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Abstract

The predictive nature of the hippocampus is thought to be useful for memory-guided cognitive
behaviors. Inspired by the reinforcement learning literature, this notion has been formalized
as a predictive map called the successor representation (SR). The SR captures a number of
observations about hippocampal activity. However, the algorithm does not provide a neural
mechanism for how such representations arise. Here, we show the dynamics of a recurrent
neural network naturally calculate the SR when the synaptic weights match the transition
probability matrix. Interestingly, the predictive horizon can be flexibly modulated simply by
changing the network gain. We derive simple, biologically plausible learning rules to learn the
SR in a recurrent network. We test our model with realistic inputs and match hippocampal
data recorded during random foraging. Taken together, our results suggest that the SR is
more accessible in neural circuits than previously thought and can support a broad range of

cognitive functions.

1 1. Introduction

2 To learn from the past, plan for the future, and form an understanding of our world, we
3 require memories of personal experiences. These types of memories depend on the hippocam-
s+ pus for formation and recall [1, 2, 3], but an algorithmic and mechanistic understanding
s of memory formation and retrieval in this region remains elusive. The need to support
s planning and inference suggests that one of the key features of memory is the ability to
7 predict possible outcomes [4, 5, 6, 7]. Consistent with this hypothesis, experimental work
s has shown that, across species and tasks, hippocampal activity is predictive of the future

o experience of an animal [8, 9, 10, 11, 12, 13, 14, 15]. Furthermore, theoretical work has
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10 found that models endowed with predictive objectives tend to resemble hippocampal activity
u [16, 17, 18, 19, 20, 21, 6, 22]. Thus, it is clear that predictive representations are an important
12 aspect of hippocampal memory.

13 Inspired by work in the reinforcement learning (RL) field, these observations have been
1 formalized by describing hippocampal activity as a predictive map under the successor
15 representation (SR) algorithm [23, 24, 18]. Under this framework, an animal’s experience in
16 the world is represented as a trajectory through some defined state space, and hippocampal
17 activity predicts the future experience of an animal by integrating over the likely states that
18 an animal will visit given its current state. This algorithm further explains how, in addition
19 to episodic memory, the hippocampus may support relational reasoning and decision making
20 [21, 25|, consistent with differences in hippocampal representations in different tasks [26, 27].
a1 The SR framework captures many experimental observations of neural activity, leading to a
» proposed computational function for the hippocampus [18].

23 While the SR algorithm convincingly argues for a computational function of the hippocam-
2 pus, it is unclear what biological mechanisms might compute the SR in a neural circuit. Thus,
s several relevant questions remain that are difficult to probe with the current algorithm. What
s kind of neural architecture should one expect in a region that can support this computation?
27 Are there distinct forms of plasticity and neuromodulation needed in this system? What
s is the structure of hippocampal inputs to be expected? A biologically plausible model can
2 explore these questions and provide insight into both mechanism and function [28, 29, 30].
30 In other systems, it has been possible to derive biological mechanisms with the goal of
s achieving a particular network function or property [31, 32, 33, 34, 35, 36, 37, 38]. Key to
:» many of these models is the constraint that learning rules at any given neuron can only use
13 information local to that neuron. A promising direction towards such a neural model of
1 the SR is to use the dynamics of a recurrent network to perform SR computations [39, 40].
55 However, this idea has not been tied to neural learning rules that support its operation and
s allow for testing of specific hypotheses.

37 Here, we show that an RNN with local learning rules and an adaptive learning rate
;s exactly calculates the SR at steady state. We test our model with realistic inputs and

3 make comparisons to neural data. In addition, we compare our results to the standard SR
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w0 algorithm with respect to the speed of learning and the learned representations in cases
s where multiple solutions exist. Our work provides a mechanistic account for an algorithm
22 that has been frequently connected to the hippocampus, but could only be interpreted at an
3 algorithmic level. This network-level perspective allows us to make specific predictions about

s hippocampal mechanisms and activity.

s 2. Results

s 2.1. The successor representation

a7 The SR algorithm described in Stachenfeld et al. [18] first discretizes the environment
s explored by an animal (whether a physical or abstract space) into a set of n states that the
» animal transitions through over time (Figure 1a). The animal’s behavior can then be thought
o of as a Markov chain with a corresponding transition probability matrix 7},«, (Figure 1b). T
51 gives the probability that the animal transitions to a state s’ from the state s in one time

2 step: Tj; = P(s' =i|s = j). The SR matrix is defined as

M=y = (I —~T)™ 1)

s Here, v € (0,1) is a temporal discount factor. M;; can be seen as a measure of the occcupancy
s« of state ¢ over time if the animal starts at state j, with v controlling how much to discount
s time steps in the future (Figure 1c). The SR of state j is the jth row of M and represents
ss the states that an animal is likely to transition to from state j. Stachenfeld et al. [1§]
s7 demonstrate that, if one assumes each state drives a single neuron, the SR of j resembles the
ss  population activity of hippocampal neurons when the animal is at state j (Figure 1d). They
so also show that the ith column of M resembles the place field (activity as a function of state)
0 of a hippocampal neuron representing state ¢ (Figure le). In addition, the ith column of M

&1 shows which states are likely to lead to state 7.

62 2.2. Recurrent neural network computes SR at steady state

63 We begin by drawing connections between the SR algorithm [18] and an analogous neural

& network architecture. The input to the network encodes the current state of the animal and
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Figure 1: The successor representation and an analogous recurrent network model. a. The
behavior of an animal running down a linear track can be described as a transition between discrete states
where the states encode spatial location. b. By counting the transitions between different states, the behavior
of an animal can be summarized in a transition probability matrix T'. c¢. The successor representation matrix
is defined as M = >, ~"T". Here, M is shown for v = 0.6. Dashed boxes indicate the slices of M shown in
(d) and (e). d. The fourth row of the M matrix describes the activity of each state-encoding neuron when
the animal is at the fourth state. e. The fourth column of the M matrix describes the place field of the
neuron encoding the fourth state. f. Recurrent network model of the SR (RNN-S). The current state of the
animal is one-hot encoded by a layer of input neurons. Inputs connect one-to-one onto RNN neurons with
synaptic connectivity matrix J = T'T. The activity of the RNN neurons are represented by x. SR activity
is read out from one-to-one connections from the RNN neurons to the output neurons. The example here
shows inputs and outputs when the animal is at state 4. g. Feedforward neural network model of the SR
(FF-TD). The M matrix is encoded in the weights from the input neurons to the output layer neurons, where
the SR activity is read out. h. Diagram of the terms used for the RNN-S learning rule. Terms in red are
used for potentiation while terms in blue are used for normalization (equation 4). i. As in (h) but for the
feedforward-TD model (equation 11). To reduce the notation indicating time steps, we use ’ in place of (t)
and no added notation for (¢ — 1).

es 1s represented by a layer of input neurons (Figure 1fg). These neurons feed into the rest
e of the network that computes the SR (Figure 1fg). The SR is then read out by a layer of
&7 output neurons so that downstream systems receive a prediction of the upcoming states
¢ (Figure 1fg). We will first model the inputs ¢ as one-hot encodings of the current state of the

o animal (Figure 1fg). That is, each input neuron represents a unique state and are one-to-one
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70 connected to the hidden neurons.

71 We first consider an architecture in which a recurrent neural network (RNN) is used to
2 compute the SR (Figure 1f). Let us assume that the 7" matrix is encoded in the synaptic
73 weights of the RNN. In this case, the steady state activity of the network in response to input
74 ¢ retrieves a row of the SR matrix, MT¢ (Figure 1f, Supplementary Notes 1). Intuitively, this
75 is because each recurrent iteration of the RNN progresses the prediction by one transition.
7% In other words, the tth recurrent iteration raises 1" to the tth power as in equation 1. To
77 formally derive this result, we first start by defining the dynamics of our RNN with classical
76 rate network equations [41]. At time ¢, the firing rate «(t) of N neurons given each neurons’

79 input ¢(t) follows the discrete-time dynamics (assuming a step size At = 1)

Az = —x(t) + f(vJ2(t)) + ¢(t) (2)

s Here, v scales the recurrent activity and is a constant factor for all neurons. The synaptic
s weight matrix J € Ryxn is defined such that J;; is the synaptic weight from neuron j to
&2 neuron ¢. Notably, this notation is transposed from what is used in RL literature, where
&3 conventions have the first index as the starting state. Generally, f is some nonlinear function
s in equation 2. For now, we will consider f to be the identity function, rendering this equation

&s linear. Under this assumption, we can solve for the steady state activity zgg as

Lss = (] - ’7J)_1¢ (3)

ss Equivalence between equation 1 and equation 3 is clearly reached when J = T'T [40, 39].
sz Thus, if the network can learn 7' in its synaptic weight matrix, it will exactly compute the
ss OR.

