

1 Post-injury hydraulic fracturing 2 drives fissure formation in the 3 zebrafish basal epidermal cell layer

4

5 Andrew S. Kennard^{*1,2†}, Mugdha Sathe^{*2}, Ellen C. Labuz^{1,2}, Christopher K. Prinz² and Julie A.

6 Theriot^{#,2}

7

8 1. Biophysics Program, Stanford University, Stanford, CA, USA

9 2. Department of Biology and Howard Hughes Medical Institute, University of Washington,
10 Seattle, WA, USA

11 *Contributed equally

12 †Present address: Department of Biology, University of Massachusetts, Amherst, MA, USA

13 # lead contact: jtheriot@uw.edu

14 Summary

15 The skin epithelium acts as the barrier between an organism's internal and external
16 environments. In zebrafish and other freshwater organisms, this barrier function requires
17 withstanding a large osmotic pressure differential. Wounds breach this epithelium, causing a
18 large disruption to the tissue microenvironment due to the mixing of isotonic interstitial fluid with
19 the external hypotonic fresh water. Here we show that, following acute injury, the larval
20 zebrafish epidermis undergoes a dramatic fissuring process that resembles hydraulic fracturing,
21 driven by the influx of external fluid. The fissuring starts in the basal epidermal layer nearest to
22 the wound, and then propagates at a constant rate through the tissue spanning over one
23 hundred micrometers; during this process the outermost superficial epidermal layer remains
24 intact. Fissuring is completely inhibited when larvae are wounded in an isotonic external media,
25 suggesting that osmotic pressure gradients drive fissure. Additionally, fissuring partially depends
26 on myosin II activity, as its inhibition reduces fissure propagation away from the wound. During
27 and after fissuring, the basal layer forms large macropinosomes (with cross-sectional areas
28 ranging from 1-10 μm^2), presumably to clear the excess fluid. We conclude that excess external
29 fluid entry through the wound and subsequent closure of the wound through actomyosin purse
30 string contraction in the superficial cell layer causes fluid pressure buildup in the extracellular
31 space of the zebrafish epidermis. This excess fluid pressure causes tissue to fissure, and
32 eventually the fluid is cleared through macropinocytosis.

33 Keywords

34 Wound healing; zebrafish; hydraulic fracture; osmotic pressure; contractility; epidermis

35 Introduction

36 A key function of many animal epithelial tissues is to establish and maintain extreme
37 asymmetries in environmental composition between their apical and basal surfaces. For
38 example, the mammalian gastric epithelium establishes a pH gradient between the stomach
39 lumen (pH ~3) and the rest of the body (pH ~7.4) (Schreiber et al., 2004), frog epidermis
40 generates an electrical charge imbalance leading to a trans-epithelial electrical potential of tens
41 of millivolts (Ferreira et al., 2016; Robinson, 1983), and larvae of freshwater zebrafish withstand
42 over 20-fold differences in osmolarity across their epidermis (Kennard and Theriot, 2020; Krens
43 et al., 2017). Epithelial injury disrupts such gradients, and wound healing is critical for epithelia
44 to re-establish these gradients by re-sealing injured tissue and preventing unregulated
45 transepithelial flux.

46 Wound healing is a complex process that includes different stages depending on the
47 animal species and the nature of the wound. A common and prominent phase of wound healing
48 is reepithelialization, a collective behavior in which epithelial cells detect a nearby injury and
49 migrate in a coordinated fashion towards the wound, closing off the damaged area (Richardson
50 et al., 2016). Reepithelialization is driven by actomyosin-based processes, including the
51 development of supracellular actomyosin purse-string cables that tighten to contract the wound
52 margin, and the directed actin-based migration of epithelial cells towards the site of injury
53 (Abreu-Blanco et al., 2012; Eming et al., 2014; Martin and Lewis, 1992; Richardson et al., 2016;
54 Rothenberg and Fernandez-Gonzalez, 2019). Physical coordination of tissue connectivity
55 through cell-cell junctions is also critical for reepithelialization, and the level of adhesion
56 between cells is carefully regulated to facilitate movement while retaining tissue organization
57 (Hunter et al., 2015; Nunan et al., 2015; Tetley et al., 2019). For example, during healing of
58 mouse skin wounds, cells downregulate tight junctions and E-cadherin-based adherens

59 junctions while retaining desmosomal junctions, a process that is believed to loosen the tissue
60 and facilitate migration towards the wound (Nunan et al., 2015).

61 Much remains unresolved concerning how disruptions to transepithelial gradients
62 following epithelial injury affect reepithelialization and wound healing. These mechanisms may
63 be especially important in the epidermis, which generates extreme gradients in ionic electrical
64 potential and fluid composition between interstitial fluid and the outside world (Barker et al.,
65 1982). In some contexts, environmental changes resulting from gradient disruption have been
66 shown to have a signaling function, serving as cues of tissue damage (Enyedi and Niethammer,
67 2015). For example, short-circuiting of trans-epithelial electrical potentials can create electric
68 fields within the epidermis that guide cell migration and tissue regeneration (Ferreira et al.,
69 2016; Kennard and Theriot, 2020; Kucerova et al., 2011; Reid et al., 2005; Sun et al., 2011),
70 and nuclear swelling driven by osmotic shock can activate signal transduction cascades that
71 drive reepithelialization and immune cell infiltration of damaged tissue (Chen et al., 2019;
72 Enyedi et al., 2016, 2013; Gault et al., 2014). Beyond activating signal transduction programs, it
73 also seems plausible that gradient disruption could provide a powerful driving force for physical
74 processes, such as fluid flow, which could affect the structure or organization of epithelial tissue
75 during wound healing.

76 We were particularly interested in how transepithelial gradient disruption would affect the
77 structure of healing epithelial tissue. Zebrafish are an ideal system for investigating the
78 relationship between gradient disruption and wound healing, due to their power as a model
79 organism and their aqueous, freshwater lifestyle. The excellent optical properties of larval
80 zebrafish epidermis and the availability of genetic tools for live fluorescence imaging have made
81 zebrafish larvae a prominent model system for understanding the rapid mechanisms of wound
82 repair in the first few minutes after injury (Enyedi et al., 2013; Franco et al., 2019; Gault et al.,
83 2014; Kennard and Theriot, 2020; Poplimont et al., 2020; Yoo et al., 2012). The zebrafish larval
84 epidermis is composed of two layers of cells: a superficial layer that maintains barrier function

85 via tight junctions, and a basal layer of proliferative cells that can migrate on the basement
86 membrane/extracellular matrix (ECM) and can perform other tissue maintenance functions,
87 including phagocytosis of apoptotic cells (Arora et al., 2020; Rasmussen et al., 2015; Sonawane
88 et al., 2005) (**Figure 1A-B**). Previous work has shown that the two layers respond to injury using
89 distinct wound closure mechanisms: superficial cells assemble an actomyosin purse string
90 around the wound margin, while basal cells actively migrate towards the wound using actin-rich
91 lamellipodia (Franco et al., 2019; Gault et al., 2014). Crucially, zebrafish are freshwater
92 organisms capable of withstanding more than 20-fold osmotic gradients between interstitial fluid
93 and the surrounding environment (Krens et al., 2017). Several environmental cues contribute to
94 wound detection in zebrafish, including the aforementioned osmolarity-induced cell swelling and
95 the establishment of electric fields directed towards the wound (Enyedi et al., 2016; Gault et al.,
96 2014; Kennard and Theriot, 2020). While effects of these rapid, injury-induced changes in the
97 cellular environment have been identified at the earliest stages of wound healing, it is not known
98 how these substantial environmental disruptions affect later stages of wound healing, or even
99 how the pre-wounding interstitial environment is restored.

100 Studying reepithelialization in larval zebrafish epidermis, we report that—in addition to
101 contributing to wound detection—the influx of external media at the wound site also permeates
102 deep into the epidermis through fissures that emerge between basal epidermal cells after injury.
103 These fissures propagate at constant speed away from the site of injury for over 100 μm —
104 roughly 10 cell diameters—and fissuring is promoted both by osmotic pressure gradients and by
105 myosin-based tissue contractility. After fissuring, cells remain connected via tethers that contain
106 adherens junctions and desmosomes, and they uptake the surplus of externally derived fluid
107 through an increase in macropinocytosis. Our data show that the rapid influx of excess
108 extracellular fluid inevitably associated with a breach in the epidermis causes a previously
109 unanticipated set of events, namely fissuring in the epithelial tissue, that is eventually cleared by

110 macropinocytosis. These results emphasize the critical contribution of large-scale physical
111 processes such as fluid flow in shaping the wound response in zebrafish larvae.

112 Results

113 Fissures emerge between basal epidermal cells after they have 114 stopped migrating towards a wound

115 Using a previously developed laceration wounding technique (Kennard et al., 2021), we
116 sought to identify the sequence of events occurring towards the end of reepithelialization, as
117 cells slow down and re-form a stationary epithelium. In this wounding approach, a glass needle
118 is used to impale and tear the posterior end of the tailfin, generating two full-thickness cuts just
119 posterior to the notochord. We have found that this wounding approach elicits a robust
120 migratory wound response beginning almost immediately after injury and persisting for about 15
121 minutes, during which time basal cells form actin-rich lamellipodial protrusions and migrate
122 toward the injured region (Kennard and Theriot, 2020). Surprisingly, we found that, as basal
123 epidermal cells slowed down, they began to separate from each other, so that gaps several
124 micrometers wide appeared between cells, which we termed “fissures” (**Figure 1C-D, Video**
125 **S1**). Fissures were most easily observed in larvae in which basal epidermal cells expressed a
126 cytoplasmic fluorescent protein (mCherry) as a volume marker. This fissuring was strikingly
127 regular, and appeared to propagate in a wave through the tissue, beginning at the wound site
128 and emanating anteriorly (**Figure 1D**). The rate at which fissures propagated anteriorly did not
129 appear to vary strongly with position along the dorsal-ventral axis, although fissuring frequently
130 initiated at the midline. Fissures tended to decrease in width with increasing distance from the
131 wound, and fissures thinned over time (**Video S1**), although they persisted for at least 3 hours
132 after wounding (**Figure S1**).

133 Upon closer inspection, it became clear that small gaps opening at tricellular junctions
134 preceded fissure formation between adjacent cells (**Figure 1D**, blue arrowheads). Following

135 fissure formation, cells began to accumulate numerous dark puncta internally, representing
136 decreases in the local fluorescence intensity of the cytoplasmic fluorescent protein signal, as
137 would be expected for fluid-filled endosomes or macropinosomes (**Figure 1D**, yellow
138 arrowheads). These dark puncta varied in size but sometimes reached several micrometers in
139 diameter. In tandem with puncta accumulation, the fissures on the periphery of each cell
140 transitioned from smooth, uniform gaps with a constant width to an uneven “beads-on-a-string”
141 morphology, with the width of the gap varying along each cell-cell junction (**Figure 1D**, magenta
142 arrowheads).

143 To quantitatively compare the dynamics of fissuring across many larvae and conditions,
144 we developed a computational pipeline to identify separated cell boundaries in each frame of
145 time-lapse movies (see Methods). To emphasize fissures, this pipeline used a ridge detection
146 filter, which produces an image in which the intensity value of each pixel is related to the degree
147 to which the neighborhood of that pixel resembles a dark linear structure in the original image;
148 we termed this measurement the “fissure index” (**Figure 1E**, **Figure S2A**). To reveal the extent
149 and speed of fissure propagation through the tissue, we binned the average value of the fissure
150 index as a function of distance from the wound and time after wounding, producing a fissure
151 kymograph, which reports on areas with significant ridge detection over time (**Figure 1F**).
152 Fissure kymographs averaged from multiple larvae confirmed our observation that fissures first
153 propagate at a constant speed through the tissue, followed by a phase of slower propagation.
154 (**Figure 1F**).

155 To extract the initiation time, speed, and distance of fissure propagation, we fit a line to
156 the linear propagation portion of the kymograph (**Figure S2B**). This analysis showed that
157 fissures initiate 6 ± 2 minutes post wounding (mpw) (s.d., $n = 29$ larvae) and propagate through
158 the tissue at 21 ± 10 $\mu\text{m}/\text{min}$ to a distance of 130 ± 36 μm (**Figure 1G**). Previously, we had
159 shown that, during the migratory phase of the wound response in zebrafish basal epidermis, cell
160 migration initiates in an anteriorly propagating wave, analogous to fissure formation (Kennard

161 and Theriot, 2020). Intriguingly, the spatial extent and propagation speed of this wave of cell
162 movement (200 μm and 40 $\mu\text{m}/\text{min}$) is comparable to the extent and speed of fissure
163 propagation (130 μm and 21 $\mu\text{m}/\text{min}$), while the initiation of the wave of cell movement begins
164 almost immediately after injury, preceding fissure propagation. Overall, our quantification of
165 fissure dynamics reveals that basal cell fissures propagate away from the wound at a constant
166 rate for many cell diameters before slowing down.

167 **Separated basal cells remain connected by thin tethers, while the**
168 **superficial layer remains intact**

169 Given the importance of cell-cell adhesion for many collective tissue behaviors including
170 migration of epithelial monolayers (Friedl and Mayor, 2017), the emergence of fissures between
171 basal cells was unexpected. To interrogate the structure of fissures in more detail, we
172 performed thin-section transmission electron microscopy on unwounded larvae and larvae fixed
173 at 2, 7, and 20 mpw. As previously shown (Le Guellec et al., 2004; O'Brien et al., 2012;
174 Sonawane et al., 2005), basal cells and superficial cells of unwounded larvae were tightly
175 apposed in an interlocking pattern: the cross-section of each cell was tallest in the middle above
176 the nucleus and narrowed toward the cell-cell junctions at the edges (**Figure 1B, Figure 2A**).
177 This characteristic, interlocking three-dimensional epidermal architecture is in line with the
178 geometry previously established for frog larval epidermis (Savost'yanov and Grefner, 1998). In
179 contrast to the well-connected, unwounded epidermis, many small empty spaces were visible
180 between basal cells and at the basal-superficial interface in epidermal cross-sections 2 mpw
181 (**Figure 2B**). Manual segmentation of cells and the gaps between them indicates that gaps
182 make up \sim 12% of the total epidermal cross-sectional area at 2 mpw, an increase from \sim 2% in
183 unwounded tissue. While the cross-sections of superficial cells retained their unwounded shape
184 further from the wound (**Figure 2B**, white arrowhead), closer to the wound superficial cells were

185 no longer interlocking with basal cells (**Figure 2B**, black arrowhead); instead, superficial cells
186 bulged on the apical side and were flatter on the basal side.

