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 2 

Abstract 19 

A major question in systems biology is how to identify the core gene regulatory circuit that governs 20 

the decision-making of a biological process. Here, we develop a computational platform, named NetAct, 21 

for constructing core transcription-factor regulatory networks using both transcriptomics data and 22 

literature-based transcription factor-target databases. NetAct robustly infers regulators’ activity using target 23 

expression, constructs networks based on transcriptional activity, and integrates mathematical modeling for 24 

validation. Our in-silico benchmark test shows that NetAct outperforms existing algorithms in inferring 25 

transcriptional activity and gene networks. We illustrate the application of NetAct to model networks 26 

driving TGF- induced epithelial-mesenchymal transition and macrophage polarization. 27 

 28 

 29 
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Background 35 

One of the major goals of systems biology is to infer and model complex gene regulatory networks 36 

(GRNs) which underpin the biological processes of human disease1–6. Particularly important are those gene 37 

networks that control decisions regarding cellular state transitions (e.g., replicative to quiescent7–9, epithelial 38 

to mesenchymal (EMT)10, pluripotent to differentiated11,12), given the central importance of such regulatory 39 

processes to both healthy development as well as diseases such as cancer.  40 

 41 

To construct and model GRNs associated with the biological process under investigation, researchers 42 

have developed two primary systems biology approaches.  The first is a bottom-up approach, in which 43 

researchers focus on identifying a core GRN composed of a small set of master regulators13. Once the core 44 

GRN is obtained, mathematical modeling is then applied to simulate the gene expression dynamics14–17, 45 

which helps elucidate the potential gene regulatory mechanism driving the biological process in question. 46 

The current practice for synthesizing a core GRN is by compiling data via an extensive literature search, 47 

e.g., in these studies18–20. While this works well for systems where sufficient knowledge has been gained 48 

and accumulated, it is less effective in cases where key component genes and regulatory interactions have 49 

yet to be discovered. Due to rapid increase of biomedical publications, manual synthesis of literature 50 

information has become extremely time-consuming and prone to human error in data interpretation. One 51 

way to address the labor-intensive issue is to rely on existing manually curated databases, such as KEGG21 52 

and Ingenuity Pathway Analysis (IPA)22. However, these databases often compile gene regulatory 53 

interactions from different tissues, species, or diseases. Therefore, it is hard to obtain context-specific 54 

interactions directly from these types of databases.  55 

 56 

The second approach adopts a top-down perspective, in which researchers apply bioinformatics and 57 

statistical methods on genome-wide transcriptomics and/or genomics data to infer large-scale GRNs13. 58 

These data-driven methods are ideal for obtaining a global picture of gene regulation and the overall 59 

structure of gene-gene interactions. This approach also helps to characterize key regulators and regulatory 60 
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interactions between genes that are specific to the biological context of the study. However, conventional 61 

bioinformatics methods for gene network inference are usually not designed to identify an integrated 62 

working system. These methods typically rely on significance tests to determine the nodes and edges of a 63 

gene network, yet it is rare to evaluate whether the constructed gene network is capable of operating as a 64 

functional dynamical system23. Moreover, many statistical methods work well to identify the association 65 

between genes, but not their causation, thus limiting the applicative value of the top-down approach in 66 

characterizing gene regulatory mechanisms.  67 

 68 

To overcome the above-mentioned issues, a relatively new approach has been explored in several 69 

studies in which the top-down and bottom-up approaches are integrated to infer and model a core GRN23–70 

31. In this combined approach, a GRN is constructed with bioinformatics tools using genome-wide gene 71 

expression data, followed by mathematical modeling of the GRN to simulate gene expression steady states 72 

and explore their similarity with biological cellular states. The simulations can help validate the accuracy 73 

of the constructed GRN and further clarify the regulatory roles of genes and interactions in driving cellular 74 

state transitions. This combined approach helps to discover existing and new regulatory interactions specific 75 

to the cell types and experimental conditions under study. Additionally, it helps pinpoint master regulators 76 

and reduce the system’s overall complexity. The GRN modeling is particularly crucial for cases with non-77 

trivial cellular state transitions, such as multi-step state transitions as observed in Epithelial-Mesenchymal 78 

