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Abstract 

Years of time-series gene expression studies have built a strong understanding of clock-controlled 

pathways across species. However, comparatively little is known about how ‘non-clock’ pathways 

influence clock function. We developed a new computational approach to explore candidate pathways 

coupled to the clock in human tissues. This method, termed LTM, is an in silico screen to infer genetic 
influences on circadian clock function. LTM uses natural variation in gene expression in human data 

and directly links gene expression variation to clock strength independent of longitudinal data. We 

applied LTM to three human skin and one melanoma datasets and found that the cell cycle is the top 

candidate clock-coupled pathway in healthy skin. In addition, we applied LTM to thousands of tumor 

samples from 11 cancer types in the TCGA database and found that extracellular matrix organization-

related pathways are tightly associated with the clock strength in humans. Further analysis shows that 

clock strength in tumor samples are correlated with the proportion of cancer-associated fibroblasts 

and endothelial cells. Therefore, we show both the power of LTM in predicting clock-coupled 
pathways and classify factors associated with clock strength in human tissues. LTM is available on 

GitHub to facilitate its use. 

Introduction 

The circadian clock network controls ~24 h rhythms at the cell, tissue, and organismal level. The core 
network is composed of circadian activators (e.g., BMAL1/CLOCK, RORs and DBP) that bind to E-

box, RORE, and D-box elements to activate transcription of the circadian repressors (e.g., 

PERs/CRYs, REV-ERBs, NFIL3, DECs and CHRONO), and other clock regulators (e.g., CSNK1D/E 

and FBXL3/21) (Takahashi, 2017). This feedback mechanism regulates the expression of hundreds to 

thousands of genes in the mammalian genome (Zhang et al., 2014). Importantly, increasing 

evidence suggests that the clock network and its time-keeping properties are influenced by 

other pathways. For example, hepatocyte-specific ablation of Smo, a key component of 

Hedgehog signaling, decreased the amplitude of clock genes (Bmal1, Clock and Nr1d2) in 

mouse liver (Marbach-Breitrück et al., 2019). We need a strong understanding of clock-
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coupled pathways in human tissues to better appreciate the links between disease and clock 

function. 

Previously, efforts were made to explore clock-coupled pathways in human U2OS 

cells by genome-wide knockdown using small interfering RNAs (siRNAs) (Zhang et al., 

2009). U2OS cells are widely used circadian reporter model and show robust oscillations of 

luciferase expression with a period length of 24 h after synchronization. Hundreds of genes 

had strong circadian phenotypes, including period length changes and/or increases in 

amplitude in response to knockdown (Zhang et al., 2009). Pathway analysis revealed that 

insulin and Hedgehog signaling are coupled to the circadian clock in U2OS cells. However, 

an important limitation of the U2OS circadian reporter cells is that they do not model 

mammalian circadian systems at the tissue level.  

Computational approaches can be used to explore clock-coupled pathways in human 

tissues. Indeed, the machine learning-based CYCLOPS was developed to identify cycling 

genes in a human tissue without the need for collection time of day (Anafi et al., 2017). 

CYCLOPS was applied to multiple human tissues (Ruben et al., 2018; Wu et al., 2018). 

However, it has limitations, including optimal seed gene list selection (Ruben et al., 2018; 

Wu et al., 2020) and challenges in evaluating the quality of ordering without known time-

stamped samples (Wu et al., 2018). These issues prevented our ability to order many 

publicly available datasets. Perhaps most importantly, and a general limitation of 

computational approaches in this field, is that they focus on identifying cycling genes. 

However, a gene that is cycling may not directly impact clock function. Conversely, a gene 

that is coupled to the clock network, but is not cycling may directly impact clock function. 

We developed a new computational approach to explore candidate pathways 

coupled to the clock in human population samples without time information. This method, 

named LTM, is an in silico screen mimicking genome-wide knockdown experiments done in 

U2OS cells. As opposed to genetic manipulation, we use the natural variation in expression 

levels of genes in human population datasets to infer genes' influence on circadian clock 

function. The idea is that genes whose expression correlates with circadian clock function 

are clock-coupled candidates. The power of this approach is that it (i) directly links 

expression variability of a gene to clock function, (ii) does not depend on the longitudinal 

order of samples by timestamps or machine learning inference, and (iii) predicts pathways 

coupled to the clock network and/or the factors correlated with clock strength in a large scale 

dataset. 