187 At 7 mpw, when fissures have typically just appeared (as judged by live animal confocal
188 imaging), basal cells were highly elongated along the direction of the wound, consistent with
189 migration typically occurring at that time (Gault et al., 2014; Kennard and Theriot, 2020). At this
190 timepoint the gaps between basal cells were much larger than at 2 mpw, especially between the
191 basal cells and the basement membrane (**Figure 2C**). At 20 mpw, when migration has ceased
192 and fissures are still readily observable by light microscopy, basal cells had adopted a flattened
193 ovoid shape and large, rounded gaps were observed at the junctions between adjacent basal
194 cells (**Figure 2D**). These were morphologically distinct from the small gaps observed at 2 mpw.
195 Despite these large gaps, basal cells still frequently maintained lateral contacts with their
196 neighbors. At all timepoints, superficial cells retained close lateral contacts, suggesting that
197 fissures did not occur in this layer. Additionally, gaps were readily seen both at the lateral
198 interfaces between basal cells, and at the interfaces between basal and superficial cells,
199 suggesting that fissures form around all basal cell surfaces, although they are only detectable at
200 lateral surfaces in maximum-intensity projections of confocal images. To rule out fixation
201 artifacts, we observed wound closure in larvae expressing LifeAct in basal cells and observed
202 the effect on fissure and overall tissue structure during fixation with our EM fixative. We found
203 that the shape and organization of fissures that was appreciable with light microscopy was not
204 altered by fixation (**Figure S3**). Overall, our EM observations indicate that gaps between basal
205 cells occur rapidly after wounding—even before such gaps are detectable by light microscopy—
206 and that over time they coalesce, while the superficial layer remains intact throughout the
207 wound healing process.

208 Electron microscopy revealed that the fissuring we observed in light microscopy did not
209 completely eliminate the contacts between cells (**Figure 2**). To test whether E-cadherin was
210 present at these persistent contacts, we wounded larvae which expressed mCherry in the basal

211 layer and zebrafish E-cadherin (*Cdh1*) tagged with sfGFP in both superficial and basal layers
212 (Yamaguchi et al., 2019). Using the basal-cell specific mCherry, we computationally
213 distinguished the E-cadherin signal arising from basal or superficial layers, and compared the
214 dynamics of E-cadherin in each layer to the dynamics of fissures, revealed by dark gaps in the
215 mCherry channel. We observed that E-cadherin was maintained at basal and superficial
216 junctions throughout the wound-healing process (**Figure 3A, Video S2**). The retention of E-
217 cadherin at junctions despite the reduction in cytoplasmic signal there is consistent with the
218 many membrane tethers observed in electron microscopy (**Figure 2**), which would have a high
219 surface area to volume ratio and thus preferentially enrich for membrane-bound markers like E-
220 cadherin over cytoplasmic markers. Although E-cadherin remained localized at junctions
221 throughout wound healing, it is important to note that the intensity of E-cadherin signal in both
222 basal and superficial layers decreased markedly during the course of our experiments; due to
223 the low level of expression from a bacterial artificial chromosome (BAC)-based native *cdh1*
224 promoter and the relatively high bleaching rate of sfGFP, it was not possible to distinguish
225 between sfGFP photobleaching and possible E-cadherin degradation. We also looked at cell-
226 cell junctions at high magnification in our electron microscopy samples. We saw that the tethers
227 connecting cells frequently terminated in an electron-dense plaque (**Figure 3B**, blue arrowhead)
228 reminiscent of desmosomal plaques, with many intermediate filaments extended from the
229 plaques (**Figure 3B**, yellow arrowhead). Taken together, our confocal and electron microscopy
230 of cell-cell junctions suggests that adherens junctions and desmosomes may remain partially
231 intact during fissuring.

232 To reconcile the appearance of fissures between cells in confocal microscopy with the
233 persistence of tethers and adhesions between cells, we sought to determine the structure of
234 fissures by imaging larger volumes of tissue than were practical with electron microscopy. By
235 cutting semi-thin 0.5 μm sections from resin-embedded samples of 20 mpw larvae, we obtained
236 20 μm of serial cross-sections for histological imaging and three-dimensional tissue

237 reconstruction (**Video S3**). This was enough to observe the arrangement of fissures around
238 multiple cells. Consistent with our electron microscopy observations, this histological imaging
239 emphasized that fissures appear at both the lateral and apical surfaces of basal cells (**Figure**
240 **3C**, black and white arrowheads, respectively), while only lateral fissures are easily detected in
241 confocal microscopy. We also observed many tethers in our histology imaging, typically near the
242 basement membrane or between superficial and basal cells (**Figure 3C**, yellow arrowheads).
243 Importantly, 3D reconstructions of the serial-section histology revealed the continuity of fissures
244 across lateral and apical surfaces (**Figure 3D**). Thus, fissures form an interconnected network
245 at the interface between basal and superficial cell layers, while attachments between cells in
246 both layers persist via membrane tethers.

247 **Fissures are filled with externally-derived fluid and form via wound
248 contractility and osmotic pressure**

249 The interconnected, channel-like structure of epidermal fissures was evocative of
250 hydraulic fracturing, or “fracking,” which has previously been observed in epithelial monolayers
251 and during early embryogenesis (Casares et al., 2015; Dumortier et al., 2019). We therefore
252 hypothesized that fissuring could be caused by the infiltration of external fluid into the epidermis
253 upon tissue injury. To test whether fissures contained external fluid, we pulsed 10 kDa
254 fluorescently labeled dextran into the external medium surrounding wounded larvae for 7
255 minutes and imaged the epidermis after washing out excess dextran from the medium (which
256 took roughly 3 minutes, see Methods). We observed that fluorescent dextran readily entered the
257 wounded tissue, and anterior propagation of the fluorescent signal exactly coincided with fissure
258 formation (**Figure 4A** and **Video S4**). Intriguingly, in addition to colocalization of fluorescent
259 dextran with fissures at lateral cell-cell junctions, dextran was also observed in channels
260 crossing the middle of the cell (**Figure 4A**, white arrowheads, see inset), consistent with the

261 fissures at the superficial-basal layer boundary observed in electron microscopy and histology
262 (**Figure 3**). This experiment demonstrates that epidermal fissures contain external fluid.

263 Hydraulic fracturing of a tissue can be driven by a large increase in hydrostatic pressure
264 of the interstitial fluid. We reasoned that the interstitial fluid could only become pressurized after
265 the wound was closed, as an open wound allows fluid to flow out of the tissue into the
266 extraembryonic environment, rather than stay in the tissue and become pressurized. To
267 determine when the epidermal barrier function recovered after wounding, we applied 3 minute
268 pulses of fixable fluorescent dextran to wounded larvae at different times post wounding, fixed
269 larvae immediately after the pulse, then imaged them to look for the presence of dextran within
270 the tissue (**Figure 4B,C**). In control conditions, dextran was observed within all larvae that were
271 wounded in the presence of fluorescent dextran and then fixed at 3 mpw. However, only 17% of
272 larvae pulsed with fluorescent dextran starting at 7 mpw and then fixed at 10 mpw showed
273 significant fluorescent signal within the tissue. Finally, no larvae exposed to the pulse of
274 fluorescent dextran starting at 17 mpw and fixed at 20 mpw exhibited internal fluorescence ($n >$
275 11 larvae per time point) (**Figure 4D**). This suggested that the majority of wounds are largely
276 sealed at or before 7 mpw, coinciding with the typical time at which fissure formation and
277 propagation are readily observable by light microscopy (**Figure 1G**).

278 The pressure to drive tissue fracking could arise from osmotic pressure gradients, which
279 would drive water entry from the hypotonic external medium into the tissue. Additionally,
280 contractile forces at the wound margin could force fluid into the tissue, particularly after the
281 wound has sealed to prevent backflow of fluid into the external environment. To test the
282 contribution of tissue contractility to the infiltration of external fluid, we inhibited tissue
283 contractility with the myosin II inhibitor blebbistatin. To test the contribution of osmotic pressure
284 gradients, we adjusted the external osmolarity with sorbitol to match the osmolarity of internal
285 fluid without disrupting osmolarity-independent ionic or electrical wound cues (Kennard and
286 Theriot, 2020; Krens et al., 2017). We first determined the effect of these perturbations on the

ability of the epidermis to reestablish barrier function after injury. Treatment of larvae with isotonic sorbitol did not affect the proportion of dextran-infiltrated larvae at any time point (~17% for 10mpw and 0% for 20mpw), suggesting that perturbation of osmotic pressure gradients did not disrupt the time at which barrier function is reestablished (**Figure 4D**). However, treatment with blebbistatin significantly increased the proportion of dextran-infiltrated larvae during a dextran pulse between 7 and 10 mpw to ~60% (**Figure 4D**, $p=0.026$ by Fisher's exact test), consistent with previous reports that myosin contractility contributes to wound closure and sealing (Abreu-Blanco et al., 2012). These dextran infiltration experiments revealed that reestablishment of epidermal barrier function is promoted by tissue contractility, but not osmotic pressure gradients.

Although osmotic pressure and tissue contractility are not strictly required for external fluid entry, we hypothesized that they might affect the amount or pressure of the entering fluid and subsequently fissure formation. To test the role of osmotic pressure and contractility in forming fissures, we wounded larvae expressing mCherry in the basal layer in isotonic sorbitol or blebbistatin. Fissures appeared and propagated away from the wound in hypotonic conditions as described (**Figure 5A**, **Figure 1F**). In contrast, larvae wounded in isotonic sorbitol maintained an intact basal cell layer throughout the wound healing process (**Figure 5B**, **Video S5**). Larvae treated with blebbistatin developed fissures close to the wound, but these fissures failed to propagate further into the tissue (**Figure 5C**, **Video S6**).

To compare fissure propagation across conditions, we returned to our pipeline that quantifies local abundance of ridge-like structures as a fissure index. Averaging across larvae, fissure kymographs confirmed that the propagation of gaps observed in hypotonic media was absent in isotonic sorbitol (**Figure 5D**, top row). When fissure kymographs were scored for fissure formation (using blinded scoring as described in the Methods), all hypotonic-treated larvae ($n = 30$) and zero isotonic-treated larvae ($n = 11$) scored positively for fissure formation

312 after wounding. Therefore, an osmotic pressure gradient between internal and external fluid is
313 required to form large-scale fissures between basal cells.

314 Fissure kymographs averaged across blebbistatin-treated larvae showed a burst of
315 fissuring with little propagation, whereas fissure propagation occurred normally in larvae treated
316 with DMSO as a vehicle control (**Figure 5D**, bottom row). When these kymographs were
317 scored, 100% of control larvae ($n = 9$) and 77% of blebbistatin-treated larvae ($n = 13$) formed
318 fissures and were retained for further analysis. Manual measurement of the extent of linear
319 propagation in the kymograph (performed by scorers blinded to the experimental condition)
320 showed that fissures in blebbistatin-treated larvae propagated 80 μm on average, significantly
321 less than the mean 143 μm propagation in control DMSO-treated larvae (**Figure 5E**, $p = 0.0010$
322 by Tukey's test). These data demonstrate that tissue contractility promotes fissure propagation
323 as well as wound closure. Although osmotic pressure gradients do not affect wound closure,
324 they have a distinct role in forming fissures, perhaps by controlling the amount of external fluid
325 entry.

326 Fluid in fissures is cleared via macropinocytosis in the basal layer

327 So far, we have described the occurrence of fissures within the basal epidermal layer
328 that form due to external fluid entering the wounded larva. In addition to fissures, we also
329 noticed the presence of large intracellular vesicles in the basal cells near the wound site that
330 were visible by all three imaging modalities—in light microscopy (**Figure 1D**, yellow
331 arrowheads), histology (**Video S3**), and electron microscopy (**Figure 6C**). This led us to
332 investigate the dynamics of endosomes during the wound healing process using an early
333 endosome reporter: a tandem repeat of the FYVE domain (2xFYVE) tagged with GFP. The
334 2xFYVE domain binds specifically and with high affinity to phosphatidylinositol 3 phosphate
335 (PI3P) that is found on the early endosomal membrane. In the absence of a suitable PI3P

336 enriched endosomal membrane, this probe remains cytosolic (Gillooly et al., 2000). We
337 therefore expressed EGFP-2x-FYVE in the basal layer (Rasmussen et al., 2015) to observe
338 early endosome behavior during wound healing. We noted that at 10 mpw and onwards, there
339 was a striking increase in the formation of large ($>5 \mu\text{m}$ in diameter) 2xFYVE-labeled vesicles
340 throughout the basal layer with a greater diversity in sizes relative to that observed pre-
341 wounding and immediately post wounding (**Figure 6A**, **Video S7**, **Figure S4A**). Based on the
342 presence of endosomes $>0.5 \mu\text{m}$ in diameter, it is likely that these endosomes are derived from
343 macropinocytosis—a highly versatile pathway characterized by endocytic vesicles greater than
344 $0.5 \mu\text{m}$ in diameter (or $\sim 0.2 \mu\text{m}^2$ in cross-sectional area) (Hewlett et al., 1994). The large vesicle
345 sizes attained in macropinocytosis can facilitate changes in a cell's surface area. Thus, to
346 observe the dynamics of macropinosomes during wound healing, we segmented the FYVE-
347 labeled endosomes and pseudocoloured the population according to area into three categories:
348 small ($< 1 \mu\text{m}^2$ area, orange), medium ($1-5 \mu\text{m}^2$ area, blue) and large ($> 5 \mu\text{m}^2$ area, black).
349 During segmentation, endosomes too close to be detected individually or containing non-
350 uniform FYVE signal were discarded (**Figure S4B**). Notably, segmentation provided only a
351 rough estimate of the number and size of endosomes, as some structures were not identified or
352 misidentified (**Figure S4B**).

