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Abstract

Decades of human magnetic resonance imaging (MRI) research demonstrate that variance in
neuroimaging phenotypes, including functional connectivity, relate to genetics' and predict
cognitive traits”. The functional connectome affords information transmission through the brain
at various spatial scales, from global oscillations between broad cortical regions to fine-scale
connections that underlie specific information processing'®!"". In adults, while both the coarse-

and fine-scale functional connectomes predict cognition®!'*™'*

, the fine-scale connectome predicts
twice as much cognitive variance'. Yet, past brain-wide association studies, particularly using
large developmental samples, have limited their focus to the coarse connectome to understand

the neural underpinnings of individual differences in cognition®®'¢'8

. We studied resting-state
fMRI in 1,115 children (including 389 twin pairs) and used functional alignment to afford access
to individual differences in the fine-scale connectome'™'**°, We found that even though
individual differences in the fine-scale connectome are more reliable than those in the
coarse-scale connectome, they are less heritable. This surprising result indicates that
genetically-determined versus experience-dependent factors in brain development have
dissociable effects on these two spatial scales of the connectome. We show further that both
connectome scales equally predict a more heritable trait (general cognitive ability) in childhood,
but only the fine scale effectively predicts a more experience-driven trait (learning/memory). As
such, the developing functional connectome resembles a LEGO® set: the specific pieces a child

has parameterizes what they will eventually build, but even when given identical sets, two

children with unique experiences will build different creations.
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Introduction
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The building blocks of the functional connectome are an interplay of genetics
experience"?. Functional connections at various spatial scales, ranging from coarse, global
regional oscillations to vertex-wise patterns of information transfer, account for related, yet

10,11

different, types of information encoding and transmission ''. While variation in functional

connectivity can predict individual differences in aspects of memory'?, attention'?, and

intelligence'®, among other cognitive traits®!'***%

, it is unclear how the spatial scales of
functional connectomes differentially contribute to genetic and experience-based cognitive traits
during periods of biological and experiential maturation. To understand how this is reflected at
the population level in the developing brain will require consideration of how we define
functional connectivity information at both fine and coarse scales. In the current study, we
disentangle experience-based idiosyncrasies in the functional connectome from genetic
influences by estimating the heritability, reliability, and predictive validity of resting-state

functional connectivity (RSFC) based on connectome granularity during development**?.

Structural and functional magnetic resonance imaging (MRI) of twin samples reveal strong
genetic control over various measures of brain morphology'>*** and RSFC?!**°*3*  RSFC is a
powerful tool for investigating individual differences in brain—behavioral associations, especially
in clinical and developmental populations where task-based fMRI is often difficult®***-°,
Genetic influences on brain structure and function increase with age**, are associated with
cognitive functioning?, and interact with the environment to sculpt an individual's functional

connectome®>*%7, Structural MRI, which is used to derive anatomical alignment of functional

imaging data across subjects, has been demonstrated to have limited reliability in large-scale
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developmental neuroimaging studies, which impacts the reliability of aligning data across

developing brains using structural brain images alone'®.

Recent studies looking at the genetic control over RSFC have focused on traditional functional

t38

connectivity calculations, such as the coupling of specific regions of interest™ , or oscillations

2122 or, more recently, individualized atlases®>.

between brain networks using group parcellations
Dividing the cortex into subfields and collapsing over the hundreds of cortical vertices within a
predefined neuroanatomical region can mitigate high-dimensionality, measurement instabilities,
and idiosyncratic cortical functional organization. However, recent adult studies have shown that
vertex-wise functional connectivity across the cortex (“fine-scale connectomes™) better reflect
reliable individual differences in functional connectivity®® and capture twice as much variance in
cognitive ability (e.g., intelligence)'® than group-average parcellations (“coarse-scale
connectomes”). To what extent are the fine-scale patterns of functional connectivity under
genetic control, and would accessing this connectome tighten the link between functional
connectivity, cognition, and genetics? Or is there a dissociation of genetic control over these two
scales of connectivity? Here we use novel machine learning approaches to relate connectome
granularity and estimates of heritability, reliability, and predictions of neurocognitive ability
during development (Figure 1). Specifically, we use connectivity hyperalignment' to access

functional information processing in the fine-scale connectome, and tease it apart from the

coarse-scale connectome which reflects less-specific fluctuations across broad swaths of cortex.
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A. Connectivity hyperalignment procedure
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Figure 1: Methods

