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Abstract 36 

 37 

Brain communication, defined as information transmission through white-matter connections, 38 

is at the foundation of the brain's computational capacities that virtually subtend all aspects 39 

of behavior: from sensory perception shared across mammalian species, to complex 40 

cognitive functions in humans. How did communication strategies in macroscale brain 41 

networks adapted across evolution to accomplish increasingly complex functions? By 42 

applying a novel approach to measure information transmission in mouse, macaque and 43 

human brains, we found an evolutionary gradient from selective information processing, 44 

where brain regions share information through single polysynaptic pathways, to parallel 45 

information processing, where regions communicate through multiple parallel pathways. In 46 

humans, parallel processing acts as a major connector between unimodal and transmodal 47 

systems. Communication strategies are unique to individuals across different mammalian 48 

species, pointing at the individual-level specificity of information routing architecture. Our 49 

work provides compelling evidence that different communication strategies are tied to the 50 

evolutionary complexity of mammalian brain networks.  51 
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Introduction 52 

 53 

Understanding how brain function can be supported by patterns of neural signaling through 54 

its structural backbone is one of the enduring challenges of network and cognitive 55 

neuroscience1. The brain is effectively a complex system, a network of neural units 56 

interacting at multiple spatial and temporal scales through the white-matter wiring2,3. 57 

Information transmission through structural connections, which can be defined as brain 58 

communication1, give rise to macroscale patterns of synchronous activity–or functional 59 

connectivity–between remote areas of the brain. Communication processes are at the 60 

foundation of the brain's computational capacities that virtually subtend all aspects of 61 

behavior, from sensory perception and motor functions shared across mammalian species, 62 

to complex human functions including higher-level cognition4. From an evolutionary 63 

perspective, high communication efficiency at minimal structural wiring cost has long been 64 

recognized as a fundamental attribute constraining the evolution of neural systems5–7. Yet, 65 

quantitative and comparative assessments of macroscale communication processes in brain 66 

networks of increasing evolutionary complexity are lacking1,8. 67 

 68 

Systems-level neuroscience has made different attempts to map brain communication as 69 

interrelated patterns of macroscale structural and functional brain connectivity, highlighting 70 

strikingly complex structure-function interdependencies9. Structurally connected region pairs 71 

tend to have stronger functional connectivity than disconnected pairs10,11, suggesting the 72 

presence of monosynaptic interactions12. Nonetheless, direct structural connections alone 73 

are not able to explain most of the dynamic functional repertoire observed in a functioning 74 

brain13. Beyond monosynaptic interactions, functional connectivity between remote brain 75 

areas is likely to emerge from more complex, higher-order communication mechanisms that 76 

involve larger groups of neural elements and their structural interconnections, by 77 

polysynaptic (multi-step) routing of neural information1,14,15. Higher-order communication in 78 

neural systems is important from both neurocognitive and evolutionary perspectives. 79 

Functional connectivity patterns extending beyond pairwise-connected regions (i.e., not 80 

constrained by the direct structural connections underneath) are highly specific to 81 

individuals, reflect behavioral traits16, and have been identified across different mammals17. 82 

Moreover, functional patterns untethered from structure are dominant in cortical areas that 83 

underwent larger evolutionary expansion across primates, suggesting a relation between 84 

local information transmission mechanisms and evolution18–20.  85 

 86 

Nonetheless, the information transmission mechanisms implemented in mammalian brain 87 

networks are, to date, largely unknown. A first hypothesis has been that shortest structural 88 
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paths are favored for neural communication as they allow more direct (faster, metabolically 89 

less expensive) information transmission. In support of this hypothesis, brain networks of 90 

several mammalian and simpler species have short  structural path length21,22 at the price of 91 

a relatively high wiring cost5. This suggests that shortest paths contribute to efficient 92 

communication in brain networks and have been selected throughout evolution despite their 93 

high wiring cost. However, relying on path length as the sole measure of information routing 94 

may be an oversimplification14. Shortest-path communication explains a limited portion of 95 

functional connectivity10 and excludes a large fraction of brain network connections and 96 

near-optimal alternative pathways from the communication process23. Recent studies have 97 

started to account for more complex mechanisms of information routing, such as parallel 98 

communication (i.e., relay of information through multiple, parallel communication 99 

pathways)23–26 or convergent routing (i.e., neural signals’ interaction through convergent 100 

pathways)27,28. Indeed, in many real-world systems, information transmission unfolds through 101 

numerous alternative pathways29. Nevertheless, we do not know what is the relative 102 

contribution of single-pathway versus parallel-pathway communication in mammalian neural 103 

systems. 104 

 105 

Comparative neuroimaging provides instruments to understand the emergence of function 106 

across evolution21,30. Evidence of similarities between neural systems in different species are 107 

assumed to reflect common organizational principles and functions that may be 108 

evolutionarily preserved. In contrast, regions showing the greatest changes between 109 

humans and other species highlight neural changes that may account for features of 110 

cognition unique to humans. It has been shown that the overall topology of the structural and 111 

functional brain networks is preserved across evolution21,22 despite large variations in brain 112 

size and cortical expansion20. However, differences in local connectivity patterns and 113 

functional dynamics exist31–33. Recent reports suggest that mammalian neural processing is 114 

organized along multiple hierarchies from unimodal to transmodal regions, describing how 115 

information from distinct neural populations are integrated and segregated across the 116 

cortex20,34. Yet, a comprehensive account of how evolution has shaped cortical organization 117 

requires a way to measure how brain communication mechanisms change in vivo across 118 

species, while also taking into account the underlying structural architecture. Are macroscale 119 

brain communication mechanisms preserved across mammalian species? Or contrarily, are 120 

there distinct brain communication strategies relating to mammals’ evolution? , In particular, 121 

was there a shift from selective (single-pathway) to parallel processing across evolution to 122 

support increasingly complex brain functions? These questions do not have trivial answers 123 

and demand for new ways of assessing brain communication across different species.  124 

 125 
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Here we apply a novel approach, rooted in information theory, to measure polysynaptic 126 

information transmission in macroscale brain networks. Taking advantage of structural and 127 

functional connectivity information extracted from multimodal brain data (i.e., functional MRI, 128 

diffusion MRI, tract tracing), we explore the intricate pathways of communication in the 129 

mouse, monkey and human connectomes. We employ information-theoretical 130 

principles24,35,36 to identify the structural pathways selected for neural communication by 131 

different neural systems, and measure the level of selective and parallel information 132 

processing across the different species. We report a strong evolutionary gradient in the brain 133 

communication dynamics of mammals, with predominant selective information routing in 134 

lower mammalian species such as mice and macaques, morphing into more complex 135 

communication patterns in human brains. Parallel communication strategies appear to have 136 

acted as a major connector of unimodal (sensory, attentional) and transmodal (fronto-137 

parietal, default mode) areas in the human brain, possibly contributing to the evolution of 138 

more complex cognitive functions in humans. Notably, we also found that brain 139 

communication strategies are highly specific to individuals across the different mammalian 140 

species. Our results link for the first time the complexity of macroscale brain communication 141 

dynamics inferred from in vivo data to an evolutionary gradient across mammalian lineages. 142 

These findings pave the way to a deeper understanding of how brain communication and its 143 

relationship to function have evolved across species.  144 
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Results 145 