353 We calculated mean endosome numbers over a 5 minute window to estimate population
354 level changes over time post wounding (**Figure 6B**). Within 5 mpw, we observed a drop in
355 numbers of both small and medium endosomes (**Figure 6B**), which corresponded to FYVE
356 signal partially redistributed to the cytosol (**Figure 6A**, 10mpw). However, this drop in endosome
357 number is probably overestimated due to tissue loss during the laceration. Thus, we focused on
358 comparing the endosome number trends post wounding. Post wounding, the number of small
359 and medium endosomes decreased over time relative to the first 5 minutes (**Figure 6B**, left and
360 middle graph). In contrast, the number of large endosomes increased starting at 10 mpw
361 (**Figure 6A**, red arrowheads and **Figure 6B**, right graph). Using electron microscopy we

362 confirmed the presence of large vesicles within basal cells (**Figure 6C**). Intriguingly, we also
363 observed an example of two protrusions extending into a fissure from the apical surface of a
364 basal cell (**Figure 6C**, left panel), reminiscent of a cross-section through a macropinocytic cup
365 (Veltman et al., 2016). Overall, our observations of large endosomes following fissuring suggest
366 a scenario wherein fissures are generated by osmotic pressure and acto-myosin contractility
367 and contain external fluid, and then this external excess fluid is subsequently cleared by the
368 basal layer through macropinocytosis.

369 Discussion

370 Taken together, our live imaging, electron microscopy, and histology results demonstrate
371 that fluid influx during wound healing in larval zebrafish generates fissures between cells in the
372 basal epidermal layer (**Figure 7**). Fluid influx is enhanced by the osmotic pressure gradient
373 between the hypotonic external medium and isotonic interstitial fluid. As wound healing
374 progresses, tissue contraction at the wound margin—likely mediated by the actomyosin purse
375 string in the superficial cell layer—promotes the sealing of the wound, which increases
376 hydrostatic pressure from the internalized fluid. This increase in pressure upon wound sealing
377 leads to the formation of fissures via hydraulic fracturing or “fracking.” Fissures form at the
378 lateral junctions of basal cells and along the interface between basal and superficial cells, and
379 they propagate anteriorly from the wound margin for over 100 μ m. Finally, the excess, externally
380 derived fluid is internalized into large macropinocytic vesicles within basal cells, potentially in
381 order to clear the fluid from the epidermis.

382 Osmotic gradients are required for fissuring, as fissures do not form when the external
383 medium is isotonic with the internal medium (**Figure 5**). We believe that this is due to reduced
384 fluid influx into the wound and not due to differences in the wound response *per se*. While
385 isotonic solutions inhibit the wound response to some extent (Gault et al., 2014), isotonic
386 sorbitol solutions such as those used in this work are still able to support a partial wound
387 response involving directed cell migration of basal cells toward the wound and myosin II-
388 dependent purse string contraction at the wound margin (Fuchigami et al., 2011; Kennard and
389 Theriot, 2020). Therefore, we conclude the absence of fissuring that we have observed in
390 isotonic medium is not due to a complete lack of wound response, but rather simply to the lack
391 of a steep osmotic gradient.

392 In contrast to osmotic gradients, myosin II contractility is not strictly required for fissure
393 formation, as fissures still occur in blebbistatin-treated larvae. However, myosin contractility is

394 required for fissures to propagate anteriorly for long distances into the epidermis. We propose
395 that this is due to the actomyosin purse string at the wound margin sealing the wound, which
396 prevents fluid from flowing back out of the wound site. By closing off this path for fluid flow,
397 tissue contraction builds up pressure in the epidermis, providing the conditions needed for
398 hydraulic fracture and fissure formation. Consistent with this model, the typical time at which
399 fissures first appear in the epidermis matches the time at which the wound becomes
400 impermeable to dextran, around 7 mpw (**Figure 1G, Figure 4D**). Alternatively to the purse string
401 model, cell-autonomous contractility within basal cells could promote fissuring deeper in the
402 tissue. We favor the purse string model because it naturally suggests why fissures propagate
403 anteriorly from the wound site, while the basal cell contractility model would require positing a
404 spatio-temporal gradient in basal cell contractility to explain this propagation. Directly
405 distinguishing between these two models will require the development of tissue-specific
406 disruption of myosin contractility to specifically ablate purse string contractility separately from
407 ablation of basal cell contractility.

408 Fluid accumulation due to swelling or flow of the extracellular matrix is an emerging
409 mechanism for inducing morphogenetic tissue shape changes during development (Chugh et
410 al., 2022; Munjal et al., 2021; Serna-Morales et al., 2022). The staining methods employed in
411 our electron microscopy analysis are not diagnostic for extracellular matrix, so we cannot rule
412 out the presence of extracellular matrix within fissures, which could contribute to fissuring due to
413 hydrogel swelling effects.

414 Disruption of close cell-cell contact by hydraulic fracking was first described in cultured
415 monolayers of mammalian epithelial cells growing on stretched hydrogels; when the stretch was
416 released, excess water that had accumulated in the hydrogel was forced through the cell
417 monolayer, leading to rapid junction disruption (Casares et al., 2015). In this setting, spatial
418 propagation of hydraulically generated fissures was not observed, perhaps due to the small size
419 of monolayers grown on micropatterns, or the experimental design, which led to the uniform

420 release of water at all points in the hydrogel without lateral gradients in fluid flow. Hydraulic
421 fracking has also been observed in the formation of the blastocoel cavity of the mouse embryo,
422 where active ion transport generates an osmotic gradient that draws fluid into the embryo,
423 leading to pressure-induced formation of lumens that gradually coalesce into the blastocoel
424 (Dumortier et al., 2019). A similar process may underlie the formation of a single continuous
425 lumen in the zebrafish gut (Alvers et al., 2014). Intriguingly, myosin II contractility promotes
426 fissure closure in both epithelial monolayers and mouse embryos, while we have found that
427 myosin II contractility instead promotes fissure formation and propagation in the context of
428 wound healing. This discrepancy may be explained by a distinct role for myosin II contractility in
429 generating permissive pressures for fissure formation in the wound setting.

430 The phenomenon we describe here of tissue fissuring driven by hydraulic fracking is
431 quite distinct from tissue fracture, during which the epithelial layer rips apart leading to complete
432 dissociation of formerly adjacent cells (Bonfanti et al., 2022). Such fractures have been
433 investigated experimentally by pulling epithelial sheets beyond a critical strain (Harris et al.,
434 2012), and fractures routinely occur in the course of normal movement in the simple
435 multicellular organism *Trichoplax adhaerens* (Prakash et al., 2021). In contrast to tissue
436 fracture, the wound-related hydraulic fissuring we report here features the retention of at least a
437 subpopulation of cell-cell junctions, as seen at the ultrastructural level (**Figure 3B**). The tethers
438 that connect basal cells during fissuring are reminiscent of the tethers cell use to retain contact
439 with their substrate after partial retraction (Korkmazhan et al., 2022).

440 Our observation by both light and electron microscopy of dramatically large vesicles in
441 the basal cells after wounding suggests that the accumulated external fluid is cleared by
442 macropinocytosis. Macropinocytosis is a clathrin-independent process that generates large
443 pleiomorphic vesicles, allowing a cell to respond quickly to changes in its environment in a way
444 that enables the cell to change both its surface area and its net volume (Marsal et al., 2021).
445 Macropinocytosis has been characterized most extensively in mammalian tissue culture cells in

446 response to growth factors (Koivusalo et al., 2010; West et al., 1989), but there are also several
447 cases where it seems to play a mechanical role. For example, constitutive macropinocytosis
448 was reported in the outer epidermis of *Hydra vulgaris* that was downregulated by tissue stretch
449 (Skokan et al., 2021). At a single cell level, immature dendritic cells generate macropinosomes
450 that render them insensitive to hydraulic resistance, facilitating space exploration within the
451 tissue (Moreau et al., 2019).

452 The regulated accumulation of interstitial fluid facilitates a variety of morphogenetic
453 events in developmental contexts (Chugh et al., 2022). In addition to the formation of the
454 blastocoel (Dumortier et al., 2019), relocation of interstitial fluid facilitates prechordal plate cell
455 migration in zebrafish epiboly (Huljev et al., 2022), and interstitial fluid accumulation tunes the
456 extent of zebrafish body axis elongation as part of a jamming transition in cell density (Mongera
457 et al., 2018). Furthermore, osmotic swelling mediated by the accumulation of extracellular matrix
458 components drives the formation of the semicircular canal of the zebrafish inner ear (Munjal et
459 al., 2021). In all of these developmental processes, fluid flow is controlled internally, by changes
460 in cell shapes or cell adhesion, or by generating osmotic pressure gradients through active
461 transport or polarized synthesis of osmolytes. In contrast, the fluid that drives fissuring after
462 wounding is externally derived, and fissuring represents a response to a rapid and extreme
463 environmental change. Given such dramatic changes, the consistent and robust linear
464 propagation of fissures anteriorly from the wound edge is all the more remarkable.

465 At this point it is not yet clear whether fissuring serves some function in facilitating other
466 aspects of wound healing, as opposed to merely being an unavoidable, acute reaction by the
467 animal to the wound and its consequent exposure to large volumes of dilute external fluid.
468 However, it is tempting to draw a speculative parallel to the swelling that accompanies
469 cutaneous wounds in humans (Lämmermann and Sixt, 2008; Scallan et al., 2010). Specifically,
470 "pitting edema" is defined as an indentation that remains behind after it is pressed, in contrast to
471 healthy tissue, suggesting mechanical pilability. Pitting edema is generated as part of the

472 inflammatory response, during which blood vessel permeability increases, releasing fluid into
473 nearby tissue and facilitating immune cell entry (Rutkowski et al., 2006). Although the source of
474 additional fluid in inflammation is internal, rather than the external fluid that drives wound-
475 associated fissuring in the fish, we speculate that the mechanisms deployed by the fish during
476 wounding may have been refashioned in mammals to generate edema in response to
477 inflammation and injury.

478 Acknowledgments

479 We thank Jeff Rasmussen, Alvaro Sagasti and Holger Knaut for generously sharing fish
480 lines. We are also grateful to Jeff Rasmussen, Rikki Garner and Maddy Hewitt for critical
481 reading of the manuscript and thoughtful comments. We would like to thank LSB aquatics
482 facility staff for animal care. We are also appreciative of Ksenia Pukhalskaya and Rita Chupalov
483 for their help with Russian translation. Finally, we are grateful to members of the Theriot
484 laboratory for numerous thought-provoking discussions. Electron microscopy was performed in
485 the Biology Imaging Facility at the University of Washington. E.C.L was supported by an NSF
486 GRFP (DGE-1656518). J.A.T acknowledges support from the Howard Hughes Medical Institute
487 and the Washington Research Foundation.

488 Author details

489 Conceptualization - A.S.K, J.A.T; Methodology - A.S.K., M.S., E.C.L., C.K.P., J.A.T.;
490 Investigation - A.S.K., M.S., E.C.L., C.K.P.; Analysis - A.S.K., M.S., E.C.L; Illustration - C.K.P.
491 Supervision and funding - J.A.T.; Writing - all authors. All authors read and approved the final
492 manuscript.

493 Declaration of interests

494 The authors declare no competing interests.

495 Methods

496 Zebrafish husbandry

497 Zebrafish (TAB5 background) were maintained according to standard procedures.

498 Experiments were approved by the University of Washington Institutional Animal Care and Use

499 Committee (protocol 4427-01). Animals were maintained on a 14 hr light, 10 hr dark cycle at

500 28.5°C. Natural spawning was used for crosses, and embryos were raised at 28.5°C in 100 mm

501 petri dishes in E3 without methylene blue (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl₂, 0.33 mM

502 MgSO₄) (“E3 medium,” 2008), with a maximum of 50 embryos per dish. All experiments were

503 performed on larvae 72-90 hr post-fertilization.

504 Transgenic zebrafish lines

505 The following previously generated transgenic zebrafish lines were used:

506 *TgBAC(ΔNp63:Gal4)^{la213}* (Rasmussen et al., 2015), *Tg(4xUAS:EGFP-2xFYVE)^{la214}* (Rasmussen

507 et al., 2015), *TgBAC(cdh1:cdh1-sfGFP)^{sk95Tg}* (Yamaguchi et al., 2019), *Tg(UAS:LifeAct-*

508 *EGFP)^{mu271}* (Helker et al., 2013).

509 Plasmid constructs and microinjection

510 To generate the *Tg(UAS:mCherry)* transgenic line used to visualize fissure in basal cells,

511 the construct was cloned into Tol2kit zebrafish expression vectors using Gateway cloning (Kwan

512 et al., 2007). Briefly, the *UAS:mCherry* plasmid was created using standard plasmids from the

513 Tol2kit: p5E UAS, pME mCherry, p3E polyA, and recombined using Gateway cloning into a

514 custom Tol2 destination vector (a generous gift from Darren Gilmour) with cry:mKate2 as a
515 transgenic marker (Hartmann et al., 2020). To generate a stable transgenic line, wildtype
516 embryos were injected at the 1- to 2-cell stage, into the cell (rather than the yolk). Plasmids
517 were injected at a concentration of 20 ng/μl, with 40 ng/μl of Tol2 mRNA—the volume of these
518 drops was not calibrated. Transgenic founders were identified by screening progeny for
519 cry:mKate2 reporter expression, and subsequently confirmed by crossing with the
520 *TgBAC(ΔNp63:Gal4)^{la213}* reporter line.

521 Preparation of larvae for imaging

522 Larvae were imaged at 3 days post-fertilization (3 dpf). Larvae were screened for
523 transgenes in the morning prior to imaging. Larvae were prepared for imaging as previously
524 described (Kennard et al., 2021; Kennard and Theriot, 2020). Briefly, larvae were anesthetized
525 in E3 + Tricaine (E3 + 160 mg/l Tricaine (Sigma E10521) + 1.6 mM Tris pH 7) and mounted in
526 1.2-2% agarose (Invitrogen) in 35mm #1.5 glass-bottom dishes (CellVis D35-20-1.5N and
527 D35C4-20-1.5N). Larvae were mounted with the *xy* (sagittal) plane parallel to the coverslip and
528 excess agarose was trimmed from around the tail. E3 + Tricaine was the base for all
529 experimental media. For isotonic treatment, larvae were pre-incubated for 10-60 minutes in E3
530 + Tricaine + 270 mM sorbitol (Sigma). For myosin inhibition, larvae were pre-incubated for 15
531 minutes in E3 + Tricaine + 50 μM *para*-nitro-blebbistatin (Fisher).