A. Connectivity hyperalignment training procedure. For each parcel in the Glasser
parcellation (here, region 329 with 430 cortical vertices), connectivity matrices are computed as
the strength of connection (Pearson’s correlation) between the activity timeseries of vertices
within the parcel (seeds; u) and the average activation across vertices in all other parcels (targets;
v). The connectivity matrices for 200 held-out subjects are used to train the hyperalignment
common model space for a given parcel. The model space is of dimensions D = [d,...d,] which
are weighted combinations of U = [u;,...u, ], the dimensions of each subjects’ connectivity
matrices in anatomical space. D represents the space where connectivity targets are best aligned
across training subjects. Then, connectomes for the 915 test subjects are projected into D via
subject-specific transformation matrices R, which detail a mapping from given subject i §
anatomical space U;into D. This procedure is repeated to derive R for each test subject and
parcel. Then, the regional activation pattern for each parcel in anatomical space is mapped via R
into the region’s common space to compute the hyperaligned timeseries for each subject, which
is then used to recompute connectivity matrices between hyperaligned seeds v and model
dimensions d. B. Connectome granularity. Fine-scale connectomes are multivariate patterns of
the connectivity weights between all vertices in a given parcel and the average pattern of each
other parcel in the brain. Coarse-scale connectomes are vectors (univariate), representing the
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connectivity weight between the average pattern of a given parcel and those of each other parcel
in the brain.

Results

Establishing reliable connectomes

Variability in RSFC can reflect idiosyncrasies driven by cortical communication patterns
indicative of neurocognitive variability, but it can also reflect artifacts due to data acquisition
noise, movement, and functional-anatomical mismatch. In adult populations, brain parcellations
(e.g. Glasser parcellation*”) average adjacent areas of cortex to improve signal-to-noise and
reduce the dimensionality of the data. This approach assumes functional-anatomical

correspondence will improve at the group level and comes at the cost of lower granularity.

Here, we analyze RSFC between subjects (see Table S1 for subject breakdown) using two
methods of group alignment. The first uses a standard approach to align data in a common space
based on anatomical location (anatomical alignment [AA]), while the second approach uses
connectivity hyperalignment (CHA)" to learn a representational space based on common
patterns of functional connectivity via an adapted Generalized Procrustes Analysis (see Methods
for details). CHA allows for local remixing of vertex-wise functional connectivity patterns
within an anatomically-constrained region®’, thereby aligning common patterns of fine-scale
information within broader regions of interest by removing idiosyncrasies caused by noise or
functional-anatomical correspondence'®. In contrast with coarse alignment, which averages
across the region and can diminish differences across subjects, CHA affords fine-scale functional
alignment: projecting all of the region’s information patterns into high-dimensional common

space to align information across subjects based on functional instead of anatomical information
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topographies (Figure 1B). Within this common space, individual differences in functional
connectivity become more pronounced and reliable’, particularly at the fine-scale
representational level, and are better predictive of cognitive traits’> in adults. In contrast,
previous studies have applied a reduced-dimensional hyperalignment algorithm (shared response
model) to align child brain responses to an adult-defined common model as the two groups
performed the same task?. To address the question of individual differences in fine-scale
functional connectivity among children, we present (to our knowledge) the first derivation of a
child-defined and applied model of shared brain function, which negates concerns about
differences in cortical development or anatomy conflating functional connectivity patterns. We
then address the relative effects of functional alignment versus simply higher-dimensional
measurements by averaging the functionally-aligned CHA data and by retaining the
high-dimensional, anatomically aligned data, to have a full comparison of AA coarse, AA fine,

CHA coarse, and CHA fine-scale connectomes.

Our first analysis looks at the reliability of idiosyncrasies in functional connectivity patterns
across connectome alignment and granularity. Here, idiosyncrasies are defined as how similar a
subject’s connectome is to their own connectome across split-halves, relative to their similarity to
all other subjects. CHA, particularly at the fine scale, improves the reliability of functional
connectivity over anatomical alignment alone (Figure 2). Across all parcels, reliability of coarse
connectomes increased from an average of r=0.34 + 0.1 for AA to r=0.58 £+ 0.08 for CHA.
Reliability of fine connectomes increased from an average of 1=0.43 + 0.11 for AA to r=0.86 +
0.07 for CHA. After CHA, 100% of parcels at both scales showed greater reliability, and 99% of

parcels showed greater reliability at the fine scale than the coarse scale. Notably, all four types of
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connectomes show high split-half reliability, with CHA affording the greatest reliability. This
establishes that hyperalignment improves access to reliable information within an individual’s
functional connectome, despite training the model on held-out subjects. Particularly at the fine
scale, functional connectivity information is diagnostic of the individual**, affording confidence
that subsequent results using this information are driven by reliable individual differences as

opposed to noise.
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Reliability of individual differences in functional connectivity profiles
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Figure 2. Reliability of individual differences in functional connectivity profiles

A. Procedure: The reliability of individual differences in functional connectivity profiles between
regions (defined with the Glasser parcellation*’) was analyzed with data from 526 unrelated
subjects. Subjects' timeseries data for each parcel were split into two halves, which were
hyperaligned into the trained common space separately. For each region, split timeseries data
pre- and post-hyperalignment were used to compute functional connectivity profiles at the fine
and coarse scales. Then individual dissimilarity matrices (IDMs) were computed across all pairs
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of subjects. The IDMs for each split were then correlated (Pearson's r) to get a measure of the
reliability of individual differences captured by the regional functional connectivity profiles,
presented on the cortex for the coarse and fine scales before and after hyperalignment. This
approach is a variation of the “fingerprinting”'*** approach, whereby measured individual
differences are more reliable if a subject is more similar to themselves across split-halves than to
any other subject. B. The reliability of individual differences increases after hyperalignment for
all parcels. 99% of fine connectivity profiles (darker) are more reliable than coarse ones (lighter)
regardless of alignment type. C. Bars presented as the average reliability (Pearson’s r) across all
parcels in the Glasser parcellation. Error bars represent & standard deviation from the mean.