 146 

We propose a new framework to identify communication pathways in brain networks and 147 

investigate their evolution in three mammalian species of increasing phylogenetic 148 

complexity: mice, monkeys, and humans (Fig. 1). These species represent distinct 149 

mammalian lineages and include animal models (mice, monkeys) often used in translational 150 

research. We aimed to formally test two general assumptions on brain communication 151 

dynamics. First, due to the noisy nature of neural signaling, neural messages transmitted 152 

through the structural brain network can keep at most the same amount of information 153 

present at the source region24,35. This holds true for many communication systems where the 154 

information content tends to decay as one moves away from the information source25. 155 

Second, in an information transmission process, messages are typically relayed through a 156 

set of statistically independent steps44; i.e., neural messages do not contain memory of the 157 

transmission process itself and communication happens in a Markovian fashion37. These two 158 

assumptions –information decay and memoryless transmission– are formally summarized by 159 

a fundamental principle of information theory, the data processing inequality (DPI)36, which 160 

we here apply to cross-species structural data and fMRI recordings (Online Methods). Given 161 

a structural network representing the white matter wiring of the brain, we first identify sets of 162 

short polysynaptic paths connecting each pair of brain regions (Fig. 1a). Next, we 163 

quantitatively assess which and how many of those structural paths are effectively selected 164 

for neural communication. To this aim, we quantify fMRI-derived mutual information 165 

measures along the paths (Fig. 1b) to assess the DPI on those paths (Fig. 1c). From here, a 166 

parallel communication score can be computed for every pair of brain regions, by counting 167 

the number of paths that respect the DPI (Fig. 1d). Parallel communication scores portray a 168 

spectrum of communication strategies from selective information processing, where brain 169 

regions selectively exchange information through a single pathway, to parallel information 170 

processing, where regions communicate through multiple, parallel pathways (Fig. 1e). We 171 

assessed parallel communication scores at the individual and group levels, and summarized 172 

them for distinct brain systems and single brain regions in comparison to appropriate null 173 

models. Finally, we compared the distribution of selective and parallel information 174 

processing across the three different mammalian species. 175 

Data for this study consisted of open-source whole-brain structural connectivity matrices and 176 

individual resting-state functional MRI recordings of 100 healthy human subjects, 9 macaque 177 

monkeys, and 10 wild-type mice, all in their young adulthood (Online Methods, 178 

Supplementary Table 1; see below for replication datasets). Group-representative structural 179 

connectivity matrices with comparable number of brain regions were derived from diffusion 180 

MRI and tract tracing data, and weighted by the Euclidean distance between connected 181 
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regions (Supplementary Figure 1). Individual-level mutual information matrices were 182 

computed from fMRI recordings of comparable duration and temporal resolution across 183 

species.     184 

  185 

 186 

Figure 1 Identifying communication pathways in macroscale brain networks. (a) A 187 
weighted and symmetric structural connectivity matrix summarizes the white matter wiring of 188 
the brain for each species. For every pair of brain regions (i, j), the 5 shortest structural paths 189 
(light blue) connecting the two regions are identified using the k-Shortest path algorithm23. 190 
(b) For every subject (human participant or animal), the mutual information between region 191 
pairs is computed from z-scored regional timecourses obtained from fMRI recordings. (c) By 192 
analyzing the mutual information values along each structural path, the data processing 193 
inequality (DPI) is used to assess whether the specific paths represent valid communication 194 
channels between regions i and j. Left panel: two brain regions i, j are connected by a 195 
structural path crossing regions x1, x2; green lines represent direct structural connections 196 
(white matter fibers). Each region is associated with a neural activity-related timecourse; the 197 
amount of information shared by two regions is quantified by their mutual information I 198 
(darker and thicker arcs indicate stronger I). Right panel: a structural path (i, x1, x2, j) is 199 
labeled as communication (relay) channel if the pairwise mutual information values do not 200 
increase along the (undirected) path (first row, red shading); it is not a communication 201 
channel otherwise (second row, gray shading: Ij,i > Ix2,i). (d) A parallel communication score 202 
(PCS) is computed at the individual level (i.e., for every subject n) and for every pair of brain 203 
regions i, j by counting the number of structural paths that serve as relay channels between 204 
the two regions. (e) Parallel communication scores are investigated across mammalian 205 
species, highlighting a spectrum of communication strategies from selective information 206 
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processing (light yellow; low PCS), to parallel information processing (dark brown; high 207 
PCS).   208 
 209 

 210 

Parallel communication in brain networks follows an evolutionary gradient across 211 

mammalian species 212 

 213 

Using our approach we found  that, in mammalian brains, polysynaptic structural paths are 214 

used to relay information in a ‘Markovian’-specific, sequential processing fashion. For all the 215 

three considered species, the whole-brain density of relay communication pathways (i.e., the 216 

percentage of structural paths respecting the DPI) was higher than in a strict null model 217 

preserving the structural connectivity architecture and the multivariate statistics of fMRI 218 

timecourses (Online Methods; p < 10-5 for all species). This held true when considering 219 

either the first shortest path connecting region pairs (mean±standard deviation across 220 

individuals: humans = 39.5±3.8%; macaques = 37.1±6.0%; mice = 37.1±2.3%), or longer 221 

paths (humans = 33.0±5.6%; macaques = 29.5±5.7%; mice = 28.2±5.9%), showing that 222 

relay communication is not limited to the shortest path only (Fig. 2a). Specifically, the 223 

communication density level of the shortest and second shortest paths was comparable for 224 

all the three species, but decayed right after. Next, we assessed the amount of parallel 225 

communication between all brain region pairs. We found that, on average, the parallel 226 

communication score (PCS) progressively increases from mice and macaques to humans 227 

(median [5-, 95-percentile] across region pairs: mice = 1.30 [0.20, 2.50]; macaques = 1.33 228 

[0.11, 2.56]; humans = 1.52 [0.11, 3.02];). This is particularly evident when considering the 229 

long-tailed distribution of human brain network communication as compared to the animals 230 

(Fig. 2b). The three species’ PCS distributions were pairwise statistically different (two-231 

sample Kolmogorov-Smirnov tests human-macaque: D4950,3321 = 0.157, p < 10-42; human-232 

mouse: D4950,3003 = 0.171, p < 10-47; macaque-mouse: D3321,3003 = 0.058, p < 10-4). These 233 

results indicate that, as brain complexity increases across the phylogenetics tree, interareal 234 

communication is increasingly subserved by parallel processing (Fig. 2). 235 

 236 
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Figure 2 Parallel communication follows an evolutionary gradient across mammalian 238 
species. Left: drawing of human, macaque, and mouse brains; each row in the figure 239 
corresponds to one species. (a) Box plots representing the percentage of short paths in 240 
individual brain networks used for relayed communication (i.e., respecting the DPI). Each 241 
colored dot represents an individual; gray dots represent species-specific null distributions 242 
obtained from permutation of mutual information values (Online Methods); circles and 243 
vertical bars indicate mean ± one standard deviation across individuals or randomizations. 244 
Paths are grouped according to the 1st up to the 5th shortest path between region pairs, 245 
showing that relay communication is not limited to the 1st shortest path only. (b) Group-246 
average parallel communication score (PCS) matrices representing PCSs between every 247 
pair of brain regions, averaged across individuals. For each species, brain regions are 248 
organized according to meaningful functional circuits which are highlighted by black squares 249 
along the matrices’ diagonals (Online Methods). On the right, the histograms of the average 250 
PCS scores across region pairs highlight an evolutionary gradient from mice, with lower 251 
PCSs and mainly selective information processing, to humans, with higher PCSs and 252 
presence of parallel communication. Median [5-, 95-percentile] PCS values for each species 253 
are reported atop each histogram. 254 
 255 

