bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.487898; this version posted September 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

11

12

13

14

15

16

17

18

available under aCC-BY-NC-ND 4.0 International license.

NetAct: a computational platform to construct core transcription factor regulatory

networks using gene activity

I#Kenong Su, 23#Ataur Katebi, *Vivek Kohar, **Benjamin Clauss, >*Danya Gordin, °Zhaohui S.

Qin, , 7°R. Krishna M. Karuturi, “3Sheng Li, >>*7*Mingyang Lu

"Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA.
’Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.

3Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
4The Jackson Laboratory, Bar Harbor, ME 04609, USA.

>Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA
02111, USA.

®Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA.
"The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.

8Dept of CSE, University of Connecticut, Storrs, CT

Graduate School of Biological Sciences & Eng., University of Maine, Orono, ME

* To whom correspondence should be addressed, m.lu@northeastern.edu

# Equal contributions


mailto:m.lu@northeastern.edu
https://doi.org/10.1101/2022.05.06.487898
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.487898; this version posted September 11, 2022. The copyright holder for this preprint

19
20
21
22
23
24
25
26

27

28

29
30

31
32
33

34

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

A major question in systems biology is how to identify the core gene regulatory circuit that governs
the decision-making of a biological process. Here, we develop a computational platform, named NetAct,
for constructing core transcription-factor regulatory networks using both transcriptomics data and
literature-based transcription factor-target databases. NetAct robustly infers regulators’ activity using target
expression, constructs networks based on transcriptional activity, and integrates mathematical modeling for
validation. Our in-silico benchmark test shows that NetAct outperforms existing algorithms in inferring
transcriptional activity and gene networks. We illustrate the application of NetAct to model networks

driving TGF- induced epithelial-mesenchymal transition and macrophage polarization.
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Background

One of the major goals of systems biology is to infer and model complex gene regulatory networks
(GRNs) which underpin the biological processes of human disease'™®. Particularly important are those gene
networks that control decisions regarding cellular state transitions (e.g., replicative to quiescent’?, epithelial
to mesenchymal (EMT)!°, pluripotent to differentiated!!"'?), given the central importance of such regulatory

processes to both healthy development as well as diseases such as cancer.

To construct and model GRNs associated with the biological process under investigation, researchers
have developed two primary systems biology approaches. The first is a bottom-up approach, in which
researchers focus on identifying a core GRN composed of a small set of master regulators'®. Once the core
GRN is obtained, mathematical modeling is then applied to simulate the gene expression dynamics!'* 7,
which helps elucidate the potential gene regulatory mechanism driving the biological process in question.
The current practice for synthesizing a core GRN is by compiling data via an extensive literature search,
e.g., in these studies'®?°, While this works well for systems where sufficient knowledge has been gained
and accumulated, it is less effective in cases where key component genes and regulatory interactions have
yet to be discovered. Due to rapid increase of biomedical publications, manual synthesis of literature
information has become extremely time-consuming and prone to human error in data interpretation. One
way to address the labor-intensive issue is to rely on existing manually curated databases, such as KEGG?!
and Ingenuity Pathway Analysis (IPA)*>. However, these databases often compile gene regulatory

interactions from different tissues, species, or diseases. Therefore, it is hard to obtain context-specific

interactions directly from these types of databases.

The second approach adopts a top-down perspective, in which researchers apply bioinformatics and
statistical methods on genome-wide transcriptomics and/or genomics data to infer large-scale GRNs' .
These data-driven methods are ideal for obtaining a global picture of gene regulation and the overall

structure of gene-gene interactions. This approach also helps to characterize key regulators and regulatory


https://doi.org/10.1101/2022.05.06.487898
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.06.487898; this version posted September 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

available under aCC-BY-NC-ND 4.0 International license.

interactions between genes that are specific to the biological context of the study. However, conventional
bioinformatics methods for gene network inference are usually not designed to identify an integrated
working system. These methods typically rely on significance tests to determine the nodes and edges of a
gene network, yet it is rare to evaluate whether the constructed gene network is capable of operating as a
functional dynamical system?’. Moreover, many statistical methods work well to identify the association
between genes, but not their causation, thus limiting the applicative value of the top-down approach in

characterizing gene regulatory mechanisms.

To overcome the above-mentioned issues, a relatively new approach has been explored in several
studies in which the top-down and bottom-up approaches are integrated to infer and model a core GRN>*~
31 In this combined approach, a GRN is constructed with bioinformatics tools using genome-wide gene
expression data, followed by mathematical modeling of the GRN to simulate gene expression steady states
and explore their similarity with biological cellular states. The simulations can help validate the accuracy
of the constructed GRN and further clarify the regulatory roles of genes and interactions in driving cellular
state transitions. This combined approach helps to discover existing and new regulatory interactions specific
to the cell types and experimental conditions under study. Additionally, it helps pinpoint master regulators
and reduce the system’s overall complexity. The GRN modeling is particularly crucial for cases with non-
trivial cellular state transitions, such as multi-step state transitions as observed in Epithelial-Mesenchymal
Transition (EMT)¥, and bifurcating state transitions, as observed in stem cell differentiation®*. This is
because the GRNs constructed by the top-down approach are not guaranteed to capture these state transition
patterns. So far, to the best of our knowledge, there is no computational platform available that utilizes this

combined approach for systematic GRN inference and modeling.

In this study, we introduce a computational platform, named NetAct, for inferring a core GRN of key
transcription factors (TFs) using both transcriptomics data and a literature-based TF-target database.

