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Abstract

Decades of human magnetic resonance imaging (MRI) research demonstrate that variance in

neuroimaging phenotypes, including functional connectivity, relate to genetics1–5 and predict

cognitive traits6–9. The functional connectome affords information transmission through the brain

at various spatial scales, from global oscillations between broad cortical regions to fine-scale

connections that underlie specific information processing10,11. In adults, while both the coarse-

and fine-scale functional connectomes predict cognition6,12–14, the fine-scale connectome predicts

twice as much cognitive variance15. Yet, past brain-wide association studies, particularly using

large developmental samples, have limited their focus to the coarse connectome to understand

the neural underpinnings of individual differences in cognition8,9,16–18.  We studied resting-state

fMRI in 1,115 children (including 389 twin pairs) and used functional alignment to afford access

to individual differences in the fine-scale connectome10,19,20. We found that even though

individual differences in the fine-scale connectome are more reliable than those in the

coarse-scale connectome, they are less heritable. This surprising result indicates that

genetically-determined versus experience-dependent factors in brain development have

dissociable effects on these two spatial scales of the connectome. We show further that both

connectome scales equally predict a more heritable trait (general cognitive ability) in childhood,

but only the fine scale effectively predicts a more experience-driven trait (learning/memory). As

such, the developing functional connectome resembles a LEGOⓇ set: the specific pieces a child

has parameterizes what they will eventually build, but even when given identical sets, two

children with unique experiences will build different creations.
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Introduction

The building blocks of the functional connectome are an interplay of genetics5,21,22 and

experience1,23. Functional connections at various spatial scales, ranging from coarse, global

regional oscillations to vertex-wise patterns of information transfer, account for related, yet

different, types of information encoding and transmission10,11. While variation in functional

connectivity can predict individual differences in aspects of memory12, attention13, and

intelligence15, among other cognitive traits8,14,24,25, it is unclear how the spatial scales of

functional connectomes differentially contribute to genetic and experience-based cognitive traits

during periods of biological and experiential maturation. To understand how this is reflected at

the population level in the developing brain will require consideration of how we define

functional connectivity information at both fine and coarse scales. In the current study, we

disentangle experience-based idiosyncrasies in the functional connectome from genetic

influences by estimating the heritability, reliability, and predictive validity of resting-state

functional connectivity (RSFC) based on connectome granularity during development26,27.

Structural and functional magnetic resonance imaging (MRI) of twin samples reveal strong

genetic control over various measures of brain morphology1–3,28,29 and RSFC21,22,30–34.  RSFC is a

powerful tool for investigating individual differences in brain–behavioral associations, especially

in clinical and developmental populations where task-based fMRI is often difficult8,24,25,35.

Genetic influences on brain structure and function increase with age2,36, are associated with

cognitive functioning2, and interact with the environment to sculpt an individual's functional

connectome2,5,36,37. Structural MRI, which is used to derive anatomical alignment of functional

imaging data across subjects, has been demonstrated to have limited reliability in large-scale
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developmental neuroimaging studies, which impacts the reliability of aligning data across

developing brains using structural brain images alone16.

Recent studies looking at the genetic control over RSFC have focused on traditional functional

connectivity calculations, such as the coupling of specific regions of interest38 , or oscillations

between brain networks using group parcellations21,22 or, more recently, individualized atlases32.

Dividing the cortex into subfields and collapsing over the hundreds of cortical vertices within a

predefined neuroanatomical region can mitigate high-dimensionality, measurement instabilities,

and idiosyncratic cortical functional organization. However, recent adult studies have shown that

vertex-wise functional connectivity across the cortex (“fine-scale connectomes”)  better reflect

reliable individual differences in functional connectivity39 and capture twice as much variance in

cognitive ability (e.g., intelligence)15 than group-average parcellations (“coarse-scale

connectomes”). To what extent are the fine-scale patterns of functional connectivity under

genetic control, and would accessing this connectome tighten the link between functional

connectivity, cognition, and genetics? Or is there a dissociation of genetic control over these two

scales of connectivity? Here we use novel machine learning approaches to relate connectome

granularity and estimates of heritability, reliability, and predictions of neurocognitive ability

during development (Figure 1). Specifically, we use connectivity hyperalignment19 to access

functional information processing in the fine-scale connectome, and tease it apart from the