532 Tissue laceration

533 Tissue laceration was performed as previously described (Kennard et al., 2021). Briefly,
534 needles were formed from solid borosilicate glass rods (Sutter BR-100-10) by pulling in a
535 Brown-Flaming type micropipette puller (Sutter P-87). This needle was used to impale the
536 larvae just dorsal and ventral to the notochord and dragged at a 45 degree angle towards the

537 posterior end of the tailfin to generate two cuts roughly following the orientation of actinotrichia
538 (**Figure 1B**).

539 Dextran entry experiments

540 For the fixed larvae experiments, typically 4-5 in parallel were anesthetized in E3 +
541 Tricaine (E3 + 160 mg/l Tricaine (Sigma E10521) + 1.6 mM Tris pH 7) and mounted in 1.2-2%
542 agarose (Invitrogen) in 35mm #1.5 glass-bottom dishes (CellVis D35-20-1.5N). Larvae were
543 mounted with the *xy* (sagittal) plane parallel to the coverslip and excess agarose was trimmed
544 from around the tail. Tricaine was added to all the experimental media. The chamber then was
545 filled with one of three media: isotonic sorbitol, hypotonic E3, or blebbistatin (as described
546 above). Tailfins of the larvae were lacerated (as described above) and were incubated (pulse)
547 with 2mg/ml 10 kDa dextran [Alexa fluor 680 (D34680) & Alexa fluor 488 (D22910)] for 3
548 minutes following a 0, 7, or 17 minute wait time (chase). Next, the dextran was aspirated out of
549 the chamber and larvae were washed twice with 2 mL of E3 + Tricaine. Larvae were washed
550 twice with 60uL of 4% PFA (AA473479M, Fisher Sci Co) and were fixed with 30-60uL of 4%
551 PFA for 20-25 minutes at room temperature. Larvae washed twice in E3 + tricaine and imaged
552 in presence of E3 + Tricaine and were imaged (as described below) at room temperature.

553 For live experiments with dextran, larvae were mounted and prepared similar to the fixed
554 larvae experiment. Tailfins of the larvae were lacerated in presence of 2 mg/ml Alexa Fluor 488
555 dextran and incubated for further 7 minutes. Larvae washed twice in E3 + tricaine and imaged
556 in presence of E3 + Tricaine and were imaged (as described below) at room temperature.

557 Light microscopy and image acquisition

558 Images were acquired on a Nikon Ti2 inverted microscope with a piezo-z stage (Applied
559 Scientific Instruments PZ-2300-XY-FT), and attached to a Yokogawa CSU-W1 spinning-disk

560 confocal with Borealis attachment (Andor), with illumination supplied by a laser launch (Vortran
561 VersaLase) with 50 mW 488 nm and 50 mW 561 nm diode lasers (Vortran Stradus). Filters
562 used included a 405/488/561/640/755 penta-band dichroic (Andor), a 488/561 dual-band
563 emission filter (Chroma ZET488/561m) for rapid dual-color imaging, and single-band GFP, RFP,
564 and far red filters for single-color imaging (Chroma 535/50m, 595/50m, and 700/75
565 respectively). An Apo 40x NA 1.25 water immersion objective was used for imaging (Nikon).
566 Temperature control for live imaging was maintained with a resistive heating stage insert
567 (Warner DH-40iL) with a temperature controller (Warner CL-100). Images were acquired on a
568 back-thinned EMCCD camera (Andor DU888 iXon Ultra) in 16-bit mode without binning.
569 Equipment was controlled using MicroManager v1.4.23 (Edelstein et al., 2010).

570 Electron microscopy and histology

571 Larvae were anesthetized in a 35-mm plastic petri dish with E3 + Tricaine and lacerated
572 under a dissection microscope as previously described (Kennard et al., 2021). At 2, 7, or 20
573 minutes post wounding, the tail was amputated just posterior to the yolk sac extension and the
574 tail was immediately transferred with a flame-polished glass Pasteur pipette to 1.8 ml of freshly
575 prepared fixation solution (1.5% Paraformaldehyde, 1.5% Glutaraldehyde, 0.1 M sodium
576 cacodylate pH 7.4). Samples were fixed for 2-6 hours at room temperature, then washed 3
577 times for 10 minutes with gentle rotation in 0.1 M sodium cacodylate (all subsequent washes
578 were performed with gentle rotation). Samples were stained with 1% (w/v) osmium tetroxide in
579 0.1 M sodium cacodylate for 2 hours at room temperature, washed 3 x 10 minutes with Type I
580 water (MilliQ), then incubated in 1% (w/v) Uranyl acetate in water overnight at 4°C. Samples
581 were dehydrated with successive 10 minute washes in an ethanol series (30, 40, 50, 60, 70, 80,
582 90, 95, 100, 100%) followed by two 10 minute washes in freshly opened acetone (Fisher).
583 Samples were infiltrated for 1 h at room temperature in acetone with 33%(v/v) EMbed 812 resin,

584 freshly prepared without accelerator (at a ratio of 22.6 g EMbed812 : 16.1 g DDSA : 9.8 g NMA,
585 all from Electron Microscopy Sciences), followed by 1 h with 67% (v/v) resin in acetone, then 1 h
586 in 100% resin, and then infiltrated overnight with fresh 100% resin. Samples were then
587 incubated in resin with accelerator added (same resin with 2.5-3% (w/w) BDMA) for 2 h at room
588 temperature. Samples were flat-embedded in a minimal amount of resin and baked overnight at
589 60 °C, and then hardened samples were cut out and re-embedded in fresh resin to orient the
590 tails with the xz (coronal) plane parallel to the cutting plane. Re-embedded samples were baked
591 at 60 °C for 48 hours.

592 Samples were trimmed with razor blades and sections were cut on a RMC PT-XL
593 ultramicrotome. Wrinkles were removed by brief exposure to chloroform vapor. For electron
594 microscopy, 60 nm (silver-grey) sections were cut using a diamond knife (Diatome Ultra 45°)
595 and picked up on freshly plasma-treated copper slot grids with carbon-formvar coating (Electron
596 Microscopy Sciences). For histology, ribbons of thick 500 nm sections were cut with a histo
597 diamond knife (Diatome) and picked up onto ethanol cleaned pieces of #1.5 coverslip cut with a
598 diamond pen to fit in the knife boat. To facilitate cutting serial sections, a dilute preparation of
599 rubber cement in rubber cement solvent was sparingly applied to the top and bottom of the
600 block.

601 Electron microscopy sections were post-stained with UranylLess (EMS 22409) for 1
602 minute and then 3% Lead Citrate (EMS 22410) for 6 minutes, and imaged on a Philips CM100
603 electron microscope at 80 kV with an Olympus Morada camera with iTEM software (Olympus).

604 Histology sections were stained for 30 s at 100 °C with azure B and basic fuchsin in
605 sodium tetraborate as previously described (Morikawa et al., 2018) and mounted on glass slides
606 in Permount (Thermo), which cured after 48 h at room temperature. After curing, excess
607 Permount was removed from samples with a razor blade. Samples were imaged on a Zeiss
608 Axioplan 2 upright microscope with brightfield imaging with a 100x NA 1.4 Plan Apo objective
609 and an oil immersion condenser (NA 1.4). Images were acquired using a Nikon D3100 DSLR

610 camera in RAW mode attached with a 2x relay lens. The camera was controlled using an
611 intervalometer. To avoid blur, exposure times were set to roughly 1/500 s, and the camera
612 mount was rotated with each acquisition to maximize the amount of tailfin present in the field of
613 view. Vignetting was computationally removed by subtracting a background image and adding a
614 constant offset to each frame. Images of serial sections were montaged and aligned using
615 TrakEM2 (Cardona et al., 2012). Cells were reconstructed by manual tracing in napari, and
616 reconstructions were visualized in ChimeraX (Goddard et al., 2018; Sofroniew et al., 2020).

617 **Surface projection and computational isolation of superficial and**
618 **basal layers**

619 To interpret dynamics within the basal layer, an alternative to maximum intensity
620 projection was needed that would incorporate signal from just one side of the larva, and also
621 separate the signal from basal and superficial levels of the epidermis. To this end we adapted
622 the surface projection algorithm from the SurfCut ImageJ plugin (Erguvan et al., 2019),
623 incorporating additional preprocessing steps and achieving increased processing speed by
624 translating the algorithm to GPU programming. Briefly, raw data in the form of XY(C)ZT stacks
625 were separated into individual XYZ stacks for each timepoint and channel, which were then
626 background subtracted and flat-field corrected using fluorescent flat images collected as
627 specified in (Model and Blank, 2006). The fluorescence of the flat was roughly matched to the
628 intensity of the signal in the image, and then the corrected images were multiplied by a constant
629 gain factor specific for each channel (20,000 for mCherry and 8000 for cdh1-sfGFP). Corrected
630 stacks were then deconvolved with Huygens software (SVI) using constrained maximum-
631 likelihood estimation and empirically measured point-spread functions specific for each channel.
632 Following deconvolution, a surface projection of the mCherry signal from basal cells was
633 generated using the SurfCut algorithm, rewritten to run on a GPU (Nvidia Titan Xp) using CLIJ2

634 (Haase et al., 2020). Unlike the original SurfCut algorithm, in which the threshold for detection of
635 the surface was manually specified, in this custom implementation the signal was smoothed
636 using a median filter and a Gaussian filter, and then thresholded using Otsu's method. In
637 parallel, the logarithm was applied to the smoothed image to create a second thresholded mask,
638 and the union of the two masks was used; this step improved the thresholding of lower intensity
639 regions.

640 The mask generated by SurfCut from the mCherry signal (restricted to the basal layer)
641 was then used directly to isolate the E-cadherin signal from the basal layer. To isolate the
642 superficial layer, the mask was translated towards the outside of the fish in the z direction by 6
643 μm .

644 Fissure detection

645 Confocal timeseries of 3 dpf *TgBAC(ΔNp63:Gal4); Tg(UAS:mCherry)* larvae were
646 processed for surface projection as described above. Following surface projection, movies were
647 registered using previously-developed custom python code (Kennard and Theriot, 2020);
648 registration transformations were computed on a 300 x 1024-pixel or 300 x 300-pixel (columns x
649 rows) subimage furthest away from the wound. A straight line was drawn manually in Fiji to
650 mark the position and orientation of the anterior-posterior axis of the embryo. Movies were
651 spatially smoothed using a 5x5 median filter, and ridges were detected using Frangi's algorithm
652 implemented in MATLAB (Frangi et al., 1998; Kroon, 2010). A two-pass approach was used to
653 select the Structure Sensitivity Factor (parameter c in Frangi's original paper): the algorithm was
654 first run on the final 10 frames of each movie, when fissures were certain to be prevalent in the
655 image, with c chosen according to $c^* = 0.5 \times (\text{median}(H) + 10 \times \text{MAD}(H))$, where H is the
656 Hessian norm of the image and MAD the median absolute deviation. The values of c^* from each

657 of those 10 frames were averaged together and used as the parameter choice for the second
658 pass through the entire movie, including regions in which little fissuring had occurred.

659 The Frangi ridge detector returns a value between 0 and 1 for each pixel that roughly
660 corresponds to the probability that the pixel is part of a ridge. To generate a fissure kymograph,
661 the anterior-posterior axis was manually defined, with the origin set at the wound site. The ridge
662 detector's output at each pixel was binned along the anterior-posterior axis in 5 or 10 μm
663 increments by projecting each pixel's coordinate onto the anterior-posterior axis line. Fissure
664 largely propagated along the anterior-posterior axis, consistent with previous analysis of the
665 propagation of cell movement in the tissue (Kennard and Theriot, 2020), justifying this
666 approach. Ridge detector output for pixels in each 10 μm bin were averaged to generate a
667 measurement at each time point at a given distance from the wound, which was visualized as a
668 kymograph using custom MATLAB scripts (version 2018b, MathWorks).

669 Quantification of fissure formation and propagation

670 Fissures kymographs were prepared from confocal timeseries of 3 dpf
671 *TgBAC(ΔNp63:Gal4); Tg(UAS:mCherry)* larvae as described above. The fissure kymograph for
672 each larva was evaluated using a custom Matlab script (version 2018b, MathWorks) by 3
673 independent researchers, who were blinded to the experimental condition. First, the kymograph
674 image was converted into discrete points that marked the appearance of fissures. This
675 conversion took advantage of the fact that fissures persisted to the end of the movie. Therefore,
676 the fissure signal at a given distance from the wound over time approximated a step function.
677 For each distance increment, a “transition point” was assigned at the time when the fissure
678 index was half maximal (**Figure S2B, top**).

679 Each larva was scored for fissure formation based on transition points overlaid on the
680 original fissure kymograph. Kymographs were considered negative if the fissure index

681 consistently decreased throughout the time-lapse and most transition points occurred at t=0
682 (**Figure S2B, left**). Kymographs with fissures had a clear increase in fissure index at some point
683 after wounding, indicated by transition points falling on a line with positive time-intercept and
684 positive slope (**Figure S2B, right**).

685 The distance, initiation time, and speed of fissure propagation were determined from
686 each kymograph using a guided linear fit of the transition points. Each researcher marked the
687 farthest distance of linear propagation and removed obvious outliers. A linear least-squares fit
688 was performed on the remaining transition points within the linear region. Time was considered
689 the response variable in order to properly fit short-distance, rapid propagation. Fits with slope
690 below 0 or above 100 $\mu\text{m}/\text{min}$ were excluded and the remaining parameters averaged between
691 researchers ($n \geq 2$).