Genetic control over the coarse-scale connectome

Our reliability analysis revealed that the fine-scale connectome is more reliable within
individuals than the coarse scale, and this is particularly salient after connectivity
hyperalignment (HA). Given that the fine-scale CHA data reveal more reliable, idiosyncratic
functional connectivity patterns than the coarse data, we hypothesized it would be less influenced
by genetics. In other words, the broad anatomical alignment would reflect the heritability of
cortical anatomy previously shown'*%¥, but the functional alignment would disentangle the
fine-scale functional differences in connectivity information, reflecting more reliable,

behaviorally-informative individual differences driven by unique life experiences.

The heritability analysis used RSFC data from 778 subjects comprising 219 dizygotic twin pairs
and 170 monozygotic twin pairs (see breakdown in Table S1). Functional connectomes of
vertex-granularity are an inherently high-dimensional phenotype. To explicitly model the
heritability of this phenotype, we used a multidimensional estimate of heritability®* to model both
the phenotypic similarity matrix between participants as well as the genetic kinship matrix (see

Multidimensional heritability estimate for more information). As predicted, we find differential

heritability according to the alignment and granularity of functional connectomes, where 99.6%
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percent of parcels are more heritable at the coarse scale than the fine scale (p<0.01) (Figure 3).
At the coarse scale, anatomically-aligned functional connectomes are significantly more
heritable than hyperaligned connectomes (AA =0.198 + 0.05; CHA=0.161 £ 0.04; p <0.01),
with 96% of parcels showing greater heritability. These results indicate that connectivity
information aligned coarsely based on anatomical features are under strong genetic control,
consistent with previous studies showing genetic control over cortical anatomy in children®® and

network-level RSFC?'.
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Heritability of functional connectivity profiles
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Figure 3. Heritability of functional connectivity profiles

A. Heritability of functional connectivity profiles between regions (defined with the Glasser
parcellation*’) was estimated using a multidimensional heritability model*” using resting-state
fMRI data from 778 9-10 year-olds (170 MZ pairs and 219 DZ pairs). Functional connectivity
between a given parcel and all other parcels in the brain was calculated at fine and coarse
granularities, before and after functional alignment. The coarse-grained connectivity profiles
aligned based on cortical anatomy are the most heritable. B. For both anatomically-aligned and
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hyperaligned data, connectivity profiles are more heritable when calculated at the coarse scale
than the fine scale (99.6 percent of the time). C. At the coarse scale, the anatomically aligned
connectivity profiles are more heritable than the hyperaligned ones; this distinction dissipates at
the fine scale, which is under comparatively minuscule genetic control. Bars presented as the
mean heritability across all parcels in the Glasser parcellation and error bars presented as
standard deviation.

Prediction of neurocognitive abilities

Having established that the coarse, anatomically-aligned functional connectome is under strong
genetic control and that all connectomes showed reliability, we sought to demonstrate their
functional significance by teasing apart connectome granularity as it relates to heritability versus
behaviorally-relevant idiosyncrasies. Compared with brain structure, complex psychological
traits are less heritable, but cognitive abilities are among the most heritable dimensions of human
behavior®. Heritability of these traits vary by cognitive domain with higher estimates reported
for general cognitive ability (h* = .67—.80) than for learning/memory (h?=.36-.56)*, which may
be more sensitive to experiential factors. We leveraged this variation in heritability of cognitive
traits to examine the functional significance of our heritability and reliability findings. General
cognitive ability and learning/memory scores were defined based on previously reported
principal components analysis of the NIH Toolbox tasks used in the ABCD study*. Because
learning/memory is less heritable than general cognitive ability, we can compare variation in
connectome heritability on prediction of cognitive phenotypes*. Since CHA improves reliability
of individual differences in the fine-scale connectome, we expected CHA fine connectomes
generally to be more predictive of cognitive performance (i.e., both general cognitive ability and
learning/memory) than either CHA coarse, AA coarse or fine connectomes. Moreover, we
expected the most heritable connectivity information (i.e., AA coarse) to better predict a more

heritable cognitive ability (general ability) relative to a less heritable trait (learning/memory).
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We used PCA ridge regression to predict scores on these two cognitive domains from
connectivity profiles at each scale. Models were scored as R* between predicted scores and true

scores using nested cross-validation (see Neurocognition PC prediction analysis for more

details), and significance of R? values were assessed with permutation tests (10,000 iterations per
model). Model scores were compared across connectome types using 10,000 bootstrap iterations

with resampling.

