

1 **The evolution of information transmission in mammalian brain networks**

2

3 Alessandra Griffa^{1,2,3}, Mathieu Mach², Julien Dedelley², Daniel Gutierrez-Barragan⁴,
4 Alessandro Gozzi⁴, Gilles Allali^{3,5}, Joanes Grandjean^{6,7}, Dimitri Van De Ville^{2,1}, Enrico
5 Amico^{2,1}

6

7 ¹ Department of Radiology and Medical Informatics, University of Geneva, Geneva,
8 Switzerland

9 ² Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale De
10 Lausanne (EPFL), Geneva, Switzerland

11 ³ Leenaards Memory Centre, Lausanne University Hospital and University of Lausanne,
12 Lausanne, Switzerland

13 ⁴ Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems,
14 Istituto Italiano di Tecnologia, Rovereto, Italy

15 ⁵ Division of Cognitive and Motor Aging, Department of Neurology, Albert Einstein College of
16 Medicine, Yeshiva University, Bronx, NY, USA

17 ⁶ Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen,
18 The Netherlands

19 ⁷ Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center,
20 6525 EN Nijmegen, The Netherlands

21

22

23 **Corresponding authors**

24

25 Alessandra Griffa - orcid.org/0000-0003-1923-1653

26 B1 0 265.042 (Campus Biotech Bâtiment B1)

27 Ch. des Mines 9

28 CH-1202 Genève

29 alessandra.griffa@gmail.com

30

31 Enrico Amico - orcid.org/0000-0001-6705-9689

32 H4 3 153.079 (Campus Biotech Bâtiment H4)

33 Ch. des Mines 9

34 CH-1202 Genève

35 enrico.amico@epfl.ch

36 **Abstract**

37

38 Brain communication, defined as information transmission through white-matter connections,
39 is at the foundation of the brain's computational capacities that virtually subtend all aspects
40 of behavior: from sensory perception shared across mammalian species, to complex
41 cognitive functions in humans. How did communication strategies in macroscale brain
42 networks adapted across evolution to accomplish increasingly complex functions? By
43 applying a novel approach to measure information transmission in mouse, macaque and
44 human brains, we found an evolutionary gradient from selective information processing,
45 where brain regions share information through single polysynaptic pathways, to parallel
46 information processing, where regions communicate through multiple parallel pathways. In
47 humans, parallel processing acts as a major connector between unimodal and transmodal
48 systems. Communication strategies are unique to individuals across different mammalian
49 species, pointing at the individual-level specificity of information routing architecture. Our
50 work provides compelling evidence that different communication strategies are tied to the
51 evolutionary complexity of mammalian brain networks.

52 **Introduction**

53

54 Understanding how brain function can be supported by patterns of neural signaling through
55 its structural backbone is one of the enduring challenges of network and cognitive
56 neuroscience¹. The brain is effectively a complex system, a network of neural units
57 interacting at multiple spatial and temporal scales through the white-matter wiring^{2,3}.
58 *Information transmission through structural connections*, which can be defined as *brain*
59 *communication*¹, give rise to macroscale patterns of synchronous activity—or functional
60 connectivity—between remote areas of the brain. Communication processes are at the
61 foundation of the brain's computational capacities that virtually subtend all aspects of
62 behavior, from sensory perception and motor functions shared across mammalian species,
63 to complex human functions including higher-level cognition⁴. From an evolutionary
64 perspective, high communication efficiency at minimal structural wiring cost has long been
65 recognized as a fundamental attribute constraining the evolution of neural systems^{5–7}. Yet,
66 quantitative and comparative assessments of macroscale communication processes in brain
67 networks of increasing evolutionary complexity are lacking^{1,8}.

68

69 Systems-level neuroscience has made different attempts to map brain communication as
70 interrelated patterns of macroscale structural and functional brain connectivity, highlighting
71 strikingly complex structure-function interdependencies⁹. Structurally connected region pairs
72 tend to have stronger functional connectivity than disconnected pairs^{10,11}, suggesting the
73 presence of monosynaptic interactions¹². Nonetheless, direct structural connections alone
74 are not able to explain most of the dynamic functional repertoire observed in a functioning
75 brain¹³. Beyond monosynaptic interactions, functional connectivity between remote brain
76 areas is likely to emerge from more complex, higher-order communication mechanisms that
77 involve larger groups of neural elements and their structural interconnections, by
78 polysynaptic (multi-step) routing of neural information^{1,14,15}. Higher-order communication in
79 neural systems is important from both neurocognitive and evolutionary perspectives.
80 Functional connectivity patterns extending beyond pairwise-connected regions (i.e., not
81 constrained by the direct structural connections underneath) are highly specific to
82 individuals, reflect behavioral traits¹⁶, and have been identified across different mammals¹⁷.
83 Moreover, functional patterns untethered from structure are dominant in cortical areas that
84 underwent larger evolutionary expansion across primates, suggesting a relation between
85 local information transmission mechanisms and evolution^{18–20}.

86

87 Nonetheless, the information transmission mechanisms implemented in mammalian brain
88 networks are, to date, largely unknown. A first hypothesis has been that shortest structural

89 paths are favored for neural communication as they allow more direct (faster, metabolically
90 less expensive) information transmission. In support of this hypothesis, brain networks of
91 several mammalian and simpler species have short structural path length^{21,22} at the price of
92 a relatively high wiring cost⁵. This suggests that shortest paths contribute to efficient
93 communication in brain networks and have been selected throughout evolution despite their
94 high wiring cost. However, relying on path length as the sole measure of information routing
95 may be an oversimplification¹⁴. Shortest-path communication explains a limited portion of
96 functional connectivity¹⁰ and excludes a large fraction of brain network connections and
97 near-optimal alternative pathways from the communication process²³. Recent studies have
98 started to account for more complex mechanisms of information routing, such as parallel
99 communication (i.e., relay of information through multiple, parallel communication
100 pathways)^{23–26} or convergent routing (i.e., neural signals' interaction through convergent
101 pathways)^{27,28}. Indeed, in many real-world systems, information transmission unfolds through
102 numerous alternative pathways²⁹. Nevertheless, we do not know what is the relative
103 contribution of single-pathway versus parallel-pathway communication in mammalian neural
104 systems.

105

106 Comparative neuroimaging provides instruments to understand the emergence of function
107 across evolution^{21,30}. Evidence of similarities between neural systems in different species are
108 assumed to reflect common organizational principles and functions that may be
109 evolutionarily preserved. In contrast, regions showing the greatest changes between
110 humans and other species highlight neural changes that may account for features of
111 cognition unique to humans. It has been shown that the overall topology of the structural and
112 functional brain networks is preserved across evolution^{21,22} despite large variations in brain
113 size and cortical expansion²⁰. However, differences in local connectivity patterns and
114 functional dynamics exist^{31–33}. Recent reports suggest that mammalian neural processing is
115 organized along multiple hierarchies from unimodal to transmodal regions, describing how
116 information from distinct neural populations are integrated and segregated across the
117 cortex^{20,34}. Yet, a comprehensive account of how evolution has shaped cortical organization
118 requires a way to measure how brain communication mechanisms change *in vivo* across
119 species, while also taking into account the underlying structural architecture. Are macroscale
120 brain communication mechanisms preserved across mammalian species? Or contrarily, are
121 there distinct brain communication strategies relating to mammals' evolution? , In particular,
122 was there a shift from selective (single-pathway) to parallel processing across evolution to
123 support increasingly complex brain functions? These questions do not have trivial answers
124 and demand for new ways of assessing brain communication across different species.

125

126 Here we apply a novel approach, rooted in information theory, to measure polysynaptic
127 information transmission in macroscale brain networks. Taking advantage of structural and
128 functional connectivity information extracted from multimodal brain data (i.e., functional MRI,
129 diffusion MRI, tract tracing), we explore the intricate pathways of communication in the
130 mouse, monkey and human connectomes. We employ information-theoretical
131 principles^{24,35,36} to identify the structural pathways selected for neural communication by
132 different neural systems, and measure the level of selective and parallel information
133 processing across the different species. We report a strong evolutionary gradient in the brain
134 communication dynamics of mammals, with predominant selective information routing in
135 lower mammalian species such as mice and macaques, morphing into more complex
136 communication patterns in human brains. Parallel communication strategies appear to have
137 acted as a major connector of unimodal (sensory, attentional) and transmodal (fronto-
138 parietal, default mode) areas in the human brain, possibly contributing to the evolution of
139 more complex cognitive functions in humans. Notably, we also found that brain
140 communication strategies are highly specific to individuals across the different mammalian
141 species. Our results link for the first time the complexity of macroscale brain communication
142 dynamics inferred from *in vivo* data to an evolutionary gradient across mammalian lineages.
143 These findings pave the way to a deeper understanding of how brain communication and its
144 relationship to function have evolved across species.