692 Bleaching correction

693 The signal from *cdh1-sfGFP*-expressing larvae faded quickly during imaging. To
694 emphasize analysis of the spatial organization of E-cadherin rather than changes in signal
695 levels (which could be due to photobleaching or protein degradation), images were bleach-
696 corrected using the “Bleach Correction” function in Fiji, using the Simple Ratio Method with a
697 Background level of 0.

698 Endosome quantification

699 The wounded area was determined by hand-drawing the ROI around the wound and
700 converting it to a mask. The mask was then multiplied to the images. The maximum Z-projection
701 images were background corrected using a top-hat filter. The background corrected images
702 were segmented using the threshold computed by the function ‘graythresh’ in MATLAB. After

703 finding the endosome size using convex area function, endosomes were classified into three
704 size groups: less than 1 μm^2 , 1-5 μm^2 and greater than 5 μm^2 . Endosome number was
705 averaged over the 5 minute interval.

706 Code availability

707 Code used for image processing and analysis will be available on Gitlab
708 (https://gitlab.com/theriot_lab/hydraulic-fissures-wound-healing) prior to publication.

709 Bibliography

710 Abreu-Blanco, M.T., Verboon, J.M., Liu, R., Watts, J.J., Parkhurst, S.M., 2012. *Drosophila*
711 embryos close epithelial wounds using a combination of cellular protrusions and an
712 actomyosin purse string. *J Cell Sci* 125, 5984–5997. <https://doi.org/10.1242/jcs.109066>

713 Alvers, A.L., Ryan, S., Scherz, P.J., Huisken, J., Bagnat, M., 2014. Single continuous lumen
714 formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling.
715 *Development* 141, 1110–1119. <https://doi.org/10.1242/dev.100313>

716 Arora, P., Dongre, S., Raman, R., Sonawane, M., 2020. Stepwise polarisation of developing
717 bilayered epidermis is mediated by aPKC and E-cadherin in zebrafish. *eLife* 9, e49064.
718 <https://doi.org/10.7554/eLife.49064>

719 Barker, A.T., Jaffe, L.F., Venable, J.W., 1982. The glabrous epidermis of cavies contains a
720 powerful battery. *Am. J. Physiol.-Regul. Integr. Comp. Physiol.* 242, R358–R366.
721 <https://doi.org/10.1152/ajpregu.1982.242.3.R358>

722 Bonfanti, A., Duque, J., Kabla, A., Charras, G., 2022. Fracture in living tissues. *Trends Cell Biol.*
723 <https://doi.org/10.1016/j.tcb.2022.01.005>

724 Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M.,
725 Tomancak, P., Hartenstein, V., Douglas, R.J., 2012. TrakEM2 Software for Neural
726 Circuit Reconstruction. *PLoS ONE* 7, e38011.
727 <https://doi.org/10.1371/journal.pone.0038011>

728 Casares, L., Vincent, R., Zalvidea, D., Campillo, N., Navajas, D., Arroyo, M., Trepat, X., 2015.
729 Hydraulic fracture during epithelial stretching. *Nat. Mater.* 14, 343–351.
730 <https://doi.org/10.1038/nmat4206>

731 Chen, T., Zhao, H., Gao, L., Song, L., Yang, F., Du, J., 2019. Hypotonicity promotes epithelial
732 gap closure by lamellipodial protrusion. *Prog. Biophys. Mol. Biol.* 148, 60–64.
733 <https://doi.org/10.1016/j.pbiomolbio.2017.09.021>

734 Chugh, M., Munjal, A., Megason, S.G., 2022. Hydrostatic pressure as a driver of cell and tissue
735 morphogenesis. *Semin. Cell Dev. Biol.* <https://doi.org/10.1016/j.semcdb.2022.04.021>

736 Dumortier, J.G., Le Verge-Serandour, M., Tortorelli, A.F., Mielke, A., de Plater, L., Turlier, H.,
737 Maître, J.-L., 2019. Hydraulic fracturing and active coarsening position the lumen of the
738 mouse blastocyst. *Science* 365, 465–468. <https://doi.org/10.1126/science.aaw7709>

739 E3 medium, 2008. . *Cold Spring Harb. Protoc.* 2008, pdb.rec11305.
740 <https://doi.org/10.1101/pdb.rec11305>

741 Edelstein, A., Amodaj, N., Hoover, K., Vale, R., Stuurman, N., 2010. Computer Control of
742 Microscopes Using μ Manager. *Curr. Protoc. Mol. Biol.* 92, 14.20.1-14.20.17.
743 <https://doi.org/10.1002/0471142727.mb1420s92>

744 Eming, S.A., Martin, P., Tomic-Canic, M., 2014. Wound repair and regeneration: Mechanisms,
745 signaling, and translation. *Sci. Transl. Med.* 6, 265sr6.
746 <https://doi.org/10.1126/scitranslmed.3009337>

747 Enyedi, B., Jelcic, M., Niethammer, P., 2016. The Cell Nucleus Serves as a Mechanotransducer
748 of Tissue Damage-Induced Inflammation. *Cell* 165, 1160–1170.
749 <https://doi.org/10.1016/j.cell.2016.04.016>

750 Enyedi, B., Kala, S., Nikolich-Zugich, T., Niethammer, P., 2013. Tissue damage detection by
751 osmotic surveillance. *Nat. Cell Biol.* 15, 1123–1130. <https://doi.org/10.1038/ncb2818>

752 Enyedi, B., Niethammer, P., 2015. Mechanisms of epithelial wound detection. *Trends Cell Biol.*
753 25, 398–407. <https://doi.org/10.1016/j.tcb.2015.02.007>

754 Erguvan, Ö., Louveaux, M., Hamant, O., Verger, S., 2019. ImageJ SurfCut: a user-friendly
755 pipeline for high-throughput extraction of cell contours from 3D image stacks. *BMC Biol.*
756 17, 38. <https://doi.org/10.1186/s12915-019-0657-1>

757 Ferreira, F., Luxardi, G., Reid, B., Zhao, M., 2016. Early bioelectric activities mediate redox-
758 modulated regeneration. *Development* 143, 4582–4594.
759 <https://doi.org/10.1242/dev.142034>

760 Franco, J.J., Atieh, Y., Bryan, C.D., Kwan, K.M., Eisenhoffer, G.T., 2019. Cellular crowding
761 influences extrusion and proliferation to facilitate epithelial tissue repair. *Mol. Biol. Cell*
762 30, 1890–1899. <https://doi.org/10.1091/mbc.E18-05-0295>

763 Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A., 1998. Multiscale vessel
764 enhancement filtering, in: *Medical Image Computing and Computer-Assisted*
765 *Intervention*. Springer, Berlin, Heidelberg, pp. 130–137.
766 <https://doi.org/10.1007/BFb0056195>

767 Friedl, P., Mayor, R., 2017. Tuning Collective Cell Migration by Cell–Cell Junction Regulation.
768 *Cold Spring Harb. Perspect. Biol.* 9, a029199.
769 <https://doi.org/10.1101/cshperspect.a029199>

770 Fuchigami, T., Matsuzaki, T., Ihara, S., 2011. Exposure to External Environment of Low Ion
771 Concentrations is the Trigger for Rapid Wound Closure in *Xenopus laevis* Embryos.
772 *Zoolog. Sci.* 28, 633–641. <https://doi.org/10.2108/zsj.28.633>

773 Gault, W.J., Enyedi, B., Niethammer, P., 2014. Osmotic surveillance mediates rapid wound
774 closure through nucleotide release. *J. Cell Biol.* 207, 767–782.
775 <https://doi.org/10.1083/jcb.201408049>

776 Gillooly, D.J., Morrow, I.C., Lindsay, M., Gould, R., Bryant, N.J., Gaullier, J.-M., Parton, R.G.,
777 Stenmark, H., 2000. Localization of phosphatidylinositol 3-phosphate in yeast and
778 mammalian cells. *EMBO J.* 19, 4577–4588. <https://doi.org/10.1093/emboj/19.17.4577>

779 Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., Ferrin,
780 T.E., 2018. UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
781 *Protein Sci.* 27, 14–25. <https://doi.org/10.1002/pro.3235>

782 Haase, R., Royer, L.A., Steinbach, P., Schmidt, D., Dibrov, A., Schmidt, U., Weigert, M.,
783 Maghelli, N., Tomancak, P., Jug, F., Myers, E.W., 2020. CLIJ: GPU-accelerated image
784 processing for everyone. *Nat. Methods* 17, 5–6. <https://doi.org/10.1038/s41592-019-0650-1>

785 Harris, A.R., Peter, L., Bellis, J., Baum, B., Kabla, A.J., Charras, G.T., 2012. Characterizing the
786 mechanics of cultured cell monolayers. *Proc. Natl. Acad. Sci.* 109, 16449–16454.
787 <https://doi.org/10.1073/pnas.1213301109>

789 Hartmann, J., Wong, M., Gallo, E., Gilmour, D., 2020. An image-based data-driven analysis of
790 cellular architecture in a developing tissue. *eLife* 9, e55913.
791 <https://doi.org/10.7554/eLife.55913>

792 Helker, C.S.M., Schuermann, A., Karpanen, T., Zeuschner, D., Belting, H.-G., Affolter, M.,
793 Schulte-Merker, S., Herzog, W., 2013. The zebrafish common cardinal veins develop by
794 a novel mechanism: lumen ensheathment. *Development* 140, 2776–2786.
795 <https://doi.org/10.1242/dev.091876>

796 Hewlett, L., Prescott, A., Watts, C., 1994. The coated pit and macropinocytic pathways serve
797 distinct endosome populations. *J. Cell Biol.* 124, 689–703.
798 <https://doi.org/10.1083/jcb.124.5.689>

799 Huljev, K., Shampour, S., Pinheiro, D., Preußen, F., Steccari, I., Sommer, C.M., Heisenberg, C.-
800 P., 2022. A Hydraulic Feedback Loop Between Mesendoderm Cell Migration and
801 Interstitial Fluid Relocalization Promotes Embryonic Axis Formation in Zebrafish. *SSRN*.
802 <https://doi.org/10.2139/ssrn.4008562>

803 Hunter, M.V., Lee, D.M., Harris, T.J.C., Fernandez-Gonzalez, R., 2015. Polarized E-cadherin
804 endocytosis directs actomyosin remodeling during embryonic wound repair. *J. Cell Biol.*
805 210, 801–816. <https://doi.org/10.1083/jcb.201501076>

806 Kennard, A.S., Prinz, C.K., Labuz, E.C., Theriot, J.A., 2021. Wounding Zebrafish Larval
807 Epidermis by Laceration. *Bio-Protoc.* 11, e4260–e4260.

808 Kennard, A.S., Theriot, J.A., 2020. Osmolarity-independent electrical cues guide rapid response
809 to injury in zebrafish epidermis. *eLife* 9, e62386. <https://doi.org/10.7554/eLife.62386>

810 Koivusalo, M., Welch, C., Hayashi, H., Scott, C.C., Kim, M., Alexander, T., Touret, N., Hahn,
811 K.M., Grinstein, S., 2010. Amiloride inhibits macropinocytosis by lowering
812 submembranous pH and preventing Rac1 and Cdc42 signaling. *J. Cell Biol.* 188, 547–
813 563. <https://doi.org/10.1083/jcb.200908086>

814 Korkmazhan, E., Kennard, A.S., Garzon-Coral, C., Vasquez, C.G., Dunn, A.R., 2022. Tether-
815 guided lamellipodia enable rapid wound healing. *Biophys. J.* 121, 1029–1037.
816 <https://doi.org/10.1016/j.bpj.2022.02.006>

817 Krens, S.F.G., Veldhuis, J.H., Barone, V., Čapek, D., Maître, J.-L., Brodland, G.W., Heisenberg,
818 C.-P., 2017. Interstitial fluid osmolarity modulates the action of differential tissue surface
819 tension in progenitor cell segregation during gastrulation. *Development* 144, 1798–1806.
820 <https://doi.org/10.1242/dev.144964>

821 Kroon, D.-J., 2010. Hessian based Frangi Vesselness filter.

822 Kucerova, R., Walczysko, P., Reid, B., Ou, J., Leiper, L.J., Rajnicek, A.M., McCaig, C.D., Zhao,
823 M., Collinson, J.M., 2011. The role of electrical signals in murine corneal wound re-
824 epithelialization. *J. Cell. Physiol.* 226, 1544–1553. <https://doi.org/10.1002/jcp.22488>

825 Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant,
826 J.M., Yost, H.J., Kanki, J.P., Chien, C.-B., 2007. The Tol2kit: A multisite gateway-based
827 construction kit for Tol2 transposon transgenesis constructs. *Dev. Dyn.* 236, 3088–3099.
828 <https://doi.org/10.1002/dvdy.21343>

829 Lämmermann, T., Sixt, M., 2008. The microanatomy of T-cell responses. *Immunol. Rev.* 221,
830 26–43. <https://doi.org/10.1111/j.1600-065X.2008.00592.x>

831 Le Guellec, D., Morvan-Dubois, G., Sire, J.Y., 2004. Skin development in bony fish with
832 particular emphasis on collagen deposition in the dermis of the zebrafish (*Danio rerio*).
833 *Int. J. Dev. Biol.* 48, 217–231. <https://doi.org/10.1387/ijdb.15272388>

834 Marsal, M., Hernández-Vega, A., Pouille, P.-A., Martin-Blanco, E., 2021. Rab5ab-Mediated Yolk
835 Cell Membrane Endocytosis Is Essential for Zebrafish Epiboly and Mechanical
836 Equilibrium During Gastrulation. *Front. Cell Dev. Biol.* 9, 697097.

837 Martin, P., Lewis, J., 1992. Actin cables and epidermal movement in embryonic wound healing.
838 *Nature* 360, 179–183. <https://doi.org/10.1038/360179a0>

839 Model, M.A., Blank, J.L., 2006. Intensity calibration of a laser scanning confocal microscope
840 based on concentrated dyes. *Anal. Quant. Cytol. Histol.* 28, 253–261.

