

1 Open science resources from the Tara Pacific expedition across coral reef and 2 surface ocean ecosystems

3

4 Authors

5 Fabien Lombard^{1,2,3}, Guillaume Bourdin^{1,4}, Stéphane Pesant⁵, Sylvain Agostini⁶, Alberto Baudena¹,
6 Emilie Boissin⁷, Nicolas Cassar^{8,9}, Megan Clampitt^{10,11,12}, Pascal Conan¹³, Ophélie Da Silva¹,
7 Céline Dimier¹, Eric Douville¹⁴, Amanda Elineau¹, Jonathan Fin¹⁵, J. Michel Flores¹⁶, Jean François
8 Ghiglione¹³, Benjamin C.C. Hume¹⁷, Laetitia Jalabert¹, Seth G. John¹⁸, Rachel L. Kelly¹⁸, Ilan
9 Koren¹⁶, Yajuan Lin^{8,9,32}, Dominique Marie¹⁹, Ryan McMinds^{10,20,21}, Zoé Mériguet¹, Nicolas
10 Metzl¹⁵, David A. Paz-García²², Maria Luiza Pedrotti¹, Julie Poulaïn²³, Mireille Pujo-Pay¹³,
11 Joséphine Ras¹, Gilles Reverdin¹⁵, Sarah Romac^{2,19}, Alice Rouan^{10,11,12}, Eric Röttinger^{10,11,12}, Assaf
12 Vardi²⁴, Christian R. Voolstra¹⁷, Clémentine Moulin²⁵, Guillaume Iwankow⁷, Bernard Banaigs⁷,
13 Chris Bowler^{2,26}, Colomban de Vargas^{2,19}, Didier Forcioli^{10,11,12}, Paola Furla^{10,11,12}, Pierre E.
14 Galand^{2,27}, Eric Gilson^{10,11,12,28}, Stéphanie Reynaud²⁹, Shinichi Sunagawa³⁰, Matthew B. Sullivan³³,
15 Olivier Thomas³¹, Romain Troublé²⁵, Rebecca Vega Thurber²¹, Patrick Wincker²³, Didier
16 Zoccola²⁹, Denis Allemand²⁹, Serge Planes⁷, Emmanuel Boss⁴, Gaby Gorsky^{1,2}.

17

18 Affiliations

19 ¹Laboratoire d'Océanographie de Villefranche, UMR 7093, Sorbonne Université, CNRS, 06230 Villefranche sur mer, France

20 ²Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000 Paris, France

21 ³Institut Universitaire de France, 75231 Paris, France

22 ⁴School of Marine Sciences, University of Maine, Orono, Maine, 04401, USA

23 ⁵European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK

25 ⁶Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan

26 ⁷PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIODE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France

28 ⁸Nicholas School of the Environment, Duke University, Durham, NC, United States,

29 ⁹Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer, Brest, France

31 ¹⁰Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France

32 ¹¹Université Côte d'Azur, Institut Fédératif de Recherche - Ressources Marines (IFR MARRES), Nice, France

33 ¹²LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco

34 ¹³Sorbonne Université, CNRS- UMR 7621, LOMIC, Observatoire Océanologique de Banyuls, 66650 Banyuls Sur Mer, France

35 ¹⁴Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France

36 ¹⁵Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, 75005, France

37 ¹⁶Weizmann Institute of Science, Department of Earth and Planetary Sciences, Rehovot, Israel

38 ¹⁷Department of Biology, University of Konstanz, Konstanz, Germany

39 ¹⁸Department of Earth Science, University of Southern California, Los Angeles, CA,

40 United States

41 ¹⁹Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, AD2M, Roscoff, France

²⁰Université Côte d'Azur, Maison de la Modélisation, de la Simulation et des Interactions (MSI), Nice, France

²¹Department of Microbiology, Oregon State University, Corvallis, OR, United States

²²CONACyT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR). Laboratorio de Necton y Ecología de Arrecifes. La Paz, Baja California Sur, 23096, México

²³Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France

²⁴Weizmann Institute of Science, Department of Plant and Environmental Science, Rehovot, Israel.

²⁵Tara Ocean Foundation, Paris, France

²⁶Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France

²⁷Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, UMR 8222, LECOB, Banyuls-sur-Mer, France

²⁸Department of Medical Genetics, CHU Nice, France

²⁹Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Principality of Monaco

³⁰Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland

³¹Marine Biodiscovery Laboratory, School of Chemistry and Ryan Institute, National University of Ireland, Galway, Ireland

³²Environmental Research Center, Duke Kunshan University, Kunshan, China

³³Department of Microbiology and Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH.

United States

corresponding author(s): Fabien Lombard (fabien.lombard@imev-mer.fr)

Abstract

62 The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the
63 Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly
64 58,000 samples. The expedition was designed to systematically study warm coral reefs and included
65 the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical,
66 molecular, and imaging analysis. Here we provide a complete description of the sampling
67 methodology, and we explain how to explore and access the different datasets generated by the
68 expedition. Environmental context data were obtained from taxonomic registries, gazetteers,
69 almanacs, climatologies, operational biogeochemical models, and satellite observations. The
70 quality of the different environmental measures has been validated not only by various quality
71 control steps but also through a global analysis allowing the comparison with known environmental
72 large-scale structures. Such a wide released datasets opens the perspective to address a wide range
73 of scientific questions.

Background & Summary

76 Marine ecosystems are facing numerous perturbations either of seasonal, climatic, or biological
77 origin which are now overamplified by perturbations due to anthropogenic activities. The resilience
78 of marine ecosystems to perturbations is a general concern, especially when providing ecosystem
79 services and supporting human activities. Tropical coral reefs maintain important ecological
80 services such as fisheries, tourism, or coastal protection, but are also among the most sensitive
81 ecosystems to environmental changes^{1,2}. Furthermore, coral health is not only governed by the

82 environment, but also by the holobiont and its symbiotic interactions encompassing a wide range
83 of eukaryotic organisms (e.g., crustaceans, molluscs, fishes), endosymbiotic microalgae, bacteria,
84 fungi, and viruses. In the open sea, coral ecosystems are associated with islands and participate in
85 their long-term ecological and geological resilience. Coral ecosystems are hotspots of biological
86 activities and energy flux that have a strong effect on the open sea through nutrient enrichment that
87 could propagate in the open ocean, supporting fisheries or biogeochemical fluxes in other marine
88 ecosystems^{3,4}.

89 However, a more complete understanding of how coral ecosystems are reacting to
90 environmental stresses is complicated as multiple spatial (from microscale to mesoscale) and
91 temporal (from minutes, day, seasons or decades) scales are involved, as well as various biological
92 complexity levels (from molecular, genetic, physiological to ecosystem). Monitoring ecosystems
93 features at large biological, spatial, and temporal scales is very challenging. An alternative is to use
94 “space-for-time” substitutions which assumes that processes observed at various static spatial scales
95 could reflect what could happen if the same ecological forcing happens at various temporal scales⁵.
96 Historically, this method was used for centuries, for example when Charles Darwin used it to
97 describe the development of islands from barrier reefs, fringing reefs to atolls⁶. This method is still
98 commonly used in ecology, notably when species distribution⁷ or even diversity⁸ are modelled
99 using niche models.

100 This type of approach is often limited by the compatibility between datasets, where many
101 observations often originated from separate studies with heterogeneous protocols, methods or
102 measurements. In this respect, large global expeditions have often paved the way to major scientific
103 breakthroughs from the early expeditions conducted by the Beagle or HSM challenger to the more
104 recent Malaspina or Tara Ocean expeditions⁹⁻¹¹.

105 The Tara Pacific expedition has applied a pan-ecosystemic approach on coral reefs and their
106 surrounding waters at the entire ocean basin scale throughout the Pacific Ocean¹². The aim was to
107 propose a baseline reference of coral holobiont genomic, transcriptomic and metabolomic diversity
108 spanning from genes to organisms and its interaction with the environment. Tara Pacific focused
109 on widely distributed organisms, two scleractinian corals (*Pocillopora meandrina* and *Porites*
110 *lobata*), one hydrocoral (*Millepora platyphylla*) and two reef fish (*Acanthurus triostegus* and
111 *Zanclus cornutus*) together with their contextual biological (plankton) and physicochemical
112 environment¹³.

113 The collaboration of more than 200 scientists and participants during this expedition, made it
114 possible to sample coral systems across 32 islands (102 sites), together with 249 oceanic stations,
115 resulting in a collection of 57859 samples encompassing the integral study of corals, fishes,

116 plankton, and seawater. As with previous Tara expeditions¹⁴, organizing and cross-linking the
117 various measurements is a stepping-stone for open-access science resources following FAIR
118 principles (Findable Accessible Interoperable and Reusable¹⁵). In this effort, the strategy adopted
119 by Tara Pacific is to provide open access data and early and full release of the datasets once
120 validated or published. Such an approach ensures a long-lasting preservation, discovery and
121 exploration of data by the scientific community which will certainly lead to new hypotheses and
122 emerging concepts.

123 Here we present an overview of the sampling strategy used to collect coral holobiont in
124 connection with its local, large scale or historical environment. We also provide a critical
125 assessment of the environmental context. We provide the full registries describing the geospatial,
126 temporal, and methodological information for every sample, and connect it to the various sampling
127 events or stations. Extensive environmental context is also provided at the level of samples or
128 stations. Such registries and environmental context collections are essential for researchers to
129 explore the Tara Pacific data and will be updated and complemented when additional datasets will
130 be released to the public. Throughout the entire manuscript, terms stated [within brackets] refers to
131 the terms used within the registry or in environmental context datasets.

132

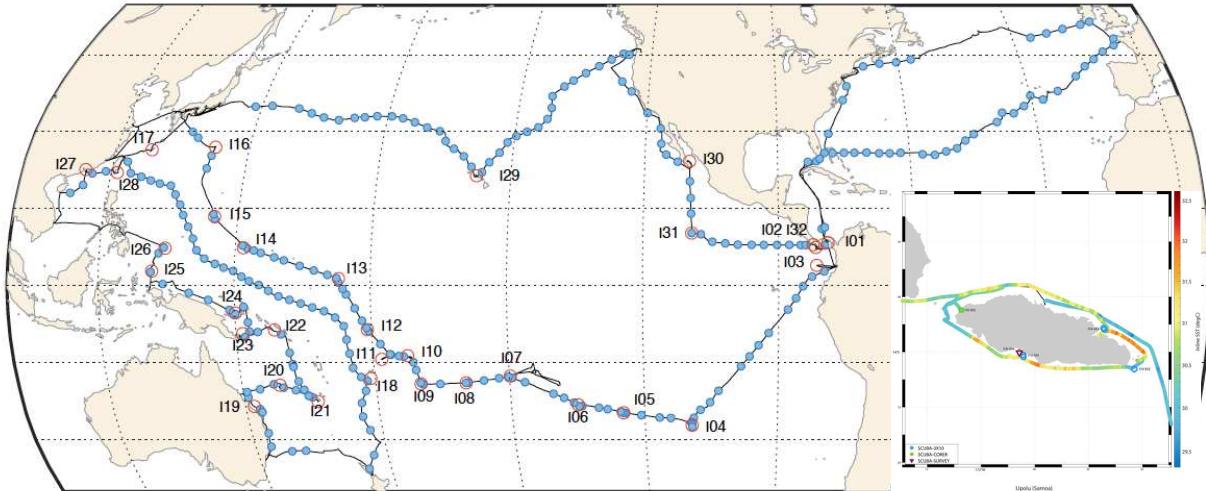
133 **Methods**

134 **1 Sampling locations**

135 Tara Pacific aimed to deploy the same sampling and analysis protocol at large scale to offer a
136 comparative suite of samples covering the widest environmental envelope while optimizing
137 cruising and sampling time over the 2.5 years of the sampling effort. Protocols and global objectives
138 of the Tara Pacific expedition were previously mentioned¹² for coral samples and are detailed here
139 in connection with the sample registry. Similarly protocols and global objectives for ocean and
140 atmosphere sampling were previously described¹³ for the 249 stations sampled during daytime
141 (noted [OA001] to [OA249]; nighttime sampling between stations and other non-systematic
142 sampling events were noted [OA000]).

143 A set of 32 island systems (noted [I01] to [I32] in registry; Table 1, Figure 1) were targeted to
144 cover the widest range of conditions as possible, from temperate latitudes to the equator, from the
145 low diversified system of the eastern Pacific to the highly diverse western Pacific warm pool¹⁶. The
146 variety of coral reef systems explored includes continental islands, remote volcanic islands up to
147 atolls, with varying island sizes or human populations (Table 1). Generally, 3 sites ([S01] to [S03])
148 per island were selected to conduct the full sampling strategy within 4 days. Occasionally only 2 or
149 up to 5 sites were selected (Table 1).

150


151 Table 1: Summary of the different islands sampled during the Tara Pacific expedition with the
 152 associated island code (I01 to I32), their chosen reference name (in bold) corresponding either to
 153 the name of the island or of the archipelagos and some island characteristics recovered from various
 154 sources.

Island code	isl_name (s)	Archipelagos / synonym	Country	latitude	longitude	station nb	Island type	land area (km ²)	max elevation	population	density (humans/km ²)
I01	Chapera/ Mogo Mogo/ Bartolome	Islas de las Perlas	Panama	8.4067	-79.0605	3	continental isl.	332.9	na	4500	13.51757284
I02	Brincaco / del canal de Auerta/ Jicarita	Coiba	Panama	7.4667	-81.7833	3	continental isl.	503	416	0	0
I03	Malpelo		Colombia	4	-81.6081	2	island	3.5	320	0	0
I04	Rapa Nui	Easter Island	Chile	-27.1167	-109.367	4	island	164.00	507.00	7750.00	47.26
I05	Ducie	Pitcairns	United Kingdom	-24.6833	-124.783	4	atoll	3.90	4.00	0.00	0.00
I06	Tenoko/Tekava/Kamaka	Gambiers	France	-23.14	-134.94	3	island	31.00	441.00	1592.00	51.35
I07	Moorea	French Polynesia	France	-17.5333	-149.833	3	island	134.00	1207.00	17718.00	132.22
I08	Altutaki	Cook	New Zealand	-18.8561	-159.785	3	atoll	16.80	124.00	2194.00	130.60
I09	Niue		Niue	-19.05	-169.917	3	island	260.00	68.00	1591.00	4.60
I10	Upolu	Samoa	Samoa	-13.5833	-172.333	4	island	2944.00	1113.00	193483.00	62.50
I11	Futuna	Futuna / Horn Islands	France	-14.2833	-178.15	3	island	46.28	524.00	3225.00	69.68
I11	Alofi	Futuna / Horn Islands	France				island	17.78	417.00	1.00	0.06
I12	Tuvalu		Tuvalu	-8.5067	179.0979	4	atoll	26.00	1.80	11342.00	436.00
I13	Abaiang	Kiribati	Kiribati	1.4167	172	3	atoll	16.40	1.80	5568.00	339.51
I14	Chuuk	Micronesia	Micronesia	7.4167	151.7833	3	island	116.20	238.00	48651.00	419.00
I15	Guam		USA	13.5	144.8	3	island	549.00	406.00	164229.00	299.00
I16	Chichi Jima	Ogasawara	Japan	26.9981	142.2181	3	island	104.00	916.00	2821.00	27.13
I17	Sesoko	Okinawa	Japan	26.4794	127.9278	3	island	1201.00	503.00	1230000.00	1024.15
I18	Fiji	Fiji	-18	179	3	island	18270.00	1324.00	935974.00	51.00	
I19	Heron	Australia	-23.4385	151.9084	4	atoll	0.29	3.60	na	na	
I20	Chesterfield	France	-19.33	158.4727	3	atoll	<10	6.00	0.00	0.00	
I21	New Caledonia	France	-22.4973	166.4787	3	island	18575.50	1629.00	271407.00	15.00	
I22	Guadacanal / Njurokamo / Njapuna	Solomon	Solomon Islands	-8.5672	158.5733	3	island	28400.00	2335.00	652857.00	18.10
I23	Milne Bay		Papua New Guinea	-9.2688	151.4979	3	continent	462840.00	4509.00	8300000.00	14.00
I24	Kimbe Bay		Papua New Guinea	-5.2803	150.1162	3	continent	462840.00	4509.00	8300000.00	14.00
I25	Hellen Reef/ Tobi / Merir / Pulo Anna/ Palau South Islands	Palau	Palau	2.890117	131.7944	5	island	0.85	6.00	30.00	35.29
I26	Babeldaob	Palau	Palau	7.344777	134.4888	3	island	330.00	242.00	6000.00	18.18
I27	Hong Kong		Hong Kong	22.634886	114.1022	2	continent	1104.00	957.00	7466441	6763
I28	Taiwan	Taiwan	22.06	121.33	3	island	35980	3952.00	23603049.00	656	
I29	Oahu	Hawaii	USA	21.4321	-157.739	3	island	1545.40	1220.00	976372	631.79
I30	Isla Cervalvo / Los Frailes/ Bahia Chilenos	Baja California	Mexico	24.423236	-109.888	3	continental isl.	143396.00	3096.00	712029	0.89
I31	Clipperton	France	10.26905	-109.203	3	atoll	1.70	29.00	0	0	
I32	Brincaco / Rancheria/ Jicarita/ Las Uvas	Coiba	Panama	8.004	-82.4341	4	continental isl.	503	416	0	0

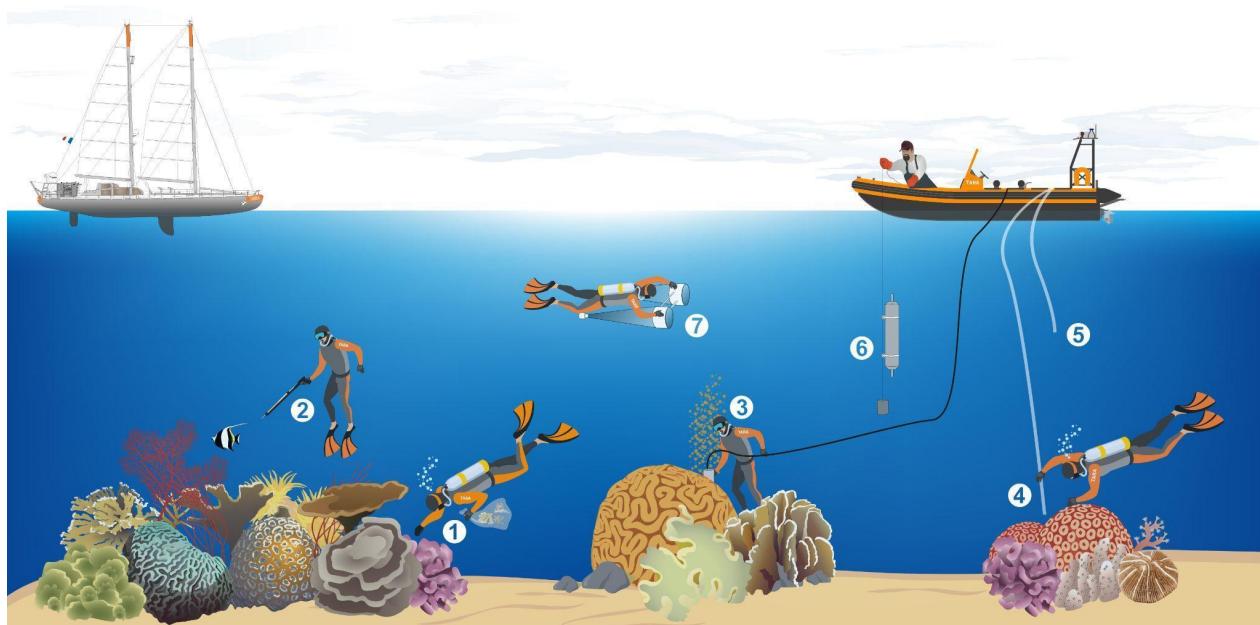
155

156

157

158

159


160 Figure 1. Tara Pacific expedition (2016-2018) sampling map. A) Map of sampled coral systems
 161 (red circles) and oceanic stations (blue dots). B) example of coral sampling locations around Upolu
 162 (Samoa; I10) with overlaid temperature as recorded by the inline thermosalinograph on the boat
 163 trajectory. The absence of sampling in the middle of the return trip in the Atlantic Ocean is due to
 164 bad weather.