Transition (EMT)32, and bifurcating state transitions, as observed in stem cell differentiation33. This is 79 

because the GRNs constructed by the top-down approach are not guaranteed to capture these state transition 80 

patterns. So far, to the best of our knowledge, there is no computational platform available that utilizes this 81 

combined approach for systematic GRN inference and modeling.  82 

 83 

In this study, we introduce a computational platform, named NetAct, for inferring a core GRN of key 84 

transcription factors (TFs) using both transcriptomics data and a literature-based TF-target database. 85 

Integrating both resources allows us to take full advantage of the existing knowledgebase of transcriptional 86 
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regulation. NetAct adopts the combined top-down bioinformatics and bottom-up systems biology 87 

approaches, designed specifically to address the following two major issues. 88 

 89 

First, many network inference methods rely on correlations of gene expression data, yet the actual 90 

transcriptional activities of many master regulators may not be reflected in their gene expression. Instead, 91 

the activity may be better associated with either their protein level, the level of a certain posttranslational 92 

modification, localization, or their DNA binding affinity. As a result, the master regulators with weak 93 

correlations between the expression level and the transcriptional activity will likely be discarded in the 94 

network. Some algorithms have been developed to infer the activities of regulators from transcriptomics 95 

data, such as VIPER34, NCA35, AUCELL36.  However, most of these algorithms 1) are not designed for 96 

gene network modeling, or 2) still rely on coexpression of a TF and its targeted genes, or 3) do not take 97 

advantage of known regulatory interactions from the literature, hindering their applicability as automated 98 

algorithms for generic use in systems biology. 99 

 100 

Second, conventional mathematical modeling approaches have been applied over the years to simulate 101 

the dynamics of a GRN, yet they are not particularly effective in analyzing core GRNs. A popular method 102 

models the gene expression dynamics of a system using the chemical rate equations that govern the 103 

associated gene regulatory processes. However, it is difficult to directly measure most of the kinetic 104 

parameters of a GRN. Although some parameter values can be learned from published results, many others 105 

are often based on educated guesses which significantly limits the predictive power of mathematical 106 

modeling. Moreover, a core GRN is not an isolated system. Thus, an ideal modeling paradigm should also 107 

consider other genes that interact with the core network. To address this infamous parameter issue, we have 108 

developed the modeling algorithm RACIPE29,37,38 in previous work that analyzes a large ensemble of 109 

mathematical models with random kinetic parameters. RACIPE has been applied to model the dynamical 110 

behavior of gene regulatory networks of different biological processes, such as epithelial-mesenchymal 111 

transition23,29, cell cycle38, stem cell differentiation39. 112 
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 113 

The new NetAct platform addresses the above-mentioned issues by (1) inferring the activities of TFs 114 

for individual samples using the gene expression levels of their targeted genes, (2) identifying the regulatory 115 

interactions between two TFs based on their activities rather than their expressions, (3) and subsequently 116 

simulating the constructed core GRN with RACIPE to validate and evaluate the gene expression dynamics 117 

of the core GRN. In this paper, we describe in detail the NetAct platform, extensive benchmark tests for 118 

TF-target databases, TF activity inference, and network construction, and two examples of applications to 119 

model GRNs with time series gene expression data.  120 

 121 

Results 122 

We developed a computational systems-biology platform, named NetAct, to construct transcription 123 

factor (TF)-based GRNs using TF activity. The method uniquely integrates both generic TF-target 124 

relationships from literature-based databases and context-specific gene expression data. NetAct also 125 

integrates our previously developed mathematical modeling algorithm RACIPE to evaluate whether the 126 

constructed network functions properly as a dynamical system. It evaluates the roles of every gene in the 127 

network by in-silico perturbation analysis. NetAct has three major steps: (1) identifying the core TFs using 128 

gene set enrichment analysis (GSEA)40 with an optimized TF-target gene set database (Fig. 1a); (2) inferring 129 