We applied LTM to human population datasets to identify clock-coupled pathways in 

skin. We found that the cell cycle is the top candidate clock-coupled pathway in healthy skin, 

but not in skin tumors. In addition, we applied LTM to thousands of tumor samples in the 

TCGA database and found that extracellular matrix organization-related pathways are tightly 
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associated with the clock strength in human tumors. We released the LTM on GitHub to 

facilitate its use. 

Results 

In silico screen for genes associated with circadian clock strength in population data 
Our prior work showed that Mantel’s zstat (Wu et al., 2020, 2018) and nCV (Wu et al., 2021) provide 

reliable measures of clock strength (Fig. S1 A-C) from population samples. Using these two measures 

of clock strength, we developed a new method, LTM, to screen for genes associated with clock 

strength in population data. The principle behind LTM is that genes whose variation in expression 

correlates with variation in clock strength are potentially coupled to the molecular clock. 

We used human epidermis data (18,076 genes and 298 samples from 239 individual human 
donors) (Wu et al., 2018) to explain our strategy (Fig. 1). The schematic focuses on one example 

gene, CCNA2,  to demonstrate the major steps of LTM. CCNA2 was chosen because it is one of the 

top gene by LTM score. First, we separated each of the 298 samples into one of four quantile groups 

(Q1, Q2, Q3 and Q4) based on their expression level of CCNA2. Next, we calculated the correlation 

value between the mean expression of CCNA2 and clock strength per quantile group, resulting in the 

terms R(nCV) and R(zstat). The mean value of R(zstat) and R(nCV) is defined by LTMpre. Then we 

repeated this same process twice more, screening at 7 and 10 quantile groups, resulting in two 
additional LTMpre values for CCNA2. Finally, we computed an LTMori and LTMabs value for CCNA2. 

LTMori is the average of multiple LTMpre values. A positive and negative LTMori value means that 

samples in a quantile group with higher (eg., CCNA2) and lower expression (eg., ROR1) of this gene 

has a stronger clock, respectively. LTMabs is the absolute value of LTMori. The LTMabs value makes 

it easier to explore clock-coupled pathways given that up- or down-regulated genes in the same 

pathway may affect the circadian clock similarly. In sum, genes with higher LTMabs values represent 

a stronger correlation between expression level and clock strength. Next, we applied LTM to human 

population skin samples collected from healthy subjects in multiple sources. 
Meta-analysis of three human population skin datasets using LTM 
We observed inter-individual variation in skin clock strength in our prior study of 20 subjects sampled 

longitudinally over four timepoints (Wu et al., 2020). Therefore, we expected a range of clock 

strengths among single skin samples collected from hundreds of human subjects. On the other hand, 

expression levels of thousands of genes show variation among human skin samples (Kimball et al., 

2018). LTM searches for strong correlations between gene expression levels and clock strength, 

which we applied to three skin datasets: (i) epidermis samples from 239 subjects (PG), (ii) sun-

exposed whole skin samples from 601 subjects (GTExSE), and (iii) non-sun exposed whole skin 
samples from 479 subjects (GTExNSE). The distributions of LTMabs values were similar in three skin 

datasets (Fig. 2A). To control for dataset-specific bias, we computed an integrated-LTMabs value to 

identify genes most strongly correlated with clock strength across datasets. For example, IPO13 

ranks among the top integrated-LTMabs values indicating a strong linear correlation between its 

expression and mean nCV (R(nCV) > 0.87 in all three datasets) or Mantel zstat value (R(zstat) > 0.86 

in two datasets) (Fig. 2B). IPO13 encodes a member of the importin-beta family of nuclear transport 
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proteins. Importin-beta genes have been implicated in circadian clock protein transport and function in 

human cells (Lee et al., 2015; Zhang et al., 2009). LTM identifies IPO13 as an importin-beta gene with 

a particularly strong association to circadian clock function in human skin. 
Cell-cycle gene expression correlates with clock strength in healthy human skin 
We performed gene set enrichment analysis (GSEA) of genes ranked by integrated-LTMabs. Cell 

cycle regulation was among the top significantly enriched pathways (Fig. 2C; ADJ.P < 0.01). 