165

166

167 **2 Sampling coral reef systems**

168 The sampling event sequence and protocols were performed consistently over the whole
169 expedition. Sampling was operated following the same procedure, approximate timing, and
170 articulated around the same standardized “sampling events” (Figure 2) which allowed the same
171 collection of samples with a standardized protocol (Table 2). On rare occasions, the timing and
172 protocols were adapted for sailing conditions and to fit the schedule. Sampling events are
173 characterized by their mode of sampling, which could be either directly from Tara’s dinghy
174 [**ZODIAC**] or directly either using scuba-diving (**[SCUBA]**) or snorkeling (**[SNORKEL]**). In
175 addition, the sampling device and strategy are included in the sample identifier.
176

177
178 Figure 2: Schematic overview of the various sampling events conducted during the Tara Pacific
179 expedition while sampling on coral systems. The different events are represented by the different
180 numbers. (1) [**SCUBA-3X10**] and [**SCUBA-SURVEY**]; (2) [**SNORKLE-SPEAR**]; (3) [**SCUBA-**
181 **CORER**]; (4) [**SCUBA-PUMP**]; (5) [**ZODIAC-PUMP**]; (6) [**ZODIAC-NISKIN**]; (7) [**SCUBA-**
182 **NET-20**].
183

184 Table 2 (online): Correspondence between samples types and their associated events and a
185 summary of the protocol used and targeted analysis. RT: Room temperature, LN: Liquid Nitrogen,
186 MetaB: metabarcoding, MetaG: metagenomic, MetaT: metatranscriptomic, PC: Polycarbonate,
187 PET: Polyethylene (online version here:
188 <https://docs.google.com/spreadsheets/d/1ChLbq9GbUUvHZCzihGjnxZvmBOUFvGnv/edit?usp=sharing&ouid=105928735891310184253&rtpof=true&sd=true>).
189

190

Analysis category	Sample type	n (samples)	n (rep.)	Material sampled (sample-material_label)	Amount of material	Processing	container	conservative	conservation temperature	Targeted analysis
Sample protocol label										
SEQ CS4	2703	1	Coral	4g		cutted coral parts	Falcon 15ml	DNA/RNA shield	-20°C	MetaB, metaG, metaT
SEQ CS4L	2651	1	Coral	4g		cutted coral parts	Falcon 15ml	DNA/RNA shield + lysing matrix beads	-20°C	MetaB, metaG, metaT
SEQ CS10	2738	1	Coral	10g		cutted coral parts	Whirlpak bag	flash frozen	-20°C	Metabolomic
SEQ CS40	2701	1	Coral	40g		cutted coral parts	Whirlpak bag	flash frozen	-20°C	biomarkers and telomere length
IMG CTAX	2763	1	Coral	5g		cutted coral parts, dried, and bleach added for few hours	Falcon 50 ml	Bleach	RT	morphology, taxonomy
IMG CREP	2649	1	Coral	5g		cutted coral parts	Falcon 50ml	3.7% formaldehyde	RT	histological analysis of reproduction
IMG CTEM	2385	1	Coral	0.1g		cutted coral parts	2ml cryotubes	2% glutaraldehyde	4°C	transmission electron microscopy analysis
IMG PHOTO	10830	2	Coral, Fish	-		-	-	-	-	morphology, taxonomy
SEQ MUC	1059	1	Fish	-		dissection	coton swab+ 2mL cryotube	DNA/RNA shield	-20°C	MetaB, metaG
SEQ GT	1059	1	Fish	-		dissection	2ml cryotubes	DNA/RNA shield	-20°C	MetaB, metaG
SEQ FIN	1059	1	Fish	-		dissection	eppendorf	ethanol	RT	population genetic analyses
IMG OTO	1057	1	Fish	-		dissection	eppendorf	-	RT	aging
SEQ CDIV	2628	1	Coral	<0.5g		cutted coral parts	2ml cryotubes	DNA/RNA shield	-20°C	MetaB, metaG
SEQ SSED	351	1	Sediment	7.5 ml		seawater replaced with DNA/RNA shield or ethanol and homogenized	15mL Falcon tubes	DNA/RNA shield or ethanol	-20°C	MetaB, metaG
IMG CORE	92	1	Coral	26-126cm		dried 24-48h	plastic bubble wrap		RT	morphologic and isotopic analysis
BGC MTE-LSCE	170	1	Seawater	60mL		-	60mL HTPE vial	-	RT	Trace elements (Li, Bo) isotopes measurements
BGC PH	364	2	Seawater	5mL		analysed onboard	5ml plastic vial	-	-	pH measurements
BGC CARB	364	1	Seawater	500mL		-	500mL glass bottle	Hg2Cl2	RT	Carbonate system measurements
IMG BDI	152	1	benthic dinoflagellates (on brown algae)	20mL		water from shaker macroalgae	20ml scintillation vials	2% acidic lugol	4°C	microscopic count
SEQ BDS	124	1	benthic dinoflagellates (on brown algae)	100mL		water from shaken macroalgae	45mm 10µm PC filter stored in cryotubes	flash frozen	LN	MetaB, metaG, metaT
BGC HPLC	944	2	Water, pigments	2L		filtered on a 25mm-diameter, 0.7-µm-pore glass fiber filter	1.5ml cryotubes	flash frozen	LN	HPLC pigment analysis
BGC NUT	862	2	Seawater	20mL		filtered through a 0.45 µm-pore size cellulose acetate membrane with a syringe	20mL polyethylene vials	-	-20°C	macronutrients dosing
SEQ S023	1104	2	Plankton (0.2-3µm)	50L		Filtration	5mL cryotubes	flash frozen	LN	MetaB, metaG, metaT
SEQ S320	1086	2	Plankton (3-20µm)	50L		Filtration	5mL cryotubes	flash frozen	LN	MetaB, metaG, metaT
SEQ S<02>	874	2	Water, viruses (<0.2µm)	10L		FeCl3 precipitation and filtration	5mL cryotubes	-	4°C	Sequencing
SEQ S<02>	127	1	Water, membranes vesicles(<0.2µm)	80L			50mL Falcon tube	-	-20°C	Sequencing
IMG-SEQ SCG	1056	1	Plankton	4ml		-	5mL cryotubes	600µl of 48% Glycine Betaine, flash frozen	LN	single cells sequencing
IMG FCM	1078	2	Plankton	1.485mL		mix and incubate 15min at RT	2ml cryotubes	15µL Glutaraldehyde 25%/PoloXamer 10%, flash frozen	LN	Flow cytometry
IMG SEM	566	1	Plankton	500mL		filtered onto 47mm 0.22µm PC membranes, dried 2h at 50°C	petrislides	-	RT	Scanning electron microscopy
IMG-SEQ FISH	562	1	Plankton	225mL		incubate 1-24h with PFA 10x; filter on 25mm, 0.22µm PC filter, rinse with ethanol, dry for 5-10 minutes	petrislides	-	-20°C	Fluorescent in situ hybridization
SEQ S20	714	2	Plankton	1L (250mL per filter)		filtered onto 47mm 10µm PC membranes	5mL cryotubes (two filters per tube)	flash frozen	LN	MetaB, metaG, metaT
IMG H20	422	1	Plankton	45mL		-	50mL Falcon tubes	5mL of 10% paraformaldehyde and 500µl of glutaraldehyde 25% EM grade	4°C	High throughput confocal microscopy
IMG LIVE20	358	1	Plankton	50mL		analysed using Flowcam onboard	-	-	-	Quantitative imaging analysis
IMG-SEQ E20	444	1	Plankton	100-250mL		concentrated onto 20µm sieve, stored in ethanol during 24h before sieving again to change the ethanol	15mL Falcon tubes	95% molecular grade ethanol	-20°C	single cells sequencing
IMG-SEQ SCG20	212	1	Plankton	4mL		-	5mL cryotubes	600µl of 48% Glycine Betaine, flash frozen	LN	single cells sequencing
BGC SAL	50	1	Seawater	250 mL					RT	salinity measurements
IMG L20	243	1	Plankton	250mL		concentrated onto 20µm sieve, resuspended using filtered sea water	50mL Falcon tubes	1mL of acidic Lugol solution	4°C	microscopic observations
IMG F20	240	1	Plankton	45mL		-	50mL Falcon tubes	1mL of acidic formalin 37%, and filled up to 50mL with sodium teraborate decahydrate buffer	RT	microscopic observations
IMG F300	510	1	Plankton	1L		concentrated onto 200µm sieve, resuspended using filtered sea water with sodium teraborate decahydrate buffer	250mL double closure bottles	30mL of 37% formalin solution	RT	Quantitative imaging analysis
SEQ S300	603	2	Plankton	1L (250mL per filter)		prefiltered onto 2mm metallic sieve, filtered onto 47mm 10µm PC membranes	5mL cryotubes (two filters per tube)	flash frozen	LN	MetaB, metaG, metaT
IMG AI	1323	1	Aerosols	~21.6 m3		-	petrislide	dried	RT	microscopic observations
SEQ AS	1300	1	Aerosols	~21.6 m3		-	2ml cryotubes	flash frozen	LN	MetaB
SEQ-BGC ABS	1306	2	Aerosols	~21.6 m3		-	2ml cryotubes	flash frozen	LN	MetaB and biogeochemistry
BGC MTE-USC	249	1	Seawater	125mL		-	acid cleaned 125mL low density PET bottle	-	RT	Trace metal analysis

191

192

193

194

195

196

The first set of sampling events (usually in the morning) was mostly devoted to the sampling event [SCUBA-3X10] to sample coral colony fragments. In the meantime, another team pumped underwater, with the [SCUBA-PUMP] to collect coral surrounding water ([CSW]), while the third team snorkeled to capture a total of 10-15 fish using a speargun ([SNORKLE-SPEAR]). A small

197 CTD probe (Castaway CTD) was also deployed from the dinghy down to the reef (generally ~5 to
198 10m) to record temperature and conductivity profiles.

199 The second set of sampling events (usually in the afternoon) was devoted to a survey of coral
200 diversity ([\[SCUBA-SURVEY\]](#)) concurrently with sampling surface water for biogeochemistry
201 ([\[ZODIAC-NISKIN\]](#)), plankton in the size-fractions smaller than 20 µm ([\[ZODIAC-PUMP\]](#)), and
202 plankton in the size-fractions between 20 to 2000 µm ([\[SCUBA-NET-20\]](#)). Finally, over a last dive
203 a coral core was recovered over a large colony of *Porites* or *Diploastrea* ([\[SCUBA-CORER\]](#)).
204

205 2.1 Sampling coral colonies [\[SCUBA-3X10\]](#)

206 During this typical sampling event, a total of 30 coral colonies [\[C001\]](#) to [\[C030\]](#), including 10
207 colonies for each of the 3 targeted species (*Pocillopora meandrina*, *Porites lobata*, and *Millepora*
208 *platyphylla*) were sampled. Each colony was first photographed ([\[PHOTO\]](#)) using a 20 cm quadrat
209 as a scale, their depth recorded and then sampled to collect about 70 grams of each coral by
210 mechanical fragmentation using hammer and chisel. Fragments were placed in Ziploc bags labelled
211 by colony ID and brought back to the boat.
212

213 2.2 Sampling coral surrounding water [\[SCUBA-PUMP\]](#) and [\[ZODIAC-NISKIN\]](#)

214 Two *Pocillopora meandrina* coral colonies [\[C001\]](#) and [\[C010\]](#) were marked with small buoys,
215 and [\[CSW\]](#) samples were collected as close as possible to the coral colony before the actual
216 [\[SCUBA-3X10\]](#) sampling to avoid contamination of the water samples with fragments or tissues
217 released during the mechanical fragmentation of coral colony. Then, water was pumped using a
218 manual membrane pump onboard Tara's dinghy that was stationary above the coral colony. A scuba
219 diver was holding a clean water tubing next to the colony while the operator onboard the dinghy
220 was pumping the water up to the skiff. First, the water collected was used to rinse the pumping
221 system, as well as a 20 µm metallic sieve and the 50 L carboys that will be used to transport the
222 sample [\[C010\]](#). Then, 50 L of water was filtered within and around the coral colony onto a 20 µm
223 metallic sieve and directly stored in the dedicated clean 50 L carboy ([\[SCUBA-PUMP\]](#) for [\[C010\]](#)).
224 When available, two replicates of sediment samples (i.e. sand [\[SSED\]](#)) were also taken using two
225 10 mL cryovials near the sampled colony. Finally, the coral colony [\[C010\]](#) itself was sampled
226 following the [\[SCUBA-3X10\]](#) protocol.

227 Once the [\[C010\]](#) sampled, the dinghy was moved on top of colony [\[C001\]](#), where, before any
228 other sampling was performed, carbonate chemistry and nutrients protocols (using a 5L Niskin
229 bottle for carbonates [\[CARB\]](#) and nutrients [\[NUT\]](#)) as well as for [\[PH\]](#) protocols (using 5mL
230 polypropylene vials and a 50mL Falcon tube) were performed. The [\[PH\]](#) was first sampled using

231 two vials (5 mL polypropylene vials for samples), and a falcon 50mL tube (for later use to rinse the
232 probe) were first lowered closed, opened next to the colony, rinsed with the [CSW], and closed
233 tightly making sure no bubbles were trapped inside the vials. Next, the Niskin bottle was immersed
234 open by the diver [ZODIAC-NISKIN], well rinsed along the descent and with the coral surrounding
235 water near the targeted colony, and finally closed as close as possible from the colony [C001]. The
236 tubing, the sieve, a 4L Nalgene (protected with reflective tape to isolate the sample from sunlight),
237 and the 50L carboy dedicated for [C001] were rinsed with the [C001] [CSW]. The 5L Nalgene
238 bottle was filled with [C001] [CSW] for high-performance liquid chromatography (HPLC). The
239 50L carboy was then filled ([SCUBA-PUMP] for [C001]) and the sediment samples [SSED] were
240 collected following the same procedure as for [C010]. Finally, the coral colony [C001] itself was
241 sampled following the same [SCUBA-3X10] protocol. For safety reasons, carbonate chemistry
242 samples [CARB] could not be preserved with mercury (II) chloride on-board the dinghy due to its
243 acute toxicity. Hence, the Niskin bottle was sampled on the last colony of the sampling sequence
244 to minimize the time between sampling and chemical preservation on-board Tara.

245

246 2.3 Sampling for fish [SNORKLE-SPEAR]

247 Fish sampling of two target species (*Acanthurus triostegus* and *Zanclus cornutus*) was operated
248 by spear-fishing and snorkeling for a target number of about 10-15 fishes ([F001] to [Fxxx])
249 depending on the population present. The targets were speared and immediately stored in labeled
250 individual Ziplock bags to avoid contamination between samples and kept inside a floating
251 container to keep them at water temperature.

252

253 2.4 Sampling sediments and macroalgae [SCUBA-...]

254 Sediments and macroalgae samples were sampled when encountered during the different dives.
255 Sediment samples (i.e. sand [SSED]) were taken using two 10 mL cryovials near the sampled
256 colony. Macroalgae, ideally brown macroalgae with thallus morphology type arbustive, ([MA01]-
257 [MAXx]) were photographed ([PHOTO]) and sampled in individual Ziplock bags when
258 encountered.

259

260 2.5 Coral biodiversity sampling [SCUBA-SURVEY]

261 Biodiversity sampling transects were conducted in two depth-range environments to sample up
262 to 80 coral colonies ([C041] to [C120]) randomly chosen with ideally up to 40 colonies living at a
263 depth of 10-16 m, and up to 40 colonies living at a depth of 2-10 m, with an emphasis on sampling
264 across a diverse range of coral hosts at different depth. Two pictures of each colony sampled were

265 taken ([PHOTO]), and small pieces of 1-3 cm² were sampled using a hammer and a chisel or a bone
266 cutter.