TF activity (Fig. 1b); (3) constructing a core TF network (Fig. 1c). Then, the network is validated and 130 

analyzed by simulating its dynamics using mathematical modeling by RACIPE (see Supplemental Material 131 

SI5). Details of each step is given in the Methods section and Supplemental Material. Below, we 132 

demonstrate how we optimized the NetAct algorithm, compared its performance of activity inference with 133 

three existing methods using in-silico gene expression data, and applied the network modeling approach to 134 

two biological datasets.  135 

 136 

Literature-based TF-target relationships facilitate TF inference 137 

 138 
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To establish a comprehensive gene set database containing TF-target relationships, we considered data 139 

from different sources (Table S1, also see Supplemental Material SI1). They are (D1) a literature-based 140 

database, consisting of data from TRRUST41, RegNetwork42, TFactS43, and TRED44; (D2) a gene regulatory 141 

network database FANTOM545, whose interactions are extracted from networks constructed using RNA 142 

expression data from 394 individual tissues; (D3) a database derived from resources of putative TF binding 143 

targets, including ChEA46, TRANSFAC47, JASPAR48, and ENCODE49; and (D4) a database derived from 144 

motif-enrichment analysis, RcisTarget50. These databases have been frequently used to study transcriptional 145 

regulations and have already been utilized for network construction29,51. 146 

 147 

We evaluated the performance of these databases by GSEA on a benchmark dataset. GSEA is a popular 148 

statistical method that can be used to evaluate significant overlapping between a set of genes and 149 

differentially expressed genes between two experimental conditions. Using various types of TF-target 150 

databases, our goal is to find the best version of the database, so that GSEA can detect the target gene sets 151 

of the relevant TFs to be statistically significant. This benchmark dataset, denoted as set B, consists of a 152 

compilation of 11 microarray and 27 RNA-Seq gene expression data (Table S2). Each of these datasets 153 

contains at least three samples under the normal condition (control) and three samples under the treatment 154 

condition in which a specific TF is treated by knockdown (KD). We applied GSEA (with slight 155 

modifications, details in Methods) on the set B to evaluate whether the enrichment analysis can detect the 156 

perturbed TFs. The underlying assumption is that, with a better TF-target gene set database, GSEA will be 157 

more likely to detect the corresponding perturbed TFs. For each TF-target database and each gene 158 

expression data in set B, we calculated the q-values of all the TFs in the database by GSEA to determine 159 

whether the target genes of the perturbed TF are enriched in the differentially expressed genes. We found 160 

that more significant q-values are usually associated with relatively larger number of targets for each TF; 161 

however, too many (e.g., greater than 2000) targets will result in non-significant q-values. The summary 162 

statistics, such as the total number of TFs and the average number of target genes per TF, are summarized 163 

in Table S1. Furthermore, these corresponding q-values from all the gene expression data are converted to 164 
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 8 

specificity and sensitivity values (see Methods), and different databases are compared based on the area 165 

under the sensitivity-specificity curves (Fig. 1d).  We found that the literature-based database has the best 166 

overall performance, thus we used this database for further analyses. Our results are in line with a previous 167 

benchmark study52 that literature-based TF-target database outperforms others in capturing transcriptional 168 

regulation. 169 

 170 

Inferring TF activity without using TF expression 171 

 172 

NetAct can accurately infer TF activity for an individual sample directly from the expression of genes 173 

targeted by the TF (see Methods). In the following, we will illustrate how NetAct infers TF activity on two 174 

cases of microarray KD experiments -- one case for shRNA KD of FOXM1 and shRNA KD of MYB in 175 

lymphoma cells (GEO: GSE1717253), and another case for KD of BCL6 on both OCI-Ly7 and Pfeiffer 176 