Overall, hyperaligned fine-scale connectomes best predicted individual differences in cognitive
performance (i.e., both general cognitive ability and learning and memory). As hypothesized, the
degree to which the coarse connectome also contributed to prediction was associated with the
heritability of the trait. General cognitive ability has high heritability for a psychological trait (h?
= .67—.80)* and was similarly predicted by CHA fine, AA coarse, and AA fine connectomes
(average parcel R? £ s.d. across parcels; CHA fine = 0.0133 £ 0.021; AA fine = 0.0134 £ 0.020;
AA coarse =0.0124 £ 0.018; CHA fine vs. AA fine p = 0.30; CHA fine vs. AA coarse p = 0.23;
AA fine vs. AA coarse p = 0.08) (Figure 4). General cognitive ability was predicted with
significantly lower accuracy by CHA coarse, suggesting that functionally aligning fine-scale
information then smoothing over the functional information space actually diminishes the
specificity of the information. After performing permutation tests at each parcel and thresholding
at p <0.01, 42%, 42.5%, 30.5%, and 43% of parcels predicted general cognitive ability

significantly greater than chance at the AA coarse, AA fine, CHA coarse, and CHA fine scales

respectively (Figure S2A).
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Learning/memory is regarded as a less heritable psychological trait (h?=.36-.56)*, so we
hypothesized the heritable scaffolding of the connectome (AA coarse) would contribute less
information to this prediction than to prediction of cognitive ability, and the trait would be
predicted more strongly from the CHA fine connectome. As expected, prediction of
learning/memory scores were significantly higher for the CHA fine connectome than for CHA
coarse (CHA fine R?=0.018 = 0.012; CHA coarse R?=0.011 = 0.014; p < 0.0001), AA fine
(0.008 £0.014; p=0.09), or AA coarse (0.007 + 0.014; p <0.0001) (Figure 4). The gap in the
percentage of parcels surviving our permutation test was also more pronounced for this trait;

30%, 33%, 39%, and 61% for AA coarse, AA fine, CHA coarse, and CHA fine.
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Variance in cognitive ability accounted for by connectivity profiles
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Figure 4: Prediction of neurocognitive PC loadings.

Distribution of R? values across all parcels for prediction of general cognitive ability (left) and
learning/memory (right). Histogram heights correspond to density of scores and lines represent
the mean of the score distribution. For the purpose of distribution matching, R? values are not

thresholded here; thresholded R? values mapped to the cortical surface are displayed in Figure
S2.

Discussion

In this study, we sought to understand how individual differences are realized at different spatial
scales of the developing connectome, and how the variability captured by connectome

granularity relates to genetic control and cognitive traits. Prior work indicates that both coarse
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and fine-scale functional connectivity predicts idiosyncrasies in cognitive phenotypes in
adults'>"*, and functional alignment (connectivity hyperalignment; CHA ') improves access to
this variability in the fine-scale connectome'>*°. Yet, to date, studies have related functional
connectivity in youth to individual differences in cognition or behavior by looking only at coarse
scale information. This spatial averaging reduces dimensionality and smooths idiosyncratic
anatomy across subjects. Using CHA, we reveal reliably idiosyncratic patterns of fine-scale
functional connectivity in the developing brain. The coarse-scale connectome (AA coarse) shows
moderately reliable idiosyncrasies (mean Pearson’s 1=0.34), versus the CHA fine connectome’s
mean reliability of r=0.86 (Figure 2). Across the entire brain, individual differences in fine-scale
connectivity are more reliable than in coarse-scale, indicating that the traditional coarse
alignment approach diminishes the detailed, spatially-resolved topographies of information

transfer in the developing brain.

By estimating the heritability of functional connectivity at each scale and alignment, we showed
that idiosyncrasies in the fine-scale connectomes are dissociable from idiosyncrasies in the
coarse scale connectome. Multiscale heritability analysis of coarse-scale, anatomically aligned
connectomes attribute about 20% of variance to genetic relatedness, which converges with our

expectations based on adult coarse RSFC estimates?! %%

and how neuroimaging phenotypes
increase in heritability with age'~. At the fine scale, our estimates drop to around 10% regardless

of alignment technique, suggesting that at the fine scale, idiosyncrasies in connectivity are more

related to experience than genetics.
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Individual differences captured by variable connectome granularity revealed a dissociation
between the spatial scales of heritable and reliable patterns of functional connectivity. Our final
analysis showed that this dissociation is also relevant in prediction of cognitive traits. Whereas
both the most reliably idiosyncratic (CHA fine) and most heritable (AA coarse) connectomes
were comparably predictive of general cognitive ability, a canonically heritable cognitive trait,
the most reliably idiosyncratic connectome (CHA fine) was best predictive of a less heritable
cognitive trait (learning/memory). Past studies using RSFC at a coarse scale from the ABCD
dataset were only able to predict general cognitive ability and not learning/memory scores®. By
improving the reliability of our data and accessing finer-scale information with CHA, we
uncovered patterns of functional connectivity predictive of a more nuanced, experience-related

cognitive trait (learning/memory).