145 **Results**

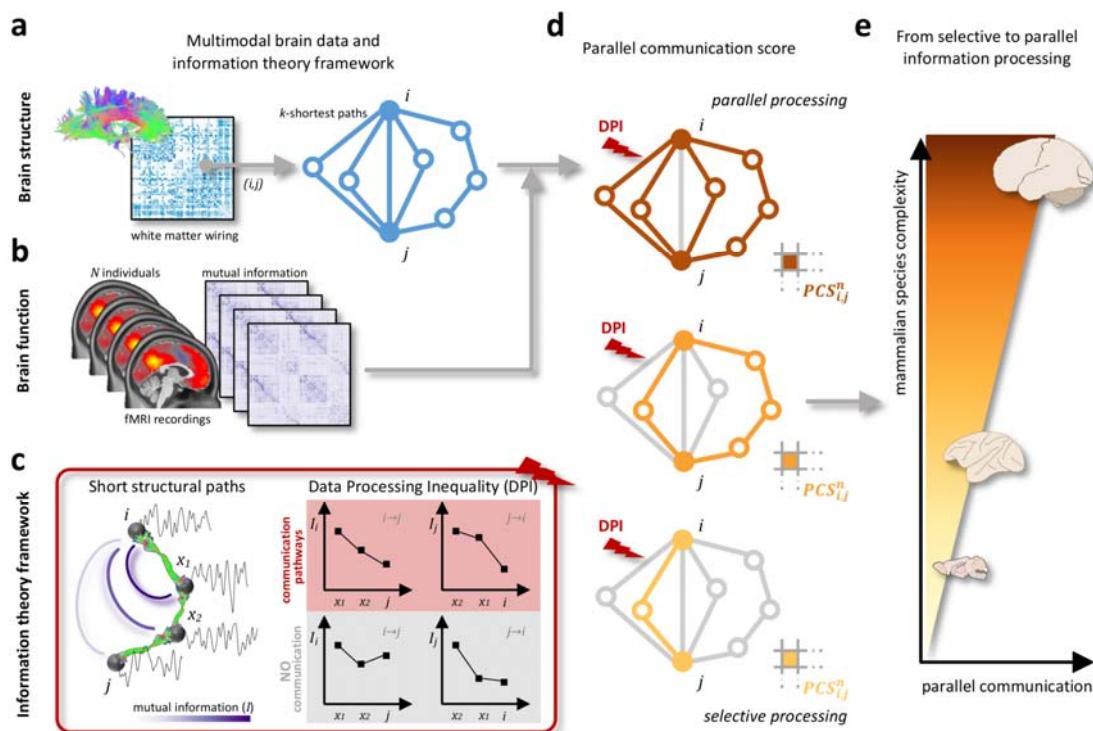
146

147 We propose a new framework to identify communication pathways in brain networks and
148 investigate their evolution in three mammalian species of increasing phylogenetic
149 complexity: mice, monkeys, and humans (Fig. 1). These species represent distinct
150 mammalian lineages and include animal models (mice, monkeys) often used in translational
151 research. We aimed to formally test two general assumptions on brain communication
152 dynamics. First, due to the noisy nature of neural signaling, neural messages transmitted
153 through the structural brain network can keep at most the same amount of information
154 present at the source region^{24,35}. This holds true for many communication systems where the
155 information content tends to decay as one moves away from the information source²⁵.
156 Second, in an information transmission process, messages are typically *relayed* through a
157 set of statistically independent steps⁴⁴; i.e., neural messages do not contain memory of the
158 transmission process itself and communication happens in a Markovian fashion³⁷. These two
159 assumptions –information decay and memoryless transmission– are formally summarized by
160 a fundamental principle of information theory, the data processing inequality (*DPI*)³⁶, which
161 we here apply to cross-species structural data and fMRI recordings (Online Methods). Given
162 a structural network representing the white matter wiring of the brain, we first identify sets of
163 short polysynaptic paths connecting each pair of brain regions (Fig. 1a). Next, we
164 quantitatively assess which and how many of those structural paths are effectively selected
165 for neural communication. To this aim, we quantify fMRI-derived mutual information
166 measures along the paths (Fig. 1b) to assess the *DPI* on those paths (Fig. 1c). From here, a
167 parallel communication score can be computed for every pair of brain regions, by counting
168 the number of paths that respect the *DPI* (Fig. 1d). Parallel communication scores portray a
169 spectrum of communication strategies from *selective information processing*, where brain
170 regions selectively exchange information through a single pathway, to *parallel information
171 processing*, where regions communicate through multiple, parallel pathways (Fig. 1e). We
172 assessed parallel communication scores at the individual and group levels, and summarized
173 them for distinct brain systems and single brain regions in comparison to appropriate null
174 models. Finally, we compared the distribution of selective and parallel information
175 processing across the three different mammalian species.

176 Data for this study consisted of open-source whole-brain structural connectivity matrices and
177 individual resting-state functional MRI recordings of 100 healthy human subjects, 9 macaque
178 monkeys, and 10 wild-type mice, all in their young adulthood (Online Methods,
179 Supplementary Table 1; see below for replication datasets). Group-representative structural
180 connectivity matrices with comparable number of brain regions were derived from diffusion
181 MRI and tract tracing data, and weighted by the Euclidean distance between connected

182 regions (Supplementary Figure 1). Individual-level mutual information matrices were
183 computed from fMRI recordings of comparable duration and temporal resolution across
184 species.

185



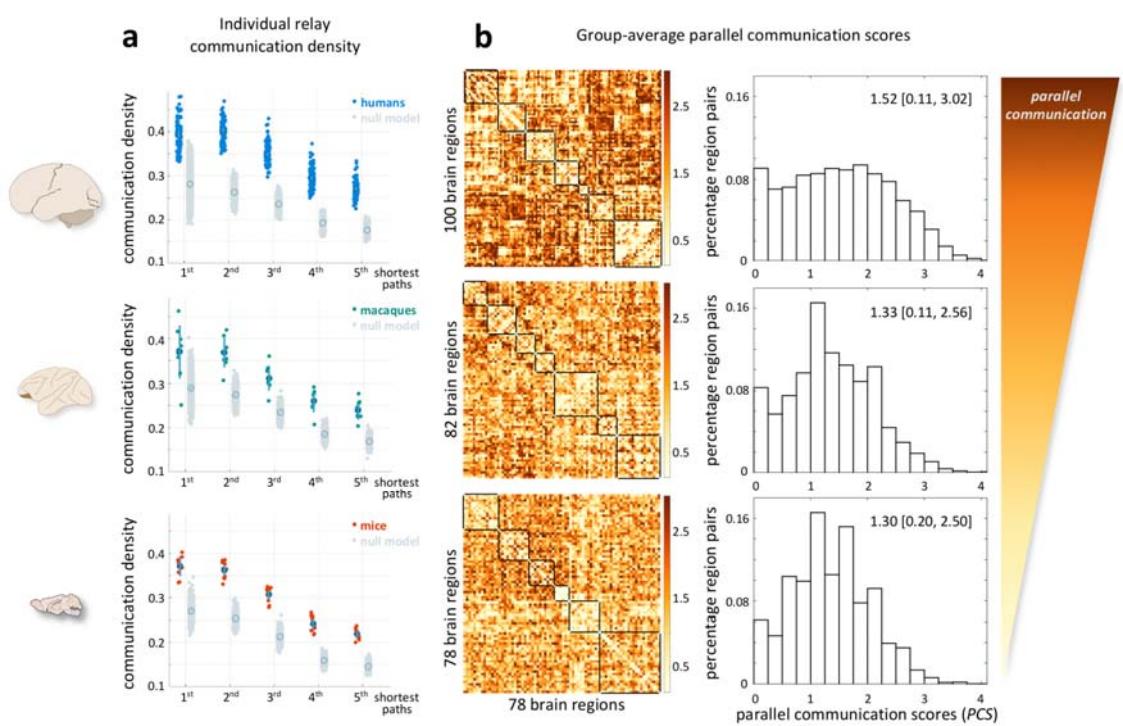
186

187 **Figure 1 Identifying communication pathways in macroscale brain networks.** (a) A
188 weighted and symmetric structural connectivity matrix summarizes the white matter wiring of
189 the brain for each species. For every pair of brain regions (i, j) , the 5 shortest structural paths
190 (light blue) connecting the two regions are identified using the k -Shortest path algorithm²³.
191 (b) For every subject (human participant or animal), the mutual information between region
192 pairs is computed from z-scored regional timecourses obtained from fMRI recordings. (c) By
193 analyzing the mutual information values along each structural path, the data processing
194 inequality (DPI) is used to assess whether the specific paths represent valid communication
195 channels between regions i and j . Left panel: two brain regions i, j are connected by a
196 structural path crossing regions x_1, x_2 ; green lines represent direct structural connections
197 (white matter fibers). Each region is associated with a neural activity-related timecourse; the
198 amount of information shared by two regions is quantified by their mutual information I
199 (darker and thicker arcs indicate stronger I). Right panel: a structural path (i, x_1, x_2, j) is
200 labeled as communication (relay) channel if the pairwise mutual information values do not
201 increase along the (undirected) path (first row, red shading); it is not a communication
202 channel otherwise (second row, gray shading: $I_{j,i} > I_{x_2,i}$). (d) A parallel communication score
203 (PCS) is computed at the individual level (i.e., for every subject n) and for every pair of brain
204 regions i, j by counting the number of structural paths that serve as relay channels between
205 the two regions. (e) Parallel communication scores are investigated across mammalian
206 species, highlighting a spectrum of communication strategies from selective information

207 processing (light yellow; low *PCS*), to parallel information processing (dark brown; high
208 *PCS*).
209

210
211 **Parallel communication in brain networks follows an evolutionary gradient across**
212 **mammalian species**
213

214 Using our approach we found that, in mammalian brains, polysynaptic structural paths are
215 used to relay information in a 'Markovian'-specific, sequential processing fashion. For all the
216 three considered species, the whole-brain density of relay communication pathways (i.e., the
217 percentage of structural paths respecting the *DPI*) was higher than in a strict null model
218 preserving the structural connectivity architecture and the multivariate statistics of fMRI
219 timecourses (Online Methods; $p < 10^{-5}$ for all species). This held true when considering
220 either the first shortest path connecting region pairs (mean \pm standard deviation across
221 individuals: humans = $39.5\pm3.8\%$; macaques = $37.1\pm6.0\%$; mice = $37.1\pm2.3\%$), or longer
222 paths (humans = $33.0\pm5.6\%$; macaques = $29.5\pm5.7\%$; mice = $28.2\pm5.9\%$), showing that
223 relay communication is not limited to the shortest path only (Fig. 2a). Specifically, the
224 communication density level of the shortest and second shortest paths was comparable for
225 all the three species, but decayed right after. Next, we assessed the amount of parallel
226 communication between all brain region pairs. We found that, on average, the parallel
227 communication score (*PCS*) progressively increases from mice and macaques to humans
228 (median [5-, 95-percentile] across region pairs: mice = 1.30 [0.20, 2.50]; macaques = 1.33
229 [0.11, 2.56]; humans = 1.52 [0.11, 3.02];). This is particularly evident when considering the
230 long-tailed distribution of human brain network communication as compared to the animals
231 (Fig. 2b). The three species' *PCS* distributions were pairwise statistically different (two-
232 sample Kolmogorov-Smirnov tests human-macaque: $D_{4950,3321} = 0.157$, $p < 10^{-42}$; human-
233 mouse: $D_{4950,3003} = 0.171$, $p < 10^{-47}$; macaque-mouse: $D_{3321,3003} = 0.058$, $p < 10^{-4}$). These
234 results indicate that, as brain complexity increases across the phylogenetics tree, interareal
235 communication is increasingly subserved by parallel processing (Fig. 2).
236



237

238 **Figure 2 Parallel communication follows an evolutionary gradient across mammalian**
239 **species.** Left: drawing of human, macaque, and mouse brains; each row in the figure
240 corresponds to one species. **(a)** Box plots representing the percentage of short paths in
241 individual brain networks used for relayed communication (i.e., respecting the *DPI*). Each
242 colored dot represents an individual; gray dots represent species-specific null distributions
243 obtained from permutation of mutual information values (Online Methods); circles and
244 vertical bars indicate mean \pm one standard deviation across individuals or randomizations.
245 Paths are grouped according to the 1st up to the 5th shortest path between region pairs,
246 showing that relay communication is not limited to the 1st shortest path only. **(b)** Group-
247 average parallel communication score (*PCS*) matrices representing *PCSs* between every
248 pair of brain regions, averaged across individuals. For each species, brain regions are
249 organized according to meaningful functional circuits which are highlighted by black squares
250 along the matrices' diagonals (Online Methods). On the right, the histograms of the average
251 *PCS* scores across region pairs highlight an evolutionary gradient from mice, with lower
252 *PCSs* and mainly selective information processing, to humans, with higher *PCSs* and
253 presence of parallel communication. Median [5-, 95-percentile] *PCS* values for each species
254 are reported atop each histogram.