 256 

Communication complexity is species-dependent and relates to the functional 257 

organization of mammalian brains 258 

 259 

When evaluating the spatial localization of the relay communication pathways, we found that 260 

it followed the characteristics of each species’ functional cortical architecture (Fig. 3). 261 

Specifically, in lower species the relay (mostly sequential) pathways mainly encompassed 262 
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unimodal/multimodal regions spanning the barrel, auditory and somatomotor cortices in 263 

mice, and the visual, somatomotor and dorsal attention cortices in macaques (Fig. 3a). In 264 

humans we found similar evidence of relay sequential processing in unimodal and 265 

multimodal areas, but also a high concentration of parallel communication pathways in 266 

transmodal regions including association cortices of the executive-control network and the 267 

precuneus of the default mode network (Fig. 3a; note the different color scales across 268 

species). 269 

Next, we investigated the communication patterns at the level of region pairs within and 270 

between different brain functional systems (Online Methods, Supplementary Fig. 3, 4). In 271 

mice, the relay pathways mainly connected brain nodes belonging to unimodal systems, 272 

including auditory, barrel, somatomotor and visual cortices (Fig. 3b). A similar distribution 273 

was observed for relay pathways in macaque networks, mainly connecting visual with 274 

somatomotor and dorsal attentional regions. However, a gradient transitioning towards 275 

transmodal regions started to appear between the default mode network and attentional 276 

systems (Fig. 3b). In humans, stronger (parallel) relay communication mainly connected 277 

somatosensory and attention regions with executive-control and default mode systems, 278 

forming cross-modal parallel streams between unimodal and transmodal regions (outside-279 

diagonal entries in Fig. 3b). Notably, these patterns were stable at the individual level. We 280 

report in Fig. 3c the amount of relay communication (average PCSs) within unimodal 281 

systems, within transmodal systems, and between unimodal and transmodal systems for 282 

each subject. Within species, the amount of relay communication varied between systems, 283 

with transmodal networks consistently presenting the lower amount of relay communication 284 

(Kruskal-Wallis tests, p < .05) (Fig. 3c). Across species, relay communication within 285 

unimodal systems decreased with increasing phylogenetic complexity (mice > macaques > 286 

humans, H(2) = 22.45, p = .000013), while cross-modal communication between unimodal 287 

and transmodal regions strongly increased (mice < macaques < humans, H(2) = 46.44, p < 288 

10-10), with humans presenting 30% larger PCSs than macaques (Supplementary Fig. 2). 289 

Relay communication within transmodal systems was relatively stable across species (H(2) 290 

= 6.24, p = .044). Taken together, these findings show that communication strategies are 291 

highly heterogeneous across the brain network and are partially preserved across evolution. 292 

However, phylogenetically older species demonstrate more developed relay communication 293 

for lower-order processing between unimodal and multimodal regions. Conversely, the 294 

human brain is characterized by stronger parallel communication that serves as the main 295 

neural processing stream between unimodal and transmodal areas34,38. 296 

 297 
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 298 

Figure 3 Relay communication strategies reflect the functional organization of 299 
mammalian brains. (a) Cortical distributions of relay communication, quantified as the 300 
average PCS of each brain region with the rest of the brain network (first row: human, 301 
fsaverage6 cortical surface; second row: macaque, F99 template; third row: mouse, ABI 302 
template). For each species, the light yellow-to-brown colormap is scaled between the 5th 303 
and 95th percentiles of the cortical values. On the right, the average nodal communication 304 
scores per brain system are represented in the bar plots. (b) Average PCSs within and 305 
between brain systems, for humans, macaques and mice. Brain systems have been 306 
organized into unimodal/multimodal regions (upper-left black square) and transmodal 307 
regions (lower-right black square). (c) Average PCSs between unimodal systems, between 308 
transmodal systems, and between unimodal and transmodal systems (cross-modal 309 
communication) for individual subjects. In the box plots, each dot represents an individual; 310 
vertical bars indicate mean ± standard deviation; notch bars indicate median and 1st-3rd 311 
quartiles; shaded areas indicate 1st-99th percentiles. Kruskal Wallis p-values for within-312 
species comparisons are reported. Control = executive-control; Dorsal attn. = dorsal 313 
attention; ventral attn. = ventral attention.    314 
 315 
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 316 

Relay communication patterns are unique to individuals 317 

 318 

Our results revealed a link between relay information processing strategies and phylogenetic 319 

complexity in the mammalian brain. Are the observed communication patterns specific to 320 

individual subjects within single species? We addressed this question by exploring the 321 

identifiability properties39,40 of the parallel communication matrices reported in Fig. 2, across 322 

the three different species. To this aim, the fMRI recording of each subject was split into two 323 

sections of equal duration. From these, test and retest parallel communication matrices were 324 

computed. Note that, at the individual level, the matrices’ entries (PCSs) can take integer 325 

values between 0 and 5, with 0 indicating no relay communication, 1 indicating perfectly 326 

selective information processing, and 5 strongly parallel information processing. We 327 

quantified the similarity between test and retest data as the percentage of brain regions’ 328 

pairs with exactly the same PCS (Jaccard similarity index). The individual identifiability 329 

through relay communication patterns was then quantified as the success rate (SR), i.e., the 330 

percentage of subjects whose identity was correctly predicted out of the total number of 331 

subjects for each species40. We found that parallel communication scores allow to identify 332 

individual mammals in all the three species, at a level that exceeds chance-level (humans: 333 

SR = 87.0%, null = 0.9±1.0%; macaques: SR = 66.7%, null = 11.2±10.3%; mice: SR = 334 

60.0%, null = 10.6±9.2%) (Fig. 4a,b). However, individual identifiability decreased from 335 

humans, to macaque, to mice. Intriguingly, the major contribution to individual identifiability 336 

was given by brain regions pairs that, on average, tends to communicate through multiple 337 

parallel rather than selective pathways. When splitting region pairs into two groups (‘low-338 

PCS’, ‘high-PCS’) according to group-average parallel communication scores, the success 339 

rate obtained from high-PCS values was higher than the one obtained from low-PCS values 340 

for both humans and macaques (PCS threshold = 1.3; humans: SRlow-PCS = 73.0%, SRhigh-PCS 341 

= 85.0%; macaques: SRlow-PCS = 44.4%, SRhigh-PCS = 55.5%; mice: SRlow-PCS = 40.0%, SRhigh-342 

PCS = 40.0%; see Supplementary Table 2 for alternative thresholds) (Fig. 4c,d). No 343 

differences were found in mice. Taken together, these data suggest that, within the inherent 344 

constraints of each species, individual subjects may implement distinct communication 345 

strategies to relay neural information through the brain network, particularly when 346 

considering higher-order communication mechanisms such as parallel communication. 347 

 348 
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 349 
Figure 4 Parallel communication is unique to individuals. Left: drawing of human, 350 
macaque, and mouse brains; each row in the figure corresponds to one species. (a) 351 
Identifiability matrices for the three species, reporting subjects’ similarities between test 352 
(rows) and retest (columns) parallel communication data. Test-retest similarity was 353 
quantified with the Jaccard similarity index. (b) Box plots representing self-similarity (Iself, 354 
diagonal entries of the identifiability matrix) and others-similarity (Iothers, out-diagonal 355 
entries of the identifiability matrix) values. (c) Self- and others-similarity values when 356 

considering only region pairs with low parallel communication scores (PCS ≤ 1.3 on 357 

average). (d) Self- and others-similarity values when considering only region pairs with high 358 

parallel communication scores (PCS > 1.3 on average). The success rate (SR) for subjects’ 359 
identification is reported for each pair of box plots. In the box plots, vertical bars indicate 360 
mean ± standard deviation; notch bars indicate median and 1st-3rd quartiles; shaded areas 361 
indicate 1st-99th percentiles.     362 
 363 