coarse-scale connectome which reflects less-specific fluctuations across broad swaths of cortex.
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Figure 1: Methods
A. Connectivity hyperalignment training procedure. For each parcel in the Glasser
parcellation (here, region 329 with 430 cortical vertices), connectivity matrices are computed as
the strength of connection (Pearson’s correlation) between the activity timeseries of vertices
within the parcel (seeds; u) and the average activation across vertices in all other parcels (targets;
v). The connectivity matrices for 200 held-out subjects are used to train the hyperalignment
common model space for a given parcel. The model space is of dimensions D = [d1…dn] which
are weighted combinations of U = [u1…un], the dimensions of each subjects’ connectivity
matrices in anatomical space. D represents the space where connectivity targets are best aligned
across training subjects. Then, connectomes for the 915 test subjects are projected into D via
subject-specific transformation matrices R, which detail a mapping from given subject i’s
anatomical space Ui into D. This procedure is repeated to derive R for each test subject and
parcel. Then, the regional activation pattern for each parcel in anatomical space is mapped via R
into the region’s common space to compute the hyperaligned timeseries for each subject, which
is then used to recompute connectivity matrices between hyperaligned seeds v and model
dimensions d. B. Connectome granularity. Fine-scale connectomes are multivariate patterns of
the connectivity weights between all vertices in a given parcel and the average pattern of each
other parcel in the brain. Coarse-scale connectomes are vectors (univariate), representing the
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connectivity weight between the average pattern of a given parcel and those of each other parcel
in the brain.

Results

Establishing reliable connectomes

Variability in RSFC can reflect idiosyncrasies driven by cortical communication patterns

indicative of neurocognitive variability, but it can also reflect artifacts due to data acquisition

noise, movement, and functional–anatomical mismatch. In adult populations, brain parcellations

(e.g. Glasser parcellation40) average adjacent areas of cortex to improve signal-to-noise and

reduce the dimensionality of the data. This approach assumes functional–anatomical

correspondence will improve at the group level and comes at the cost of lower granularity.

Here, we analyze RSFC between subjects (see Table S1 for subject breakdown) using two

methods of group alignment. The first uses a standard approach to align data in a common space

based on anatomical location (anatomical alignment [AA]), while the second approach uses

connectivity hyperalignment (CHA)19 to learn a representational space based on common

patterns of functional connectivity via an adapted Generalized Procrustes Analysis (see Methods

for details). CHA allows for local remixing of vertex-wise functional connectivity patterns

within an anatomically-constrained region20, thereby aligning common patterns of fine-scale

information within broader regions of interest by removing idiosyncrasies caused by noise or

functional–anatomical correspondence10. In contrast with coarse alignment, which averages

across the region and can diminish differences across subjects, CHA affords fine-scale functional

alignment: projecting all of the region’s information patterns into high-dimensional common

space to align information across subjects based on functional instead of anatomical information
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topographies (Figure 1B). Within this common space, individual differences in functional

connectivity become more pronounced and reliable39, particularly at the fine-scale

representational level, and are better predictive of cognitive traits15 in adults. In contrast,

previous studies have applied a reduced-dimensional hyperalignment algorithm (shared response

model) to align child brain responses to an adult-defined common model as the two groups

performed the same task41. To address the question of individual differences in fine-scale

functional connectivity among children, we present (to our knowledge) the first derivation of a

child-defined and applied model of shared brain function, which negates concerns about

differences in cortical development or anatomy conflating functional connectivity patterns. We

then address the relative effects of functional alignment versus simply higher-dimensional

measurements by averaging the functionally-aligned CHA data and by retaining the

high-dimensional, anatomically aligned data, to have a full comparison of AA coarse, AA fine,

CHA coarse, and CHA fine-scale connectomes.

Our first analysis looks at the reliability of idiosyncrasies in functional connectivity patterns

across connectome alignment and granularity. Here, idiosyncrasies are defined as how similar a

subject’s connectome is to their own connectome across split-halves, relative to their similarity to

all other subjects. CHA, particularly at the fine scale, improves the reliability of functional

connectivity over anatomical alignment alone (Figure 2). Across all parcels, reliability of coarse

connectomes increased from an average of r=0.34 ± 0.1 for AA to r=0.58 ± 0.08 for CHA.

Reliability of fine connectomes increased from an average of r=0.43 ± 0.11 for AA to r=0.86 ±

0.07 for CHA. After CHA, 100% of parcels at both scales showed greater reliability, and 99% of

parcels showed greater reliability at the fine scale than the coarse scale. Notably, all four types of
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connectomes show high split-half reliability, with CHA affording the greatest reliability. This

establishes that hyperalignment improves access to reliable information within an individual’s

functional connectome, despite training the model on held-out subjects. Particularly at the fine

scale, functional connectivity information is diagnostic of the individual42, affording confidence

that subsequent results using this information are driven by reliable individual differences as

opposed to noise.
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Figure 2. Reliability of individual differences in functional connectivity profiles
A. Procedure: The reliability of individual differences in functional connectivity profiles between
regions (defined with the Glasser parcellation40) was analyzed with data from 526 unrelated
subjects. Subjects' timeseries data for each parcel were split into two halves, which were
hyperaligned into the trained common space separately. For each region, split timeseries data
pre- and post-hyperalignment were used to compute functional connectivity profiles at the fine
and coarse scales. Then individual dissimilarity matrices (IDMs) were computed across all pairs
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of subjects. The IDMs for each split were then correlated (Pearson's r) to get a measure of the
reliability of individual differences captured by the regional functional connectivity profiles,
presented on the cortex for the coarse and fine scales before and after hyperalignment. This
approach is a variation of the “fingerprinting”14,42 approach, whereby measured individual
differences are more reliable if a subject is more similar to themselves across split-halves than to
any other subject. B. The reliability of individual differences increases after hyperalignment for
all parcels. 99% of fine connectivity profiles (darker) are more reliable than coarse ones (lighter)
regardless of alignment type. C. Bars presented as the average reliability (Pearson’s r) across all
parcels in the Glasser parcellation. Error bars represent ± standard deviation from the mean.