GCB-DLBCL cell lines (GEO: GSE4583834). NetAct first successfully identified the TFs that undergo 177 

knockdown in each case, i.e., FOXM1, MYB and BCL6 respectively, by applying GSEA on the optimized 178 

TF-target database (q value < 0.15). 179 

 180 

Next, for each identified TF, NetAct calculates its activity using the mRNA expression of the direct 181 

targets of the TF. We first constructed a Spearman correlation matrix from the expression of the targeted 182 

genes. As shown in Fig. 2a, the correlation matrix after hierarchical clustering analysis typically consists 183 

of two red diagonal blocks, two blue off-diagonal blocks, and the remaining elements with low correlations 184 

which will be filtered out subsequently (details in Methods). Within the red blocks, the expression of any 185 

column gene is positively correlated with that of any row gene; while within the blue blocks, the expression 186 

of any column gene is negatively correlated with that of any row gene. This indicates that the genes in the 187 

two red blocks are anti-correlated in gene expression with each other. However, if the correlation matrix is 188 

constructed from 100 or 200 randomly selected genes (Fig. 2bc), such a clear pattern disappears. Thus, our 189 

observation suggests that genes from one of the red blocks are activated by the TF, whereas genes from the 190 
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 9 

other block are inhibited by the TF. Moreover, filtered genes are not likely to be directly targeted by the TF 191 

in this context, or they are regulated by multiple factors simultaneously and are thus likely not a good 192 

indicator for the TF activity.  193 

 194 

We further evaluated how the filtering step removes noise and retains the important genes in the 195 

analysis. We found that, after the filtering step, most of the differentially expressed (DE) genes are retained, 196 

as evidenced by Fig. 2d. Here, DE genes from each comparison were retrieved by using limma with a cutoff 197 

for the adjusted p-values at 0.05 and a cutoff for the log2 fold changes at 2. Subsequently, for DE TFs we 198 

evaluated the Spearman correlations between the TFs and the corresponding targeted genes. In traditional 199 

approaches (such as ARACNe1, WGCNA54, and BEST55), the co-expression between a TF and its targeted 200 

genes are commonly used to identify its association and assign the sign (activation or inhibition) of the 201 

regulation. We found that, for each TF, most of the genes in a block either positively correlate with the TF 202 

expression (Fig. 2fg, blue bars), or they negatively correlate with the TF expression (Fig. 2fg, red bars). 203 

The tests demonstrate that, without directly using TF expression, NetAct can successfully identify two 204 

groups of important target genes – genes in each group are either activated or inhibited by the TF. These 205 

two groups of genes are further used to infer TF activity by a weighted average of their gene expression 206 

(Equation 1 in Methods). Additionally, we found that the correlations between inferred TF activity and 207 

target expression are usually higher than the correlations between TF expression and target expression (Fig. 208 

2h).  209 

 210 

Evaluating activity inference and network construction in a simulation benchmark 211 

 212 

To evaluate the accuracy and robustness of inferred TF activity, we performed extensive benchmark 213 

tests to compare NetAct with other existing methods. We first performed the benchmark tests on simulated 214 

data because TF activity is usually not directly measurable. The activity of a TF can be related to its protein 215 

level or the level of a particular posttranslational modification, such as phosphorylation. Therefore, it is 216 
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 10 

very difficult to obtain the ground truth of TF activity from an experimental data set. Thus, in this 217 

benchmark test, we rely on mathematical modeling to simulate both the expression and activity of each TF 218 

from a synthetic TF-target network. With this simulated data, we benchmark NetAct against other methods. 219 

 220 

To establish the simulated benchmark data set, we first constructed a synthetic TF-target network with 221 

a total of 30 TFs. Each TF has 20 target genes randomly selected with replacement from a pool of 1000 222 

genes. In addition, each TF also regulates two (randomly selected) of the 30 TFs. This synthetic network 223 

has a hierarchical structure, where a target gene may be co-regulated by multiple TFs. The type of each TF-224 

to-TF regulation is either excitatory, inhibitory, or signaling, with a chance of 25%, 25%, and 50%, 225 

respectively; the type of each TF-to-target regulation is either excitatory or inhibitory with a 50% chance 226 

for each. Here, the signaling regulation changes the activity of a TF without changing its expression; 227 

whereas the excitatory or inhibitory interactions changes both of the activity and expression. From one 228 

realization of the synthetic network generation, the final synthetic network contains a total of 477 genes (30 229 