 364 

Robustness, sensitivity and replication analyses 365 

 366 

To ensure the validity of our results, we asked whether parallel communication scores and 367 

their cross-species gradients could be explained by the different structural connectome 368 

architectures and multivariate statistical properties of fMRI recordings alone. To this aim, we 369 

constructed null distributions of parallel communication scores for each species, by randomly 370 

shuffling the fMRI time series across brain regions and computing surrogate PCSs on the 371 

original structural connectome architecture (n = 3000) (Online Methods, Supplementary Fig. 372 

5). By z-scoring the real PCS scores with respect to the null distributions and applying 373 
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appropriate statistical thresholds, we show that our findings do not trivially derive from 374 

structural connectivity and fMRI statistical properties alone. In particular, the gradient of 375 

increasing parallel communication from mice to humans (Fig. 2, Supplementary Fig. 6, 7, 8) 376 

and the cortical topographies of parallel communication density across species (Fig. 3, 377 

Supplementary Fig. 9) remained significantly different from the null ones. 378 

Next, we investigated whether results were sensitive to some methodological choices, 379 

including number of brain regions (brain parcellation), fMRI time series length, and number 380 

of subjects. We found that our results are robust to these factors. In humans, PCS scores 381 

and their cortical topographies were comparable when subdividing the cortex into 100 or 200 382 

regions of interest (Supplementary Fig. 10, 11). However, we observed lower PCS scores 383 

when using a finer-grain parcellation with 400 regions (Supplementary Fig. 10). This is 384 

expected since brain connectivity and structure-function relationship have been shown to 385 

vary with the number of brain regions41. PCS scores tended to increase for longer fMRI time 386 

series, but this effect did not impact inter-species differences nor PCS cortical topographies 387 

(Supplementary Fig. 10, 11), and it could relate to the improved reliability of functional 388 

connectivity estimation for longer scan lengths42. Whenever possible, data from the three 389 

species were matched both in the number of brain regions and fMRI scan duration. The 390 

effect of the number of subjects on PCS scores was minor (Supplementary Fig. 12). 391 

Finally, we assessed the replicability of our findings by analyzing a total of six distinct 392 

datasets (Online Methods). We found that parallel communication scores (Fig. 2, 393 

Supplementary Fig. 12), their cortical topographies (Fig. 3, Supplementary Fig. 11, 13, 14), 394 

and the gradient of parallel communication between unimodal and transmodal regions 395 

across species (Fig. 3, Supplementary Fig. 15) were consistent when considering alternative 396 

datasets. In particular, overall cortical topographies were unaltered when considering awake 397 

or anesthetized macaques and mice (Supplementary Fig. 13, 14). However, awake animals 398 

tended to have larger parallel communication between transmodal regions and between 399 

transmodal and unimodal regions (cross-modal streams), but unchanged communication 400 

between unimodal regions as compared to anesthetized animals (Supplementary Fig. 16). 401 

These state-dependent differences were smaller than the ones observed between mice and 402 

macaques, and humans. The amount of parallel communication in awake macaques and 403 

mice was lower than the amount observed in humans, confirming the parallel communication 404 

gradient along the evolutionary axis.  405 
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Discussion 406 

 407 

How networked neural elements intercommunicate at the systems level, ultimately giving 408 

rise to brain function, stands as one of the most intriguing and unsolved questions of modern 409 

neurosciences. In vivo measurements of brain structure and activity are providing us with 410 

windows of opportunities for modeling communication in brain networks, across different 411 

animal species. We propose here to bring a piece to this puzzle, by investigating the link 412 

between communication strategies in large-scale brain networks, on the one side, and the 413 

evolutionary complexity of mammals’ brain functions, on the other. 414 

 415 

By introducing a novel approach to formally test and detect relay communication pathways in 416 

brain networks, we provide compelling evidence that this link exists, and that different 417 

communication strategies are tied to the evolutionary complexity of mammalian brain 418 

networks along two main organizational principles. The first principle is the increasing 419 

recruitment of parallel communication pathways, which evolves from predominantly selective 420 

information processing mechanisms in mice, to parallel information processing in humans. 421 

The second principle involves the development of cross-system communication through 422 

parallel pathways that connect together functionally specialized brain regions (i.e., 423 

somatomotor, visual) with transmodal ones (i.e., fronto-parietal, default mode). 424 

 425 

Specialized, unimodal brain systems are organized as serial, hierarchical streams where raw 426 

sensory information is relayed through stepwise progressive circuits to guide attention and 427 

direct actions20,34. Consistent with this hierarchical polarity, we found that unimodal regions 428 

are mainly characterized by selective information processing through single pathways, as 429 

quantified by low parallel communication scores. This held true for all the investigated 430 

mammalian species, suggesting that unimodal selective information processing is 431 

phylogenetically preserved. On the other hand, transmodal regions present a more complex 432 

and less understood organization. Back in 1998, Mesulam hypothesized that “the flow of 433 

information for intermediary [transmodal] processing displays patterns consistent with 434 

parallel and re-entrant processing”34. Our findings consolidate this view by showing–in a 435 

data-driven and hypothesis-independent way–that information transmission between 436 

unimodal and transmodal regions evolved from selective to parallel streams across species 437 

with increasing cognitive abilities. Parallel communication could therefore represent a more 438 

complex form of information transmission beyond hierarchical processing, which might 439 

support integration of perceptual modalities into more complex textures of cognition. 440 

 441 
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What evolutionary mechanisms may have promoted a higher involvement of parallel 442 

communication strategies in humans? According to the tethering hypothesis proposed by 443 

Buckner and Krienen20, the fast cortical expansion of transmodal regions in humans 444 

compared to non-human primates has led to the untethering of these regions from 445 

developmental anchor points. This process allowed human transmodal regions to develop 446 

unique cytoarchitectonic43 and connectional31 fingerprints, unbound from the hierarchical 447 

architecture of topographically distant unimodal systems38. The same process may have 448 

also favored the development of new information transmission strategies (parallel 449 

communication) to bridge hierarchical unimodal and distributed transmodal regions. Indeed, 450 

in humans we observed the largest parallel communication scores in regions that underwent 451 

the largest cortical expansion across evolution, including fronto-parietal association cortices 452 

and precuneus44. In addition, parallel information transmission may be functional to specific 453 

processing needs of unimodal-transmodal communication supporting cognition. Recent 454 

computational studies suggest that brain regions with largest allometric scaling privilege 455 

fidelity rather than compression of incoming signals from unimodal areas24. High-fidelity 456 

information transmission may be achieved through parallel streaming of redundant signals, 457 

expression of a more resilient communication process. 458 

 459 

Our results show that parallel communication also contributes to the individual specificity of 460 

communication strategies in brain networks. Selective and parallel information transmission 461 

patterns allowed identifying subjects in a group with significant accuracy, across different 462 

mammalian species. This indicates that the individual layout of relay communication 463 

pathways constitutes an important fingerprint of brain organization, and that this fingerprint is 464 

present even at lower phylogenetic levels (i.e., in mice). Brain regions that tend to 465 