Genetic control over the coarse-scale connectome

Our reliability analysis revealed that the fine-scale connectome is more reliable within

individuals than the coarse scale, and this is particularly salient after connectivity

hyperalignment (HA). Given that the fine-scale CHA data reveal more reliable, idiosyncratic

functional connectivity patterns than the coarse data, we hypothesized it would be less influenced

by genetics. In other words, the broad anatomical alignment would reflect the heritability of

cortical anatomy previously shown1,36,37, but the functional alignment would disentangle the

fine-scale functional differences in connectivity information, reflecting more reliable,

behaviorally-informative individual differences driven by unique life experiences.

The heritability analysis used RSFC data from 778 subjects comprising 219 dizygotic twin pairs

and 170 monozygotic twin pairs (see breakdown in Table S1). Functional connectomes of

vertex-granularity are an inherently high-dimensional phenotype. To explicitly model the

heritability of this phenotype, we used a multidimensional estimate of heritability32 to model both

the phenotypic similarity matrix between participants as well as the genetic kinship matrix (see

Multidimensional heritability estimate for more information). As predicted, we find differential

heritability according to the alignment and granularity of functional connectomes, where 99.6%
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percent of parcels are more heritable at the coarse scale than the fine scale (p<0.01) (Figure 3).

At the coarse scale, anatomically-aligned functional connectomes are significantly more

heritable than hyperaligned connectomes (AA = 0.198 ± 0.05; CHA = 0.161 ± 0.04; p < 0.01),

with 96% of parcels showing greater heritability. These results indicate that connectivity

information aligned coarsely based on anatomical features are under strong genetic control,

consistent with previous studies showing genetic control over cortical anatomy in children28 and

network-level RSFC21.
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Figure 3. Heritability of functional connectivity profiles
A. Heritability of functional connectivity profiles between regions (defined with the Glasser
parcellation40) was estimated using a multidimensional heritability model32 using resting-state
fMRI data from 778 9-10 year-olds (170 MZ pairs and 219 DZ pairs). Functional connectivity
between a given parcel and all other parcels in the brain was calculated at fine and coarse
granularities, before and after functional alignment. The coarse-grained connectivity profiles
aligned based on cortical anatomy are the most heritable. B. For both anatomically-aligned and
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hyperaligned data, connectivity profiles are more heritable when calculated at the coarse scale
than the fine scale (99.6 percent of the time). C. At the coarse scale, the anatomically aligned
connectivity profiles are more heritable than the hyperaligned ones; this distinction dissipates at
the fine scale, which is under comparatively minuscule genetic control. Bars presented as the
mean heritability across all parcels in the Glasser parcellation and error bars presented as
standard deviation.

Prediction of neurocognitive abilities

Having established that the coarse, anatomically-aligned functional connectome is under strong

genetic control and that all connectomes showed reliability, we sought to demonstrate their

functional significance by teasing apart connectome granularity as it relates to heritability versus

behaviorally-relevant idiosyncrasies. Compared with brain structure, complex psychological

traits are less heritable, but cognitive abilities are among the most heritable dimensions of human

behavior43. Heritability of these traits vary by cognitive domain with higher estimates reported

for general cognitive ability (h2 = .67–.80) than for learning/memory (h2 = .36–.56)44, which may

be more sensitive to experiential factors. We leveraged this variation in heritability of cognitive

traits to examine the functional significance of our heritability and reliability findings. General

cognitive ability and learning/memory scores were defined based on previously reported

principal components analysis of the NIH Toolbox tasks used in the ABCD study45. Because

learning/memory is less heritable than general cognitive ability, we can compare variation in

connectome heritability on prediction of cognitive phenotypes44. Since CHA improves reliability

of individual differences in the fine-scale connectome, we expected CHA fine connectomes

generally to be more predictive of cognitive performance (i.e., both general cognitive ability and

learning/memory) than either CHA coarse, AA coarse or fine connectomes. Moreover, we

expected the most heritable connectivity information (i.e., AA coarse) to better predict a more

heritable cognitive ability (general ability) relative to a less heritable trait (learning/memory).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.24.493295doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?rSgBvv
https://www.zotero.org/google-docs/?udIsT0
https://www.zotero.org/google-docs/?3YhxFa
https://www.zotero.org/google-docs/?7IguiF
https://doi.org/10.1101/2022.05.24.493295
http://creativecommons.org/licenses/by/4.0/


We used PCA ridge regression to predict scores on these two  cognitive domains from

connectivity profiles at each scale. Models were scored as R2 between predicted scores and true

scores using nested cross-validation (see Neurocognition PC prediction analysis for more

details), and significance of R2 values were assessed with permutation tests (10,000 iterations per

model). Model scores were compared across connectome types using 10,000 bootstrap iterations

with resampling.

