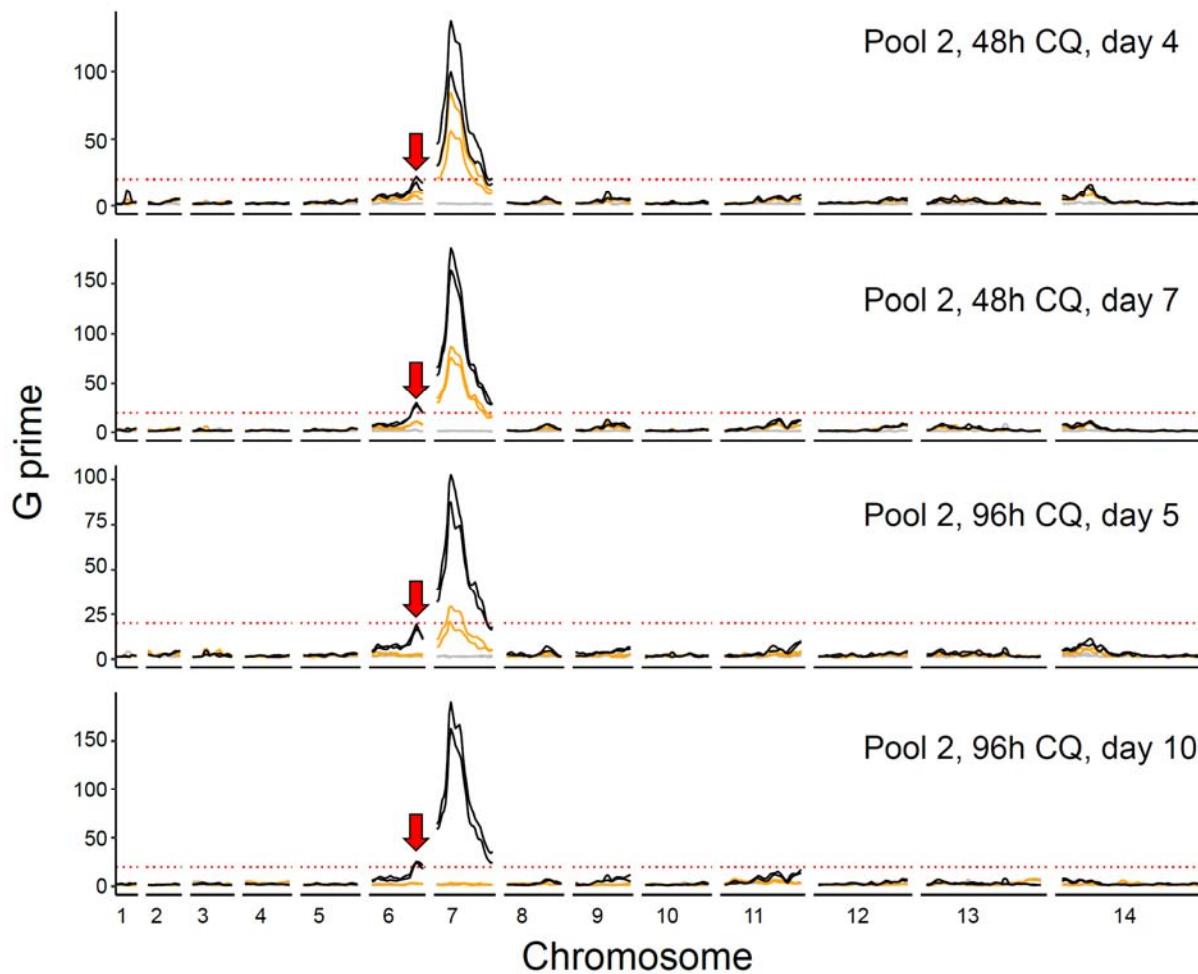
978

pool 1. Grey, orange, and black lines indicate BSAs from 50 nM, 100 nM, and 250 nM CQ

979

treatments, separately. Lines with the same color are BSAs from technical replicates. Red dashed

980


lines are the threshold ($G \text{ prime} = 20$) for QTL detection. Red arrows indicate the location of the

981

chromosome 6 QTL.