Specifically, genes regulating G2/M phase (e.g., CDK1, CCNB1 and CCNB2) have higher integrated-

LTMabs values (ie., their expression tightly correlates with clock strength) compared to genes 

regulating G1/S phase (eg., CDK4/6, CCND1, and CCND2) (Fig. S2A-B). CDK1 and cyclin B genes 

(CCNB1 and CCNB2) are critical components of M-phase-promoting factor (Hara et al., 2012; Nurse, 

1990), which is the universal inducer of M-phase in eukaryotic cells. In sum, LTM found a strong 

correlation between mitotic entry and circadian clock strength in healthy skin samples. 
Highly active cell proliferation is common in human tumors. Is mitotic entry coupled to the 

circadian clock in skin tumors? Using LTM, we screened 472 tumor samples of skin cutaneous 

melanoma from the TCGA database. Top ranked pathways include processive synthesis on the 

lagging strand, metabolism of water-soluble vitamins and cofactors, and processive synthesis on the 

C-strand of the telomere, but none of them were significantly enriched (Fig. 2D; ADJ.P > 0.01). We 

further compared the LTMabs value of cell cycle regulators between healthy skin and skin tumors. 

Unlike what we observed in healthy skin samples, the LTMabs values of cell cycle regulators were 

much lower in tumors (Fig. 2E and Fig. S2C), indicating a weak correlation between their expression 
levels and clock strength. Together, these results suggest that the coupling between cell cycle and 

circadian clock observed in healthy skin is disrupted in tumors. 

Pan-cancer analysis using LTM 
Next, we asked which pathway is related to the clock strength in tumor samples. We extended LTM 

screening on tumor samples from other 10 cancer types. Cancer types included urothelial bladder 

carcinoma (BLCA), breast invasive carcinoma (BRCA), head-neck squamous cell carcinoma (HNSC), 

clear cell renal cell carcinoma (KIRC), lung adenocarcinoma (LUAD), low grade glioma (LGG), lung 
squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), stomach adenocarcinoma 

(STAD), and thyroid carcinoma (THCA). We computed integrated-LTMabs values from total 11 cancer 

types (Fig. 3A; red point line). PER1 was among the top ranked genes, with lower expression 

correlating with weaker clock function in tumors (Fig. 3B; R(nCV) and R(zstat) above 0.5 in 10 of 11 

cancer types). PER1 downregulation has been observed in many tumors, including breast, prostate, 

glioma and colorectal cancers (Savvidis and Koutsilieris, 2012), giving us confidence in this pan-

cancer analysis. We performed GSEA on all genes ranked by their integrated-LTMabs values. Top 

significantly enriched pathways include extracellular matrix organization (ECM), degradation of ECM, 
and ECM proteoglycans (Fig. 3C; ADJ.P < 0.01). These results suggest that ECM related pathways 

are associated with the clock strength in tumor samples across cancer types. 
Clock strength in tumor samples are correlated with fractions of fibroblast and endothelial 
cells  
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Those LTM selected genes in extracellular matrix organization related pathways are primarily 

collagen genes. We mapped integrated-LTMabs values to the human collagen gene family, which 

includes 33 genes in 8 subfamilies (Gelse et al., 2003). The collagen genes with high integrated-

LTMabs values (LTMabs >= 0.5) are from the fibril-forming, basement membrane, microfibrillar, and 
multiplexin subfamilies (Fig. 4A). In sum, LTM identified a strong correlation between collagen gene 

expression and circadian clock strength in tumors.  

To understand the basis for this correlation, we asked how tumor samples with low collagen 

gene expression differ from tumor samples with high collagen gene expression. It is known that Type I 

collagen genes (e.g., COL1A1 and COL1A2) are highly expressed in human lung fibroblasts 

(Habermann et al., 2020). This encouraged us to test the correlation between COL1A2 expression 

and the proportion of fibroblasts across lung tumor samples. Using EPIC (Racle et al., 2017), we 

computed the fraction of cancer associated fibroblasts in two lung cancer types, LUAD and LUSC. 
Indeed, we found a strong positive correlation between COL1A2 expression and fibroblast proportion 

in both LUAD and LUSC (Fig. 4B). We extended this analysis to test all the 7 top collagen genes 

(LTMabs >= 0.5) among 11 cancer types. We found a consistent positive correlation between 

fibroblast proportions and expression of collagen genes belonging to fibril-forming (COL1A2) and 

microfibrillar (COL6A1, COL6A1, and COL6A3) subfamilies across 9 cancer types, the exception 

being clear cell renal cell carcinoma and low grade glioma (Fig. 4C). Overall, this suggests that 

variation in clock strength between tumors is related to the proportion of fibroblasts in those samples.  

