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Abstract

The predictive nature of the hippocampus is thought to be useful for memory-guided cognitive

behaviors. Inspired by the reinforcement learning literature, this notion has been formalized

as a predictive map called the successor representation (SR). The SR captures a number of

observations about hippocampal activity. However, the algorithm does not provide a neural

mechanism for how such representations arise. Here, we show the dynamics of a recurrent

neural network naturally calculate the SR when the synaptic weights match the transition

probability matrix. Interestingly, the predictive horizon can be flexibly modulated simply by

changing the network gain. We derive simple, biologically plausible learning rules to learn the

SR in a recurrent network. We test our model with realistic inputs and match hippocampal

data recorded during random foraging. Taken together, our results suggest that the SR is

more accessible in neural circuits than previously thought and can support a broad range of

cognitive functions.

1. Introduction1

To learn from the past, plan for the future, and form an understanding of our world, we2

require memories of personal experiences. These types of memories depend on the hippocam-3

pus for formation and recall [1, 2, 3], but an algorithmic and mechanistic understanding4

of memory formation and retrieval in this region remains elusive. The need to support5

planning and inference suggests that one of the key features of memory is the ability to6

predict possible outcomes [4, 5, 6, 7]. Consistent with this hypothesis, experimental work7

has shown that, across species and tasks, hippocampal activity is predictive of the future8

experience of an animal [8, 9, 10, 11, 12, 13, 14, 15]. Furthermore, theoretical work has9
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found that models endowed with predictive objectives tend to resemble hippocampal activity10

[16, 17, 18, 19, 20, 21, 6, 22]. Thus, it is clear that predictive representations are an important11

aspect of hippocampal memory.12

Inspired by work in the reinforcement learning (RL) field, these observations have been13

formalized by describing hippocampal activity as a predictive map under the successor14

representation (SR) algorithm [23, 24, 18]. Under this framework, an animal’s experience in15

the world is represented as a trajectory through some defined state space, and hippocampal16

activity predicts the future experience of an animal by integrating over the likely states that17

an animal will visit given its current state. This algorithm further explains how, in addition18

to episodic memory, the hippocampus may support relational reasoning and decision making19

[21, 25], consistent with differences in hippocampal representations in different tasks [26, 27].20

The SR framework captures many experimental observations of neural activity, leading to a21

proposed computational function for the hippocampus [18].22

While the SR algorithm convincingly argues for a computational function of the hippocam-23

pus, it is unclear what biological mechanisms might compute the SR in a neural circuit. Thus,24

several relevant questions remain that are difficult to probe with the current algorithm. What25

kind of neural architecture should one expect in a region that can support this computation?26

Are there distinct forms of plasticity and neuromodulation needed in this system? What27

is the structure of hippocampal inputs to be expected? A biologically plausible model can28

explore these questions and provide insight into both mechanism and function [28, 29, 30].29

In other systems, it has been possible to derive biological mechanisms with the goal of30

achieving a particular network function or property [31, 32, 33, 34, 35, 36, 37, 38]. Key to31

many of these models is the constraint that learning rules at any given neuron can only use32

information local to that neuron. A promising direction towards such a neural model of33

the SR is to use the dynamics of a recurrent network to perform SR computations [39, 40].34

However, this idea has not been tied to neural learning rules that support its operation and35

allow for testing of specific hypotheses.36

Here, we show that an RNN with local learning rules and an adaptive learning rate37

exactly calculates the SR at steady state. We test our model with realistic inputs and38

make comparisons to neural data. In addition, we compare our results to the standard SR39
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algorithm with respect to the speed of learning and the learned representations in cases40

where multiple solutions exist. Our work provides a mechanistic account for an algorithm41

that has been frequently connected to the hippocampus, but could only be interpreted at an42

algorithmic level. This network-level perspective allows us to make specific predictions about43

hippocampal mechanisms and activity.44

2. Results45

2.1. The successor representation46

The SR algorithm described in Stachenfeld et al. [18] first discretizes the environment47

explored by an animal (whether a physical or abstract space) into a set of n states that the48

animal transitions through over time (Figure 1a). The animal’s behavior can then be thought49

of as a Markov chain with a corresponding transition probability matrix Tn×n (Figure 1b). T50

gives the probability that the animal transitions to a state s′ from the state s in one time51

step: Tji = P (s′ = i|s = j). The SR matrix is defined as52

M =
∞
∑

t=0

µtT t = (I − µT )−1 (1)

Here, µ ∈ (0, 1) is a temporal discount factor. Mji can be seen as a measure of the occcupancy53

of state i over time if the animal starts at state j, with µ controlling how much to discount54

time steps in the future (Figure 1c). The SR of state j is the jth row of M and represents55

the states that an animal is likely to transition to from state j. Stachenfeld et al. [18]56

demonstrate that, if one assumes each state drives a single neuron, the SR of j resembles the57

population activity of hippocampal neurons when the animal is at state j (Figure 1d). They58

also show that the ith column of M resembles the place field (activity as a function of state)59

of a hippocampal neuron representing state i (Figure 1e). In addition, the ith column of M60

shows which states are likely to lead to state i.61

2.2. Recurrent neural network computes SR at steady state62

We begin by drawing connections between the SR algorithm [18] and an analogous neural63

network architecture. The input to the network encodes the current state of the animal and64
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Figure 1: The successor representation and an analogous recurrent network model. a. The
behavior of an animal running down a linear track can be described as a transition between discrete states
where the states encode spatial location. b. By counting the transitions between different states, the behavior
of an animal can be summarized in a transition probability matrix T . c. The successor representation matrix
is defined as M =

∑

∞

t=0
γtT t. Here, M is shown for γ = 0.6. Dashed boxes indicate the slices of M shown in

(d) and (e). d. The fourth row of the M matrix describes the activity of each state-encoding neuron when
the animal is at the fourth state. e. The fourth column of the M matrix describes the place field of the
neuron encoding the fourth state. f. Recurrent network model of the SR (RNN-S). The current state of the
animal is one-hot encoded by a layer of input neurons. Inputs connect one-to-one onto RNN neurons with
synaptic connectivity matrix J = T ⊺. The activity of the RNN neurons are represented by x. SR activity
is read out from one-to-one connections from the RNN neurons to the output neurons. The example here
shows inputs and outputs when the animal is at state 4. g. Feedforward neural network model of the SR
(FF-TD). The M matrix is encoded in the weights from the input neurons to the output layer neurons, where
the SR activity is read out. h. Diagram of the terms used for the RNN-S learning rule. Terms in red are
used for potentiation while terms in blue are used for normalization (equation 4). i. As in (h) but for the
feedforward-TD model (equation 11). To reduce the notation indicating time steps, we use ’ in place of (t)
and no added notation for (t− 1).

is represented by a layer of input neurons (Figure 1fg). These neurons feed into the rest65

of the network that computes the SR (Figure 1fg). The SR is then read out by a layer of66

output neurons so that downstream systems receive a prediction of the upcoming states67

(Figure 1fg). We will first model the inputs φ as one-hot encodings of the current state of the68

animal (Figure 1fg). That is, each input neuron represents a unique state and are one-to-one69
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connected to the hidden neurons.70

We first consider an architecture in which a recurrent neural network (RNN) is used to71

compute the SR (Figure 1f). Let us assume that the T matrix is encoded in the synaptic72

weights of the RNN. In this case, the steady state activity of the network in response to input73

φ retrieves a row of the SR matrix, M⊺φ (Figure 1f, Supplementary Notes 1). Intuitively, this74

is because each recurrent iteration of the RNN progresses the prediction by one transition.75

In other words, the tth recurrent iteration raises T to the tth power as in equation 1. To76

formally derive this result, we first start by defining the dynamics of our RNN with classical77

rate network equations [41]. At time t, the firing rate x(t) of N neurons given each neurons’78

input φ(t) follows the discrete-time dynamics (assuming a step size ∆t = 1)79

∆x = −x(t) + f(µJx(t)) + φ(t) (2)

Here, µ scales the recurrent activity and is a constant factor for all neurons. The synaptic80

weight matrix J ∈ RN×N is defined such that Jij is the synaptic weight from neuron j to81

neuron i. Notably, this notation is transposed from what is used in RL literature, where82

conventions have the first index as the starting state. Generally, f is some nonlinear function83

in equation 2. For now, we will consider f to be the identity function, rendering this equation84

linear. Under this assumption, we can solve for the steady state activity xSS as85

xss = (I − µJ)−1φ (3)