Integrating both resources allows us to take full advantage of the existing knowledgebase of transcriptional
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87  regulation. NetAct adopts the combined top-down bioinformatics and bottom-up systems biology
88  approaches, designed specifically to address the following two major issues.
89
90 First, many network inference methods rely on correlations of gene expression data, yet the actual
91  transcriptional activities of many master regulators may not be reflected in their gene expression. Instead,
92  the activity may be better associated with either their protein level, the level of a certain posttranslational
93  modification, localization, or their DNA binding affinity. As a result, the master regulators with weak
94 correlations between the expression level and the transcriptional activity will likely be discarded in the
95  network. Some algorithms have been developed to infer the activities of regulators from transcriptomics
96  data, such as VIPER*, NCA*, AUCELL*. However, most of these algorithms 1) are not designed for
97  gene network modeling, or 2) still rely on coexpression of a TF and its targeted genes, or 3) do not take
98  advantage of known regulatory interactions from the literature, hindering their applicability as automated
99  algorithms for generic use in systems biology.
100
101 Second, conventional mathematical modeling approaches have been applied over the years to simulate
102 the dynamics of a GRN, yet they are not particularly effective in analyzing core GRNs. A popular method
103 models the gene expression dynamics of a system using the chemical rate equations that govern the
104 associated gene regulatory processes. However, it is difficult to directly measure most of the kinetic
105  parameters of a GRN. Although some parameter values can be learned from published results, many others
106  are often based on educated guesses which significantly limits the predictive power of mathematical
107  modeling. Moreover, a core GRN is not an isolated system. Thus, an ideal modeling paradigm should also
108  consider other genes that interact with the core network. To address this infamous parameter issue, we have
109  developed the modeling algorithm RACIPE*+"* in previous work that analyzes a large ensemble of
110  mathematical models with random kinetic parameters. RACIPE has been applied to model the dynamical
111 behavior of gene regulatory networks of different biological processes, such as epithelial-mesenchymal

23,29

112 transition®*, cell cycle’®, stem cell differentiation®.
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113

114 The new NetAct platform addresses the above-mentioned issues by (1) inferring the activities of TFs
115  for individual samples using the gene expression levels of their targeted genes, (2) identifying the regulatory
116  interactions between two TFs based on their activities rather than their expressions, (3) and subsequently
117  simulating the constructed core GRN with RACIPE to validate and evaluate the gene expression dynamics
118  of the core GRN. In this paper, we describe in detail the NetAct platform, extensive benchmark tests for
119  TF-target databases, TF activity inference, and network construction, and two examples of applications to
120 model GRNs with time series gene expression data.

121

122  Results

123 We developed a computational systems-biology platform, named NetAct, to construct transcription
124 factor (TF)-based GRNs using TF activity. The method uniquely integrates both generic TF-target
125  relationships from literature-based databases and context-specific gene expression data. NetAct also
126  integrates our previously developed mathematical modeling algorithm RACIPE to evaluate whether the
127  constructed network functions properly as a dynamical system. It evaluates the roles of every gene in the
128  network by in-silico perturbation analysis. NetAct has three major steps: (1) identifying the core TFs using
129  gene set enrichment analysis (GSEA)* with an optimized TF-target gene set database (Fig. 1a); (2) inferring
130  TF activity (Fig. 1b); (3) constructing a core TF network (Fig. 1c). Then, the network is validated and
131  analyzed by simulating its dynamics using mathematical modeling by RACIPE (see Supplemental Material
132 SIS). Details of each step is given in the Methods section and Supplemental Material. Below, we
133 demonstrate how we optimized the NetAct algorithm, compared its performance of activity inference with
134 three existing methods using in-silico gene expression data, and applied the network modeling approach to
135  two biological datasets.

136

137  Literature-based TF-target relationships facilitate TF inference

138
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139 To establish a comprehensive gene set database containing TF-target relationships, we considered data
140  from different sources (Table S1, also see Supplemental Material SI1). They are (D1) a literature-based
141  database, consisting of data from TRRUST*!, RegNetwork*?, TFactS*, and TRED*; (D2) a gene regulatory
142 network database FANTOMS5*, whose interactions are extracted from networks constructed using RNA
143 expression data from 394 individual tissues; (D3) a database derived from resources of putative TF binding
144  targets, including ChEA*, TRANSFAC*’, JASPAR*, and ENCODE®; and (D4) a database derived from
145  motif-enrichment analysis, RcisTarget®®. These databases have been frequently used to study transcriptional
146  regulations and have already been utilized for network construction®*-!.

147

148 We evaluated the performance of these databases by GSEA on a benchmark dataset. GSEA is a popular
149  statistical method that can be used to evaluate significant overlapping between a set of genes and
150  differentially expressed genes between two experimental conditions. Using various types of TF-target
151  databases, our goal is to find the best version of the database, so that GSEA can detect the target gene sets
152 of the relevant TFs to be statistically significant. This benchmark dataset, denoted as set B, consists of a
153  compilation of 11 microarray and 27 RNA-Seq gene expression data (Table S2). Each of these datasets
154  contains at least three samples under the normal condition (control) and three samples under the treatment
155  condition in which a specific TF is treated by knockdown (KD). We applied GSEA (with slight
156  modifications, details in Methods) on the set B to evaluate whether the enrichment analysis can detect the
157  perturbed TFs. The underlying assumption is that, with a better TF-target gene set database, GSEA will be
158  more likely to detect the corresponding perturbed TFs. For each TF-target database and each gene
159  expression data in set B, we calculated the q-values of all the TFs in the database by GSEA to determine
160  whether the target genes of the perturbed TF are enriched in the differentially expressed genes. We found
161  that more significant g-values are usually associated with relatively larger number of targets for each TF;
162  however, too many (e.g., greater than 2000) targets will result in non-significant g-values. The summary
163 statistics, such as the total number of TFs and the average number of target genes per TF, are summarized

164  in Table S1. Furthermore, these corresponding g-values from all the gene expression data are converted to
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165  specificity and sensitivity values (see Methods), and different databases are compared based on the area
166  under the sensitivity-specificity curves (Fig. 1d). We found that the literature-based database has the best
167  overall performance, thus we used this database for further analyses. Our results are in line with a previous
168  benchmark study>? that literature-based TF-target database outperforms others in capturing transcriptional
169  regulation.