TFs, 447 targeted genes) and 660 regulatory links (Fig. 3a). See Supplemental Material SI4 for more details. 230 

 231 

To simulate the gene expression of the TF-target network, we applied a generalized version of the 232 

mathematical modeling algorithm, RACIPE38. Using the network topology as the only input, RACIPE can 233 

generate an ensemble of random models, each corresponds to a set of randomly sampled parameters. Here, 234 

we used RACIPE to generate simulated data including gene expression and TF activity for benchmark. 235 

Some previous studies have also adopted a similar modeling approach for benchmarking56,57. To consider 236 

the effects of a signaling regulatory link, we generalized RACIPE to simulate both expression and activity 237 

for each TF. See Supplemental Material SI5 for more details.  238 

 239 

In the benchmark test, we used RACIPE to simulate 100 models with randomly generated kinetic 240 

parameters. From these 100 models we obtained 83 stable steady-state gene expression and activity profiles 241 

for the 477 genes. As expected, TF activity and target activity from a regulatory link are correlated (1st 242 
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column, 2nd row in Fig. 3b); TF activity and target expression (3rd column, 2nd row in Fig. 3b) are correlated; 243 

and the expression of two target genes (Fig. 3c) are correlated. However, there is no strong correlation 244 

between TF expression and target expression (2nd column, 2nd row in Fig. 3b) and, for a signaling regulatory 245 

link, between TF activity and target expression (3rd column, 4th row in Fig. 3b). Next, we applied ARACNe 246 

to predict the regulon (i.e., the list of targeted genes by a specific TF) using either the simulated expression 247 

profiles or the simulated activity profiles. We found that the regulons predicted from the activity profiles 248 

are substantially more similar to the predefined regulons (measured by the Jaccard similarity58) than those 249 

predicted from the expression profiles (Fig. 3d). The results indicate the need of using the TF activity, 250 

instead of TF expression, to identify TF-target relationships.  251 

 252 

Next, we compared the performance of NetAct with several related algorithms, NCA, VIPER, and 253 

AUCell, in inferring TF activity using both the simulated expression profiles from the 83 models and a 254 

predefined regulon (i.e., the association of each TF with its target genes) (details for the implementation of 255 

these algorithms in Supplemental Information SI3). The predicted activity was then compared with the 256 

simulated activity (ground truth) to evaluate the performance. To mimic the real-life scenario where the 257 

target information may not be complete and accurate, we consider more challenging tests where the regulon 258 

data is randomly perturbed. Here, for a specific perturbation level, we generated 100 sets of regulon data 259 

by replacing a certain number of target genes for each TF with non-interacting genes. The numbers of 260 

replaced genes are 0 (0% level of perturbation), 5 (25%), 10 (50%) and 15 (75%), respectively, in different 261 

tests. We then evaluated the performance of NetAct, NCA, and VIPER. AUCell protocol advises to include 262 

the target genes with only positive interactions in the regulons. To satisfy this criterion, we updated the 263 

regulons for both unperturbed and perturbed regulons. For the unperturbed regulons, we retained only the 264 

positive interactions; for the perturbed regulons, we retained the positive target genes that were not replaced 265 

and a random half of the replaced target genes (assuming that half of the genes are positively regulated by 266 

the TF). We then evaluated AUCell performance using these updated regulons (denoted AUCell 1) and 267 

non-updated regulons (denoted AUCell 2). As shown in Fig. 4a (also Figs. S3-S6), NetAct significantly 268 
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outperforms each of the other methods in reproducing the simulated activity profiles at each perturbation 269 