255

256

257 **Communication complexity is species-dependent and relates to the functional**
258 **organization of mammalian brains**

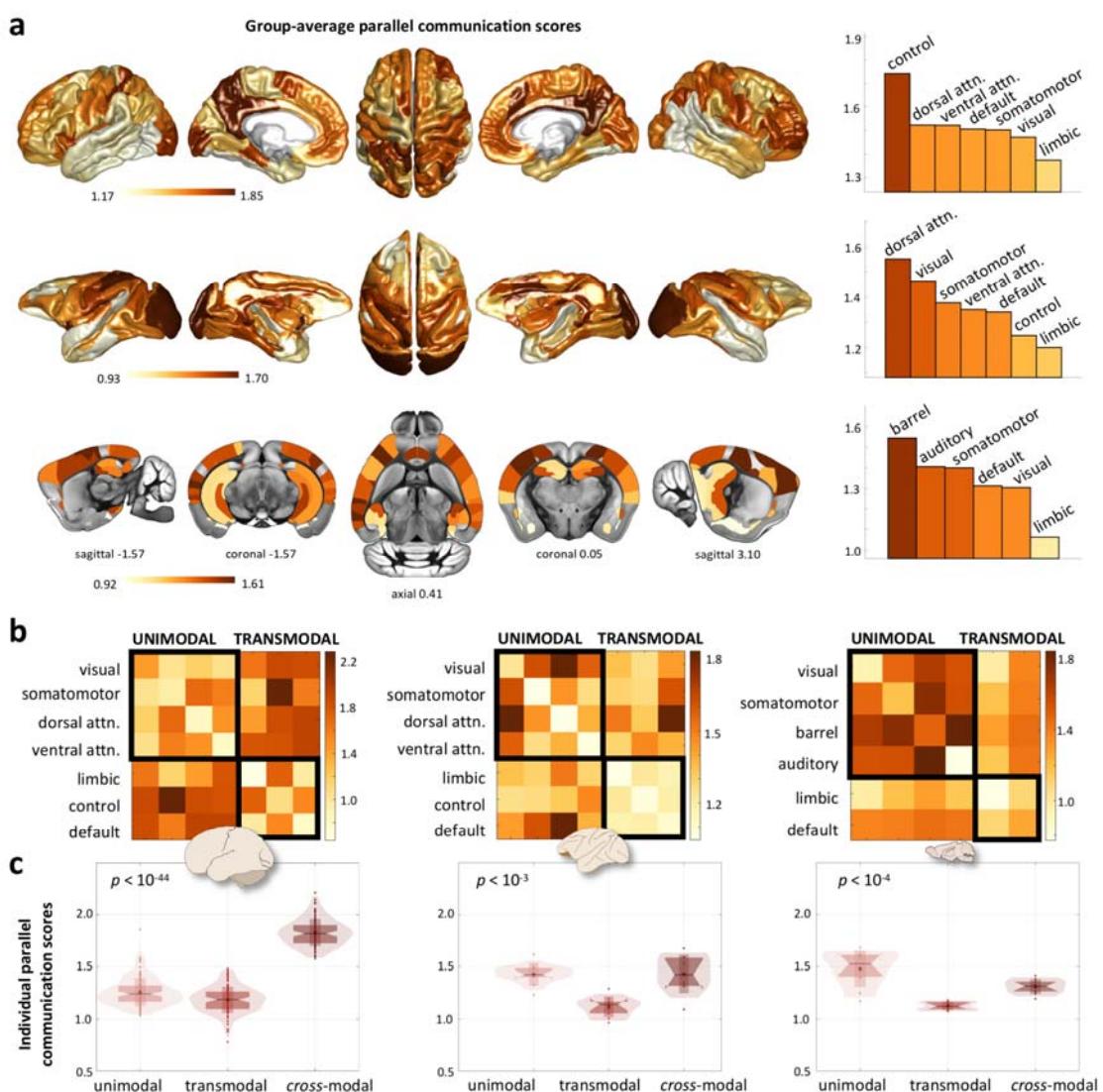
259

260 When evaluating the spatial localization of the relay communication pathways, we found that
261 it followed the characteristics of each species' functional cortical architecture (Fig. 3).
262 Specifically, in lower species the relay (mostly sequential) pathways mainly encompassed

263 *unimodal/multimodal regions* spanning the barrel, auditory and somatomotor cortices in
264 mice, and the visual, somatomotor and dorsal attention cortices in macaques (Fig. 3a). In
265 humans we found similar evidence of relay sequential processing in unimodal and
266 multimodal areas, but also a high concentration of parallel communication pathways in
267 *transmodal regions* including association cortices of the executive-control network and the
268 precuneus of the default mode network (Fig. 3a; note the different color scales across
269 species).

270 Next, we investigated the communication patterns at the level of region pairs within and
271 between different brain functional systems (Online Methods, Supplementary Fig. 3, 4). In
272 mice, the relay pathways mainly connected brain nodes belonging to unimodal systems,
273 including auditory, barrel, somatomotor and visual cortices (Fig. 3b). A similar distribution
274 was observed for relay pathways in macaque networks, mainly connecting visual with
275 somatomotor and dorsal attentional regions. However, a gradient transitioning towards
276 transmodal regions started to appear between the default mode network and attentional
277 systems (Fig. 3b). In humans, stronger (parallel) relay communication mainly connected
278 somatosensory and attention regions with executive-control and default mode systems,
279 forming *cross-modal parallel streams* between unimodal and transmodal regions (outside-
280 diagonal entries in Fig. 3b). Notably, these patterns were stable at the individual level. We
281 report in Fig. 3c the amount of relay communication (average *PCSs*) within unimodal
282 systems, within transmodal systems, and between unimodal and transmodal systems for
283 each subject. Within species, the amount of relay communication varied between systems,
284 with transmodal networks consistently presenting the lower amount of relay communication
285 (Kruskal-Wallis tests, $p < .05$) (Fig. 3c). Across species, relay communication within
286 unimodal systems decreased with increasing phylogenetic complexity (mice > macaques >
287 humans, $H(2) = 22.45$, $p = .000013$), while cross-modal communication between unimodal
288 and transmodal regions strongly increased (mice < macaques < humans, $H(2) = 46.44$, $p <$
289 10^{-10}), with humans presenting 30% larger *PCSs* than macaques (Supplementary Fig. 2).
290 Relay communication within transmodal systems was relatively stable across species ($H(2)$
291 = 6.24, $p = .044$). Taken together, these findings show that communication strategies are
292 highly heterogeneous across the brain network and are partially preserved across evolution.
293 However, phylogenetically older species demonstrate more developed relay communication
294 for lower-order processing between unimodal and multimodal regions. Conversely, the
295 human brain is characterized by stronger parallel communication that serves as the main
296 neural processing stream between unimodal and transmodal areas^{34,38}.

297



298

299 **Figure 3 Relay communication strategies reflect the functional organization of**
300 **mammalian brains. (a)** Cortical distributions of relay communication, quantified as the
301 the average PCS of each brain region with the rest of the brain network (first row: human,
302 *fsaverage6* cortical surface; second row: macaque, *F99 template*; third row: mouse, *ABI*
303 *template*). For each species, the light yellow-to-brown colormap is scaled between the 5th
304 and 95th percentiles of the cortical values. On the right, the average nodal communication
305 scores per brain system are represented in the bar plots. **(b)** Average PCSs within and
306 between brain systems, for humans, macaques and mice. Brain systems have been
307 organized into unimodal/multimodal regions (upper-left black square) and transmodal
308 regions (lower-right black square). **(c)** Average PCSs between unimodal systems, between
309 transmodal systems, and between unimodal and transmodal systems (cross-modal
310 communication) for individual subjects. In the box plots, each dot represents an individual;
311 vertical bars indicate mean \pm standard deviation; notch bars indicate median and 1st-3rd
312 quartiles; shaded areas indicate 1st-99th percentiles. Kruskal Wallis *p*-values for within-
313 species comparisons are reported. Control = executive-control; Dorsal attn. = dorsal
314 attention; ventral attn. = ventral attention.

315

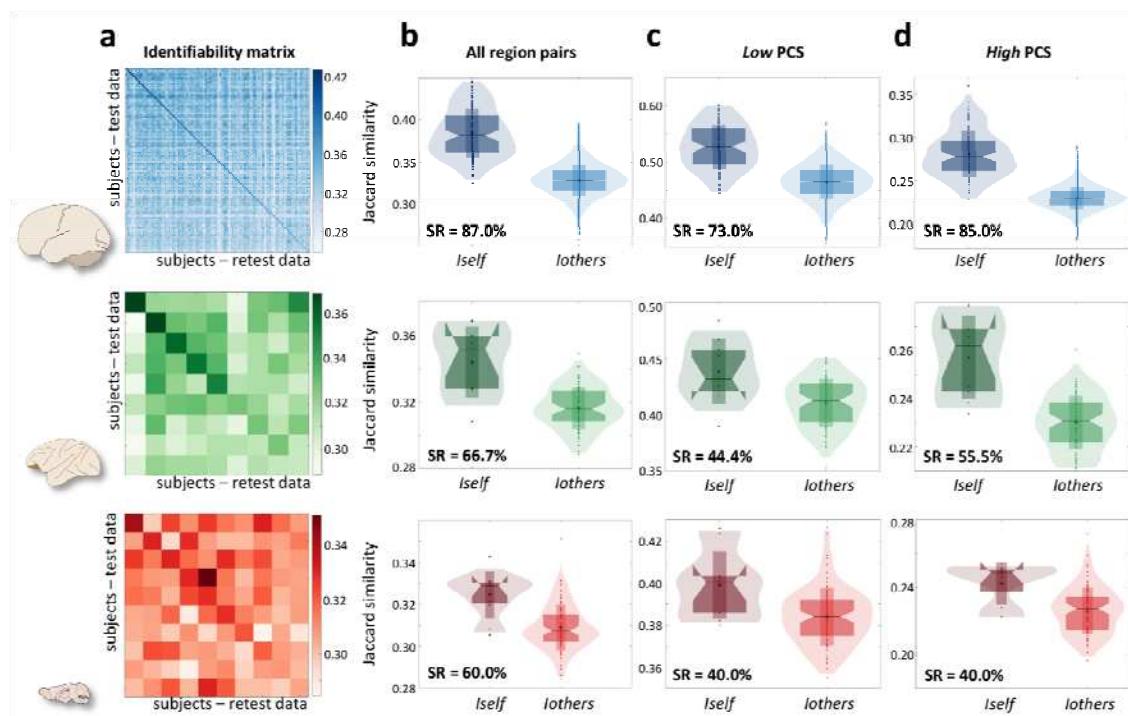
316

317 **Relay communication patterns are unique to individuals**

318

319 Our results revealed a link between relay information processing strategies and phylogenetic
320 complexity in the mammalian brain. Are the observed communication patterns specific to
321 individual subjects within single species? We addressed this question by exploring the
322 identifiability properties^{39,40} of the parallel communication matrices reported in Fig. 2, across
323 the three different species. To this aim, the fMRI recording of each subject was split into two
324 sections of equal duration. From these, test and retest parallel communication matrices were
325 computed. Note that, at the individual level, the matrices' entries (PCSs) can take integer
326 values between 0 and 5, with 0 indicating no relay communication, 1 indicating perfectly
327 selective information processing, and 5 strongly parallel information processing. We
328 quantified the similarity between test and retest data as the percentage of brain regions'
329 pairs with exactly the same PCS (Jaccard similarity index). The individual identifiability
330 through relay communication patterns was then quantified as the success rate (SR), i.e., the
331 percentage of subjects whose identity was correctly predicted out of the total number of
332 subjects for each species⁴⁰. We found that parallel communication scores allow to identify
333 individual mammals in all the three species, at a level that exceeds chance-level (humans:
334 SR = 87.0%, null = 0.9±1.0%; macaques: SR = 66.7%, null = 11.2±10.3%; mice: SR =
335 60.0%, null = 10.6±9.2%) (Fig. 4a,b). However, individual identifiability decreased from
336 humans, to macaque, to mice. Intriguingly, the major contribution to individual identifiability
337 was given by brain regions pairs that, on average, tends to communicate through multiple
338 parallel rather than selective pathways. When splitting region pairs into two groups ('*low-*
339 *PCS*', '*high-PCS*') according to group-average parallel communication scores, the success
340 rate obtained from *high-PCS* values was higher than the one obtained from *low-PCS* values
341 for both humans and macaques (PCS threshold = 1.3; humans: SR_{*low-PCS*} = 73.0%, SR_{*high-PCS*}
342 = 85.0%; macaques: SR_{*low-PCS*} = 44.4%, SR_{*high-PCS*} = 55.5%; mice: SR_{*low-PCS*} = 40.0%, SR_{*high-*}
343 _{*PCS*} = 40.0%; see Supplementary Table 2 for alternative thresholds) (Fig. 4c,d). No
344 differences were found in mice. Taken together, these data suggest that, within the inherent
345 constraints of each species, individual subjects may implement distinct communication
346 strategies to relay neural information through the brain network, particularly when
347 considering higher-order communication mechanisms such as parallel communication.