Taken together, the link demonstrated here between reliable, heritable, and predictive scales of
functional connectivity reveals the importance of nuanced, multi-scale connectivity analyses for
building a holistic theory of individual differences during development. Consistent with the
interactive specialization framework of functional brain development, the development of the
functional connectome is not solely determined by a blueprint, but the interaction of a heritable
template and individualized experience®. We present a novel approach to prediction of
developing cognitive abilities from functional connectivity measured in different topographical
representation spaces, by aligning information across brains based on functional alignment at
high spatial resolution versus the traditional approach of coarse alignment (an adult-defined
cortical atlas with averaging). Our study presents the first example of defining and applying a

functional common space to a developmental cohort, negating the very issues that arise with
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developmental anatomically-constrained studies. Prior literature has recognized the power of
functional alignment for individual differences studies'*'>***, but it has remained underutilized

817 Recent work has recognized the need for massive numbers of

in the developmental literature
subjects to reliably associate brain phenotypes with behavior, specifically in developmental
cohorts'®. We show that hyperalignment and connectome granularity analyses are powerful tools
for understanding these individual differences, without the need for thousands of individuals and
data points for model cross-validation — our hyperalignment model was learned on 200 subjects
and tested entirely on resting-state data, with less than 20 minutes per subject. Further, it was
trained and tested on independent subjects to assure that increased reliability was driven by
generalizable, shared signals rather than overfitting to subject-specific signals. Though
statistically significant, our predictions accounted for relatively low variance in behavioral
measures relative to similar studies in adults®!*!, Task-based functional connectivity is often
more stable and predictive of behavior than RSFC among adults'*'5, but this is only with a
sufficient amount of high-quality task data, which is known to be difficult to collect in
children®, Individual differences in RSFC appear to be reliable in the ABCD dataset'’, whereas
the task fMRI has known reliability limitations'®. Previous studies have shown that both the
ABCD task and resting whole-brain coarse FC can predict individual cognitive measures such as

the toolbox tasks’, with lower accuracy for the tasks comprising the learning/memory component

than the general cognitive ability.

With the substantial twin cohort, behavioral testing, and longitudinal neuroimaging data included
in ABCD, future work could investigate the connection between heritability and predictivity of

functional connectivity over time, as the heritability of both neurocognitive measures and
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neuroimaging-based phenotypes increase with age'***° By breaking apart the pieces of the
functional connectome into their coarse and fine structures, we can show how these scales snap
together like LEGO pieces to scaffold and instantiate reliable idiosyncrasies in brain and

behavior during development.

Materials and methods

Participants

We considered data from the 11,875 children included in the Adolescent Brain Cognitive
Development (ABCD) Study® 2, data release 2.0.1. The ABCD Study is a longitudinal study
with 21 sites around the United States and aims to characterize cognitive and neural development
with measures of neurocognition, physical and mental health, social and emotional function, and
culture and environment. The ABCD Study obtained centralized institutional review board (IRB)
approval from the University of California, San Diego, and each site obtained local IRB
approval. Ethical regulations were followed during data collection and analysis. Parents or
caregivers provided written informed consent, and children gave written assent. Four leading
twin research centers at the University of Minnesota, Virginia Commonwealth University,
University of Colorado-Boulder, and Washington University in St. Louis comprise the ABCD
Twin Hub. Each site enrolled approximately 200 same-sex monozygotic or dizygotic twin pairs
as well as singletons*. Their inclusion in the ABCD study affords unique access to the causal

interrelation between genetics, environment, brain function, and cognition during development™2.

The present study uses imaging and behavioral data from a subset of n=1,115 subjects from the
original 11,875 subjects. Included subjects were enrolled in the University of Minnesota,

Washington University in St. Louis, and University of Colorado-Boulder sites, which all use 3T
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Siemens MRI scanners. We excluded Virginia Commonwealth University, the fourth Twin Site,
as it uses a GE scanner, a potential confound in the current study*. ABCD study-wide exclusion
criteria include a diagnosis of schizophrenia, moderate to severe autism spectrum disorder,
intellectual disabilities, major and persistent neurological disorders, multiple sclerosis, sickle cell
disease, seizure disorders like Lennox-Gastaut Syndrome, Dravet Syndrome, and Landau
Kleffner Syndrome, or substance abuse disorders at time of recruitment. Subjects with mild
autism spectrum diagnosis, history of epilepsy, traumatic brain injury, and MR incidental

findings were excluded from the present analysis.