89 A benefit of this scheme is that v is not encoded in the synaptic weights. Thus, v can
o be a flexibly modulated gain factor (see, for example, Sompolinsky et al. [42]) allowing the
a1 system to retrieve successor representations of varying predictive strengths. We will refer to
o the v used during learning of the SR as the baseline 7, or v5.

03 We next consider what is needed in a learning rule such that J approximates T7. In

o order to learn a transition probability matrix, a learning rule must associate states that occur
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s sequentially and normalize the synaptic weights into a valid probability distribution. We

o derive a learning rule that addresses both requirements (Figure 1h, Supplementary Notes 2),

AJij = nai(t)z;(t — 1) — na(t — 1) > Jyag(t — 1), (4)
k

o7 where 7 is the learning rate. The first term in equation 4 is a temporally asymmetric
e potentiation term that counts states that occur in sequence. This is similar to spike-timing
o dependent plasticity, or STDP [43, 8, 44]. The second term in equation 4 normalizes the
w0 synapses into a valid transition probability matrix, such that each column of J =TT sums to
1.

102 Crucially, this update rule (equation 4) uses information local to each neuron (Figure
103 1h). We show that, in the asymptotic limit, the update rule extracts information about the
e inputs ¢ and learns T exactly despite having access only to neural activity & (Supplementary
s Notes 3). We will refer to an RNN using equation 4 as the RNN-Successor, or RNN-S.
s Combined with recurrent dynamics (equation 3), RNN-S computes the SR exactly (Figure
w7 1h).

108 As an alternative to the RNN-S model, we consider the conditions necessary for a
o feedforward neural network to compute the SR. Under this architecture, the M matrix must
o be encoded in the weights from the input neurons to the hidden layer neurons (Figure 1g).
i This can be achieved by updating the synaptic weights with a temporal difference (TD)
2 learning rule, the standard update used to learn the SR in the usual algorithm. Although
us  the TD update learns the SR, it requires information about multiple input layer neurons to
s make updates for the synapse from input neuron j to output neuron i (Figure 1i). Thus, it is

us useful to explore other possible mechanisms that are simpler to compute locally. We refer to

us the model described in Figure 1lih as the feedforward-TD (FF-TD) model.

ur 2.3. Evaluating SR learning by biologically plausible learning rules

118 To evaluate the effectiveness of the RNN-S learning rule, we tested its accuracy in learning
ne the SR matrix for random walks. Specifically, we simulated random walks with different
120 transition biases in a 1D circular track environment (Figure 2a). The RNN-S can learn the

121 SR for these random walks (Figure 2b).
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Figure 2: Comparing the effects of an adaptive learning rate and plasticity kernels in RNN-S. a.
Sample one-minute segments from random walks on a 1 meter circular track. Possible actions in this 1D walk
are to move forward, stay in one place, or move backward. Action probabilities are uniform (top), biased to
move forward (middle), or biased to stay in one place (bottom). b. M matrices estimated by the RNN-S
model in the full random walks from (a). c. The proposed learning rate normalization. The learning rate n;
for synapses out of neuron j changes as a function of its activity «; and recency bias A. Dotted lines are at
[0.0,0.5,1.0]. d. The mean row sum of T over time computed by the RNN-S with an adaptive learning rate
(blue) or the RNN-S with static learning rates (orange). Darker lines indicate larger static learning rates.
Lines show the average over simulations from walks with a forward bias. A correctly normalized 1" matrix
should have a row sum of 1.0. e. As in (d), but for the mean absolute error in estimating 7. f. As in (e), but
for mean absolute error in estimating the real M, and with performance of FF-TD included, with darker
lines indicating slower learning rates for FF-TD. g. Lap-based activity map of a neuron from RNN-S with
static learning rate n = 10715, The neuron encodes the state at 45 cm on a circular track. The simulated
agent is moving according to forward-biased transition statistics. h. As in (g), but for RNN-S with adaptive
learning rate. i. The learning rate over time for the neuron in (g) (orange) and the neuron in (h) (blue).
j- Mean-squared error (MSE) at the end of meta-learning for different plasticity kernels. The pre—post
(K4) and post—pre (K_) sides of each kernel were modeled by Ae~+. Heatmap indices indicate the values
7s were fixed to. Here, K is always a positive function (i.e., A was positive), because performance was
uniformly poor when K was negative. K_ could be either positive (left, “Post — Pre Potentiation”) or
negative (right, “Post — Pre Depression”). Regions where the learned value for A was negligibly small were
set to high errors. Errors are max-clipped at 0.03 for visualization purposes. k. Plasticity kernels chosen
from the areas of lowest error in the grid search from (j). Left is post — pre potentiation. Right is post —
pre depression. Kernels are normalized by the maximum, and dotted lines are at one second intervals.

122 Because equivalence is only reached in the asymptotic limit of learning (i.e., AJ — 0),

123 our RNN-S model learns the SR slowly. In contrast, animals are thought to be able to learn
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12e  the structure of an environment quickly [45], and neural representations in an environment
15 can also develop quickly [46, 47, 48]. To remedy this, we introduce a dynamic learning rate
16 that allows for faster normalization of the synaptic weight matrix, similar to the formula for
17 calculating a moving average (Supplementary Notes 4). For each neuron, suppose that a

123 trace n of its recent activity is maintained with some time constant A € (0, 1],

n(t) =Y Ax(t) (5)

<t

19 If the learning rate of the outgoing synapses from each neuron j is inversely proportional
1 ton; (n= ﬁ), the update equation quickly normalizes the synapses to maintain a valid
131 transition probability matrix (Supplementary Notes 4). We refer to this as an adaptive
12 learning rate and contrast it with the previous static learning rate. We consider the setting
133 where A = 1, so the learning rate monotonically decreases over time (Figure 2c¢). In general,
13 however, the learning rate could increase or decrease over time if A < 1 (Figure 2c¢), and
135 n could be reset, allowing for rapid learning. Our learning rule with the adaptive learning
16 rate is the same as in equation 4, with the exception that n = min(%, 1.0) for synapses J,;.
137 This learning rule still relies only on information local to the neuron as in Figure 1i.

138 The RNN-S with an adaptive learning rate normalizes the synapses more quickly than
130 a network with a static learning rate (Figure 2d, Figure S2a) and learns T faster (Figure
1o 2e, Figure S2b). The RNN-S with a static learning rate exhibits more of a tradeoff between
11 normalizing synapses quickly (Figure 2d, Figure S2a) and learning M accurately (Figure
12 2e, Figure S2b). However, both versions of the RNN-S estimate M more quickly than the
s FF-TD model (Figure 2f, Figure S2c).

144 Place fields can form quickly, but over time the place fields may skew if transition statistics
115 are consistently biased [18, 46, 47, 48]. The adaptive learning rate recapitulates both of these
us  effects, which are thought to be caused by slow and fast learning processes, respectively. A
w7 low learning rate can capture the biasing of place fields, which develops over many repeated
s experiences. This is seen in the RNN-S with a static learning rate(Figure 2g). However, a

1o high learning rate is needed for hippocampal place cells to develop sizeable place fields in

150 one-shot. Both these effects of slow and fast learning can be seen in the neural activity of an
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151 example RNN-S neuron with an adaptive learning rate (Figure 2h). After the first lap, a
12 sizeable field is induced in a one-shot manner, centered at the cell’s preferred location. In
153 subsequent laps, the place field slowly distorts to reflect the bias of the transition statistics
15« (Figure 2h). The model is able to capture these learning effects because the adaptive learning
155 rate transitions between high and low learning rates, unlike the static version (Figure 2i).