Overall, hyperaligned fine-scale connectomes best predicted individual differences in cognitive

performance (i.e., both general cognitive ability and learning and memory). As hypothesized, the

degree to which the coarse connectome also contributed to prediction was associated with the

heritability of the trait. General cognitive ability has high heritability for a psychological trait (h2

= .67–.80)44 and was similarly predicted by CHA fine, AA coarse, and AA fine connectomes

(average parcel R2 ± s.d. across parcels; CHA fine = 0.0133 ± 0.021; AA fine = 0.0134 ± 0.020;

AA coarse = 0.0124 ± 0.018; CHA fine vs. AA fine p = 0.30; CHA fine vs. AA coarse p = 0.23;

AA fine vs. AA coarse p = 0.08) (Figure 4). General cognitive ability was predicted with

significantly lower accuracy by CHA coarse, suggesting that functionally aligning fine-scale

information then smoothing over the functional information space actually diminishes the

specificity of the information. After performing permutation tests at each parcel and thresholding

at p < 0.01, 42%, 42.5%,  30.5%, and 43% of parcels predicted general cognitive ability

significantly greater than chance at the AA coarse, AA fine, CHA coarse, and CHA fine scales

respectively (Figure S2A).
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Learning/memory is regarded as a less heritable psychological trait (h2 = .36–.56)44, so we

hypothesized the heritable scaffolding of the connectome (AA coarse) would contribute less

information to this prediction than to prediction of cognitive ability, and the trait would be

predicted more strongly from the CHA fine connectome. As expected, prediction of

learning/memory scores were significantly higher for the CHA fine connectome than for CHA

coarse (CHA fine R2 = 0.018 ± 0.012; CHA coarse R2 = 0.011 ± 0.014; p < 0.0001), AA fine

(0.008 ± 0.014; p = 0.09), or AA coarse (0.007 ± 0.014; p < 0.0001) (Figure 4). The gap in the

percentage of parcels surviving our permutation test was also more pronounced for this trait;

30%, 33%, 39%, and 61% for AA coarse, AA fine, CHA coarse, and CHA fine.
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Figure 4: Prediction of neurocognitive PC loadings.
Distribution of R2 values across all parcels for prediction of general cognitive ability (left) and
learning/memory (right).  Histogram heights correspond to density of scores and lines represent
the mean of the score distribution. For the purpose of distribution matching, R2 values are not
thresholded here; thresholded R2 values mapped to the cortical surface are displayed in Figure
S2.

Discussion

In this study, we sought to understand how individual differences are realized at different spatial

scales of the developing connectome, and how the variability captured by connectome

granularity relates to genetic control and cognitive traits. Prior work indicates that both coarse
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and fine-scale functional connectivity predicts  idiosyncrasies in cognitive phenotypes in

adults12–15, and functional alignment (connectivity hyperalignment; CHA19) improves access to

this variability in the fine-scale connectome15,39. Yet, to date, studies have related functional

connectivity in youth to individual differences in cognition or behavior by looking only at coarse

scale information. This spatial averaging reduces dimensionality and smooths idiosyncratic

anatomy across subjects. Using CHA, we reveal reliably idiosyncratic patterns of fine-scale

functional connectivity in the developing brain. The coarse-scale connectome (AA coarse) shows

moderately reliable idiosyncrasies (mean Pearson’s r=0.34), versus the CHA fine connectome’s

mean reliability of r=0.86 (Figure 2). Across the entire brain, individual differences in fine-scale

connectivity are more reliable than in coarse-scale, indicating that the traditional coarse

alignment approach diminishes the detailed, spatially-resolved topographies of information

transfer in the developing brain.

By estimating the heritability of functional connectivity at each scale and alignment, we showed

that idiosyncrasies in the fine-scale connectomes are dissociable from idiosyncrasies in the

coarse scale connectome. Multiscale heritability analysis of coarse-scale, anatomically aligned

connectomes attribute about 20% of variance to genetic relatedness, which converges with our

expectations based on adult coarse RSFC estimates21,22,32 and how neuroimaging phenotypes

increase in heritability with age1,3. At the fine scale, our estimates drop to around 10% regardless

of alignment technique, suggesting that at the fine scale, idiosyncrasies in connectivity are more

related to experience than genetics.
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Individual differences captured by variable connectome granularity revealed a dissociation

between the spatial scales of heritable and reliable patterns of functional connectivity. Our final

analysis showed that this dissociation is also relevant in prediction of cognitive traits. Whereas

both the most reliably idiosyncratic (CHA fine) and most heritable (AA coarse) connectomes

were comparably predictive of general cognitive ability, a canonically heritable cognitive trait,

the most reliably idiosyncratic connectome (CHA fine) was best predictive of a less heritable

cognitive trait (learning/memory). Past studies using RSFC at a coarse scale from the ABCD

dataset were only able to predict general cognitive ability and not learning/memory scores8. By

improving the reliability of our data and accessing finer-scale information with CHA, we

uncovered patterns of functional connectivity predictive of a more nuanced, experience-related

cognitive trait (learning/memory).