267

268 **2.6 Sampling surface seawater [ZODIAC-NISKIN] and [ZODIAC-PUMP]**

269 In addition to the seawater collected next to coral colonies explained above, surface ([SRF])
270 seawater was sampled at 2 m depth using the manual pump on-board of the dinghy ([ZODIAC-
271 PUMP]). The [SRF] site was chosen to be as close as possible from the coral colonies sampled in
272 the morning but with enough water depth that the plankton net sample could be taken at 2 m depth
273 and at least 5 m above the seafloor. When the sampling site was shallower than 7 m, the site was
274 chosen where these sampling conditions could be met within 100 m around the [CSW] sampling
275 site. The water collected was treated similarly to the [SCUBA-PUMP] samples, with the difference
276 that 100 L [SRF] water was collected into two 50 L carboys. The 4 L Nalgene bottles protected
277 from sunlight were also filled with water at 2 m below the dinghy for HPLC filtrations on-board
278 Tara.

279

280 **2.7 Sampling large size plankton [SCUBA-NET-20]**

281 During this surface water pumping, plankton larger than 20µm were sampled at 2m below the
282 sea surface using two small diameter bongo plankton nets with 20µm mesh size, attached to an
283 underwater scooter ([SCUBA-NET-20]) and towed for about 15min at maximum speed (0.69 ±
284 0.04 m.s⁻¹). The average maximum speed of the net tow was estimated in Taiwan (island 28 site
285 03) measuring the time it took the diver with full gears on and the nets attached, to travel between
286 two buoys separated by a 9-meters line held tight and floating with the current, to avoid any impact
287 of the current. The measurement was repeated three times facing the current, three times in the same
288 direction as the current, and five times with the current sideways. Each net was equipped with
289 flowmeters, but the speed of the underwater scooter was insufficient to trigger their rotation,
290 therefore the time of sampling was precisely timed to estimate theoretically the volume filtered
291 using the following equations:

292

$$293 \text{Volume filtered} = \text{Opening area} * \text{Tow speed} * \text{Tow duration} \quad (1)$$

294

$$295 \text{With Opening area} = \pi * \text{net radius}^2 \quad (2)$$

296

297 The volume estimated from the flowmeter reading was about 60 times smaller than the volume
298 calculated theoretically, thus, only the theoretical volume will be used in concentration calculations.

299 After 15 minutes of towing, the divers surfaced the two nets and the two cod-ends were sieved
300 through a 2000 µm metallic sieve, into a 2 L Nalgene (r) bottle. The bottle was topped-up with 0.2
301 µm filtered seawater from the same sampling site and kept at ocean temperature in a bucket during
302 transportation to Tara. Finally, [PH], [NUT] and [CARB] samples were taken at 2 m depth just
303 before leaving the sampling site following the same protocol than for [CSW] sampling and using
304 the same cleaned 5 L Niskin bottle for [CARB] and [NUT], and two 5 mL polypropylene vials as
305 well as a Falcon 50 mL tube for [PH].

306

307 2.8 Sampling coral cores [SCUBA-CORER]

308 During the last dive, coral cores were sampled ([SCUBA-CORER]) on *Porites* colonies
309 previously identified and photographed ([PHOTO]). To prevent contamination with coral
310 fragments and tissues released during coring, two [CARB] samples of seawater were taken (one at
311 the surface and one close to the coral colony) before coring and using two 500 mL glass stoppered
312 bottles. Grease was applied to the glass stopper before the dive to allow opening under pressure
313 next to the coral colony. The diver lowered the bottles closed, opened one at 2 m below the surface,
314 and one next to the coral colony. Another seawater sample was taken with a 60 mL HDPE plastic
315 bottle at 2m depth for subsequent analysis of trace isotopes in relation to the core analysis. Once all
316 seawater was sampled, a 250 mm diameter, 600 round per minute corer from Melun Hydraulique
317 was used to coral cores ([CORE]). Forty coral skeletal cores (40 – 150 cm long) were collected
318 from colonies living between 3 m (Moorea Island-I07) and 20 m (Futuna Islands-I11) depth. From
319 island I19 (Great Barrier Reef) the same protocols were also carried out on large *Diploastrea*
320 *heliopora* colonies when encountered.

321

322 2.9 Samples processing

323 2.9.1 Benthic samples

324 Once back onboard Tara, the material collected during each sampling event was immediately
325 processed into various samples. Samples were labeled with their target analysis (e.g. sequencing
326 ([SEQ]), imaging, microscopical or morphological inspection ([IMG]) or biogeochemical
327 measurements ([BGC])).

328 Coral samples obtained from [SCUBA-3X10] events were immediately sorted and separated
329 using bone cutters, in several sub-samples usually labeled with the amount of material used or with
330 the targeted analysis (Table 2). [CS4] and [CS4L] samples containing ~4 g of coral material, were
331 stored at -20°C in 15 ml Falcon tubes and 6 ml of DNA/RNA shield (Zymo Research, Irvine, CA,
332 USA) for subsequent metabarcoding, metagenomic and metatranscriptomic analyses. [CS4L] only

333 differs from [CS4] by the addition of lysing matrix beads. [CS10] and [CS40] samples, that contain
334 respectively 10 g and 40 g of coral material, were stored in Whirlpak® sample bags, immediately
335 flash frozen in liquid nitrogen, and kept at -20°C. These samples are intended for subsequent
336 metabolomic analysis for [CS10], physiologic/stress biomarkers (symbiont and animal biomasses,
337 antioxidant capacity and protein damages) and telomeric DNA length for [CS40]. Morphological
338 taxonomic identification [CTAX] samples were performed by drying 5 g of material in 50 ml Falcon
339 tubes, and removing organic material with the addition of 3-4% bleach solution during
340 approximately 2 days. After discarding the bleach solution, clean skeletons were preserved dry at
341 room temperature. For histological measurements of reproduction status [CREP], 5 g of each coral
342 colony was preserved in a 50 ml Falcon tube filled with a 3.5% formaldehyde solution and stored
343 at room temperature. Finally, for transmission electron microscopy examination of coral
344 intracellular details including viruses [CTEM], 0.1 g of coral tissue was preserved with 250 µL 2%
345 glutaraldehyde and conserved at 4 °C in a fridge.

346 Macroalgae samples ([MA]), and the seawater collected with them, were firmly shaken to
347 resuspend attached epiphytic organisms. 20 mL of water was transferred into glass vials and fixed
348 with 2% acidic Lugol and stored at 4 °C for future benthic dinoflagellates identification and counts
349 using microscopy ([BDI]), while 100 mL of each replicate were filtered onto a 10 µm pore size
350 polycarbonate filter which was flash frozen and preserved in liquid nitrogen for future
351 metabarcoding analysis ([BDS]).

352 [SSED] samples were immediately flash frozen when brought back on-board Tara.

353 About 30 to 40 mL of the seawater that was sampled with the coral fragments of [C001] and
354 [C010] and transported in the coral individual Ziplock bags were transferred immediately after the
355 dive into 50 mL falcon tube and stored at water temperature in non-direct ambient light to recover
356 cultures of plankton species closely associated with coral colonies ([IMG-LIVE]).

357 When fish were recovered onboard, a [PHOTO] was taken, their sex and length were
358 determined before taking a sample of skin mucus ([MUC]) by collecting 1 cm² of skin. The fish
359 were then dissected to recover about 3 cm long of the final section of the digestive tract ([GT]) that
360 was preserved in 2 mL cryotubes with 1 ml of DNA/RNA shield and then stored at -20 °C for
361 metagenomic and metabarcoding analyses. One fin sample ([FIN]) was dissected, and preserved
362 into an Eppendorf tube filled with 95° ethanol for population genetic analyses. Last, the otolith
363 ([OTO]) was also dissected and stored dry into an Eppendorf tube at room temperature for later
364 aging of each fish.

365 Coral samples obtained from [SCUBA-SURVEY] were collected for symbionts and coral
366 diversity analysis ([CDIV]) using different marker genes (metabarcoding, 18S, 16S and ITS2).

367 About 0.5 g of material was preserved with DNA/RNA shield and stored into 2 mL cryotubes at -
368 20°C.

369 Finally, samples collected during [SCUBA-CORER] events were also processed and stored
370 onboard Tara. The [CORE] were rinsed with freshwater, air dried for 24-48h before being wrapped
371 into a plastic bubble wrap for sclerochronological and geochemical analysis, to recover historical
372 water biogeochemical properties. The [PH], [CARB] and [MTE-LSCE] samples associated with
373 the coral core [CORE] were processed following the same protocol than the water samples collected
374 with the [SCUBA-PUMP] and [ZODIAC-PUMP] (explained in section 2.2.2), with the exception
375 that the [CARB] and [MTE-LSCE] samples were already stored in their final container during
376 sampling on the dinghy.

377

378 2.9.2 Water samples for biogeochemistry

379 The [PH] was measured from the two replicates 5 mL polypropylene vials onboard Tara using
380 an Agilent Technologies Cary 60 UV-Vis Spectrophotometer equipped with an optical fiber. The
381 detailed protocol was previously described¹³, but briefly, the 5 mL vials and the 50 mL falcon tube
382 were kept closed and acclimated to 25°C for 2–3 h. Absorbance at specific wavelengths was then
383 read before and after the addition of 40 µL meta-Cresol Purple dye to each 5 mL vial. The probe
384 was rinsed between each measurement using the 50 mL falcon tube containing the same seawater
385 as the 5 mL vials samples. TRIS buffer solutions¹⁷ were measured regularly along the cruise to
386 validate the method and correct for potential drifts of pH of the dye solution.

387 The Niskin bottles of the morning ([CSW] for [C001] colony) and afternoon ([SRF]), carefully
388 kept closed since sampling on the dinghy, were each used to rinse and fill one 500 mL glass
389 stoppered bottle on Tara. Some grease was applied to the glass stopper, and bottles were filled with
390 water samples leaving 2 mm of air below the bottom of the bottleneck. Note that the [CARB]
391 samples associated with the [CORE] samples were already stored in their final container and grease
392 was already applied to the glass stopper before the dive. The water level of these samples was
393 simply adjusted to 2 mm below the bottleneck. All [CARB] samples were immediately poisoned
394 with 200 µL of saturated mercury (II) chloride solution (HgCl₂) and stored at room temperature.

395 The Niskin water was then used to rinse and fill up trace element samples in 60mL HDPE plastic
396 bottles [MTE-LSCE]. These samples were stored at room temperature and used to confirm the
397 absence of local influence on Li and B isotopic signals. Similar to [CARB] associated with [CORE]
398 samples, the [MTE-LSCE] samples associated with [CORE] samples were already stored in their
399 final containers, therefore, were just stored at room temperature.

400 The water remaining from the Niskin bottle, sampled in the morning ([**CSW**] for [**C001**] colony)
401 and the afternoon ([**SRF**]), was used to prepare macronutrient samples ([**NUT**]). A 50 mL syringe
402 was rinsed with the sampled seawater three times. A filter 0.45 μm -pore size cellulose acetate
403 membrane was then connected to the syringe and \sim 20 mL of sample water was run through it to
404 rinse the filter. Once the syringe, filter and vials were properly rinsed twice, two 20 mL
405 polyethylene vials were filled running the sampled water through 0.45 μm -pore uptidisc syringe
406 filter. Nutrient samples were stored vertically at -20°C.

407 Two replicates of two liters of seawater sampled in the 4L Nalgene bottle from the [**SCUBA-**
408 **PUMP**] and [**Zodiac-PUMP**] events, were filtered onto 25mm-diameter, 0.7- μm -pore glass fiber
409 filters (Whatman GF/F) and immediately stored in liquid nitrogen for later High-Performance
410 Liquid Chromatography ([**HPLC**]) analysis to obtain pigments concentration.

411

412 **2.9.3 Water samples for genomics and imagery**

413 The water collected during the [**SCUBA-PUMP**] and [**Zodiac-PUMP**] events was treated
414 similarly, with the only difference that while [**Zodiac-PUMP**] samples were treated in duplicates,
415 the two 50 L samples collected during [**SCUBA-PUMP**] correspond to [**C001**] and [**C010**] colonies.
416 This applies only for sequencing samples ([**SEQ-S**]), while all other samples were taken in
417 duplicates. Additionally, all genomic samples were processed to be as comparable as possible with
418 previous existing samples from Tara Oceans^{11,14}.

419 As soon as back on-board Tara, the water collected was used to rinse and fill one (for each
420 [**CSW**]) or two (for [**SRF**]) 50 L carboy but also to fill two 2L Nalgene(r) bottles. The content of
421 the 50 L carboys was immediately size-fractionated by sequential filtration onto 3- μm -pore-size
422 polycarbonate membrane filters and 0.22- μm -pore-size polyethersulfone Express Plus membrane
423 filters. Both were placed on top of a woven mesh spacer Dacron 124 mm (Millipore) and stainless-
424 steel filter holder “tripods” (Millipore). Water was directly pumped from the 50 L with a peristaltic
425 pump (Masterflex), and separated into samples that contain particles from 3-20 μm ([**S320**]) and
426 0.2-3 μm ([**S023**]) for latter sequencing. To ensure high-quality RNA, the filtering of the first
427 replicate ([**C001**] for [**CSW**] samples and any of the two 50 L carboys for [**SRF**]) were stopped after
428 15 min of filtration while the second was continued for the full volume (or a maximum of 60 min)
429 to maximize DNA yield. Filters were folded into 5 mL cryovials and preserved in liquid nitrogen
430 immediately after filtration. During this filtration 10 L of 0.2 μm filtered water ([**S<02**]) was
431 collected from each replicate, 1 mL of FeCl₃ solution was added to flocculate viruses¹⁸ for 1 hour.
432 This solution was then again filtered onto a 1- μm -pore-size polycarbonate membrane filter using
433 the same filtration system as for [**S320**] [**S023**]. Filters were then stored in 5 mL cryotubes and

434 stored at 4° C for later sequencing of viruses. The 80L remaining of 0.22 µm prefiltered water was
435 used to filter membranes vesicles ([S<02>]) using an ultrafiltration Pellicon2 TFF system by
436 keeping the pressure below 10 psi until the concentrate was reduced to a final volume of 200-300
437 mL. This sample was further concentrated using a Vivaflow200 TFF system at a recirculation rate
438 of 50-100 mL/min and less than one bar of pressure until obtaining a final sample of 20mL. Flushing
439 back the system usually brings this volume to up to 40mL which was stored in a 50 mL Falcon tube
440 at -20°C.

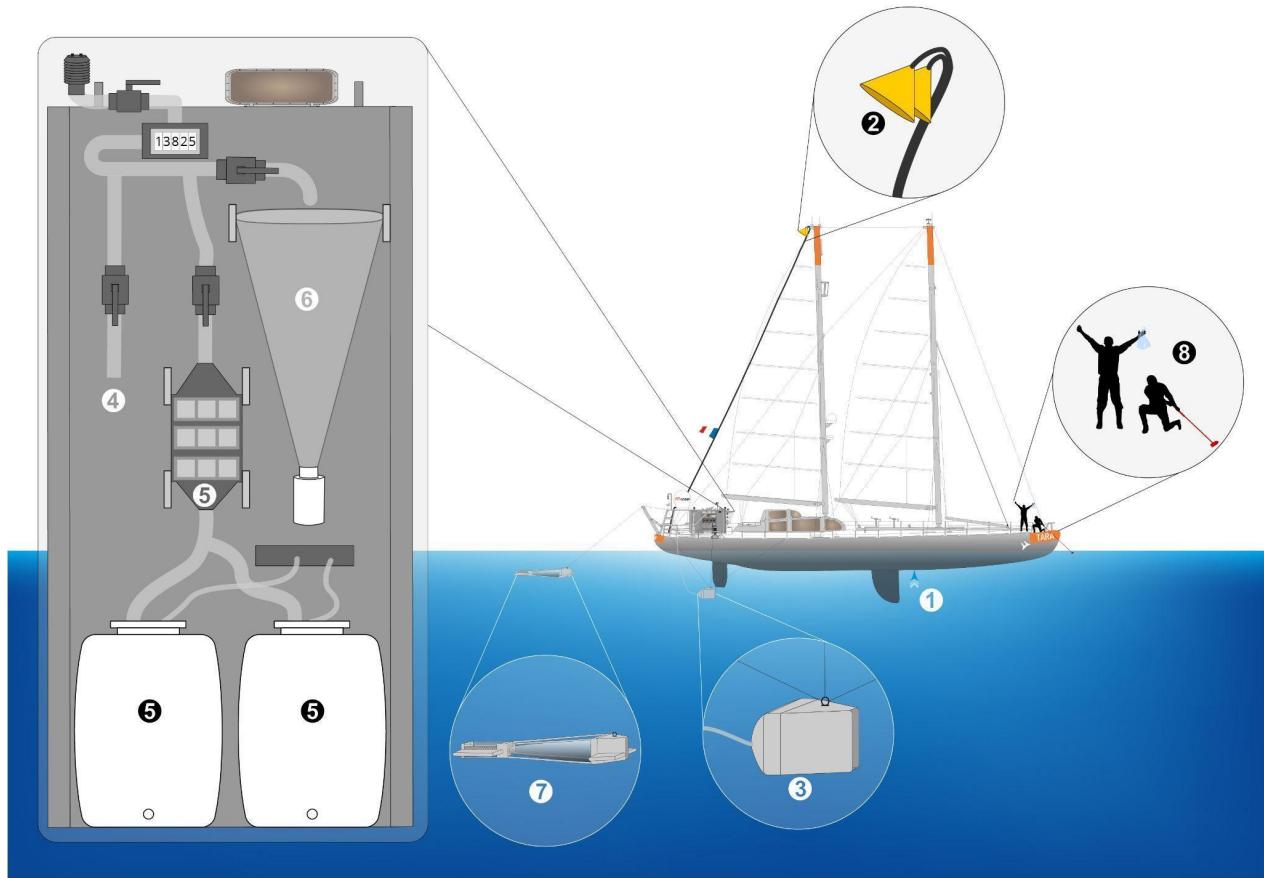
441 Two 4mL samples were taken from the 2 L Nalgene bottles, and stored into 5 ml cryotubes
442 fixed with 600µl of 48% Glycine Betaine and directly flash-frozen for later single cells genomic
443 analysis ([SCG]). For flow cytometry cell counting ([FCM]), two replicates of 1.485 mL of sampled
444 water were placed into 2 mL cryotubes pre-aliquoted with 15 µL of fixative composed of
445 Glutaraldehyde (25%) and PoloXamer (10%). Tubes were then mixed gently by inversion,
446 incubated 15min at room temperature in the dark before being flash-frozen, and kept in liquid
447 nitrogen. For scanning electron microscopy ([SEM]), 500mL of water was filtered onto a 47mm
448 0.22µm pore size polycarbonate filter, placed in a petri slide, dried for two hours at 50°C and
449 conserved at room temperature. Fluorescence In Situ Hybridization ([FISH]) samples were
450 prepared by adding 225 mL of seawater into a 250 mL plastic vial containing 25 ml of 10xPFA.
451 The samples were incubated at 4°C before filtration onto two 25 mm 0.22 µm pore size
452 polycarbonate filters, rinsed with ethanol, placed in petri slides, dried for 5-10minutes before being
453 stored at -20°C.