On further inspection, we identified two Type-IV collagen genes (COL4A1 and COL4A2) 
whose expression levels are negatively correlated with fibroblast proportion in thyroid cancer and low 

grade glioma. It is known that Type-IV collagen plays an important role in endothelial cell adhesion 

and migration (Herbst et al., 1988). Thus, we measured the correlation between COL4A1 expression 

and endothelial cell proportions in thyroid cancer and low grade glioma samples, and found a strong 

positive correlation (Fig. 4D). The extended analysis of top 7 collagen genes among 11 cancer types 

show a consistent positive correlation between the fractions of endothelial cells and expression of 

basement membrane (COL4A1 and COL4A2) and multiplexin (COL15A1) collagen subfamily (Fig. 
4E). In sum, variation in clock strength among tumor samples is related to the proportion of fibroblasts 

and endothelial cells. This makes sense considering non-cancer cells including fibroblast and 

endothelial cells have stronger clocks than cancer cells in the tumor microenvironment.  

What causes variation in the relative abundance of fibroblasts and endothelial cells between 

tumor samples? One possibility is technical bias whereby surgical resection captures more or less 

surrounding, non-tumor tissue. A second possibility is that tumors vary in cell composition. It is known 

that the immune cell composition of the tumor microenvironment varies among cancer types and 

between cancer patients (Ansell and Vonderheide, 2013). If true, perhaps an important question to 
ask is, do cancer cells surrounded by more fibroblast and endothelial cells have stronger clocks than 

other cancer cells? More importantly, do clock strength differences in cancer cells impact prognosis? 

We will leave these questions for later study.  

Discussion 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.10.491250doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

The circadian field has built a strong understanding of clock-controlled pathways from years of time-

series gene expression studies across species. However, comparatively little is known about how 

‘non-clock’ pathways influence circadian clock function, especially in humans. We developed LTM as 

a window of insight into clock-coupled pathways in human population scale data.  
LTM applied to thousands of healthy human skin samples revealed specific cell cycle genes 

that are strongly correlated with clock strength. While it is known that the circadian clock regulates 

progression of the cell cycle (Kowalska et al., 2013; Matsuo et al., 2003), it is far less clear if and how 

the cell cycle regulates progression of the circadian clock. We found that expression levels of cell 

cycle genes (e.g.,CDK1 and CCNB1) controlling the G2/M phase are tightly correlated with clock 

strength in skin samples. What is the benefit of having a strong coupling between circadian clock and 

the cell cycle? It is known that the circadian clock regulates DNA repair (Gaddameedhi et al., 2011) 

and the cell cycle (Geyfman et al., 2012) in mouse skin. To minimize DNA damage induced by light 
exposure, a stronger circadian clock may direct more cells to divide at the right time. More cells 

dividing at the right time may add additional synchronization signals and further strengthen the skin 

clock. Therefore, the mutual regulation between the circadian and cell cycles may have evolutionary 

advantages in mammalian skin. 

There is increasing evidence that circadian dysregulation contributes to cancer initiation and 

progression (Hadadi et al., 2020; Kettner et al., 2016; Papagiannakopoulos et al., 2016). This may be 

caused by less robust clock gene oscillations in tumor samples (Wu et al., 2021). A weak clock may 

release its temporal gating of the cell cycle (Kowalska et al., 2013; Matsuo et al., 2003), which may 
contribute to tumor initiation. The release of circadian gating on cell proliferation may in turn damage 

the coupling between the circadian clock and the cell cycle. Consistent with this idea, LTM on tumor 

samples found that expression levels of cell cycle regulators are less correlated with clock strength in 

skin cancer than in healthy skin.  