170

171  Inferring TF activity without using TF expression

172

173 NetAct can accurately infer TF activity for an individual sample directly from the expression of genes
174  targeted by the TF (see Methods). In the following, we will illustrate how NetAct infers TF activity on two
175  cases of microarray KD experiments -- one case for shBRNA KD of FOXM1 and shRNA KD of MYB in
176  lymphoma cells (GEO: GSE17172), and another case for KD of BCL6 on both OCI-Ly7 and Pfeiffer
177  GCB-DLBCL cell lines (GEO: GSE458383%). NetAct first successfully identified the TFs that undergo
178  knockdown in each case, i.e., FOXM1, MYB and BCL6 respectively, by applying GSEA on the optimized
179  TF-target database (q value < 0.15).

180

181 Next, for each identified TF, NetAct calculates its activity using the mRNA expression of the direct
182  targets of the TF. We first constructed a Spearman correlation matrix from the expression of the targeted
183  genes. As shown in Fig. 2a, the correlation matrix after hierarchical clustering analysis typically consists
184  of two red diagonal blocks, two blue off-diagonal blocks, and the remaining elements with low correlations
185  which will be filtered out subsequently (details in Methods). Within the red blocks, the expression of any
186  column gene is positively correlated with that of any row gene; while within the blue blocks, the expression
187  of any column gene is negatively correlated with that of any row gene. This indicates that the genes in the
188  two red blocks are anti-correlated in gene expression with each other. However, if the correlation matrix is
189  constructed from 100 or 200 randomly selected genes (Fig. 2bc), such a clear pattern disappears. Thus, our

190  observation suggests that genes from one of the red blocks are activated by the TF, whereas genes from the
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191  other block are inhibited by the TF. Moreover, filtered genes are not likely to be directly targeted by the TF
192 in this context, or they are regulated by multiple factors simultaneously and are thus likely not a good
193  indicator for the TF activity.

194

195 We further evaluated how the filtering step removes noise and retains the important genes in the
196  analysis. We found that, after the filtering step, most of the differentially expressed (DE) genes are retained,
197  asevidenced by Fig. 2d. Here, DE genes from each comparison were retrieved by using limma with a cutoff
198  for the adjusted p-values at 0.05 and a cutoff for the log2 fold changes at 2. Subsequently, for DE TFs we
199  evaluated the Spearman correlations between the TFs and the corresponding targeted genes. In traditional
200  approaches (such as ARACNe', WGCNA>, and BEST*), the co-expression between a TF and its targeted
201  genes are commonly used to identify its association and assign the sign (activation or inhibition) of the
202 regulation. We found that, for each TF, most of the genes in a block either positively correlate with the TF
203  expression (Fig. 2fg, blue bars), or they negatively correlate with the TF expression (Fig. 2fg, red bars).
204  The tests demonstrate that, without directly using TF expression, NetAct can successfully identify two
205  groups of important target genes — genes in each group are either activated or inhibited by the TF. These
206  two groups of genes are further used to infer TF activity by a weighted average of their gene expression
207  (Equation 1 in Methods). Additionally, we found that the correlations between inferred TF activity and
208  target expression are usually higher than the correlations between TF expression and target expression (Fig.
209  2h).

210

211  Evaluating activity inference and network construction in a simulation benchmark

212

213 To evaluate the accuracy and robustness of inferred TF activity, we performed extensive benchmark
214 tests to compare NetAct with other existing methods. We first performed the benchmark tests on simulated
215  data because TF activity is usually not directly measurable. The activity of a TF can be related to its protein

216  level or the level of a particular posttranslational modification, such as phosphorylation. Therefore, it is
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217  very difficult to obtain the ground truth of TF activity from an experimental data set. Thus, in this
218  benchmark test, we rely on mathematical modeling to simulate both the expression and activity of each TF
219  from a synthetic TF-target network. With this simulated data, we benchmark NetAct against other methods.
220

221 To establish the simulated benchmark data set, we first constructed a synthetic TF-target network with
222 atotal of 30 TFs. Each TF has 20 target genes randomly selected with replacement from a pool of 1000
223 genes. In addition, each TF also regulates two (randomly selected) of the 30 TFs. This synthetic network
224 has a hierarchical structure, where a target gene may be co-regulated by multiple TFs. The type of each TF-
225 to-TF regulation is either excitatory, inhibitory, or signaling, with a chance of 25%, 25%, and 50%,
226  respectively; the type of each TF-to-target regulation is either excitatory or inhibitory with a 50% chance
227  for each. Here, the signaling regulation changes the activity of a TF without changing its expression;
228  whereas the excitatory or inhibitory interactions changes both of the activity and expression. From one
229  realization of the synthetic network generation, the final synthetic network contains a total of 477 genes (30
230  TFs, 447 targeted genes) and 660 regulatory links (Fig. 3a). See Supplemental Material SI4 for more details.
231

232 To simulate the gene expression of the TF-target network, we applied a generalized version of the
233 mathematical modeling algorithm, RACIPE®®. Using the network topology as the only input, RACIPE can
234 generate an ensemble of random models, each corresponds to a set of randomly sampled parameters. Here,
235  we used RACIPE to generate simulated data including gene expression and TF activity for benchmark.
236  Some previous studies have also adopted a similar modeling approach for benchmarking®*”. To consider
237  the effects of a signaling regulatory link, we generalized RACIPE to simulate both expression and activity
238  for each TF. See Supplemental Material SI5 for more details.

239

240 In the benchmark test, we used RACIPE to simulate 100 models with randomly generated kinetic
241  parameters. From these 100 models we obtained 83 stable steady-state gene expression and activity profiles

242 for the 477 genes. As expected, TF activity and target activity from a regulatory link are correlated (1%

10
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243 column, 2" row in Fig. 3b); TF activity and target expression (3™ column, 2" row in Fig. 3b) are correlated;
244 and the expression of two target genes (Fig. 3c) are correlated. However, there is no strong correlation
245  between TF expression and target expression (2™ column, 2™ row in Fig. 3b) and, for a signaling regulatory
246  link, between TF activity and target expression (3™ column, 4" row in Fig. 3b). Next, we applied ARACNe
247 to predict the regulon (i.e., the list of targeted genes by a specific TF) using either the simulated expression
248  profiles or the simulated activity profiles. We found that the regulons predicted from the activity profiles
249  are substantially more similar to the predefined regulons (measured by the Jaccard similarity®®) than those
250  predicted from the expression profiles (Fig. 3d). The results indicate the need of using the TF activity,
251  instead of TF expression, to identify TF-target relationships.