454 Samples collected during the [SCUBA-NET-20] were processed to obtain different samples for
455 sequencing and imaging needs. One litre of the sample collected was filtered onto four 47mm 10µm
456 pore size polycarbonate membranes (250mL each). Filters were then placed into 5mL cryotubes,
457 flash-frozen, and stored in liquid nitrogen for later sequencing ([S20]). 45 mL was subsampled into
458 a 50ml Falcon tube, fixed with 5mL of 10% paraformaldehyde and 500µl of glutaraldehyde 25%
459 EM grade, and stored at 4°C for future high-throughput confocal microscopy ([H20]; e.g.¹⁹). 4mL
460 was stored in 5mL cryotubes, fixed with 600µl of 48% glycine betaine, immediately flash frozen
461 and kept in liquid nitrogen for single cell genomics ([SCG20]). Another sample for single cell
462 sequencing stored in ethanol ([E20]) was done by filtering 100 to 250 mL of the sample onto a
463 20µm sieve and re-suspended in EM grade ethanol for 24h at 4°C. After incubation, the sample was
464 sieved a second time to remove any trace of seawater, re-suspended with EM grade ethanol into 15
465 mL falcon tube, and stored at -20°C. Finally, a 50mL sample was directly imaged live onboard
466 ([LIVE20]) using a Flowcam²⁰ Benchtop B2 series equipped with a 4x lens and processed using
467 the auto-image mode.

468

469 3 Oceanic sampling

470 To obtain both a large scale and local (around coral reef island) environmental characterization,
471 a comprehensive set of physical, chemical and biological properties of the sea surface ecosystem
472 was recorded while cruising. This sampling scheme was framed to be compatible with the previous
473 Tara Ocean expedition measurements^{11,14}, but also to provide a continuity with water samples
474 conducted directly on the coral reef. Furthermore, while the biology and ecology of surface
475 ecosystems remain largely unknown, they are an essential component of air-land-sea exchanges
476 and are subjected to numerous hydrological, atmospheric, physical and radiative constraints²¹ and
477 is therefore at the frontline of climate change and pollution.


478 The main goals and general overview of this sampling are already described^{13,22} and will be
479 briefly presented here in the context of the different sampling events and samples that were
480 generated. Measurements and samples could be separated into two types: i. local samples
481 originating from a local sampling event, and ii. autonomous high frequency continuous
482 measurements of atmospheric and surface seawater properties (e.g., per minute averages of higher
483 frequency measurements). In the case of the discrete water sampling, the different sampling events
484 were either attributed to a station (noted [OA001] to [OA249]) if they were conducted in a
485 reasonably short time lapse (> 75 km away, or > 0.25 days away from a group of OA Events), or
486 noted [OA000] otherwise. Similarly, every OA station located within 200 nautical miles (370 km)
487 of an island were annotated with that Island label, i.e. the sampling-design-label of the
488 corresponding OA Events and OA Samples is [OA##-I##-C000]. The continuous sampling was
489 conducted as follows: a. surface seawater measurements were performed by pumping water
490 continuously through the boat hull ([INLINE-PUMP]) at ~1.5 m depth, b. light and atmosphere
491 properties were measured 5 m above the sea level ([PAR + BATOS]), and c. aerosols were sampled
492 by pumping air on top of the mast ([MAST-PUMP]) at ~27 m (15 m during the first trans-Atlantic
493 transect prior to May 2016).

494

495 3.1 Sampling events

496 Sampling was organized following several successive events, generally at daily frequency, in
497 the morning. Water collection while cruising was carried out by a custom-made underway pumping
498 system nicknamed the [DOLPHIN] connected by a 4 cm diameter reinforced tubing to a large
499 volume industrial peristaltic pump (max flow rate = 3 m³ h⁻¹) on the deck. The system was equipped
500 with a metallic pre-filter of 2 mm mesh size, two debubblers, and a flowmeter to record the volume
501 of water sampled. Unfiltered water was collected first for a series of protocols, water was prefiltered

502 using a 20 μm sieve to rinse and fill two 50 L. Both unfiltered seawater use and 20 μm filtered
503 seawater were labelled as [CARBOY]. To collect larger plankton, water was pumped from the
504 DOLPHIN into a 20 μm net fixed on the wetlab's wall ([DECKNET-20]) for 1 to 2 hours depending
505 on biomass concentration simultaneously to a net tow using a “high speed net” ([HSN-NET-300]).
506 The HSN was equipped with 300 μm mesh sized net and designed to be efficient up to 9 knots. It
507 was towed from 60 to 90 minutes depending on the plankton density. Near islands and in the Great
508 Pacific Garbage Patch, a Manta net ([MANTA-NET-300]) with a 0.16 x 0.6 m mouth opening with
509 a 4 m long net with 300 μm mesh size was used concurrently at a maximum speed of 3 knots.
510 Finally, trace metal samples ([MTE-USC]) were collected from the bow using a metal-free carbon
511 fibber pole [HANDHELD-BOW-POLE] on which a plastic fixation have been added to insert a
512 125mL low density polyethylene bottle (LDPE) which was previously pre-washed on land and
513 stored individually in separate ziploc bags. To avoid contamination from the boat, samples were
514 hand held collected, wearing polyethylene gloves, while cruising upwind on the bow of the boat
515 (i.e., before the boat got in contact with the collected water; Figure 3).

516
517 Figure 3: Schematic overview of the various sampling events conducted during the Tara Pacific
518 expedition while sampling on oceanic stations. The different events are represented by the different
519 numbers. (1) [INLINE-PUMP]; (2) [MAST-PUMP]; (3) [DOLPHIN] pumped water that is either

520 used (4) [RAW], filtered at 20 μ m to fill two 50L (5) [CARBOY], or filtered though (6)
521 [DECKNET-20]; (7) “high speed” [HSN-NET-300] or [MANTA-NET-300] plankton nets; (8)
522 [HANDHELD-BOW-POLE].

523

524 **3.2 Samples processing**

525 Water, plankton and aerosols samples collected in the vicinity of islands and from the open sea
526 were processed as much as possible following similar protocols than on islands. Samples collected
527 both on islands and in open sea are marked with asterisks* here, and only the few differences in
528 protocols will be noted.

529

530 **3.2.1 From Dolphin, unfiltered water**

531 Unfiltered seawater collected from the [DOLPHIN] was used to process several samples for
532 biogeochemical purposes ([BGC]). For every station, samples were collected for nutrients [NUT]*,
533 [PH]* measurements and pigments analysis by [HPLC]*. Salinity [SAL], carbonates ([CARB]*)
534 and trace elements [MTE-LSCE]* were sampled on a weekly basis. [SAL] samples were done by
535 sampling 250 mL of seawater in a 250 mL hermetically sealed glass bottle.

536

537 **3.2.2 From Dolphin, pre-filtered water**

538 The two 50 L carboys of 20 μ m prefiltered seawater were used to produce size fractionated
539 samples for genomic analyses ([S320]* [S023]* [S<02]*). The same pre-filtered seawater was
540 sampled for flow cytometry cell counting ([FCM]*) and single cell genomic ([SCG]*).

541

542 **3.2.3 From Dolphin-Decknet**

543 Once the [DECKNET-20] time limit reached (between 1 and 2 hours), the flow was stopped
544 and the net was carefully rinsed with 0.2 μ m filtered seawater. The plankton sample was then
545 transferred to a 2 L Nalgene bottle and completed to 2 L with 0.2 μ m filtered seawater. The sample
546 was homogenized by repeated smooth bottle flips and split into four 250mL subsamples for [S20]*,
547 one 250 mL sample for [E20]*, one 250 mL sample for [LIVE20]*, and one 45 mL sample for
548 [H20]*. In addition to these already described protocols, one 250 mL sample was also taken for
549 [L20], for which the seawater was drained using a 20 μ m sieve and the plankton was transferred in
550 a 50 mL Falcon tube and fixed with 1 mL of acidic lugol solution for latter microscopic
551 observations. Finally, a 45 mL sample was taken for [F20], transferred in a 50 mL Falcon tube and
552 fixed with 1 mL of 37% formalin solution and completed to 50 mL with sodium tetraborate
553 decahydrate buffer solution for latter microscopic observations.

554

555 **3.2.4 From HSN/Manta nets**

556 Once recovered, samples collected both by the HSN net and the Manta net followed the same
557 procedure. The net was carefully rinsed from the exterior to drain organisms into the collector. Its
558 content was transferred using 0.2µm filtered sea water in a 2L Nalgene Bottle and completed to 2L.
559 The sample was then homogenized and split in two 1L samples. The first half was prefiltered onto
560 a 2mm metallic sieve and filtered onto four 47mm 10µm pore size polycarbonate membranes
561 (250mL each). Filters were then placed into 5mL cryotubes, flash frozen and conserved in liquid
562 nitrogen for latter sequencing ([S300]). The second fraction was concentrated onto a 200µm sieve
563 and resuspended in a 250mL double closure bottle using filtered seawater saturated with sodium
564 tetraborate decahydrate, fixed with 30mL of 37% formalin solution and stored at room temperature
565 for latter taxonomic and morphological analysis using imaging methods ([F300]).

566

567 **3.2.5 From Mast-pump**

568 Aerosols pumped through one of the ([MAST-PUMP]) inlets were channelled through a
569 conductive tubing of 1.9 cm inner diameter to four parallel 47mm filter holders installed in the rear
570 hold using a vacuum pump (Diaphragm pump ME16 NT, VACUUBRAND BmbH & Co KG,
571 Wertheim, Germany) at a minimum flow rate of 30 lpm (20lpm prior to May 2016). Three filter
572 holders were equipped with 0.45µm pore size PVDF filters for latter aerosol sequencing ([AS]) and
573 biogeochemical analysis together with sequencing ([ABS]), while the fourth one was a 0.8µm pore
574 size polycarbonate filter for later aerosol imaging ([AI]) analysis using scanning electron
575 microscope. Twice a day (12h pumping periods), at approximate dusk and dawn, those filters were
576 changed, [AS] and [ABS] filters were placed into 2mL cryotubes (2 filters for each [ABS] sample)
577 and immediately flash frozen while [AI] filters were packaged in sterile PetriSlide preloaded with
578 absorbent pads and stored dry at room temperature.

579

580 **3.3 Continuous measurements**

581 As previously described (see^{13,22}), a comprehensive set of sensors were combined to continuously
582 measure several properties of the water but also atmospheric aerosols and meteorological
583 conditions. All sensors were interfaced to be synchronized with the ship's GPS and synchronized
584 in time (UTC time). Surface seawater was pumped continuously through a hull inlet located 1.5 m
585 under the waterline using a membrane pump (10 LPM; Shurflo), circulated through a vortex
586 debubbler, a flow meter, and distributed to a number of flow-through instruments. A
587 thermosalinograph [TSG] (SeaBird Electronics SBE45/SBE38), measured temperature,

588 conductivity, and thus salinity. Salinity measurements were intercalibrated against unfiltered
589 seawater samples [**SAL**] taken every week from the surface ocean, and corrected for any observed
590 bias. Moreover, temperature and salinity measurements were validated against Argo floats data
591 collocated with Tara. A CDOM fluorometer [**WSCD**] (WETLabs), measured the fluorescence of
592 coloured dissolved organic matter [**fdom**]. An [**ACS**] spectrophotometer (WETLabs) measured
593 hyperspectral (4 nm resolution) attenuation and absorption in the visible and near infrared except
594 between Panama and Tahiti where an AC-9 multispectral spectrophotometer (WETLabs) was used
595 instead. A filter-switch system was installed upstream of the [**ACS**] to direct the flow through a 0.2
596 μm filter for 10 minutes every hour before being circulated through the [**ACS**] allowing the
597 calculation of particulate attenuation [**ap**] and absorption [**cp**], by removing the signal due to
598 dissolved matter, drift, and biofouling²³. From November 13, 2016 to May 6, 2017, a backscattering
599 sensor [**BB3**] (WETLabs ECO-BB3) in a flowthrough chamber (BB-box) was added to the
600 underway system, upstream of the switch system, to measure the volume scattering function [**VSF**]
601 at 124° and 3 wavelengths (470, 532, 650 nm) and estimate the backscattering coefficient [**bbp**].
602 From May 7th 2017 to the end of the expedition, the BB-box and the [**BB3**] were moved downstream
603 of the filter-switch system to run 0.2 μm filtered seawater for 10 minutes every hour in order to
604 remove the biofouling signal and improve [**bbp**] estimations. Chlorophyll a content [**chl**] was
605 estimated from [**ap**]²⁴ and [**cp**] (when [**cp**] is hyperspectral²⁵), as well as other pigments (when [**ap**]
606 is hyperspectral²⁶). The [**chl**] estimated from [**ap**] was then calibrated against the [**HPLC**] [**chl**]²⁴.
607 The particulate organic carbon concentration [**poc**] was estimated both using an empirical relation²⁷
608 between measured [**poc**] and measured [**cp**], or applying an empirical relation between measured
609 [**poc**] and [**bbp**]²⁸. Phytoplankton organic carbon [**cphyto**] was estimated by an empirical
610 relationship with [**bbp**]²⁹. An indicator for size distribution of particles between 0.2 and \sim 20 μm
611 [**gamma**] was calculated from [**cp**]³⁰. A brief description of the methods to analyse, calibrate,
612 correct, and estimate bio-optical proxies are detailed in the section Technical Validation and more
613 extensively explained in each processing report attached with the dataset.

614 An Equilibrator Inlet Mass Spectrometer [**EIMS**] (Pfeiffer Vacuum Quadrupole 1–100 amu)
615 measured the Oxygen to Argon ratio in percent [**o2ar**], coupled with an optode (Aanderaa optode
616 4835) measuring oxygen concentration in the seawater [**O2**]. Concurrently with samples collected
617 through the [**MAST-PUMP**], two instruments were installed aboard Tara to measure the size
618 distribution and abundance of atmospheric aerosol particles: a scanning mobility particle sizer
619 ([**SMPS**], SMPS-C GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany)
620 measuring particles in the size range 0.025 – 0.70 μm , and an optical particle counter ([**EDM**];
621 EDM180 GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany) measuring all

622 particles in the size range 0.25 – 32 μm . The SMPS was set to perform a full scan of particle
623 distribution every 5 min and the EDM produced a particle size distribution every 60 s. Data
624 provided from [EDM] includes both the total particle concentration (nb cm^{-3}) in the size range 0.25
625 – 32 μm every 60 seconds, and through a second dataset averaged every 30 minutes, both the
626 particle concentration (nb cm^{-3}) together with its normalized size distribution (dN/dlogDp (nb cm^{-3})),
627 i.e., the concentration divided by the log of the size width of the bin), while data from [SMPS]
628 are averaged at the hour scale and provided both at the scale of particle concentration (nb cm^{-3})
629 together with its normalized size distribution (dN/dlogDp (nb cm^{-3})).

630 Together with navigation data such as speed over ground [sog] and course over ground [cog]
631 meteorological station (BATOS-II, Météo France) measured air temperature, relative humidity, and
632 atmospheric pressure at 7 m above sea level. True and apparent wind speed and direction was
633 measured at about 27 m above sea level. In October 2016 a Photosynthetically Active Radiation
634 [par] sensor (Biospherical Instruments Inc. QCR-2150) was mounted at the stern of the boat (~5 m
635 altitude).

636

637 **Data Records**

638 The full collection of datasets has been deposited either at Pangaea or at Zenodo depending on
639 their nature, but also on the likelihood to be updated.

640

641 **Provenance metadata**

642 Tara Pacific datasets are articulated around a consistent set of provenance metadata that provide
643 temporal (UTC date and time) and spatial (latitude, longitude, depth or altitude) references as well
644 as annotations about environmental features and place names, using controlled vocabulary from the
645 environmental ontology (<https://www.ebi.ac.uk/ols/ontologies/envo>) and the marine regions
646 gazetteers (<https://www.marineregions.org/>). These metadata are available at three granular levels:
647 sampling stations and sites, sampling events, and samples collected at a specific depth.