348



349

350

Figure 4 Parallel communication is unique to individuals. Left: drawing of human, 351 macaque, and mouse brains; each row in the figure corresponds to one species. **(a)** 352 Identifiability matrices for the three species, reporting subjects' similarities between test 353 (rows) and retest (columns) parallel communication data. Test-retest similarity was 354 quantified with the Jaccard similarity index. **(b)** Box plots representing *self*-similarity (*Iself*, 355 diagonal entries of the identifiability matrix) and *others*-similarity (*Iothers*, out-diagonal 356 entries of the identifiability matrix) values. **(c)** *Self*- and *others*-similarity values when 357 considering only region pairs with *low* parallel communication scores (PCS ≤ 1.3 on 358 average). **(d)** *Self*- and *others*-similarity values when considering only region pairs with *high* 359 parallel communication scores (PCS > 1.3 on average). The success rate (SR) for subjects' 360 identification is reported for each pair of box plots. In the box plots, vertical bars indicate 361 mean \pm standard deviation; notch bars indicate median and 1st-3rd quartiles; shaded areas 362 indicate 1st-99th percentiles.

363

364

365 Robustness, sensitivity and replication analyses

366

367 To ensure the validity of our results, we asked whether parallel communication scores and 368 their cross-species gradients could be explained by the different structural connectome 369 architectures and multivariate statistical properties of fMRI recordings alone. To this aim, we 370 constructed null distributions of parallel communication scores for each species, by randomly 371 shuffling the fMRI time series across brain regions and computing surrogate PCSs on the 372 original structural connectome architecture ($n = 3000$) (Online Methods, Supplementary Fig. 373 5). By z-scoring the real PCS scores with respect to the null distributions and applying

374 appropriate statistical thresholds, we show that our findings do not trivially derive from
375 structural connectivity and fMRI statistical properties alone. In particular, the gradient of
376 increasing parallel communication from mice to humans (Fig. 2, Supplementary Fig. 6, 7, 8)
377 and the cortical topographies of parallel communication density across species (Fig. 3,
378 Supplementary Fig. 9) remained significantly different from the null ones.

379 Next, we investigated whether results were sensitive to some methodological choices,
380 including number of brain regions (brain parcellation), fMRI time series length, and number
381 of subjects. We found that our results are robust to these factors. In humans, *PCS* scores
382 and their cortical topographies were comparable when subdividing the cortex into 100 or 200
383 regions of interest (Supplementary Fig. 10, 11). However, we observed lower *PCS* scores
384 when using a finer-grain parcellation with 400 regions (Supplementary Fig. 10). This is
385 expected since brain connectivity and structure-function relationship have been shown to
386 vary with the number of brain regions⁴¹. *PCS* scores tended to increase for longer fMRI time
387 series, but this effect did not impact inter-species differences nor *PCS* cortical topographies
388 (Supplementary Fig. 10, 11), and it could relate to the improved reliability of functional
389 connectivity estimation for longer scan lengths⁴². Whenever possible, data from the three
390 species were matched both in the number of brain regions and fMRI scan duration. The
391 effect of the number of subjects on *PCS* scores was minor (Supplementary Fig. 12).

392 Finally, we assessed the replicability of our findings by analyzing a total of six distinct
393 datasets (Online Methods). We found that parallel communication scores (Fig. 2,
394 Supplementary Fig. 12), their cortical topographies (Fig. 3, Supplementary Fig. 11, 13, 14),
395 and the gradient of parallel communication between unimodal and transmodal regions
396 across species (Fig. 3, Supplementary Fig. 15) were consistent when considering alternative
397 datasets. In particular, overall cortical topographies were unaltered when considering awake
398 or anesthetized macaques and mice (Supplementary Fig. 13, 14). However, awake animals
399 tended to have larger parallel communication between transmodal regions and between
400 transmodal and unimodal regions (*cross-modal* streams), but unchanged communication
401 between unimodal regions as compared to anesthetized animals (Supplementary Fig. 16).
402 These state-dependent differences were smaller than the ones observed between mice and
403 macaques, and humans. The amount of parallel communication in awake macaques and
404 mice was lower than the amount observed in humans, confirming the parallel communication
405 gradient along the evolutionary axis.

406 **Discussion**

407

408 How networked neural elements intercommunicate at the systems level, ultimately giving
409 rise to brain function, stands as one of the most intriguing and unsolved questions of modern
410 neurosciences. *In vivo* measurements of brain structure and activity are providing us with
411 windows of opportunities for modeling communication in brain networks, across different
412 animal species. We propose here to bring a piece to this puzzle, by investigating the link
413 between communication strategies in large-scale brain networks, on the one side, and the
414 evolutionary complexity of mammals' brain functions, on the other.

415

416 By introducing a novel approach to formally test and detect relay communication pathways in
417 brain networks, we provide compelling evidence that this link exists, and that different
418 communication strategies are tied to the evolutionary complexity of mammalian brain
419 networks along two main organizational principles. The first principle is the increasing
420 recruitment of parallel communication pathways, which evolves from predominantly selective
421 information processing mechanisms in mice, to parallel information processing in humans.
422 The second principle involves the development of cross-system communication through
423 parallel pathways that connect together functionally specialized brain regions (i.e.,
424 somatomotor, visual) with transmodal ones (i.e., fronto-parietal, default mode).

425

426 Specialized, unimodal brain systems are organized as serial, hierarchical streams where raw
427 sensory information is relayed through stepwise progressive circuits to guide attention and
428 direct actions^{20,34}. Consistent with this hierarchical polarity, we found that unimodal regions
429 are mainly characterized by selective information processing through single pathways, as
430 quantified by low parallel communication scores. This held true for all the investigated
431 mammalian species, suggesting that unimodal selective information processing is
432 phylogenetically preserved. On the other hand, transmodal regions present a more complex
433 and less understood organization. Back in 1998, Mesulam hypothesized that "the flow of
434 information for intermediary [transmodal] processing displays patterns consistent with
435 parallel and re-entrant processing"³⁴. Our findings consolidate this view by showing—in a
436 data-driven and hypothesis-independent way—that information transmission between
437 unimodal and transmodal regions evolved from selective to parallel streams across species
438 with increasing cognitive abilities. Parallel communication could therefore represent a more
439 complex form of information transmission beyond hierarchical processing, which might
440 support integration of perceptual modalities into more complex textures of cognition.

441

442 What evolutionary mechanisms may have promoted a higher involvement of parallel
443 communication strategies in humans? According to the tethering hypothesis proposed by
444 Buckner and Krienen²⁰, the fast cortical expansion of transmodal regions in humans
445 compared to non-human primates has led to the untethering of these regions from
446 developmental anchor points. This process allowed human transmodal regions to develop
447 unique cytoarchitectonic⁴³ and connectional³¹ fingerprints, unbound from the hierarchical
448 architecture of topographically distant unimodal systems³⁸. The same process may have
449 also favored the development of new information transmission strategies (parallel
450 communication) to bridge hierarchical unimodal and distributed transmodal regions. Indeed,
451 in humans we observed the largest parallel communication scores in regions that underwent
452 the largest cortical expansion across evolution, including fronto-parietal association cortices
453 and precuneus⁴⁴. In addition, parallel information transmission may be functional to specific
454 processing needs of unimodal-transmodal communication supporting cognition. Recent
455 computational studies suggest that brain regions with largest allometric scaling privilege
456 fidelity rather than compression of incoming signals from unimodal areas²⁴. High-fidelity
457 information transmission may be achieved through parallel streaming of redundant signals,
458 expression of a more resilient communication process.

459
460 Our results show that parallel communication also contributes to the individual specificity of
461 communication strategies in brain networks. Selective and parallel information transmission
462 patterns allowed identifying subjects in a group with significant accuracy, across different
463 mammalian species. This indicates that the individual layout of relay communication
464 pathways constitutes an important fingerprint of brain organization, and that this fingerprint is
465 present even at lower phylogenetic levels (i.e., in mice). Brain regions that tend to
466 communicate through parallel rather than selective streams, including transmodal regions,
467 provided the largest contribution to subject identifiability. Consistently, fMRI activity of
468 association and default mode cortices displays larger inter-individual variability in human and
469 nonhuman primates compared to lower-order regions^{40,45,46}. The role of transmodal cortices
470 in individual identifiability is consistent with their protracted neurodevelopment and function
471 in higher-order cognition, and it could partially explain the identifiability gradient observed
472 from humans to macaques, to mice, with mice displaying lower parallel communication
473 levels and lower identifiability. However, the identifiability gradients may also be explained by
474 a larger homogeneity among laboratory animals compared to human samples in terms of
475 genetic pedigree and environmental conditions.

476
477 Importantly, the evolutionary gradient from selective to parallel information processing and
478 the cortical topographies of parallel communication patterns were not explained by cross-

479 species differences of structural connectivity architecture, statistical properties of fMRI data,
480 or conscious (i.e., awake vs anesthetized) state. In keeping with previous studies²², we
481 found that the overall distribution of short structural path lengths was similar between
482 species, with comparable amounts of 2-step, 3-step, and 4-step pathways. Relative cross-
483 species differences of parallel communication were unchanged when contrasting data with
484 respect to a strict, species-specific null model which preserves multivariate fMRI statistics.
485 When considering fMRI data from awake and anesthetized animals, we found similar cortical
486 distributions of parallel communication patterns, with unimodal regions dominated by
487 selective information processing. This finding is in line with the observation that resting state
488 networks are globally preserved in conscious and unconscious states^{17,47}. However, we
489 found that the overall amount of communication tends to increase during wakefulness,
490 particularly when considering information transmission streams interconnecting transmodal
491 regions with the rest of the brain network. A shift of the communication regime toward more
492 abundant and (partially) parallelized polysynaptic information transmission may
493 mechanistically support functional integration, inter-network cross-talk, and rich functional
494 repertoires departing from the underlying monosynaptic connectivity constraints, which have
495 been repeatedly observed in awake primates and mice compared to the anesthetized
496 ones^{17,47,48}.