252

253 Next, we compared the performance of NetAct with several related algorithms, NCA, VIPER, and
254  AUCell, in inferring TF activity using both the simulated expression profiles from the 83 models and a
255  predefined regulon (i.e., the association of each TF with its target genes) (details for the implementation of
256  these algorithms in Supplemental Information SI3). The predicted activity was then compared with the
257  simulated activity (ground truth) to evaluate the performance. To mimic the real-life scenario where the
258  targetinformation may not be complete and accurate, we consider more challenging tests where the regulon
259  data is randomly perturbed. Here, for a specific perturbation level, we generated 100 sets of regulon data
260 by replacing a certain number of target genes for each TF with non-interacting genes. The numbers of
261 replaced genes are 0 (0% level of perturbation), 5 (25%), 10 (50%) and 15 (75%), respectively, in different
262 tests. We then evaluated the performance of NetAct, NCA, and VIPER. AUCell protocol advises to include
263  the target genes with only positive interactions in the regulons. To satisfy this criterion, we updated the
264  regulons for both unperturbed and perturbed regulons. For the unperturbed regulons, we retained only the
265  positive interactions; for the perturbed regulons, we retained the positive target genes that were not replaced
266  and a random half of the replaced target genes (assuming that half of the genes are positively regulated by
267  the TF). We then evaluated AUCell performance using these updated regulons (denoted AUCell 1) and

268  non-updated regulons (denoted AUCell 2). As shown in Fig. 4a (also Figs. S3-S6), NetAct significantly

11
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outperforms each of the other methods in reproducing the simulated activity profiles at each perturbation
level. As expected, the performance of NetAct is decreased by increasing the perturbation levels of the
regulon data; however, NetAct still performs reasonably well even when only 25% of the actual target genes
are kept in the regulon data. The results indicate that NetAct can robustly and accurately infer TF activity

even with a noisy TF-target database.

Furthermore, we tested another scenario where the test data contains simulated data from two
experimental conditions, e.g., one representing an unperturbed condition and the other representing a
perturbed condition. Here, we used the same synthetic network but compiled 40 expression and activity
data from the above-mentioned simulation (unperturbed condition), together with 43 expression and activity
data from the simulations in which a specific TF (TF9) is knocked down (perturbed condition). We then
performed a similar test as above and found that NetAct outperformed each of the other methods (Fig. S2
and Fig. S7a). The notable performance gain of NetAct mainly emanates from the removal of incoherent

(or noisy) targets of a TF before the activity calculation in NetAct (see Methods).

In addition, we performed a network construction benchmark of NetAct and a few other network
construction algorithms using the in-silico simulation data set, as shown in Fig. 4bcd. NetAct, using the
TF activity inferred from the original regulon database, outperforms not only network construction
methods using gene expression, such as GENIE3%, GRNBoost2®, and ppcor®!%?, but also GENIE3 using
the TF activity inferred by AUCell (Fig. 4b). The last approach was presented to mimic a popular method
SCENIC. Moreover, we evaluated the performance of NetAct when using a perturbed regulon database.
We found that NetAct remains performing well when the perturbation level is as large as 50%, when
evaluated by all the ground-truth interactions (Fig. 4c) and by those not presented in regulon database
(Fig. 4d). The latter case was designed to evaluate the capability of NetAct in predicting novel
interactions. We observed similar outcomes for the case of the second scenario of the simulation data

from two conditions (Fig. S7bcd) (see Supplemental Information SI6 for details of the benchmark

12
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295  method). In summary, our in-silico benchmark test demonstrates the high performance of NetAct over
296  existing state-of-the-art methods in both inferring TF activity and gene regulatory networks.

297

298  Characterizing cellular state transitions by GRN construction and modeling

299

300 In the previous sections, we demonstrated the capability of NetAct in identifying the key TFs and
301  predicting TF activity. With these data, NetAct further constructs a TF-based GRN using the mutual
302  information (MI) of the activity from the identified TFs (details in Methods). We then applied RACIPE to
303  the constructed network to check whether the simulated network dynamics are consistent with experimental
304  observations. In the following, we show the utility of NetAct with two biological examples: epithelial-
305  mechanical transition (EMT) and macrophage polarization.

306

307 In the first case (EMT), we analyzed a set of time-series microarray data on A549 epithelial cells
308  undergoing TGF-B induced epithelial-mesenchymal transition (EMT) (GEO: GSE17708)%. According to
309  the overall structure of the transcriptomics profiles, we arranged samples from different time points into
310  three groups — early stage (time points Oh, 0.5h and 1h), middle stage (time points 2h, 4h, and 8h) and late
311  stage (time points 16h, 24h, and 72h). We then performed three-way GSEA with our human literature-
312  based TF-target database to identify enriched TFs that are active between either early-middle, early-late
313  and middle-late timepoints. Forty-one TFs (g-value cutoff 0.01) were identified including many major
314  transcriptional master regulators, such as BRCA1, CTNNB1, MYC, TWISTI1, TWIST2 and ZEB1, and
315  factors that are directly associated with TGF-B signaling pathway, such as SMAD3%, FOS and JUN®. The
316  hierarchical clustering analysis (HCA) of the expression and activity profiles for these TFs is shown in Fig.
317  5a. While the expression profiles are quite noisy, the activities show a clear gradual transition from the

318  epithelial to mesenchymal (M) state. Note that the signs of the activity of a few non-DE TFs were flipped
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319  according to experimental evidence of protein-protein interactions and the nature of transcriptional
320  regulation (see Methods for detailed procedures and Table S3 for a list of the changes).