841 Mongera, A., Rowghanian, P., Gustafson, H.J., Shelton, E., Kealhofer, D.A., Carn, E.K.,
842 Serwane, F., Lucio, A.A., Giannoni, J., Campàs, O., 2018. A fluid-to-solid jamming
843 transition underlies vertebrate body axis elongation. *Nature* 561, 401–405.
844 <https://doi.org/10.1038/s41586-018-0479-2>

845 Moreau, H.D., Blanch-Mercader, C., Attia, R., Maurin, M., Alraies, Z., Sanséau, D., Malbec, O.,
846 Delgado, M.-G., Bousso, P., Joanny, J.-F., Voituriez, R., Piel, M., Lennon-Duménil, A.-
847 M., 2019. Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to
848 Hydraulic Resistance and Facilitates Space Exploration. *Dev. Cell* 49, 171–188.e5.
849 <https://doi.org/10.1016/j.devcel.2019.03.024>

850 Morikawa, S., Sato, A., Ezaki, T., 2018. A simple, one-step polychromatic staining method for
851 epoxy-embedded semithin tissue sections. *Microscopy* 67, 331–344.
852 <https://doi.org/10.1093/jmicro/dfy037>

853 Munjal, A., Hannezo, E., Tsai, T.Y.-C., Mitchison, T.J., Megason, S.G., 2021. Extracellular
854 hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis. *Cell* 184,
855 6313–6325.e18. <https://doi.org/10.1016/j.cell.2021.11.025>

856 Nunan, R., Campbell, J., Mori, R., Pitulescu, M.E., Jiang, W.G., Harding, K.G., Adams, R.H.,
857 Nobes, C.D., Martin, P., 2015. Ephrin-Bs Drive Junctional Downregulation and Actin
858 Stress Fiber Disassembly to Enable Wound Re-epithelialization. *Cell Rep.* 13, 1380–
859 1395. <https://doi.org/10.1016/j.celrep.2015.09.085>

860 O'Brien, G.S., Rieger, S., Wang, F., Smolen, G. a., Gonzalez, R.E., Buchanan, J., Sagasti, A.,
861 2012. Coordinate development of skin cells and cutaneous sensory axons in zebrafish.
862 *J. Comp. Neurol.* 520, 816–831. <https://doi.org/10.1002/cne.22791>

863 Popliment, H., Georgantzoglou, A., Boulch, M., Walker, H.A., Coombs, C., Papaleonidopoulou,
864 F., Sarris, M., 2020. Neutrophil Swarming in Damaged Tissue Is Orchestrated by
865 Connexins and Cooperative Calcium Alarm Signals. *Curr. Biol.* 30, 2761–2776.e7.
866 <https://doi.org/10.1016/j.cub.2020.05.030>

867 Prakash, V.N., Bull, M.S., Prakash, M., 2021. Motility-induced fracture reveals a ductile-to-brittle
868 crossover in a simple animal's epithelia. *Nat. Phys.* 17, 504–511.
869 <https://doi.org/10.1038/s41567-020-01134-7>

870 Rasmussen, J.P., Sack, G.S., Martin, S.M., Sagasti, A., 2015. Vertebrate Epidermal Cells Are
871 Broad-Specificity Phagocytes That Clear Sensory Axon Debris. *J. Neurosci.* 35, 559–
872 570. <https://doi.org/10.1523/JNEUROSCI.3613-14.2015>

873 Reid, B., Song, B., McCaig, C.D., Zhao, M., 2005. Wound healing in rat cornea: the role of
874 electric currents. *FASEB J.* 19, 379–386. <https://doi.org/10.1096/fj.04-2325com>

875 Richardson, R., Metzger, M., Knyphausen, P., Ramezani, T., Slanchev, K., Kraus, C.,
876 Schmelzer, E., Hammerschmidt, M., 2016. Re-epithelialization of cutaneous wounds in
877 adult zebrafish uses a combination of mechanisms at play during wound closure in
878 embryonic and adult mammals. *Development* 143, 2077–2088.
879 <https://doi.org/10.1242/dev.130492>

880 Robinson, K.R., 1983. Endogenous Electrical Current Leaves the Limb and Prelimb Region of
881 the *Xenopus* Embryo. *Dev. Biol.* 97, 203–211.

882 Rothenberg, K.E., Fernandez-Gonzalez, R., 2019. Forceful closure: cytoskeletal networks in
883 embryonic wound repair. *Mol. Biol. Cell* 30, 1353–1358.
884 <https://doi.org/10.1091/mbc.E18-04-0248>

885 Rutkowski, J.M., Moya, M., Johannes, J., Goldman, J., Swartz, M.A., 2006. Secondary
886 lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the
887 protective role of MMP-9. *Microvasc. Res.* 72, 161–171.
888 <https://doi.org/10.1016/j.mvr.2006.05.009>

889 Savost'yanov, G.A., Grefner, N.M., 1998. Three-dimensional histoarchitectonics of the larval
890 epidermis of the grass frog. *Ontogeny* 29, 31–37.

891 Scallan, J., Huxley, V.H., Korthuis, R.J., 2010. Capillary Fluid Exchange: Regulation, Functions,
892 and Pathology, Integrated Systems Physiology: from Molecule to Function to Disease.
893 Morgan & Claypool Life Sciences, San Rafael (CA).

894 Schreiber, S., Konradt, M., Groll, C., Scheid, P., Hanauer, G., Werling, H.-O., Josenhans, C.,
895 Suerbaum, S., 2004. The spatial orientation of *Helicobacter pylori* in the gastric mucus.
896 *Proc. Natl. Acad. Sci. U. S. A.* 101, 5024–5029.
897 <https://doi.org/10.1073/pnas.0308386101>

898 Serna-Morales, E., Sánchez-Sánchez, B.J., Marcotti, S., Bhargava, A., Dragu, A., Hirvonen,
899 L.M., Díaz-de-la-Loza, M.-C., Mink, M., Cox, S., Rayfield, E., Stramer, B.M., 2022.
900 Extracellular matrix assembly stress drives *Drosophila* central nervous system
901 morphogenesis. *bioRxiv*. <https://doi.org/10.1101/2022.04.18.488510>

902 Skokan, T.D., Hobmayer, B., McKinley, K.L., Vale, R.D., 2021. Mechanical stretch regulates
903 macropinocytosis in *Hydra vulgaris*. *bioRxiv*. <https://doi.org/10.1101/2021.12.03.471193>

904 Sofroniew, N., Lambert, T., Evans, K., Nunez-Iglesias, J., Yamauchi, K., Solak, A.C., Bokota,
905 G., ziyangczi, Buckley, G., Winston, P., Tung, T., Pop, D.D., Hector, Freeman, J.,
906 Bussonnier, M., Boone, P., Royer, L., Har-Gil, H., Axelrod, S., Rokem, A., Bryant,
907 Kiggins, J., Huang, M., Vemuri, P., Dunham, R., Manz, T., jakirkham, Wood, C.,
908 Siqueira, A. de, Chopra, B., 2020. napari/napari: 0.3.8rc2.
909 <https://doi.org/10.5281/zenodo.4048613>

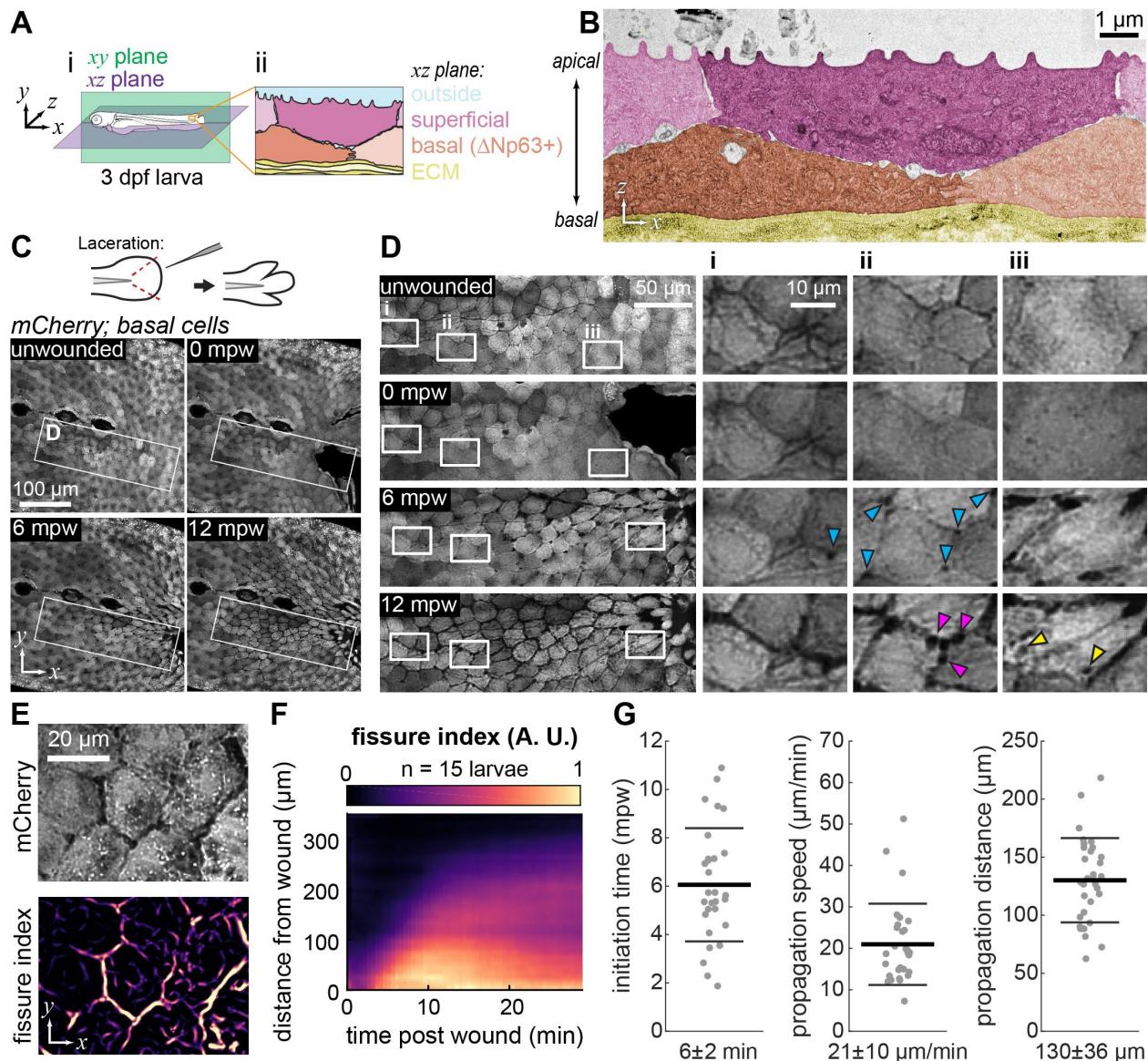
910 Sonawane, M., Carpio, Y., Geisler, R., Schwarz, H., Maischein, H.-M., Nuesslein-Volhard, C.,
911 2005. Zebrafish *penner/lethal giant larvae* 2 functions in hemidesmosome formation,
912 maintenance of cellular morphology and growth regulation in the developing basal
913 epidermis. *Development* 132, 3255–3265. <https://doi.org/10.1242/dev.01904>

914 Sun, Y.-H., Reid, B., Fontaine, J.H., Miller, L.A., Hyde, D.M., Mogilner, A., Zhao, M., 2011.
915 Airway epithelial wounds in rhesus monkey generate ionic currents that guide cell
916 migration to promote healing. *J. Appl. Physiol.* 111, 1031–1041.
917 <https://doi.org/10.1152/japplphysiol.00915.2010>

918 Tetley, R.J., Staddon, M.F., Heller, D., Hoppe, A., Banerjee, S., Mao, Y., 2019. Tissue fluidity
919 promotes epithelial wound healing. *Nat. Phys.* 15, 1195–1203.
920 <https://doi.org/10.1038/s41567-019-0618-1>

921 Veltman, D.M., Williams, T.D., Bloomfield, G., Chen, B.-C., Betzig, E., Insall, R.H., Kay, R.R.,
922 2016. A plasma membrane template for macropinocytic cups. *eLife* 5, e20085.
923 <https://doi.org/10.7554/eLife.20085>

924 West, M.A., Bretscher, M.S., Watts, C., 1989. Distinct endocytotic pathways in epidermal growth
925 factor-stimulated human carcinoma A431 cells. *J. Cell Biol.* 109, 2731–2739.
926 <https://doi.org/10.1083/jcb.109.6.2731>

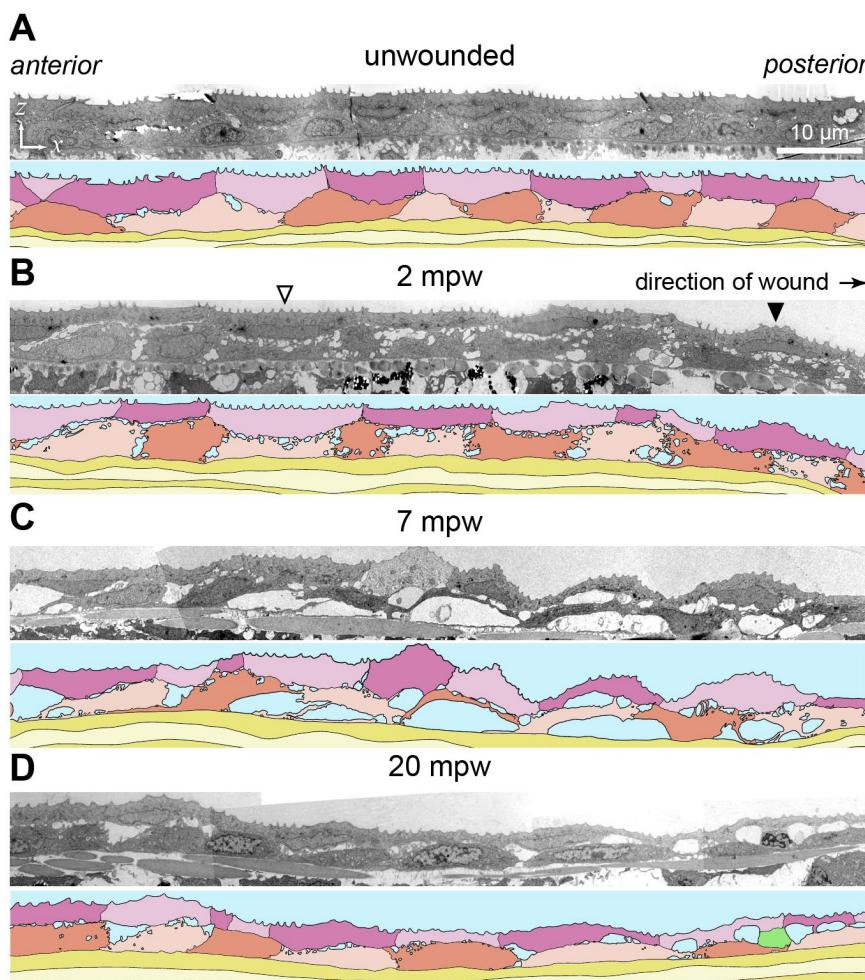

927 Yamaguchi, N., Colak-Champollion, T., Knaut, H., 2019. zGrad is a nanobody-based degron
928 system that inactivates proteins in zebrafish. *eLife* 8, 1–24.
929 <https://doi.org/10.7554/elife.43125>