level. As expected, the performance of NetAct is decreased by increasing the perturbation levels of the 270 

regulon data; however, NetAct still performs reasonably well even when only 25% of the actual target genes 271 

are kept in the regulon data. The results indicate that NetAct can robustly and accurately infer TF activity 272 

even with a noisy TF-target database.  273 

 274 

Furthermore, we tested another scenario where the test data contains simulated data from two 275 

experimental conditions, e.g., one representing an unperturbed condition and the other representing a 276 

perturbed condition. Here, we used the same synthetic network but compiled 40 expression and activity 277 

data from the above-mentioned simulation (unperturbed condition), together with 43 expression and activity 278 

data from the simulations in which a specific TF (TF9) is knocked down (perturbed condition). We then 279 

performed a similar test as above and found that NetAct outperformed each of the other methods (Fig. S2 280 

and Fig. S7a). The notable performance gain of NetAct mainly emanates from the removal of incoherent 281 

(or noisy) targets of a TF before the activity calculation in NetAct (see Methods). 282 

 283 

In addition, we performed a network construction benchmark of NetAct and a few other network 284 

construction algorithms using the in-silico simulation data set, as shown in Fig. 4bcd. NetAct, using the 285 

TF activity inferred from the original regulon database, outperforms not only network construction 286 

methods using gene expression, such as GENIE359, GRNBoost260, and ppcor61,62, but also GENIE3 using 287 

the TF activity inferred by AUCell (Fig. 4b). The last approach was presented to mimic a popular method 288 

SCENIC. Moreover, we evaluated the performance of NetAct when using a perturbed regulon database. 289 

We found that NetAct remains performing well when the perturbation level is as large as 50%, when 290 

evaluated by all the ground-truth interactions (Fig. 4c) and by those not presented in regulon database 291 

(Fig. 4d). The latter case was designed to evaluate the capability of NetAct in predicting novel 292 

interactions. We observed similar outcomes for the case of the second scenario of the simulation data 293 

from two conditions (Fig. S7bcd) (see Supplemental Information SI6 for details of the benchmark 294 
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method). In summary, our in-silico benchmark test demonstrates the high performance of NetAct over 295 

existing state-of-the-art methods in both inferring TF activity and gene regulatory networks. 296 

 297 

Characterizing cellular state transitions by GRN construction and modeling 298 

 299 

In the previous sections, we demonstrated the capability of NetAct in identifying the key TFs and 300 

predicting TF activity. With these data, NetAct further constructs a TF-based GRN using the mutual 301 

information (MI) of the activity from the identified TFs (details in Methods). We then applied RACIPE to 302 

the constructed network to check whether the simulated network dynamics are consistent with experimental 303 

observations. In the following, we show the utility of NetAct with two biological examples: epithelial-304 

mechanical transition (EMT) and macrophage polarization. 305 

 306 

In the first case (EMT), we analyzed a set of time-series microarray data on A549 epithelial cells 307 

undergoing TGF- induced epithelial-mesenchymal transition (EMT) (GEO: GSE17708)63. According to 308 

the overall structure of the transcriptomics profiles, we arranged samples from different time points into 309 

three groups – early stage (time points 0h, 0.5h and 1h), middle stage (time points 2h, 4h, and 8h) and late 310 

stage (time points 16h, 24h, and 72h). We then performed three-way GSEA with our human literature-311 

based TF-target database to identify enriched TFs that are active between either early-middle, early-late 312 

and middle-late timepoints. Forty-one TFs (q-value cutoff 0.01) were identified including many major 313 

transcriptional master regulators, such as BRCA1, CTNNB1, MYC, TWIST1, TWIST2 and ZEB1, and 314 

factors that are directly associated with TGF- signaling pathway, such as SMAD364, FOS and JUN65. The 315 

hierarchical clustering analysis (HCA) of the expression and activity profiles for these TFs is shown in Fig. 316 