321

322 We then constructed a TF regulatory network (Fig. 5b) and performed mathematical modeling to
323  simulate the dynamical behavior of the network using RACIPE (Fig. 5cd). We found that, consistent with
324 the expression and activity profiles (Fig.5a), the network clearly allows two distinct transcriptional clusters
325 that can be associated with E (the yellow cluster in Fig.5d) and M states (the blue cluster in Fig.5d). To
326  assess the role of TGF-f signaling in inducing EMT, we performed a global bifurcation analysis®® in which
327  the SMAD3 level is used as the control parameter (Fig. 5¢). Here, SMAD3 was selected as it is the direct
328  target of TGF-B signaling®. As shown in (Fig. 5¢), when SMAD3 level is either very low or high, the cells
329 reside in E or M states. However, when SMAD?3 is at the intermediate level, the cells could be driven into
330  some rare hybrid phenotypes. These results are consistent with our previous studies on the hybrid states of
331  EMT??% Using RACIPE, we systematically performed perturbation analyses by knocking down every TF
332 in the network. Our simulation results (Fig. 5e) suggest that knocking down TFs, such as RELA, SP1,
333  EGRI, and CREBBP, etc., has major effects in driving M to E transition (MET), while knocking down TFs,
334 such as TP53, AR, and KLF4, efc., has major effects in driving E to M transition (EMT). These predictions
335  are all consistent with existing experimental evidence (Table S4).

336

337 Compared to a previous model of the EMT network based on an extensive literature survey'®, the

338  GRN constructed by NetAct identified some of the same regulators induced by the TGF- pathway, such
339  as SMAD3/4, TWIST2, ZEB1, CTNNBI1, NFKBI1, RELA, FOS and EGR1. Because of the lack of

340  microRNAs and protein-protein interactions in the database, NetAct didn’t identify factors like miR200
341  and signaling molecules like PI3K. Interestingly, the NetAct model identifies STAT1/3, which was

342 connected to other signaling pathways, such as HGF, PDGF, IGF1and FGR, but not TGF-f in the

343 previous network model. In addition, the NetAct model identified regulators in other important pathways
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344 in TGF-B-induced EMT in cancer cells, e.g., cell cycle pathway (RB1 and E2F1) and DNA damage

345  pathway (P53).

346

347 In the second case, we studied the macrophage polarization program in mouse bone-marrow-derived
348  macrophage cells using time series RNA-seq data (GEO: GSE84517)%. In this experiment, macrophage
349  progenitor cells (denoted as UT condition) were treated with (1) IFNy to induce a transition to the M1 state;
350  (2) IL4 to induce a transition to the M2 state; (3) both IFNy and IL4 to induce a transition to a hybrid M
351 state. Here, we reprocessed the raw counts of RNA-seq with a standard protocol (details in Supplemental
352  Material SI2). From principal component analysis (PCA) on the whole transcriptomics (Fig.6b), we found
353  that the gene expression undergoes distinct trajectories when macrophage cells were treated with either
354  IFNy (M1 state) or IL4 (M2 state). When both IFNy and IL4 were administered, the gene expression
355  trajectories are in the middle of the previous two trajectories, suggesting that cells are in a hybrid state
356  (hybrid M state). We aim to use NetAct to elucidate the crosstalk in transcriptional regulation downstream
357  of cytokine-induced signaling pathways during macrophage polarization.

358

359 Here, we applied GSEA on six comparisons — untreated versus IFNy treated samples (one comparison
360  between the untreated and the treated after two hours, another between the untreated and the treated after
361 four hours, same for the other comparisons), untreated versus IL4 treated samples, and untreated versus
362  IFNy+IL4 treated samples. Using our mouse literature-based TF-target database, we identified 79 TFs (q-
363  value cutoff 0.05 for UT vs IL4-2h and 0.01 for all others). The expression and activity profiles of these
364  TFs (Fig. 6abc) captures the essential dynamics of transcriptional state transitions during macrophage
365  polarization as follows. NetAct successfully identified important TFs in these processes, including Statl,
366  the major target of IFNy, Stat2, Stat6, Cebpb, Nfkb family members, Hif1a and Myc% ", Myc is known to
367  be induced by IL-4 at later phases of M2 activation and required for early phases of M1 activation®.

368  Interestingly, we find Myc has high expression in both IL4 stimulation and its co-stimulation with IFN but
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369 its activity is high only in IL4 stimulation. We then constructed a TF regulatory network that connects 60
370  TFs (Fig. 6d) and simulated the network with RACIPE, from which we found that simulated gene
371  expression (Fig. 6f) matches well with experimental gene expression data (Fig.6a) (see Supplemental
372  Information SI7). RACIPE simulations display disparate trajectories from UT to IL4 or IFNy activation and
373  stimulation with both IL4 and IFNy. Strikingly, we found in the simulation that there is a spectrum of hybrid
374 M states between M1 and M2 (Fig. 6e), which is consistent with experimental observations of macrophage
375  polarization®®. Moreover, we also predict from our GRN modeling that the transition from UT to hybrid M
376  is likely to first undergo a transition to either M1 or M2 before a second transition to hybrid M (Fig. 6e).
377  This is because of our observation from the simulation data that there are fewer models connecting UT and
378  hybrid M than any of the other two routes (i.e., UT to M1, and UT to M2) (Fig. S10). Taken together we
379  showed that the NetAct-constructed GRN model captures the multiple cellular state transitions during
380  macrophage polarization.

381

382 In conclusion, we show that NetAct can identify the core TF-based GRN using both the literature-based
383  TF-target database and the gene expression data. We also demonstrate how RACIPE-based mathematical
384  modeling complements NetAct-based GRN inference in elucidating the dynamical behaviors of the inferred
385  GRNs. Together these two methods can be applied to infer biologically relevant regulatory interactions and
386  the dynamical behavior of biological processes.