Taken together, the link demonstrated here between reliable, heritable, and predictive scales of

functional connectivity reveals the importance of nuanced, multi-scale connectivity analyses for

building a holistic theory of individual differences during development. Consistent with the

interactive specialization framework of functional brain development, the development of the

functional connectome is not solely determined by a blueprint, but the interaction of a heritable

template and individualized experience46. We present a novel approach to prediction of

developing cognitive abilities from functional connectivity measured in different topographical

representation spaces, by aligning information across brains based on functional alignment at

high spatial resolution versus the traditional approach of coarse alignment (an adult-defined

cortical atlas with averaging). Our study presents the first example of defining and applying a

functional common space to a developmental cohort, negating the very issues that arise with
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developmental anatomically-constrained studies. Prior literature has recognized the power of

functional alignment for individual differences studies10,15,20,47, but it has remained underutilized

in the developmental literature8,17. Recent work has recognized the need for massive numbers of

subjects to reliably associate brain phenotypes with behavior, specifically in developmental

cohorts16. We show that hyperalignment and connectome granularity analyses are powerful tools

for understanding these individual differences, without the need for thousands of individuals and

data points for model cross-validation – our hyperalignment model was learned on 200 subjects

and tested entirely on resting-state data, with less than 20 minutes per subject. Further, it was

trained and tested on independent subjects to assure that increased reliability was driven by

generalizable, shared signals rather than overfitting to subject-specific signals. Though

statistically significant, our predictions accounted for relatively low variance in behavioral

measures relative to similar studies in adults6,14,15. Task-based functional connectivity is often

more stable and predictive of behavior than RSFC among adults13,15, but this is only with a

sufficient amount of high-quality task data, which is known to be difficult to collect in

children35,48. Individual differences in RSFC appear to be reliable in the ABCD dataset17, whereas

the task fMRI has known reliability limitations13. Previous studies have shown that both the

ABCD task and resting whole-brain coarse FC can predict individual cognitive measures such as

the toolbox tasks9, with lower accuracy for the tasks comprising the learning/memory component

than the general cognitive ability.

With the substantial twin cohort, behavioral testing, and longitudinal neuroimaging data included

in ABCD, future work could investigate the connection between heritability and predictivity of

functional connectivity over time, as the heritability of both neurocognitive measures and
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neuroimaging-based phenotypes increase with age1,5,49,50 By breaking apart the pieces of the

functional connectome into their coarse and fine structures, we can show how these scales snap

together like LEGO pieces to scaffold and instantiate reliable idiosyncrasies in brain and

behavior during development.

Materials and methods

Participants

We considered data from the 11,875 children included in the Adolescent Brain Cognitive

Development (ABCD) StudyⓇ 26, data release 2.0.1. The ABCD Study is a longitudinal study

with 21 sites around the United States and aims to characterize cognitive and neural development

with measures of neurocognition, physical and mental health, social and emotional function, and

culture and environment. The ABCD Study obtained centralized institutional review board (IRB)

approval from the University of California, San Diego, and each site obtained local IRB

approval. Ethical regulations were followed during data collection and analysis. Parents or

caregivers provided written informed consent, and children gave written assent. Four leading

twin research centers at the University of Minnesota, Virginia Commonwealth University,

University of Colorado-Boulder, and Washington University in St. Louis comprise the ABCD

Twin Hub.  Each site enrolled approximately 200 same-sex monozygotic or dizygotic twin pairs

as well as singletons27. Their inclusion in the ABCD study affords unique access to the causal

interrelation between genetics, environment, brain function, and cognition during development1,5.

The present study uses imaging and behavioral data from a subset of n=1,115 subjects from the

original 11,875 subjects.  Included subjects were enrolled in the University of Minnesota,

Washington University in St. Louis, and University of Colorado-Boulder sites, which all use 3T
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Siemens MRI scanners. We excluded Virginia Commonwealth University, the fourth Twin Site,

as it uses a GE scanner, a potential confound in the current study26.  ABCD study-wide exclusion

criteria include a diagnosis of schizophrenia, moderate to severe autism spectrum disorder,

intellectual disabilities, major and persistent neurological disorders, multiple sclerosis, sickle cell

disease, seizure disorders like Lennox-Gastaut Syndrome, Dravet Syndrome, and Landau

Kleffner Syndrome, or substance abuse disorders at time of recruitment. Subjects with mild

autism spectrum diagnosis, history of epilepsy, traumatic brain injury, and MR incidental

findings were excluded from the present analysis.

