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36  Abstract

37

38 Brain communication, defined as information transmission through white-matter connections,
39 s at the foundation of the brain's computational capacities that virtually subtend all aspects
40 of behavior: from sensory perception shared across mammalian species, to complex
41  cognitive functions in humans. How did communication strategies in macroscale brain
42  networks adapted across evolution to accomplish increasingly complex functions? By
43  applying a novel approach to measure information transmission in mouse, macaque and
44  human brains, we found an evolutionary gradient from selective information processing,
45  where brain regions share information through single polysynaptic pathways, to parallel
46  information processing, where regions communicate through multiple parallel pathways. In
47  humans, parallel processing acts as a major connector between unimodal and transmodal
48  systems. Communication strategies are unique to individuals across different mammalian
49  species, pointing at the individual-level specificity of information routing architecture. Our
50 work provides compelling evidence that different communication strategies are tied to the

51  evolutionary complexity of mammalian brain networks.
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52  Introduction

53

54  Understanding how brain function can be supported by patterns of neural signaling through
55 its structural backbone is one of the enduring challenges of network and cognitive
56  neuroscience'. The brain is effectively a complex system, a network of neural units
57 interacting at multiple spatial and temporal scales through the white-matter wiring®>.
58 Information transmission through structural connections, which can be defined as brain
59  communication®, give rise to macroscale patterns of synchronous activity—or functional
60 connectivity-between remote areas of the brain. Communication processes are at the
61 foundation of the brain's computational capacities that virtually subtend all aspects of
62  behavior, from sensory perception and motor functions shared across mammalian species,
63 to complex human functions including higher-level cognition®. From an evolutionary
64  perspective, high communication efficiency at minimal structural wiring cost has long been
65 recognized as a fundamental attribute constraining the evolution of neural systems>. Yet,
66  quantitative and comparative assessments of macroscale communication processes in brain
67  networks of increasing evolutionary complexity are lacking™®.

68

69  Systems-level neuroscience has made different attempts to map brain communication as
70 interrelated patterns of macroscale structural and functional brain connectivity, highlighting
71 strikingly complex structure-function interdependencies®. Structurally connected region pairs

72  tend to have stronger functional connectivity than disconnected pairs'®*!

, suggesting the
73 presence of monosynaptic interactions'?. Nonetheless, direct structural connections alone
74  are not able to explain most of the dynamic functional repertoire observed in a functioning
75 brain'®. Beyond monosynaptic interactions, functional connectivity between remote brain
76 areas is likely to emerge from more complex, higher-order communication mechanisms that
77 involve larger groups of neural elements and their structural interconnections, by
78  polysynaptic (multi-step) routing of neural information'***°. Higher-order communication in
79 neural systems is important from both neurocognitive and evolutionary perspectives.
80 Functional connectivity patterns extending beyond pairwise-connected regions (i.e., not
81 constrained by the direct structural connections underneath) are highly specific to
82 individuals, reflect behavioral traits'®, and have been identified across different mammals®’.
83 Moreover, functional patterns untethered from structure are dominant in cortical areas that
84  underwent larger evolutionary expansion across primates, suggesting a relation between
85 local information transmission mechanisms and evolution'®2°.

86

87  Nonetheless, the information transmission mechanisms implemented in mammalian brain

88  networks are, to date, largely unknown. A first hypothesis has been that shortest structural
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89 paths are favored for neural communication as they allow more direct (faster, metabolically
90 less expensive) information transmission. In support of this hypothesis, brain networks of

91 several mammalian and simpler species have short structural path length?**

at the price of
92 a relatively high wiring cost’. This suggests that shortest paths contribute to efficient
93 communication in brain networks and have been selected throughout evolution despite their
94  high wiring cost. However, relying on path length as the sole measure of information routing
95 may be an oversimplification'®. Shortest-path communication explains a limited portion of
96 functional connectivity'® and excludes a large fraction of brain network connections and
97 near-optimal alternative pathways from the communication process®. Recent studies have
98 started to account for more complex mechanisms of information routing, such as parallel
99 communication (i.e., relay of information through multiple, parallel communication

100  pathways)® %

or convergent routing (i.e., neural signals’ interaction through convergent
101  pathways)®"?®. Indeed, in many real-world systems, information transmission unfolds through
102 numerous alternative pathways®. Nevertheless, we do not know what is the relative
103  contribution of single-pathway versus parallel-pathway communication in mammalian neural
104  systems.

105

106  Comparative neuroimaging provides instruments to understand the emergence of function
107  across evolution?*. Evidence of similarities between neural systems in different species are
108 assumed to reflect common organizational principles and functions that may be
109 evolutionarily preserved. In contrast, regions showing the greatest changes between
110 humans and other species highlight neural changes that may account for features of
111  cognition unique to humans. It has been shown that the overall topology of the structural and
112  functional brain networks is preserved across evolution?** despite large variations in brain
113 size and cortical expansion®. However, differences in local connectivity patterns and
114  functional dynamics exist®**. Recent reports suggest that mammalian neural processing is
115 organized along multiple hierarchies from unimodal to transmodal regions, describing how
116 information from distinct neural populations are integrated and segregated across the

117  cortex?>*

. Yet, a comprehensive account of how evolution has shaped cortical organization
118 requires a way to measure how brain communication mechanisms change in vivo across
119 species, while also taking into account the underlying structural architecture. Are macroscale
120  brain communication mechanisms preserved across mammalian species? Or contrarily, are
121 there distinct brain communication strategies relating to mammals’ evolution? , In particular,
122  was there a shift from selective (single-pathway) to parallel processing across evolution to
123  support increasingly complex brain functions? These questions do not have trivial answers
124  and demand for new ways of assessing brain communication across different species.

125
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126  Here we apply a novel approach, rooted in information theory, to measure polysynaptic
127 information transmission in macroscale brain networks. Taking advantage of structural and
128 functional connectivity information extracted from multimodal brain data (i.e., functional MR,
129 diffusion MRI, tract tracing), we explore the intricate pathways of communication in the
130 mouse, monkey and human connectomes. We employ information-theoretical
131  principles®*>3® to identify the structural pathways selected for neural communication by
132  different neural systems, and measure the level of selective and parallel information
133  processing across the different species. We report a strong evolutionary gradient in the brain
134  communication dynamics of mammals, with predominant selective information routing in
135 lower mammalian species such as mice and macaques, morphing into more complex
136 communication patterns in human brains. Parallel communication strategies appear to have
137 acted as a major connector of unimodal (sensory, attentional) and transmodal (fronto-
138 parietal, default mode) areas in the human brain, possibly contributing to the evolution of
139 more complex cognitive functions in humans. Notably, we also found that brain
140 communication strategies are highly specific to individuals across the different mammalian
141  species. Our results link for the first time the complexity of macroscale brain communication
142  dynamics inferred from in vivo data to an evolutionary gradient across mammalian lineages.
143  These findings pave the way to a deeper understanding of how brain communication and its

144  relationship to function have evolved across species.
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145 Results