648 A [sampling-design-label] is provided to facilitate the identification and integration of data that
649 originate from the same open ocean station (OA###), island (I##), site (S##) or coral colony (C###),
650 and hence share provenance and environmental context. For example, data originating from coral
651 colony number twelve on the second site of the fourth island visited by Tara will bear the sampling
652 design label OA000-I04-S02-C012. Similarly, data collected at station number 99 in the middle of
653 the Pacific Ocean will bear the sampling design label OA099-I00-S00-C000, and data collected at
654 open ocean station number 41 within 200 nautical miles of island number four will bear the
655 sampling design label OA041-I04-S00-C000.

656 Each sample is also characterized by its sampling event which have several properties such as
657 its date and time (UTC) of sampling ([\[sampling-event_date_time-utc\]](#)), the type of event from
658 which the sample originates ([\[sampling-event_device_label\]](#)), the material sampled ([\[sample-
659 material_label\]](#); see Table 2), the protocol used ([\[sampling-protocol_label\]](#); see Table 2) and finally
660 the barcode attributed to the final sample obtained and replicated on the logsheets ([\[sample-
661 storage_container-label\]](#)). Finally, each sample, in addition to its original barcode was characterized
662 by an event label and a sample label composed of that previous information such as:

663 Sample label: TARA_SAMPLE_[\[sampling-event_date_time-utc\]](#)[\[sampling-design-
664 label\]](#)[\[sampling-environment_feature_label\]](#)[\[sample-material_label\]](#)[\[sampling-
665 protocol_label\]](#)[\[sample-storage_container-label\]](#)

666 Event label: TARA_EVENT_[\[sampling-event_date_time-utc\]](#)[\[sampling-design-
667 label\]](#)[\[sampling-day-night_label\]](#)[\[sampling-environment_feature_label\]](#)[\[sample-
668 material_label\]](#)[\[sampling-protocol_label\]](#)[\[sample-storage_container-label\]](#)

669

670 The provenance context of all samples collected during the Tara Pacific Expedition is available
671 as a single UTF-8 encoded tab-separated-values file, in open access at Zenodo and replicated in
672 part at BioSamples (XYZ). In addition to georeferences and place names, the provenance metadata
673 includes sample unique identifiers, taxonomic annotation from NCBI, and links to sampling
674 logsheets and campaign summary reports.

675 Additionally, the full repository containing the campaign summary reports, sampling
676 authorisations, logsheets and the full record of coral images could be consulted on Pangaea
677 (<https://store.pangaea.de/Projects/TARA-PACIFIC/>). The full list of sampling events is consultable
678 on the following repository: <https://doi.pangaea.de/10.1594/PANGAEA.944511>.

679

680 **Environmental context for data analysis**

681 Rich collection of environmental parameters collected from either samples, on-board
682 measurements, satellite imagery, operational models or even calculated from astronomical atlas
683 were compiled and made available for further analysis. These environmental measurements were
684 provided in a multi-layered way in open access to either Pangaea or Zenodo (Table 3), depending
685 on the potentiality to require updates, with (1) raw measurements at the measure level for both
686 physical samples or for on-board continuous measurements, accompanied with their quality check
687 flags (2) a combined version regrouping all measurement at the sampling event level and adding
688 satellite imaging and results obtained from operational models. (3) This latter was propagated,
689 together with all measurements done on samples, to provide an environmental context to every

690 collected samples belonging to the same station, but by also providing indices of the spatial ([[dxy](#)]),
691 temporal ([[dt](#)]) and vertical ([[dz](#)]) discrepancies between the various measures and the designed
692 sample and their variability (as assessed by mean, standard deviation, number of measures and 5,
693 25, 50, 75, 95 percentiles when possible); (4) a simplified version at the site level where all synonym
694 measurements were cross-compared and chosen by level of quality. (5) At the scale of the site level,
695 a series of Lagrangian and Eulerian diagnostics were calculated using satellite-derived and
696 modelled velocity fields, providing multiple information on water mass transport and mixing (6)
697 Finally, and for coral sites only, historical data of temperature were extracted (see (6) Historical
698 data on coral sites) from satellite imagery to provide an historical overview of past heatwave
699 experienced by the sampled coral reefs (since 2002 up to the sampling date).

700

701 Table 3. Data sets providing the provenance and the environmental context for future analysis and
702 provided as raw measurements by sensors, from samples, and measurements aggregated at the
703 sample, event and site levels.

Name	Number of measurements	Variables	Link (final; see submission file for temporary tokens)
Raw continuous measurements			
TSG	>590 000	T, S	https://doi.pangaea.de/10.1594/PANGAEA.943675
EDM	>15 000	Aerosols concentration (0.25 – 32 μm)	https://doi.pangaea.de/10.1594/PANGAEA.943694 https://doi.pangaea.de/10.1594/PANGAEA.943691
EIMS	>230 000	O/Ar ratio	https://doi.pangaea.de/10.1594/PANGAEA.943714
Optode	>280 000	Oxygen concentration	https://doi.pangaea.de/10.1594/PANGAEA.943790
Navigation	>1 271 000	Navigation and Meteo	https://doi.pangaea.de/10.1594/PANGAEA.943725
ACS	>411 000	Chla, phytoplankton size, POC	https://zenodo.org/record/6449893
BB3	>350 000	Backscattering, phytoplankton carbon	https://doi.pangaea.de/10.1594/PANGAEA.943793
WSCD	>553 000	relative DOM fluorescence (sd, n)	https://doi.pangaea.de/10.1594/PANGAEA.943739
PAR	>830 000	Photosynthetically active radiations (sd, n)	https://doi.pangaea.de/10.1594/PANGAEA.943740
SMPS	>4600	Aerosols concentration, particle size distribution (25 – 685 nm), sd	https://doi.pangaea.de/10.1594/PANGAEA.943856
Raw discrete measurements			
NUT	849	NO2, NO3, PO4, Si(OH)4	https://doi.pangaea.de/10.1594/PANGAEA.944289
MTE-USC	523	Fe, Zn, Cd, Ni, Cu, Pb, Mn	https://doi.pangaea.de/10.1594/PANGAEA.944395
CARB	325	Alkalinity, Carbonates, pH, pCO2, fCO2, HCO3, CO3, CO2, ΔC , $\Delta\text{Aragonite}$	https://doi.pangaea.de/10.1594/PANGAEA.944420
FCM	1041	Pico-, Nano-, Picoplankton abundance and scattering	https://doi.pangaea.de/10.1594/PANGAEA.944490
HPLC	551	Pigment concentrations	https://doi.pangaea.de/10.1594/PANGAEA.944281

CTD	4246	T,S, conductivity, conductance, density, sound velocity, depth, pressure	https://doi.pangaea.de/10.1594/PANGAEA.943869
Environmental context at the granularity of sampling events			
Inline sensors + Almanach + Copernicus + Modis Aqua (2 and 12 pixels arround)	4155	all Inline data with n, sd, quartiles, local sun/moon set/rize, local zenith, nutrients, hydrology, plancton quantities, Chla, PAR, PIC, POC, T, GSM, KD490 (with n, sd, and quartiles)	https://zenodo.org/record/6445609
Provenance metadata and environmental context at the granularity of samples			
Sample provenance	57859	georeference, sample unique identifier, logsheet links, environmental features and place names	https://zenodo.org/record/6299409
All event level variables	57859	mean and std + dt, dx, dz from sampling timing, position and depth	
Environmental context at the granularity of sampling stations			
all event level variables	655	intercalibrated and combined version	https://zenodo.org/record/6474974
Lagrangian Descriptors	246	Eulerian and Lagrangian diagnostics of water dynamic	https://zenodo.org/record/6453376
Environmental context at the granularity of coral sampling sites			
historical heat and cold stress indicators	113	TSA, DHW, recovery time etc...	https://zenodo.org/record/6499374
raw time series	>6000 x 113	SST at 1, 3 and 9 pixels, seasonal average, DHW, DCW	
Reefcheck bleaching occurence	106	Bleaching (% of colony or % of population)	https://zenodo.org/record/6511406
Photo annotations			
Qualitative photographic annotations	5606 photo, 2216 colonies	identification to the genus level, algal contact (genus of algae), presence of boring organisms (type), contact with sediment, presence of predation marks	https://zenodo.org/record/6364768
Taxonomic annotations of coral diversity (CDIV) surveys	2470	18S based taxonomic annotations, corresponding morphological annotation based on photo	https://zenodo.org/record/6327048 https://ecotaxa.obs-vlfr.fr/prj/4176

704

705

706

707 **(1) Raw measurements from samples or sensors**

708 From sensors, the measurements were standardized at the minute scale when possible (including
709 standard deviation and the number of observations within the minute when available) and
710 accompanied with their UTC time and GPS position. These data sets regroup data obtained from
711 the [TSG] the [ACS] the [WSCD] the [BB3] the [EIMS] the [optode], the [EDM], the [SMPS], the
712 [PAR] and the navigation data. These are available as ten distinct data sets, one for each package
713 of sensors. Similarly, measurements made from discrete samples collected on board Tara (see
714 Methods Section 3.3), together with quality assessment flags, are provided as six distinct data sets,
715 one for each type of analysis ([NUT], [MTE-USC], [CARB], [FCM], [HPLC], and [CTD]). For
716 [CARB], additional parameters of the carbonate system were calculated with CO2SYS.m v3.1.1³¹
717 using in situ temperature, total alkalinity, total dissolved inorganic carbon, salinity, phosphate and
718 silicate concentrations as inputs together with recommended parameters³²⁻³⁵ (K1K2=10; KSO4=3;
719 KF=2; BOR=2). Data sets are available in open access at the Data Publisher for Earth &
720 Environmental Science PANGAEA.

721

722 **(2) combined version at the event level**

723 A compilation of all environmental measures obtained during a given sampling event was
724 produced by compiling the boat's sensor data available during the time-lapse of the station and
725 measurements originating from satellite imagery (MODIS-AQUA satellite - Level 3 mapped
726 product, 8-day average, 4km resolution) recovered using OpenDAB protocols at
727 <https://oceandata.sci.gsfc.nasa.gov>. The zone corresponding to the station position and date was
728 recovered either by taking a two-pixel buffer around the given location (total zone being a 5 by 5
729 pixels square of 20 km side) and in order to propose an alternative measure in the inevitable case
730 where clouds were present an alternative 12-pixels buffer was taken (total zone being a 25 by 25
731 pixels square of 100 km side).

732 The corresponding variables recovered are chlorophyll *a*³⁶ (OCx algorithm³⁷, [Chl_Sat]; mg m⁻³),
733 the sea surface temperature³⁸ (4μm shortwave algorithm; [T_Sat]; °C), daily mean
734 photosynthetically available radiation at the ocean surface³⁹ ([PAR_Sat]; Einstein m⁻² d⁻¹),
735 concentration of particulate inorganic carbon⁴⁰ ([PIC_Sat]; mol m⁻³), concentration of particulate
736 organic carbon⁴¹ ([POC_Sat]; mol m⁻³), the diffuse attenuation coefficient for downwelling
737 irradiance at 490 nm⁴² ([Kd490_Sat] related to light penetration in water column modified by
738 particulate matter; m⁻¹), and the particulate backscattering coefficient at 443 nm derived from the
739 Garver-Siegel-Maritorena algorithm⁴³ ([GSM_Sat] which gives a good indication of the
740 concentration of suspended organic and inorganic particles such as sediments in the water; m⁻¹).

741 This compilation of environmental data at the scale of the event was further enriched using data
742 from reanalyzed (ie. forced with observations) operational models obtained from Copernicus
743 Marine Services (GLOBAL_REANALYSIS_PHY_001_030⁴⁴, daily mean for sea surface height,
744 salinity, temperature, current speeds, mixed layer depth;
745 GLOBAL_REANALYSIS_BIO_001_029⁴⁵ daily mean for Chl a, phytoplankton carbon, O₂, NO₃,
746 PO₄, SiOH, Fe concentrations, Primary production, pH and CO₂ partial pressure and
747 GLOBAL_REANALYSIS_WAV_001_032-TDS⁴⁶ for sea surface waves) but also using
748 almanach^{47,48} to calculate essential sun and moon parameters (position, rises and sets, phase, etc).
749

750 **(3) Environmental context at the granularity of samples**

751 The environmental context of all samples collected during the Tara Pacific Expedition is
752 available together with the provenance file in open access at Zenodo. The environmental context of
753 each sample is provided based on environmental data sets described above for continuous and
754 discrete measurements, as well as those generated from almanacs, satellite imagery and models.

755 Environmental context is provided in eleven UTF-8 encoded tab-separated-values files, all with
756 the same structure, but each providing a different statistic: number of values (n), mean value (mean),
757 standard deviation (stdev), 05, 25, 50, 75 and 95 percentiles (P05, P25, P50, P75, P95), lag in time
758 (dt), i.e. difference between the collection date/time of the sample and that of the environmental
759 context provided, lag in horizontal space (dxy), i.e. distance between the collection location of the
760 sample and that of the environmental context provided, and lag in vertical space (dz), i.e. difference
761 between the collection depth/altitude of the sample and that of the environmental context provided.
762 Missing value terms are: "nav" = not-available, i.e. the expected information is not given because
763 it has not been collected or generated; "npr" = not-provided, i.e. the expected information has been
764 collected or generated but it is not given, i.e. a value may be available in a later version or may be
765 obtained by contacting the data providers; "nac" = confidential, i.e. the expected information has
766 been collected or generated but is not available openly because of privacy concerns; "nap" = not-
767 applicable, i.e. no information is expected for this combination of parameter, environment and/or
768 method, e.g. depth below seabed cannot be informed for a sample collected in the water or the
769 atmosphere

770

771 **(4) Simplified version at site level**

772 In some cases, certain parameters were not available at specific sampling sites due to technical
773 issues or sensor availability, however, various basin scale studies and statistical tests require a
774 complete dataset for all sampled sites. During the Tara Pacific expedition, many parameters were

775 concurrently measured in-situ, estimated from remote sensing and/or modelled. For instance, sea
776 surface temperature was measured on the boat using the thermosalinograph included in the
777 underway system, but also with satellite and estimated from a model. Each of these three modes of
778 acquisition have their caveat and accuracy, however, within a certain confidence interval, missing
779 in-situ data can be replaced by its remotely sensed or modelled equivalent. We provide here a
780 simplified version at the sampling site level by replacing missing in-situ data by their closest and
781 most accurate satellite or modelled equivalent. In each case, in-situ data was considered as the most
782 accurate source of data, with a preference to HPLC pigments analysis followed by measurements
783 done by the ACS, while satellite and modelled data were used only if in-situ data was not available.
784 We evaluated the accuracy of ACS and of each satellite and modelled datasets by linear regressions
785 with their in-situ counterparts. A bias of the modelled or satellite data was identified when the slope
786 of the regression was different to 1 and/or an intercept was different to 0. The satellite and modelled
787 data were forced to match the in-situ data by dividing by the slope and subtracting the intercept.
788 This is the case for SST. When large bias persisted between matchups with observations, the
789 corrected data was not used to replace missing in-situ data. This is the case for chl. The same
790 approach was then applied to fill missing data with modelled values (MERCATOR-Copernicus).
791 A correction for the bias in the following variable was applied for SST, SSS, PO₄, and SiOH. As
792 previously done, if large bias persisted between observations and corrected data, they were not used
793 to replace missing in-situ data. This is the case for chl, NO₃, and Fe.
794 The [MTE] samples were sometimes sampled in the afternoon instead of the morning alongside all
795 the other water samples, thus were located in between two sampling stations. These [MTE] samples
796 could not be assigned to a sampling station following the criterion presented in the section 3,
797 therefore, the missing values of the corresponding morning stations were interpolated linearly.
798 The same approach was used for pH measurements, with a preference from measurements provided
799 by total carbonate system quantifications, followed by direct pH measurements and then modeled
800 values (MERCATOR-Copernicus).
801

802 (5) Lagrangian and Eulerian diagnostics

803 In order to provide a description of the dynamical properties of the water masses sampled,
804 different Eulerian and Lagrangian diagnostics were calculated. Here, we report a general
805 description of the information each of them provides. In the next subsection, we provide the details
806 of how they were calculated for each station.

807 The following Eulerian diagnostics were calculated: Absolute velocity ([Uabs], m s⁻¹):
808 $\sqrt{u^2+v^2}$, where u and v are the zonal and meridional components of the horizontal velocity field

809 used (described below); Kinetic energy ([Ekin], $m^2 \cdot s^{-2}$): $0.5*(u^2+v^2)$; Divergence ([EulerDiverg],
810 d^{-1}): $du/dx + dv/dy$; Vorticity ([Vorticity], d^{-1}): $dv/dx - du/dy$; Okubo-Weiss ([OW], d^{-2}): $s^2 -$
811 $vorticity^2$, where s^2 is $(du/dx-dv/dy)^2 + (dv/dx+du/dy)^2$. If negative, it indicates that the station
812 sampled was inside an eddy.

813 The following Lagrangian diagnostics were calculated: Finite-Time Lyapunov Exponents
814 ([Ftle], d^{-1} , Shadden et al., 2005): it indicates the rate of horizontal stirring, and it is a means to
815 quantify the intensity of turbulence in a given region. FTLE are commonly used to identify
816 Lagrangian Coherent Structures, i.e. barriers to transport. In this case, a strong FTLE value indicates
817 a region separating water masses which were far away backward in time. Lagrangian betweenness⁴⁹
818 ([betw], adimensional): this diagnostic draws inspiration from Lagrangian Flow Network Theory⁵⁰.
819 It can identify regions which act as bottlenecks for the circulation, in that they receive waters
820 coming from different origins, and that are then spread over several different destinations. These
821 can represent possible hotspots driving biodiversity⁴⁹. Lagrangian Divergence⁵¹ ([LagrDiverg], d^{-1}).
822 This diagnostic was calculated by integrating the Eulerian divergence along the backward
823 trajectories. If positive, it indicates a water mass that, during the previous days, was subjected to a
824 strong divergence, thus to a possible upwelling. If negative, it indicates a strong convergence, thus
825 possible downwelling. Retention Time⁵² ([RetentionTime], d). This diagnostic indicates how many
826 days a water mass has spent inside an eddy in the previous period. If the water mass is outside an
827 eddy, then its retention time is set to zero.