156 Thus far, we have assumed that the RNN-S learning rule uses pre—post activity over two
157 neighboring time steps (equation 4). A more realistic framing is that a convolution with a
158 plasticity kernel determines the weight change at any synapse. We tested how this affects
159 our model and what range of plasticity kernels best supports the estimation of the SR. We

1o do this by replacing the pre—post potentiation term in equation 4 with a convolution:

t
Adij=mi(t) > Ky (t—t")a;(t)+a;(t Z K_(t—t")a;(t") —na;(t—1) ZJkak (t—1) (6)

t'=—00 t'=—00

161 In the above equation, the full kernel K is split into a pre—post kernel (K, ) and a post—pre
w2 kernel (K_). K, and K_ are parameterized as independent exponential functions, Ae~*/7.

163 To systematically explore the space of plasticity kernels that can be used to learn the
s SR, we performed a grid search over the sign and the time constants of the pre—post and
165 post—pre sides of the plasticity kernels. Plasticity kernels that are STDP-like are more
166 effective than others, although plasticity kernels with slight post—pre potentiation work as
167 well (Figure 2j). The network is sensitive to the time constant and tends to find solutions
16s for time constants around a few hundred milliseconds (Figure 2jk). Our robustness analysis
10 indicates the timescale of a plasticity rule in such a circuit may be longer than expected by
o standard STDP, but within the timescale of changes in behavioral states. We note that this
i also contrasts with behavioral timescale plasticity [48], which integrates over a window that
2 is several seconds long. Finally, we see that even plasticity kernels with slightly different

173 time constants may give a result that is SR-like, even if they do not estimate the SR exactly

s (Figure 2j).
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Figure 3: RNN-S requires a stable choice of vz during learning, and can compute SR with any
vr a. Maximum real eigenvalue of the J matrix at the end of random walks under different v5. The network
dynamics were either fully linear (solid) or had a tanh nonlinearity (dashed). Red line indicates the transition
into an unstable regime. b. MAE of M matrices learned by RNN-S with different v5. RNN-S was simulated
with linear dynamics (solid line) or with a tanh nonlinearity added to the recurrent dynamics (dashed line).
Test datasets used various biases in action probability selection. c¢. M matrix learned by RNN-S with tanh
nonlinearity added in the recurrent dynamics. A forward-biased walk on a circular track was simulated, and
v = 0.8. d. The true M matrix of the walk used to generate (c). e. Simulated population activity over the
first ten laps in a circular track with yg = 0.4. Dashed box indicates the retrieval phase, where learning is
turned off and vz = 0.9. Boxes are zoomed in on three minute windows.

2.4. RNN-S can compute the SR with arbitrary vg under a stable regime of vp

We next investigate how robust the RNN-S model is to the value of ~. Typically, for
purposes of fitting neural data or for RL simulations, v will take on values as high as 0.9
[18, 49]. However, previous work that used RNN models reported that recurrent dynamics
become unstable if the gain ~y exceeds a critical value [42, 45]. This could be problematic as
we show analytically that the RNN-S update rule is effective only when the network dynamics
are stable and do not have non-normal amplification (Supplementary Notes 2). If these
conditions are not satisfied during learning, the update rule no longer optimizes for fitting
the SR and the learned weight matrix will be incorrect.

We first test how the value of vp, the gain of the network during learning, affects the
RNN-S dynamics. The dynamics become unstable when ~v5 exceeds 0.6 (Figure S3a-e).
Specifically, the eigenvalues of the synaptic weight matrix exceed the critical threshold for

stability when v > 0.6 (Figure 3a, “Linear”). As expected from our analytical results,

10
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188 the stability of the network is tied to the network’s ability to estimate M. RNN-S cannot
180 estimate M well when g > 0.6 (Figure 3b, “Linear”). We explored two strategies to enable
1o RNN-S to learn at high ~.

191 One way to tame this instability is to add a saturating nonlinearity into the dynamics of
102 the network. Instead of assuming the network dynamics are fully linear (f is the identity
103 function in equation 2), we add a hyperbolic tangent into the dynamics equation. This
104 extends the stable regime of the network— the eigenvalues do not exceed the critical threshold
s until v > 0.8 (Figure 3a). Similar to the linear case, the network with nonlinear dynamics
s fits M well until the critical threshold for stability (Figure 3b). These differences are clear
17 visually as well. While the linear network does not estimate M well for v5 = 0.8 (Figure 3b),
s the estimate of the nonlinear network (Figure 3c) is a closer match to the true M (Figure
1o 3d). However, there is a tradeoff between the stabilizing effect of the nonlinearity and the
20 Ppotential loss of accuracy in calculating M with a nonlinearity (Figure S3h).

201 We explore an alternative strategy for computing M with arbitrarily high ~ in the range
22 0 <y < 1. We have thus far pushed the limits of the model in learning the SR for different
203 yg. However, an advantage of our recurrent architecture is that v is a global gain modulated
2a  independently of the synaptic weights. Thus, an alternative strategy for computing M with
205 high 7 is to consider two distinct modes that the network can operate under. First, there
26 1S a learning phase in which the plasticity mechanism actively learns the structure of the
207 environment and the model is in a stable regime (i.e., yp is small). Separately, there is
28 a retrieval phase during which the gain vy of the network can be flexibly modulated. By
20 changing the gain, the network can compute the SR with arbitrary prediction horizons,
210 without any changes to the synaptic weights. We show the effectiveness of separate network
a1 phases by simulating a 1D walk where the learning phase uses a small 5 (Figure 3e). Halfway
212 through the walk, the animal enters a retrieval mode and accurately computes the SR with
23 higher vg (Figure 3e).

214 Under this scheme, the model can compute the SR for any v < 1 (Figures S3f-h). The
215 separation of learning and retrieval phases stabilizes neural dynamics and allows flexible

216 tuning of predictive power depending on task context.
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Figure 4: Generalizing the model to more realistic inputs. a. Illustration of possible feature encodings
¢ for two spatially adjacent states in green and red. Feature encodings may vary in sparsity level and spatial
correlation. b. Average value of the STDP component (red) and the decorrelative normalization (solid
blue) component of the gradient update over the course of a random walk. In dashed blue is a simpler
Oja-like independent normalization update for comparison. Simulations are from forward-biased walks on a
circular track. Input features are 3% sparse, with 10 cm spatial correlation. c¢. Top: Example population
activity of neurons in the RNN-S using the full decorrelative normalization rule over a 2 minute window of a
forward-biased random walk. Population activity is normalized by the maximum firing rate. Bottom: As
above, but for RNN-S using the simplified normalization update. d. Shifts in place field peaks after a half
hour simulation from the first two minutes of a 1D walk. Proportion of shifts in RNN-S with one-hot inputs
shown in gray. Proportion of shifts in RNN-S with feature encodings (10% sparsity, 7.5 cm spatial correlation,
~vr = 0.8) shown in blue. Each data point is the average shift observed in one simulated walk, and each
histogram is over 40 simulated walks. Solid line indicates the reported measure from Mehta & Wilson (2000).

2.5. RNN-S can be generalized to more complex inputs with successor features

We wondered how RNN-S performs given more biologically realistic inputs. We have
so far assumed that an external process has discretized the environment into uncorrelated
states so that each possible state is represented by a unique input neuron. In other words,
the inputs ¢ are one-hot vectors. However, inputs into the hippocampus are expected to be
continuous and heterogeneous, with states encoded by overlapping sets of neurons [50]. When
inputs are not one-hot, there is not always a canonical ground-truth 7" matrix to fit and the
predictive representations are referred to as successor features [49, 51]. In this setting, the

performance of a model estimating successor features is evaluated by the temporal difference

12
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26 (TD) loss function.

207 Using the RNN-S model and update rule (equation 4), we explore more realistic inputs ¢
28 and refer to ¢ as “input features” for consistency with the successor feature literature. We
2o vary the sparsity and spatial correlation of the input features (Figure 4a). As before (Figure
20 3h), the network will operate in separate learning and retrieval modes, where g is below the

a1 critical value for stability. Under these conditions, the update rule will learn

J = Rpp(—1)Rpe(0)™ (7)

22 at steady state, where Ry (7) is the correlation matrix of ¢ with time lag 7 (Supplementary
213 Notes 3). Thus, the RNN-S update rule has the effect of normalizing the input feature via a
2 decorrelative factor (Rgy(0)™') and mapping the normalized input to the feature expected at
25 the next time step in a STDP-like manner (Rgs(—1)). This interpretation generalizes the
26 result that J =TT in the one-hot encoding case (Supplementary Notes 3).