146

147  We propose a new framework to identify communication pathways in brain networks and
148 investigate their evolution in three mammalian species of increasing phylogenetic
149  complexity: mice, monkeys, and humans (Fig. 1). These species represent distinct
150 mammalian lineages and include animal models (mice, monkeys) often used in translational
151 research. We aimed to formally test two general assumptions on brain communication
152  dynamics. First, due to the noisy nature of neural signaling, neural messages transmitted
153 through the structural brain network can keep at most the same amount of information
154  present at the source region®***. This holds true for many communication systems where the
155 information content tends to decay as one moves away from the information source®.
156  Second, in an information transmission process, messages are typically relayed through a
157  set of statistically independent steps™; i.e., neural messages do not contain memory of the
158  transmission process itself and communication happens in a Markovian fashion®”. These two
159  assumptions —information decay and memoryless transmission— are formally summarized by
160 a fundamental principle of information theory, the data processing inequality (DP1)*®, which
161  we here apply to cross-species structural data and fMRI recordings (Online Methods). Given
162  a structural network representing the white matter wiring of the brain, we first identify sets of
163 short polysynaptic paths connecting each pair of brain regions (Fig. l1a). Next, we
164  quantitatively assess which and how many of those structural paths are effectively selected
165 for neural communication. To this aim, we quantify fMRI-derived mutual information
166  measures along the paths (Fig. 1b) to assess the DPI on those paths (Fig. 1c). From here, a
167  parallel communication score can be computed for every pair of brain regions, by counting
168 the number of paths that respect the DPI (Fig. 1d). Parallel communication scores portray a
169  spectrum of communication strategies from selective information processing, where brain
170 regions selectively exchange information through a single pathway, to parallel information
171  processing, where regions communicate through multiple, parallel pathways (Fig. 1e). We
172  assessed parallel communication scores at the individual and group levels, and summarized
173  them for distinct brain systems and single brain regions in comparison to appropriate null
174 models. Finally, we compared the distribution of selective and parallel information
175  processing across the three different mammalian species.

176  Data for this study consisted of open-source whole-brain structural connectivity matrices and
177  individual resting-state functional MRI recordings of 100 healthy human subjects, 9 macaque
178 monkeys, and 10 wild-type mice, all in their young adulthood (Online Methods,
179  Supplementary Table 1; see below for replication datasets). Group-representative structural
180 connectivity matrices with comparable number of brain regions were derived from diffusion

181 MRI and tract tracing data, and weighted by the Euclidean distance between connected
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182 regions (Supplementary Figure 1). Individual-level mutual information matrices were

183 computed from fMRI recordings of comparable duration and temporal resolution across

184  species.
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187 Figure 1 Identifying communication pathways in macroscale brain networks. (a) A
188  weighted and symmetric structural connectivity matrix summarizes the white matter wiring of
189 the brain for each species. For every pair of brain regions (i, j), the 5 shortest structural paths
190 (light blue) connecting the two regions are identified using the k-Shortest path algorithm?®.
191 (b) For every subject (human participant or animal), the mutual information between region
192  pairs is computed from z-scored regional timecourses obtained from fMRI recordings. (c) By
193 analyzing the mutual information values along each structural path, the data processing
194  inequality (DPI) is used to assess whether the specific paths represent valid communication
195 channels between regions i and j. Left panel: two brain regions i, j are connected by a
196  structural path crossing regions X, X»; green lines represent direct structural connections
197  (white matter fibers). Each region is associated with a neural activity-related timecourse; the
198 amount of information shared by two regions is quantified by their mutual information |
199 (darker and thicker arcs indicate stronger I). Right panel: a structural path (i, X1, Xo, j) is
200 labeled as communication (relay) channel if the pairwise mutual information values do not
201 increase along the (undirected) path (first row, red shading); it is not a communication
202  channel otherwise (second row, gray shading: lj; > I,,). (d) A parallel communication score
203 (PCS) is computed at the individual level (i.e., for every subject n) and for every pair of brain
204  regions i, j by counting the number of structural paths that serve as relay channels between
205 the two regions. (e) Parallel communication scores are investigated across mammalian
206  species, highlighting a spectrum of communication strategies from selective information
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207  processing (light yellow; low PCS), to parallel information processing (dark brown; high
208 PCS).
209

210

211  Parallel communication in brain networks follows an evolutionary gradient across
212 mammalian species

213

214  Using our approach we found that, in mammalian brains, polysynaptic structural paths are
215 used to relay information in a ‘Markovian’-specific, sequential processing fashion. For all the
216 three considered species, the whole-brain density of relay communication pathways (i.e., the
217  percentage of structural paths respecting the DPI) was higher than in a strict null model
218  preserving the structural connectivity architecture and the multivariate statistics of fMRI
219 timecourses (Online Methods; p < 10 for all species). This held true when considering
220 either the first shortest path connecting region pairs (meanzstandard deviation across
221  individuals: humans = 39.5£3.8%; macaques = 37.1+6.0%; mice = 37.1+2.3%), or longer
222  paths (humans = 33.01£5.6%; macaques = 29.5+5.7%; mice = 28.2+5.9%), showing that
223 relay communication is not limited to the shortest path only (Fig. 2a). Specifically, the
224  communication density level of the shortest and second shortest paths was comparable for
225 all the three species, but decayed right after. Next, we assessed the amount of parallel
226 ~ communication between all brain region pairs. We found that, on average, the parallel
227  communication score (PCS) progressively increases from mice and macaques to humans
228 (median [5-, 95-percentile] across region pairs: mice = 1.30 [0.20, 2.50]; macaques = 1.33
229 [0.11, 2.56]; humans = 1.52 [0.11, 3.02];). This is particularly evident when considering the
230 long-tailed distribution of human brain network communication as compared to the animals
231  (Fig. 2b). The three species’ PCS distributions were pairwise statistically different (two-
232  sample Kolmogorov-Smirnov tests human-macaque: Dagsossz = 0.157, p < 10™*; human-
233  mouse: Dugsozoos = 0.171, p < 10™"; macaque-mouse: Daszr 3003 = 0.058, p < 10™). These
234  results indicate that, as brain complexity increases across the phylogenetics tree, interareal
235 communication is increasingly subserved by parallel processing (Fig. 2).

236
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238 Figure 2 Parallel communication follows an evolutionary gradient across mammalian
239 species. Left: drawing of human, macaque, and mouse brains; each row in the figure
240 corresponds to one species. (a) Box plots representing the percentage of short paths in
241  individual brain networks used for relayed communication (i.e., respecting the DPI). Each
242  colored dot represents an individual; gray dots represent species-specific null distributions
243  obtained from permutation of mutual information values (Online Methods); circles and
244 vertical bars indicate mean * one standard deviation across individuals or randomizations.
245  Paths are grouped according to the 1% up to the 5™ shortest path between region pairs,
246  showing that relay communication is not limited to the 1% shortest path only. (b) Group-
247  average parallel communication score (PCS) matrices representing PCSs between every
248  pair of brain regions, averaged across individuals. For each species, brain regions are
249  organized according to meaningful functional circuits which are highlighted by black squares
250 along the matrices’ diagonals (Online Methods). On the right, the histograms of the average
251 PCS scores across region pairs highlight an evolutionary gradient from mice, with lower
252 PCSs and mainly selective information processing, to humans, with higher PCSs and
253  presence of parallel communication. Median [5-, 95-percentile] PCS values for each species
254  are reported atop each histogram.