communicate through parallel rather than selective streams, including transmodal regions, 466 

provided the largest contribution to subject identifiability. Consistently, fMRI activity of 467 

association and default mode cortices displays larger inter-individual variability in human and 468 

nonhuman primates compared to lower-order regions40,45,46. The role of transmodal cortices 469 

in individual identifiability is consistent with their protracted neurodevelopment and function 470 

in higher-order cognition, and it could partially explain the identifiability gradient observed 471 

from humans to macaques, to mice, with mice displaying lower parallel communication 472 

levels and lower identifiability. However, the identifiability gradients may also be explained by 473 

a larger homogeneity among laboratory animals compared to human samples in terms of 474 

genetic pedigree and environmental conditions.   475 

 476 

Importantly, the evolutionary gradient from selective to parallel information processing and 477 

the cortical topographies of parallel communication patterns were not explained by cross-478 
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species differences of structural connectivity architecture, statistical properties of fMRI data, 479 

or conscious (i.e., awake vs anesthetized) state. In keeping with previous studies22, we 480 

found that the overall distribution of short structural path lengths was similar between 481 

species, with comparable amounts of 2-step, 3-step, and 4-step pathways. Relative cross-482 

species differences of parallel communication were unchanged when contrasting data with 483 

respect to a strict, species-specific null model which preserves multivariate fMRI statistics. 484 

When considering fMRI data from awake and anesthetized animals, we found similar cortical 485 

distributions of parallel communication patterns, with unimodal regions dominated by 486 

selective information processing. This finding is in line with the observation that resting state 487 

networks are globally preserved in conscious and unconscious states17,47. However, we 488 

found that the overall amount of communication tends to increase during wakefulness, 489 

particularly when considering information transmission streams interconnecting transmodal 490 

regions with the rest of the brain network. A shift of the communication regime toward more 491 

abundant and (partially) parallelized polysynaptic information transmission may 492 

mechanistically support functional integration, inter-network cross-talk, and rich functional 493 

repertoires departing from the underlying monosynaptic connectivity constraints, which have 494 

been repeatedly observed in awake primates and mice compared to the anesthetized 495 

ones17,47,48. 496 

 497 

Several higher-order communication models have been proposed to explain integration of 498 

information between multiple brain network elements1. Nonetheless, the exact polysynaptic 499 

communication mechanisms underlying macroscale neural signaling remain unclear. 500 

Intriguingly, brain communication models mostly rely on the assumption of memoryless 501 

(Markovian) information transmission49. This hypothesis is pervasive in network 502 

neuroscience37 but has never been formally tested in the brain. Our work adds to the field in 503 

two important ways. First, it introduces a new approach to extract relay communication 504 

pathways from multimodal brain data, in a way that is agnostic to specific communication 505 

models and grounded in fundamental information-theoretic principles. Secondly, it formally 506 

probes the existence of memoryless information transmission in brain networks by 507 

introducing an empirical way to assess deviations from Markovity through the data 508 

processing inequality35. Our results show that Markovian communication is present in brain 509 

networks across different mammalian species, is not limited to the shortest structural path, 510 

but involves multiple and less optimal structural paths in a way that is species-dependent 511 

and consistent  with the evolutionary complexity of each investigated species. 512 

  513 

Polysynaptic memoryless information transmission is a simple form of higher-order 514 

communication. There is no reason to assume that macroscale neural communication is 515 
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limited to such a particular form. Brain network hierarchies may confer neural signals a 516 

memory of the regions previously visited along a path, thus modifying neural communication 517 

pathways in a context-dependent manner49. This process would result in non-Markovian 518 

communication regimes. The brain may also implement complex multi-object interactions not 519 

attributable to information transmission alone, such as synergistic or modulatory behaviors 520 

between multiple brain regions37,50. Biologically, these communication strategies may shape 521 

important features of the mammalian brain, such as cortical temporal hierarchies51,52 or 522 

receptive time windows for attentional processes53. This work only focuses on Markovian 523 

information transmission and does not inform us about other complementary information 524 

processing strategies. As such, absence of relay communication (i.e., violation of the data 525 

processing inequality) may indicate absence of any communication between those particular 526 

brain regions, or communication through more complex information encoding mechanisms. 527 

Notwithstanding the evidence that selective and parallel Markovian pathways serve as 528 

important information streams for multimodal integration between unimodal and transmodal 529 

systems34,38, we speculate that low parallel communication scores between transmodal 530 

regions may indicate predominance of more complex communication regimes in these 531 

areas. In addition, sensory input decoding within the highly clustered unimodal systems 532 

(diagonal entries of the parallel communication matrices, Fig. 3b) may be supported by 533 

synergistic processes within dense structural motifs54. How these macroscale 534 

communication mechanisms may have adapted to changing environments over the evolution 535 

of mammalian brains remains an exciting open field of research, to which the present work 536 

adds a first foundation. 537 

 538 
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Online Methods 555 

 556 

Human data 557 

We used Magnetic Resonance Imaging (MRI) data of the Human Connectome Project 558 

(HCP), U100 dataset (HCP900 data release), which includes 100 unrelated healthy adults 559 

(‘h-HCP’ dataset, 64 males; mean age = 29.1 ± 3.7 years)55. Informed consent forms, 560 

including consent to share de-identified data, were collected for all subjects (within the HCP) 561 

and approved by the Washington University institutional review board. All methods were 562 

carried out in accordance with relevant guidelines and regulations. MRI scans were 563 

performed on a 3T Siemens Prisma scanner and included the following sequences: 564 

Structural MRI: 3D Magnetization Prepared Rapid Acquisition with Gradient Echoes 565 

(MPRAGE) T1-weighted, TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8°, FOV = 566 

224 × 224, voxel size = 0.7 mm isotropic. Diffusion-weighted MRI: spin-echo Echo-Planar 567 

Imaging (EPI), TR = 5520 ms, TE = 89.5 ms, flip angle = 78°, FOV = 208 × 180, 3 shells of 568 

b-value = 1000, 2000, 3000 s/mm2 with 90 directions plus 6 b-value = 0 s/mm2 acquisitions. 569 

One session of 15 min resting-state functional MRI (fMRI): gradient-echo EPI, TR = 720 ms, 570 

TE = 33.1 ms, flip angle = 52°, FOV = 208 × 180, voxel size = 2 mm isotropic, recorded with 571 

two phase-encoding directions (right-left and left-right). HCP minimally preprocessed data56 572 

were used for all acquisitions.  573 

 574 

Group-level structural connectivity. A group-representative structural connectome between 575 

100 cortical regions of interest (Schafer parcellation57) was obtained from the 100 unrelated 576 

HCP subjects. Different cortical parcellation resolutions were explored in supplementary 577 

analyses (200- and 400-region Schaefer parcellations57). Briefly, diffusion-weighted scans 578 

were analyzed using MRtrix358, including the following steps: multi-shell multi-tissue 579 

response function estimation; constrained spherical deconvolution; tractogram generation 580 

with 107 output streamlines. The Schaefer cortical atlas was used to parcellate the cortex 581 

into 100 (200, 400) regions and generate individual structural connectomes, from which a 582 

group-representative structural connectome was computed. The binary architecture of the 583 

group-representative connectome was obtained by including only the structural connections 584 

retrieved in 100% of the subjects. This step is meant to minimize the number of false 585 

positives in the group-representative network. The group-representative connectome was 586 

then weighted by the Euclidean distance (in millimeters) between region pairs’ centroids 587 