387

388  Discussion

389 In this study, we have developed NetAct — a computational platform for constructing and modeling
390  core transcription factor (TF)-based regulatory networks. NetAct takes a data-driven approach to establish
391  gene regulatory network (GRN) models directly from transcriptomics data and takes a mathematical
392  modeling approach to characterize cellular state transitions driven by the inferred GRN. The method

393  specifically integrates both literature-based TF-target databases and transcriptomics data of multiple
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394  experimental conditions to accurately infer TF transcriptional activity based on the expression of their target
395  genes. Using the inferred TF activity, NetAct further constructs a TF-based GRN, whose dynamics can then
396  be evaluated and explored by mathematical modeling. Our approach in combining top-down and bottom-
397  up systems biology approaches will contribute to a better understanding of gene regulatory mechanism of
398  cellular decision making. NetAct is made freely available as an R package’'.

399

400 One of the key components of NetAct is a pre-compiled TF-target gene set database. Here, we have
401  evaluated different types of TF-target databases in identifying knocked down TFs using publicly available
402  transcriptomics data sets. In this test, we have considered databases derived from literature, gene co-
403  expression, cis-motif prediction, and TF-binding motif data. Our benchmark tests suggest that the literature-
404  based database clearly outperformed the other databases. The literature-based database usually contains a
405  small (~30) number of target genes for each TF, but these data have direct experimental evidence, therefore
406  being more reliable than those from the other sources. However, the literature-based database for sure has
407  missing regulatory interactions, therefore maybe limiting the overall performance of NetAct. One way to
408 address this issue is to further update the literature-based database, once new information is available.
409  Another potential approach is to compile a database by combining different types of databases together.
410  However, this might be quite challenging as different databases have data of very different sizes (the
411  number of target genes) and quality. Future investigations on this direction can help to expand our
412  knowledge of transcriptional regulation and meanwhile improve the performance of the algorithm.

413

414 NetAct also has a unique approach to infer the TF activity from the gene expression of the target genes
415  with the consideration of activation/inhibition nature. From our in-silico benchmark tests, we found that
416  NetAct outperforms major activity inference methods, owing to the design of the filtering step and the use
417  of a high-quality TF-target database. NetAct is also robust against some inaccuracy in the TF-target
418  database and noises in gene expression data, because of its capability of filtering out irrelevant targets as

419  well as remaining key targets.
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420

421 One potential issue is the assignment of the sign of TF activity, as it is algorithmically assigned
422  according to the correlation with TF expression. In the case where the TF expression is very noisy or the
423  expression is completely unrelated to TF activity, the sign assignment might be inaccurate. To deal with
424 this issue, we have devised a semi-manual approach that identifies the sign of TF activity according to the
425  sign of other interacting TFs. Another potential issue is that some TFs from the same family may have very
426  similar target genes, therefore NetAct will have difficulty in identifying exactly which TF from the family
427  is most relevant. Additional data resources, such as epigenomics’?, TF-binding data*® and Hi-C data’?, will
428  be helpful to address this problem. One of the future directions is to design methods to integrate these data
429  resources.

430

431 Lastly, instead of constructing a global transcriptional regulatory network, NetAct focuses on modeling
432 acore regulatory network with only interactions between key TFs. The underlying hypothesis is that these
433 TFs and the associated regulatory interactions play major roles in controlling the gene expression of
434  different cellular states and the patterns of state transitions. With the core network identified using NetAct,
435  we can further perform simulations with mathematical modeling algorithms, such as RACIPE, to analyze
436  the control mechanism of the core network. These simulations allow us to generate new hypotheses, which
437  can be further tested experimentally. The validation data can further help to improve the model. Ideally,
438 this needs to be an iterative process to refine a core network model, which is indeed another interesting
439  future direction.

440

441  Conclusions

442 We developed NetAct, a computational platform for constructing and modeling core transcription-
443 factor regulatory networks using both transcriptomics data and literature-based transcription factor-target
444 gene databases. Utilizing both types of resources allows us to identify regulatory genes and links specific

445  to the data and fully take advantage of the existing knowledgebase of transcriptional regulation. Our method
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446  in combining top-down and bottom-up systems biology approaches contributes to a better understanding of

447  the mechanism of gene regulation driving cellular state transitions.

448
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449  Methods

450  Selecting Enriched TFs

451 For a comparison between two experimental conditions, we obtained a ranked gene list quantified by
452 the absolute value of the test statistics (t statistics in microarray and Wald test statistics in RNA-Seq) from
453  differential expression (DE) analysis™, followed by gene set enrichment analysis (GSEA)” using our
454  optimized transcription factor (TF)-target gene set database. Here, for each TF, the corresponding gene set
455  consists of all its target genes. GSEA identifies important TFs whose targets are enriched in DE genes
456  between the two conditions. The significance test is achieved through 10,000 permutations of the gene list
457  names and TFs are kept for further analysis when q value is below a certain threshold cutoff (0.05 by
458  default). A C++ implementation of this version of GSEA, specifically for gene name permutations, has
459  been provided in NetAct for fast computation. For multiple comparisons, a set of enriched TFs are first
460  identified from each pairwise comparison and then a union of the multiple sets of TFs is considered.

461

462 In the database benchmark test, for each database, we computed the sensitivity and specificity values
463  for different g-value cutoffs. Here, for each cutoff value, we defined the sensitivity as the proportion of data
464  sets where the gene sets for the KD TFs were enriched with g-values below the cutoff value. We also
465  defined specificity as the fraction of cases where the gene sets for the other TFs (non-KD TFs in the
466  benchmark) were not enriched with g-values above the cutoff value. We then computed area under the ROC
467  curve (AUC) using the DescTools R package’s.