LTM revealed that the expression levels of collagen genes are tightly correlated with clock 

strength in tumors from 11 cancer types. Our subsequent analysis identified a strong positive 

correlation between expression levels of these collagen genes and the proportion of fibroblasts and 
endothelial cells in tumor samples. However, LTM can not tell us anything about the reason why cell 

proportions vary among tumor samples. One possibility is that tumor microenvironment differs 

between cancer patients. For example, cancer cell composition may differ in patients. This may relate 

to the diversity of molecular clock strength between patients. Patients with a stronger molecular 

circadian clock may have tumors with higher fractions of fibroblasts and endothelial cells. An 

alternative explanation is that surgical resection obtained more or less tumor, unintentionally capturing 

margins. This provides an example that the LTM screened genes in the complex tissues (eg., tumors) 

may pick other stronger factors (eg., fractions of non-cancer cells) than clock-coupled pathways. 
Considering multiple factors may influence the clock strength in human population datasets, non-

biological factors (eg., batch effects) may also affect the interpretation of LTM screening results. It is 

important to know the dataset before applying LTM.  

LTM has other limitations. First, the genes identified by LTM are based on correlations. The 

strong correlation is not the direct evidence of causal effect. Therefore, the LTM predicted clock-
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coupled pathways need experimental validation and/or literature evidence. Second, LTM can not 

screen genes correlated with the period and phase variation of the circadian clock. Third, ranking 

samples by the gene expression are strongly influenced by the circadian phase for strong cyclers, 

which makes it difficult to accurately quantify the clock strength when separating samples by circadian 
phase. So LTM may be biased to non-cycling genes. To fully explore the power of LTM by the 

research community and fixing its limitations in the future, we release the LTM method into GitHub. 

          LTM is an in silico genome-wide screen of genes whose expression correlates with clock 

strength. This method takes advantage of the natural expression variation of genes in human 

population datasets. Compared to current rhythmic detection methods, the power of LTM is its ability 

to directly link expression variability of a gene to clock network properties, allowing for the detection of 

clock-coupled pathways without requiring known or predicted sampling times. An improved 

knowledge of clock-coupled pathways is important for the clinical application of circadian medicine. 
For example, a recent study shows that disruption of the clock gene BMAL1 impacts insulin sensitivity 

and liver disease (Jouffe et al., 2022). Another showed that targeting the Hedgehog signaling pathway 

affects the liver clock (Marbach-Breitrück et al., 2019). Therefore, when applying drugs targeting core 

clock genes or Hedgehog signaling pathway, the mutual influence needs to be considered. Outside of 

circadian medicine, there are well-known clinical risks of intervention when mutual regulation of 

pathways is poorly understood. For example, Vioxx (a COX2 inhibitor) is designed to inhibit pain and 

inflammation. However, Vioxx also inhibits the cardioprotection intermediates produced by COX2 and 

increased cardiovascular risk in patients (FitzGerald, 2004). This lead to its withdrawal from the 
market, just 5 years after FDA approval and after many patients deaths. LTM provides a chance of 

understanding clock coupling mechanisms at the tissue level, and the translation of circadian 

medicine in clinical application.   

Materials and Methods 

Datasets 
All datasets used in this study are listed in Table S1, including experimental design information, the 

accession number or download link, and number of total samples for each dataset. The raw RSEM 

counts downloaded from FireBrowse (http://firebrowse.org/) were transformed to TPM values. The 

refGenome package (version 1.7.7) was used to parse the human gtf file (human genome version: 

GRCh38). For a gene with multiple transcript splice isoforms, we selected the longest transcript as the 

representative gene length. 

Main steps of the LTM strategy 
We implemented the LTM strategy into the LTMR package. This R package is released on GitHub 

(https://github.com/gangwug/LTMR). Major steps of performing LTM analysis include: 

1. Normalize the input expression matrix. This step can perform quantile normalization 

across samples, compute the expression profile for each gene if multiple splice-isoforms 

exist, remove genes with low expression value across samples, and blunt extreme low or high 

outlier expression values. This step is not essential, but is suggested. LTMR::LTMprep 

function is designed for this step. 
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2. Select genes for LTM analysis. This step separates samples into four quantile groups (Q1, 

Q2, Q3, Q4) based on the expression level of each gene. It helps further filter out genes with 

low expression value in the Q1 group, and/or low fold change between Q4 and Q1. The mean 

expression value in each quantile group progressively increases from Q1 to Q4. 
LTMR::LTMcut function is designed for this optional step. 