828 **(5.1) Extraction of the Eulerian and Lagrangian diagnostics**

829 For each of the 246 stations sampled, we proceeded as follows.

830 We identified the water mass sampled at the given station. This was considered as a stadium
831 shape with the two semi-circles centered on the starting and ending points of the transect,
832 respectively. The radius of the stadium semi-circles was considered 0.1° , which is in accordance
833 with previous studies^{49,53,54}. The stadium was filled with virtual particles separated by 0.01° .

834 For each virtual particle inside the stadium shape, we calculated a Eulerian or Lagrangian
835 diagnostic (described above). The Eulerian diagnostics were extracted directly from the velocity
836 field of the day of sampling. Concerning the Lagrangian diagnostics, these were obtained by
837 advecting the virtual particle backward in time for an amount of time τ from the day of sampling
838 day_S. For the Lagrangian betweenness, the advection was performed between day_S+ $\tau/2$ and
839 day_S- $\tau/2$, so that the advective time window was centered on the sampling day (details in⁴⁹).

840 For the Lagrangian diagnostics, we used the following advective times τ : 5, 10, 15, 20, 30, and
841 60 days. The only exception is the retention time, which, by construction, was calculated only with
842 the largest advective time, namely $\tau=60$ days.

843 Once that, a given diagnostic (Eulerian or Lagrangian) was calculated for all the virtual particles
844 filling the stadium shape, we calculated the mean value, and the 25, 50, and 75 percentiles. The
845 percentiles were calculated in order to quantify the spatial variation of the diagnostic inside the
846 stadium shape. Therefore, we associated each station with four values (mean, 25, 50, and 75
847 percentiles) of a given diagnostic.

848 Furthermore, two different velocity fields were used, which are described as follows.

849 **(5.2) Velocity fields and trajectory calculation**

850 Both the velocity fields were downloaded from E.U. Copernicus Marine Environment
851 Monitoring Service (CMEMS, <http://marine.copernicus.eu/>). The first velocity field used was
852 MULTIOBS_GLO_PHY REP_015_004⁵⁵ [[GlobEkmanDt](#)]. This was produced by combining the
853 altimetry derived geostrophic velocities and modelled Ekman surface currents. It had a spatial
854 resolution of 0.25° and a temporal resolution of one day. The second velocity field was
855 GLOBAL_REANALYSIS_PHY_001_030⁴⁴ [[GloryS12](#)]. It was obtained by a NEMO model
856 assimilating altimetry and other observations. It had a spatial resolution of 1/12° and a temporal
857 resolution of 1 day.

858

859 **(6) Historical climate data and indices for climate variability for coral collection sites**

860 It's becoming increasingly clear that stress resilience, in particular thermal tolerance, is shaped
861 not only by maximum monthly mean temperatures (MMMs), but also by long-term and short-term
862 climate variability, even at the scale of reefs⁵⁶⁻⁵⁸. In order to provide an overview of past climate
863 variability and heatwaves experienced by corals sampled at each site, we built a high-resolution
864 historical dataset that spans from 2002 to each sites' sampling date. Ocean skin temperature (11
865 and 12 µm spectral bands longwave algorithm) was extracted from 1km resolution level-2 MODIS-
866 Aqua and MODIS-Terra from 2002 to the sampling date and from level-2 VIIRS-SNPP from 2012
867 to the sampling date. Day and night overpasses were used to maximize data recovery. Following
868 recommendations from NASA Ocean Color (OB.DAAC), only SST products of quality 0 and 1
869 were used. The 9 closest pixels to the sampling sites of each scene were extracted. All the extracted
870 pixels from the 3 platforms were then averaged daily to obtain daily SST averages and standard
871 deviations time series for each sampling site, from 2002 to the sampling date.

872 Each time series was first averaged on a Julian day basis to provide a seasonal average. This
873 yearly seasonal average was triplicated and concatenated into a 3-year seasonal cycle to apply a
874 digital low pass filter on the middle year without generating artifacts. A digital low pass filter (filter
875 order 3, pass band ripple 0.1; "filtfilt" function in matlab) with 36 Julian days windows was applied
876 to the concatenated time series to remove high frequency noise. The middle year was then extracted

877 from the concatenated time series to recover the seasonal cycle. The sea surface temperature
878 anomaly was calculated as the SST minus the seasonal cycle over the full time series. Considering
879 the short periods of missing data (mean of the 95th percentile of the duration of consecutive days
880 with missing data: 9.8 ± 4.1 days), the missing values in the SST and SST anomaly time series were
881 linearly interpolated in order to calculate thermal stress indices. The SST anomaly frequency was
882 calculated as the number of days over the past 52 weeks when the SST anomaly is greater than or
883 equal to 1°C . Thermal stress indices relevant to coral reef health were then calculated using
884 methodology developed for the Coral Reef Temperature Anomaly Database (CoRTAD) data base⁵⁸
885 (Table 4). Events of cold temperature accumulation were also reported to cause bleaching and
886 mortality^{59,60}, therefore, the same set of indices were calculated for cold stress adapting the
887 CoRTAD method, but using the minimum weekly climatologies (Table 4). Further to that, we
888 checked for previous occurrences of bleaching events at sampled reef sites by matching island
889 coordinates to the Reef Check dataset (reefcheck.org) obtained from Sully et al 2019^{56,61}. For each
890 Tara Pacific island, coordinate we determined that Reef Check site that was closest (in terms of
891 distance in km) and considered only Reef Check data that was within a 10 km circumference.

892 A condensed table containing single values associated with each sampling site was created
893 extracting the minimum, maximum, sum, averages, standard deviations, and value recorded at the
894 sampling day of each of these indices (detailed in the readme file provided with the dataset).
895 Additional metrics of the last heating and cooling events as well as the time of recovery is also
896 provided to represent the state of thermal stress at the day of sampling.

897

898 **Table 4:** Description of historical SST values and thermal stress indices calculated following
899 CoRTAD⁵⁸ method and modified to also represent cooling events.

Name	Acronym	Description	Reference
SST daily average 9 pixels	[sst_mean_9pixel]	Daily average of the 9 closest pixels around the sampling site	
Seasonal average 9 pixels	[seasonal_average_9pixel]	Seasonal average SST calculated from 2002 to the sampling date	
SST anomaly 9 pixels	[SST_anomaly_9pixel]	SST anomaly calculated as: $\text{sst_mean_9pixel} - \text{seasonal_average_9pixel}$	
SST daily average interpolated	[SST_mean_interp]	SST daily average with missing values interpolated linearly	
SST anomaly interpolated	[SST_anomaly_interp]	SST anomaly with missing values interpolated linearly	
SST anomaly frequency	[SST_anomaly_freq]	number of days in the past 52 weeks when $\text{SST_anomaly_interp} \geq 1^{\circ}\text{C}$	CoRTAD

Heat Thermal Stress Anomaly	[TSA_heat]	Daily SST average interpolated minus the maximum weekly climatology	CoRTAD
TSA heat frequency	[TSA_heat_freq]	number of days in the past 52 weeks when TSA_heat >= 1 °C	CoRTAD
TSA degree heating week	[TSA_DHW]	sum of the past 12 weeks when TSA_heat is greater than or equal to 1 °C	CoRTAD
TSA degree heating week frequency	[TSA_DHW_freq]	number of days in the past 52 weeks when TSA_DHW is greater than or equal to 1 °C	CoRTAD
Cold Thermal Stress Anomaly	[TSA_cold]	Daily SST average interpolated minus the minimum weekly climatology	Custom made
TSA cold frequency	[TSA_cold_freq]	number of days in the past 52 weeks when TSA_cold <= -1 °C	Custom made
TSA degree cooling week	[TSA_DCW]	sum of the past 12 weeks when TSA_cold is lower than or equal to -1 °C	Custom made
TSA degree cooling week frequency	[TSA_DCW_freq]	number of days in the past 52 weeks when TSA_DCW is lower than or equal to 1 °C	Custom made

900

901

902

903 **(7) Coral photographic resources and annotations**

904 The [PHOTO] resource consists of two datasets. The first, obtained from the [SCUBA-3X10] protocol, was annotated for genus validation, gross morphological characteristics of the colony, algal contact, presence of boring organisms, sediment contact, predation, and health factors (such as presence of disease and coloration). The acquisition protocol of these annotations is described below. This dataset is also used for the description of morphotypes within each genus for taxonomic annotation in combination with genetic data. The second dataset, obtained following [SCUBA-SURVEY] protocol was used for the taxonomic annotation (as close to genus level as possible) of the coral host of the [CDIV] samples. Of a total of 2,470 CDIV samples, 1711 samples had one or more pictures associated (3,085 total pictures), 759 samples had no photos. Overall, 11,460 coral photographs were generated and annotated allowing for a permanent record of all colonies sampled. All [PHOTO] were transferred to EcoTaxa⁶².

915

916 (1) Manual Annotations of *in situ* colony (CO) photos:

917 Photo analysis for the genus validation and environmental context was conducted using
918 Matlab with code developed and written specifically for the Tara Pacific Expedition⁶³. Photos were

919 annotated individually, and annotations were conducted from January to April 2020. To prevent
920 observer bias, photos were randomized, and the annotator was blind to any information regarding
921 the location or the sampling site. The analysis included 1) identification to the genus level, 2) algal
922 contact with types of algal genus if identifiable (Halimeda, Turbinaria, Dictyota, Lobophora,
923 Crustose Coraline Algae (CCA), Sargassum, Galaxaura, other), 3) presence of boring organisms
924 with types if identifiable (Bivalve, Spirobranchus, Tridacna, Urchin, Other Polychaete, Sponge, and
925 Other), 5) contact with sediment (sand), 6) presence of predation marks. Most annotations were
926 boolean operators (yes/no) with identifications added if possible. Several indicators of coral health
927 were also annotated such as if the coral looked unhealthy or showed tissue loss (Yes/No), coloration
928 (light, normal, dark, or bleached), and presence of a pigmentation response (Yes/No). If a
929 pigmentation response was present, the annotator was prompted to determine if it was trematodiasis
930 (Yes/No). Finally, additional notes included but were not limited to the quality of the photo (blurry,
931 poor visibility, coloration), contact with neighbouring hard or soft coral colonies, fish presence in
932 the photograph, snail(s), or hermit crab(s) on the coral, an object in the photograph, etc.

933

934 (2) Taxonomic annotations of coral diversity (CDIV) surveys:

935 All images imported in EcoTaxa have been identified at the genus level by taxonomic experts,
936 and crosslinked with genomic identification from metabarcoding based on the V9 region of the 18S
937 rDNA. Analysis of the 18S marker aimed to generate coral host taxonomic annotations to the level
938 of genus for every sample. The annotation was generated based on each sample's most abundant
939 18S sequence by aligning to the NCBI 'nt' database with taxonomic labels. A 'lowest common
940 ancestor' approach was used when there were multiple best hits. These alignment-based annotations
941 were verified phylogenetically (i.e. taxonomic similarity agreed with sequence similarity). More
942 than half of the samples were not annotated at genus or better level using this approach, due to the
943 lack of resolution of the 18S V9 marker. Where available, host taxonomic assignments were based
944 on photo annotations. Otherwise, 18S-based annotations were used.

945

946

947 **Technical Validation**

948 Numerous steps of quality control were operated at different levels of acquisition to ensure good
949 quality of the different datasets and may vary depending on the type of measurement operated and
950 if it originates from sensors on-board or from samples.

951

952 **Inline measurements, models and satellite data validity**

953 [PAR] measurement validity was checked by first removing physically wrong data (ie. values
954 greater than 0.45 $\mu\text{E}/\text{cm}^2/\text{sec}$ or lower than 0 $\mu\text{E}/\text{cm}^2/\text{sec}$) and compared with clear sky matchup
955 measurements from MODIS-Aqua & Terra. Comparison confirmed the good agreement between
956 datasets but also the absence of sensor drift. Temperature and salinity were acquired by the [TSG].
957 The quality of the whole time series was manually checked, and the temperature validity was
958 assessed by comparing the temperature reading of the two sensors placed at two different places
959 along the inline system. Potential drifts of the temperature sensor was investigated by comparing
960 the temperature time series with satellites' sea surface temperature. Salinity measurements were
961 intercalibrated against unfiltered seawater samples [SAL] taken every week from the surface ocean,
962 and corrected for any observed bias. Moreover, temperature and salinity measurements were
963 validated against Argo floats data collocated with Tara. The [ACS] absorption and attenuation
964 signal due to dissolved matter, drift, and biofouling were estimated between two filter events by
965 interpolating filtered water absorption and attenuation following the shape of the [fdom] from the
966 [WSCD], when available. This method improves data quality in case of strong variation of
967 dissolved matter absorption that the frequency of filter event would not capture properly (e.g.
968 approaching coastal waters or entering a lagoon). When [fdom] data was not available, the filtered
969 absorption and attenuation were linearly interpolated between filter events before being remove
970 from the total absorption and attenuation. From November 13, 2016 to May 6, 2017, the [BB3] was
971 located upstream of the switch system, thus measured total (non-filtered) water all the time. During
972 this period, the volume scattering coefficient of seawater was removed from the raw data counts to
973 obtain the particulate backscattering coefficient [bbp]. The biofouling and instrument drift were
974 estimated comparing values before and after each cleaning events. The biofouling was estimated
975 between two cleaning events by fitting an exponential or linear model to the raw data before
976 removing it from the signal. We advocate to use this period with caution as the data was corrected
977 with theoretical assumptions (i.e. pure seawater scattering and linear or exponential biofouling) that
978 may differ from reality. From May 7th 2017 to the end of the expedition, the [BB3] was located
979 downstream of the filter-switch system so that, like for the [ACS] processing, the biofouling signal
980 could be estimated and removed between two filter events and [bbp] quality improved. The
981 correspondence between total particulate scattering [bp] estimated from the [ACS] and [bbp] was
982 investigated for the whole expedition. [bbp] values were discarded when [bbp]/[bp] was unusually
983 low (< 0.002; see range of [bbp]/[bp] in natural waters⁶⁴). A similar modelling and correction for
984 biofouling than the one performed for the [BB3] was applied to the [WSCD] data. The [PAR],
985 [TSG], [BB3], [ACS], and [WSCD] data were processed following the last recommendations for
986 processing inline²³, using custom software available at

987 <https://github.com/OceanOptics/InLineAnalysis>. The entire time series of measurement were
988 automatically QC to remove artifacts and manually checked and QC for obviously inaccurate
989 measurements due to saturated sensor, low flow rate, bubbles, or poor filtered seawater
990 measurements. The full processing and QC procedure and reports could be accessed together with
991 each dataset.

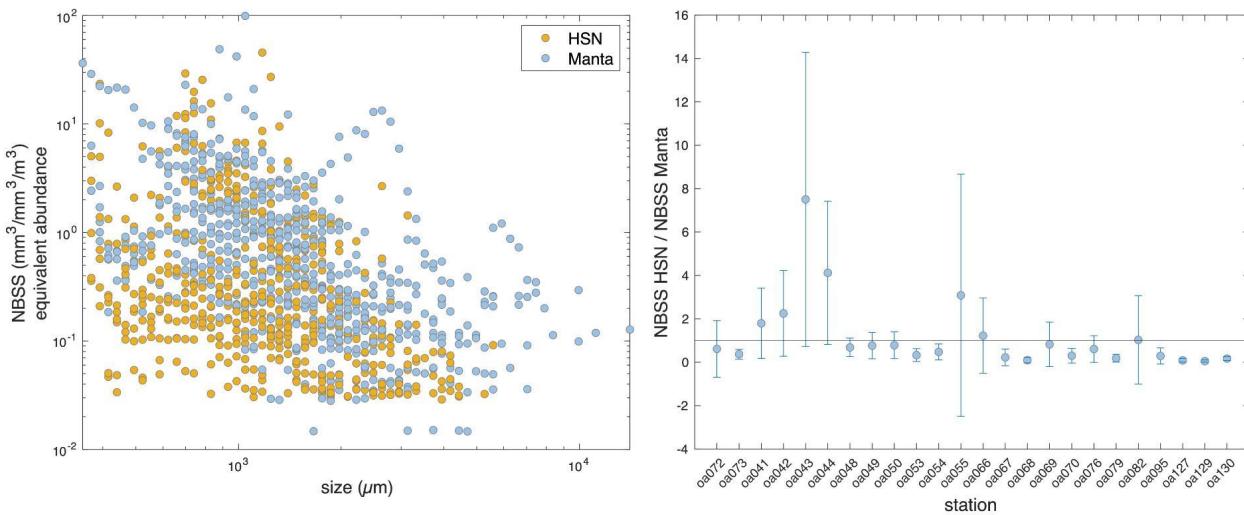
992

993 **Sample measurements technical validation**

994 For nutrients [NUT] samples a quality check was done in several steps. First a visual inspection
995 was done to determine if samples were overfilled or not frozen vertically which may induce sample
996 leakage during the frosting procedure. Secondly any readings too close to detection limits or when
997 duplicate measurements differed by more than 10% were flagged. In this last case, when the
998 difference between two values of the same sample is greater than 10%, it is considered that the high
999 value is not acceptable and is not reported. Finally, the overall quality of the dataset was established
1000 by comparing measurements values with Copernicus Marine Services modelling outputs.

1001 For trace metals ([MTE-USC]), any samples in which concentrations were close to detection
1002 limits were flagged. A standard produced by the GEOTRACES program (coastal surface seawater
1003 standard) was included in each sample run. If the metal concentrations of the standard were outside
1004 the GEOTRACES community consensus values, the sample run was rejected. Trace metal
1005 concentrations had an average error of 5%.

1006 [HPLC] samples were analysed as described in Ras et al 2008. All pigments peaks were
1007 inspected and quality controlled as good, acceptable or qualitative. Any measurements below
1008 detection limits were disregarded.