982

Figure S9

983

984

Fig. S9. Mapping CQ resistance loci with cross 3D7×NHP4026 using recombinant progeny

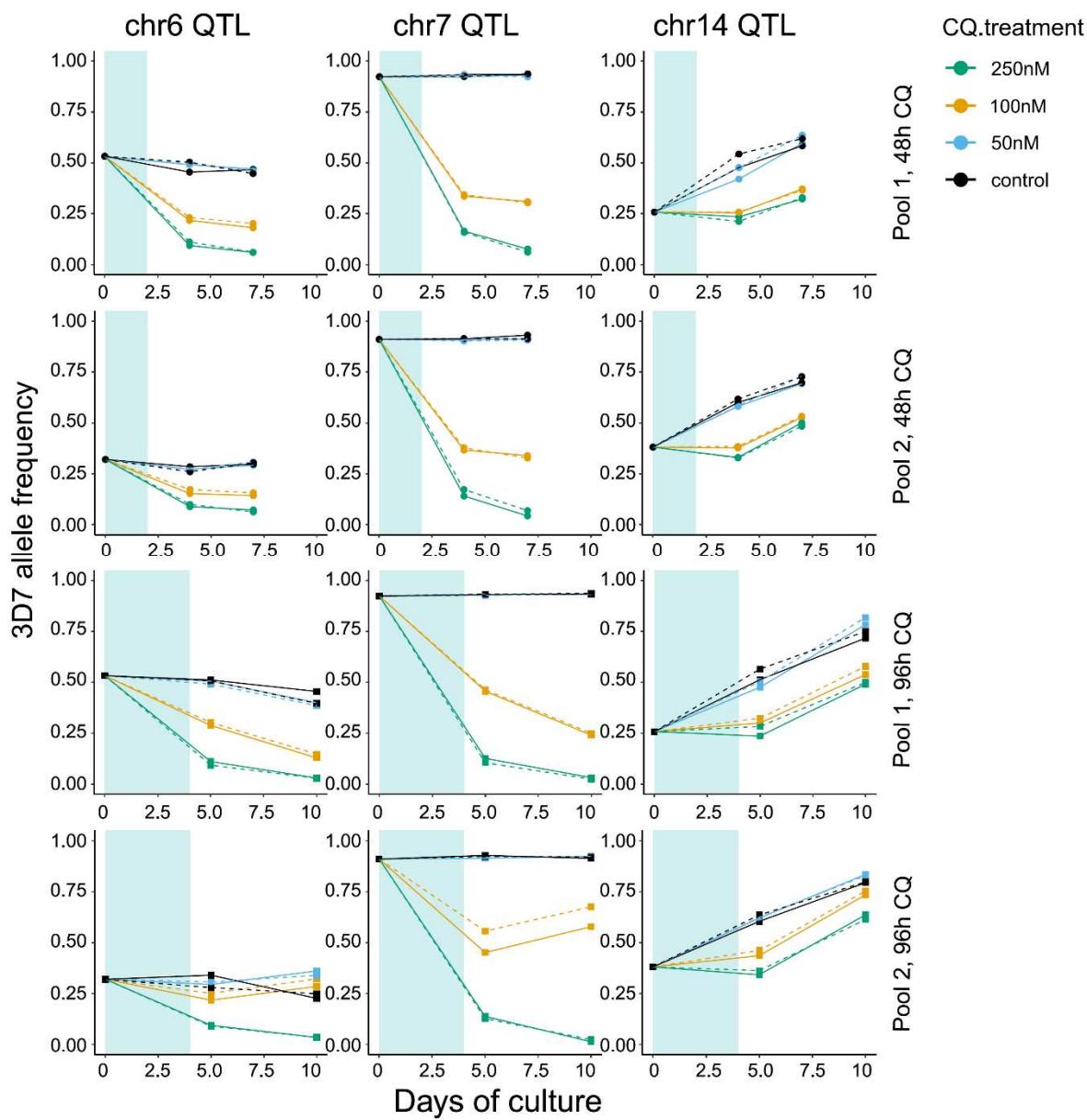
985

pool 2. Grey, orange, and black lines indicate BSAs from 50 nM, 100 nM, and 250 nM CQ