497

498 Several higher-order communication models have been proposed to explain integration of
499 information between multiple brain network elements¹. Nonetheless, the exact polysynaptic
500 communication mechanisms underlying macroscale neural signaling remain unclear.
501 Intriguingly, brain communication models mostly rely on the assumption of memoryless
502 (Markovian) information transmission⁴⁹. This hypothesis is pervasive in network
503 neuroscience³⁷ but has never been formally tested in the brain. Our work adds to the field in
504 two important ways. First, it introduces a new approach to extract relay communication
505 pathways from multimodal brain data, in a way that is agnostic to specific communication
506 models and grounded in fundamental information-theoretic principles. Secondly, it formally
507 probes the existence of memoryless information transmission in brain networks by
508 introducing an empirical way to assess deviations from Markovity through the data
509 processing inequality³⁵. Our results show that Markovian communication is present in brain
510 networks across different mammalian species, is not limited to the shortest structural path,
511 but involves multiple and less optimal structural paths in a way that is species-dependent
512 and consistent with the evolutionary complexity of each investigated species.

513

514 Polysynaptic memoryless information transmission is a simple form of higher-order
515 communication. There is no reason to assume that macroscale neural communication is

516 limited to such a particular form. Brain network hierarchies may confer neural signals a
517 memory of the regions previously visited along a path, thus modifying neural communication
518 pathways in a context-dependent manner⁴⁹. This process would result in non-Markovian
519 communication regimes. The brain may also implement complex multi-object interactions not
520 attributable to information transmission alone, such as synergistic or modulatory behaviors
521 between multiple brain regions^{37,50}. Biologically, these communication strategies may shape
522 important features of the mammalian brain, such as cortical temporal hierarchies^{51,52} or
523 receptive time windows for attentional processes⁵³. This work only focuses on Markovian
524 information transmission and does not inform us about other complementary information
525 processing strategies. As such, absence of relay communication (i.e., violation of the data
526 processing inequality) may indicate absence of any communication between those particular
527 brain regions, or communication through more complex information encoding mechanisms.
528 Notwithstanding the evidence that selective and parallel Markovian pathways serve as
529 important information streams for multimodal integration between unimodal and transmodal
530 systems^{34,38}, we speculate that low parallel communication scores between transmodal
531 regions may indicate predominance of more complex communication regimes in these
532 areas. In addition, sensory input decoding within the highly clustered unimodal systems
533 (diagonal entries of the parallel communication matrices, Fig. 3b) may be supported by
534 synergistic processes within dense structural motifs⁵⁴. How these macroscale
535 communication mechanisms may have adapted to changing environments over the evolution
536 of mammalian brains remains an exciting open field of research, to which the present work
537 adds a first foundation.

538

539

540 **Acknowledgements**

541 We thank Prof. Joaquín Goñi, Prof. Dante Mantini and Prof. Martijn Van den Heuvel for their
542 critical suggestions and helpful discussions; Dr. Kelly Shen for the help with the main
543 macaque dataset; Dr. Maria Giulia Preti and Dr. Raphaël Liégeois for the processing of
544 human data. Human data were provided by the Human Connectome Project, WU-Minn
545 Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)
546 funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
547 Research; and by the McDonnell Center for Systems Neuroscience at Washington
548 University. A.Gr. acknowledges funding from the Swiss National Science Foundation (Grant
549 No. 320030_173153). E.A. acknowledges financial support from the SNSF Ambizione
550 project "Fingerprinting the brain: network science to extract features of cognition, behavior
551 and dysfunction" (Grant No. PZ00P2_185716). A.Go. acknowledges funding from the
552 European Research Council (ERC, #DISCONN; no. 802371), the Brain and Behavior

553 Foundation (NARSAD, 25861), the NIH (1R21MH116473-01A1) and the Telethon foundation
554 (GGP19177).

555 **Online Methods**

556

557 **Human data**

558 We used Magnetic Resonance Imaging (MRI) data of the Human Connectome Project
559 (HCP), U100 dataset (HCP900 data release), which includes 100 unrelated healthy adults
560 ('h-HCP' dataset, 64 males; mean age = 29.1 ± 3.7 years)⁵⁵. Informed consent forms,
561 including consent to share de-identified data, were collected for all subjects (within the HCP)
562 and approved by the Washington University institutional review board. All methods were
563 carried out in accordance with relevant guidelines and regulations. MRI scans were
564 performed on a 3T Siemens Prisma scanner and included the following sequences:
565 Structural MRI: 3D Magnetization Prepared Rapid Acquisition with Gradient Echoes
566 (MPRAGE) T1-weighted, TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8°, FOV =
567 224×224 , voxel size = 0.7 mm isotropic. Diffusion-weighted MRI: spin-echo Echo-Planar
568 Imaging (EPI), TR = 5520 ms, TE = 89.5 ms, flip angle = 78°, FOV = 208×180 , 3 shells of
569 b-value = 1000, 2000, 3000 s/mm² with 90 directions plus 6 b-value = 0 s/mm² acquisitions.
570 One session of 15 min resting-state functional MRI (fMRI): gradient-echo EPI, TR = 720 ms,
571 TE = 33.1 ms, flip angle = 52°, FOV = 208×180 , voxel size = 2 mm isotropic, recorded with
572 two phase-encoding directions (right-left and left-right). HCP minimally preprocessed data⁵⁶
573 were used for all acquisitions.

574

575 *Group-level structural connectivity.* A group-representative structural connectome between
576 100 cortical regions of interest (Schafer parcellation⁵⁷) was obtained from the 100 unrelated
577 HCP subjects. Different cortical parcellation resolutions were explored in supplementary
578 analyses (200- and 400-region Schaefer parcellations⁵⁷). Briefly, diffusion-weighted scans
579 were analyzed using MRtrix3⁵⁸, including the following steps: multi-shell multi-tissue
580 response function estimation; constrained spherical deconvolution; tractogram generation
581 with 10^7 output streamlines. The Schaefer cortical atlas was used to parcellate the cortex
582 into 100 (200, 400) regions and generate individual structural connectomes, from which a
583 group-representative structural connectome was computed. The binary architecture of the
584 group-representative connectome was obtained by including only the structural connections
585 retrieved in 100% of the subjects. This step is meant to minimize the number of false
586 positives in the group-representative network. The group-representative connectome was
587 then weighted by the Euclidean distance (in millimeters) between region pairs' centroids
588 (Supplementary Fig. 1a). This choice was motivated by the exigence of homogenizing
589 structural connections' weights across species (see also *Mapping relay communication*
590 *pathways in brain networks*).

591

592 *Individual functional information.* Resting-state fMRI data were pre-processed according to a
593 state-of-the-art pipeline¹⁸ including: general linear model regression of nuisance signals
594 (removal of linear and quadratic trends; removal of motion regressors and their first
595 derivatives; removal of white matter and cerebrospinal fluid signals and their first
596 derivatives). 100 (200, 400) regional time series were obtained by averaging voxel-wise time
597 series across all voxels belonging to each region of interest. The mutual information between
598 region pairs was computed from the histograms of the z-scored time series, binned with a
599 step of 0.5. This bin size was chosen by comparing real and null mutual information values,
600 with null values obtained from multivariate gaussian data, and by assessing the
601 fingerprinting accuracy³⁹ of mutual information across bin sizes (Supplementary Fig. 17).
602 Only the first 800 time points (9.6 min) were considered for mutual information computation
603 for consistency with other species data (Supplementary Table 1; other time series lengths
604 were explored in supplementary analyses, Supplementary Fig. 10). Mutual information
605 matrices obtained from left-right and right-left phase-encoding acquisitions were averaged to
606 obtain a single 100x100 (200x200, 400x400) mutual information matrix per subject
607 (Supplementary Fig. 1c).

608

609 *Replication datasets.* Analyses were repeated considering sub-samples of the whole U100
610 dataset (Supplementary Fig. 12).

611

612

613 **Macaque data**

614 We used structural and functional monkey data from TheVirtualBrain project⁵⁹. The fMRI
615 dataset included 9 adult male rhesus macaque monkeys (8 *Macaca mulatta*, 1 *Macaca*
616 *fascicularis*) aged between 4 and 8 years ('q-TVB' dataset). All methods were carried out in
617 accordance with relevant guidelines and regulations and have been previously described⁵⁹.
618 Briefly, animals were lightly anesthetized before their scanning session and anesthesia was
619 maintained using 1-1.5% isoflurane. The scanning was performed on a 7T Siemens
620 MAGNETOM head scanner included: Structural MRI: 3D MPRAGE T1-weighted sequence,
621 128 slices, voxel size = 0.5 mm isotropic. Diffusion-weighted MRI: EPI sequence, 24 slices,
622 b-value = 1000 s/mm², 64 directions, recorded with two opposite phase-encoding directions.
623 One session of 10 min resting-state functional MRI (fMRI): 2D multiband EPI sequence, TR
624 = 1000 ms, 42 slices, 1 X 1 X 1.1 mm³ voxel size.

625

626 *Group-level structural connectivity.* We used the whole-brain macaque structural
627 connectome provided by TheVirtualBrain⁵⁹, which summarizes the brain connectivity
628 between 82 regions of interest (Regional Map parcellation of Kötter and Wanke⁶⁰) and

629 includes inter-hemispheric connections. Briefly, the structural connectome was obtained by
630 optimizing tractography-derived structural connectivity matrices with respect to a reference
631 tracer-derived connectivity matrix and averaging across animals⁵⁹. For cross-species
632 consistency reasons, we considered undirected structural connectivity information. That is, in
633 the final structural connectome, two regions are connected if at least one unidirectional
634 connection exists between the two regions. Structural connections were weighted by the
635 Euclidean distance (in millimeters) between region pairs' centroids (Supplementary Fig. 1a).
636

637 *Individual functional information.* Resting-state fMRI data were pre-processed by others, as
638 previously described⁵⁹. Briefly, the processing pipeline included motion correction, high-pass
639 filtering, regression of white matter and cerebrospinal fluid signals, spatial normalization and
640 smoothing. Z-scored regional time series (Regional Map parcellation) including 600 time
641 points (10 min) were used to compute individual mutual information matrices (bin size = 0.5,
642 consistently with other species) (Supplementary Fig. 1c).
643