1009 [FCM] samples were analysed with a FACS Canto II Flow Cytometer equipped with a 488 nm
1010 laser³² and every measurement where cell populations were either complicated, needed manual
1011 curation or were impossible were flagged.

1012

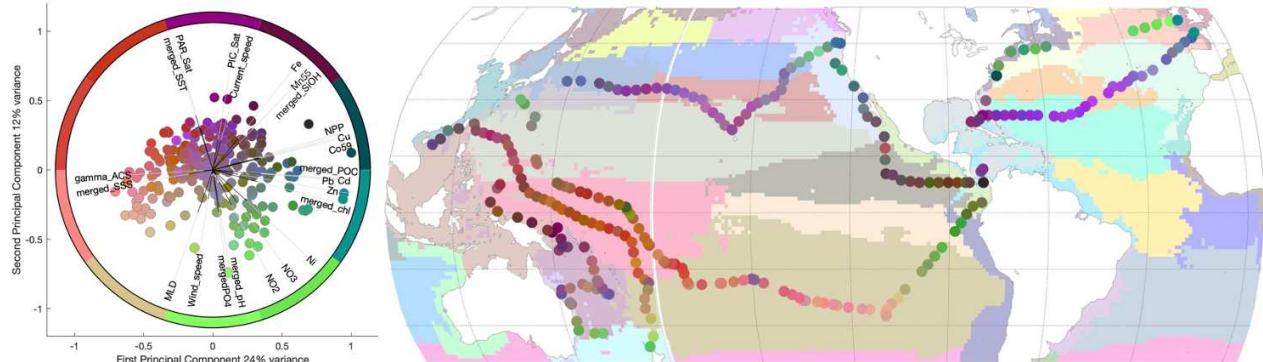
1013 **Nets collection validity**

1014 To estimate the technical validity of the different nets collection we analysed the raw abundance
1015 of living organisms collected conjointly by the [HSN-NET-300] and [MANTA-NET-300] at the
1016 same stations, but sequentially in time. Indeed [MANTA-NET-300] is operated at different speeds
1017 (3 knots maximum) compared to [HSN-NET-300] (9 knots maximum) and therefore were not
1018 deployed simultaneously. Manta nets are commonly used and recognized as a reference type of net
1019 while investigating surface plankton⁶⁵⁻⁶⁷ and we therefore used a set of 24 stations where both were
1020 deployed concurrently to estimate the efficiency of the [HSN-NET-300]. For this [F300] samples

1021 collected by both nets were imaged using the ZooScan⁶⁸ to obtain images of each object collected.
1022 Images were then transferred to EcoTaxa⁶² and sorted taxonomically to the deepest taxonomic
1023 level possible. All results were used to calculate the normalized biovolume size spectra⁶⁹ (NBSS)
1024 of living organisms for both nets, which is an analogue to abundance per size categories. This NBSS
1025 spectra allows investigating the potential under- or over-sampling while investigating it over
1026 various sizes of organisms. The NBSS of both nets were giving about the same order of magnitudes
1027 of abundances (Figure 4A) and when inspected along the size spectra between pairs of observations
1028 (Figure 4B) they did not differ largely from 1:1 in 13 cases over the different deployments. A large
1029 variability between nets could however be observed at a few stations which could possibly be
1030 caused by local plankton patchiness⁷⁰ resulting in more variability for [HSN-NET-300] and less
1031 for [MANTA-NET-300] due to larger sampling volume. Overall, we can conclude that [HSN-
1032 NET-300] and [MANTA-NET-300] are collecting plankton with a relatively similar efficiency
1033 even if the larger sampling volume of [MANTA-NET-300] allows a better collection of larger, rare,
1034 organisms, as seen from spectra extending to larger sizes (Figure 4A). Nevertheless, these results
1035 show that the use of [HSN-NET-300] may be really useful for underway zooplankton sampling in
1036 the situations when it is not possible to stop the ship for regular sampling or on ships of opportunity.

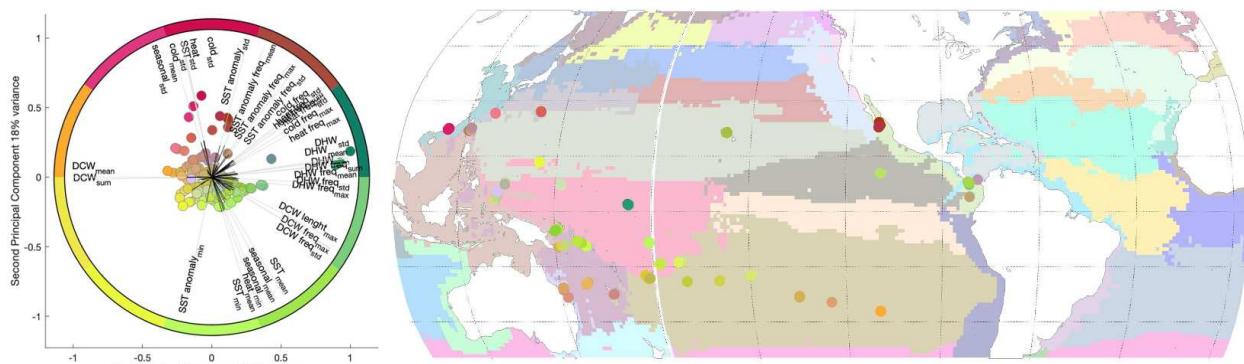
1037
1038 Figure 4: Technical validation of net sampling. Comparison of normalized biovolume size spectra
1039 (NBSS) of living organisms sampled with [HSN-NET-300] and [MANTA-NET-300] over a set of
1040 24 stations where both were deployed together. From both NBSS, a sampling efficiency of the HSN
1041 net compared to the MANTA net was calculated as a mean and standard deviation over all the size
1042 classes considered.

1043


1044

1045

1046 **Overall biogeochemical data validity**


1047 To assess the overall quality and homogeneity of the collected environmental parameters, we
1048 conducted a quick multivariate exploration of the dataset to compare it with known biogeography
1049 of biogeochemical provinces^{71,72} and their associated biogeochemical signatures. For this, we first
1050 used data simplified at the site version (see section 4 of Data records), selected only datasets
1051 providing a full overview over the geographical range of the expedition, used a box-cox
1052 transformation and centred-reduced each variable to equally consider those. This dataset was then
1053 analysed through a PCA analysis (Figure 5). The 3 first components of the PCA analysis were
1054 recovered to code for a RGB (red, green, blue) color-coding of each station and better visualize the
1055 biogeochemical signature of the station on a map. Finally, those were compared with known
1056 biogeochemical provinces extracted from⁷². Despite the different temporal resolution between
1057 instantaneous sampling and biogeochemical provinces representing a consensus over several years
1058 and seasons, we can see that the main biogeochemical provinces (and associated macroscale
1059 oceanic features) as well as their progressive boundaries are well captured by our sampling scheme.
1060 Among the notable features, the western Pacific coast of Americas are marked by a strong
1061 upwelling signature (with high amount of nutrients and trace metals), the southern Pacific gyre with
1062 a high salinity but a low iron and silicate concentration, the central Pacific zone is characterized by
1063 high temperature, light and sea surface height, small phytoplankton size (high gamma), with low
1064 chlorophyll a and low NO₃ and trace metals (Ni, Cu, Zn, Pb or Cu) concentrations, with the
1065 exception of the few stations centred on the equator which clearly display some indicators of local
1066 upwelling such as those potentially created by the equatorial upwelling. This first overview clearly
1067 shows correspondence with known features related to nutrients and nutrient limitation of plankton,
1068 trace metals or even global biogeochemistry⁷³⁻⁷⁵ and further shows that the sampling scheme used
1069 allowed to sample corals and plankton across a large variety of environmental constraints either on
1070 oceanographic, climatic or chemical aspects. The same analysis repeated only using sites realized
1071 around islands further confirms this large variety of environmental constraints (Figure 6). To
1072 evaluate the variety of the past temperature history, and notably the impact of past seasonality and
1073 heat/cold waves, we further reproduced this analysis using historical temperature and heat/cold
1074 waves experienced on coral sites. However, since temperature anomalies and their accumulated
1075 degree cooling weeks (DCW) could be negative, only a basic normalization of data was made since
1076 box-cox normalization is not suited for negative values. The first axis of the PCA separate islands
1077 that suffered intense and recurrent heat-waves (positive values) from those that rather experienced
1078 cold-waves (negative values) while the second axis separate cold and highly seasonal islands
1079 (positive values) from islands with warm environments with low seasonality (negative values). This

1080 analysis further confirms that the selected location also displays a full variety of past history of
1081 temperature and heat-waves but also reflects known geographical patterns of bleaching events^{56,76}.
1082
1083

1084
1085 Figure 5: Technical validation of the main hydrological and biogeochemical environmental
1086 variables compared with biogeochemical provinces as extracted from⁷². Environmental data were
1087 normalized through a box-cox normalization and analysed through a PCA analysis to better display
1088 their typical environmental signature. The position of each station in the 3 first axes of the PCA
1089 were further used to provide a red blue green color-coding, allowing to project their
1090 environmental signature on a map and compare it with known biogeochemical provinces.

1091

1092
1093 Figure 6: Technical validation of the historical SST heatwaves and cold waves parameters
1094 compared with biogeochemical provinces as extracted from⁷². Environmental data were normalized
1095 and analysed through a PCA analysis to better display their typical environmental signature. The
1096 position of each station in the 3 first axes of the PCA were further used to provide a red blue green
1097 color-coding, allowing to project their environmental signature on a map and compare it with
1098 known biogeochemical provinces.

1099

1100 Usage Notes

1101 We recommend paying close attention to the various quality flags provided with the raw
1102 datasets to avoid using lower quality data if needed. Similarly, to provide the more complete set of

1103 observations for each sample, we provided the lag in time (dt), as well as distance in horizontal
1104 (dxy) and vertical (dz) space, between the collection timing, latitude/longitude and depth/altitude
1105 of the sample and that of the environmental context provided. Depending on the scientific question,
1106 future users are encouraged to carefully define reasonable time lag and distances to consider in their
1107 study, to avoid including unrealistic associations between samples. Moreover, we extracted
1108 contextual data at the event level to simplify the data extraction task. We also provide simplified
1109 version at the site level by combining and cross-calibrating all similar variables (e.g. using different
1110 sources of SST data to fill gaps of missing data and obtain one merged SST variable). We prioritised
1111 observations originating from in-situ samples over satellite data, and over modelled data
1112 (MERCATOR), and evaluated their correspondence by linear regressions. Potential biases of
1113 satellite and modelled data in comparison to in-situ data were corrected applying the slope and
1114 intercept of their linear regression to force satellite and modelled data to best match in-situ data.
1115 Similarly, we also chose to interpolate some environmental variables that were sampled only few
1116 hours before or after the site itself to maximize data recovery for each sampling station. We
1117 acknowledge merging different sources of data can introduce differences in variance depending on
1118 the source of data used, therefore, we encourage the user to cautiously evaluate the relevance of
1119 this merged dataset for their study. Considering the intrinsic heterogeneity of variance between the
1120 different datasets, and their potential non-normal distribution, we recommend using appropriate
1121 normalisation methods before any multivariate statistical analysis. Here we chose to use box-cox
1122 transformation and centred-reduced each variable.

1123 In this version of the dataset the satellite data used is 8-days averages while the in-situ
1124 measurements are instantaneous measurements of optical properties averaged over the station
1125 sampling period. The 8-days averaging tend to attenuate extreme values and reduce the potential
1126 differences between stations. While suited for macro-ecological processes which depends on large
1127 temporal and spatial variations of their environment, the use of 8-day averages satellite products
1128 could be inaccurate to study shorter life cycles of the pico-, nano and micro-plankton.

1129 Moreover, phytoplankton can adjust their light harvesting pigment concentrations according to
1130 light exposure, nutrient availability and temperature. These variations are negligible over periods
1131 shorter than a day but can become significant over 3-5 days⁷⁷ and references thereinⁱⁿ. Therefore, we advise
1132 the users to cautiously use the merged bio-optical variables of this dataset and to verify its
1133 compatibility with the research question and potentially replace this 8-day average with shorter time
1134 observations if available. As presented in section “3.3. Continuous measurements”, the [poc] was
1135 estimated from the underway system, both using the measured [cp]²⁷, and [bbp]²⁸. The [BB3] sensor
1136 have a low signal-to-noise ratio due to its high sensitivity to bubbles in the water line and to

1137 accumulation of particles in the sensor, therefore, the [poc] estimated from the [BB3] was used to
1138 fill the missing [poc] estimated from the [ACS]. When the [bbp] from the [BB3] was used to
1139 estimate [POC], the [bbp] values from the 470 nm wavelength were prioritized over the 532 nm
1140 wavelength and 650 nm wavelength and the same merging method was applied to correct for bias
1141 between [poc] estimated from the [ACS] and the [BB3], and between wavelength of the [BB3].
1142

1143 **Code Availability**

1144 The different codes used to process the different datasets are indicated within the text and are
1145 repeated here and includes:

1146 -Inline optical processing (<https://github.com/OceanOptics/InLineAnalysis>)

1147 -Satellite products used^{36,38-43}

1148 -Mercator products^{44-46,55} used.

1149 -Astronomical almanac to calculate sun/moon position and day-nights parameters from sites
1150 positions and time^{47,48}.

1151 -Additional parameters of the carbonate system were calculated with CO2SYS.m v3.1.1³¹ using
1152 in situ temperature, total alkalinity, total dissolved inorganic carbon, salinity, phosphate and silicate
1153 concentrations as inputs together with recommended parameters³²⁻³⁵ (K1K2=10; KSO4=3; KF=2;
1154 BOR=2).

1155 -Ecotaxa⁶² server github (<https://github.com/ecotaxa/ecotaxa>).

1156 -EcoTaxa data processing (<https://github.com/ecotaxa/ecotaxatoolbox>)

1157 -Morphological qualitative annotations⁶³.

1159 **Acknowledgements**

1160 We are keen to thank the commitment of the people and the following institutions for their
1161 financial and scientific support that made this singular expedition possible: CNRS, PSL, CSM,
1162 EPHE, Genoscope/CEA, Inserm, Université Côte d'Azur, ANR, agnès b., UNESCO-IOC, the
1163 Veolia Environment Foundation, Région Bretagne, Billerudkorsnas, Amerisource Bergen
1164 Company, Lorient Agglomeration, Smilewave, Oceans by Disney, the Prince Albert II de Monaco
1165 Foundation, L'Oréal, Biotherm, France Collectivités, Fonds Français pour l'Environnement
1166 Mondial (FFEM), the Ministère des Affaires Européennes et Etrangères, the Museum National
1167 d'Histoire Naturelle, Etienne BOURGOIS, the Tara Ocean Foundation's teams and crew. Tara
1168 Pacific would not exist without the continuous support of the participating institutes. The authors
1169 also particularly thank Serge Planes, Denis Allemand and the Tara Pacific consortium. This study
1170 has been conducted using E.U. Copernicus Marine Service Information and Mercator Ocean

1171 products. We acknowledge funding from the Investissement d'avenir project France Génomique
1172 (ANR-10-INBS-09). FL is supported by Sorbonne Université, Institut Universitaire de France and
1173 the Fondation CA-PCA. The in-line and atmospheric optics dataset was collected and analysed with
1174 support from NASA Ocean Biology and Biogeochemistry program under grants NNX13AE58G
1175 and NNX15AC08G and the HPLC processing under NSF award 2025402 to University of Maine.
1176 JMF is supported by a research grant from Scott Eric Jordan. NCo was supported by a grant from
1177 the Simons Foundation/SFARI (544236). Work from MC, RMM, ER, DF, PF, EG is supported by
1178 the French Government (National Research Agency, ANR) through the grant "Coralgene" ANR-
1179 17-CE02-0020 as well as the "Investments for the Future" programs LABEX SIGNALIFE ANR-
1180 11-LABX-0028 and IDEX UCAJedi ANR-15-IDEX-01. NCa and YL were supported by the
1181 "Laboratoire d'Excellence" LabexMER (ANR-10-LABX-19) and co-funded by a grant from the
1182 French government under the program "Investissements d'Avenir". FL, SP, CdV and ZM are
1183 funded by the European Union's Horizon 2020 research and innovation programme "Atlantic
1184 Ecosystems Assessment, Forecasting and Sustainability" (AtlantECO) under grant agreement No
1185 862923. The support of Pr. Alan Fuchs, President of CNRS, was crucial for the success of the
1186 surface sampling undertaken during the *Tara* Pacific expedition. We thank A. Gavilli from TECA
1187 Inc. France, and E. Tanguy and D. Delhommeau from the Institut de la Mer, Villefranche-sur-Mer
1188 for the helpful collaboration in the conception of the High Speed Net and the Dolphin systems. The
1189 AT and CT data were analysed at the SNAPO-CO₂ service facility at LOCEAN laboratory and
1190 supported by CNRS-INSU and OSU Ecce-Terra. We thank the EMBRC platform PIQv for image
1191 analysis and CCPv for samples storage and supported by EMBRC-France, whose French state funds
1192 through the ANR within the Investments of the Future program under reference ANR-10-INBS-02.
1193 The *Tara* Pacific expedition would not have been possible without the participation and
1194 commitment of over 200 scientists, sailors, artists and citizens (see
1195 <https://zenodo.org/record/3777760#.YfEEsfXMLjB>). This publication is number X of the *Tara*
1196 Pacific Consortium.