Resting state fMRI data collection

Structural and functional data from the three included sites were acquired using Siemens Prisma

3T scanners with a 32-channel head coil. Detailed acquisition parameters are previously

described in the literature26,51. Scan sessions consisted of a high-resolution (1 mm3) T1-weighted

image, diffusion weighted images, T2-weighted spin echo images (1 mm3), resting-state fMRI

(rs-fMRI), and task-based fMRI.  We utilized rs-fMRI solely in this study. rs-fMRI data were

collected with an echo-planar imaging sequence with 2.4 mm voxels, TR = 800 ms, TE = 30 ms,

and multiband slice acceleration factor = 6. Participants completed up to four runs of 5-minute

resting state scans. Framewise integrated real-time MRI monitoring (FIRMM52) was used to

monitor subject head motion during data collection, and scan operators may have stopped

resting-state data collection after three runs if 12.5 min of low-motion resting-state data had been

collected.
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Additional exclusions were made based on poor structural scan quality (determined with curated

data release 2.0.1 sheet freesqc01.txt) or low quality/high motion resting state fMRI (determined

as a score of zero for fsqc_qc or greater than one for fsqc_qu_motion, fsqc_qu_pialover,

fsqc_qu_wmunder, or fsqc_qu_inhomohgeneity), as reported in prior studies18. Participants with

fewer than 900 TRs of rs-fMRI data passing these measures for Freesurfer reconstruction were

also excluded.  ABCD Data Release 2.0.1 used Freesurfer version 5.3 for quality control

checks51.  After filtering, we used resting state fMRI and behavioral data from 1,115 unique

subjects (552 male), including 170 pairs of monozygotic (MZ) twins, 219 pairs of dizygotic (DZ)

twins, and 337 singletons. All twin pairs were same-sex, and all subjects were between 9 and 10

years old. Included singletons were also balanced for ancestry, ethnicity, sex, and pubertal

development with twins (Table S1).

Preprocessing

rs-fMRI data were downloaded via the DCAN Labs ABCD-BIDS Community Collection (Fezco

2021) (NDA Collection 3165). This is a regularly updated dataset of ABCD Brain Imaging Data

Structure (BIDS)53 version 1.2.0 pipeline inputs and derivatives, using source data from the

ABCD Study participants baseline year 1 arm 1 DICOM imaging data that passed initial

acquisition quality control from the ABCD Data Analysis and Informatics Center (DAIC) 51 and

retrieved from the NIMH Data Archive (NDA) share of ABCD fast-track data (NDA Collection

2573). DICOMs were converted to BIDS input data using Dcm2Bids54 (make sure this is the

zenodo), which reorganizes NiftiImages produced with dcm2niix (Xiangrui Li Et al 2016). Raw

images were preprocessed using the  the DCAN Labs ABCD-BIDS MRI processing pipeline55

(for details, see github.com/DCAN-Labs/abcd-hcp-pipeline; osf.io/89pyd/; Sturgeon et al.,
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2021), which is based on the Human Connectome Project (HCP) Minimal Preprocessing

Pipeline56 with additional modifications specifically for the ABCD dataset and summarized

below.

The first stage of the pipeline, PreFreeSurfer, performs brain extraction, alignment, and N4 bias

field correction on the T1w and T2w images. The second stage, FreeSurfer57,58, segments the

resulting T1w images and identifies tissue boundaries to register to a FreeSurfer template and

produces brain masks. The third stage, PostFreeSurfer, uses the brain masks to register T1w

images to MNI space using ANTs symmetric image normalization method59. Surfaces are then

transformed to standard space using spherical registration and converted to CIFTI format along

with the standardized brain volumes. The fMRIVolume stage performs functional image

distortion correction using reverse phase-encoded spin echo images to correct for local field

inhomogeneities. Eta squared values are computed for each image to a participant-level average

of all field maps, and the pair with the highest value (i.e., most representative of the average) was

selected to avoid potential motion confounds. Finally, the fMRISurface stage performs 2-mm

full-width half-max spatial smoothing.

DCAN BOLD Processing60 is used to perform standard data processing. First, fMRI data are

demeaned and detrended with respect to time. Covariates of no interest were regressed from the

data, including mean white matter, cerebrospinal fluid, overall global signal, mean grayordinate

timeseries, and 6-movement variables (X,Y,Z translation and roll, pitch, yaw rotation).

Timeseries data are then band-pass filtered between 0.008 and 0.09 Hz using a 2nd order

Butterworth filter. Data is then filtered for respiratory motion for the frequencies (18,582 to

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.24.493295doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?U30svl
https://www.zotero.org/google-docs/?IxnAZS
https://www.zotero.org/google-docs/?5C2GvD
https://www.zotero.org/google-docs/?IGajOS
https://doi.org/10.1101/2022.05.24.493295
http://creativecommons.org/licenses/by/4.0/


25.726 breaths per minute) of the respiratory signal, which has been shown to improve the

stability of framewise displacement (FD) estimates61. “Bad” frames, where motion exceeds FD

of 0.3 mm, are removed when demeaning and detrending such that denoising betas are only

calculated for “good” frames. For the band-pass filtering, interpolation is used to replace those

frames, so that pre-processing of the timeseries only includes “good” data but avoids aliasing due

to missing timepoints.  Finally, the filtered timeseries are normalized and concatenated across

runs. The derivatives used in this analysis are

*ses-baselineYear1Arm1_task-rest_bold_desc-filtered_timeseries.dtseries.nii.