644 *Replication dataset.* Analyses were repeated on an independent dataset of 9 adult rhesus
645 macaque monkeys (*Macaca mulatta*) aged between 5 and 12 years scanned on a vertical
646 Bruker 4.7T primate dedicated scanner at Newcastle University⁶¹ ('q-NCS' dataset). Raw
647 data were publicly available through the Primate Data Exchange (PRIME-DE) initiative⁶² and
648 included the following MRI sequences: Structural MRI: Modified Driven Equilibrium Fourier
649 Transform (MDEFT) T1-weighted, TR = 2000 ms, TE = 3.75 ms, TI = 750 ms, voxel size =
650 0.6 x 0.6 x 0.62 mm³. Two runs of 10.8 min resting-state fMRI: TR = 2600 ms, TE = 17 ms,
651 voxel size = 1.2 mm isotropic. All animals were scanned awake. MRI data preprocessing
652 included: T1-weighted volumes denoising⁶³, skull-stripping (FSL⁶⁴), N4 bias field correction,
653 spatial normalization to the F99 template obtained from the SumDB database
654 (http://brainvis.wustl.edu/sumsdb/public_archive_index.html), and registration to fMRI native
655 space (ANTs⁶⁵); fMRI volumes were coregistered (FSL⁶⁶), corrected for nuisance signals
656 including 6 motion signals, average white matter and cerebrospinal fluid signals, and band-
657 pass filtered to the band 0.01-0.15 Hz. Z-scored regional time series (Regional Map
658 parcellation) of the two concatenated fMRI runs were used to compute individual mutual
659 information values (bin size = 0.5). The fMRI scans were concatenated to reach a number of
660 time points comparable with the other datasets (500 time points, 21.6 min).
661
662

663 **Mouse data**

664 We used open-source fMRI data of 10 male wild-type mice aged 6 months ('*m-AD3*'
665 dataset), available at <https://openneuro.org/datasets/ds001890>⁶⁷. All methods were carried

666 out in accordance with relevant guidelines and regulations and have been previously
667 described^{17,68}. Briefly, animals were anesthetized with 4% isoflurane before their scanning
668 session and maintained with 0.5% isoflurane and a 0.05 mg/kg/h medetomidine infusion⁶⁹.
669 The scanning was performed on a 11.75T Brucker BioSpin scanner and included: Structural
670 MRI: spin-echo turboRARE sequence, TR = 2750 ms, TE = 30 ms, FOV = 17 x 11 mm²,
671 matrix dimension = 200 x 100 voxels, slice thickness = 0.35 mm. One session of 10 min
672 resting-state functional MRI (fMRI): gradient-echo EPI sequence, TR = 1000 ms, TE = 15
673 ms, matrix dimension = 90 x 60 voxels.

674

675 *Group-level structural connectivity.* A mouse structural connectome between 78 cortical
676 regions covering the isocortex, cortical subplate, and hippocampal formation, as defined in
677 the Allen Brain Atlas, was derived from published viral tracing data⁷⁰. In more details, the
678 binary architecture of the structural connectome was assessed according to the following
679 steps: (i) we considered the right-hemisphere ipsilateral and contralateral connections
680 reported by Oh and colleagues⁷⁰; (ii) we symmetrized the right-hemisphere ipsilateral
681 connections (i.e., we considered a connection between ipsilateral regions i and j to be
682 present if at least one of the two tracts (i,j), (j,i) was detected); (iii) we duplicated the
683 symmetrized ipsilateral connections to the left hemisphere (in absence of more detailed
684 information, we therefore assume equal intra-hemispheric connectivity in the right and left
685 hemispheres); (iv) we transposed the contralateral connections of the right hemisphere to
686 the left hemisphere; (v) to minimize false positives due to minor tissue segmentation
687 artifacts, we excluded connections with connectivity strength $< 10^{-3.5}$, as suggested in⁷⁰,
688 where the connectivity strength was defined as the total volume of segmented pixels in the
689 target normalized by the injection site volume. The binary structural connectome was then
690 weighted by the Euclidean distance between region pairs' centroids obtained from the Allen
691 Brain Atlas (CCF v3, © 2004 Allen Institute for Brain Science. Allen Mouse Brain Atlas.
692 Available from: <http://www.brain-map.org/>) (Supplementary Figure 4).

693

694 *Individual functional information.* Resting-state fMRI data were pre-processed as previously
695 described⁶⁸. Briefly, the processing pipeline included motion correction, automatic brain
696 masking, spatial smoothing (FWHM = 0.45 mm), high-pass filtering (0.01 Hz cut-off), and
697 automated nuisance removal based on independent component analysis. Z-scored regional
698 time series (78-region Allen Brain Atlas parcellation) including 600 time points (10 min) were
699 used to compute individual mutual information matrices (bin size = 0.5) (Supplementary Fig.
700 1c).

701

702 *Replication datasets.* Analyses were repeated on two independent datasets. The first one
703 included 51 male wild-type mice scanned at 3 months ('*m-CSD1*' dataset)⁷¹. MRI
704 acquisitions were performed on a 9.4T Bruker BioSpin system on anesthetized animals
705 (3.5% isoflurane, maintained with 0.5% isoflurane and a 0.05 mg/kg/h medetomidine
706 infusion) and included a 6-min resting-state fMRI recording: gradient-echo EPI sequence, TR
707 = 1000 ms, TE = 9.2 ms, flip angle = 90°, field of view = 20 x 17.5 mm², matrix size = 90 x 70
708 voxels, slice thickness = 0.5 mm. fMRI volumes were preprocessed using the same pipeline
709 as the *m-AD3* dataset. The average time series of the 78 cortical regions (360 time points, 6
710 min) were z-scored and used to compute individual mutual information matrices (bin size =
711 0.5). Analyses were repeated considering sub-samples of the whole *m-CSD1* dataset
712 (Supplementary Fig. 12).

713 The second dataset included 10 C57Bl6/J adult male mice ('*m-GG*' dataset, < 6 months old)
714 subject to surgery for headposts placement, MRI habituation and awake fMRI acquisition, as
715 previously described¹⁷. MRI acquisitions were performed at the IIT laboratory in Rovereto
716 (Italy) on a Bruker Biospin 7T scanner and included a 32-min resting-state fMRI recording:
717 single-shot EPI sequence, TR = 1000 ms, TE = 15 ms, flip angle = 60°, voxels size = 0.23 x
718 0.23 x 0.6 mm³. fMRI preprocessing included exclusion of the first 2 min of recording, time
719 series despiking, motion correction, nuisance signals regression (average cerebrospinal fluid
720 and motion signals plus their temporal derivative and corresponding squared regressors),
721 data censoring (Framewise Displacement > 0.075 mm), band-pass filtering (0.01-0.1 Hz),
722 spatial smoothing (FWHM = 0.5 mm) and spatial normalization¹⁷. Average time series were
723 computed for 66 regions of interest, which represents a subset of the 78 Allen Brain Atlas
724 regions (data for bilateral regions CA1, CA2, CA3, dorsal and ventral endopiriform nucleus,
725 and frontal pole were not available). The first 600 time points (10 min) were used for the
726 computation of individual mutual information matrices (z-scored time series binning = 0.5).

727

728

729 **Assignment of cortical regions to resting state networks**

730 For the *human dataset*, each cortical region was assigned to one the seven resting state
731 networks (RSNs) defined by Yeo and colleagues and according to the Schaefer parcellation
732^{57,72}. For the *macaque dataset*, each cortical region was first associated with one or multiple
733 Brodmann areas according to the CoCoMac Regional Map of the macaque cortex^{60,73-75}.
734 Each Brodmann area was then assigned to one of the seven RSNs defined by Yeo and
735 colleagues⁷² using a majority voting procedure and published atlases in MNI space⁷⁶. Finally,
736 Regional Map regions of the macaque cortex were assigned to Yeo RSNs with a similar
737 majority voting procedure (Supplementary Fig. 3). For the *mouse dataset*, each cortical
738 region was assigned to one out of 6 RSN as identified by Zerbi and colleagues using

739 independent component analysis of resting-state fMRI data⁷⁷. The assignment was done
740 through a majority voting procedure (Supplementary Fig. 4). Note that the default mode
741 network (DMN) has been consistently identified in humans⁷⁸, macaques⁷⁹ and mice^{80,81},
742 suggesting a conservation of this network across mammalian species. In our mouse cortex
743 subdivision⁷⁷, the DMN includes bilateral hippocampal regions (CA1, CA2, CA3 hippocampal
744 fields, subiculum and dentate gyrus), and lateral (ectorhinal and temporal association areas)
745 and prefrontal (infralimbic, prelimbic and perirhinal areas) isocortices, while it excludes other
746 regions which have been reported by others, such as the retrosplenial cortex⁸². For all
747 species, RSNs were assigned to unimodal or transmodal systems according to established
748 cortical subdivisions³⁸.

749

750

751 **Mapping information transmission pathways in brain networks**

752 In this work we introduce a new approach to infer relay communication pathways from
753 multimodal neuroimaging data. The approach builds upon and extends an information
754 theoretical framework proposed in previous work³⁵, and aims at identifying polysynaptic
755 (multi-step) structural pathways selected for information transmission in macroscale brain
756 networks. Information theory is a branch of mathematics that studies the transmission of
757 information through communication systems³⁶ and has found several applications in
758 neuroscience^{83,84}. It allows model-independent analysis of noisy data, such as the fMRI
759 ones.

760

761 *Structural brain network and structural paths.* Let's consider a structural brain network as an
762 undirected graph $G \equiv \{V, W\}$ formed by a set of N nodes $V = \{v_1, v_2, \dots, v_N\}$ and a
763 connectivity matrix $W = [w_{i,j}]$, with $w_{i,j} > 0$ distance between directly connected region pairs
764 v_i, v_j and $w_{i,j} = \infty$ otherwise. In this work we assigned $w_{i,j}$ equal to the Euclidean distance
765 (in millimeters) between the centroids of regions v_i, v_j . This choice has two motivations.
766 First, the distance between region centroids can be easily computed across different
767 datasets, thus allowing to select homogeneous structural connectivity weights across
768 species. Second, this choice conceptually links information transmission in brain networks
769 with the sender-channel-receiver schematics proposed in electronic communication by
770 Shannon^{35,85}. A path between a source node v_i and a target node v_j is a sequence of
771 pairwise connected and non-repeating nodes $\Omega_{i,j} = \{v_i, v_a, v_b, \dots, v_j\}$. The shortest path $\Omega_{i,j}^{SP}$
772 between regions v_i, v_j is the path of minimal length (i.e., minimal Euclidean distance, in the
773 case of this work) connecting the two regions. The path length is computed as the sum of
774 edge weights along the path. In this work we identified the first $k = 5$ k -shortest paths

775 $\Omega_{i,j}^{k-SP}$ connecting each region pair v_i , v_j ⁸⁶. K -shortest path ensembles identify meaningful
776 trade-offs between efficiency and resiliency for putative communication processes in brain
777 networks²³. The choice of k was dictated by the fact that, for $k = 5$, all edges of the structural
778 brain network participate in at least one k -shortest path²³.