468

469  Inferring TF activity

470 TF activity is inferred from the expression of target genes retrieved from the TF-target database. NetAct
471  defines the activity of the selected TFs using two different schemes — one using only the expression of
472  target genes and the other using the expression of both the TF and its target genes. The second scheme is
473  only used for the situation of noisy target gene expression. For each TF, the algorithm selects the better

474  scheme according to their performance, as described below.
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475

476  Without directly using TF expression: For each TF, its downstream targets are first divided into two

477  modules using the Newman’s community detection algorithm’” on the pairwise Spearman correlation
478  matrix of the target genes. Then, within each module some less-correlated genes are filtered out to improve
479  the quality of the inference. Here, the filtering step is achieved as follows: (1) each target gene is assigned
480  a vector of correlations with the other target genes, where the distance between two genes is calculated as
481  the sum of squares of the correlation vectors of two genes. (2) k-mean algorithm (k = 1) is performed within
482  each cluster to determine the center vector. (3) genes are filtered out if the distance between the genes and
483  the center is larger than the average distance.

484

485 This step outputs two groups of genes — genes in one group are supposed to be activated by the TF,
486  while genes in the other group are inhibited by the TF. Note, at this stage, the nature of activation/inhibition
487  of the individual group is not yet determined. The activity of the TF is calculated as

488 A(TF) = 2208 (eq ),

i=1"
489  where g; is the standardized expression value of a target gene i, w; is the weighting factor defined as a Hill

490  function:

491 wi=1/[1+ (D" (eq2),

492  where s; is the adjusted p value from DE analysis for gene i, the threshold S, is 0.05, and n is set to be 1/5
493  for best performance (Fig. S8). I; is 1 if the corresponding gene belongs to the first group and -1 if it belongs
494 to the second group. If the calculated TF activity pattern is not consistent with the TF expression trend
495  (evaluated by Spearman correlation), both the sign of the two groups and the sign of the activity are flipped.
496  According to our in-silico benchmark test (Fig. S9), we found that majority of the targets in one group are
497  activated by the TF, and majority of those in the other group are inhibited by the TF. For genes in the
498  inhibition group, the higher the TF activity, the more the genes are suppressed. Thus, the formula in

499  Equation (1) captures well the activity of TFs for their effects to both activating and inhibitory targets. We
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78-80

500  alsoexplored a few other community detection algorithms and found they produced similar results (Fig.

501  SI).
502

503 Using TF expression: For each TF, its downstream targets are first divided into two groups according to

504  the sign of the Spearman correlation between the TF expression and the target expression. Similar to the
505  previous scheme, in each group, target genes are filtered out if the correlation value is less than the average
506  correlation of all the targets. The activity of the TF is also calculated using Equation 1.

507

508  Sign assignment for DE TF: For any DE TF (i.e., there is significant difference in TF expression across cell

509  type conditions) of interest, NetAct computes the activity values from both the schemes (with or without
510  TF’s expression), and selects the better way based on how well the activity values correlate with target
511  expression. To this end, NetAct calculates the absolute value of Spearman correlation between the TF
512 activity and the expression of each target, and selects the scheme whose activity gives larger average
513  correlations.

514

515  Sign assignment for non-DE TF: If the expression patterns of the identified TFs fail to show the significant

516  differences between cell type conditions, a semi-manual method to assign the sign of activity can be adopted.
517  Putative interaction partners between DE and non-DE TFs in the inferred network are identified using the
518  Fisher’s Exact Test between TF targets in the NetAct TF-target database. The most significant pairs are
519  then cross referenced with the STRING database to identify instances of PPL. A literature search is then
520  performed to identify the nature of the PPI, and the sign of the non-DE TF is adjusted based on the DE TF
521  and the type of PPL Note that the last step needs to be done manually for each modeling application. Table
522 S3 shows the details of TF sign flipping and supported experimental evidence for the two network modeling
523  applications.

524

525  Network construction and mathematical modeling
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526 NetAct constructs a TF regulatory network using both the TF-TF regulatory interactions from the TF-
527  target database and the activity values. (1) The network is constructed using mutual information between
528  the activity values of two TFs. (2) Interactions are filtered out if they cannot be found in the TF-target
529  regulatory database (i.e., D1). (3) The sign of each link is determined by the sign of the Spearman
530  correlation between the activity of two TFs. (4) We keep the interaction between two TFs if their mutual
531  information is higher than a threshold cutoff. With different cutoff values for mutual information, NetAct
532 establishes networks of different sizes. To identify the best network model capturing gene expression
533  profiles, we apply mathematical modeling to each of the TF networks using RACIPE?. RACIPE takes
534 network topology as the input and generates an ensemble of mathematical models with random kinetic
535  parameters. By simulating the network, we expect to obtain multiple clusters of gene expression patterns
536  that are constrained by the complex interactions in the network. RACIPE was also applied to generate
537  simulated benchmark test sets for a synthetic TF-target network (see Supplemental Material SI5).

538
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construction and network simulations, and the inferred network topology files are available in the GitHub

repository at https://github.com/lusystemsbio/NetActAnalysis. The NetAct software is available at

https://github.com/lusystemsbio/NetAct as an R package. NetAct is platform independent, written in R with

a partial of codes in C++ for improved performance. NetAct is licensed under the MIT License.
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Fig.1. Schematics of NetAct. (a) First, key transcription factors (TFs) are identified using gene set
enrichment analysis (GSEA) with a literature-based TF-target database. (b) Second, the TF activity of an
individual sample is inferred from the expression of target genes. From the co-expression and modularity
analysis of target genes, we find target genes that are either activated (blue), inhibited (red), or not
strongly related to the TF (grey). The activity is defined as the weighted average of target genes activated
by the TF minus the weighted average of target genes inhibited by the TF. (c) Lastly, a TF regulatory
network is constructed according to the mutual information of inferred TF activity and literature-based
regulatory interactions. (d) Performance of GSEA for various TF-target gene set databases. The plot
shows the sensitivity and specificity with different g-value cutoffs. The gene set databases in the
benchmark include the combined literature-based database (D1), FANTOMS5-based databases (D2) with
20, 50, 100 target genes per TF, the combined experimental-based database (D3, ChIP), and RcisTarget
databases (D4), one with 10 targets per TF binding motif and another with 50 total number of targets per
TF.
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769  Fig.2. Illustration of the grouping scheme for target genes of a transcription factor. (a) shows the co-