237 We wanted to further explore the function of the normalization term. In the one-hot case,
233 it operates over each synapse independently and makes a probability distribution. With more
230 realistic inputs, it operates over a set of synapses and has a decorrelative effect. We first
20 ask how the decorrelative term changes over learning of realistic inputs. We compare the
21 mean value of the STDP term of the update (z;(¢)z;(t — 1)) to the normalization term of the
22 update (x;(t — 1)), Jyxr(t — 1)) during a sample walk (Figure 4b). The RNN-S learning
a3 rule has stronger potentiating effects in the beginning of the walk. As the model learns more
24 Of the environment and converges on the correct transition structure, the strength of the
25 normalization term balances out the potentiation term. It may be that the normalization
us term is particularly important in maintaining this balance as inputs become more densely
27 encoded. We test this hypothesis by using a normalization term that operates on each
23 synapse independently (similar to Oja’s Rule, [52], Supplementary Notes 5). We see that
a9 the equilibrium between potentiating and depressing effects is not achieved by this type of
20 independent normalization (Figure 4b, Supplementary Notes 6).

251 We wondered whether the decorrelative normalization term is necessary for the RNN-S to

2 develop accurate representations. By replacing the decorrelative term with an independent
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3 normalization, features from non-adjacent states begin to be associated together and the
2s¢ model activity becomes spatially non-specific over time (Figure 4c, top). In contrast, using
25 the decorrelative term, the RNN-S population activity is more localized (Figure 4c, bottom).
256 Interestingly, we noticed an additional feature of place maps as we transitioned from one-
7 hot feature encodings to more complex feature encodings. We compared the representations
s learned by the RNN-S in a circular track walk with one-hot features versus more densely
0 encoded features. For both input distributions, the RNN-S displayed the same skewing in
20 place fields seen in Figure 2 (Figure S4). However, the place field peaks of the RNN-S model
21 additionally shifted backwards in space for the more complex feature encodings (Figure 4d).
22 This was not seen for the one-hot encodings (Figure 4d). The shifting in the RNN-S model is
263 consistent with the observations made in Mehta et al. [17] and demonstrates the utility of
4 considering more complex input conditions. A similar observation was made in Stachenfeld
s et al. [18] with noisy state inputs. In both cases, field shifts could be caused by neurons
%6 Teceiving external inputs at more than one state, particularly at states leading up to its

7 original field location.

w8 2.6, RNN-S estimates successor features even with naturalistic trajectories.

269 We ask whether RNN-S can accurately estimate successor features, particularly under
20 conditions of natural behavior. Specifically, we used the dataset from Payne et al. [11, 53],
o gathered from foraging Tufted Titmice in a 2D arena (Figure 5a). We discretize the arena into
a2 a set of states and encode each state as a randomly drawn feature ¢. Using position-tracking
o data from Payne et al. [11, 53], we simulate the behavioral trajectory of the animal as
oz transitions through the discrete state space. The inputs into the successor feature model are
s the features associated with the states in the behavioral trajectory.

276 We first wanted to test whether the RNN-S model was robust across a range of different
a7 types of input features. We calculate the TD loss of the model as a function of the spatial
zs  correlation across inputs ¢ (Figure 5b). We find that the model performs well across a range
79 of inputs but loss is higher when inputs are spatially uncorrelated. This is consistent with
20 the observation that behavioral transitions are spatially local, such that correlations across

21 spatially adjacent features aid in the predictive power of the model. We next examine the
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Figure 5: Fitting successor features to data with RNN-S over a variety of feature encodings. a. We
use behavioral data from Payne et al, where a Tufted Titmouse randomly forages in a 2D environment while
electrophysiological data is collected (replicated with permission from authors). Two example trajectories are
shown on the right. b. Temporal difference (TD) loss versus the spatial correlation of the input dataset,
aggregated over all sparsity levels. Here, yg = 0.75. c¢. As in (b), but measuring TD loss versus the sparsity
level of the input dataset, aggregated over all spatial correlation levels. d. TD loss for RNN-S with datasets
with different spatial correlations and sparsities. White areas were not represented in the input dataset due
to the feature generation process. Here, yg = 0.75 e. As in (g), but for FF-TD. f. TD loss of each model as
a function of vg, aggregated over all input encodings.

22 model performance as a function of the sparsity of inputs ¢ (Figure 5¢). We find the model
283 also performs well across a range of feature sparsity, with lowest loss when features are sparse.
284 To understand the interacting effects of spatial correlation and feature sparsity in more
25 detail, we performed a parameter sweep over both of these parameters (Figure 5d, Figure
26 Sba-e). We generated random patterns according to the desired sparsity and smoothness
27 with a spatial filter to generate correlations. This means that the entire parameter space is
23 10t covered in our sweep (e.g., the top-left area with high correlation and high sparsity is not
20 explored). Note that since we generate ¢ by randomly drawing patterns, the special case of
20 one-hot encoding is also not included in the parameter sweep (one-hot encoding is already
21 explored in Figure 2). The RNN-S seems to perform well across a wide range, with highest

22 loss in regions of low spatial correlation and low sparsity.
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203 We want to compare the TD loss of RNN-S to that of a non-biological model designed to
20 minimized TD loss. We repeat the same parameter sweep over input features with the FF-TD
25 model (Figure 5e, Figure S5f). The FF-TD model performs similarly to the RNN-S model,
206 Wwith lower TD loss in regions with low sparsity or higher correlation. We also tested how the
207 performance of both models is affected by the strength of v (Figure 5f). Both models show
28 a similar increase in TD loss as g increases, although the RNN-S has a slightly lower TD
200 loss at high v than the FF-TD model. Unlike in the one-hot case, there is no ground-truth T’
s0 matrix for non-one-hot inputs, so representations generated by RNN-S and FF-TD may look
so1  different, even at the same TD loss. Therefore, to compare the two models, it is important to

32 compare representations to neural data.

s3 2.7. RNN-S fits neural data in a random foraging task.

304 Finally, we tested whether the neural representations learned by the models with behavioral
w05 trajectories from Figure 5 match hippocampal firing patterns. We performed new analysis
ws on neural data from Payne et al. [11, 53] to establish a dataset for comparison. The neural
w7 data from Payne et al. [11] was collected from electrophysiological recordings in titmouse
28 hippocampus during freely foraging behavior (Figure 6a). Payne et al. discovered the presence
s0  Of place cells in this area. We analyzed statistics of place cells recorded in the anterior region
a0 of the hippocampus, where homology with rodent dorsal hippocampus is hypothesized [54].
su We calculated the distribution of place field size measured relative to the arena size (Figure
a2 6b), as well as the distribution of the number of place fields per place cell (Figure 6c¢).
n3 Interestingly, with similar analysis methods, Henriksen et al. [55] see similar statistics in the
s proximal region of dorsal CAl in rats, indicating that our analyses could be applicable across
315 organisms.

316 In order to test how spatial representations in the RNN-S are impacted by input features,
sz we performed parameter sweeps over input statistics. As in [11], we define place cells in
ss the model as cells with at least one statistically significant place field under permutation
s19 tests. Under most of the parameter range, all RNN-S neurons would be identified as a place
20 cell (Figure 6d). However, under conditions of high spatial correlation and low sparsity, a

21 portion of neurons (12%) do not have any fields in the environment. These cells are excluded
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Figure 6: Comparing place fields from RNN-S to data. a. Dataset is from Payne et al, where a Tufted
Titmouse randomly forages in a 2D environment while electrophysiological data is collected (replicated with
permission from authors). b. Distribution of place cells with some number of fields, aggregated over all cells
recorded in all birds. c. Distribution of place cells with some field size as a ratio of the size of the arena,
aggregated over all cells recorded in all birds. d. Average proportion of non-place cells in RNN-S, aggregated
over simulations of randomly drawn trajectories from Payne et al. Feature encodings are varied by spatial
correlation and sparsity as in Figure 5. e. As in (d), but for average field size of place cells. f. As in (d), but
for average number of fields per place cell. g. As in (d) and (e), but comparing place cell statistics using
the KL divergence (D) between RNN-S and data from Payne et al. At each combination of input spatial
correlation and sparsity, the distribution of field sizes is compared to the neural data, as is the distribution of
number of fields per neuron, then the two D, values are summed. Contour lines are drawn at Dy, values
of 1, 1.5, and 2 bits. h. Place fields of cells chosen from the region of lowest KL divergence. i. As in (g) but
for FF-TD. j. Change in KL divergence for field size (top) and number of fields (bottom) as function of ~.

from further analysis. We measured how the size of place fields varies across the parameter
range (Figure 6e). The size of the fields increases as a function of the spatial correlation
of the inputs, but is relatively insensitive to sparsity. This effect can be explained as the

spatial correlation of the inputs introducing an additional spatial spread in the neural activity.