930 Yoo, S.K., Freisinger, C.M., LeBert, D.C., Huttenlocher, A., 2012. Early redox, Src family kinase,
931 and calcium signaling integrate wound responses and tissue regeneration in zebrafish.
932 *J. Cell Biol.* 199, 225–34. <https://doi.org/10.1083/jcb.201203154>

933

934 Figures

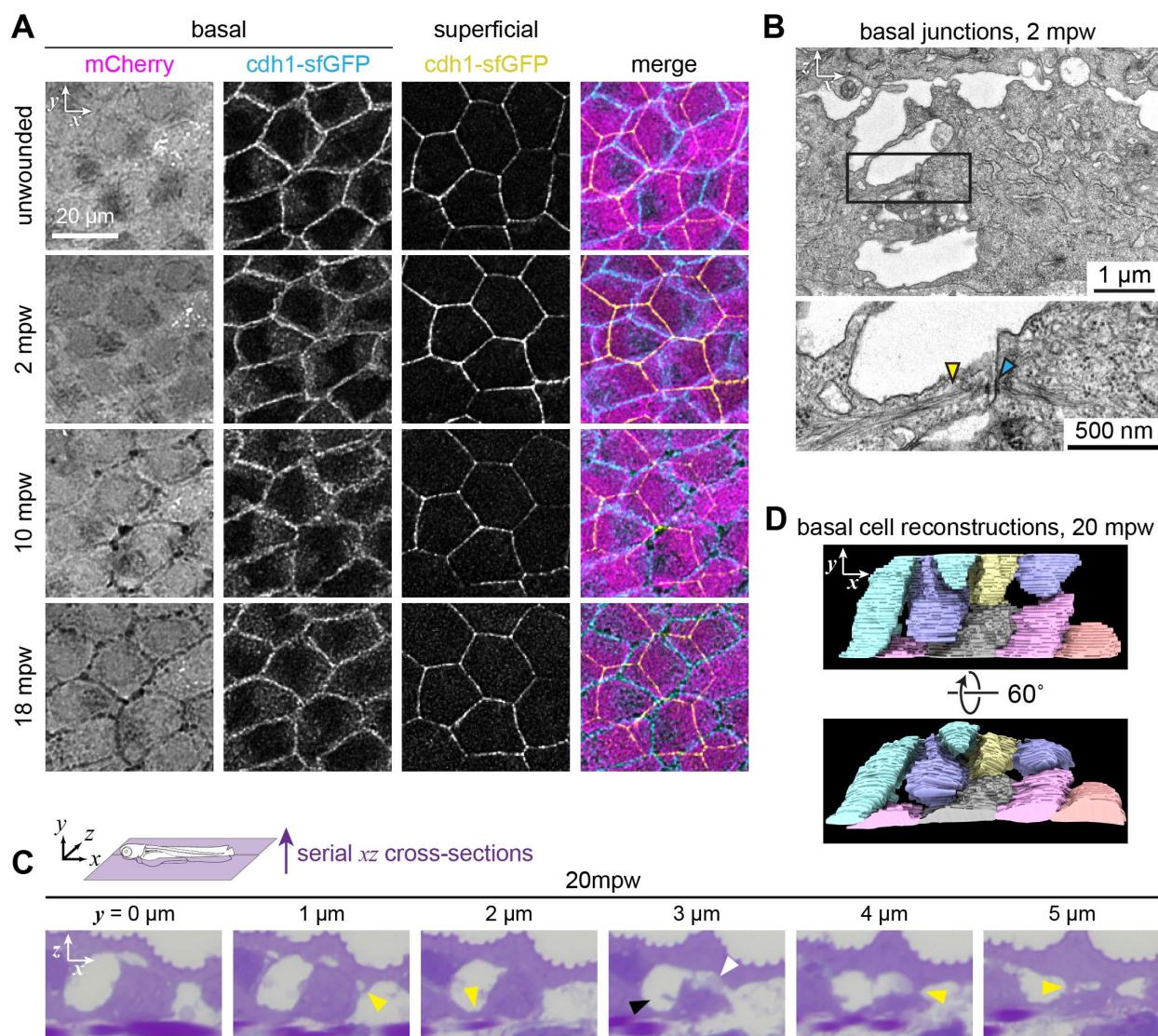
935 Figure 1



936 **Figure 1. Fissures propagate between epidermal cells during wound healing.**

937 **(A)** (i) Schematic of a 3 dpf zebrafish larva defining the *xy* (sagittal) and *xz* (coronal) planes
938 used throughout the paper. (ii) *xz* section through the larval epidermis shows the bilayered
939 structure, formed of superficial layer and the basal layer (specified by the $\Delta Np63$ promoter)
940 resting upon the extracellular matrix (ECM).

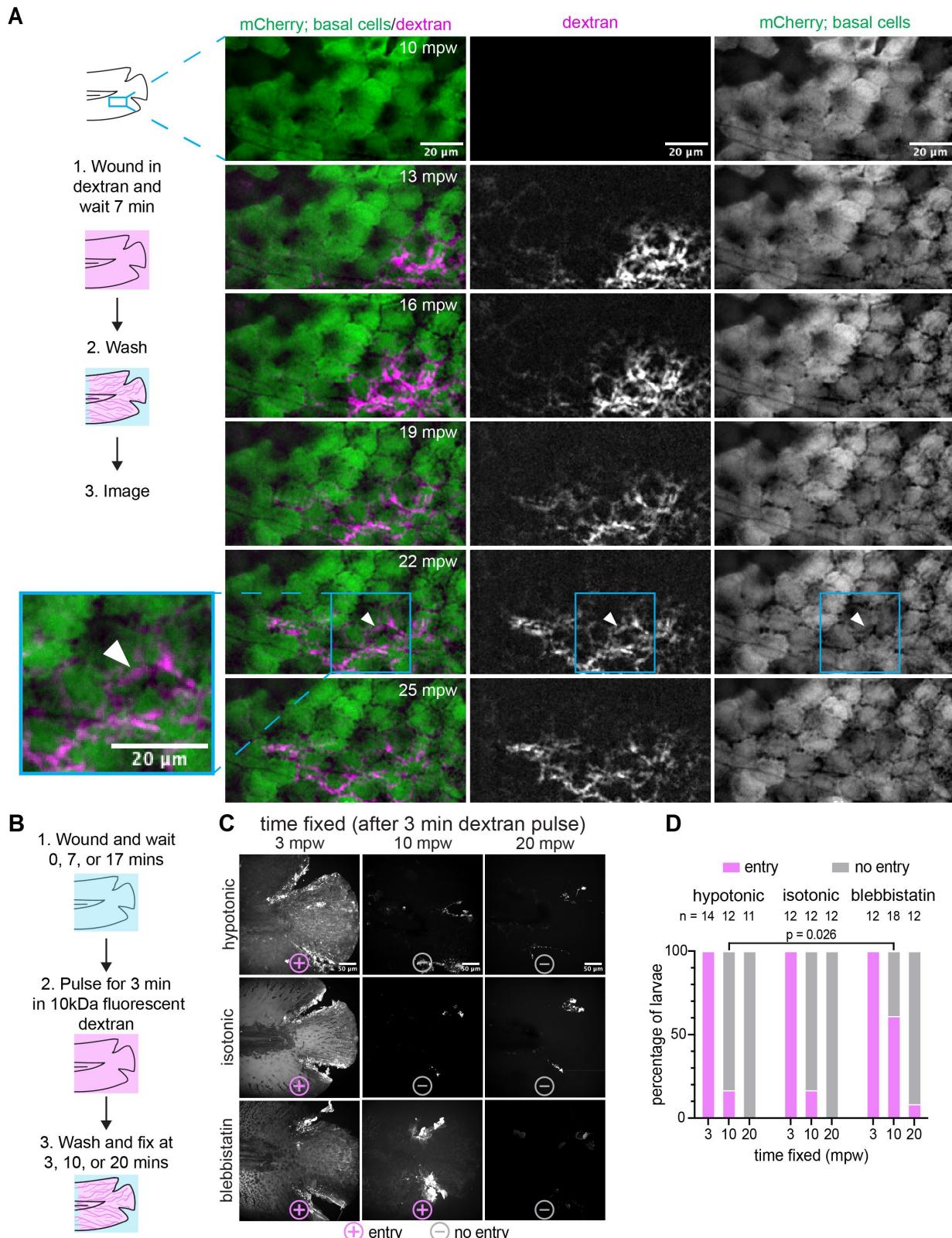
941 (B) Electron micrograph of unwounded 3 dpf epidermis, pseudo-colored according to (Aii).
942 (C) Maximum intensity projections of 3 dpf larva expressing cytoplasmic mCherry in basal cells
943 (*TgBAC(ΔNp63:Gal4); Tg(UAS:mCherry)*) at different time points after wounding. Schematic of
944 the laceration procedure is illustrated at the top.
945 (D) Insets from (C) revealing the propagation of fissures between basal cells over time after
946 wounding. Blue arrowheads indicate the appearance of dark puncta at tricellular junctions that
947 precedes full fissuring. Yellow arrowheads indicate large dark puncta that appear within cells
948 after fissuring has occurred. Magenta arrowheads highlight the irregular, “beads-on-a-string”
949 morphology that fissures develop over time. Insets i-iii follow specific cells over time as they
950 migrate to the wound. The cell followed in inset iii migrates the most, consistent with its position
951 nearest the wound.
952 (E) Example of the fissure index image computed from the basal cell mCherry signal.
953 (F) Kymograph of average fissure index demonstrating initial linear propagation of fissuring
954 away from the wound followed by slower propagation after about 12 minutes. Fissure index is
955 averaged over 15 larvae.
956 (G) Quantified fissure dynamics, including the initiation time of fissuring, the propagation speed
957 during the initial linear propagation interval, and the spatial extent of linear propagation. Each
958 dot represents an individual larva ($n \geq 29$), and the thick and thin bars represent the mean ± 1
959 standard deviation.


960 **Figure 2**

961 **Figure 2. Gaps between basal cells develop soon after wounding.**

962 **(A-D)** Electron micrograph xz planes of 3 dpf epidermis before wounding (A) or at various times
963 after wounding (B-D). Each micrograph is accompanied by a camera lucida drawing to guide the
964 eye. Coloring of camera lucida drawings matches that in Figure 1A; the cell in green in panel (D)
965 is an immune cell. Gaps between cells emerge as early as 2 mpw, coalesce by 7 mpw, and by
966 20 mpw they appear at cell-cell junctions at the interface between superficial and basal cells.
967 White arrowhead in (B): superficial cell further away from the wound retains the flat apical
968 surface and curved basal surface seen in unwounded cells. Black arrowhead in (B): superficial
969 cell closer to the wound has an inverted shape, with a curved apical surface and a flattened
970 basal surface.