986

treatments, separately. Lines with the same color are BSAs from technical replicates. Red dashed

987

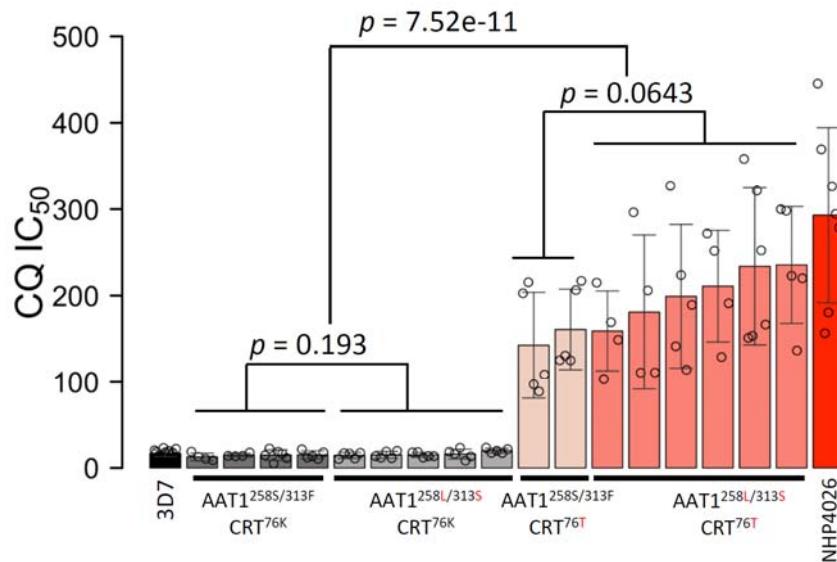

lines are the threshold ($G \text{ prime} = 20$) for QTL detection. Red arrows indicate the location of the

988

chromosome 6 QTL.