17


https://doi.org/10.1101/2022.05.18.492543
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.18.492543; this version posted May 19, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w6 Similarly, we measured how the number of place fields per cell varies across the parameter
27 range (Figure 6f). The number of fields is maximal for conditions in which input features are
w8 densely encoded and spatial correlation is low. These are conditions in which each neuron
w9 Teceives inputs from multiple, spatially distant states.

330 Finally, we wanted to identify regions of parameter space that were similar to the data
s of Payne et al. [11, 53]. We measured the KL divergence between our model’s place field
1 statistics (Figure 6de) and the statistics measured in Payne et al. [11] (Figure 6bc). We
a3 combined the KL divergence of both these distributions to find the parameter range in which
s the RNN-S best fits neural data (Figure 6g). This optimal parameter range occurs when
135 inputs have a spatial correlation of o &~ 8.75 cm and sparsity ~ 0.15. We can visually confirm
16 that the model fits the data well by plotting the place fields of RNN-S neurons (Figure 6h).
337 We wondered whether the predictive gain (vg) of the representations affects the ability of
138 the RNN-S to fit data. The KL divergence changes only slightly as a function of vz. Mainly,
10 the KL-divergence of the place field size increases as g increases (Figure 6i), but little effect
a0 18 seen in the distribution of the number of place fields per neuron (Figure 6j).

341 We next tested whether the neural data was better fit by representations generated by
sz RNN-S or the FF-TD model. Across all parameters of the input features, despite having
23 similar TD loss (Figure 5de), the FF-TD model has much higher divergence from neural data
se  (Figure 6gi, Figure S6).

345 Overall, our RNN-S model seems to strike a balance between performance in estimating
us  successor features, similarity to data, and biological plausibility. Furthermore, our analyses
a7 provide a prediction of the input structure into the hippocampus that is otherwise not evident

us in an algorithmic description or in a model that only considers one-hot feature encodings.

a9 3. Discussion

350 Hippocampal memory is thought to support a wide range of cognitive processes, espe-
31 cially those that involve forming associations or making predictions. However, the neural
32 mechanisms that underlie these computations in the hippocampus are not fully understood.
3 A promising biological substrate is the recurrent architecture of the CA3 region of the

4 hippocampus and the plasticity rules observed. Here, we showed how a recurrent network
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15 with local learning rules can implement the successor representation, a predictive algorithm
6 that captures many observations of hippocampal activity. We used our neural circuit model
7 to make specific predictions of biological processes in this region.

358 A key component of our plasticity rule is a decorrelative term that depresses synapses
0 based on coincident activity. Such anti-Hebbian or inhibitory effects are hypothesized to be
w0 broadly useful for learning, especially in unsupervised learning with overlapping input features
31 [H6, 57, 58]. Consistent with this hypothesis, anti-Hebbian learning has been implicated in
32 circuits that perform a wide range of computations, from distinguishing patterns, [37], to
33 familiarity detection [38], to learning birdsong syllables [59]. This inhibitory learning may
s be useful because it decorrelates redundant information, allowing for greater specificity and
s capacity in a network [57, 37]. Our results provide further support of these hypotheses and
s predict that anti-Hebbian learning is fundamental to a predictive neural circuit.

367 We derive an adaptive learning rate that allows our model to quickly learn a probability
w8 distribution, and generally adds flexibility to the learning process. The adaptive learning
w0 rate changes such that neurons that are more recently active have a slower learning rate.
w0 This is consistent with experimental findings of metaplasticity at synapses [60, 61, 62], and
s theoretical proposals that metaplasticity tracks the uncertainty of information [36]. In
sz RNN-S, the adaptive learning rate improves the speed of learning and better recapitulates
sz hippocampal data. Our adaptive learning rate also has interesting implications for flexible
s learning. Memory systems must be able to quickly learn new associations throughout their
ws lifetime without catastrophe. Our learning rate is parameterized by a forgetting term A
srs  that controls the timescale in which environmental statistics are expected to be stationary.
sr7 - Although we fixed A = 1 in our simulations, there are computational benefits in considering
sis cases where A < 1. This parameter provides a natural way for a memory system to forget
sro  gradually over time and prioritize recent experiences, in line with other theoretical studies
;0 that have also suggested that learning and forgetting on multiple timescales allow for more
se1 flexible behavior [63, 64].

382 We tested the sensitivity of our network to various parameters and found a broad range of
;3 valid solutions. Prior work has sought to understand how an emergent property of a network

3¢ could be generated by multiple unique solutions [65, 66, 67, 68]. It has been suggested that
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s redundancy in solution space makes systems more robust, accounting for margins of error
3 in the natural world [69, 70]. In a similar vein, our parameter sweep over plasticity kernels
;7 revealed that a sizeable variety of kernels give solutions that resemble the SR. Although our
;s model was initially sensitive to the value of v, we found that adding biological components,
;0 such as nonlinear dynamics and separate network modes, broadened the solution space of the
s0 network.

301 Several useful features arise from the fact that RNN-S learns the transition matrix T’
s directly, while separating out the prediction timescale, v, as a global gain factor. It is
33 important for animals to engage in different horizons of prediction depending on task or
3¢ memory demands [71, 72]. In RNN-S, changing the prediction time horizon is as simple
35 as increasing or decreasing the global gain of the network. Mechanistically, this could be
w6 accomplished by a neuromodulatory gain factor that boosts v, perhaps by increasing the
07 excitability of all neurons [73, 74]. In RNN-S, it was useful to have low network gain during
s learning (vp), while allowing higher gain during retrieval to make longer timescale predictions
30 (yr). This could be accomplished by a neuromodulatory factor that switches the network
wo into a learning regime [75, 76|, for example Acetylcholine, which reduces the gain of recurrent
w1 connections and increases learning rates [77, 78]. The idea that the hippocampus might
w2 compute the SR with flexible v could help reconcile recent results that hippocampal activity
w3 does not always match high-y SR [79, 80]. Finally, estimating 7" directly provides RNN-S
w0 with a means to sample likely future trajectories, or distributions of trajectories, which
w5 18 computationally useful for many memory-guided cognitive tasks beyond reinforcement
ws learning, including reasoning and inference [81]. We also found that the recurrent network fit
w7 hippocampal data better than a feedforward network. An interesting direction for further
ws  work involves untangling which brain areas and cognitive functions can be explained by deep
w0 (feed forward) neural networks [82], and which rely on recurrent architectures, or even richer
a0 combinations of generative structures [83]. Recurrent networks, such as RNN-S, support
a1 generative sequential sampling, reminiscent of hippocampal replay, which has been proposed
a2 as a substrate for planning, imagination, and structural inference [84, 85, 86, 87, 88|.

a13 Other recent theoretical works have also sought to find biological mechanisms to learn

s successor representations, albeit with different approaches [89, 90, 91, 92, 93]. The model
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a5 from George et al. [93] focuses on a feedforward architecture, using STDP and theta phase
a6 precession to learn the SR. It is important to note that these mechanisms are not mutually
a7 exclusive with RNN-S. Taken together with our work, these models suggest that there are
sz multiple ways to learn the SR in a biological circuit and that these representations may be

a0 more accessible to neural circuits than previously thought.

20 4. Methods

w1 4.1. Code availability

422 Code is posted on Github: https://github.com/chingf/sr-project

w23 4.2. Random walk simulations

424 We simulated random walks in 1D (circular track) and 2D (square) arenas. In 1D
»s simulations, we varied the probability of staying in the current state and transitioning
»s forwards or backwards to test different types of biases on top of a purely random walk. In
27 2D simulations, the probabilities of each possible action were equal. In our simulations,
w28 one timestep corresponds to % second and spatial bins are assumed to be 5 cm apart. This
2o speed of movement (15 cm/sec) was chosen to be consistent with previous experiments. In
s theory, one can imagine different choices of timestep size to access different time horizons of
a1 prediction— that is, the choice of timestep interacts with the choice of v in determining the

.2 prediction horizon.