770  expression matrix of MYB target genes in shRNA knockdown of MYB lymphoma cells by hierarchical
771  clustering analysis (Pearson correlation and complete linkage). (b, ¢) demonstrate the poor clustering
772 results from the co-expression of randomly selected 100 (in b) and 200 genes (in ¢). In panels (a — ¢), the
773  left subplots show the outcomes of all tested genes, and the right subplots show the outcomes of genes
774  after the filtering step. Compared to the random cases, MYB target genes have a clear pattern of red and
775  blue diagonal blocks from their co-expression. (d, e) show the percentage of differentially expressed
776  genes remained after the filtering step in the case of FOXM1 and MYB knockdown, respectively. (f, g)
777  show the proportion of genes from the activation group that are positively correlated with the TF

778  expression (red bars) and the proportion of genes from the inhibition group that are negatively correlated
779  with the TF expression (blue bars). (h) Pearson correlation (average and standard deviation) between TF
780 activity and target expression (red) and between TF expression and target expression (blue).
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Fig. 3. Simulation of both gene expression and activity of a synthetic GRN. (a) shows the synthetic
GRN consisting of 30 TFs and 447 target genes. An edge of transcriptional activation is shown as black
line with an arrowhead; an edge of transcriptional inhibition as red line with a blunt head; an edge of
signaling interaction as green line with an arrowhead. Transcription factor labeled as TF9 was selected for
knockdown simulations. (b) shows the summary of the correlation analyses of the simulated expression
and activity. The left, middle, and right columns represent the outcomes for TF and target activities, TF
and target expressions, and TF activities and target expressions, respectively. For each category, the
histograms of Spearman correlations are shown for non-interacting gene pairs (first row), interacting gene
pairs (second row), gene pairs of excitatory transcriptional regulation (third row), gene pairs of excitatory
signaling regulation (fourth row), gene pairs of inhibitory transcriptional regulation (fifth row). Here, the
target activity is set to be the same as the target expression for non-TF genes. (¢) shows the histograms of
Spearman correlations for gene pairs of target genes from the same TF. (d) Jaccard indices between the
ground-truth regulons of the synthetic GRN and the regulons inferred by ARACNe using either the

simulated expression (red) or activity data (blue).
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Fig. 4. The performance of activity and network inference from a simulation benchmark. (a) TF
activity inference. TF activity was inferred by several methods using the gene expression data simulated
from the synthetic TF-target gene regulatory network (GRN) and the corresponding regulons. For each
TF, we computed Spearman correlations between the inferred activity and simulated activity (ground
truth) for all the simulated models. Then, we calculated the average correlation values over all TFs. The
plots show the median of average correlations for the cases where we used the original regulons defined
by the TF-target network (0% perturbation), and the regulons where 5 (25% perturbation), 10 (50%
perturbation), and 15 (75% perturbation) target genes are randomly replaced with non-interacting genes,
respectively. The median values were computed over 100 repeats of random replacement for each
perturbation level, and the values of the average correlations are reported for the case of zero perturbation.
Shown are the results for NetAct (red), NCA (blue), VIPER (cyan), AUCELL 1 where regulons contain
only positively associated target genes (orange), and AUCELL 2 where regulons contain all target genes
(green). (b-d) Network inference. The panels show the performance of network inference algorithms from
the simulation benchmark by the precision and recall for different link selection thresholds. (b) Network
inference performance against all ground-truth regulatory interactions. Tested methods are GENIE3,
GRNBoost2, and PPCOR, using transcription factor (TF) expression; GENIE3 using TF activity inferred
by AUCell; NetAct using its inferred TF activity. For the latter two methods, original (unperturbed)
regulons obtained from the regulatory network were used. (¢) Network inference performance of NetAct
against all ground-truth regulatory interactions using the regulons with 0% (the original), 25%, 50%, and
75% target perturbations. (d) Network inference performance of NetAct in discovering new regulatory
interactions not existing in the regulons. NetAct was applied using the regulons at different perturbation
levels (25%, 50%, and 75%). The benchmark results shown here are for the case of the untreated

simulation. The results for the case of the knockdown simulation are shown in Fig. S7.
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Fig. 5 Network modeling of TGF-B induced EMT. Application of NetAct to an EMT in human cell
lines using time-series microarray data. (a) Experimental expression and activity of enriched transcription
factors. (b) Inferred TF regulatory network. Blue lines and arrowheads represent gene activation; Red
lines and blunt heads represent gene inhibition. (¢) The relationship between SMAD3 gene activity and
the first principal component of the activity of all network genes from RACIPE simulations. (d)
Hierarchical clustering analysis of simulated gene activity (with Pearson correlation as the distance
function and Ward.D2 linkage method). Colors at top indicate the two clusters from the simulated gene
activity. The blue cluster represents the mesenchymal state, and the yellow cluster represents the
epithelial state. The color legend for the heatmap is at the bottom right. (e) Knockdown simulations of the
TF regulatory network. The bar plot shows the proportion of RACIPE models in each state (epithelial or

mesenchymal) for the conditions of the knockdown of every TF.
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852  Fig 6. Network modeling of macrophage polarization. Application of NetAct to induced macrophage
853  polarization via drug treatment in mice using RNA-seq data. (a) Experimental expression and activity of
854  enriched TFs. (b) PCA projection of genome-wide gene expression profiles. Different point shapes

855  indicate time after treatment, and colors indicate treatment types (¢) PCA projection of gene activity of
856  enriched TFs. (d) Inferred TF regulatory network. Blue lines and arrowheads represent gene activation;
857  Red lines and blunt heads represent gene inhibition. (e) PCA projection of simulated gene activity of
858 inferred network colored by mapping each model back to experimental data. (f) Hierarchical clustering
859  analysis of simulated gene activity (with Pearson correlation as the distance function and Ward.D2

860  linkage method). Colors at top indicate the mapped experimental conditions. The color legend of the
861  heatmap is at the bottom.
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