255

256

257 Communication complexity is species-dependent and relates to the functional
258 organization of mammalian brains

259

260  When evaluating the spatial localization of the relay communication pathways, we found that
261 it followed the characteristics of each species’ functional cortical architecture (Fig. 3).

262  Specifically, in lower species the relay (mostly sequential) pathways mainly encompassed
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263  unimodal/multimodal regions spanning the barrel, auditory and somatomotor cortices in
264  mice, and the visual, somatomotor and dorsal attention cortices in macaques (Fig. 3a). In
265 humans we found similar evidence of relay sequential processing in unimodal and
266  multimodal areas, but also a high concentration of parallel communication pathways in
267  transmodal regions including association cortices of the executive-control network and the
268 precuneus of the default mode network (Fig. 3a; note the different color scales across
269  species).

270  Next, we investigated the communication patterns at the level of region pairs within and
271  between different brain functional systems (Online Methods, Supplementary Fig. 3, 4). In
272  mice, the relay pathways mainly connected brain nodes belonging to unimodal systems,
273 including auditory, barrel, somatomotor and visual cortices (Fig. 3b). A similar distribution
274  was observed for relay pathways in macaque networks, mainly connecting visual with
275 somatomotor and dorsal attentional regions. However, a gradient transitioning towards
276 transmodal regions started to appear between the default mode network and attentional
277  systems (Fig. 3b). In humans, stronger (parallel) relay communication mainly connected
278 somatosensory and attention regions with executive-control and default mode systems,
279  forming cross-modal parallel streams between unimodal and transmodal regions (outside-
280 diagonal entries in Fig. 3b). Notably, these patterns were stable at the individual level. We
281 report in Fig. 3c the amount of relay communication (average PCSs) within unimodal
282  systems, within transmodal systems, and between unimodal and transmodal systems for
283  each subject. Within species, the amount of relay communication varied between systems,
284  with transmodal networks consistently presenting the lower amount of relay communication
285  (Kruskal-Wallis tests, p < .05) (Fig. 3c). Across species, relay communication within
286  unimodal systems decreased with increasing phylogenetic complexity (mice > macaques >
287  humans, H(2) = 22.45, p = .000013), while cross-modal communication between unimodal
288 and transmodal regions strongly increased (mice < macaques < humans, H(2) = 46.44, p <
289 1079, with humans presenting 30% larger PCSs than macaques (Supplementary Fig. 2).
290 Relay communication within transmodal systems was relatively stable across species (H(2)
291 = 6.24, p = .044). Taken together, these findings show that communication strategies are
292  highly heterogeneous across the brain network and are partially preserved across evolution.
293  However, phylogenetically older species demonstrate more developed relay communication
294  for lower-order processing between unimodal and multimodal regions. Conversely, the
295 human brain is characterized by stronger parallel communication that serves as the main
296  neural processing stream between unimodal and transmodal areas®3.
297

10
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299 Figure 3 Relay communication strategies reflect the functional organization of
300 mammalian brains. (a) Cortical distributions of relay communication, quantified as the
301 average PCS of each brain region with the rest of the brain network (first row: human,
302 fsaverage6 cortical surface; second row: macaque, F99 template; third row: mouse, ABI
303 template). For each species, the light yellow-to-brown colormap is scaled between the 5"
304 and 95™ percentiles of the cortical values. On the right, the average nodal communication
305 scores per brain system are represented in the bar plots. (b) Average PCSs within and
306 between brain systems, for humans, macaques and mice. Brain systems have been
307 organized into unimodal/multimodal regions (upper-left black square) and transmodal
308 regions (lower-right black square). (c) Average PCSs between unimodal systems, between
309 transmodal systems, and between unimodal and transmodal systems (cross-modal
310 communication) for individual subjects. In the box plots, each dot represents an individual;
311 vertical bars indicate mean + standard deviation; notch bars indicate median and 1%-3™
312 quartiles; shaded areas indicate 15-99" percentiles. Kruskal Wallis p-values for within-
313  species comparisons are reported. Control = executive-control; Dorsal attn. = dorsal
314  attention; ventral attn. = ventral attention.

315
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316

317 Relay communication patterns are unique to individuals

318

319  Our results revealed a link between relay information processing strategies and phylogenetic
320 complexity in the mammalian brain. Are the observed communication patterns specific to
321 individual subjects within single species? We addressed this question by exploring the

39,40

322 identifiability properties of the parallel communication matrices reported in Fig. 2, across
323 the three different species. To this aim, the fMRI recording of each subject was split into two
324  sections of equal duration. From these, test and retest parallel communication matrices were
325 computed. Note that, at the individual level, the matrices’ entries (PCSs) can take integer
326  values between 0 and 5, with 0 indicating no relay communication, 1 indicating perfectly
327 selective information processing, and 5 strongly parallel information processing. We
328 quantified the similarity between test and retest data as the percentage of brain regions’
329 pairs with exactly the same PCS (Jaccard similarity index). The individual identifiability
330 through relay communication patterns was then quantified as the success rate (SR), i.e., the
331 percentage of subjects whose identity was correctly predicted out of the total number of
332  subjects for each species*. We found that parallel communication scores allow to identify
333 individual mammals in all the three species, at a level that exceeds chance-level (humans:
334 SR = 87.0%, null = 0.9+1.0%; macaques: SR = 66.7%, null = 11.2+10.3%; mice: SR =
335 60.0%, null = 10.6+9.2%) (Fig. 4a,b). However, individual identifiability decreased from
336 humans, to macaque, to mice. Intriguingly, the major contribution to individual identifiability
337 was given by brain regions pairs that, on average, tends to communicate through multiple
338 parallel rather than selective pathways. When splitting region pairs into two groups (‘low-
339 PCS’, ‘high-PCS’) according to group-average parallel communication scores, the success
340 rate obtained from high-PCS values was higher than the one obtained from low-PCS values
341  for both humans and macaques (PCS threshold = 1.3; humans: SRigw-pcs = 73.0%, SRhnigh-pcs
342 = 85.0%; macaques: SRiow.pcs = 44.4%, SRhigh-rcs = 55.5%; mice: SRiow.pcs = 40.0%, SRpign-
343 pcs = 40.0%; see Supplementary Table 2 for alternative thresholds) (Fig. 4c,d). No
344  differences were found in mice. Taken together, these data suggest that, within the inherent
345 constraints of each species, individual subjects may implement distinct communication
346  strategies to relay neural information through the brain network, particularly when
347  considering higher-order communication mechanisms such as parallel communication.

348
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349
350 Figure 4 Parallel communication is unique to individuals. Left: drawing of human,

351 macaque, and mouse brains; each row in the figure corresponds to one species. (a)
352 Identifiability matrices for the three species, reporting subjects’ similarities between test
353 (rows) and retest (columns) parallel communication data. Test-retest similarity was
354  quantified with the Jaccard similarity index. (b) Box plots representing self-similarity (Iself,
355 diagonal entries of the identifiability matrix) and others-similarity (lothers, out-diagonal
356 entries of the identifiability matrix) values. (c) Self- and others-similarity values when

357  considering only region pairs with low parallel communication scores (PCS < 1.3 on

358 average). (d) Self- and others-similarity values when considering only region pairs with high

359  parallel communication scores (PCS > 1.3 on average). The success rate (SR) for subjects’
360 identification is reported for each pair of box plots. In the box plots, vertical bars indicate
361 mean + standard deviation; notch bars indicate median and 1%-3" quartiles; shaded areas
362 indicate 1%-99" percentiles.