433 43 RNN-S model

434 This section provides details and pseudocode of the RNN-S simulation. Below are

a5 explanations of the most relevant variables:
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(N x N) synaptic weight matrix

N-length input vector into network

J
M (N x N) SR matrix
¢
b

binary variable indicating learning (0) or retrieval (1) mode

436 vB Value of v the network uses to calculate M in learning mode

vr | Value of v the network uses to calculate M in retrieval mode

n | Variable that tracks the activity of neurons integrated over time

A Discount value the network uses to calculate n

n Learning rates of neurons

a3 The RNN-S algorithm is as follows:

s 4.4. RNN-S with plasticity kernels

439 We introduce additional kernel-related variables to the RNN-S model above that are

w0 optimized by an evolutionary algorithm (see following methods subsection for more details):

Ay, T4 pre— post side of the kernel as K, (t) = A, E7t/™
AT As above, but for the post— pre side
B g Scaling term to allow for different self-synapse updates
Qo Scaling term to allow for different learning rate updates

a2 We also define the variable ¢, = 20, which is the length of the temporal support for the
w3 plasticity kernel. The value of ¢, was chosen such that e /7 was negligibly small for the
was range of 7 we were interested in. The update algorithm is the same as in Algorithm 1, except

ws lines 15-16 are replaced with the following:
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Algorithm 1 RNN-S
1: Inputs:

2: ¢(t) fortel,....T
3: b(t) fortel,...T

4: Initialize:
5: J +— Onxn

6: n <+ Oy

=

x(t) <Oy fortel,...,T
8: fortel,...,T do

9: if b(t) == 1 then > Retrieval Mode
10: MT ¢+ (1 —~gJ)!

11: x(t) « M7p(t)

12: else > Learning Mode
13: MT + (1 —~pJ)?

14: x(t) < MTp(t)

15: n < z(t) + n > Learning rate update
16: AJ —z(t)e(t—1)T— (Jz(t— 1))zt —1)7 > Calculate weight update
17: n=4< > Get learning rates (elementwise inversion)
18: 1n = min(n, 1.0) > Learning rates can’t exceed 1.0
19: Jij = Jij + 1 AJ; > Update synaptic weight matrix
20: end if

21: end for

22: return x

us 4.5, Metalearning of RNN parameters

aa7 To learn parameters of the RNN-S model, we use covariance matrix adaptation evolution
ws  strategy (CMA-ES) to learn the parameters of the plasticity rule. The training data provided
uo are walks simulated from a random distribution of 1D walks. Walks varied in the number of
w0 states, the transition statistics, and the number of timesteps simulated. The loss function

1 was the mean-squared error (MSE) loss between the RNN J matrix and the ideal estimated
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Algorithm 2 Plasticity kernel update
I: m+— a,x+\n > Learning rate update

2 ky «— ALY x(t—t)e > Convolution with plasticity kernel
3 ko« A Y x(t—t)e

4: AJg < z(t)kl +k_x(t)T > Calculate contribution to update from plasticity kernel

5: AJglit] < aqx(t)kl > Updates to self-synapses use separate scaling

6: AJ  AJg — (Jx)xT > Calculate weight update

2 T matrix at the end of the walk.

w3 4.6, RNN-S with truncated recurrent steps and nonlinarity

454 For the RNN-S model with %,,,, recurrent steps, lines 10 and 13 in algorithm 1 is replaced
w5 With MT « Somar 4t ]

456 For RNN-S with nonlinear dynamics, there is no closed form solution. So, we select a
»s7 value for t,,,, and replace lines 10 and 13 in algorithm 1 with an iterative update for t,,4.

ws steps: Az = —x + ytanh(Jx') + ¢. We choose t,,4, such that ~f . < 107

o 4.7. RNN-S with successor features

460 We use v = 0 and a tanh nonlinearity as in Methods 4.6. For simplicity, we set v = 0.

w1 4.8. RNN-S with independent normalization

As in algorithm 1, but with the following in place of line 16
Ay = wy(t)a;(t — 1) — Ty (t — 1)* (8)

462 49 FF-TD Model

463 In all simulations of the FF-TD model, we use the temporal difference update. We perform
w4 a small grid search over the learning rate n to minimize error (for SR, this is the MSE between
s the true M and estimated M; for successor features, this is the temporal difference error). In
w6 the one-hot SR case, the temporal difference update given an observed transition from state

w7 S to state s is:
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(

YMgi — My 1f5:]7£7'
AMji =1+ ~yMy; — My, ifs=j=i (9)
0 otherwise

\

ws for all synapses j — i. Given arbitrarily strucutred inputs (as in the successor feature case),

w0 the temporal difference update is:

AMT:U(¢+7M¢'—M¢)¢T (10)

a0 Or, equivalently,

AMj; = 77<¢z‘ + Z My, — Z Mki¢k) ®; (11)
p 2

a 4.10. Generation of feature encodings for successor feature models

ar2 For a walk with n states, we created n-dimensional feature vectors for each state. We
a3 choose an initial sparsity probability p and create feature vectors as random binary vectors
s with probability p of being “on”. The feature vectors were then blurred by a 2D Gaussian
a5 filter with variance o with 1 standard deviation of support. The blurred features were then
w6 min-subtracted and max-normalized. The sparsity of each feature vector was calculated as
ar the L1 norm divided by N. The sparsity s of the dataset then was the median of all the
as sparsity values computed from the feature vectors. To vary the spatial correlation of the
a0 dataset we need only vary o. To vary the sparsity s of the dataset we need to vary p, then
w0 measure the final s after blurring with . Note that, at large o, the lowest sparsity values in

w1 our parameter sweep were not possible to achieve.

w2 4.11. Measuring TD loss for successor feature models.

483 We use the standard TD loss function (equation S7). To measure TD loss, at the end
¢ of the walk we take a random sample of observed transition pairs (¢, ¢'). We use these

45 transitions as the dataset to evaluate the loss function.
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ws  4.12. Analysis of place field statistics

ag7 We use the open source dataset from Payne et al. [11, 53]. We select for excitatory cells in
a3 the anterior tip of the hippocampus. We then select for place cells using standard measures
s (significantly place-modulated and stable over the course of the experiment).

490 We determined place field boundaries with a permutation test as in Payne et al. [11]. We
s then calculated the number of fields per neuron and the field size as in Henriksen et al. [55].
w2 The same analyses were conducted for simulated neural data from the RNN-S and FF-TD

203 models.

ws  4.13. Behavioral simulation of Payne et al.

405 We use behavioral tracking data from Payne et al. [11]. For each simulation, we randomly
w6 select an experiment and randomly sample a 28 minute window from that experiment. If the
w7 arena coverage is less than 85% during the window, we redo the sampling until the coverage
w8 requirement is satisfied. We then downsample the behavioral data so that the frame rate
w9 is the same as our simulation (3 FPS). Then, we divide the arena into a 14 x 14 grid. We
s0 discretize the continuous X/Y location data into these states. This sequence of states makes

so0 up the behavioral transitions that the model simulates.

soe 4.14. Place field plots

503 From the models, we get the activity of each model neuron over time. We make firing

s field plots with the same smoothing parameters as Payne et al. [11].
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su Citation diversity statement

515 Systemic discriminatory practices have been identified in neuroscience citations, and a
s16 ‘citation diversity statement’ has been proposed as an intervention [94, 95]. There is evidence
si7 that quantifying discriminatory practices can lead to systemic improvements in academic
s settings [96]. Many forms of discrimination could lead to a paper being under-cited, for
si0 example authors being less widely known or less respected due to discrimination related
s0 to gender, race, sexuality, disability status, or socioeconomic background. We manually
sa1 estimated the number of male and female first and last authors that we cited, acknowledging
s22 that this quantification ignores many known forms of discrimination, and fails to account for
3 nonbinary/intersex/trans folks. In our citations, first-last author pairs were 64% male-male,
s 21% female-male, 6% male-female, and 9% female-female, somewhat similar to base rates in
s2s our field (biaswatchneuro.com). To familiarize ourselves with the literature, we used databases
s intended to counteract discrimination (blackinneuro.com, anneslist.net, connectedpapers.com).
s27 The process of making this statement improved our paper, and encouraged us to adopt less
s biased practices in selecting what papers to read and cite in the future. We were somewhat
s20 surprised and disappointed at how low the number of female authors were, despite being a
s female-female team ourselves. Citation practices alone are not enough to correct the power
sun  imbalances endemic in academic practice [97] — this requires corrections to how concrete

s power and resources are distributed.
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Supplementary Notes