3. Compute the quantitative measures of circadian clock strength for each quantile 
group. LTMR::LTMheat function is designed for this essential step. Given a targeted number 

(eg., 4) of quantile groups, LTMheat ranks samples by the expression level of each gene and 

separates them into 4 quantile groups (Q1 to Q4) based on their expression level. LTMheat 

computes the expression correlation matrix of 17 clock and clock-associated genes (Wu et 

al., 2018) in each quantile group that serves as the query correlation matrix. The correlation 
matrix of 17 clock and clock-associated genes of mouse circadian atlas data (Zhang et al., 

2014) serves as the reference correlation matrix (Wu et al., 2020). LTMheat applies Mantel’s 

test to compute the similarity statistical value (Mantel’s zstat value) between the query and 

reference correlation matrix. LTMheat also computes the nCV values (Wu et al., 2021) of 17 

clock and clock-associated genes in each quantile group, and further calculates the mean 

nCV value of 17 clock and clock-associated genes. 

4. Generate the R(nCV) and R(zstat) for each gene. LTMR::LTMcook function is designed for 
this essential step. Given a targeted number (eg., 4) of quantile groups, LTMcook generates a 

correlation value, R(nCV), between the mean expression value and the mean nCV value of 

17 clock and clock-associated genes of 4 quantile groups. LTMcook also generates the 

correlation value, R(zstat), between the mean expression value and the Mantel’s zstat value 

of four quantile groups. Both R(nCV) and R(zstat) vary between -1 and 1.  

5. Calculate the LTMabs value for each gene. LTMR::LTMdish function is designed for this 
essential step. LTMdish averages the mean value of R(zstat) and R(nCV) as LTMpre, which 

varies between -1 to 1 for all genes. For the same dataset, multiple LTMpre values will be 

generated when several targeted numbers of quantile groups are tested. The average of 

multiple LTMpre values for the same gene is calculated as LTMori, and its absolute value is 

defined as LTMabs for this gene. The LTMabs of all genes vary between 0 and 1.  

6. Integrate the LTMabs value of multiple datasets. When multiple datasets are available for 

the same tissue, this step can integrate multiple LTMori values for each gene and output the 
integrated value. LTMR::LTMmeta function is designed for this optional step.  

LTM analysis of skin and cancer datasets 
The key parameters of LTMR functions used to analyze three skin datasets and 11 cancer datasets 

are listed in Table S2. Those cell cycle regulation genes that encode cyclin and cyclin-dependent 

kinase were selected to map the LTMabs value. To compare these selected genes between healthy 

skin and skin tumors, the LTMabs value of each gene was normalized by the mean LTMabs value of 

1000 rounds of randomly sampled genes in each dataset.  
Enrichment analysis of LTM ranked genes in skin and cancer datasets 
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The integrated LTMabs value of three skin datasets was used to rank the genes. Gene set 

enrichment analysis (GSEA) of all genes ranked by integrated LTMabs value was performed using 

the fgsea package (Korotkevich et al., 2021). The ‘c2.cp.v7.1.symbols.gmt’ was downloaded from 

MsigDB (https://www.gsea-msigdb.org/gsea/msigdb). From this file, we only used those REACTOME 
pathways with gene numbers between 10 and 1000 as the reference gene set of GSEA. Similar 

procedures were performed on the GSEA of all genes ranked by LTMabs of melanoma or integrated 

LTMabs value of 11 cancer types. 

Predicted immune cell fractions of tumor samples from 11 cancer types 
The immune cell fractions of tumor samples were predicted with the immunedeconv package (Sturm 

et al., 2019), using EPIC method (Racle et al., 2017). The predicted fractions of CD4+, CD8+ T cell, 

macrophage, natural killer cell and B cell in each tumor sample were used in this study.   
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Figures and tables 

 
Figure 1. The schematic diagram of LTM strategy. The expression matrix contains 18,076 genes (one 

gene per row) and 298 samples (one sample per column). All 298 samples are ranked by the 
expression level of each gene (eg., CCNA2) and separated into four quantile groups. There are 75 

(Q1 and Q3) or 74 (Q2 and Q4) samples in each quantile group. The mean expression value of all 

samples in each quartile group is calculated, as indicated by barplot. Two clock network properties 

were calculated for each quantile group. The first property is clock robustness, that is indicated by the 

mean nCV of 17 clock and clock-associated genes in Q1 to Q4 separated by CCNA2’s expression. 