363

364

365 Robustness, sensitivity and replication analyses

366

367 To ensure the validity of our results, we asked whether parallel communication scores and
368 their cross-species gradients could be explained by the different structural connectome
369 architectures and multivariate statistical properties of fMRI recordings alone. To this aim, we
370 constructed null distributions of parallel communication scores for each species, by randomly
371  shuffling the fMRI time series across brain regions and computing surrogate PCSs on the
372  original structural connectome architecture (n = 3000) (Online Methods, Supplementary Fig.

373 5). By z-scoring the real PCS scores with respect to the null distributions and applying
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374  appropriate statistical thresholds, we show that our findings do not trivially derive from
375  structural connectivity and fMRI statistical properties alone. In particular, the gradient of
376 increasing parallel communication from mice to humans (Fig. 2, Supplementary Fig. 6, 7, 8)
377 and the cortical topographies of parallel communication density across species (Fig. 3,
378  Supplementary Fig. 9) remained significantly different from the null ones.

379 Next, we investigated whether results were sensitive to some methodological choices,
380 including number of brain regions (brain parcellation), fMRI time series length, and number
381  of subjects. We found that our results are robust to these factors. In humans, PCS scores
382  and their cortical topographies were comparable when subdividing the cortex into 100 or 200
383  regions of interest (Supplementary Fig. 10, 11). However, we observed lower PCS scores
384 when using a finer-grain parcellation with 400 regions (Supplementary Fig. 10). This is
385  expected since brain connectivity and structure-function relationship have been shown to
386 vary with the number of brain regions*'. PCS scores tended to increase for longer fMRI time
387  series, but this effect did not impact inter-species differences nor PCS cortical topographies
388 (Supplementary Fig. 10, 11), and it could relate to the improved reliability of functional
389  connectivity estimation for longer scan lengths*’. Whenever possible, data from the three
390 species were matched both in the number of brain regions and fMRI scan duration. The
391 effect of the number of subjects on PCS scores was minor (Supplementary Fig. 12).

392 Finally, we assessed the replicability of our findings by analyzing a total of six distinct
393 datasets (Online Methods). We found that parallel communication scores (Fig. 2,
394  Supplementary Fig. 12), their cortical topographies (Fig. 3, Supplementary Fig. 11, 13, 14),
395 and the gradient of parallel communication between unimodal and transmodal regions
396  across species (Fig. 3, Supplementary Fig. 15) were consistent when considering alternative
397 datasets. In particular, overall cortical topographies were unaltered when considering awake
398 or anesthetized macaques and mice (Supplementary Fig. 13, 14). However, awake animals
399 tended to have larger parallel communication between transmodal regions and between
400 transmodal and unimodal regions (cross-modal streams), but unchanged communication
401 between unimodal regions as compared to anesthetized animals (Supplementary Fig. 16).
402  These state-dependent differences were smaller than the ones observed between mice and
403 macaques, and humans. The amount of parallel communication in awake macaques and
404  mice was lower than the amount observed in humans, confirming the parallel communication

405 gradient along the evolutionary axis.
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406  Discussion

407

408 How networked neural elements intercommunicate at the systems level, ultimately giving
409 rise to brain function, stands as one of the most intriguing and unsolved questions of modern
410 neurosciences. In vivo measurements of brain structure and activity are providing us with
411  windows of opportunities for modeling communication in brain networks, across different
412  animal species. We propose here to bring a piece to this puzzle, by investigating the link
413  between communication strategies in large-scale brain networks, on the one side, and the
414  evolutionary complexity of mammals’ brain functions, on the other.

415

416 By introducing a novel approach to formally test and detect relay communication pathways in
417  brain networks, we provide compelling evidence that this link exists, and that different
418 communication strategies are tied to the evolutionary complexity of mammalian brain
419 networks along two main organizational principles. The first principle is the increasing
420  recruitment of parallel communication pathways, which evolves from predominantly selective
421  information processing mechanisms in mice, to parallel information processing in humans.
422  The second principle involves the development of cross-system communication through
423 parallel pathways that connect together functionally specialized brain regions (i.e.,
424  somatomotor, visual) with transmodal ones (i.e., fronto-parietal, default mode).

425

426  Specialized, unimodal brain systems are organized as serial, hierarchical streams where raw
427  sensory information is relayed through stepwise progressive circuits to guide attention and
428  direct actions®®®!. Consistent with this hierarchical polarity, we found that unimodal regions
429 are mainly characterized by selective information processing through single pathways, as
430 quantified by low parallel communication scores. This held true for all the investigated
431 mammalian species, suggesting that unimodal selective information processing is
432  phylogenetically preserved. On the other hand, transmodal regions present a more complex
433 and less understood organization. Back in 1998, Mesulam hypothesized that “the flow of
434  information for intermediary [transmodal] processing displays patterns consistent with
435 parallel and re-entrant processing”*. Our findings consolidate this view by showing—in a
436 data-driven and hypothesis-independent way-that information transmission between
437 unimodal and transmodal regions evolved from selective to parallel streams across species
438  with increasing cognitive abilities. Parallel communication could therefore represent a more
439 complex form of information transmission beyond hierarchical processing, which might
440  support integration of perceptual modalities into more complex textures of cognition.

441
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442  What evolutionary mechanisms may have promoted a higher involvement of parallel
443  communication strategies in humans? According to the tethering hypothesis proposed by
444  Buckner and Krienen®, the fast cortical expansion of transmodal regions in humans
445  compared to non-human primates has led to the untethering of these regions from
446  developmental anchor points. This process allowed human transmodal regions to develop
447  unique cytoarchitectonic®® and connectional® fingerprints, unbound from the hierarchical
448  architecture of topographically distant unimodal systems®®. The same process may have
449 also favored the development of new information transmission strategies (parallel
450 communication) to bridge hierarchical unimodal and distributed transmodal regions. Indeed,
451  in humans we observed the largest parallel communication scores in regions that underwent
452  the largest cortical expansion across evolution, including fronto-parietal association cortices
453  and precuneus*. In addition, parallel information transmission may be functional to specific
454  processing needs of unimodal-transmodal communication supporting cognition. Recent
455  computational studies suggest that brain regions with largest allometric scaling privilege
456 fidelity rather than compression of incoming signals from unimodal areas®. High-fidelity
457  information transmission may be achieved through parallel streaming of redundant signals,
458  expression of a more resilient communication process.