989

Figure S10

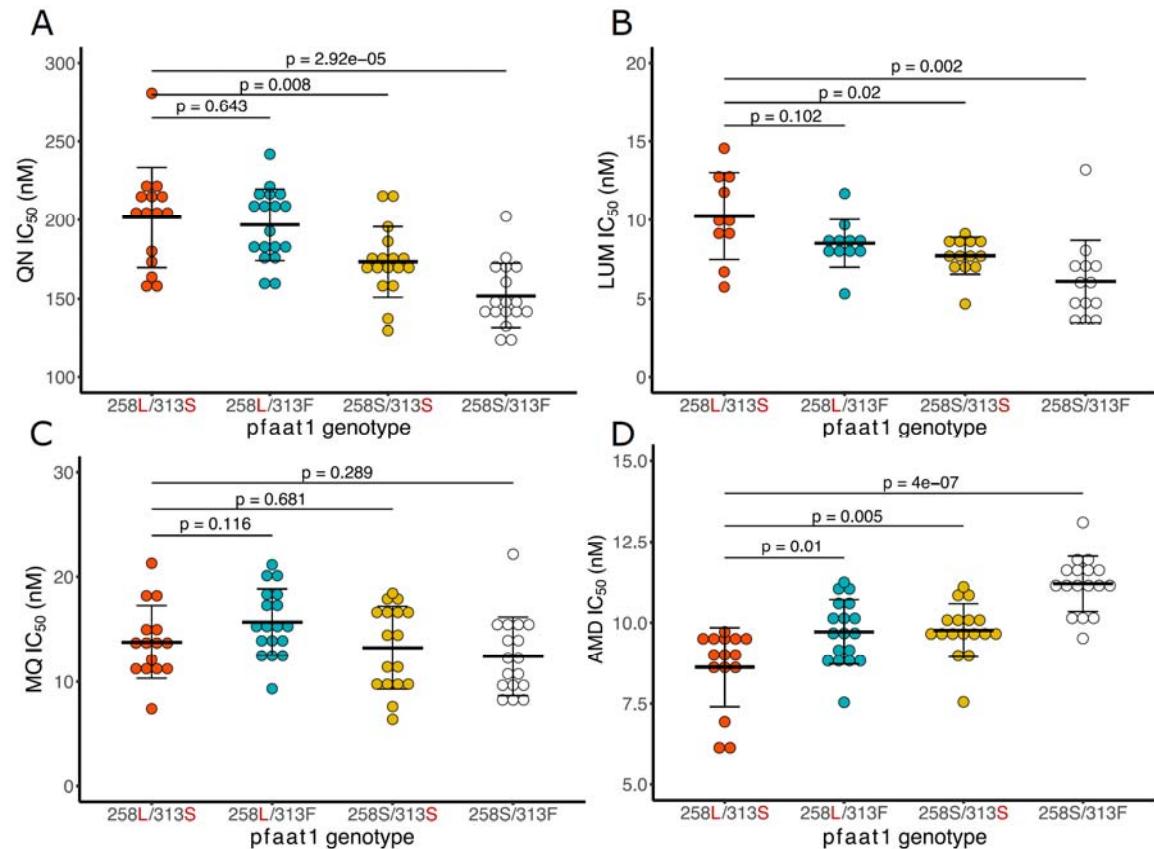

990

991 **Fig. S10. 3D7 allele frequency for QTLs at chr.6, chr.7 and chr.14.** CQ treatments were
992 applied to the pools on day 0 at 0 (control), 50, 100, or 250 nM. CQ was removed on day 2 (48
993 hour treatment) or day 4 (96 hour treatment), as shaded with light blue. For 48 hour CQ
994 treatments, samples were collected at day 0, 4, and 7; while for 96 hour CQ treatment, samples
995 were collected at day 0, 5, and 10. Solid or dashed lines are results from different technical

996 replicates. The 3D7 allele frequencies in CQ treated pools decrease at both chr.6 and chr.7 QTL
997 regions. At the chr.14 QTL region, allele frequencies are unchanged following drug treatment,
998 suggesting this QTL is unrelated to drug treatment.

999

Figure S11

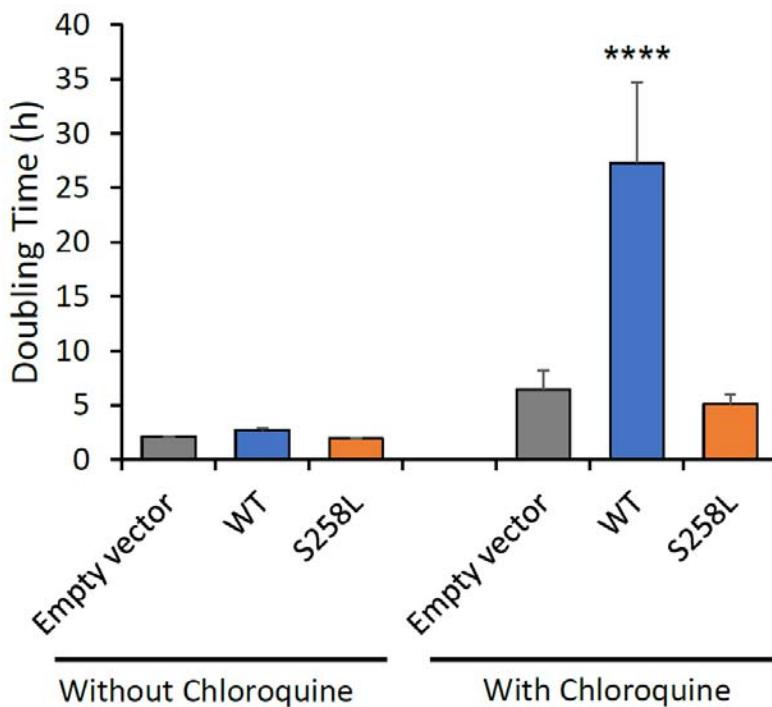

1000

1001 **Fig. S11.** Mean IC_{50} (\pm S.D.) of parents and progeny grouped by combinations of *pfcrt* and
1002 *pfaat1* allele. IC_{50} for each clone is calculated from 4-13 biological replicates (Supplementary
1003 Table 7). Only two progeny carrying *pfaat1* 258S/313F (WT) and *pfcrt* K76T were recovered. *P*
1004 values indicate significance levels are based on two-way ANOVA analysis.