Equivalence between equation 1 and equation 3 is clearly reached when J = T ⊺ [40, 39].86

Thus, if the network can learn T in its synaptic weight matrix, it will exactly compute the87

SR.88

A benefit of this scheme is that µ is not encoded in the synaptic weights. Thus, µ can89

be a flexibly modulated gain factor (see, for example, Sompolinsky et al. [42]) allowing the90

system to retrieve successor representations of varying predictive strengths. We will refer to91

the µ used during learning of the SR as the baseline µ, or µB.92

We next consider what is needed in a learning rule such that J approximates T ⊺. In93

order to learn a transition probability matrix, a learning rule must associate states that occur94
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sequentially and normalize the synaptic weights into a valid probability distribution. We95

derive a learning rule that addresses both requirements (Figure 1h, Supplementary Notes 2),96

∆Jij = ¸xi(t)xj(t− 1)− ¸xj(t− 1)
∑

k

Jikxk(t− 1), (4)

where ¸ is the learning rate. The first term in equation 4 is a temporally asymmetric97

potentiation term that counts states that occur in sequence. This is similar to spike-timing98

dependent plasticity, or STDP [43, 8, 44]. The second term in equation 4 normalizes the99

synapses into a valid transition probability matrix, such that each column of J = T ⊺ sums to100

1.101

Crucially, this update rule (equation 4) uses information local to each neuron (Figure102

1h). We show that, in the asymptotic limit, the update rule extracts information about the103

inputs φ and learns T exactly despite having access only to neural activity x (Supplementary104

Notes 3). We will refer to an RNN using equation 4 as the RNN-Successor, or RNN-S.105

Combined with recurrent dynamics (equation 3), RNN-S computes the SR exactly (Figure106

1h).107

As an alternative to the RNN-S model, we consider the conditions necessary for a108

feedforward neural network to compute the SR. Under this architecture, the M matrix must109

be encoded in the weights from the input neurons to the hidden layer neurons (Figure 1g).110

This can be achieved by updating the synaptic weights with a temporal difference (TD)111

learning rule, the standard update used to learn the SR in the usual algorithm. Although112

the TD update learns the SR, it requires information about multiple input layer neurons to113

make updates for the synapse from input neuron j to output neuron i (Figure 1i). Thus, it is114

useful to explore other possible mechanisms that are simpler to compute locally. We refer to115

the model described in Figure 1ih as the feedforward-TD (FF-TD) model.116

2.3. Evaluating SR learning by biologically plausible learning rules117

To evaluate the effectiveness of the RNN-S learning rule, we tested its accuracy in learning118

the SR matrix for random walks. Specifically, we simulated random walks with different119

transition biases in a 1D circular track environment (Figure 2a). The RNN-S can learn the120

SR for these random walks (Figure 2b).121
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Figure 2: Comparing the effects of an adaptive learning rate and plasticity kernels in RNN-S. a.

Sample one-minute segments from random walks on a 1 meter circular track. Possible actions in this 1D walk
are to move forward, stay in one place, or move backward. Action probabilities are uniform (top), biased to
move forward (middle), or biased to stay in one place (bottom). b. M matrices estimated by the RNN-S
model in the full random walks from (a). c. The proposed learning rate normalization. The learning rate ηj
for synapses out of neuron j changes as a function of its activity xj and recency bias λ. Dotted lines are at
[0.0, 0.5, 1.0]. d. The mean row sum of T over time computed by the RNN-S with an adaptive learning rate
(blue) or the RNN-S with static learning rates (orange). Darker lines indicate larger static learning rates.
Lines show the average over simulations from walks with a forward bias. A correctly normalized T matrix
should have a row sum of 1.0. e. As in (d), but for the mean absolute error in estimating T . f. As in (e), but
for mean absolute error in estimating the real M , and with performance of FF-TD included, with darker
lines indicating slower learning rates for FF-TD. g. Lap-based activity map of a neuron from RNN-S with
static learning rate η = 10−1.5. The neuron encodes the state at 45 cm on a circular track. The simulated
agent is moving according to forward-biased transition statistics. h. As in (g), but for RNN-S with adaptive
learning rate. i. The learning rate over time for the neuron in (g) (orange) and the neuron in (h) (blue).
j. Mean-squared error (MSE) at the end of meta-learning for different plasticity kernels. The pre→post

(K+) and post→pre (K−) sides of each kernel were modeled by Ae−
1

τ . Heatmap indices indicate the values
τs were fixed to. Here, K+ is always a positive function (i.e., A was positive), because performance was
uniformly poor when K+ was negative. K− could be either positive (left, “Post → Pre Potentiation”) or
negative (right, “Post → Pre Depression”). Regions where the learned value for A was negligibly small were
set to high errors. Errors are max-clipped at 0.03 for visualization purposes. k. Plasticity kernels chosen
from the areas of lowest error in the grid search from (j). Left is post → pre potentiation. Right is post →
pre depression. Kernels are normalized by the maximum, and dotted lines are at one second intervals.

Because equivalence is only reached in the asymptotic limit of learning (i.e., ∆J → 0),122

our RNN-S model learns the SR slowly. In contrast, animals are thought to be able to learn123
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the structure of an environment quickly [45], and neural representations in an environment124

can also develop quickly [46, 47, 48]. To remedy this, we introduce a dynamic learning rate125

that allows for faster normalization of the synaptic weight matrix, similar to the formula for126

calculating a moving average (Supplementary Notes 4). For each neuron, suppose that a127

trace n of its recent activity is maintained with some time constant ¼ ∈ (0, 1],128

n(t) =
∑

t′<t

¼(t−t′)x(t′) (5)

If the learning rate of the outgoing synapses from each neuron j is inversely proportional129

to nj (¸ = 1
nj(t)

), the update equation quickly normalizes the synapses to maintain a valid130

transition probability matrix (Supplementary Notes 4). We refer to this as an adaptive131

learning rate and contrast it with the previous static learning rate. We consider the setting132

where ¼ = 1, so the learning rate monotonically decreases over time (Figure 2c). In general,133

however, the learning rate could increase or decrease over time if ¼ < 1 (Figure 2c), and134

n could be reset, allowing for rapid learning. Our learning rule with the adaptive learning135

rate is the same as in equation 4, with the exception that ¸ = min( 1
nj(t)

, 1.0) for synapses J∗j .136

This learning rule still relies only on information local to the neuron as in Figure 1i.137

The RNN-S with an adaptive learning rate normalizes the synapses more quickly than138

a network with a static learning rate (Figure 2d, Figure S2a) and learns T faster (Figure139

2e, Figure S2b). The RNN-S with a static learning rate exhibits more of a tradeoff between140

normalizing synapses quickly (Figure 2d, Figure S2a) and learning M accurately (Figure141

2e, Figure S2b). However, both versions of the RNN-S estimate M more quickly than the142

FF-TD model (Figure 2f, Figure S2c).143

Place fields can form quickly, but over time the place fields may skew if transition statistics144

are consistently biased [18, 46, 47, 48]. The adaptive learning rate recapitulates both of these145

effects, which are thought to be caused by slow and fast learning processes, respectively. A146

low learning rate can capture the biasing of place fields, which develops over many repeated147

experiences. This is seen in the RNN-S with a static learning rate(Figure 2g). However, a148

high learning rate is needed for hippocampal place cells to develop sizeable place fields in149

one-shot. Both these effects of slow and fast learning can be seen in the neural activity of an150
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example RNN-S neuron with an adaptive learning rate (Figure 2h). After the first lap, a151

sizeable field is induced in a one-shot manner, centered at the cell’s preferred location. In152

subsequent laps, the place field slowly distorts to reflect the bias of the transition statistics153

(Figure 2h). The model is able to capture these learning effects because the adaptive learning154

rate transitions between high and low learning rates, unlike the static version (Figure 2i).155

Thus far, we have assumed that the RNN-S learning rule uses pre→post activity over two156

neighboring time steps (equation 4). A more realistic framing is that a convolution with a157

plasticity kernel determines the weight change at any synapse. We tested how this affects158

our model and what range of plasticity kernels best supports the estimation of the SR. We159

do this by replacing the pre→post potentiation term in equation 4 with a convolution:160

∆Jij = xi(t)
t

∑

t′=−∞

K+(t−t
′)xj(t

′)+xj(t)
t

∑

t′=−∞

K−(t−t
′)xi(t

′)−¸xj(t−1)
∑

k

Jikxk(t−1) (6)