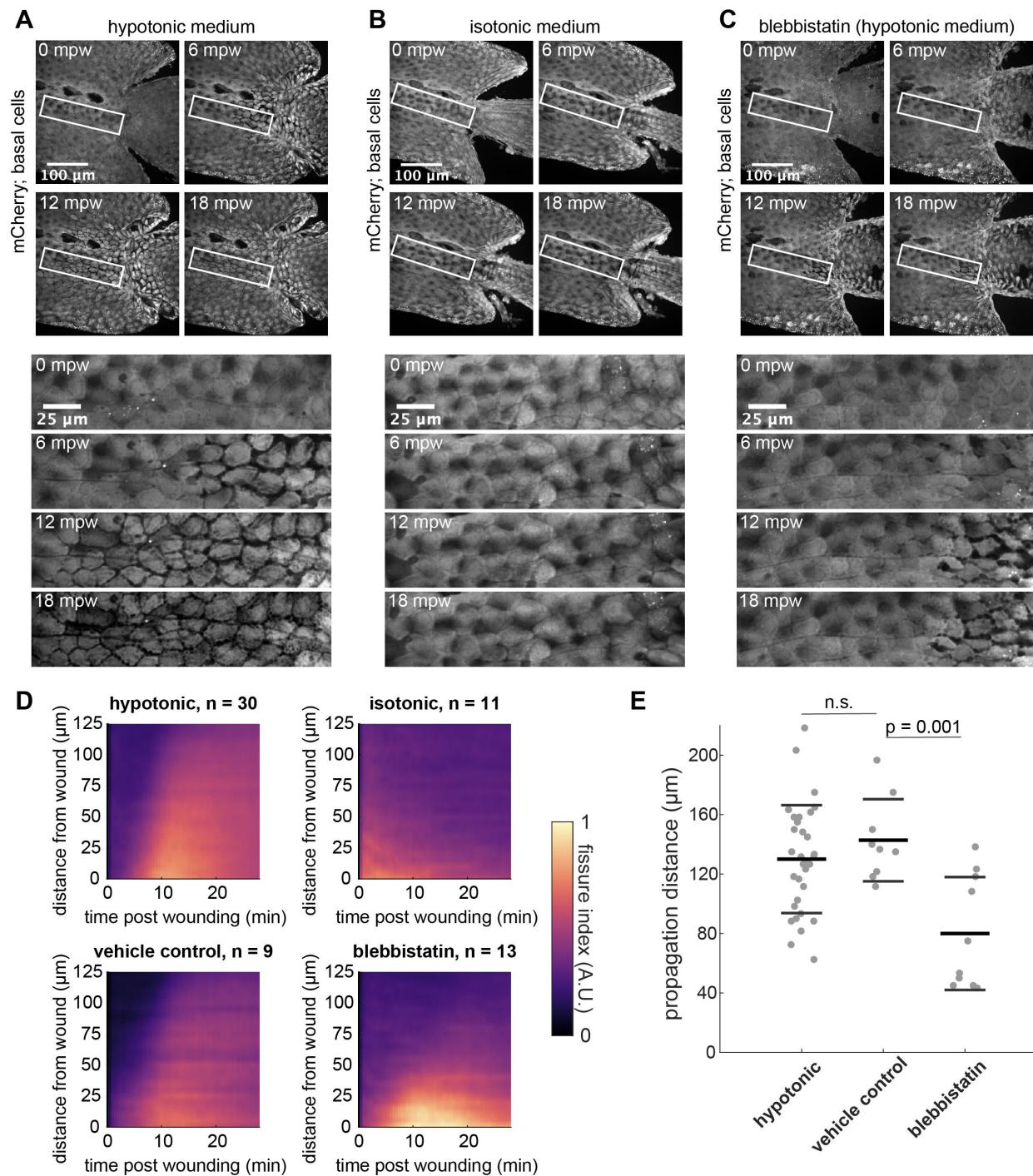
971 **Figure 3**



972 **Figure 3. Fissured cells remain connected through cell-cell junctions.**

973 **(A)** Surface projections (see Methods) from a timelapse following wounding of a 3 dpf larvae
974 expressing mCherry in basal cells and E-cadherin in basal and superficial cells
975 (*TgBAC(ΔNp63:Gal4)*; *Tg(UAS:mCherry)*; *TgBAC(cdh1:cdh1-sfGFP)*). E-cadherin remains
976 localized at the cell periphery in both layers, despite fissuring in the basal layer. To facilitate
977 comparison of the distribution of E-cadherin, image intensity was bleach-corrected at each
978 timepoint by rescaling (see Methods).

979 **(B)** Electron micrograph of the cell-cell junction between two basal cells at 2 mpw. Blue
980 arrowhead in the inset indicates the electron-dense staining characteristic of desmosomal
981 plaques, and the yellow arrowhead indicates intermediate filaments.
982 **(C)** Serial histological sections of epidermis at 20 mpw, taken at 1 μ m increments along the y
983 (dorsal-ventral) axis. White arrowhead: the gaps on either side of the basal cells are revealed in
984 the $y = 3 \mu$ m section to be contiguous across the apical surface of the cell. Black arrowhead:
985 large rounded gap between two basal cells. Yellow arrowheads: tethers connect basal cells to
986 other basal cells and to superficial cells.
987 **(D)** 3D reconstruction of basal cells from 20 mpw larva shown in (C). Gaps between cells
988 resemble fissures in confocal microscopy and are contiguous with each other along the
989 interface between basal and superficial layers.


990 Figure 4

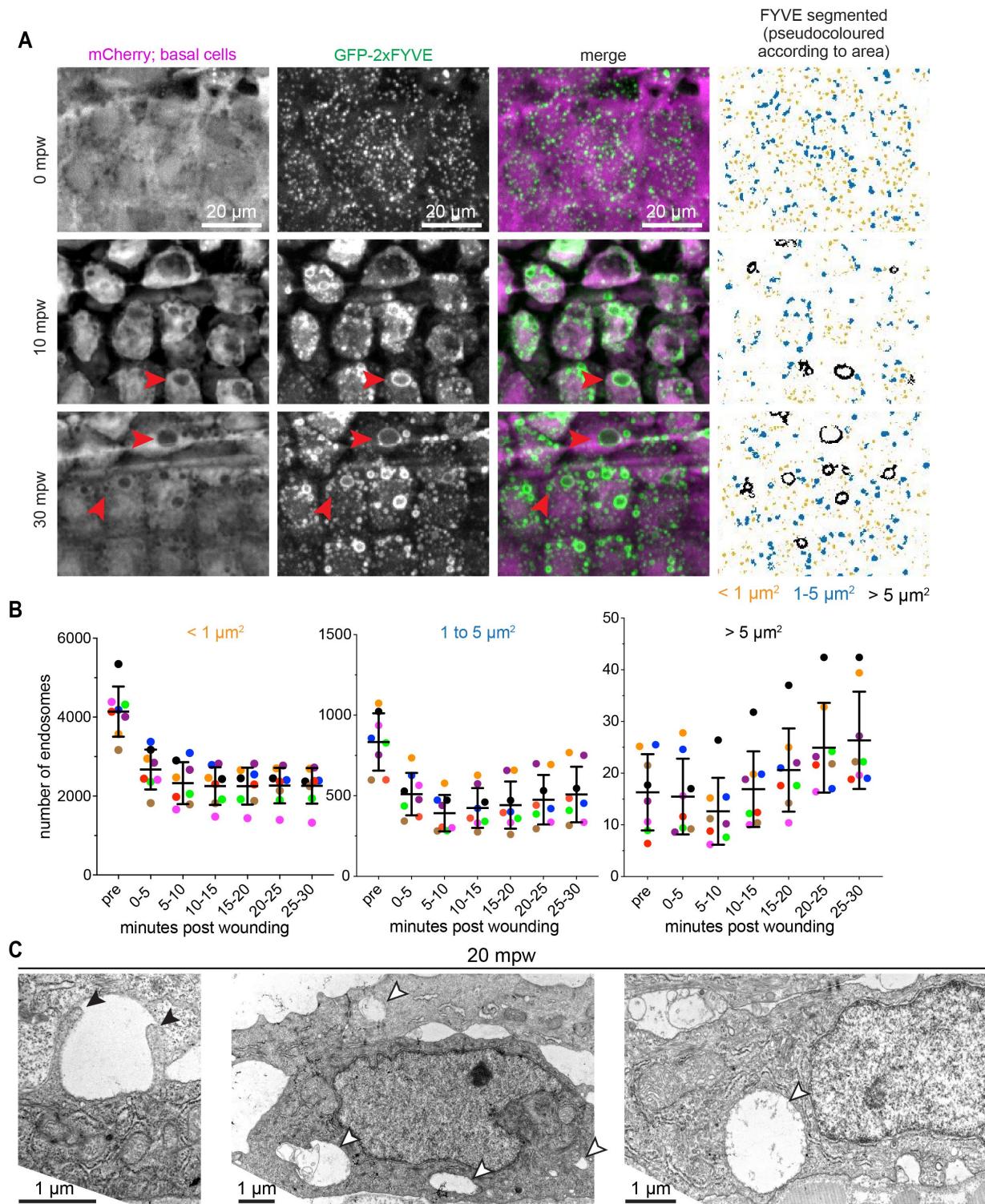
991 Figure 4. External dextran enters via the open wound *in vivo* and in fixed larvae

992 **(A)** (Left) Schematic of the experimental workflow. Briefly, the larva was wounded in the
993 presence of TMR-Dextran and incubated for 7 minutes. Larva was then washed with E3 media
994 for roughly 3 minutes and was imaged live with 1 minute intervals. White arrowhead at 22 mpw
995 illustrates an example of dextran flow across the middle of a cell rather than along a cell
996 boundary, possibly due to flow across the apical surface of the cell. (Right) Maximum intensity
997 projections from a timelapse following wounding of a 3 dpf larva expressing mCherry in the
998 basal cells (*TgBAC(ΔNp63:Gal4); Tg(UAS:mCherry)*) that were wounded in the presence of E3
999 media supplemented with 2 mg/ml 10 kDa TMR dextran.
1000 **(B)** Visual diagram of the workflow for fixed dextran assays. (1) Larva were wounded in either
1001 E3 media (hypotonic), 270 mM sorbitol (isotonic medium) or E3 media supplemented with 50
1002 μ M para-nitro blebbistatin. (2) After 0, 7, and 17 minutes of waiting, the larvae were pulsed
1003 with 2mg/ml of TMR-dextran (hypotonic and isotonic) or AF680-dextran (blebbistatin) for 3
1004 minutes. (3) Larvae were washed, fixed and imaged.
1005 **(C)** Maximum-intensity projections from the fixed larvae processed as described in (B). Larvae
1006 were scored +/– for dextran entry, depicted with symbols below each image
1007 **(D)** Percentage of larvae in each condition scored for dextran entry. The number of larvae for
1008 each condition is shown above the corresponding bar. A significantly higher proportion of larvae
1009 were infiltrated with dextran after 10 mpw in blebbistatin vs. hypotonic medium ($p = 0.026$,
1010 Fisher's exact test).

1011 Figure 5

1012 **Figure 5. Osmotic pressure and tissue contractility promote fissuring.**

1013 (A) (Top) Tailfin over time from a 3 dpf larva lacerated in E3 (hypotonic medium) and expressing
1014 mCherry in basal cells (*TgBAC(ΔNp63:Gal4); Tg(UAS:mCherry)*). Wound occurred 1-2 minutes
1015 earlier. (Bottom) Insets shown below the time-lapse series.

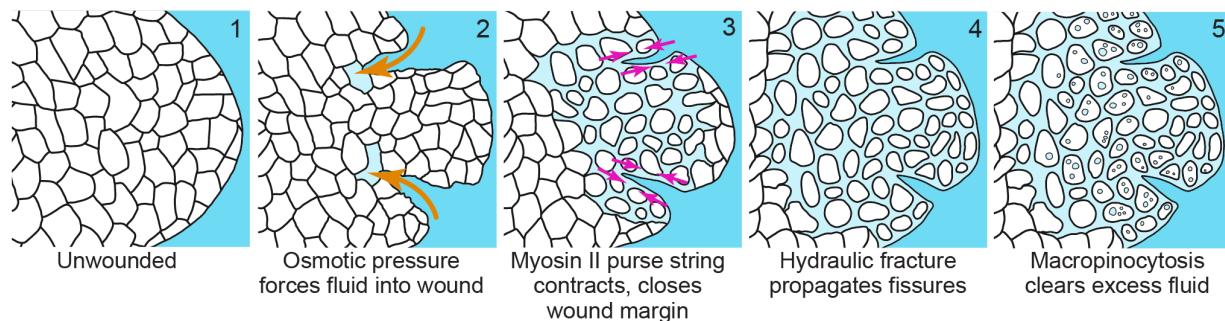

1016 (B) Larva wounded as in (A) in E3 supplemented with 270 mM sorbitol (isotonic medium).

1017 (C) Larva wounded as in (A) in E3 supplemented with 50 μ M para-nitro blebbistatin. (A-C) are
1018 maximum-intensity Z-projections from spinning disk confocal images.

1019 (D) Kymograph indicating the fissure index over time at a given distance from the wound,
1020 averaged from larvae wounded in hypotonic E3 ($n = 30$) or E3 supplemented with 270 mM
1021 sorbitol ($n = 11$), 50 μ M para-nitro blebbistatin ($n = 13$), or 0.1% DMSO as a vehicle control for
1022 blebbistatin ($n = 9$). The fissure index was analyzed as described in *Methods* and Figure 1. Data
1023 from larvae used in Figure 1F were incorporated into the average hypotonic fissure kymograph
1024 shown here (top left).

1025 (E) Quantified fissure dynamics for larvae that scored positively for fissure formation. Each dot
1026 is an individual larva ($n \geq 9$). Thick and thin bars indicate the mean \pm 1 standard deviation for
1027 that condition. According to one-way ANOVA followed by Tukey's test, vehicle control is not
1028 significantly differ from hypotonic (n.s., $p > 0.05$) and blebbistatin is significantly different from
1029 the vehicle control ($p = 0.0010$). Hypotonic data from Figure 1G is also plotted here for
1030 comparison.

1031 Figure 6



1032 Figure 6. External fluid is cleared via macropinocytosis

1033 **(A)** Maximum intensity projections from a timelapse following wounding of a 3 dpf larva
1034 expressing mCherry and GFP-2xFYVE in the basal cells that were wounded in the presence of
1035 E3 media (*TgBAC(ΔNp63:Gal4)*; *Tg(UAS:mCherry)*; *Tg(UAS:2xFYVE-GFP)*). First and second
1036 columns show the mCherry and GFP-FYVE channels respectively. Third column shows the
1037 merge. Fourth column shows segmentation of the GFP-FYVE. The segmented structures were
1038 divided into three categories and pseudocoloured (orange : < 1 μm^2 , blue: 1-5 μm^2 and black: >
1039 5 μm^2). Red arrowheads show large endocytic structures. Full sized images are shown in Figure
1040 S4.

1041 **(B)** Graph shows quantification of mean endocytic structures over a 5 minute window as
1042 indicated for three different size categories (left: < 1 μm^2 , middle: 1-5 μm^2 and right: > 5 μm^2).
1043 Each fish is coloured uniquely ($n = 8$) and represented as dots. Lines represent mean +/-
1044 standard deviation across all the fishes. Note the difference in y-axis between the different plots.
1045 **(C)** Electron micrographs of basal cells in 3 dpf larvae treated with DMSO and wounded 20
1046 minutes prior to fixation. White arrowheads highlight examples of large internal vesicles
1047 consistent with macropinosomes. Black arrowheads point out two protrusions from the apical
1048 side of a basal cell, possibly in the process of macropinocytosis.

1049 **Figure 7**

1050 **Figure 7. Model for wound-induced hydraulic fissuring**

1051 Overview of fissure formation during wound healing in zebrafish larval epidermis. (1) An
1052 unwounded tailfin showing an intact basal layer. (2) After wounding, osmotic pressure gradients
1053 drive external fluid through the open wound. (3) The myosin II purse string contracts along the
1054 wound margin, further forcing the external fluid anteriorly into the epithelial tissue. (4) The
1055 combination of the osmotic and cytoskeletal forces causes the hydraulic fracturing of the basal
1056 cells and fissure propagation anteriorly to the wound. (5) The excess fluid is subsequently
1057 cleared by the surrounding basal cells via macropinocytosis over longer timescales.