Resting state fMRI data collection

Structural and functional data from the three included sites were acquired using Siemens Prisma
3T scanners with a 32-channel head coil. Detailed acquisition parameters are previously
described in the literature’®!. Scan sessions consisted of a high-resolution (1 mm?®) T1-weighted
image, diffusion weighted images, T2-weighted spin echo images (1 mm?), resting-state fMRI
(rs-fMRI), and task-based fMRI. We utilized rs-fMRI solely in this study. rs-fMRI data were
collected with an echo-planar imaging sequence with 2.4 mm voxels, TR = 800 ms, TE = 30 ms,
and multiband slice acceleration factor = 6. Participants completed up to four runs of 5-minute
resting state scans. Framewise integrated real-time MRI monitoring (FIRMM?™) was used to
monitor subject head motion during data collection, and scan operators may have stopped
resting-state data collection after three runs if 12.5 min of low-motion resting-state data had been

collected.
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Additional exclusions were made based on poor structural scan quality (determined with curated
data release 2.0.1 sheet freesqc01.txt) or low quality/high motion resting state fMRI (determined
as a score of zero for fsgc_gc or greater than one for fsgc_qu_motion, fsqc_qu_pialover,
fsqc_qu_wmunder, or fsqc_qu_inhomohgeneity), as reported in prior studies'®. Participants with
fewer than 900 TRs of rs-fMRI data passing these measures for Freesurfer reconstruction were
also excluded. ABCD Data Release 2.0.1 used Freesurfer version 5.3 for quality control
checks’!. After filtering, we used resting state fMRI and behavioral data from 1,115 unique
subjects (552 male), including 170 pairs of monozygotic (MZ) twins, 219 pairs of dizygotic (DZ)
twins, and 337 singletons. All twin pairs were same-sex, and all subjects were between 9 and 10
years old. Included singletons were also balanced for ancestry, ethnicity, sex, and pubertal

development with twins (Table S1).

Preprocessing

rs-fMRI data were downloaded via the DCAN Labs ABCD-BIDS Community Collection (Fezco
2021) (NDA Collection 3165). This is a regularly updated dataset of ABCD Brain Imaging Data
Structure (BIDS)> version 1.2.0 pipeline inputs and derivatives, using source data from the
ABCD Study participants baseline year 1 arm 1 DICOM imaging data that passed initial
acquisition quality control from the ABCD Data Analysis and Informatics Center (DAIC)*' and
retrieved from the NIMH Data Archive (NDA) share of ABCD fast-track data (NDA Collection
2573). DICOMs were converted to BIDS input data using Dem2Bids® (make sure this is the
zenodo), which reorganizes Niftilmages produced with dcm2niix (Xiangrui Li Et al 2016). Raw
images were preprocessed using the the DCAN Labs ABCD-BIDS MRI processing pipeline>’

(for details, see github.com/DCAN-Labs/abcd-hep-pipeline; osf.io/89pyd/; Sturgeon et al.,
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2021), which is based on the Human Connectome Project (HCP) Minimal Preprocessing
Pipeline®® with additional modifications specifically for the ABCD dataset and summarized

below.

The first stage of the pipeline, PreFreeSurfer, performs brain extraction, alignment, and N4 bias

field correction on the T1w and T2w images. The second stage, FreeSurfer>’-*

, segments the
resulting T1w images and identifies tissue boundaries to register to a FreeSurfer template and
produces brain masks. The third stage, PostFreeSurfer, uses the brain masks to register T1w
images to MNI space using ANTs symmetric image normalization method*®. Surfaces are then
transformed to standard space using spherical registration and converted to CIFTI format along
with the standardized brain volumes. The fMRIVolume stage performs functional image
distortion correction using reverse phase-encoded spin echo images to correct for local field
inhomogeneities. Eta squared values are computed for each image to a participant-level average
of all field maps, and the pair with the highest value (i.e., most representative of the average) was

selected to avoid potential motion confounds. Finally, the fMRISurface stage performs 2-mm

full-width half-max spatial smoothing.

DCAN BOLD Processing® is used to perform standard data processing. First, fMRI data are
demeaned and detrended with respect to time. Covariates of no interest were regressed from the
data, including mean white matter, cerebrospinal fluid, overall global signal, mean grayordinate
timeseries, and 6-movement variables (X,Y,Z translation and roll, pitch, yaw rotation).
Timeseries data are then band-pass filtered between 0.008 and 0.09 Hz using a 2nd order

Butterworth filter. Data is then filtered for respiratory motion for the frequencies (18,582 to
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25.726 breaths per minute) of the respiratory signal, which has been shown to improve the
stability of framewise displacement (FD) estimates®'. “Bad” frames, where motion exceeds FD
of 0.3 mm, are removed when demeaning and detrending such that denoising betas are only
calculated for “good” frames. For the band-pass filtering, interpolation is used to replace those
frames, so that pre-processing of the timeseries only includes “good” data but avoids aliasing due
to missing timepoints. Finally, the filtered timeseries are normalized and concatenated across
runs. The derivatives used in this analysis are

*ses-baselineYearl Arm1 _task-rest bold desc-filtered timeseries.dtseries.nii.