459

460  Our results show that parallel communication also contributes to the individual specificity of
461 communication strategies in brain networks. Selective and parallel information transmission
462  patterns allowed identifying subjects in a group with significant accuracy, across different
463 ~mammalian species. This indicates that the individual layout of relay communication
464  pathways constitutes an important fingerprint of brain organization, and that this fingerprint is
465 present even at lower phylogenetic levels (i.e., in mice). Brain regions that tend to
466  communicate through parallel rather than selective streams, including transmodal regions,
467  provided the largest contribution to subject identifiability. Consistently, fMRI activity of
468  association and default mode cortices displays larger inter-individual variability in human and
469 nonhuman primates compared to lower-order regions*®*“*®, The role of transmodal cortices
470 in individual identifiability is consistent with their protracted neurodevelopment and function
471  in higher-order cognition, and it could partially explain the identifiability gradient observed
472  from humans to macaques, to mice, with mice displaying lower parallel communication
473  levels and lower identifiability. However, the identifiability gradients may also be explained by
474  a larger homogeneity among laboratory animals compared to human samples in terms of
475  genetic pedigree and environmental conditions.

476

477  Importantly, the evolutionary gradient from selective to parallel information processing and

478  the cortical topographies of parallel communication patterns were not explained by cross-
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479  species differences of structural connectivity architecture, statistical properties of fMRI data,
480 or conscious (i.e., awake vs anesthetized) state. In keeping with previous studies®, we
481  found that the overall distribution of short structural path lengths was similar between
482  species, with comparable amounts of 2-step, 3-step, and 4-step pathways. Relative cross-
483  species differences of parallel communication were unchanged when contrasting data with
484  respect to a strict, species-specific null model which preserves multivariate fMRI statistics.
485  When considering fMRI data from awake and anesthetized animals, we found similar cortical
486  distributions of parallel communication patterns, with unimodal regions dominated by
487  selective information processing. This finding is in line with the observation that resting state

488 networks are globally preserved in conscious and unconscious states'’”*’

. However, we
489  found that the overall amount of communication tends to increase during wakefulness,
490 particularly when considering information transmission streams interconnecting transmodal
491  regions with the rest of the brain network. A shift of the communication regime toward more
492 abundant and (partially) parallelized polysynaptic information transmission may
493  mechanistically support functional integration, inter-network cross-talk, and rich functional
494  repertoires departing from the underlying monosynaptic connectivity constraints, which have
495  been repeatedly observed in awake primates and mice compared to the anesthetized
496  ones'™*"8,

497

498  Several higher-order communication models have been proposed to explain integration of
499 information between multiple brain network elements’. Nonetheless, the exact polysynaptic
500 communication mechanisms underlying macroscale neural signaling remain unclear.
501 Intriguingly, brain communication models mostly rely on the assumption of memoryless
502 (Markovian) information transmission®®. This hypothesis is pervasive in network
503 neuroscience® but has never been formally tested in the brain. Our work adds to the field in
504 two important ways. First, it introduces a new approach to extract relay communication
505 pathways from multimodal brain data, in a way that is agnostic to specific communication
506 models and grounded in fundamental information-theoretic principles. Secondly, it formally
507 probes the existence of memoryless information transmission in brain networks by
508 introducing an empirical way to assess deviations from Markovity through the data
509 processing inequality®. Our results show that Markovian communication is present in brain
510 networks across different mammalian species, is not limited to the shortest structural path,
511  but involves multiple and less optimal structural paths in a way that is species-dependent
512  and consistent with the evolutionary complexity of each investigated species.

513

514  Polysynaptic memoryless information transmission is a simple form of higher-order

515 communication. There is no reason to assume that macroscale neural communication is
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516 limited to such a particular form. Brain network hierarchies may confer neural signals a
517  memory of the regions previously visited along a path, thus modifying neural communication
518 pathways in a context-dependent manner®. This process would result in non-Markovian
519  communication regimes. The brain may also implement complex multi-object interactions not
520 attributable to information transmission alone, such as synergistic or modulatory behaviors
521  between multiple brain regions®*°. Biologically, these communication strategies may shape

522  important features of the mammalian brain, such as cortical temporal hierarchies®**

or
523  receptive time windows for attentional processes®. This work only focuses on Markovian
524  information transmission and does not inform us about other complementary information
525  processing strategies. As such, absence of relay communication (i.e., violation of the data
526  processing inequality) may indicate absence of any communication between those particular
527  brain regions, or communication through more complex information encoding mechanisms.
528 Notwithstanding the evidence that selective and parallel Markovian pathways serve as
529 important information streams for multimodal integration between unimodal and transmodal

34,38

530 systems™ ™, we speculate that low parallel communication scores between transmodal
531 regions may indicate predominance of more complex communication regimes in these
532 areas. In addition, sensory input decoding within the highly clustered unimodal systems
533 (diagonal entries of the parallel communication matrices, Fig. 3b) may be supported by
534  synergistic processes within dense structural motifs®. How these macroscale
535 communication mechanisms may have adapted to changing environments over the evolution
536 of mammalian brains remains an exciting open field of research, to which the present work
537  adds a first foundation.

538

539
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555  Online Methods

556

557  Human data

558 We used Magnetic Resonance Imaging (MRI) data of the Human Connectome Project
559  (HCP), U100 dataset (HCP900 data release), which includes 100 unrelated healthy adults
560 (‘h-HCP’ dataset, 64 males; mean age = 29.1 = 3.7 years)™. Informed consent forms,
561 including consent to share de-identified data, were collected for all subjects (within the HCP)
562 and approved by the Washington University institutional review board. All methods were
563 carried out in accordance with relevant guidelines and regulations. MRI scans were
564 performed on a 3T Siemens Prisma scanner and included the following sequences:
565  Structural MRI: 3D Magnetization Prepared Rapid Acquisition with Gradient Echoes
566 (MPRAGE) T1-weighted, TR = 2400 ms, TE = 2.14 ms, Tl = 1000 ms, flip angle = 8°, FOV =
567 224 x 224, voxel size = 0.7 mm isotropic. Diffusion-weighted MRI: spin-echo Echo-Planar
568 Imaging (EPI), TR = 5520 ms, TE = 89.5 ms, flip angle = 78°, FOV = 208 x 180, 3 shells of
569  b-value = 1000, 2000, 3000 s/mm? with 90 directions plus 6 b-value = 0 s/mm? acquisitions.
570  One session of 15 min resting-state functional MRI (fMRI): gradient-echo EPI, TR = 720 ms,
571 TE = 33.1 ms, flip angle = 52°, FOV = 208 x 180, voxel size = 2 mm isotropic, recorded with
572  two phase-encoding directions (right-left and left-right). HCP minimally preprocessed data®®
573  were used for all acquisitions.

574

575  Group-level structural connectivity. A group-representative structural connectome between
576 100 cortical regions of interest (Schafer parcellation®’) was obtained from the 100 unrelated
577 HCP subjects. Different cortical parcellation resolutions were explored in supplementary
578 analyses (200- and 400-region Schaefer parcellations®). Briefly, diffusion-weighted scans
579 were analyzed using MRtrix3%8, including the following steps: multi-shell multi-tissue
580 response function estimation; constrained spherical deconvolution; tractogram generation
581  with 10" output streamlines. The Schaefer cortical atlas was used to parcellate the cortex
582 into 100 (200, 400) regions and generate individual structural connectomes, from which a
583  group-representative structural connectome was computed. The binary architecture of the
584  group-representative connectome was obtained by including only the structural connections
585 retrieved in 100% of the subjects. This step is meant to minimize the number of false
586  positives in the group-representative network. The group-representative connectome was
587 then weighted by the Euclidean distance (in millimeters) between region pairs’ centroids
588 (Supplementary Fig. la). This choice was motivated by the exigence of homogenizing
589  structural connections’ weights across species (see also Mapping relay communication
590 pathways in brain networks).