1005

1006

Figure S12

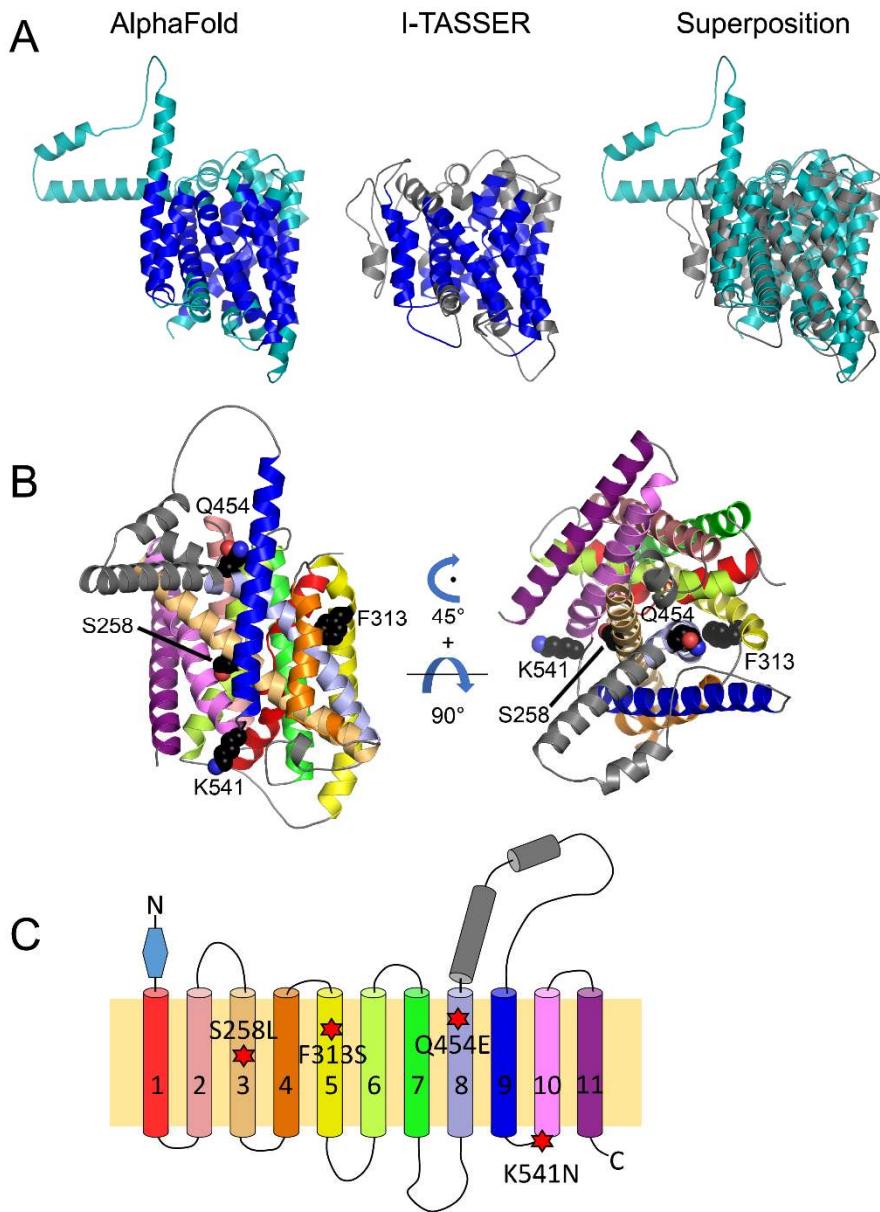

1007

1008 **Fig. S12. Impact of CRISPR/Cas9 substitutions on IC_{50} of quinine, lumefantrine,**
1009 **mefloquine and amodiaquine.** CRISPR/Cas9 gene editing resulted in small differences in IC_{50}
1010 for quinine (QN), lumefantrine (LUM) and Amodiaquine (AMD), but no significant changes for
1011 mefloquine (MQ). However, all IC_{50} 's were below levels of clinical significance for these drugs
1012 (clinical thresholds: QN = 600 nM⁶⁷; MQ = 30 nM⁶⁷, AMD = 60 nM⁶⁷), or at the lower end of
1013 the *in vitro* range (0-150 nM) in the case of LUM⁶⁸. *P* values indicate significance levels are
1014 based on two-way ANOVA analysis.