77 The successor representation is defined as

M= (I-~T)" (S1)

s where 7' is the transition probability matrix such that T}; = P(s’ = i|s = j) for current state

0 s and future state s’

70 Supplementary Notes 1. Finding the conditions to retrieve M from RNN steady-

701 state activity

792 For an RNN with connectivity J, activity @, input ¢, and gain v € [0, 1), the (linear)

703 discrete-time dynamics equation is [41]

Ax = —x(t) +vJx(t) + P(t). (S2)

74 Furthermore, the steady state solution can be found by setting Ax = 0:

zss=(I—7J)"'¢ (S3)

705 Assume that J = T7 as a result of the network using some STDP-like learning rule where
76 pre-post connections are potentiated. The transposition is due to notational differences from
707 the RL literature, where the ijth index typically concerns the direction from state ¢ to state j.
796 This is a result of differences in RL and RNN conventions in which inputs are left-multiplied
790 and right-multiplied, respectively. Let v be a neuromodulatory factor that is applied over the
so  whole network (and, thus, does not need to be encoded in the synaptic weights). Then, the

so1 equivalence to equation S1 becomes clear and our steady state solution can be written as:

rgs = MTQZ,) (84)

g2 'This is consistent with the successor representation framework shown in Stachenfeld, et al.
so3  [18], where the columns of the M matrix represent the firing fields of a neuron, and the rows

soa  Of the M matrix represent the network response to some input.
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g5 Supplementary Notes 2. Deriving the RNNN-S learning rule from TD Error and

806 showing the learning rule is valid under a stability
807 condition
808 Transitions between states (s, s’) are observed as features (¢(s), ¢(s")) where ¢ is some

g0 function. For notational simplicity, we will write these observed feature transitions as
s0 (¢, @d'). A dataset D is comprised of these observed feature transitions over a behavioral
s trajectory. Successor features are typically learned by some function approximator 1 (¢;6)
s12  that is parameterized by # and takes in the inputs ¢. The SF approximator, v, is learned by

13 minimizing the temporal difference (TD) loss function [98]:

L(0) = E [[|g +707(¢':0) — (6 0)]; D] (35)

s for the current policy 7. Here, the TD target is ¢ + v (¢'; 0). Analogous to the model-free
s1s  setting where the value function V' is being learned, ¢ is in place of the reward r. Following

s16  these definitions, we can view the RNN-S as the function approximator :

(0 =J)=(1I-~])"¢ (S6)

sz For a single transition (¢, @') we can write out the loss as follows:

L) = ||¢ + 0™ (¢':0) — (I —~T) ‘9| (S7)

s1s  For each observed transition, we would like to update 1 such that the loss L is minimized.
s Thus, we take the gradient of this temporal difference loss function with respect to our

s20 parameter 6 = J:
.
VIL(0) = 2(¢ +707(8:0) = (1 =) '¢) Vu( = (1 =7))7"9) (38)
21 We can make the TD approximation ™ (¢;0) ~ (¢';0) = (I —~vJ) ¢’ [98]:
T
ViL(©O) =2(¢+ 9T =10) ¢ — (I =1D)"¢) Vo = (I=77)"0) (59)
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=2(@+ (I =)0 = (1 =3)"'9) (= (=3 (=) = 7)) (S10)

- —2(([ —yJ)x + vz’ — zc) (’y([ — ny)’lw)T (511)
=-272 (a:' — J:c) ((I — WJ)_I:B)>T (512)
=293z — Jx)xT(I —~J) T (S13)

While —V ;L(0) gives the direction of steepest descent in the loss, we will consider a linear
transformation of the gradient that allows for a simpler update rule. This simpler update
rule will be more amenable to a biologically plausible learning rule. We define this modified
gradient as D = V;L(0)M where M = (I —~J)T. We must first understand the condition

for D to be in a direction of descent:

(D,V;L) >0 (S14)

Te(DTV,L) > 0 (S15)

Te(V, LMV, L) > 0 (S16)

Tr(VJL(M_;MT M ;MT)VJL) >0 (S17)
% Te(V, L(M + M)V ,L) > 0 (S18)

This expression is satisfied if M + MT is positive definite (its eigenvalues are positive). Thus,
we find that our modified gradient points towards a descent direction if the eigenvalues of
M + MT are positive. Interestingly, this condition is equivalent to stating that the recurrent
network dynamics are stable and do not exhibit non-normal amplification [99, 100, 101]. In
other words, as long as the network dynamics are in a stable regime and do
not have non-normal amplification, our modified gradient reduces the temporal
difference loss. Otherwise, the gradient will not point towards a descent direction.

We will use the modified gradient —D = (&’ — Jx)xT as our synaptic weight update rule.
Our theoretical analysis explains much of the results seen in the main text. As the gain
parameter g is increased, the network is closer to the edge of stability (the eigenvalues of
M are close to positive values, Figure 3a). Stability itself is not enough to guarantee that

our update rule is valid. We need the additional constraint that non-normal amplification
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s should not be present (eigenvalues of M + MT are positive). In practice, however, this does
s0 not seem to be a mode that affects our network. That is, the v5 value for which the error in
san  the network increases coincides with the g value for which the network is no longer stable
s> (Figure 3b). Our theoretical analysis also shows that the gain g can always be decreased
g3 such that the eigenvalues of M + MT are positive and our update rule is valid (Figure 3e).
s At the most extreme, one can set yp = 0 during learning to maintain stability (as we do in

s Figure 4 and onwards).

ss  Supplementary Notes 3. Proving the RNN-S update rule calculated on firing

847 rates (x) depends only on feedforward inputs (¢) at
848 steady state
849 We will show that our update rule, which uses @ (neural activity), converges on a solution

g0 that depends only on ¢ (the feedforward inputs). We will also show that in the one-hot case,
ss1 - we learn the SR exactly.

852 As a reminder, our learning rule for each j — i synapse is:

AJ =n(x' — Jx)x" (S19)

sss We can solve for the steady state solution of equation S19 (set AJ =0). Let A = (1 —~J)~!
e« for notational convenience, and recall that in steady state x = A¢. Let (x) denote the

g5 average of @ over time.

J = (2'x") (xxT)"! (520)
J = (A¢'(Ad)")(Ap(Ap)T) (521)
J = (A¢'¢TAT)(AppTAT) ™! (522)
J = A(¢'¢pT) AT(A(pepT) AT) ! (523)
s Note that, since A= (1—~J)7, J= %(1 — AN,
A(@'PT)AT = 2(1 — A7) A(pepT) AT (524)

41


https://doi.org/10.1101/2022.05.18.492543
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.18.492543; this version posted May 19, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A(Q@TVAT = L(A{¢@T)AT — (T AT) (825)
AP PT) = L(A(d9T) — (9p9T)) (526)
857 ThuS,
(@07) = L(1— A7) (o) (s27)
sss Therefore,
J=(¢'¢T){pap")™" (528)
J = Rpp(—1)Rpe(0)™ (529)

sso where Ry (7) is the autocorrelation matrix for some time lag 7. Therefore, the RNN-S weight
g0 Mmatrix J at steady state is only dependent on the inputs into the RNN over time.