591
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592  Individual functional information. Resting-state fMRI data were pre-processed according to a
593  state-of-the-art pipeline®® including: general linear model regression of nuisance signals
594  (removal of linear and quadratic trends; removal of motion regressors and their first
595 derivatives; removal of white matter and cerebrospinal fluid signals and their first
596  derivatives). 100 (200, 400) regional time series were obtained by averaging voxel-wise time
597  series across all voxels belonging to each region of interest. The mutual information between
598 region pairs was computed from the histograms of the z-scored time series, binned with a
599  step of 0.5. This bin size was chosen by comparing real and null mutual information values,
600 with null values obtained from multivariate gaussian data, and by assessing the
601 fingerprinting accuracy®® of mutual information across bin sizes (Supplementary Fig. 17).
602  Only the first 800 time points (9.6 min) were considered for mutual information computation
603 for consistency with other species data (Supplementary Table 1; other time series lengths
604  were explored in supplementary analyses, Supplementary Fig. 10). Mutual information
605 matrices obtained from left-right and right-left phase-encoding acquisitions were averaged to
606 obtain a single 100x100 (200x200, 400x400) mutual information matrix per subject
607  (Supplementary Fig. 1c).

608

609 Replication datasets. Analyses were repeated considering sub-samples of the whole U100
610 dataset (Supplementary Fig. 12).

611

612

613 Macaque data

614 We used structural and functional monkey data from TheVirtualBrain project™. The fMRI
615 dataset included 9 adult male rhesus macaque monkeys (8 Macaca mulatta, 1 Macaca
616 fascicularis) aged between 4 and 8 years (‘g-TVB' dataset). All methods were carried out in
617  accordance with relevant guidelines and regulations and have been previously described®.
618  Briefly, animals were lightly anesthetized before their scanning session and anesthesia was
619 maintained using 1-1.5% isoflurane. The scanning was performed on a 7T Siemens
620 MAGNETOM head scanner included: Structural MRI: 3D MPRAGE T1-weighted sequence,
621 128 slices, voxel size = 0.5 mm isotropic. Diffusion-weighted MRI: EPI sequence, 24 slices,
622  b-value = 1000 s/mm?, 64 directions, recorded with two opposite phase-encoding directions.
623  One session of 10 min resting-state functional MRI (fMRI): 2D multiband EPI sequence, TR
624 =1000 ms, 42 slices, 1 X 1 X 1.1 mm?® voxel size.

625

626  Group-level structural connectivity. We used the whole-brain macaque structural
627 connectome provided by TheVirtualBrain®, which summarizes the brain connectivity

628 between 82 regions of interest (Regional Map parcellation of Kétter and Wanke®) and
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629 includes inter-hemispheric connections. Briefly, the structural connectome was obtained by
630 optimizing tractography-derived structural connectivity matrices with respect to a reference
631 tracer-derived connectivity matrix and averaging across animals®. For cross-species
632  consistency reasons, we considered undirected structural connectivity information. That is, in
633 the final structural connectome, two regions are connected if at least one unidirectional
634  connection exists between the two regions. Structural connections were weighted by the
635 Euclidean distance (in millimeters) between region pairs’ centroids (Supplementary Fig. 1a).
636

637 Individual functional information. Resting-state fMRI data were pre-processed by others, as
638  previously described®. Briefly, the processing pipeline included motion correction, high-pass
639 filtering, regression of white matter and cerebrospinal fluid signals, spatial normalization and
640 smoothing. Z-scored regional time series (Regional Map parcellation) including 600 time
641  points (10 min) were used to compute individual mutual information matrices (bin size = 0.5,
642  consistently with other species) (Supplementary Fig. 1c).

643

644  Replication dataset. Analyses were repeated on an independent dataset of 9 adult rhesus
645 macaque monkeys (Macaca mulatta) aged between 5 and 12 years scanned on a vertical
646  Bruker 4.7T primate dedicated scanner at Newcastle University®® (‘g-NCS’ dataset). Raw
647  data were publicly available through the Primate Data Exchange (PRIME-DE) initiative®” and
648 included the following MRI sequences: Structural MRI; Modified Driven Equilibrium Fourier
649  Transform (MDEFT) T1-weighted, TR = 2000 ms, TE = 3.75 ms, Tl = 750 ms, voxel size =
650 0.6 x 0.6 x 0.62 mm?®. Two runs of 10.8 min resting-state fMRI: TR = 2600 ms, TE = 17 ms,
651  voxel size = 1.2 mm isotropic. All animals were scanned awake. MRI data preprocessing
652 included: T1-weighted volumes denoising®, skull-stripping (FSL®*), N4 bias field correction,
653 spatial normalization to the F99 template obtained from the SumDB database
654  (http://brainvis.wustl.edu/sumsdb/public_archive_index.html), and registration to fMRI native
655 space (ANTs®®); fMRI volumes were coregistered (FSL®), corrected for nuisance signals
656 including 6 motion signals, average white matter and cerebrospinal fluid signals, and band-
657 pass filtered to the band 0.01-0.15 Hz. Z-scored regional time series (Regional Map
658  parcellation) of the two concatenated fMRI runs were used to compute individual mutual
659 information values (bin size = 0.5). The fMRI scans were concatenated to reach a number of
660 time points comparable with the other datasets (500 time points, 21.6 min).

661

662

663 Mouse data

664 We used open-source fMRI data of 10 male wild-type mice aged 6 months (‘m-AD3’

665 dataset), available at https://openneuro.org/datasets/ds001890%. All methods were carried
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666 out in accordance with relevant guidelines and regulations and have been previously
667 described”®. Briefly, animals were anesthetized with 4% isoflurane before their scanning
668 session and maintained with 0.5% isoflurane and a 0.05 mg/kg/h medetomidine infusion®.
669  The scanning was performed on a 11.75T Brucker BioSpin scanner and included: Structural
670 MRI: spin-echo turboRARE sequence, TR = 2750 ms, TE = 30 ms, FOV = 17 x 11 mm?,
671  matrix dimension = 200 x 100 voxels, slice thickness = 0.35 mm. One session of 10 min
672  resting-state functional MRI (fMRI): gradient-echo EPI sequence, TR = 1000 ms, TE = 15
673  ms, matrix dimension = 90 x 60 voxels.