1197

1198

1199

1200 **Author contributions**

1201 Conceptualization and methodology: FL, GB, SP, EB, NC, ED, JMF, SGJ, IK, MLP, JPMP
1202 GR, SR, ER, AV, CRV, BB, CB, DF, PF, PEG, EG, SR, SS, OT, RT, RVT, PW, DZ, DA, SP,
1203 MBS, CdV, EB, GG

1204 Sample collection: FL, GB, SP, SA, EB, PC, ODS, ED, AE, JMF, JFG, BCH, YL, RM, DAP,
1205 MLP, JP, GR, SR, ER, CRV, GI, DF, PF, PEG, EG, SR, SS, OT RVT, PW, DZ, DA, SP, CdV, EB,
1206 GG
1207 Samples analysis and data analysis: FL, GB, SA, EB, NC, MC, PC CD, ED, AE, JF, JMF, JFG,
1208 BCH, LJ, SGJ, RLK, YL, DM, RM, ZM, NM, DAP, MLP, MP, JR, GR, SR, ER, CRV, BB
1209 Data production (models/satellites): FL, GB, AB, ODS, CRV
1210 Data Curation and validation: FL, GB, SP, AB, MC, ODS, CD, ED, AE, JF, JMF, LJ, SGJ,
1211 RLK, IK, YL, DM, RM, ZM, NM, MP, JR, GR, ER, AV, CRV
1212 Funding Acquisition: FL, NC, PC, ED, JF, JMF, JFG, SGJ, IK, DM, NM, MLP, MP, GR, ER,
1213 AV, CRV, BB, CB, DF, PF, PEG, EG, SR, SS, OT, RT, RVT, PW, DZ, DA, SP, CdV, EB, GG
1214 Project Administration and supervision: FL, SP, SA, EB, JMF, ER, CRV, CM, BB, CB, DF,
1215 PF, PEG, EG, SR, SS, OT, RT, RVT, PW, DZ, DA, SP, MBS, CdV, EB, GG
1216 Visualization: FL, GB, ZM
1217 Writing – Original Draft Preparation: FL, GB, SP, SA, AB, EB, NC, MC, ODS, ED, JF, JMF,
1218 SGJ, RLK, RM, ZM, CRV
1219 All authors have read and reviewed the manuscript.

1220
1221

1222 References

1223 1. GCRMN. *GCRMN Status of Coral Reefs of the World: 2020*. Edited by: David Souter,
1224 Serge Planes, Jérémie Wicquart, Murray Logan, David Obura and Francis Staub. (2021).
1225 2. Hughes, T. P. *et al.* Coral reefs in the Anthropocene. *Nature* **546**, 82–90 (2017).
1226 3. Gove, J. M. *et al.* Near-island biological hotspots in barren ocean basins. *Nature
1227 communications* **7**, (2016).
1228 4. Messié, M. *et al.* The delayed island mass effect: How islands can remotely trigger blooms
1229 in the oligotrophic ocean. *Geophysical Research Letters* **47**, e2019GL085282 (2020).
1230 5. Pickett, S. T. Space-for-time substitution as an alternative to long-term studies. in *Long-
1231 term studies in ecology* 110–135 (Springer, 1989).
1232 6. Darwin, C. *The Structure and Distribution of Coral Reefs*, London (1874). *First published
1233 (1842).*
1234 7. Reygondeau, G. Current and future biogeography of exploited marine groups under
1235 climate change. in *Predicting future oceans* 87–101 (Elsevier, 2019).
1236 8. Ibarbalz, F. *et al.* Global trends of marine plankton diversity across kingdoms of life. *Cell*
1237 (2019) doi:<https://doi.org/10.1016/j.cell.2019.10.008>.
1238 9. Laursen, L. Spain's ship comes in. *Nature* **475**, 16–17 (2011).
1239 10. Gross, L. Untapped bounty: sampling the seas to survey microbial biodiversity. *PLoS
1240 Biology* **5**, e85 (2007).
1241 11. Karsenti, E. *et al.* A Holistic Approach to Marine Eco-Systems Biology. *PLOS Biology* **9**,
1242 1–5 (2011).
1243 12. Planes, S. *et al.* The Tara Pacific expedition—A pan-ecosystemic approach of the “-

1244 omics” complexity of coral reef holobionts across the Pacific Ocean. *PLOS Biology* **17**, e3000483
1245 (2019).

1246 13. Gorsky, G. *et al.* Expending Tara Ocean protocols for underway, eco-systemic sampling
1247 strategy of surface ocean/atmosphere plankton during Tara Pacific expedition (2016-18).
1248 *Frontiers in Marine Sciences* (under press).

1249 14. Pesant, S. *et al.* Open science resources for the discovery and analysis of Tara Oceans
1250 data. *Scientific data* **2**, 150023 (2015).

1251 15. Wilkinson, M. D. *et al.* The FAIR Guiding Principles for scientific data management and
1252 stewardship. *Sci Data* **3**, 160018–160018 (2016).

1253 16. Huang, D. & Roy, K. The future of evolutionary diversity in reef corals. *Philosophical
1254 Transactions of the Royal Society B: Biological Sciences* **370**, 20140010 (2015).

1255 17. Nemzer, B. & Dickson, A. The stability and reproducibility of Tris buffers in synthetic
1256 seawater. *MARINE CHEMISTRY* **96**, 237–242 (2005).

1257 18. John, S. G. *et al.* A simple and efficient method for concentration of ocean viruses by
1258 chemical flocculation. *Environmental microbiology reports* **3**, 195–202 (2011).

1259 19. Colin, S. *et al.* Quantitative 3D-imaging for cell biology and ecology of environmental
1260 microbial eukaryotes. *Elife* **6**, e26066 (2017).

1261 20. Sieracki, C. K., Sieracki, M. E. & Yentsch, C. S. An imaging-in-flow system for
1262 automated analysis of marine microplankton. *Marine Ecology Progress Series* **168**, 285–296
1263 (1998).

1264 21. Helm, R. R. The mysterious ecosystem at the ocean’s surface. *PLOS Biology* **19**,
1265 e3001046 (2021).

1266 22. Flores, M. J. *et al.* Tara Pacific expedition’s atmospheric measurements. Marine aerosols
1267 across the Atlantic and Pacific Oceans. Overview and Preliminary results. *Bulletin of the
1268 American Meteorological Society* (accepté).

1269 23. Slade, W. H. *et al.* Underway and moored methods for improving accuracy in
1270 measurement of spectral particulate absorption and attenuation. *Journal of Atmospheric and
1271 Oceanic Technology* **27**, 1733–1746 (2010).

1272 24. Boss, E. *et al.* The characteristics of particulate absorption, scattering and attenuation
1273 coefficients in the surface ocean; Contribution of the Tara Oceans expedition. *Methods in
1274 Oceanography* **7**, 52–62 (2013).

1275 25. Houskeeper, H. F., Draper, D., Kudela, R. M. & Boss, E. Chlorophyll absorption and
1276 phytoplankton size information inferred from hyperspectral particulate beam attenuation. *Applied
1277 optics* **59**, 6765–6773 (2020).

1278 26. Chase, A. *et al.* Decomposition of in situ particulate absorption spectra. *Methods in
1279 Oceanography* **7**, 110–124 (2013).

1280 27. Gardner, W. D., Mishonov, A. V. & Richardson, M. J. Global POC concentrations from
1281 in-situ and satellite data. *Deep Sea Research Part II: Topical Studies in Oceanography* **53**, 718–
1282 740 (2006).

1283 28. Cetinić, I. *et al.* Particulate organic carbon and inherent optical properties during 2008
1284 North Atlantic Bloom Experiment. *Journal of Geophysical Research: Oceans* **117**, (2012).

1285 29. Graff, J. R. *et al.* Analytical phytoplankton carbon measurements spanning diverse
1286 ecosystems. *Deep Sea Research Part I: Oceanographic Research Papers* **102**, 16–25 (2015).

1287 30. Boss, E., Twardowski, M. & Herring, S. Shape of the particulate beam attenuation
1288 spectrum and its inversion to obtain the shape of the particulate size distribution. *APPLIED
1289 OPTICS* **40**, 4885–4893 (2001).

1290 31. Sharp, J. D. *et al.* CO2SYSv3 for MATLAB. (Zenodo, 2021). doi:10.5281/zenodo.4546015.

1291 32. Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO₂ calculated from dissolved
1292 inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory
1293 measurements of CO₂ in gas and seawater at equilibrium. *Marine Chemistry* **70**, 105–119 (2000).

1294 33. Waters, J. F. & Millero, F. J. The free proton concentration scale for seawater pH. *Marine*

1295 1295 Chemistry **149**, 8–22 (2013).
1296 34. Perez, F. F. & Fraga, F. Association constant of fluoride and hydrogen ions in seawater.
1297 *Marine Chemistry* **21**, 161–168 (1987).
1298 35. Lee, K. *et al.* The universal ratio of boron to chlorinity for the North Pacific and North
1299 Atlantic oceans. *Geochimica et Cosmochimica Acta* **74**, 1801–1811 (2010).
1300 36. NASA Ocean Biology Processing Group. MODIS-Aqua Level 3 Mapped Chlorophyll
1301 Data Version R2018.0. (2017) doi:10.5067/AQUA/MODIS/L3M/CHL/2018.
1302 37. Hu, C., Lee, Z. & Franz, B. Chlorophyll aalgorithms for oligotrophic oceans: A novel
1303 approach based on three-band reflectance difference. *Journal of Geophysical Research: Oceans*
1304 **117**, (2012).
1305 38. NASA/JPL. MODIS Aqua Level 3 SST Thermal IR 8 Day 4km Daytime V2019.0. (2020)
1306 doi:10.5067/MODSA-8D4D9.
1307 39. NASA Ocean Biology Processing Group. MODIS-Aqua Level 3 Mapped
1308 Photosynthetically Available Radiation Data Version R2018.0. (2017)
1309 doi:10.5067/AQUA/MODIS/L3M/PAR/2018.
1310 40. NASA Ocean Biology Processing Group. MODIS-Aqua Level 3 Mapped Particulate
1311 Inorganic Carbon Data Version R2018.0. (2017) doi:10.5067/AQUA/MODIS/L3M/PIC/2018.
1312 41. NASA Ocean Biology Processing Group. MODIS-Aqua Level 3 Mapped Particulate
1313 Organic Carbon Data Version R2018.0. (2017) doi:10.5067/AQUA/MODIS/L3M/POC/2018.
1314 42. NASA Ocean Biology Processing Group. MODIS-Aqua Level 3 Mapped Downwelling
1315 Diffuse Attenuation Coefficient Data Version R2018.0. (2017)
1316 doi:10.5067/AQUA/MODIS/L3M/KD/2018.
1317 43. NASA Ocean Biology Processing Group. MODIS-Aqua Level-3 Mapped Garver, Siegel,
1318 Maritorena Model (GSM) Data Version R2018.0. (2017)
1319 doi:10.5067/AQUA/MODIS/L3M/GSM/2018.
1320 44. Mercator Ocean International. Global Ocean Physics Reanalysis. *E.U. Copernicus Marine*
1321 *Service Information* (2018) doi:10.48670/moi-00021.
1322 45. Mercator Ocean International. Global ocean biogeochemistry hindcast. *E.U. Copernicus*
1323 *Marine Service Information* (2018) doi:10.48670/moi-00019.
1324 46. Mercator Ocean International. Global Ocean Waves Reanalysis WAVERTS. *E.U.*
1325 *Copernicus Marine Service Information* (2019) doi:10.48670/MOI-00022.
1326 47. Mahooti, M. *Sun/Moon Rise/Set, MATLAB Central File Exchange*. (2018).
1327 48. Ofek, E. *MAAT: MATLAB Astronomy and Astrophysics Toolbox. Astrophysics Source*
1328 *Code Library, record ascl:1407.005*. (2014).
1329 49. Ser-Giacomi, E. *et al.* Lagrangian betweenness as a measure of bottlenecks in dynamical
1330 systems with oceanographic examples. *Nature Communications* **12**, 4935 (2021).
1331 50. Ser-Giacomi, E., Rossi, V., López, C. & Hernandez-Garcia, E. Flow networks: A
1332 characterization of geophysical fluid transport. *Chaos: An Interdisciplinary Journal of Nonlinear*
1333 *Science* **25**, 036404 (2015).
1334 51. Hernández-Carrasco, I., Orfila, A., Rossi, V. & Garçon, V. Effect of small scale transport
1335 processes on phytoplankton distribution in coastal seas. *Scientific Reports* **8**, 8613 (2018).
1336 52. d’Ovidio, F., De Monte, S., Penna, A. D., Cotté, C. & Guinet, C. Ecological implications
1337 of eddy retention in the open ocean: a Lagrangian approach. *Journal of Physics A: Mathematical*
1338 *and Theoretical* **46**, 254023 (2013).
1339 53. Baudena, A. *et al.* Fine-scale structures as spots of increased fish concentration in the open
1340 ocean. *Scientific Reports* **11**, 15805 (2021).
1341 54. Chambault, P. *et al.* Swirling in the ocean: Immature loggerhead turtles seasonally target
1342 old anticyclonic eddies at the fringe of the North Atlantic gyre. *Progress in Oceanography* **175**,
1343 345–358 (2019).
1344 55. Mercator Ocean International. Global Total Surface and 15m Current (COPERNICUS-
1345 GLOBCURRENT) from Altimetric Geostrophic Current and Modeled Ekman Current

1346 Reprocessing. *E.U. Copernicus Marine Service Information* (2018) doi:10.48670/moi-00050.
1347 56. Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global
1348 analysis of coral bleaching over the past two decades. *Nature Communications* **10**, 1264 (2019).
1349 57. Voolstra, C. R. *et al.* Standardized short-term acute heat stress assays resolve historical
1350 differences in coral thermotolerance across microhabitat reef sites. *Global Change Biology* **26**,
1351 4328–4343 (2020).
1352 58. Saha, K. *et al.* The Coral Reef Temperature Anomaly Database (CoRTAD) Version 6 -
1353 Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982 to 2019.
1354 *NOAA National Centers for Environmental Information* (2019) doi:10.25921/ffw7-cs39.
1355 59. Lirman, D. *et al.* Severe 2010 Cold-Water Event Caused Unprecedented Mortality to
1356 Corals of the Florida Reef Tract and Reversed Previous Survivorship Patterns. *PLOS ONE* **6**,
1357 e23047 (2011).
1358 60. González-Espinosa PC & Donner SD. Predicting cold-water bleaching in corals: role of
1359 temperature, and potential integration of light exposure. *Mar Ecol Prog Ser* **642**, 133–146 (2020).
1360 61. InstituteForGlobalEcology. <https://github.com/InstituteForGlobalEcology/Coral-bleaching-a-global-analysis-of-the-past-two-decades/blob/7925b8fdf550065a7a7c92ed45f0d4133ab7756f/Reef%20Check%20Data%20Raw.csv>.
1361 62. Picheral, M., Colin, S. & Irisson, J.-O. EcoTaxa, a tool for the taxonomic classification of
1362 images. <http://ecotaxa.obs-vlfr.fr> (2017).
1363 63. McMinds, R. *rmcminds/tara_pacific_in_situ_photos: 2020_as_used*. (Zenodo, 2022).
1364 doi:10.5281/zenodo.6286316.
1365 64. Twardowski, M. S. *et al.* A model for estimating bulk refractive index from the optical
1366 backscattering ratio and the implications for understanding particle composition in case I and case
1367 II waters. *Journal of Geophysical Research: Oceans* **106**, 14129–14142 (2001).
1368 65. OozEKI, Y. Comparison of catch efficiencies between the Manta net and surface ring net
1369 for sampling larvae and juveniles of Pacific saury, Cololabis saira. *Bulletin of the Japanese
1370 Society of Fisheries Oceanography* **64**, 18–24 (2000).
1371 66. Karlsson, T. M., Kärrman, A., Rotander, A. & Hassellöv, M. Comparison between manta
1372 trawl and in situ pump filtration methods, and guidance for visual identification of microplastics
1373 in surface waters. *Environmental science and pollution research* **27**, 5559–5571 (2020).
1374 67. Eriksen, M. *et al.* Microplastic sampling with the AVANI trawl compared to two neuston
1375 trawls in the Bay of Bengal and South Pacific. *Environmental Pollution* **232**, 430–439 (2018).
1376 68. Gorsky, G. *et al.* Digital zooplankton image analysis using the ZooScan integrated system.
1377 *Journal of Plankton Research* **32**, 285–303 (2010).
1378 69. Platt, T. & Denman, K. Organisation in the pelagic ecosystem. *Helgoländer
1379 Wissenschaftliche Meeresuntersuchungen* **30**, 575–581 (1977).
1380 70. Robinson Kelly L., Sponaugle Su, Luo Jessica Y., Gleiber Miram R., & Cowen Robert K.
1381 Big or small, patchy all: Resolution of marine plankton patch structure at micro- to submesoscales
1382 for 36 taxa. *Science Advances* **7**, eabk2904.
1383 71. Longhurst, A. R. *Ecological geography of the sea*. (Academic Press, 1998).
1384 72. Reygondeau, G. *et al.* Dynamic biogeochemical provinces in the global ocean. *Global
1385 Biogeochemical Cycles* **27**, 1046–1058 (2013).
1386 73. Longhurst, A. R. Chapter 5 - NUTRIENT LIMITATION: THE EXAMPLE OF IRON. in
1387 *Ecological Geography of the Sea (Second Edition)* (ed. Longhurst, A. R.) 71–87 (Academic
1388 Press, 2007). doi:10.1016/B978-012455521-1/50006-1.
1389 74. Moore, C. *et al.* Processes and patterns of oceanic nutrient limitation. *Nature geoscience*
1390 **6**, 701 (2013).
1391 75. Ustick Lucas J. *et al.* Metagenomic analysis reveals global-scale patterns of ocean nutrient
1392 limitation. *Science* **372**, 287–291 (2021).
1393 76. Sully, S., Hodgson, G. & van Woesik, R. Present and future bright and dark spots for coral
1394

1397 reefs through climate change. *Global Change Biology* **n/a**, (2022).

1398 77. Tomkins, M., Martin, A. P., Nurser, A. J. G. & Anderson, T. R. Phytoplankton

1399 acclimation to changing light intensity in a turbulent mixed layer: A Lagrangian modelling study.

1400 *Ecological Modelling* **417**, 108917 (2020).

1401

1402