861 In the case where ¢ is one-hot, we compute the SR exactly. This is because the steady
g2 state solution at each j — i synapse simplifies into the following expression:

Zt/ ¢j (t/)

ss3 ' Lhis is the definition of the transition probability matrix and we see that J = T7. Note that

s« the solution for J;; in equation S30 is undefined if state j is never visited. We assume each

ses  relevant state is visited at least once here.

ss  Supplementary Notes 4. Deriving the adaptive learning rate update rule

867 This section explains how the adaptive learning rate is derived. The logic will be similar
ss  to calculating a weighted running average. Let d;;(¢) be a binary function that is 1 if the
o transition from timestep ¢ — 1 to timestep ¢ is state j to state i. Otherwise, it is 0. Assume
s ¢ is one-hot encoded. Notice that in the one-hot case, the RNN-S update rule (equation 4)

s simplifies to:
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sz What 71 should be used so J approaches TT as quickly as possible? During learning, the
73 empirical transition matrix, T'(¢), changes at each timestep ¢, based on transitions the animal
ss  has experienced. Define the total number of times that state ¢; happened prior to time ¢ as
s n;(t) => ., ¢;(t —t'), and define the running count of transitions from state j to state i as

srs Cij(t) = > oy dij(t —1'). We want J(t) = T7(t), which necessitates

AJ(t) = T(t) = Tyt — 1) = 2400 - Sl (532
n;(t —1)cij(t) — cij(t — 1)n;(t)
B ni (O — 1) (833)

sr Note that n; (t) = TL](t — 1) + ¢](t — 1), and Cz‘j(t> = Cij(t — 1) + dzj(t), which giVGS us

ni(t — D)ei(t —1) +ny(t — D)dig(t) — cii(t — Dny(t — 1) — ¢i5(t — 1)g;(t — 1)

AJ;(t) =
i) {0yt = 1)
(S34)
(t— Do (1) — it — 1 (t — 1
_ 1y (t = 1)di;(t) — eyt — )yt — 1) (935)
n;(t)n;(t —1)
1 ci-(t—l)qﬁ-(t—l))
— dii(t) — 2 J S36
o (0 - 2 (§56)
1
nj(t)( ]() J J( )) ( )
szs ' Therefore, comparing with equation S31, we can see that a learning rate n; = % will let

sro J =TT as quickly as possible. We have defined n in terms of the inputs ¢ for this derivation,
g0 but in practice the adaptive learning rate as a function of & works well with the RNN-S
s update rule (which is also a function of ). Thus, we use the adaptive learning rate defined
ez over x in our combined learning rule for increased biological plausibility.

883 In its current form, the update equation assumes transitions across all history of inputs
ssa are integrated. In reality, there is likely some kind of memory decay. This can be implemented

ss with a decay term A € (0, 1]:

n;(t) = i Azt —t) (S38)

t'=1

sss A determines the recency bias over the observed transitions that make up the 7' estimate.
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ss7 The addition of A has the added benefit that it naturally provides a mechanism for learning
s rates to modulate over time. If A = 1, the learning rate can only monotonically decrease. If
g9 A < 1, the learning rate can become strong again over time if a state has not been visited in
g0 a while. This provides a mechanism for fast learning of new associations, which is useful for

sa1 a variety of effects, including remapping.

g2 Supplementary Notes 5. Endotaxis model and the successor representation

)

803 The learning rule and architecture of our model is similar to a hypothesized “endotaxis’
soe model [45]. In the endotaxis model, neurons fire most strongly near a reward, allowing the
s animal to navigate up a gradient of neural activity akin to navigating up an odor gradient.
sos ' The endotaxis model discovers the structure of an environment and can solve many tasks such
g7 as spatial navigation and abstract puzzles. We were interested in similarities between RNN-S
ss and the learning rules for endotaxis, in support of the idea that SR-like representations may
g0 be used by the brain for a broad range of intelligent behaviors. Here, we outline similarities
oo and differences between the two model architectures.

%01 The endotaxis paper [45] uses Oja’s rule in an RNN with place-like inputs. The SR can

92 also be learned with an Oja-like learning rule. Oja’s rule is typically written as [52]:

o3 If we assume that there is a temporal asymmetry to the potentiation term (e.g., potentiation

904 is more STDP-like than Hebbian), then we have

o5 We then solve for the steady state solution of this equation, when AJ;; = 0:

0 = n{z;(t — Di(t)) — nJiy{zi(t)*) (541)

(- Da)
P OB (542
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s where (-) indicates the time-average of some term. Assume that the plasticity rule does not
w7 use x exactly, but instead uses ¢ directly. Given that inputs are one-hot encodings of the

o8 animal’s state at some time ¢, the expression becomes

S = Da)
=TS ) (544

oo If we assume T is symmetric, J = TT. Alternatively, if we use pre-synaptic normalization as

a0 opposed to the standard post-synaptic normalization of Oja’s rule (i.e., index j instead of i
o1 in the denominator), we also have J = TT. Thus, the steady state activity of a RNN with

o2 this learning rule retrieves the SR, as shown in Supplementary Notes 1.

a3 Supplementary Notes 6. Independent normalization and successor features

014 If we assume the same Oja-like rule as in Supplementary Notes 5, we can also arrive at a
ais similar interpretation in the successor feature case as in equation 7. By solving for the steady

a6 state solution without any assumptions about the inputs ¢, we get the following equation:

J = Ryy(—1)diag(Rye(0)) " (S45)

a7 where diag is a function that retains only the diagonal of the matrix. This expression provides
ais & useful way to contrast the learning rule used in RNN-S with an Oja-like alternative. While
ais RNN-S normalizes by the full autocorrelation matrix, an Oja-like rule only normalizes by the
oo diagonal of the matrix. This is the basis of our independent normalization model in Figure

o1 4bec.
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Supplementary Figures
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Figure S2: Comparing model performance in different random walks. a-c. As in Figure 2d-f of the
main document, but for a walk with uniform action probabilities.
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Figure S3: Understanding the effects of recurrency on stability. a. Mean absolute error (MAE) of M
matrices learned by RNN-S with different baseline v and different numbers of recurrent steps in dynamics.
Test datasets used various biases in action probability selection. Errors are max-clipped at 10! for visualization
purposes. b. M matrix learned by RNN-S with two recurrent steps in dynamics and baseline v = 0.8. A
forward-biased walk on a circular track was simulated. c. As in (b), but for four recurrent steps. d. As in
(b), but for five recurrent steps. Three examples are shown from different sampled walks to highlight the
runaway activity of the network. e. As in (b) but for the RNN-S activity calculated as (I —~.J)~!. Note that
this calculation amounts to an unstable fixed point in the dynamics that cannot be reached when the network
is in an unstable regime. f. Mean absolute error (MAE) in 7' made by RNN-S with linear dynamics using vp
during learning. g. MAE in M for ygr made by RNN-S with linear dynamics using 5 during learning. h.
As in (g), but the dynamics now have a tanh nonlinearity.
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Figure S4: Comparing place field shift and skew effects for different feature encodings. a-d.
Average firing rate as a function of position on a circular track for four example neurons. The walk and
feature encodings were generated as in Figure 4d of the main text. Each neuron is sampled from a different
walk. “Before Learning” refers to firing fields made from the first 2 minute window of the walk. “After

Learning” refers to firing fields made from the entire walk. e-f. As in (a-d), but for two neurons from a walk
where the features were one-hot encoded.
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Figure S5: Parameter sweep details and extended TD error plots. a. The values of p (initial sparsity
of random vectors before spatial smoothing) and ¢ sampled in our parameter sweep for Figures 5-6 in the
main text. See methods 4.10 for more details of how feature encodings were generated. b. The values of
s (final sparsity of features, measured after spatial smoothing) and o sampled in our parameter sweep for
Figures 5-6 in the main text. c. A sample state encoded by the firing rate of 200 input neurons. Here,
s =0.11 and o = 2.. d. Spatial correlation of the feature encoding for an example state with the features of
all other states. The 14 x 14 states are laid out in their position in the 2D arena. Here, the sample state is
the state in the center of the 2D arena and o = 2.0. e. As in (d), but for 0 = 0.0. f. As in Figure 5d of the
main text, but for RNN-S (first row) and FF-TD (second row) with vz = 0.4 (left column), yg = 0.6 (middle
column), and yr = 0.8 (right column).
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Figure S6: Extended place field evaluation plots. a. As in Figures 6e-g of the main text, but for
vr = 0.4 (left column) and yg = 0.8 (right column). In addition, the plots showing KL divergence (in bits)
for the distribution of field sizes and number of fields per cell are shown. b. As in (a) but for FF-TD. c. A in
Figure 6h of the main text, but for FF-TD with vz = 0.4 and d. FF-TD with vz = 0.8
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