Connectivity hyperalignment

We used connectivity hyperalignment'® to functionally-align fine-scale connectivity information
across subjects. Given the small quantity (1480 = 142 TRs; mean+tstd) of resting state fMRI
data available per subject, we chose to train the hyperalignment model common space using a
cohort of 200 subjects who were then excluded from further analysis. These 200 training subjects
were singletons enrolled at one of the three included sites and were matched with twin subjects
on gender, pubertal development, age, and race/ethnicity (Table S1). The remaining 915 subjects
(including the 389 twin pairs and 137 singletons) were used for subsequent analyses. Crucially,
the hyperalignment model space never saw data from any subjects included in analyses during

training.

We followed the same connectivity hyperalignment procedure for whole-cortex parcellation data
as in our previous study®. We used the average timeseries for each of the 360 regions in the

Glasser cortical parcellation® as connectivity targets and the vertices in each parcel as
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connectivity seeds. For each parcel we computed a fine-scale connectivity matrix as the
correlation between each of the vertices within the parcel and the average regional timeseries of
the other 359 regions in the parcellation. For example, for a parcel with 430 vertices, its
fine-scale connectivity matrix would be a matrix of dimensions 430 by 359 correlation
coefficients, whereas its coarse-scale connectivity profile would be a vector of 359 correlation

coefficients (Figure 1B).

For each region®, we trained a separate high-dimensional common model space based on the
fine-scale functional connectomes of the 200 training subjects. The dimensionality of the model
space is equal to the number of vertices, but the model dimensions correspond to shared
functional connectivity properties across individuals instead of anatomical locations'®. After the
model dimensions were learned, we discarded training subjects’ data from downstream analyses.
We derived invertible transformation matrices for the remaining subjects’ connectomes into the
model space to map vertex timeseries from the anatomically-defined dimensions into the

functionally-defined dimensions.

Functional connectivity profiles

After aligning the test data into a common functional space, we used functional connectivity
profiles to summarize a brain region’s correlation with the rest of the cortex. We defined
fine-scale functional connectivity profiles as above, as the correlation between the timeseries of
all 59,412 vertices in the cortex with the average timeseries of each parcel, resulting in a matrix
of 59,412 by 360 correlation coefficients per subject. We also defined coarse-scale functional

connectivity profiles as the correlation between the average timeseries for all pairs of parcels,
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resulting in a matrix of 360 by 360 correlation coefficients per subject (Figure 1B). The
fine-scale and coarse-scale connectomes were computed on data pre- and post-hyperalignment
for each subject to evaluate the effect of functional alignment and connectome granularity on

heritability, reliability, and predictivity.

Reliability

Given the high levels of noise and low reliability associated with developmental neuroimaging
data®>**%36 a5 well as smaller (vertex-resolution) connectivity seeds'', we used hyperalignment
to improve the reliability of individual differences in our data. That is, by finding a space that
aligns patterns of functional connectivity across subjects (within anatomically constrained
parcels), we correct more thoroughly for anatomical variability and improve access to reliable
individual differences '**” We calculated the reliability of functional connectomes before and
after hyperalignment as follows. For 526 unrelated subjects, we computed fine-scale functional
connectomes from split-half timeseries (742 + 71 TRs). We derived transformation matrices to
rotate these connectomes into the common space separately, then aligned the split timeseries data
using those transformations. We then computed functional connectivity profiles, as explained
above, for each half separately. For each parcel at the fine and coarse scale separately, we used
the vectorized functional connectivity profiles before and after hyperalignment and computed
individual differences matrices (IDM) for each data split. These are subject-by-subject pairwise
dissimilarity matrices, where each value in the matrix is the correlation distance (1 - Pearson’s r)
between two subjects’ regional connectivity profiles. After computing IDMs, we took the upper

triangle of the IDM and correlated them (Pearson’s r) to measure the reliability of the individual

differences in the functional connectomes across the split halves®. This metric reflects the
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reliability of the idiosyncrasies in a subject’s functional connectomes, where subjects are more
similar to themselves across split halves than they are to any other subject. We used a Mantel

test®®” to perform statistical tests on IDMs with 10,000 permutations.

Multidimensional heritability estimation

Functional connectomes at vertex-granularity are an inherently high-dimensional phenotype;
when dimensionality of the phenotype is collapsed, the reliability of individual differences
decreases®. To offer greater statistical power in analyzing the heritability of this
high-dimensional phenotype, we used a multidimensional estimate of heritability > to
summarize the degree to which functional connectivity profiles for each parcel are under genetic
control. We also investigated whether the alignment and granularity of the connectomes impact
their heritability, which would indicate that the information highlighted by that type of

connectome calculation is differentially impacted by genetics. Genetic kinship was estimated

with SOLAR Kinship2®.