Connectivity hyperalignment

We used connectivity hyperalignment19 to functionally-align fine-scale connectivity information

across subjects. Given the small quantity (1480 ±  142 TRs; mean±std)  of  resting state fMRI

data available per subject, we chose to train the hyperalignment model common space using a

cohort of 200 subjects who were then excluded from further analysis. These 200 training subjects

were singletons enrolled at one of the three included sites and were matched with twin subjects

on gender, pubertal development, age, and race/ethnicity (Table S1). The remaining 915 subjects

(including the 389 twin pairs and 137 singletons) were used for subsequent analyses. Crucially,

the hyperalignment model space never saw data from any subjects included in analyses during

training.

We followed the same connectivity hyperalignment procedure for whole-cortex parcellation data

as in our previous study62. We used the average timeseries for each of the 360 regions in the

Glasser cortical parcellation40 as connectivity targets and the vertices in each parcel as
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connectivity seeds. For each parcel we computed a fine-scale connectivity matrix as the

correlation between each of the vertices within the parcel and the average regional timeseries of

the other 359 regions in the parcellation. For example, for a parcel with 430 vertices, its

fine-scale connectivity matrix would be a matrix of dimensions 430 by 359 correlation

coefficients, whereas its coarse-scale connectivity profile would be a vector of 359 correlation

coefficients (Figure 1B).

For each region20, we trained a separate high-dimensional common model space based on the

fine-scale functional connectomes of the 200 training subjects. The dimensionality of the model

space is equal to the number of vertices, but the model dimensions correspond to shared

functional connectivity properties across individuals instead of anatomical locations10. After the

model dimensions were learned, we discarded training subjects’ data from downstream analyses.

We derived invertible transformation matrices for the remaining subjects’ connectomes into the

model space to map vertex timeseries from the anatomically-defined dimensions into the

functionally-defined dimensions.

Functional connectivity profiles

After aligning the test data into a common functional space, we used functional connectivity

profiles to summarize a brain region’s correlation with the rest of the cortex. We defined

fine-scale functional connectivity profiles as above, as the correlation between the timeseries of

all 59,412 vertices in the cortex with the average timeseries of each parcel, resulting in a matrix

of 59,412 by 360 correlation coefficients per subject. We also defined coarse-scale functional

connectivity profiles as the correlation between the average timeseries for all pairs of parcels,
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resulting in a matrix of 360 by 360 correlation coefficients per subject (Figure 1B). The

fine-scale and coarse-scale connectomes were computed on data pre- and post-hyperalignment

for each subject to evaluate the effect of functional alignment and connectome granularity on

heritability, reliability, and predictivity.

Reliability

Given the high levels of noise and low reliability associated with developmental neuroimaging

data35,48,63–65 as well as smaller (vertex-resolution) connectivity seeds11, we used hyperalignment

to improve the reliability of individual differences in our data. That is, by finding a space that

aligns patterns of functional connectivity across subjects (within anatomically constrained

parcels), we correct more thoroughly for anatomical variability and improve access to reliable

individual differences 10,47 We calculated the reliability of functional connectomes before and

after hyperalignment as follows. For 526 unrelated subjects, we computed fine-scale functional

connectomes from split-half timeseries (742 ± 71 TRs).  We derived transformation matrices to

rotate these connectomes into the common space separately, then aligned the split timeseries data

using those transformations. We then computed functional connectivity profiles, as explained

above, for each half separately. For each parcel at the fine and coarse scale separately, we used

the vectorized functional connectivity profiles before and after hyperalignment and computed

individual differences matrices (IDM) for each data split. These are subject-by-subject pairwise

dissimilarity matrices, where each value in the matrix is the correlation distance (1 - Pearson’s r)

between two subjects’ regional connectivity profiles. After computing IDMs, we took the upper

triangle of the IDM and correlated them (Pearson’s r) to measure the reliability of the individual

differences in the functional connectomes across the split halves39.  This metric reflects the
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reliability of the idiosyncrasies in a subject’s functional connectomes, where subjects are more

similar to themselves across split halves than they are to any other subject. We used a Mantel

test66,67 to perform statistical tests on IDMs with 10,000 permutations.