(Supplementary Fig. 1a). This choice was motivated by the exigence of homogenizing 588 

structural connections’ weights across species (see also Mapping relay communication 589 

pathways in brain networks).   590 

 591 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.09.491115doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491115
http://creativecommons.org/licenses/by-nc-nd/4.0/


Griffa et al., Brain communication across mammalian species 

21 

Individual functional information. Resting-state fMRI data were pre-processed according to a 592 

state-of-the-art pipeline18 including: general linear model regression of nuisance signals 593 

(removal of linear and quadratic trends; removal of motion regressors and their first 594 

derivatives; removal of white matter and cerebrospinal fluid signals and their first 595 

derivatives). 100 (200, 400) regional time series were obtained by averaging voxel-wise time 596 

series across all voxels belonging to each region of interest. The mutual information between 597 

region pairs was computed from the histograms of the z-scored time series, binned with a 598 

step of 0.5. This bin size was chosen by comparing real and null mutual information values, 599 

with null values obtained from multivariate gaussian data, and by assessing the 600 

fingerprinting accuracy39 of mutual information across bin sizes (Supplementary Fig. 17). 601 

Only the first 800 time points (9.6 min) were considered for mutual information computation 602 

for consistency with other species data (Supplementary Table 1; other time series lengths 603 

were explored in supplementary analyses, Supplementary Fig. 10). Mutual information 604 

matrices obtained from left-right and right-left phase-encoding acquisitions were averaged to 605 

obtain a single 100x100 (200x200, 400x400) mutual information matrix per subject 606 

(Supplementary Fig. 1c). 607 

 608 

Replication datasets. Analyses were repeated considering sub-samples of the whole U100 609 

dataset (Supplementary Fig. 12). 610 

 611 

 612 

Macaque data 613 

We used structural and functional monkey data from TheVirtualBrain project59. The fMRI 614 

dataset included 9 adult male rhesus macaque monkeys (8 Macaca mulatta, 1 Macaca 615 

fascicularis) aged between 4 and 8 years (‘q-TVB’ dataset). All methods were carried out in 616 

accordance with relevant guidelines and regulations and have been previously described59. 617 

Briefly, animals were lightly anesthetized before their scanning session and anesthesia was 618 

maintained using 1-1.5% isoflurane. The scanning was performed on a 7T Siemens 619 

MAGNETOM head scanner included: Structural MRI: 3D MPRAGE T1-weighted sequence, 620 

128 slices, voxel size = 0.5 mm isotropic. Diffusion-weighted MRI: EPI sequence, 24 slices, 621 

b-value = 1000 s/mm2, 64 directions, recorded with two opposite phase-encoding directions. 622 

One session of 10 min resting-state functional MRI (fMRI): 2D multiband EPI sequence, TR 623 

= 1000 ms, 42 slices, 1 X 1 X 1.1 mm3 voxel size. 624 

 625 

Group-level structural connectivity. We used the whole-brain macaque structural 626 

connectome provided by TheVirtualBrain59, which summarizes the brain connectivity 627 

between 82 regions of interest (Regional Map parcellation of Kötter and Wanke60) and 628 
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includes inter-hemispheric connections. Briefly, the structural connectome was obtained by 629 

optimizing tractography-derived structural connectivity matrices with respect to a reference 630 

tracer-derived connectivity matrix and averaging across animals59. For cross-species 631 

consistency reasons, we considered undirected structural connectivity information. That is, in 632 

the final structural connectome, two regions are connected if at least one unidirectional 633 

connection exists between the two regions. Structural connections were weighted by the 634 

Euclidean distance (in millimeters) between region pairs’ centroids (Supplementary Fig. 1a).  635 

 636 

Individual functional information. Resting-state fMRI data were pre-processed by others, as 637 

previously described59. Briefly, the processing pipeline included motion correction, high-pass 638 

filtering, regression of white matter and cerebrospinal fluid signals, spatial normalization and 639 

smoothing. Z-scored regional time series (Regional Map parcellation) including 600 time 640 

points (10 min) were used to compute individual mutual information matrices (bin size = 0.5, 641 

consistently with other species) (Supplementary Fig. 1c). 642 

 643 

Replication dataset. Analyses were repeated on an independent dataset of 9 adult rhesus 644 

macaque monkeys (Macaca mulatta) aged between 5 and 12 years scanned on a vertical 645 

Bruker 4.7T primate dedicated scanner at Newcastle University61 (‘q-NCS’ dataset). Raw 646 

data were publicly available through the Primate Data Exchange (PRIME-DE) initiative62 and 647 

included the following MRI sequences: Structural MRI: Modified Driven Equilibrium Fourier 648 

Transform (MDEFT) T1-weighted, TR = 2000 ms, TE = 3.75 ms, TI = 750 ms, voxel size = 649 

0.6 x 0.6 x 0.62 mm3. Two runs of 10.8 min resting-state fMRI: TR = 2600 ms, TE = 17 ms, 650 

voxel size = 1.2 mm isotropic. All animals were scanned awake. MRI data preprocessing 651 

included: T1-weighted volumes denoising63, skull-stripping (FSL64), N4 bias field correction, 652 

spatial normalization to the F99 template obtained from the SumDB database 653 

(http://brainvis.wustl.edu/sumsdb/public_archive_index.html), and registration to fMRI native 654 

space (ANTs65); fMRI volumes were coregistered (FSL66), corrected for nuisance signals 655 

including 6 motion signals, average white matter and cerebrospinal fluid signals, and band-656 

pass filtered to the band 0.01-0.15 Hz. Z-scored regional time series (Regional Map 657 

parcellation) of the two concatenated fMRI runs were used to compute individual mutual 658 

information values (bin size = 0.5). The fMRI scans were concatenated to reach a number of 659 

time points comparable with the other datasets (500 time points, 21.6 min). 660 

 661 

 662 

Mouse data 663 

We used open-source fMRI data of 10 male wild-type mice aged 6 months (‘m-AD3’ 664 

dataset), available at https://openneuro.org/datasets/ds00189067. All methods were carried 665 
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out in accordance with relevant guidelines and regulations and have been previously 666 

described17,68. Briefly, animals were anesthetized with 4% isoflurane before their scanning 667 

session and maintained with 0.5% isoflurane and a 0.05 mg/kg/h medetomidine infusion69. 668 

The scanning was performed on a 11.75T Brucker BioSpin scanner and included: Structural 669 

MRI: spin-echo turboRARE sequence, TR = 2750 ms, TE = 30 ms, FOV = 17 x 11 mm2, 670 

matrix dimension = 200 x 100 voxels, slice thickness = 0.35 mm. One session of 10 min 671 

resting-state functional MRI (fMRI): gradient-echo EPI sequence, TR = 1000 ms, TE = 15 672 

ms, matrix dimension = 90 x 60 voxels. 673 

 674 

Group-level structural connectivity. A mouse structural connectome between 78 cortical 675 

regions covering the isocortex, cortical subplate, and hippocampal formation, as defined in 676 

the Allen Brain Atlas, was derived from published viral tracing data70. In more details, the 677 

binary architecture of the structural connectome was assessed according to the following 678 

steps: (i) we considered the right-hemisphere ipsilateral and contralateral connections 679 

reported by Oh and colleagues70; (ii) we symmetrized the right-hemisphere ipsilateral 680 

connections (i.e., we considered a connection between ipsilateral regions i and j to be 681 

present if at least one of the two tracts (i�j), (j�i) was detected); (iii) we duplicated the 682 

symmetrized ipsilateral connections to the left hemisphere (in absence of more detailed 683 

information, we therefore assume equal intra-hemispheric connectivity in the right and left 684 

hemispheres); (iv) we transposed the contralateral connections of the right hemisphere to 685 

the left hemisphere; (v) to minimize false positives due to minor tissue segmentation 686 

artifacts, we excluded connections with connectivity strength < 10-3.5, as suggested in70, 687 

where the connectivity strength was defined as the total volume of segmented pixels in the 688 

target normalized by the injection site volume. The binary structural connectome was then 689 

weighted by the Euclidean distance between region pairs’ centroids obtained from the Allen 690 