The second property is phase conservation at network level, which is indicated by Mantel’s zstat 

value. The correlation matrix of 17 clock and clock-associated genes in mouse circadian atlas and in 
each quantile group serves as the reference and query matrix, respectively. The zstat value of the 

Mantel’s test indicates the similarity between a query matrix and the reference matrix. Higher mean 

nCV value and Mantel’s zstat value means a stronger clock. The correlation value between mean 

nCV or Mantel’s zstat value and mean expression of CCNA2 (ROR1) from Q1 to Q4 is named as 

R(nCV) or R(zstat). The LTMpre is defined as the mean value of R(nCV) and R(zstat) of CCNA2 

(ROR1) . The LTMori is averaged LTMpre values for the same gene. The absolute value of LTMori is 

defined as the LTMabs.  
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Figure 2. Circadian clock-coupled pathways screened by LTM in human population skin samples. (A) 

LTM is used to screen three groups of human population skin samples, including human epidermis 

samples from 239 subjects (PG), sun exposed whole skin samples from 601 subjects (GTExSE), and 
not sun exposed whole skin samples from 479 subjects (GTExNSE). The distribution of LTMabs for 

PG, GTExSE and GTExNSE is indicated by orange, blue and cyan-blue points respectively. Each red 

point represents LTMabs of a gene by integrating three datasets. A gene with a large LTMabs (eg. 

IPO13) means its expression level is strongly correlated with clock strength in skin. (B) The 

expression level of IPO13 is linearly correlated with mean nCV of clock genes and Mantel zstat in skin 

datasets. (C) Top 8 enriched pathways from GSEA analysis on all genes ranked by integrated 

LTMabs of three healthy skin datasets. (D) Top 8 enriched pathways from GSEA analysis on all 
genes ranked by LTMabs of skin cutaneous melanoma in TCGA database. (E) Cell cycle regulators 

show lower LTMabs values in human skin tumors than healthy skin. Each point represents a cell cycle 

gene listed in Fig. S3A. Only those cell cycle genes detected in both healthy skin and melanoma 

datasets were used. Y-axis is the LTMabs value of each cell cycle gene normalized by the LTMabs 

value of randomly selected genes.  
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Figure 3.  LTM screened genes tightly correlated with clock strength in tumors from 11 cancer types. 

(A) LTM is used to screen tumor samples of 11 cancer types from the TCGA database, including 

urothelial bladder carcinoma (BLCA), breast invasive carcinoma (BRCA), head-neck squamous cell 

carcinoma (HNSC), clear cell renal cell carcinoma (KIRC), lung adenocarcinoma (LUAD), low grade 
glioma (LGG), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), skin 

cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD) and thyroid carcinoma (THCA). 

Different color points indicate the distributions of LTMabs values for different cancer types. Each red 

point represents the LTMabs value of a gene by integrating 11 datasets. (B) The expression level of 

PER1 is positively correlated with mean nCV of clock genes (R(nCV)) and Mantel zstat (R(zstat)) in 

tumor samples across cancer types. (C) Top 8 enriched pathways from GSEA analysis on all genes 

ranked by integrated LTMabs values of 11 cancer types.  
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Figure 4. Stromal cell fractions are correlated with expression levels of LTM selected collagen genes. 
(A)  Human collagen genes are listed with a block plot, with one block indicating one gene. Each 

column represents a collagen category. The LTMabs values are indicated by the block color. (B) The 

fraction of cancer associated fibroblasts is positively correlated with expression of COL1A2 in tumor 

samples from LUAD and LUSC. (C) The fractions of cancer related fibroblast is positively correlated 

with expression of 7 collagen genes selected by LTM (LTMori >= 0.5) in multiple cancer types. Red 

and blue colors in the heatmap indicate positive and negative correlation, respectively. (D) The 

fraction of endothelial cells is positively correlated with expression of COL4A1 in tumor samples from 

LGG and THCA. (E) The fractions of the endothelial cell is positively correlated with expression of 7 
collagen genes selected by LTM (LTMori >= 0.5) in multiple cancer types. Red and blue colors in the 

heatmap indicate positive and negative correlation, respectively. The 11 cancer types include 

urothelial bladder carcinoma (BLCA), breast invasive carcinoma (BRCA), head-neck squamous cell 

carcinoma (HNSC), clear cell renal cell carcinoma (KIRC), lung adenocarcinoma (LUAD), low grade 

glioma (LGG), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), skin 

cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD) and thyroid carcinoma (THCA) from 