1015

1016

Figure S13



1017

1018 **Fig. S13. Introduction of S258L results in chloroquine resistance in yeast.** Yeast doubling
1019 time was calculated from the linear portion of exponential growth. Data was shown as means
1020 from 3 independent experiments \pm SEM, and significance was calculated according to
1021 multiple comparisons (with Turkey corrections) of two-way ANOVA. Growth of yeast cells
1022 expressing wild type *pfaat1* (WT) is severely impacted by CQ treatment (5 mM CQ through the
1023 experiments) but is recovered in yeast expressing *pfaat1* S258L. Published results demonstrate
1024 that AAT1 is expressed in the yeast cell membrane²⁶.

1025

Figure S14

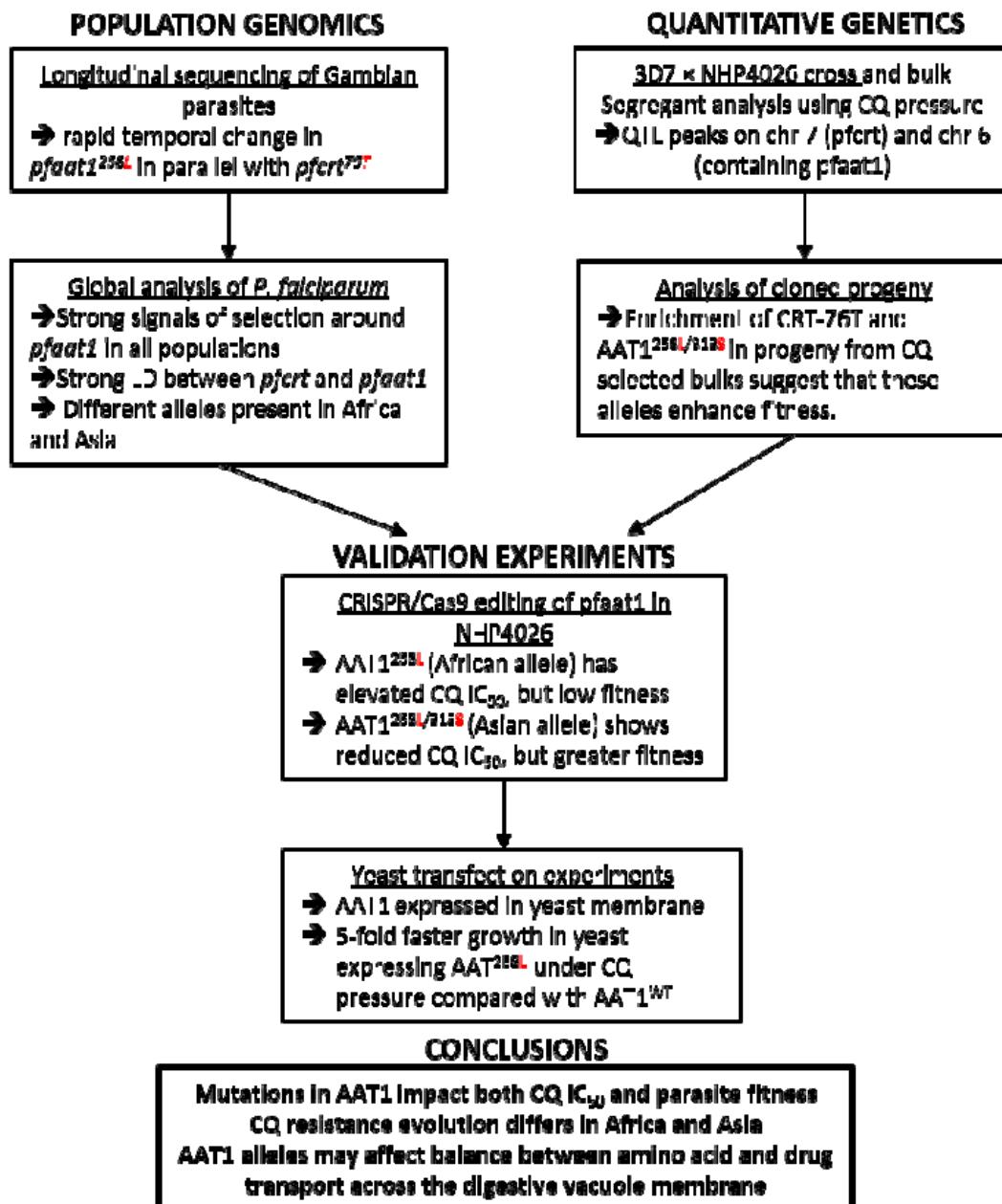
1026

1027

Fig. S14. Topology structure of pfAAT1 protein. (A) AlphaFold model of PfAAT1 (left), representative I-TASSER model of PfAAT1 (center), structural superposition of the AlphaFold model (teal) and I-TASSER model (gray, right). TOPCONS transmembrane (TM) helix topology predictions are mapped onto the models in dark blue (left, center). AlphaFold and I-TASSER

1028

1029

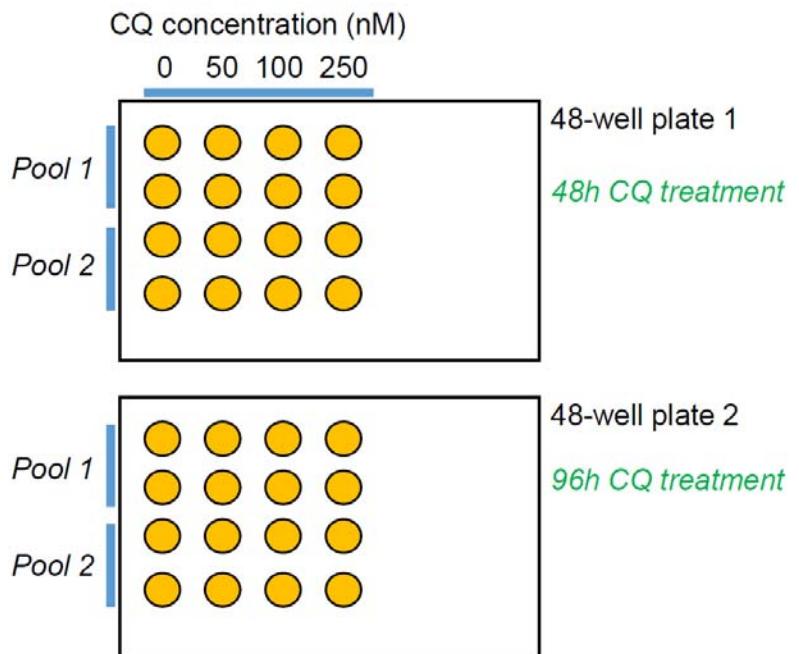

1030

1031 models align with a RMSD of 2.5 Å over 327 of 440 residues. Amino-terminal residues 1-166
1032 were excluded from all models due to low confidence in structure prediction. (B) Detailed view
1033 of the mutations on the predicted PfAAT1 3-D structure using the AlphaFold model. The right
1034 view is related to the left by a 45° rotation about the axis looking down at the figure followed by
1035 a 90° rotation about the horizontal axis. The four SNPs shown as space-filling models are all
1036 arranged within a plane at one side of the model, perpendicular to the membrane. S258L (helix
1037 3) and F313S (helix 5) are located opposite each other with helix 8 in between. Given the
1038 epistatic interactions between the PfAAT1 S258L and F313S SNPs evident from our functional
1039 analyses, the F313S substitution of the bulky, hydrophobic phenylalanine with the smaller, polar
1040 serine may compensate for a disruption in the transmembrane region that includes helices 3, 5,
1041 and 8 allowing for partial restoration of amino acid transport activity. Q454E is located on helix
1042 8 near the TM surface and K541N is located in a loop connecting helix 9 and 10. (C) Topology
1043 of PfAAT1 inferred using 3D structure. There are eleven transmembrane (TM) helices. Three of
1044 the mutations are located at the TM helices, while K541N is located at a loop connecting helix 9
1045 and 10. The color scheme matches the schematic in Panel B. The blue triangle indicates amino-
1046 terminal residues 1-166 that were excluded from structure prediction.