Multidimensional heritability estimation

Functional connectomes at vertex-granularity are an inherently high-dimensional phenotype;

when dimensionality of the phenotype is collapsed, the reliability of individual differences

decreases39. To offer greater statistical power in analyzing the heritability of this

high-dimensional phenotype, we used a multidimensional estimate of heritability 32,68 to

summarize the degree to which functional connectivity profiles for each parcel are under genetic

control. We also investigated whether the alignment and granularity of the connectomes impact

their heritability, which would indicate that the information highlighted by that type of

connectome calculation is differentially impacted by genetics. Genetic kinship was estimated

with SOLAR Kinship269.

Neurocognition PC prediction analysis

Neurocognition principal components (neurocog PCs)45 were derived from the neurocognitive

battery included in the ABCD study. The neurocognitive battery includes the NIH Toolbox

cognition measures covering episodic memory, executive function, attention, working memory,

processing speed, and language abilities. The neurocog PCs were derived with a Bayesian

Probabilistic Principal Components Analysis, which revealed a three-component solution. The

three components roughly corresponded to general cognitive ability, executive function, and

learning/memory. Since the NIH Toolbox tasks that canonically measure executive function did
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not load onto the executive function component in this solution, we excluded this component

from our analyses, instead focusing on general cognitive ability and learning/memory. Tasks

loading onto the general cognitive ability component include Toolbox Picture Vocabulary,

Toolbox Oral Reading test, List Sort Working Memory task, and Little Man task. Tasks loading

onto the learning/memory component include the Toolbox Picture Sequence Memory task, the

RAVLT total number correct, and the List Sort Working Memory task. Heritability of composite

scores were estimated with SOLAR Polygenic69 including sex, age, ethnicity, and site as

covariates (Figure S1A), as well as with Falconer’s Formula70 (Figure S1B).

We predicted loadings onto the neurocognition principal components based on functional

connectivity from our cohort of 526 unrelated subjects using a principal component ridge

regression adapted from our previous study62. First, we used principal components analysis

(PCA) to train principal components (PCs) to capture the main orthogonal dimensions along

which individuals’ connectivity profiles differ from one another. We then trained a ridge

regression model to predict learning and memory scores from these PC scores, and tested the

PCA and ridge regression models by predicting the learning and memory score of the held-out

subjects. Model parameters (number of PCs and regularization parameter ɑ) were chosen with

nested cross-validation using three sub-folds. Candidate model parameters were distributed

evenly on a logarithmic scale, from 10 to 320 PCs and no PCs (no dimensionality reduction), and

ɑ chosen from 121 values between 10-20 to 1040. Models were evaluated using the cross-validated

coefficient of determination R2 , which shows the percent of variance in learning and memory

scores accounted for by the prediction models. To assess statistical significance of model
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performance against chance, we used permutation testing with 1000 iterations of shuffling the

behavioral scores.

Data availability

The ABCD study is longitudinal, so the data repository changes over time and can be found here:

https://nda.nih.gov/abcd. In the current study, we used the ABCD data release 2.0.1, downloaded

via ABCD-BIDS Community Collection71 NDA Collection 3165.

Code availability

ABCD data preprocessing code can be found here:

https://github.com/DCAN-Labs/abcd-hcp-pipeline. ABCD data processing code can be found

here: https://github.com/DCAN-Labs/dcan_bold_processing. Code for running the multiscale

heritability analysis can be found here: https://github.com/kevmanderson/h2_multi. Code for

running the nested PCA ridge regression was based off: https://github.com/feilong/IDM_pred.

All analysis code specific to this study will be released upon publication.
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Supplemental tables and figures

Table S1: Cohort Breakdown

Total

Included

Monozygotic

Pairs

Dizygotic

Pairs

Unrelated

Test

Unrelated

Train

Total 1,115 170 219 526 200

Site 20 387 75 86 184 60

Site 21 371 34 81 166 90

Site 22 357 75 68 176 60

Age (mo)
(interview_
age)

121.6 122.5 122.0 121.6 120.7

% Female
(gender)

50% 52% 50% 50% 50%

Ancestry:
African
(AFR)

0.127 0.092 0.118 0.113 0.204

Ancestry:
European
(EUR)

0.805 0.825 0.826 0.814 0.733

Ancestry:
East Asian
(EAS)

0.020 0.016 0.016 0.021 0.025

Ancestry:
(AMR)

0.049 0.067 0.040 0.052 0.038

Ethnicity
(race_ethni
city)

1.667 1.659 1.63 1.73 1.58
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Figure S1: Heritability of general cognitive ability and learning/memory loadings.
Left: Heritability estimated with SOLAR Polygenic (covariate tested: site, age, sex, and
ethnicity), presented as H2r and error bars representing standard error.
Right: Heritability estimated with Falconer’s formula (2 times intraclass correlation coefficients
for monozygotic twins – dizygotic twins).
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Figure S2: Prediction of neurocognition displayed on cortical surface.

Prediction of individual differences in the general cognitive ability component (top) and the
learning/memory component (bottom). R2 values displayed for each parcel and significance
assessed with 1000 permutations. Nonsignificant R2 values (p>0.01) displayed in gray.
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