TCGA database.  
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Figure. S1 Stronger clock network properties in human epidermis than dermis. Heatmaps of 
Spearman’s rho for 17 clock and clock-associated genes in human population epidermis (A) and 
dermis (B) samples. Red and blue indicate positive and negative Spearman’s ρ, respectively. The 
zstat value is from a Mantel test, using the correlation matrix of clock and clock-associated genes in 
mouse circadian atlas as the reference. (C) The nCV of 17 clock and clock-associated genes were 
shown for population epidermis and dermis samples. The point indicates the mean nCV value of 17 
genes in each group. The boxes indicate data between the 25th and 75th percentiles with central 
horizontal lines representing the median values, respectively. The whiskers of boxes show the 5th 
and 95th percentiles. (D) Number of circadian genes detected in epidermis and dermis samples at a 
series of ADJ.P values given by CYCLOPS. The data are from Wu G et al., Genome Med, 2020.  
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Figure. S2 Cell cycle genes with higher LTMabs values screened from human skin datasets regulate 
G2 and M phase. (A) Genes regulating cell cycle phases are drawn along the circle. The LTMabs 
value is indicated by text color. (B) The LTMabs value of cell cycle regulators. (C) The normalized 
LTMabs value of cell cycle genes screened from human skin and melanoma datasets. Only those cell 
cycle genes detected in both healthy skin and melanoma datasets were used. Y-axis is the LTMabs 
value of each cell cycle gene normalized by the LTMabs value of randomly selected genes.  
 
Table S1. List of datasets used in this study 

Datasets #Samples Experimental design Reference 

Epidermal skin (PG) 298 This dataset includes 79 and 219 samples collected from the 

longitudinal and population group, respectively. The 

longitudinal group includes 20 Caucasian male subjects. The 

population group includes 152 Caucasian female subjects and 

67 African-Americans female subjects.  

Wu G., et al., 2018, 
PNAS. 
GSE112660 

Sun exposed whole skin 
samples (GTExSE) 

601 The Genotype-Tissue Expression (GTEx) project is to study 

tissue-specific gene expression and regulation. Samples were 

collected from 54 non-diseased tissue sites across nearly 1000 

individuals. This study uses the version 8 of RNAseq 

expression profiles in two skin sites. Those skin samples with 

RIN value less than 6.5 were filtered out in this study.  

https://gtexportal.org/

home/datasets 

Not sun exposed whole 
skin (GTExNSE) 

479 

CYCLOPS ordered 
epidermal and dermal 
skin  

489 489 matched epidermal and dermal skin samples were selected 

from 519 CYCLOPS ordered epidermal skin samples and 506 

CYCLOPS ordered dermal skin samples.  

Wu G., et al., 2020, 
Genome Medicine.  

Urothelial bladder 
carcinoma (BLCA) 

408 http://firebrowse.org/ 
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Breast invasive 
carcinoma (BRCA) 

1100 The Cancer Genome Atlas (TCGA) characterized over 20,000 

primary cancers and matched normal samples spanning 33 

cancer types. This study only used tumor samples from 11 

cancer types. Each cancer type contains over 400 tumor 

samples.  

Head-neck squamous cell 
carcinoma (HNSC) 

522 

Clear cell renal cell 
carcinoma (KIRC) 

534 

Low grade glioma (LGG) 530 

Lung adenocarcinoma 
(LUAD) 

517 

Lung squamous cell 
carcinoma (LUSC) 

501 

Prostate adenocarcinoma 
(PRAD)  

498 

Skin cutaneous melanoma 
(SKCM) 

472 

Stomach adenocarcinoma 
(STAD) 

415 

Thyroid carcinoma 
(THCA)  

509 

 
Table S2. The setting of key parameters of LTMR functions in this study 

Function name PG GTExSE GTExNSE 11 TCGA cancer types 

LTMprep quantNorm = TRUE, 
uniStyle = "mad",  
removeLowQuant = 0.1,  
bluntLowQuant = 0.025,  
bluntHighQuant = 0.975 

quantNorm = TRUE, 
uniStyle = "mad", 
removeLowQuant = 0.25,  
bluntLowQuant = 0.01, 
bluntHighQuant = 0.99 

LTMcut minExp = 8 minExp = 1 minExp = 1 minExp = 5 

LTMheat qnum = 4; qnum = 7; qunum = 10 

LTMcook corMethod = "pearson" 

LTMdish targetMeasures = c("zmantel", "zncv") 
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