In the above equation, the full kernel K is split into a pre→post kernel (K+) and a post→pre161

kernel (K−). K+ and K− are parameterized as independent exponential functions, Ae−t/τ .162

To systematically explore the space of plasticity kernels that can be used to learn the163

SR, we performed a grid search over the sign and the time constants of the pre→post and164

post→pre sides of the plasticity kernels. Plasticity kernels that are STDP-like are more165

effective than others, although plasticity kernels with slight post→pre potentiation work as166

well (Figure 2j). The network is sensitive to the time constant and tends to find solutions167

for time constants around a few hundred milliseconds (Figure 2jk). Our robustness analysis168

indicates the timescale of a plasticity rule in such a circuit may be longer than expected by169

standard STDP, but within the timescale of changes in behavioral states. We note that this170

also contrasts with behavioral timescale plasticity [48], which integrates over a window that171

is several seconds long. Finally, we see that even plasticity kernels with slightly different172

time constants may give a result that is SR-like, even if they do not estimate the SR exactly173

(Figure 2j).174
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Figure 3: RNN-S requires a stable choice of γB during learning, and can compute SR with any

γR a. Maximum real eigenvalue of the J matrix at the end of random walks under different γB . The network
dynamics were either fully linear (solid) or had a tanh nonlinearity (dashed). Red line indicates the transition
into an unstable regime. b. MAE of M matrices learned by RNN-S with different γB . RNN-S was simulated
with linear dynamics (solid line) or with a tanh nonlinearity added to the recurrent dynamics (dashed line).
Test datasets used various biases in action probability selection. c. M matrix learned by RNN-S with tanh
nonlinearity added in the recurrent dynamics. A forward-biased walk on a circular track was simulated, and
γB = 0.8. d. The true M matrix of the walk used to generate (c). e. Simulated population activity over the
first ten laps in a circular track with γB = 0.4. Dashed box indicates the retrieval phase, where learning is
turned off and γR = 0.9. Boxes are zoomed in on three minute windows.

2.4. RNN-S can compute the SR with arbitrary µR under a stable regime of µB175

We next investigate how robust the RNN-S model is to the value of µ. Typically, for176

purposes of fitting neural data or for RL simulations, µ will take on values as high as 0.9177

[18, 49]. However, previous work that used RNN models reported that recurrent dynamics178

become unstable if the gain µ exceeds a critical value [42, 45]. This could be problematic as179

we show analytically that the RNN-S update rule is effective only when the network dynamics180

are stable and do not have non-normal amplification (Supplementary Notes 2). If these181

conditions are not satisfied during learning, the update rule no longer optimizes for fitting182

the SR and the learned weight matrix will be incorrect.183

We first test how the value of µB, the gain of the network during learning, affects the184

RNN-S dynamics. The dynamics become unstable when µB exceeds 0.6 (Figure S3a-e).185

Specifically, the eigenvalues of the synaptic weight matrix exceed the critical threshold for186

stability when µB > 0.6 (Figure 3a, “Linear”). As expected from our analytical results,187
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the stability of the network is tied to the network’s ability to estimate M . RNN-S cannot188

estimate M well when µB > 0.6 (Figure 3b, “Linear”). We explored two strategies to enable189

RNN-S to learn at high µ.190

One way to tame this instability is to add a saturating nonlinearity into the dynamics of191

the network. Instead of assuming the network dynamics are fully linear (f is the identity192

function in equation 2), we add a hyperbolic tangent into the dynamics equation. This193

extends the stable regime of the network– the eigenvalues do not exceed the critical threshold194

until µB > 0.8 (Figure 3a). Similar to the linear case, the network with nonlinear dynamics195

fits M well until the critical threshold for stability (Figure 3b). These differences are clear196

visually as well. While the linear network does not estimate M well for µB = 0.8 (Figure 3b),197

the estimate of the nonlinear network (Figure 3c) is a closer match to the true M (Figure198

3d). However, there is a tradeoff between the stabilizing effect of the nonlinearity and the199

potential loss of accuracy in calculating M with a nonlinearity (Figure S3h).200

We explore an alternative strategy for computing M with arbitrarily high µ in the range201

0 f µ < 1. We have thus far pushed the limits of the model in learning the SR for different202

µB. However, an advantage of our recurrent architecture is that µ is a global gain modulated203

independently of the synaptic weights. Thus, an alternative strategy for computing M with204

high µ is to consider two distinct modes that the network can operate under. First, there205

is a learning phase in which the plasticity mechanism actively learns the structure of the206

environment and the model is in a stable regime (i.e., µB is small). Separately, there is207

a retrieval phase during which the gain µR of the network can be flexibly modulated. By208

changing the gain, the network can compute the SR with arbitrary prediction horizons,209

without any changes to the synaptic weights. We show the effectiveness of separate network210

phases by simulating a 1D walk where the learning phase uses a small µB (Figure 3e). Halfway211

through the walk, the animal enters a retrieval mode and accurately computes the SR with212

higher µR (Figure 3e).213

Under this scheme, the model can compute the SR for any µ < 1 (Figures S3f-h). The214

separation of learning and retrieval phases stabilizes neural dynamics and allows flexible215

tuning of predictive power depending on task context.216
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Figure 4: Generalizing the model to more realistic inputs. a. Illustration of possible feature encodings
φ for two spatially adjacent states in green and red. Feature encodings may vary in sparsity level and spatial
correlation. b. Average value of the STDP component (red) and the decorrelative normalization (solid
blue) component of the gradient update over the course of a random walk. In dashed blue is a simpler
Oja-like independent normalization update for comparison. Simulations are from forward-biased walks on a
circular track. Input features are 3% sparse, with 10 cm spatial correlation. c. Top: Example population
activity of neurons in the RNN-S using the full decorrelative normalization rule over a 2 minute window of a
forward-biased random walk. Population activity is normalized by the maximum firing rate. Bottom: As
above, but for RNN-S using the simplified normalization update. d. Shifts in place field peaks after a half
hour simulation from the first two minutes of a 1D walk. Proportion of shifts in RNN-S with one-hot inputs
shown in gray. Proportion of shifts in RNN-S with feature encodings (10% sparsity, 7.5 cm spatial correlation,
γR = 0.8) shown in blue. Each data point is the average shift observed in one simulated walk, and each
histogram is over 40 simulated walks. Solid line indicates the reported measure from Mehta & Wilson (2000).

2.5. RNN-S can be generalized to more complex inputs with successor features217

We wondered how RNN-S performs given more biologically realistic inputs. We have218

so far assumed that an external process has discretized the environment into uncorrelated219

states so that each possible state is represented by a unique input neuron. In other words,220

the inputs φ are one-hot vectors. However, inputs into the hippocampus are expected to be221

continuous and heterogeneous, with states encoded by overlapping sets of neurons [50]. When222

inputs are not one-hot, there is not always a canonical ground-truth T matrix to fit and the223

predictive representations are referred to as successor features [49, 51]. In this setting, the224

performance of a model estimating successor features is evaluated by the temporal difference225
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(TD) loss function.226

Using the RNN-S model and update rule (equation 4), we explore more realistic inputs φ227

and refer to φ as “input features” for consistency with the successor feature literature. We228

vary the sparsity and spatial correlation of the input features (Figure 4a). As before (Figure229

3h), the network will operate in separate learning and retrieval modes, where µB is below the230

critical value for stability. Under these conditions, the update rule will learn231

J = Rφφ(−1)Rφφ(0)
−1 (7)

at steady state, where Rφφ(Ä ) is the correlation matrix of φ with time lag Ä (Supplementary232