Neurocognition PC prediction analysis

Neurocognition principal components (neurocog PCs)*® were derived from the neurocognitive
battery included in the ABCD study. The neurocognitive battery includes the NIH Toolbox
cognition measures covering episodic memory, executive function, attention, working memory,
processing speed, and language abilities. The neurocog PCs were derived with a Bayesian
Probabilistic Principal Components Analysis, which revealed a three-component solution. The
three components roughly corresponded to general cognitive ability, executive function, and

learning/memory. Since the NIH Toolbox tasks that canonically measure executive function did
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not load onto the executive function component in this solution, we excluded this component
from our analyses, instead focusing on general cognitive ability and learning/memory. Tasks
loading onto the general cognitive ability component include Toolbox Picture Vocabulary,
Toolbox Oral Reading test, List Sort Working Memory task, and Little Man task. Tasks loading
onto the learning/memory component include the Toolbox Picture Sequence Memory task, the
RAVLT total number correct, and the List Sort Working Memory task. Heritability of composite
scores were estimated with SOLAR Polygenic® including sex, age, ethnicity, and site as

covariates (Figure S1A), as well as with Falconer’s Formula™ (Figure S1B).

We predicted loadings onto the neurocognition principal components based on functional
connectivity from our cohort of 526 unrelated subjects using a principal component ridge
regression adapted from our previous study®. First, we used principal components analysis
(PCA) to train principal components (PCs) to capture the main orthogonal dimensions along
which individuals’ connectivity profiles differ from one another. We then trained a ridge
regression model to predict learning and memory scores from these PC scores, and tested the
PCA and ridge regression models by predicting the learning and memory score of the held-out
subjects. Model parameters (number of PCs and regularization parameter a) were chosen with
nested cross-validation using three sub-folds. Candidate model parameters were distributed
evenly on a logarithmic scale, from 10 to 320 PCs and no PCs (no dimensionality reduction), and
a chosen from 121 values between 102 to 10*°. Models were evaluated using the cross-validated
coefficient of determination R* , which shows the percent of variance in learning and memory

scores accounted for by the prediction models. To assess statistical significance of model
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performance against chance, we used permutation testing with 1000 iterations of shuffling the

behavioral scores.

Data availability
The ABCD study is longitudinal, so the data repository changes over time and can be found here:
https://nda.nih.gov/abced. In the current study, we used the ABCD data release 2.0.1, downloaded

via ABCD-BIDS Community Collection’”' NDA Collection 3165.

Code availability
ABCD data preprocessing code can be found here:
https://github.com/DCAN-Labs/abcd-hcp-pipeline. ABCD data processing code can be found

here: https://github.com/DCAN-Labs/dcan_bold processing. Code for running the multiscale

heritability analysis can be found here: https://github.com/kevmanderson/h2_multi. Code for

running the nested PCA ridge regression was based off:_https://github.com/feilong/IDM_pred.

All analysis code specific to this study will be released upon publication.
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Supplemental tables and figures

Table S1: Cohort Breakdown

Total Monozygotic | Dizygotic | Unrelated | Unrelated

Included | Pairs Pairs Test Train
Total 1,115 170 219 526 200
Site 20 387 75 86 184 60
Site 21 371 34 81 166 90
Site 22 357 75 68 176 60
Age (mo) | 121.6 122.5 122.0 121.6 120.7
(interview _
age)
% Female | 50% 52% 50% 50% 50%
(gender)
Ancestry: | 0.127 0.092 0.118 0.113 0.204
African
(AFR)
Ancestry: | 0.805 0.825 0.826 0.814 0.733
European
(EUR)
Ancestry: | 0.020 0.016 0.016 0.021 0.025
East Asian
(EAS)
Ancestry: | 0.049 0.067 0.040 0.052 0.038
(AMR)
Ethnicity 1.667 1.659 1.63 1.73 1.58
(race_ethni
city)
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Figure S1: Heritability of general cognitive ability and learning/memory loadings.

Left: Heritability estimated with SOLAR Polygenic (covariate tested: site, age, sex, and
ethnicity), presented as H2r and error bars representing standard error.

Right: Heritability estimated with Falconer’s formula (2 times intraclass correlation coefficients

for monozygotic twins — dizygotic twins).
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Figure S2: Prediction of neurocognition displayed on cortical surface.

0.03

0.01

_ ( Coarse (Parcel to parcel) )

Prediction of individual differences in the general cognitive ability component (top) and the
learning/memory component (bottom). R? values displayed for each parcel and significance
assessed with 1000 permutations. Nonsignificant R? values (p>0.01) displayed in gray.
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