674

675  Group-level structural connectivity. A mouse structural connectome between 78 cortical
676  regions covering the isocortex, cortical subplate, and hippocampal formation, as defined in
677 the Allen Brain Atlas, was derived from published viral tracing data™. In more details, the
678  binary architecture of the structural connectome was assessed according to the following
679 steps: (i) we considered the right-hemisphere ipsilateral and contralateral connections
680 reported by Oh and colleagues™; (i) we symmetrized the right-hemisphere ipsilateral
681 connections (i.e., we considered a connection between ipsilateral regions i and j to be
682  present if at least one of the two tracts (i), (j&i) was detected); (iii) we duplicated the
683 symmetrized ipsilateral connections to the left hemisphere (in absence of more detailed
684 information, we therefore assume equal intra-hemispheric connectivity in the right and left
685  hemispheres); (iv) we transposed the contralateral connections of the right hemisphere to
686 the left hemisphere; (v) to minimize false positives due to minor tissue segmentation
687 artifacts, we excluded connections with connectivity strength < 103°, as suggested in°,
688  where the connectivity strength was defined as the total volume of segmented pixels in the
689 target normalized by the injection site volume. The binary structural connectome was then
690 weighted by the Euclidean distance between region pairs’ centroids obtained from the Allen
691 Brain Atlas (CCF v3, © 2004 Allen Institute for Brain Science. Allen Mouse Brain Atlas.
692  Available from: http://www.brain-map.org/) (Supplementary Figure 4).

693

694  Individual functional information. Resting-state fMRI data were pre-processed as previously
695  described®. Briefly, the processing pipeline included motion correction, automatic brain
696  masking, spatial smoothing (FWHM = 0.45 mm), high-pass filtering (0.01 Hz cut-off), and
697 automated nuisance removal based on independent component analysis. Z-scored regional
698 time series (78-region Allen Brain Atlas parcellation) including 600 time points (10 min) were
699  used to compute individual mutual information matrices (bin size = 0.5) (Supplementary Fig.
700 1lc).

701
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702  Replication datasets. Analyses were repeated on two independent datasets. The first one
703 included 51 male wild-type mice scanned at 3 months (‘m-CSD1’ dataset)’*. MRI
704  acquisitions were performed on a 9.4T Brucker BioSpin system on anesthetized animals
705  (3.5% isoflurane, maintained with 0.5% isoflurane and a 0.05 mg/kg/h medetomidine
706 infusion) and included a 6-min resting-state fMRI recording: gradient-echo EPI sequence, TR
707  =1000 ms, TE = 9.2 ms, flip angle = 90°, field of view = 20 x 17.5 mm?, matrix size = 90 x 70
708  voxels, slice thickness = 0.5 mm. FMRI volumes were preprocessed using the same pipeline
709 as the m-AD3 dataset. The average time series of the 78 cortical regions (360 time points, 6
710  min) were z-scored and used to compute individual mutual information matrices (bin size =
711  0.5). Analyses were repeated considering sub-samples of the whole m-CSD1 dataset
712  (Supplementary Fig. 12).

713  The second dataset included 10 C57BI6/J adult male mice (‘m-GG’ dataset, < 6 months old)
714  subject to surgery for headposts placement, MRI habituation and awake fMRI acquisition, as
715  previously described*’. MRI acquisitions were performed at the IIT laboratory in Rovereto
716  (ltaly) on a Bruker Biospin 7T scanner and included a 32-min resting-state fMRI recording:
717  single-shot EPI sequence, TR = 1000 ms, TE = 15 ms, flip angle = 60°, voxels size = 0.23 x
718  0.23 x 0.6 mm®. fMRI preprocessing included exclusion of the first 2 min of recording, time
719  series despiking, motion correction, nuisance signals regression (average cerebrospinal fluid
720 and motion signals plus their temporal derivative and corresponding squared regressors),
721 data censoring (Framewise Displacement > 0.075 mm), band-pass filtering (0.01-0.1 Hz),
722  spatial smoothing (FWHM = 0.5 mm) and spatial normalization'’. Average time series were
723  computed for 66 regions of interest, which represents a subset of the 78 Allen Brain Atlas
724  regions (data for bilateral regions CAl, CA2, CA3, dorsal and ventral endopiriform nucleus,
725 and frontal pole were not available). The first 600 time points (10 min) were used for the
726  computation of individual mutual information matrices (z-scored time series binning = 0.5).
727

728

729  Assignment of cortical regions to resting state networks

730 For the human dataset, each cortical region was assigned to one the seven resting state
731  networks (RSNs) defined by Yeo and colleagues and according to the Schaefer parcellation
732 5" For the macaque dataset, each cortical region was first associated with one or multiple
733  Brodmann areas according to the CoCoMac Regional Map of the macaque cortex®>">",
734  Each Brodmann area was then assigned to one of the seven RSNs defined by Yeo and
735  colleagues’? using a majority voting procedure and published atlases in MNI space’®. Finally,
736  Regional Map regions of the macaque cortex were assigned to Yeo RSNs with a similar
737  majority voting procedure (Supplementary Fig. 3). For the mouse dataset, each cortical

738 region was assigned to one out of 6 RSN as identified by Zerbi and colleagues using
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739 independent component analysis of resting-state fMRI data’’. The assignment was done
740  through a majority voting procedure (Supplementary Fig. 4). Note that the default mode
741 network (DMN) has been consistently identified in humans’®, macaques™ and mice®®,
742  suggesting a conservation of this network across mammalian species. In our mouse cortex
743  subdivision’’, the DMN includes bilateral hippocampal regions (CA1, CA2, CA3 hippocampal
744  fields, subiculum and dentate gyrus), and lateral (ectorhinal and temporal association areas)
745  and prefrontal (infralimbic, prelimbic and perirhinal areas) isocortices, while it excludes other
746  regions which have been reported by others, such as the retrosplenial cortex®. For all
747  species, RSNs were assigned to unimodal or transmodal systems according to established
748  cortical subdivisions®®.

749

750

751  Mapping information transmission pathways in brain networks

752 In this work we introduce a new approach to infer relay communication pathways from
753  multimodal neuroimaging data. The approach builds upon and extends an information
754  theoretical framework proposed in previous work®®, and aims at identifying polysynaptic
755  (multi-step) structural pathways selected for information transmission in macroscale brain
756  networks. Information theory is a branch of mathematics that studies the transmission of
757  information through communication systems®® and has found several applications in

758  neuroscience®*®

. It allows model-independent analysis of noisy data, such as the fMRI
759  ones.

760

761  Structural brain network and structural paths. Let’'s consider a structural brain network as an
762 undirected graph G ={V,W} formed by a set of N nodes V ={v,,v,,...,v5} and a
763  connectivity matrix W = [wi_j], with w; ; > 0 distance between directly connected region pairs
764  v;,v; and w; ; = oo otherwise. In this work we assigned w;; equal to the Euclidean distance
765  (in millimeters) between the centroids of regions v; , v;. This choice has two motivations.
766  First, the distance between region centroids can be easily computed across different
767 datasets, thus allowing to select homogeneous structural connectivity weights across
768  species. Second, this choice conceptually links information transmission in brain networks
769  with the sender-channel-receiver schematics proposed in electronic communication by

770 Shannon®*®. A path between a source node v; and a target node v; is a sequence of
771  pairwise connected and non-repeating nodes (2; ; = {Ui , Vg ,vb,...,vj}. The shortest path ij
772 between regions v; , v; is the path of minimal length (i.e., minimal Euclidean distance, in the
773  case of this work) connecting the two regions. The path length is computed as the sum of

774  edge weights along the path. In this work we identified the first k =5 k-shortest paths
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775 .Qﬁf}-‘spconnecting each region pair v; , vjse. K-shortest path ensembles identify meaningful
776  trade-offs between efficiency and resiliency for putative communication processes in brain
777 networks?3. The choice of k was dictated by the fact that, for k = 5, all edges of the structural
778  brain network participate in at least one k-shortest path?.