Notes 3). Thus, the RNN-S update rule has the effect of normalizing the input feature via a233

decorrelative factor (Rφφ(0)
−1) and mapping the normalized input to the feature expected at234

the next time step in a STDP-like manner (Rφφ(−1)). This interpretation generalizes the235

result that J = T ⊺ in the one-hot encoding case (Supplementary Notes 3).236

We wanted to further explore the function of the normalization term. In the one-hot case,237

it operates over each synapse independently and makes a probability distribution. With more238

realistic inputs, it operates over a set of synapses and has a decorrelative effect. We first239

ask how the decorrelative term changes over learning of realistic inputs. We compare the240

mean value of the STDP term of the update (xi(t)xj(t− 1)) to the normalization term of the241

update (xj(t− 1)
∑

k Jikxk(t− 1)) during a sample walk (Figure 4b). The RNN-S learning242

rule has stronger potentiating effects in the beginning of the walk. As the model learns more243

of the environment and converges on the correct transition structure, the strength of the244

normalization term balances out the potentiation term. It may be that the normalization245

term is particularly important in maintaining this balance as inputs become more densely246

encoded. We test this hypothesis by using a normalization term that operates on each247

synapse independently (similar to Oja’s Rule, [52], Supplementary Notes 5). We see that248

the equilibrium between potentiating and depressing effects is not achieved by this type of249

independent normalization (Figure 4b, Supplementary Notes 6).250

We wondered whether the decorrelative normalization term is necessary for the RNN-S to251

develop accurate representations. By replacing the decorrelative term with an independent252
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normalization, features from non-adjacent states begin to be associated together and the253

model activity becomes spatially non-specific over time (Figure 4c, top). In contrast, using254

the decorrelative term, the RNN-S population activity is more localized (Figure 4c, bottom).255

Interestingly, we noticed an additional feature of place maps as we transitioned from one-256

hot feature encodings to more complex feature encodings. We compared the representations257

learned by the RNN-S in a circular track walk with one-hot features versus more densely258

encoded features. For both input distributions, the RNN-S displayed the same skewing in259

place fields seen in Figure 2 (Figure S4). However, the place field peaks of the RNN-S model260

additionally shifted backwards in space for the more complex feature encodings (Figure 4d).261

This was not seen for the one-hot encodings (Figure 4d). The shifting in the RNN-S model is262

consistent with the observations made in Mehta et al. [17] and demonstrates the utility of263

considering more complex input conditions. A similar observation was made in Stachenfeld264

et al. [18] with noisy state inputs. In both cases, field shifts could be caused by neurons265

receiving external inputs at more than one state, particularly at states leading up to its266

original field location.267

2.6. RNN-S estimates successor features even with naturalistic trajectories.268

We ask whether RNN-S can accurately estimate successor features, particularly under269

conditions of natural behavior. Specifically, we used the dataset from Payne et al. [11, 53],270

gathered from foraging Tufted Titmice in a 2D arena (Figure 5a). We discretize the arena into271

a set of states and encode each state as a randomly drawn feature ϕ. Using position-tracking272

data from Payne et al. [11, 53], we simulate the behavioral trajectory of the animal as273

transitions through the discrete state space. The inputs into the successor feature model are274

the features associated with the states in the behavioral trajectory.275

We first wanted to test whether the RNN-S model was robust across a range of different276

types of input features. We calculate the TD loss of the model as a function of the spatial277

correlation across inputs φ (Figure 5b). We find that the model performs well across a range278

of inputs but loss is higher when inputs are spatially uncorrelated. This is consistent with279

the observation that behavioral transitions are spatially local, such that correlations across280

spatially adjacent features aid in the predictive power of the model. We next examine the281
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Figure 5: Fitting successor features to data with RNN-S over a variety of feature encodings. a. We
use behavioral data from Payne et al, where a Tufted Titmouse randomly forages in a 2D environment while
electrophysiological data is collected (replicated with permission from authors). Two example trajectories are
shown on the right. b. Temporal difference (TD) loss versus the spatial correlation of the input dataset,
aggregated over all sparsity levels. Here, γR = 0.75. c. As in (b), but measuring TD loss versus the sparsity
level of the input dataset, aggregated over all spatial correlation levels. d. TD loss for RNN-S with datasets
with different spatial correlations and sparsities. White areas were not represented in the input dataset due
to the feature generation process. Here, γR = 0.75 e. As in (g), but for FF-TD. f. TD loss of each model as
a function of γR, aggregated over all input encodings.

model performance as a function of the sparsity of inputs φ (Figure 5c). We find the model282

also performs well across a range of feature sparsity, with lowest loss when features are sparse.283

To understand the interacting effects of spatial correlation and feature sparsity in more284

detail, we performed a parameter sweep over both of these parameters (Figure 5d, Figure285

S5a-e). We generated random patterns according to the desired sparsity and smoothness286

with a spatial filter to generate correlations. This means that the entire parameter space is287

not covered in our sweep (e.g., the top-left area with high correlation and high sparsity is not288

explored). Note that since we generate φ by randomly drawing patterns, the special case of289

one-hot encoding is also not included in the parameter sweep (one-hot encoding is already290

explored in Figure 2). The RNN-S seems to perform well across a wide range, with highest291

loss in regions of low spatial correlation and low sparsity.292
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We want to compare the TD loss of RNN-S to that of a non-biological model designed to293

minimized TD loss. We repeat the same parameter sweep over input features with the FF-TD294

model (Figure 5e, Figure S5f). The FF-TD model performs similarly to the RNN-S model,295

with lower TD loss in regions with low sparsity or higher correlation. We also tested how the296

performance of both models is affected by the strength of µR (Figure 5f). Both models show297

a similar increase in TD loss as µR increases, although the RNN-S has a slightly lower TD298

loss at high µ than the FF-TD model. Unlike in the one-hot case, there is no ground-truth T299

matrix for non-one-hot inputs, so representations generated by RNN-S and FF-TD may look300

different, even at the same TD loss. Therefore, to compare the two models, it is important to301

compare representations to neural data.302

2.7. RNN-S fits neural data in a random foraging task.303

Finally, we tested whether the neural representations learned by the models with behavioral304

trajectories from Figure 5 match hippocampal firing patterns. We performed new analysis305

on neural data from Payne et al. [11, 53] to establish a dataset for comparison. The neural306

data from Payne et al. [11] was collected from electrophysiological recordings in titmouse307

hippocampus during freely foraging behavior (Figure 6a). Payne et al. discovered the presence308

of place cells in this area. We analyzed statistics of place cells recorded in the anterior region309

of the hippocampus, where homology with rodent dorsal hippocampus is hypothesized [54].310

We calculated the distribution of place field size measured relative to the arena size (Figure311

6b), as well as the distribution of the number of place fields per place cell (Figure 6c).312

Interestingly, with similar analysis methods, Henriksen et al. [55] see similar statistics in the313

proximal region of dorsal CA1 in rats, indicating that our analyses could be applicable across314

organisms.315

In order to test how spatial representations in the RNN-S are impacted by input features,316

we performed parameter sweeps over input statistics. As in [11], we define place cells in317

the model as cells with at least one statistically significant place field under permutation318

tests. Under most of the parameter range, all RNN-S neurons would be identified as a place319

cell (Figure 6d). However, under conditions of high spatial correlation and low sparsity, a320

portion of neurons (12%) do not have any fields in the environment. These cells are excluded321
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Figure 6: Comparing place fields from RNN-S to data. a. Dataset is from Payne et al, where a Tufted
Titmouse randomly forages in a 2D environment while electrophysiological data is collected (replicated with
permission from authors). b. Distribution of place cells with some number of fields, aggregated over all cells
recorded in all birds. c. Distribution of place cells with some field size as a ratio of the size of the arena,
aggregated over all cells recorded in all birds. d. Average proportion of non-place cells in RNN-S, aggregated
over simulations of randomly drawn trajectories from Payne et al. Feature encodings are varied by spatial
correlation and sparsity as in Figure 5. e. As in (d), but for average field size of place cells. f. As in (d), but
for average number of fields per place cell. g. As in (d) and (e), but comparing place cell statistics using
the KL divergence (DKL) between RNN-S and data from Payne et al. At each combination of input spatial
correlation and sparsity, the distribution of field sizes is compared to the neural data, as is the distribution of
number of fields per neuron, then the two DKL values are summed. Contour lines are drawn at DKL values
of 1, 1.5, and 2 bits. h. Place fields of cells chosen from the region of lowest KL divergence. i. As in (g) but
for FF-TD. j. Change in KL divergence for field size (top) and number of fields (bottom) as function of γ.