779

780 *Functional information along structural paths.* Each node v_i is associated with a neural
781 activity-related fMRI time series X^i that can be interpreted as the realization of a discrete
782 random variable with probability mass function $p_i(x^i)$. The amount of shared information
783 between two random variables can be quantified as their mutual information $I(X^i, X^j) =$
784 $\sum_{x^i \in X^i} \sum_{x^j \in X^j} p_{i,j}(x^i, x^j) \log_2(p_{i,j}(x^i, x^j) / p_i(x^i)p_j(x^j))$, with $p_{i,j}(x^i, x^j)$ joint probability
785 distribution between X^i , X^j . The sequence of pairwise mutual information values along a
786 structural path $\Omega_{i,j}$ with respect to the source node i is defined as
787 $\Phi_{i,j} = \{I(X^i, X^a), I(X^i, X^b), \dots, I(X^i, X^j)\}$. We estimated the fMRI time series probability mass
788 functions from the z-scored time series' histograms with appropriate binning. Different bin
789 sizes between 0.05 and 2.00 were explored and evaluated with respect to (i) corresponding
790 mutual information values for multivariate Gaussian processes $\mathcal{N}(0, I)$; (ii) individual
791 identifiability scores³⁹. We selected the smallest bin size for which (i) the mutual information
792 values obtained from real data (*h-HCP* dataset) were larger than expected for a multivariate
793 Gaussian process $\mathcal{N}(0, I)$, and (ii) the individual identifiability score reached a maximum
794 plateau (Supplementary Fig. 17).

795

796 *Data Processing Inequality (DPI).* The *DPI*, a fundamental principle of information theory,
797 states that the amount of information available at a target node j about a source node i
798 cannot be increased through operations performed along the transmission path.
799 Mathematically, the *DPI* states that if $X^i - X^a - X^j$ is a Markov chain, then $I(X^i, X^a) \geq$
800 $I(X^i, X^j)$, $I(X^a, X^j) \geq I(X^i, X^j)$, i.e., the mutual information does not increase along the
801 chain³⁶. Note that the double inequality condition derives from the fact that a Markov chain
802 has no directionality information, i.e., if $X^i - X^a - X^j$ is a Markov chain, then $X^j - X^a - X^i$ is
803 also a Markov chain. The *DPI* can be extended to Markov chains of any length.
804 Conceptually, the *DPI* embeds two assumptions about the information transmission process:
805 the first one is that (neural) messages transmitted through the structural infrastructure (brain
806 network) can keep at most the same amount of information present at the source region
807 (*information decay*). The second one is that (neural) messages do not contain memory of the
808 transmission process itself and communication happens in a Markovian fashion
809 (*memoryless transmission*).

810

811 *Identification of information transmission pathways in brain networks.* We used the DPI to
812 test (deviation from) Markovian behavior. Each k -shortest structural path was labeled a relay
813 communication pathway if the *DPIs* along the paths were satisfied. Note that here we use
814 the wording *relay communication* in Shannon's sense. That is, we aim to characterize the
815 presence of memoryless information transmission processes, with information decay along
816 the path measured through mutual information values.

817

818 *Parallel communication scores (PCSs).* We define the parallel communication score $PCS_{i,j}^n$
819 between a pair of brain regions v_i, v_j as the number of k -shortest paths connecting the two
820 regions which respect the *DPI*, with n indicating the subject. Note that, given the choice of
821 $k = 5$, PCS scores can assume integer values between 0 and 5, and that $PCS_{i,j}^n = PCS_{j,i}^n$. A
822 PCS score equal to 0 is interpreted as absence of (Markovian) information transmission
823 between two regions; a PCS score equal to 1 is interpreted as presence of *selective*
824 *information processing* through a single information transmission pathway; PCS scores
825 larger than 1 are interpreted as presence of progressively increasing *parallel information*
826 *processing* with information transmission through multiple parallel pathways (Fig. 1). PCS
827 scores were computed for every pair of brain regions and every subject, for all investigated
828 datasets. Parallel communication information was summarized at the group-level by
829 computing a group-average parallel communication matrix PCS^{avg} for each dataset, and its
830 corresponding histogram (Fig. 2). In addition, node-average, RSN-average, and system-
831 average PCS scores were computed by averaging the parallel communication scores over
832 the corresponding region pairs (Fig. 3).

833

834 *Null model.* A null model was defined by randomly shuffling the raw fMRI time series across
835 brain regions while preserving the original structural connectivity information (Supplementary
836 Fig. 5). Note that with this randomization we are preserving the statistical properties of both
837 the original functional and structural data, since we are merely rearranging spatially fMRI
838 time series across the brain network. Parallel communication matrices were then computed
839 for each randomization following the above-described procedure. For each dataset, the
840 randomization was repeated 3000 times *per subject*, which allowed to build 3000 group-
841 average parallel communication matrices (Supplementary Fig. 6). Each region pair was
842 therefore associated with a null distribution of group-average PCS values including 3000
843 elements. To assess whether group-average PCS scores observed in real data could be
844 trivially explained by the structural connectivity architecture and the multivariate statistical
845 properties of fMRI data, which are both preserved in the null model, we adopted two

846 strategies. The first one consisted of *PCS* scores screening by z-scoring individual group-
847 average scores $PCS_{i,j}^{avg}$ with respect to the corresponding null distribution; z-scored where
848 thresholded at 1.96 (Supplementary Fig. 7). The second strategy consisted of analyzing the
849 *PCS* scores with false discovery rate (FDR)-corrected *p*-values $< .05$ ($FDR < .05$), with *p*-
850 values computed as the number of entries in the null distribution exceeding the real *PCS*
851 score (Supplementary Fig. 8).

852

853 **Subject identifiability analysis**

854 For each investigated dataset, fMRI time series were split into two parts of equal duration
855 and considered as test and retest data. From these, test and retest parallel communication
856 matrices were computed for each subject. An identifiability matrix summarizing test-retest
857 subjects' similarities was then obtained for each dataset. Diagonal entries of the identifiability
858 matrix represent subjects' *self*-similarity between test and retest data ('*/self*'); outside-
859 diagonal entries represent inter-subject similarity ('*/others*') (Fig. 4)³⁹. The similarity between
860 test and retest parallel communication matrices was assessed with the Jaccard index,
861 defined as the size of the intersection divided by the size of the union of two label sets. For
862 example, a Jaccard index equal to 0.3 indicates that 30% of brain region pairs have exactly
863 the same *PCS* score, which can take integer values between 0 and 5. The level of individual
864 identifiability was quantified with the success rate (SR) defined as the percentage of test
865 subjects whose identity was correctly predicted out of the total set of retest subjects⁴⁰. The
866 subject identifiability analysis was repeated when considering only region pairs with, on
867 average, low (high) *PCS* scores for the computation of test-retest similarities. Different
868 thresholds defining low (high) *PCS* scores were explored (Supplementary Table 2).

869

870

871 **Data and material availability**

872 The data that support the findings of this study are available on the Human Connectome
873 Project platform (db.humanconnectome.org) for human data; OpenNeuro⁵⁹, Zenodo⁵⁹, and
874 INDI PRIMatE Data Exchange (fcon_1000.projects.nitrc.org/indi/indiPRIME.html) platforms
875 for macaque data; OpenNeuro⁶⁷, XNAT⁷¹, and Mendeley¹⁷ platforms for mouse data. The
876 derived brain matrices necessary to reproduce the main analyses of this study are available
877 on Zenodo. The code (in MATLAB) and sample brain matrices are available as maintained
878 version on A.Gr.'s GitHub repository (github.com/agriffa/BrainComm_mammalian_evolution).

879 **References**

880

- 881 1. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex
882 brain networks. *Nat Rev Neurosci* **19**, 17–33 (2018).
- 883 2. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of
884 structural and functional systems. *Nature Reviews Neuroscience* **10**, 186–198 (2009).
- 885 3. Bassett, D. S. & Sporns, O. Network neuroscience. *Nat Neurosci* **20**, 353–364 (2017).
- 886 4. Medaglia, J. D., Lynall, M.-E. & Bassett, D. S. Cognitive Network Neuroscience. *Journal*
887 *of Cognitive Neuroscience* **27**, 1471–1491 (2015).
- 888 5. Kaiser, M. & Hilgetag, C. C. Nonoptimal Component Placement, but Short Processing
889 Paths, due to Long-Distance Projections in Neural Systems. *PLOS Computational Biology*
890 **2**, e95 (2006).
- 891 6. Bullmore, E. & Sporns, O. The economy of brain network organization. *Nature Reviews*
892 *Neuroscience* **13**, 336–349 (2012).
- 893 7. Chen, Y., Wang, S., Hilgetag, C. C. & Zhou, C. Features of spatial and functional
894 segregation and integration of the primate connectome revealed by trade-off between
895 wiring cost and efficiency. *PLOS Computational Biology* **13**, e1005776 (2017).
- 896 8. Lynn, C. W. & Bassett, D. S. The physics of brain network structure, function and control.
897 *Nat Rev Phys* **1**, 318–332 (2019).
- 898 9. Mišić, B. *et al.* Network-Level Structure-Function Relationships in Human Neocortex.
899 *Cereb Cortex* **26**, 3285–3296 (2016).
- 900 10. Goñi, J. *et al.* Resting-brain functional connectivity predicted by analytic measures of
901 network communication. *PNAS* **111**, 833–838 (2014).
- 902 11. Hagmann, P. *et al.* Mapping the Structural Core of Human Cerebral Cortex. *PLOS*
903 *Biology* **6**, e159 (2008).
- 904 12. Singer, W. Neuronal Synchrony: A Versatile Code for the Definition of Relations?
905 *Neuron* **24**, 49–65 (1999).
- 906 13. Honey, C. J. *et al.* Predicting human resting-state functional connectivity from

907 structural connectivity. *PNAS* **106**, 2035–2040 (2009).

908 14. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking Structure and
909 Function in Macroscale Brain Networks. *Trends in Cognitive Sciences* **24**, 302–315
910 (2020).

911 15. Battiston, F. et al. The physics of higher-order interactions in complex systems. *Nat.*
912 *Phys.* **17**, 1093–1098 (2021).

913 16. Griffa, A., Amico, E., Liégeois, R., Ville, D. V. D. & Preti, M. G. Brain structure-
914 function coupling provides signatures for task decoding and individual fingerprinting.
915 *NeuroImage* 118970 (2022) doi:10.1016/j.neuroimage.2022.118970.

916 17. Gutierrez-Barragan, D. et al. Unique spatiotemporal fMRI dynamics in the awake
917 mouse brain. *Current Biology* **32**, 631-644.e6 (2022).

918 18. Preti, M. G. & Van De Ville, D. Decoupling of brain function from structure reveals
919 regional behavioral specialization in humans. *Nature Communications* **10**, 4747 (2019).

920 19. Baum, G. L. et al. Development of structure–function coupling in human brain
921 networks during youth. *PNAS* **117**, 771–778 (2020).

922 20. Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in
923 the human brain. *Trends in Cognitive Sciences* **17**, 648–665 (2013).

924 21. van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative Connectomics.
925 *Trends in Cognitive Sciences* **20**, 345–361 (2016).

926 22. Assaf, Y., Bouznach, A., Zomet, O., Marom, A. & Yovel, Y. Conservation of brain
927 connectivity and wiring across the mammalian class. *Nat Neurosci* **23**, 805–808 (2020).

928 23. Avena-Koenigsberger, A. et al. Path ensembles and a tradeoff between
929 communication efficiency and resilience in the human connectome. *Brain Struct Funct*
930 **222**, 603–618 (2017).

931 24. Zhou, D. et al. Efficient coding in the economics of human brain connectomics.
932 *Network Neuroscience* 1–40 (2022) doi:10.1162/netn_a_00223.