779

780  Functional information along structural paths. Each node v; is associated with a neural
781  activity-related fMRI time series X' that can be interpreted as the realization of a discrete
782  random variable with probability mass function pi(xi). The amount of shared information
783  Dbetween two random variables can be quantified as their mutual information 1(X% X/) =
784 Yicxi YoiexiDij(xhx ) logy(pij(xt x7) [pi(x )p; (7)), with p;;(x,x/) joint probability
785  distribution between X!, X/. The sequence of pairwise mutual information values along a
786  structural path £;; with respect to the source node i is defined as
787 & ={I(X,X?),1(X,X"),...,1(X', X)) }. We estimated the fMRI time series probability mass
788  functions from the z-scored time series’ histograms with appropriate binning. Different bin
789  sizes between 0.05 and 2.00 were explored and evaluated with respect to (i) corresponding
790 mutual information values for multivariate Gaussian processes X(0,1); (ii) individual
791 identifiability scores®. We selected the smallest bin size for which (i) the mutual information
792  values obtained from real data (h-HCP dataset) were larger than expected for a multivariate
793  Gaussian process X(0,1), and (ii) the individual identifiability score reached a maximum
794  plateau (Supplementary Fig. 17).

795

796 Data Processing Inequality (DPI). The DPI, a fundamental principle of information theory,
797  states that the amount of information available at a target node j about a source node i
798 cannot be increased through operations performed along the transmission path.
799  Mathematically, the DPI states that if X' — X — X/ is a Markov chain, then I(X}X%) >
800 (X%, x/),1(x%x’)=1(x"Xx’) , i.e., the mutual information does not increase along the
801 chain®. Note that the double inequality condition derives from the fact that a Markov chain
802  has no directionality information, i.e., if X* — X — X/ is a Markov chain, then X/ — X% — X! is
803 also a Markov chain. The DPI can be extended to Markov chains of any length.
804  Conceptually, the DPl embeds two assumptions about the information transmission process:
805 the first one is that (neural) messages transmitted through the structural infrastructure (brain
806 network) can keep at most the same amount of information present at the source region
807 (information decay). The second one is that (neural) messages do not contain memory of the
808 transmission process itself and communication happens in a Markovian fashion

809 (memoryless transmission).

26


https://doi.org/10.1101/2022.05.09.491115
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.09.491115; this version posted May 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Griffa et al., Brain communication across mammalian species

810

811 Identification of information transmission pathways in brain networks. We used the DPI to
812 test (deviation from) Markovian behavior. Each k-shortest structural path was labeled a relay
813 communication pathway if the DPIs along the paths were satisfied. Note that here we use
814  the wording relay communication in Shannon’s sense. That is, we aim to characterize the
815 presence of memoryless information transmission processes, with information decay along
816 the path measured through mutual information values.

817

818  Parallel communication scores (PCSs). We define the parallel communication score PCS;;
819  between a pair of brain regions v; , v; as the number of k-shortest paths connecting the two
820 regions which respect the DPI, with n indicating the subject. Note that, given the choice of
821 k=5, PCS scores can assume integer values between 0 and 5, and that PCS;; = PCS/; . A
822 PCS score equal to 0 is interpreted as absence of (Markovian) information transmission
823  between two regions; a PCS score equal to 1 is interpreted as presence of selective
824  information processing through a single information transmission pathway; PCS scores
825 larger than 1 are interpreted as presence of progressively increasing parallel information
826  processing with information transmission through multiple parallel pathways (Fig. 1). PCS
827  scores were computed for every pair of brain regions and every subject, for all investigated
828 datasets. Parallel communication information was summarized at the group-level by
829  computing a group-average parallel communication matrix PCS*¥9 for each dataset, and its
830  corresponding histogram (Fig. 2). In addition, node-average, RSN-average, and system-
831 average PCS scores were computed by averaging the parallel communication scores over
832 the corresponding region pairs (Fig. 3).

833

834  Null model. A null model was defined by randomly shuffling the raw fMRI time series across
835  brain regions while preserving the original structural connectivity information (Supplementary
836  Fig. 5). Note that with this randomization we are preserving the statistical properties of both
837  the original functional and structural data, since we are merely rearranging spatially fMRI
838 time series across the brain network. Parallel communication matrices were then computed
839 for each randomization following the above-described procedure. For each dataset, the
840 randomization was repeated 3000 times per subject, which allowed to build 3000 group-
841 average parallel communication matrices (Supplementary Fig. 6). Each region pair was
842  therefore associated with a null distribution of group-average PCS values including 3000
843 elements. To assess whether group-average PCS scores observed in real data could be
844  trivially explained by the structural connectivity architecture and the multivariate statistical

845  properties of fMRI data, which are both preserved in the null model, we adopted two
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846  strategies. The first one consisted of PCS scores screening by z-scoring individual group-

avg
ij

848  thresholded at 1.96 (Supplementary Fig. 7). The second strategy consisted of analyzing the

847  average scores PCS with respect to the corresponding null distribution; z-scored where

849  PCS scores with false discovery rate (FDR)-corrected p-values < .05 (FDR < .05), with p-
850 values computed as the number of entries in the null distribution exceeding the real PCS
851  score (Supplementary Fig. 8).

852

853  Subject identifiability analysis

854  For each investigated dataset, fMRI time series were split into two parts of equal duration
855 and considered as test and retest data. From these, test and retest parallel communication
856 matrices were computed for each subject. An identifiability matrix summarizing test-retest
857  subjects’ similarities was then obtained for each dataset. Diagonal entries of the identifiability
858 matrix represent subjects’ self-similarity between test and retest data (‘Iself’); outside-
859 diagonal entries represent inter-subject similarity (‘lothers’) (Fig. 4)*°. The similarity between
860 test and retest parallel communication matrices was assessed with the Jaccard index,
861 defined as the size of the intersection divided by the size of the union of two label sets. For
862 example, a Jaccard index equal to 0.3 indicates that 30% of brain region pairs have exactly
863 the same PCS score, which can take integer values between 0 and 5. The level of individual
864 identifiability was quantified with the success rate (SR) defined as the percentage of test
865  subjects whose identity was correctly predicted out of the total set of retest subjects*®. The
866  subject identifiability analysis was repeated when considering only region pairs with, on
867 average, low (high) PCS scores for the computation of test-retest similarities. Different
868 thresholds defining low (high) PCS scores were explored (Supplementary Table 2).

869

870

871 Data and material availability

872  The data that support the findings of his study are available on the Human Connectome
873  Project platform (db.humanconnectome.org) for human data; OpenNeuro®, Zenodo*, and
874  INDI PRIMatE Data Exchange (fcon_21000.projects.nitrc.org/indi/indiPRIME.html) platforms
875 for macaque data; OpenNeuro®’, XNAT™, and Mendeley'’ platforms for mouse data. The
876  derived brain matrices necessary to reproduce the main analyses of this study are available
877 on Zenodo. The code (in MATLAB) and sample brain matrices are available as maintained

878  version on A.Gr.’s GitHub repository (github.com/agriffa/BrainComm_mammalian_evolution).
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