from further analysis. We measured how the size of place fields varies across the parameter322

range (Figure 6e). The size of the fields increases as a function of the spatial correlation323

of the inputs, but is relatively insensitive to sparsity. This effect can be explained as the324

spatial correlation of the inputs introducing an additional spatial spread in the neural activity.325
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Similarly, we measured how the number of place fields per cell varies across the parameter326

range (Figure 6f). The number of fields is maximal for conditions in which input features are327

densely encoded and spatial correlation is low. These are conditions in which each neuron328

receives inputs from multiple, spatially distant states.329

Finally, we wanted to identify regions of parameter space that were similar to the data330

of Payne et al. [11, 53]. We measured the KL divergence between our model’s place field331

statistics (Figure 6de) and the statistics measured in Payne et al. [11] (Figure 6bc). We332

combined the KL divergence of both these distributions to find the parameter range in which333

the RNN-S best fits neural data (Figure 6g). This optimal parameter range occurs when334

inputs have a spatial correlation of Ã ≈ 8.75 cm and sparsity ≈ 0.15. We can visually confirm335

that the model fits the data well by plotting the place fields of RNN-S neurons (Figure 6h).336

We wondered whether the predictive gain (µR) of the representations affects the ability of337

the RNN-S to fit data. The KL divergence changes only slightly as a function of µR. Mainly,338

the KL-divergence of the place field size increases as µR increases (Figure 6i), but little effect339

is seen in the distribution of the number of place fields per neuron (Figure 6j).340

We next tested whether the neural data was better fit by representations generated by341

RNN-S or the FF-TD model. Across all parameters of the input features, despite having342

similar TD loss (Figure 5de), the FF-TD model has much higher divergence from neural data343

(Figure 6gi, Figure S6).344

Overall, our RNN-S model seems to strike a balance between performance in estimating345

successor features, similarity to data, and biological plausibility. Furthermore, our analyses346

provide a prediction of the input structure into the hippocampus that is otherwise not evident347

in an algorithmic description or in a model that only considers one-hot feature encodings.348

3. Discussion349

Hippocampal memory is thought to support a wide range of cognitive processes, espe-350

cially those that involve forming associations or making predictions. However, the neural351

mechanisms that underlie these computations in the hippocampus are not fully understood.352

A promising biological substrate is the recurrent architecture of the CA3 region of the353

hippocampus and the plasticity rules observed. Here, we showed how a recurrent network354
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with local learning rules can implement the successor representation, a predictive algorithm355

that captures many observations of hippocampal activity. We used our neural circuit model356

to make specific predictions of biological processes in this region.357

A key component of our plasticity rule is a decorrelative term that depresses synapses358

based on coincident activity. Such anti-Hebbian or inhibitory effects are hypothesized to be359

broadly useful for learning, especially in unsupervised learning with overlapping input features360

[56, 57, 58]. Consistent with this hypothesis, anti-Hebbian learning has been implicated in361

circuits that perform a wide range of computations, from distinguishing patterns, [37], to362

familiarity detection [38], to learning birdsong syllables [59]. This inhibitory learning may363

be useful because it decorrelates redundant information, allowing for greater specificity and364

capacity in a network [57, 37]. Our results provide further support of these hypotheses and365

predict that anti-Hebbian learning is fundamental to a predictive neural circuit.366

We derive an adaptive learning rate that allows our model to quickly learn a probability367

distribution, and generally adds flexibility to the learning process. The adaptive learning368

rate changes such that neurons that are more recently active have a slower learning rate.369

This is consistent with experimental findings of metaplasticity at synapses [60, 61, 62], and370

theoretical proposals that metaplasticity tracks the uncertainty of information [36]. In371

RNN-S, the adaptive learning rate improves the speed of learning and better recapitulates372

hippocampal data. Our adaptive learning rate also has interesting implications for flexible373

learning. Memory systems must be able to quickly learn new associations throughout their374

lifetime without catastrophe. Our learning rate is parameterized by a forgetting term ¼375

that controls the timescale in which environmental statistics are expected to be stationary.376

Although we fixed ¼ = 1 in our simulations, there are computational benefits in considering377

cases where ¼ < 1. This parameter provides a natural way for a memory system to forget378

gradually over time and prioritize recent experiences, in line with other theoretical studies379

that have also suggested that learning and forgetting on multiple timescales allow for more380

flexible behavior [63, 64].381

We tested the sensitivity of our network to various parameters and found a broad range of382

valid solutions. Prior work has sought to understand how an emergent property of a network383

could be generated by multiple unique solutions [65, 66, 67, 68]. It has been suggested that384
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redundancy in solution space makes systems more robust, accounting for margins of error385

in the natural world [69, 70]. In a similar vein, our parameter sweep over plasticity kernels386

revealed that a sizeable variety of kernels give solutions that resemble the SR. Although our387

model was initially sensitive to the value of µ, we found that adding biological components,388

such as nonlinear dynamics and separate network modes, broadened the solution space of the389

network.390

Several useful features arise from the fact that RNN-S learns the transition matrix T391

directly, while separating out the prediction timescale, µ, as a global gain factor. It is392

important for animals to engage in different horizons of prediction depending on task or393

memory demands [71, 72]. In RNN-S, changing the prediction time horizon is as simple394

as increasing or decreasing the global gain of the network. Mechanistically, this could be395

accomplished by a neuromodulatory gain factor that boosts µ, perhaps by increasing the396

excitability of all neurons [73, 74]. In RNN-S, it was useful to have low network gain during397

learning (µB), while allowing higher gain during retrieval to make longer timescale predictions398

(µR). This could be accomplished by a neuromodulatory factor that switches the network399

into a learning regime [75, 76], for example Acetylcholine, which reduces the gain of recurrent400

connections and increases learning rates [77, 78]. The idea that the hippocampus might401

compute the SR with flexible µ could help reconcile recent results that hippocampal activity402

does not always match high-µ SR [79, 80]. Finally, estimating T directly provides RNN-S403

with a means to sample likely future trajectories, or distributions of trajectories, which404

is computationally useful for many memory-guided cognitive tasks beyond reinforcement405

learning, including reasoning and inference [81]. We also found that the recurrent network fit406

hippocampal data better than a feedforward network. An interesting direction for further407

work involves untangling which brain areas and cognitive functions can be explained by deep408

(feed forward) neural networks [82], and which rely on recurrent architectures, or even richer409

combinations of generative structures [83]. Recurrent networks, such as RNN-S, support410

generative sequential sampling, reminiscent of hippocampal replay, which has been proposed411

as a substrate for planning, imagination, and structural inference [84, 85, 86, 87, 88].412

Other recent theoretical works have also sought to find biological mechanisms to learn413

successor representations, albeit with different approaches [89, 90, 91, 92, 93]. The model414
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from George et al. [93] focuses on a feedforward architecture, using STDP and theta phase415

precession to learn the SR. It is important to note that these mechanisms are not mutually416

exclusive with RNN-S. Taken together with our work, these models suggest that there are417

multiple ways to learn the SR in a biological circuit and that these representations may be418

more accessible to neural circuits than previously thought.419

4. Methods420

4.1. Code availability421

Code is posted on Github: https://github.com/chingf/sr-project422

4.2. Random walk simulations423

We simulated random walks in 1D (circular track) and 2D (square) arenas. In 1D424

simulations, we varied the probability of staying in the current state and transitioning425

forwards or backwards to test different types of biases on top of a purely random walk. In426

2D simulations, the probabilities of each possible action were equal. In our simulations,427

one timestep corresponds to 1
3
second and spatial bins are assumed to be 5 cm apart. This428

speed of movement (15 cm/sec) was chosen to be consistent with previous experiments. In429

theory, one can imagine different choices of timestep size to access different time horizons of430

prediction– that is, the choice of timestep interacts with the choice of µ in determining the431

prediction horizon.432

4.3. RNN-S model433

This section provides details and pseudocode of the RNN-S simulation. Below are434

explanations of the most relevant variables:435
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J (N ×N) synaptic weight matrix

M (N ×N) SR matrix

φ N -length input vector into network

b binary variable indicating learning (0) or retrieval (1) mode

µB Value of µ the network uses to calculate M in learning mode

µR Value of µ the network uses to calculate M in retrieval mode

n Variable that tracks the activity of neurons integrated over time

¼ Discount value the network uses to calculate n

η Learning rates of neurons

436

The RNN-S algorithm is as follows:437

4.4. RNN-S with plasticity kernels438

We introduce additional kernel-related variables to the RNN-S model above that are439

optimized by an evolutionary algorithm (see following methods subsection for more details):440

A+, Ä+ pre→ post side of the kernel as K+(t) = A+E
−t/τ+

A−, Ä− As above, but for the post→ pre side

³d Scaling term to allow for different self-synapse updates

³n Scaling term to allow for different learning rate updates

441

We also define the variable tk = 20, which is the length of the temporal support for the442

plasticity kernel. The value of tk was chosen such that e−tk/τ was negligibly small for the443

range of Ä we were interested in. The update algorithm is the same as in Algorithm 1, except444

lines 15-16 are replaced with the following:445
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Algorithm 1 RNN-S
1: Inputs:

2: φ(t) for t ∈ 1, . . . , T

3: b(t) for t ∈ 1, . . . T

4: Initialize:

5: J ← 0N×N

6: n← 0N

7: x(t)← 0N for t ∈ 1, . . . , T

8: for t ∈ 1, . . . , T do

9: if b(t) == 1 then ▷ Retrieval Mode

10: M⊺ ← (1− µRJ)
−1

11: x(t)←M⊺φ(t)

12: else ▷ Learning Mode

13: M⊺ ← (1− µBJ)
−1

14: x(t)←M⊺φ(t)

15: n← x(t) + ¼n ▷ Learning rate update

16: ∆J ← x(t)x(t− 1)⊺ − (Jx(t− 1))x(t− 1)⊺ ▷ Calculate weight update

17: η = 1
n

▷ Get learning rates (elementwise inversion)

18: η = min(η, 1.0) ▷ Learning rates can’t exceed 1.0

19: Jij ← Jij + ¸j∆Jij ▷ Update synaptic weight matrix

20: end if

21: end for

22: return x

4.5. Metalearning of RNN parameters446

To learn parameters of the RNN-S model, we use covariance matrix adaptation evolution447

strategy (CMA-ES) to learn the parameters of the plasticity rule. The training data provided448

are walks simulated from a random distribution of 1D walks. Walks varied in the number of449

states, the transition statistics, and the number of timesteps simulated. The loss function450

was the mean-squared error (MSE) loss between the RNN J matrix and the ideal estimated451
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Algorithm 2 Plasticity kernel update

1: n← ³nx+ ¼n ▷ Learning rate update

2: k+ ← A+

∑tk
t′=0 x(t− t

′)e−t′/τ+ ▷ Convolution with plasticity kernel

3: k
−
← A−

∑tk
t′=0 x(t− t

′)e−t′/τ−

4: ∆JK ← x(t)k⊺

+ + k
−
x(t)⊺ ▷ Calculate contribution to update from plasticity kernel

5: ∆JK [ii]← ³dx(t)k
⊺

+ ▷ Updates to self-synapses use separate scaling

6: ∆J ← ∆JK − (Jx)x⊺ ▷ Calculate weight update

T matrix at the end of the walk.452

4.6. RNN-S with truncated recurrent steps and nonlinarity453

For the RNN-S model with tmax recurrent steps, lines 10 and 13 in algorithm 1 is replaced454

with M⊺ ←
∑tmax

t=0 µtJ t.455

For RNN-S with nonlinear dynamics, there is no closed form solution. So, we select a456

value for tmax and replace lines 10 and 13 in algorithm 1 with an iterative update for tmax457

steps: ∆x = −x+ µtanh(Jx′) + φ. We choose tmax such that µtmax < 10−4.458

4.7. RNN-S with successor features459

We use µB = 0 and a tanh nonlinearity as in Methods 4.6. For simplicity, we set µB = 0.460

4.8. RNN-S with independent normalization461

As in algorithm 1, but with the following in place of line 16

∆Jij ← xi(t)xj(t− 1)− Jijxj(t− 1)2 (8)

4.9. FF-TD Model462

In all simulations of the FF-TD model, we use the temporal difference update. We perform463

a small grid search over the learning rate ¸ to minimize error (for SR, this is the MSE between464

the true M and estimated M ; for successor features, this is the temporal difference error). In465

the one-hot SR case, the temporal difference update given an observed transition from state466

s to state s′ is:467
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∆Mji =



























µMs′i −Msi if s = j ̸= i

1 + µMs′i −Msi if s = j = i

0 otherwise

(9)

for all synapses j → i. Given arbitrarily strucutred inputs (as in the successor feature case),468

the temporal difference update is:469

∆M⊺ = ¸

(

φ+ µMφ′ −Mφ

)

φ⊺ (10)

or, equivalently,470

∆Mji = ¸

(

ϕi + µ
∑

k

Mkiϕ
′

k −
∑

k

Mkiϕk

)

ϕj (11)

4.10. Generation of feature encodings for successor feature models471

For a walk with n states, we created n-dimensional feature vectors for each state. We472

choose an initial sparsity probability p and create feature vectors as random binary vectors473

with probability p of being “on”. The feature vectors were then blurred by a 2D Gaussian474

filter with variance Ã with 1 standard deviation of support. The blurred features were then475

min-subtracted and max-normalized. The sparsity of each feature vector was calculated as476

the L1 norm divided by N . The sparsity s of the dataset then was the median of all the477

sparsity values computed from the feature vectors. To vary the spatial correlation of the478

dataset we need only vary Ã. To vary the sparsity s of the dataset we need to vary p, then479

measure the final s after blurring with Ã. Note that, at large Ã, the lowest sparsity values in480

our parameter sweep were not possible to achieve.481

4.11. Measuring TD loss for successor feature models.482

We use the standard TD loss function (equation S7). To measure TD loss, at the end483

of the walk we take a random sample of observed transition pairs (φ,φ′). We use these484

transitions as the dataset to evaluate the loss function.485
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4.12. Analysis of place field statistics486

We use the open source dataset from Payne et al. [11, 53]. We select for excitatory cells in487

the anterior tip of the hippocampus. We then select for place cells using standard measures488

(significantly place-modulated and stable over the course of the experiment).489

We determined place field boundaries with a permutation test as in Payne et al. [11]. We490

then calculated the number of fields per neuron and the field size as in Henriksen et al. [55].491

The same analyses were conducted for simulated neural data from the RNN-S and FF-TD492

models.493

4.13. Behavioral simulation of Payne et al.494

We use behavioral tracking data from Payne et al. [11]. For each simulation, we randomly495

select an experiment and randomly sample a 28 minute window from that experiment. If the496

arena coverage is less than 85% during the window, we redo the sampling until the coverage497

requirement is satisfied. We then downsample the behavioral data so that the frame rate498

is the same as our simulation (3 FPS). Then, we divide the arena into a 14× 14 grid. We499

discretize the continuous X/Y location data into these states. This sequence of states makes500

up the behavioral transitions that the model simulates.501

4.14. Place field plots502

From the models, we get the activity of each model neuron over time. We make firing503

field plots with the same smoothing parameters as Payne et al. [11].504
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Citation diversity statement514

Systemic discriminatory practices have been identified in neuroscience citations, and a515

‘citation diversity statement’ has been proposed as an intervention [94, 95]. There is evidence516

that quantifying discriminatory practices can lead to systemic improvements in academic517

settings [96]. Many forms of discrimination could lead to a paper being under-cited, for518

example authors being less widely known or less respected due to discrimination related519

to gender, race, sexuality, disability status, or socioeconomic background. We manually520

estimated the number of male and female first and last authors that we cited, acknowledging521

that this quantification ignores many known forms of discrimination, and fails to account for522

nonbinary/intersex/trans folks. In our citations, first-last author pairs were 64% male-male,523

21% female-male, 6% male-female, and 9% female-female, somewhat similar to base rates in524

our field (biaswatchneuro.com). To familiarize ourselves with the literature, we used databases525

intended to counteract discrimination (blackinneuro.com, anneslist.net, connectedpapers.com).526

The process of making this statement improved our paper, and encouraged us to adopt less527

biased practices in selecting what papers to read and cite in the future. We were somewhat528

surprised and disappointed at how low the number of female authors were, despite being a529

female-female team ourselves. Citation practices alone are not enough to correct the power530

imbalances endemic in academic practice [97] — this requires corrections to how concrete531

power and resources are distributed.532
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Supplementary Notes786

The successor representation is defined as787

M = (I − µT )−1 (S1)

where T is the transition probability matrix such that Tji = P (s′ = i|s = j) for current state788

s and future state s′789

Supplementary Notes 1. Finding the conditions to retrieve M from RNN steady-790

state activity791

For an RNN with connectivity J , activity x, input φ, and gain µ ∈ [0, 1), the (linear)792

discrete-time dynamics equation is [41]793

∆x = −x(t) + µJx(t) + φ(t). (S2)

Furthermore, the steady state solution can be found by setting ∆x = 0:794

xSS = (I − µJ)−1φ (S3)