1047

1048

Figure S15

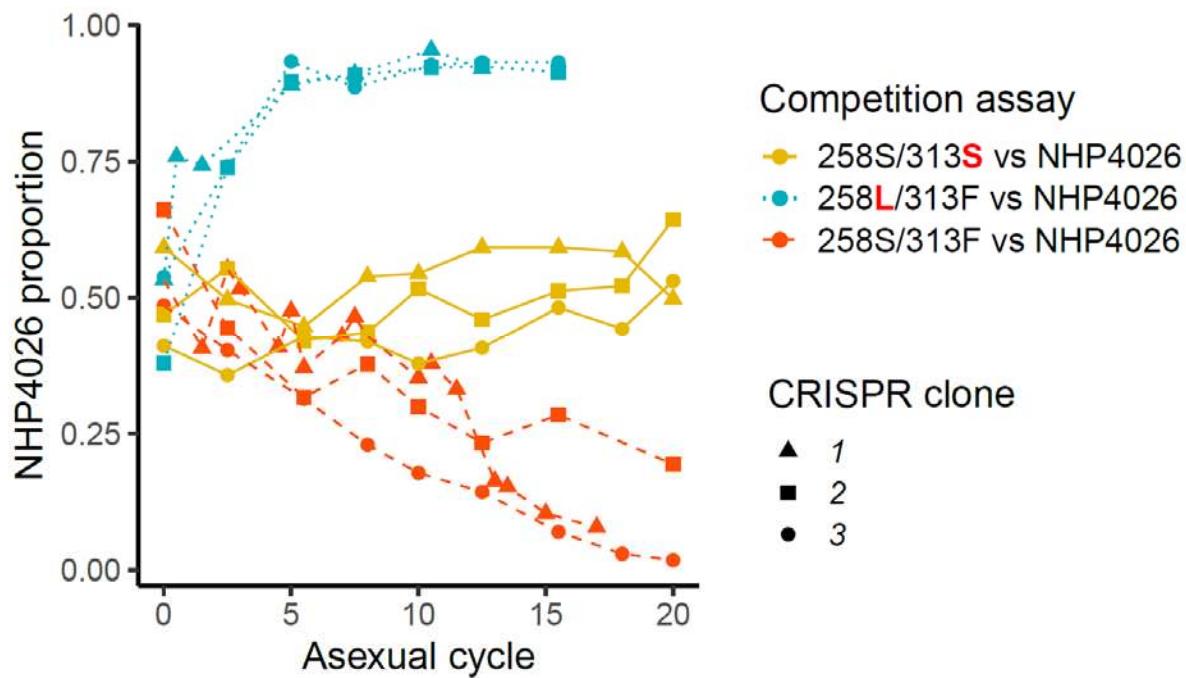

1049

1050 **Fig. S15.** Project design. We use (i) population genomic analyses, (ii) genetic crosses and
1051 quantitative genetics analysis followed by (iii) functional analyses to investigate the role of
1052 additional loci in CQ resistance.

1053

1054

Figure S16


1055

1056

Fig. S16. Experiment design for CQ bulk segregant analysis.

1057

Figure S17

1058

1059 **Fig. S17.** Allele frequency changes in head-to-head competition experiments between different
1060 CRISPR/Cas9 edited parasites and NHP4026. We used three independent CRISPR/Cas9 edited
1061 clones for each genotype, and two technical replicates for each competition experiment (average
1062 values plotted).

1063