933 25. Bettinardi, R. G. et al. How structure sculpts function: Unveiling the contribution of
934 anatomical connectivity to the brain’s spontaneous correlation structure. *Chaos* **27**,

935 047409 (2017).

936 26. Goñi, J. *et al.* Exploring the Morphospace of Communication Efficiency in Complex
937 Networks. *PLOS ONE* **8**, e58070 (2013).

938 27. Hao, Y. & Graham, D. Creative destruction: Sparse activity emerges on the mammal
939 connectome under a simulated communication strategy with collisions and
940 redundancy. *Network Neuroscience* **4**, 1055–1071 (2020).

941 28. Mišić, B. *et al.* Cooperative and Competitive Spreading Dynamics on the Human
942 Connectome. *Neuron* **86**, 1518–1529 (2015).

943 29. Estrada, E. & Hatano, N. Communicability in complex networks. *Phys. Rev. E* **77**,
944 036111 (2008).

945 30. Friedrich, P. *et al.* Imaging evolution of the primate brain: the next frontier?
946 *NeuroImage* **228**, 117685 (2021).

947 31. Ardesch, D. J. *et al.* Evolutionary expansion of connectivity between multimodal
948 association areas in the human brain compared with chimpanzees. *PNAS* **116**, 7101–
949 7106 (2019).

950 32. Xu, T. *et al.* Cross-species functional alignment reveals evolutionary hierarchy within
951 the connectome. *NeuroImage* **223**, 117346 (2020).

952 33. Krubitzer, L. The Magnificent Compromise: Cortical Field Evolution in Mammals.
953 *Neuron* **56**, 201–208 (2007).

954 34. Mesulam, M. M. From sensation to cognition. *Brain* **121**, 1013–1052 (1998).

955 35. Amico, E. *et al.* Toward an information theoretical description of communication in
956 brain networks. *Network Neuroscience* 1–20 (2021) doi:10.1162/netn_a_00185.

957 36. Cover, T. M. & Thomas, J. A. ELEMENTS OF INFORMATION THEORY. 774 (2006).

958 37. Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order
959 models of complex systems. *Nature Physics* **15**, 313–320 (2019).

960 38. Margulies, D. S. *et al.* Situating the default-mode network along a principal gradient
961 of macroscale cortical organization. *PNAS* **113**, 12574–12579 (2016).

962 39. Amico, E. & Goñi, J. The quest for identifiability in human functional connectomes.

963 *Sci Rep* **8**, 1–14 (2018).

964 40. Finn, E. S. *et al.* Functional connectome fingerprinting: identifying individuals using
965 patterns of brain connectivity. *Nature Neuroscience* **18**, 1664–1671 (2015).

966 41. Messé, A. Parcellation influence on the connectivity-based structure–function
967 relationship in the human brain. *Human Brain Mapping* **41**, 1167–1180 (2020).

968 42. Birn, R. M. *et al.* The effect of scan length on the reliability of resting-state fMRI
969 connectivity estimates. *NeuroImage* **83**, 550–558 (2013).

970 43. Paquola, C. *et al.* Microstructural and functional gradients are increasingly
971 dissociated in transmodal cortices. *PLOS Biology* **17**, e3000284 (2019).

972 44. Bruner, E., Preuss, T. M., Chen, X. & Rilling, J. K. Evidence for expansion of the
973 precuneus in human evolution. *Brain Struct Funct* **222**, 1053–1060 (2017).

974 45. Xu, T. *et al.* Interindividual Variability of Functional Connectivity in Awake and
975 Anesthetized Rhesus Macaque Monkeys. *Biological Psychiatry: Cognitive Neuroscience
976 and Neuroimaging* **4**, 543–553 (2019).

977 46. Mueller, S. *et al.* Individual Variability in Functional Connectivity Architecture of the
978 Human Brain. *Neuron* **77**, 586–595 (2013).

979 47. Barttfeld, P. *et al.* Signature of consciousness in the dynamics of resting-state brain
980 activity. *Proceedings of the National Academy of Sciences* **112**, 887–892 (2015).

981 48. Luppi, A. I. *et al.* Consciousness-specific dynamic interactions of brain integration
982 and functional diversity. *Nature Communications* **10**, (2019).

983 49. Vézquez-Rodríguez, B., Liu, Z.-Q., Hagmann, P. & Misic, B. Signal propagation via
984 cortical hierarchies. *Network Neuroscience* **4**, 1072–1090 (2020).

985 50. Battiston, F. *et al.* Networks beyond pairwise interactions: Structure and dynamics.
986 *Physics Reports* **874**, 1–92 (2020).

987 51. Honey, C. J. *et al.* Slow Cortical Dynamics and the Accumulation of Information over
988 Long Timescales. *Neuron* **76**, 423–434 (2012).

989 52. Murray, J. D. *et al.* A hierarchy of intrinsic timescales across primate cortex. *Nat
990 Neurosci* **17**, 1661–1663 (2014).

991 53. Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of Oscillatory
992 Neuronal Synchronization by Selective Visual Attention. *Science* **291**, 1560–1563 (2001).

993 54. Reimann, M. W. *et al.* Cliques of Neurons Bound into Cavities Provide a Missing Link
994 between Structure and Function. *Front. Comput. Neurosci.* **11**, (2017).

995 55. Van Essen, D. C. *et al.* The WU-Minn Human Connectome Project: An overview.
996 *NeuroImage* **80**, 62–79 (2013).

997 56. Glasser, M. F. *et al.* The minimal preprocessing pipelines for the Human
998 Connectome Project. *NeuroImage* **80**, 105–124 (2013).

999 57. Schaefer, A. *et al.* Local-Global Parcellation of the Human Cerebral Cortex from
1000 Intrinsic Functional Connectivity MRI. *Cereb Cortex* **28**, 3095–3114 (2018).

1001 58. Tournier, J.-D. *et al.* MRtrix3: A fast, flexible and open software framework for
1002 medical image processing and visualisation. *NeuroImage* **202**, 116137 (2019).

1003 59. Shen, K. *et al.* A macaque connectome for large-scale network simulations in
1004 TheVirtualBrain. *Sci Data* **6**, 123 (2019).

1005 60. Kötter, R. & Wanke, E. Mapping brains without coordinates. *Philosophical
1006 Transactions of the Royal Society B: Biological Sciences* **360**, 751–766 (2005).

1007 61. Baumann, S. *et al.* Orthogonal representation of sound dimensions in the primate
1008 midbrain. *Nat Neurosci* **14**, 423–425 (2011).

1009 62. Milham, M. P. *et al.* An Open Resource for Non-human Primate Imaging. *Neuron*
1010 **100**, 61-74.e2 (2018).

1011 63. Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L. & Robles, M. Adaptive
1012 non-local means denoising of MR images with spatially varying noise levels. *Journal of
1013 Magnetic Resonance Imaging* **31**, 192–203 (2010).

1014 64. Smith, S. M. Fast robust automated brain extraction. *Human Brain Mapping* **17**, 143–
1015 155 (2002).

1016 65. Avants, B. B. *et al.* A reproducible evaluation of ANTs similarity metric performance
1017 in brain image registration. *NeuroImage* **54**, 2033–2044 (2011).

1018 66. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved Optimization for the

1019 Robust and Accurate Linear Registration and Motion Correction of Brain Images.

1020 *NeuroImage* **17**, 825–841 (2002).

1021 67. Mandino, F., Yeow Ling Yun, Gigg, J., Olivo, M. C. & Joanes Grandjean.

1022 Mouse_rest_3xTG. (2019) doi:10.18112/OPENNEURO.DS001890.V1.0.1.

1023 68. Mandino, F., Yeow, L. Y., Gigg, J., Olivo, M. & Grandjean, J. Preserved functional

1024 networks in a hydrocephalic mouse. *Matters* **5**, e201905000001 (2019).

1025 69. Grandjean, J., Schroeter, A., Batata, I. & Rudin, M. Optimization of anesthesia

1026 protocol for resting-state fMRI in mice based on differential effects of anesthetics on

1027 functional connectivity patterns. *NeuroImage* **102**, 838–847 (2014).

1028 70. Oh, S. W. *et al.* A mesoscale connectome of the mouse brain. *Nature* **508**, 207–214

1029 (2014).

1030 71. Grandjean, J. *et al.* Chronic psychosocial stress in mice leads to changes in brain

1031 functional connectivity and metabolite levels comparable to human depression.

1032 *NeuroImage* **142**, 544–552 (2016).

1033 72. Yeo, B. T. *et al.* The organization of the human cerebral cortex estimated by intrinsic

1034 functional connectivity. *J Neurophysiol* **106**, 1125–1165 (2011).

1035 73. Kötter, R. *et al.* Advanced database methodology for the Collation of Connectivity

1036 data on the Macaque brain (CoCoMac). *Philosophical Transactions of the Royal Society*

1037 *of London. Series B: Biological Sciences* **356**, 1159–1186 (2001).

1038 74. Kötter, R. Online retrieval, processing, and visualization of primate connectivity data

1039 from the CoCoMac Database. *Neuroinform* **2**, 127–144 (2004).

1040 75. Stephan, K. E., Zilles, K. & Kötter, R. Coordinate-independent mapping of structural

1041 and functional data by objective relational transformation (ORT). *Philosophical*

1042 *Transactions of the Royal Society of London. Series B: Biological Sciences* **355**, 37–54

1043 (2000).

1044 76. Pijnenburg, R. *et al.* Myelo- and cytoarchitectonic microstructural and functional

1045 human cortical atlases reconstructed in common MRI space. *NeuroImage* **239**, 118274

1046 (2021).

1047 77. Zerbi, V., Grandjean, J., Rudin, M. & Wenderoth, N. Mapping the mouse brain with
1048 rs-fMRI: An optimized pipeline for functional network identification. *NeuroImage* **123**, 11–
1049 21 (2015).

1050 78. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the
1051 resting brain: A network analysis of the default mode hypothesis. *PNAS* **100**, 253–258
1052 (2003).

1053 79. Vincent, J. L. *et al.* Intrinsic functional architecture in the anaesthetized monkey
1054 brain. *Nature* **447**, 83–86 (2007).

1055 80. Gozzi, A. & Schwarz, A. J. Large-scale functional connectivity networks in the rodent
1056 brain. *NeuroImage* **127**, 496–509 (2016).

1057 81. Grandjean, J. *et al.* Common functional networks in the mouse brain revealed by
1058 multi-centre resting-state fMRI analysis. *NeuroImage* **205**, 116278 (2020).

1059 82. Whitesell, J. D. *et al.* Regional, Layer, and Cell-Type-Specific Connectivity of the
1060 Mouse Default Mode Network. *Neuron* **109**, 545–559.e8 (2021).

1061 83. Timme, N. M. & Lapish, C. A Tutorial for Information Theory in Neuroscience. *eNeuro*
1062 **5**, (2018).

1063 84. Dimitrov, A. G., Lazar, A. A. & Victor, J. D. Information theory in neuroscience. *J*
1064 *Comput Neurosci* **30**, 1–5 (2011).

1065 85. Shannon, C. E. A Mathematical Theory of Communication. 53.

1066 86. Yen, J. Y. Finding the K Shortest Loopless Paths in a Network. *Management Science*
1067 **17**, 712–716 (1971).

1068