Assume that J = T T as a result of the network using some STDP-like learning rule where795

pre-post connections are potentiated. The transposition is due to notational differences from796

the RL literature, where the ijth index typically concerns the direction from state i to state j.797

This is a result of differences in RL and RNN conventions in which inputs are left-multiplied798

and right-multiplied, respectively. Let µ be a neuromodulatory factor that is applied over the799

whole network (and, thus, does not need to be encoded in the synaptic weights). Then, the800

equivalence to equation S1 becomes clear and our steady state solution can be written as:801

xSS =MTφ (S4)

This is consistent with the successor representation framework shown in Stachenfeld, et al.802

[18], where the columns of the M matrix represent the firing fields of a neuron, and the rows803

of the M matrix represent the network response to some input.804
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Supplementary Notes 2. Deriving the RNN-S learning rule from TD Error and805

showing the learning rule is valid under a stability806

condition807

Transitions between states (s, s′) are observed as features (ϕ(s), ϕ(s′)) where ϕ is some808

function. For notational simplicity, we will write these observed feature transitions as809

(φ,φ′). A dataset D is comprised of these observed feature transitions over a behavioral810

trajectory. Successor features are typically learned by some function approximator È(φ; ¹)811

that is parameterized by ¹ and takes in the inputs φ. The SF approximator, È, is learned by812

minimizing the temporal difference (TD) loss function [98]:813

L(¹) = E

[

∥φ+ µÈπ(φ′; ¹)− È(φ; ¹)∥
2
2 |D

]

(S5)

for the current policy Ã. Here, the TD target is ϕ+ µÈπ(φ′; ¹). Analogous to the model-free814

setting where the value function V is being learned, φ is in place of the reward r. Following815

these definitions, we can view the RNN-S as the function approximator È:816

È(φ; ¹ = J) = (I − µJ)−1φ (S6)

For a single transition (φ,φ′) we can write out the loss as follows:817

L(¹) =
∥

∥φ+ µÈπ(φ′; ¹)− (I − µJ)−1φ
∥

∥

2

2
(S7)

For each observed transition, we would like to update È such that the loss L is minimized.818

Thus, we take the gradient of this temporal difference loss function with respect to our819

parameter ¹ = J :820

∇JL(¹) = 2
(

φ+ µÈπ(φ′; ¹)− (I − µJ)−1φ
)

∇J

(

− (I − µJ)−1φ
)

⊺

(S8)

We can make the TD approximation Èπ(φ′; ¹) ≈ È(φ′; ¹) = (I − µJ)−1φ′ [98]:821

∇JL(¹) = 2
(

φ+ µ(I − µJ)−1φ′ − (I − µJ)−1φ
)

∇J

(

− (I − µJ)−1φ
)

⊺

(S9)
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= 2
(

φ+ µ(I − µJ)−1φ′ − (I − µJ)−1φ
)(

− (I − µJ)−1(−µ)(I − µJ)−1φ
)

⊺

(S10)

= −2
(

(I − µJ)x+ µx′ − x
)(

µ(I − µJ)−1x
)

⊺

(S11)

= −2µ2
(

x′ − Jx
)(

(I − µJ)−1x)
)

⊺

(S12)

= −2µ2(x′ − Jx)x⊺(I − µJ)−⊺ (S13)

While −∇JL(¹) gives the direction of steepest descent in the loss, we will consider a linear822

transformation of the gradient that allows for a simpler update rule. This simpler update823

rule will be more amenable to a biologically plausible learning rule. We define this modified824

gradient as D = ∇JL(¹)M where M = (I − µJ)⊺. We must first understand the condition825

for D to be in a direction of descent:826

ïD,∇JLð > 0 (S14)

Tr(D⊺∇JL) > 0 (S15)

Tr(∇JLM∇JL) > 0 (S16)

Tr(∇JL(
M +M⊺

2
+
M −M⊺

2
)∇JL) > 0 (S17)

1

2
Tr(∇JL(M +M⊺)∇JL) > 0 (S18)

This expression is satisfied if M +M⊺ is positive definite (its eigenvalues are positive). Thus,827

we find that our modified gradient points towards a descent direction if the eigenvalues of828

M +M⊺ are positive. Interestingly, this condition is equivalent to stating that the recurrent829

network dynamics are stable and do not exhibit non-normal amplification [99, 100, 101]. In830

other words, as long as the network dynamics are in a stable regime and do831

not have non-normal amplification, our modified gradient reduces the temporal832

difference loss. Otherwise, the gradient will not point towards a descent direction.833

We will use the modified gradient −D = (x′ − Jx)x⊺ as our synaptic weight update rule.834

Our theoretical analysis explains much of the results seen in the main text. As the gain835

parameter µB is increased, the network is closer to the edge of stability (the eigenvalues of836

M are close to positive values, Figure 3a). Stability itself is not enough to guarantee that837

our update rule is valid. We need the additional constraint that non-normal amplification838
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should not be present (eigenvalues of M +M⊺ are positive). In practice, however, this does839

not seem to be a mode that affects our network. That is, the µB value for which the error in840

the network increases coincides with the µB value for which the network is no longer stable841

(Figure 3b). Our theoretical analysis also shows that the gain µB can always be decreased842

such that the eigenvalues of M +M⊺ are positive and our update rule is valid (Figure 3e).843

At the most extreme, one can set µB = 0 during learning to maintain stability (as we do in844

Figure 4 and onwards).845

Supplementary Notes 3. Proving the RNN-S update rule calculated on firing846

rates (x) depends only on feedforward inputs (φ) at847

steady state848

We will show that our update rule, which uses x (neural activity), converges on a solution849

that depends only on φ (the feedforward inputs). We will also show that in the one-hot case,850

we learn the SR exactly.851

As a reminder, our learning rule for each j → i synapse is:852

∆J = ¸(x′ − Jx)x⊺ (S19)

We can solve for the steady state solution of equation S19 (set ∆J = 0). Let A = (1− µJ)−1
853

for notational convenience, and recall that in steady state x = Aφ. Let ïxð denote the854

average of x over time.855

J = ïx′x⊺ðïxx⊺ð−1 (S20)

J = ïAφ′(Aφ)⊺ðïAφ(Aφ)⊺ð−1 (S21)

J = ïAφ′φ⊺A⊺ðïAφφ⊺A⊺ð−1 (S22)

J = Aïφ′φ⊺ðA⊺(Aïφφ⊺ðA⊺)−1 (S23)

Note that, since A = (1− µJ)−1, J = 1
γ
(1− A−1).856

Aïφ′φ⊺ðA⊺ = 1
γ
(1− A−1)Aïφφ⊺ðA⊺ (S24)
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Aïφ′φ⊺ðA⊺ = 1
γ
(Aïφφ⊺ðA⊺ − ïφφ⊺ðA⊺) (S25)

Aïφ′φ⊺ð = 1
γ
(Aïφφ⊺ð − ïφφ⊺ð) (S26)

Thus,857

ïφ′φ⊺ð = 1
γ
(1− A−1)ïφφ⊺ð (S27)

Therefore,858

J = ïφ′φ⊺ðïφφ⊺ð−1 (S28)

J = Rφφ(−1)Rφφ(0)
−1 (S29)

where Rφφ(Ä ) is the autocorrelation matrix for some time lag Ä . Therefore, the RNN-S weight859

matrix J at steady state is only dependent on the inputs into the RNN over time.860

In the case where φ is one-hot, we compute the SR exactly. This is because the steady861

state solution at each j → i synapse simplifies into the following expression:862

Jij =

∑

t′ ϕj(t
′ − 1)ϕi(t

′)
∑

t′ ϕj(t′)
(S30)

This is the definition of the transition probability matrix and we see that J = T ⊺. Note that863

the solution for Jij in equation S30 is undefined if state j is never visited. We assume each864

relevant state is visited at least once here.865

Supplementary Notes 4. Deriving the adaptive learning rate update rule866

This section explains how the adaptive learning rate is derived. The logic will be similar867

to calculating a weighted running average. Let dij(t) be a binary function that is 1 if the868

transition from timestep t− 1 to timestep t is state j to state i. Otherwise, it is 0. Assume869