Brain Atlas (CCF v3, © 2004 Allen Institute for Brain Science. Allen Mouse Brain Atlas. 691 

Available from: http://www.brain-map.org/) (Supplementary Figure 4). 692 

 693 

Individual functional information. Resting-state fMRI data were pre-processed as previously 694 

described68. Briefly, the processing pipeline included motion correction, automatic brain 695 

masking, spatial smoothing (FWHM = 0.45 mm), high-pass filtering (0.01 Hz cut-off), and 696 

automated nuisance removal based on independent component analysis. Z-scored regional 697 

time series (78-region Allen Brain Atlas parcellation) including 600 time points (10 min) were 698 

used to compute individual mutual information matrices (bin size = 0.5) (Supplementary Fig. 699 

1c). 700 

 701 
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Replication datasets. Analyses were repeated on two independent datasets. The first one 702 

included 51 male wild-type mice scanned at 3 months (‘m-CSD1’ dataset)71. MRI 703 

acquisitions were performed on a 9.4T Brucker BioSpin system on anesthetized animals 704 

(3.5% isoflurane, maintained with 0.5% isoflurane and a 0.05 mg/kg/h medetomidine 705 

infusion) and included a 6-min resting-state fMRI recording: gradient-echo EPI sequence, TR 706 

= 1000 ms, TE = 9.2 ms, flip angle = 90°, field of view = 20 x 17.5 mm2, matrix size = 90 x 70 707 

voxels, slice thickness = 0.5 mm. FMRI volumes were preprocessed using the same pipeline 708 

as the m-AD3 dataset. The average time series of the 78 cortical regions (360 time points, 6 709 

min) were z-scored and used to compute individual mutual information matrices (bin size = 710 

0.5). Analyses were repeated considering sub-samples of the whole m-CSD1 dataset 711 

(Supplementary Fig. 12).     712 

The second dataset included 10 C57BI6/J adult male mice (‘m-GG’ dataset, < 6 months old) 713 

subject to surgery for headposts placement, MRI habituation and awake fMRI acquisition, as 714 

previously described17. MRI acquisitions were performed at the IIT laboratory in Rovereto 715 

(Italy) on a Bruker Biospin 7T scanner and included a 32-min resting-state fMRI recording: 716 

single-shot EPI sequence, TR = 1000 ms, TE = 15 ms, flip angle = 60°, voxels size = 0.23 x 717 

0.23 x 0.6 mm3. fMRI preprocessing included exclusion of the first 2 min of recording, time 718 

series despiking, motion correction, nuisance signals regression (average cerebrospinal fluid 719 

and motion signals plus their temporal derivative and corresponding squared regressors), 720 

data censoring (Framewise Displacement > 0.075 mm), band-pass filtering (0.01-0.1 Hz), 721 

spatial smoothing (FWHM = 0.5 mm) and spatial normalization17. Average time series were 722 

computed for 66 regions of interest, which represents a subset of the 78 Allen Brain Atlas 723 

regions (data for bilateral regions CA1, CA2, CA3, dorsal and ventral endopiriform nucleus, 724 

and frontal pole were not available). The first 600 time points (10 min) were used for the 725 

computation of individual mutual information matrices (z-scored time series binning = 0.5).         726 

 727 

 728 

Assignment of cortical regions to resting state networks 729 

For the human dataset, each cortical region was assigned to one the seven resting state 730 

networks (RSNs) defined by Yeo and colleagues and according to the Schaefer parcellation 731 
57,72. For the macaque dataset, each cortical region was first associated with one or multiple 732 

Brodmann areas according to the CoCoMac Regional Map of the macaque cortex60,73–75. 733 

Each Brodmann area was then assigned to one of the seven RSNs defined by Yeo and 734 

colleagues72 using a majority voting procedure and published atlases in MNI space76. Finally, 735 

Regional Map regions of the macaque cortex were assigned to Yeo RSNs with a similar 736 

majority voting procedure (Supplementary Fig. 3). For the mouse dataset, each cortical 737 

region was assigned to one out of 6 RSN as identified by Zerbi and colleagues using 738 
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independent component analysis of resting-state fMRI data77. The assignment was done 739 

through a majority voting procedure (Supplementary Fig. 4). Note that the default mode 740 

network (DMN) has been consistently identified in humans78, macaques79 and mice80,81, 741 

suggesting a conservation of this network across mammalian species. In our mouse cortex 742 

subdivision77, the DMN includes bilateral hippocampal regions (CA1, CA2, CA3 hippocampal 743 

fields, subiculum and dentate gyrus), and lateral (ectorhinal and temporal association areas) 744 

and prefrontal (infralimbic, prelimbic and perirhinal areas) isocortices, while it excludes other 745 

regions which have been reported by others, such as the retrosplenial cortex82. For all 746 

species, RSNs were assigned to unimodal or transmodal systems according to established 747 

cortical subdivisions38. 748 

 749 

 750 

Mapping information transmission pathways in brain networks 751 

In this work we introduce a new approach to infer relay communication pathways from 752 

multimodal neuroimaging data. The approach builds upon and extends an information 753 

theoretical framework proposed in previous work35, and aims at identifying polysynaptic 754 

(multi-step) structural pathways selected for information transmission in macroscale brain 755 

networks. Information theory is a branch of mathematics that studies the transmission of 756 

information through communication systems36 and has found several applications in 757 

neuroscience83,84. It allows model-independent analysis of noisy data, such as the fMRI 758 

ones.  759 

 760 

Structural brain network and structural paths. Let’s consider a structural brain network as an 761 

undirected graph � � ��, �� formed by a set of � nodes � 	 �
�, 
�, . . . , 
�� and a 762 

connectivity matrix � 	 �
�,��, with 
�,� � 0 distance between directly connected region pairs 763 


�  , 
�  and 
�,� 	 ∞ otherwise. In this work we assigned 
�,�  equal to the Euclidean distance 764 

(in millimeters) between the centroids of regions 
�  , 
�. This choice has two motivations. 765 

First, the distance between region centroids can be easily computed across different 766 

datasets, thus allowing to select homogeneous structural connectivity weights across 767 

species. Second, this choice conceptually links information transmission in brain networks 768 

with the sender-channel-receiver schematics proposed in electronic communication by 769 

Shannon35,85. A path between a source node 
�  and a target node 
� is a sequence of 770 

pairwise connected and non-repeating nodes ��,� 	 �
�  , 
� , 
	 , . . . , 
��. The shortest path ��,�

� 771 

between regions 
�  , 
� is the path of minimal length (i.e., minimal Euclidean distance, in the 772 

case of this work) connecting the two regions. The path length is computed as the sum of 773 

edge weights along the path. In this work we identified the first � 	 5 �-shortest paths 774 
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��,�
�

�connecting each region pair 
�  , 
�

86. �-shortest path ensembles identify meaningful 775 

trade-offs between efficiency and resiliency for putative communication processes in brain 776 

networks23. The choice of � was dictated by the fact that, for � 	 5, all edges of the structural 777 

brain network participate in at least one �-shortest path23.     778 

 779 

Functional information along structural paths. Each node 
�  is associated with a neural 780 

activity-related fMRI time series ��  that can be interpreted as the realization of a discrete 781 

random variable with probability mass function ������. The amount of shared information 782 

between two random variables can be quantified as their mutual information ���� , ��� 	783 

∑ ∑ ��,���� , �� � !"����,���� , ��� ������������# ����������� , with ��,���� , ��� joint probability 784 

distribution between ��, �� . The sequence of pairwise mutual information values along a 785 

structural path ��,�  with respect to the source node $ is defined as 786 

%�,� 	 ����� , ��� , ���� , �	�, . . . , ���� , ����. We estimated the fMRI time series probability mass 787 

functions from the z-scored time series’ histograms with appropriate binning. Different bin 788 

sizes between 0.05 and 2.00 were explored and evaluated with respect to (i) corresponding 789 

mutual information values for multivariate Gaussian processes &'0, �(; (ii) individual 790 

identifiability scores39. We selected the smallest bin size for which (i) the mutual information 791 

values obtained from real data (h-HCP dataset) were larger than expected for a multivariate 792 

Gaussian process &'0, �(, and (ii) the individual identifiability score reached a maximum 793 

plateau (Supplementary Fig. 17). 794 

 795 

Data Processing Inequality (DPI). The DPI, a fundamental principle of information theory, 796 

states that the amount of information available at a target node ) about a source node $ 797 

cannot be increased through operations performed along the transmission path. 798 

Mathematically, the DPI states that if �� * �� * ��  is a Markov chain, then ���� , ��� +799 

���� , �� �, ���� , ��� + ���� , ���  , i.e., the mutual information does not increase along the 800 

chain36. Note that the double inequality condition derives from the fact that a Markov chain 801 

has no directionality information, i.e., if  �� * �� * �� is a Markov chain, then �� * �� * ��  is 802 

also a Markov chain. The DPI can be extended to Markov chains of any length. 803 

Conceptually, the DPI embeds two assumptions about the information transmission process: 804 

the first one is that (neural) messages transmitted through the structural infrastructure (brain 805 

network) can keep at most the same amount of information present at the source region 806 

(information decay). The second one is that (neural) messages do not contain memory of the 807 

transmission process itself and communication happens in a Markovian fashion 808 

(memoryless transmission).       809 
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 810 

Identification of information transmission pathways in brain networks. We used the DPI to 811 

test (deviation from) Markovian behavior. Each k-shortest structural path was labeled a relay 812 

communication pathway if the DPIs along the paths were satisfied. Note that here we use 813 

the wording relay communication in Shannon’s sense. That is, we aim to characterize the 814 

presence of memoryless information transmission processes, with information decay along 815 

the path measured through mutual information values. 816 

 817 

Parallel communication scores (PCSs). We define the parallel communication score ,-.�,�
�  818 

between a pair of brain regions 
�  , 
� as the number of �-shortest paths connecting the two 819 

regions which respect the DPI, with / indicating the subject. Note that, given the choice of 820 

� 	 5, PCS scores can assume integer values between 0 and 5, and that ,-.�,�
� 	 ,-.�,�

�  . A 821 

PCS score equal to 0 is interpreted as absence of (Markovian) information transmission 822 

between two regions; a PCS score equal to 1 is interpreted as presence of selective 823 

information processing through a single information transmission pathway; PCS scores 824 

larger than 1 are interpreted as presence of progressively increasing parallel information 825 

processing with information transmission through multiple parallel pathways (Fig. 1). PCS 826 

scores were computed for every pair of brain regions and every subject, for all investigated 827 

datasets. Parallel communication information was summarized at the group-level by 828 

computing a group-average parallel communication matrix ,-.���  for each dataset, and its 829 

corresponding histogram (Fig. 2). In addition, node-average, RSN-average, and system-830 

average PCS scores were computed by averaging the parallel communication scores over 831 

the corresponding region pairs (Fig. 3).       832 

 833 

Null model. A null model was defined by randomly shuffling the raw fMRI time series across 834 

brain regions while preserving the original structural connectivity information (Supplementary 835 

Fig. 5). Note that with this randomization we are preserving the statistical properties of both 836 

the original functional and structural data, since we are merely rearranging spatially fMRI 837 

time series across the brain network. Parallel communication matrices were then computed 838 

for each randomization following the above-described procedure. For each dataset, the 839 

randomization was repeated 3000 times per subject, which allowed to build 3000 group-840 

average parallel communication matrices (Supplementary Fig. 6). Each region pair was 841 

therefore associated with a null distribution of group-average PCS values including 3000 842 

elements. To assess whether group-average PCS scores observed in real data could be 843 

trivially explained by the structural connectivity architecture and the multivariate statistical 844 

properties of fMRI data, which are both preserved in the null model, we adopted two 845 
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strategies. The first one consisted of PCS scores screening by z-scoring individual group-846 

average scores ,-.
�,�

��� with respect to the corresponding null distribution; z-scored where 847 

thresholded at 1.96 (Supplementary Fig. 7). The second strategy consisted of analyzing the 848 

PCS scores with false discovery rate (FDR)-corrected p-values < .05 (FDR < .05), with p-849 

values computed as the number of entries in the null distribution exceeding the real PCS 850 

score (Supplementary Fig. 8). 851 

 852 

Subject identifiability analysis 853 

For each investigated dataset, fMRI time series were split into two parts of equal duration 854 

and considered as test and retest data. From these, test and retest parallel communication 855 

matrices were computed for each subject. An identifiability matrix summarizing test-retest 856 

subjects’ similarities was then obtained for each dataset. Diagonal entries of the identifiability 857 

matrix represent subjects’ self-similarity between test and retest data (‘Iself’); outside-858 

diagonal entries represent inter-subject similarity (‘Iothers’) (Fig. 4)39. The similarity between 859 

test and retest parallel communication matrices was assessed with the Jaccard index, 860 

defined as the size of the intersection divided by the size of the union of two label sets. For 861 

example, a Jaccard index equal to 0.3 indicates that 30% of brain region pairs have exactly 862 

the same PCS score, which can take integer values between 0 and 5. The level of individual 863 

identifiability was quantified with the success rate (SR) defined as the percentage of test 864 

subjects whose identity was correctly predicted out of the total set of retest subjects40. The 865 

subject identifiability analysis was repeated when considering only region pairs with, on 866 

average, low (high) PCS scores for the computation of test-retest similarities. Different 867 

thresholds defining low (high) PCS scores were explored (Supplementary Table 2). 868 

 869 

 870 

Data and material availability 871 

The data that support the findings of his study are available on the Human Connectome 872 

Project platform (db.humanconnectome.org) for human data; OpenNeuro59, Zenodo59, and 873 

INDI PRIMatE Data Exchange (fcon_1000.projects.nitrc.org/indi/indiPRIME.html) platforms 874 

for macaque data; OpenNeuro67, XNAT71, and Mendeley17 platforms for mouse data. The 875 

derived brain matrices necessary to reproduce the main analyses of this study are available 876 

on Zenodo. The code (in MATLAB) and sample brain matrices are available as maintained 877 

version on A.Gr.’s GitHub repository (github.com/agriffa/BrainComm_mammalian_evolution).    878 
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