φ is one-hot encoded. Notice that in the one-hot case, the RNN-S update rule (equation 4)870

simplifies to:871

∆Jij ≈ ¸(dij − Jijxj) (S31)
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What ¸ should be used so J approaches T ⊺ as quickly as possible? During learning, the872

empirical transition matrix, T (t), changes at each timestep t, based on transitions the animal873

has experienced. Define the total number of times that state ϕj happened prior to time t as874

nj(t) =
∑

∞

t′=1 ϕj(t− t
′), and define the running count of transitions from state j to state i as875

cij(t) =
∑

∞

t′=1 dij(t− t
′). We want J(t) = T ⊺(t), which necessitates876

∆Jij(t) = Tji(t)− Tji(t− 1) =
cij(t)

nj(t)
−
cij(t− 1)

nj(t− 1)
(S32)

=
nj(t− 1)cij(t)− cij(t− 1)nj(t)

nj(t)nj(t− 1)
(S33)

Note that nj(t) = nj(t− 1) + ϕj(t− 1), and cij(t) = cij(t− 1) + dij(t), which gives us877

∆Jij(t) =
nj(t− 1)cij(t− 1) + nj(t− 1)dij(t)− cij(t− 1)nj(t− 1)− cij(t− 1)ϕj(t− 1)

nj(t)nj(t− 1)

(S34)

=
nj(t− 1)dij(t)− cij(t− 1)ϕj(t− 1)

nj(t)nj(t− 1)
(S35)

=
1

nj(t)

(

dij(t)−
cij(t− 1)ϕj(t− 1)

nj(t− 1)

)

(S36)

=
1

nj(t)
(dij(t)− Tjiϕj(t− 1)) (S37)

Therefore, comparing with equation S31, we can see that a learning rate ¸j =
1

nj(t)
will let878

J = T ⊺ as quickly as possible. We have defined n in terms of the inputs φ for this derivation,879

but in practice the adaptive learning rate as a function of x works well with the RNN-S880

update rule (which is also a function of x). Thus, we use the adaptive learning rate defined881

over x in our combined learning rule for increased biological plausibility.882

In its current form, the update equation assumes transitions across all history of inputs883

are integrated. In reality, there is likely some kind of memory decay. This can be implemented884

with a decay term ¼ ∈ (0, 1]:885

nj(t) =
∞
∑

t′=1

¼t
′

xj(t− t
′) (S38)

¼ determines the recency bias over the observed transitions that make up the T estimate.886
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The addition of ¼ has the added benefit that it naturally provides a mechanism for learning887

rates to modulate over time. If ¼ = 1, the learning rate can only monotonically decrease. If888

¼ < 1, the learning rate can become strong again over time if a state has not been visited in889

a while. This provides a mechanism for fast learning of new associations, which is useful for890

a variety of effects, including remapping.891

Supplementary Notes 5. Endotaxis model and the successor representation892

The learning rule and architecture of our model is similar to a hypothesized “endotaxis”893

model [45]. In the endotaxis model, neurons fire most strongly near a reward, allowing the894

animal to navigate up a gradient of neural activity akin to navigating up an odor gradient.895

The endotaxis model discovers the structure of an environment and can solve many tasks such896

as spatial navigation and abstract puzzles. We were interested in similarities between RNN-S897

and the learning rules for endotaxis, in support of the idea that SR-like representations may898

be used by the brain for a broad range of intelligent behaviors. Here, we outline similarities899

and differences between the two model architectures.900

The endotaxis paper [45] uses Oja’s rule in an RNN with place-like inputs. The SR can901

also be learned with an Oja-like learning rule. Oja’s rule is typically written as [52]:902

∆Jij = ¸xjxi − ¸Jijx
2
i (S39)

If we assume that there is a temporal asymmetry to the potentiation term (e.g., potentiation903

is more STDP-like than Hebbian), then we have904

∆Jij = ¸xj(t− 1)xi(t)− ¸Jijxi(t)
2 (S40)

We then solve for the steady state solution of this equation, when ∆Jij = 0:905

0 = ¸ïxj(t− 1)xi(t)ð − ¸Jijïxi(t)
2ð (S41)

Jij =
ïxj(t− 1)xi(t)ð

ïxi(t)2ð
(S42)
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Jij =

∑

t′ xj(t
′ − 1)xi(t

′)
∑

t′ xi(t
′)2

(S43)

where ï·ð indicates the time-average of some term. Assume that the plasticity rule does not906

use x exactly, but instead uses φ directly. Given that inputs are one-hot encodings of the907

animal’s state at some time t, the expression becomes908

Jij =

∑

t′ ϕj(t
′ − 1)ϕi(t

′)
∑

t′ ϕi(t′)
(S44)

If we assume T is symmetric, J = T ⊺. Alternatively, if we use pre-synaptic normalization as909

opposed to the standard post-synaptic normalization of Oja’s rule (i.e., index j instead of i910

in the denominator), we also have J = T ⊺. Thus, the steady state activity of a RNN with911

this learning rule retrieves the SR, as shown in Supplementary Notes 1.912

Supplementary Notes 6. Independent normalization and successor features913

If we assume the same Oja-like rule as in Supplementary Notes 5, we can also arrive at a914

similar interpretation in the successor feature case as in equation 7. By solving for the steady915

state solution without any assumptions about the inputs φ, we get the following equation:916

J = Rφφ(−1)diag(Rφφ(0))
−1 (S45)

where diag is a function that retains only the diagonal of the matrix. This expression provides917

a useful way to contrast the learning rule used in RNN-S with an Oja-like alternative. While918

RNN-S normalizes by the full autocorrelation matrix, an Oja-like rule only normalizes by the919

diagonal of the matrix. This is the basis of our independent normalization model in Figure920

4bc.921
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Supplementary Figures

Figure S2: Comparing model performance in different random walks. a-c. As in Figure 2d-f of the
main document, but for a walk with uniform action probabilities.
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Figure S3: Understanding the effects of recurrency on stability. a. Mean absolute error (MAE) of M
matrices learned by RNN-S with different baseline γ and different numbers of recurrent steps in dynamics.
Test datasets used various biases in action probability selection. Errors are max-clipped at 101 for visualization
purposes. b. M matrix learned by RNN-S with two recurrent steps in dynamics and baseline γ = 0.8. A
forward-biased walk on a circular track was simulated. c. As in (b), but for four recurrent steps. d. As in
(b), but for five recurrent steps. Three examples are shown from different sampled walks to highlight the
runaway activity of the network. e. As in (b) but for the RNN-S activity calculated as (I − γJ)−1. Note that
this calculation amounts to an unstable fixed point in the dynamics that cannot be reached when the network
is in an unstable regime. f. Mean absolute error (MAE) in T made by RNN-S with linear dynamics using γB
during learning. g. MAE in M for γR made by RNN-S with linear dynamics using γB during learning. h.
As in (g), but the dynamics now have a tanh nonlinearity.
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Figure S4: Comparing place field shift and skew effects for different feature encodings. a-d.

Average firing rate as a function of position on a circular track for four example neurons. The walk and
feature encodings were generated as in Figure 4d of the main text. Each neuron is sampled from a different
walk. “Before Learning” refers to firing fields made from the first 2 minute window of the walk. “After
Learning” refers to firing fields made from the entire walk. e-f. As in (a-d), but for two neurons from a walk
where the features were one-hot encoded.
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Figure S5: Parameter sweep details and extended TD error plots. a. The values of p (initial sparsity
of random vectors before spatial smoothing) and σ sampled in our parameter sweep for Figures 5-6 in the
main text. See methods 4.10 for more details of how feature encodings were generated. b. The values of
s (final sparsity of features, measured after spatial smoothing) and σ sampled in our parameter sweep for
Figures 5-6 in the main text. c. A sample state encoded by the firing rate of 200 input neurons. Here,
s = 0.11 and σ = 2.. d. Spatial correlation of the feature encoding for an example state with the features of
all other states. The 14× 14 states are laid out in their position in the 2D arena. Here, the sample state is
the state in the center of the 2D arena and σ = 2.0. e. As in (d), but for σ = 0.0. f. As in Figure 5d of the
main text, but for RNN-S (first row) and FF-TD (second row) with γR = 0.4 (left column), γR = 0.6 (middle
column), and γR = 0.8 (right column).
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Figure S6: Extended place field evaluation plots. a. As in Figures 6e-g of the main text, but for
γR = 0.4 (left column) and γR = 0.8 (right column). In addition, the plots showing KL divergence (in bits)
for the distribution of field sizes and number of fields per cell are shown. b. As in (a) but for FF-TD. c. A in
Figure 6h of the main text, but for FF-TD with γR = 0.4 and d. FF-TD with γR = 0.8
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