5a. While the expression profiles are quite noisy, the activities show a clear gradual transition from the 317 

epithelial to mesenchymal (M) state. Note that the signs of the activity of a few non-DE TFs were flipped 318 
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according to experimental evidence of protein-protein interactions and the nature of transcriptional 319 

regulation (see Methods for detailed procedures and Table S3 for a list of the changes). 320 

 321 

We then constructed a TF regulatory network (Fig. 5b) and performed mathematical modeling to 322 

simulate the dynamical behavior of the network using RACIPE (Fig. 5cd). We found that, consistent with 323 

the expression and activity profiles (Fig.5a), the network clearly allows two distinct transcriptional clusters 324 

that can be associated with E (the yellow cluster in Fig.5d) and M states (the blue cluster in Fig.5d). To 325 

assess the role of TGF- signaling in inducing EMT, we performed a global bifurcation analysis29 in which 326 

the SMAD3 level is used as the control parameter (Fig. 5c). Here, SMAD3 was selected as it is the direct 327 

target of TGF- signaling64. As shown in (Fig. 5c), when SMAD3 level is either very low or high, the cells 328 

reside in E or M states. However, when SMAD3 is at the intermediate level, the cells could be driven into 329 

some rare hybrid phenotypes. These results are consistent with our previous studies on the hybrid states of 330 

EMT32,66. Using RACIPE, we systematically performed perturbation analyses by knocking down every TF 331 

in the network. Our simulation results (Fig. 5e) suggest that knocking down TFs, such as RELA, SP1, 332 

EGR1, and CREBBP, etc., has major effects in driving M to E transition (MET), while knocking down TFs, 333 

such as TP53, AR, and KLF4, etc., has major effects in driving E to M transition (EMT). These predictions 334 

are all consistent with existing experimental evidence (Table S4). 335 

 336 

Compared to a previous model of the EMT network based on an extensive literature survey19, the 337 

GRN constructed by NetAct identified some of the same regulators induced by the TGF- pathway, such 338 

as SMAD3/4, TWIST2, ZEB1, CTNNB1, NFKB1, RELA, FOS and EGR1. Because of the lack of 339 

microRNAs and protein-protein interactions in the database, NetAct didn’t identify factors like miR200 340 

and signaling molecules like PI3K. Interestingly, the NetAct model identifies STAT1/3, which was 341 

connected to other signaling pathways, such as HGF, PDGF, IGF1and FGR, but not TGF- in the 342 

previous network model. In addition, the NetAct model identified regulators in other important pathways 343 
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in TGF--induced EMT in cancer cells, e.g., cell cycle pathway (RB1 and E2F1) and DNA damage 344 

pathway (P53).  345 

 346 

In the second case, we studied the macrophage polarization program in mouse bone-marrow-derived 347 

macrophage cells using time series RNA-seq data (GEO: GSE84517)67. In this experiment, macrophage 348 

progenitor cells (denoted as UT condition) were treated with (1) IFN to induce a transition to the M1 state; 349 

(2) IL4 to induce a transition to the M2 state; (3) both IFN and IL4 to induce a transition to a hybrid M 350 

state. Here, we reprocessed the raw counts of RNA-seq with a standard protocol (details in Supplemental 351 

Material SI2). From principal component analysis (PCA) on the whole transcriptomics (Fig.6b), we found 352 

that the gene expression undergoes distinct trajectories when macrophage cells were treated with either 353 

IFN (M1 state) or IL4 (M2 state). When both IFN and IL4 were administered, the gene expression 354 

trajectories are in the middle of the previous two trajectories, suggesting that cells are in a hybrid state 355 

(hybrid M state). We aim to use NetAct to elucidate the crosstalk in transcriptional regulation downstream 356 

of cytokine-induced signaling pathways during macrophage polarization. 357 

 358 

Here, we applied GSEA on six comparisons – untreated versus IFN treated samples (one comparison 359 

between the untreated and the treated after two hours, another between the untreated and the treated after 360 

four hours, same for the other comparisons), untreated versus IL4 treated samples, and untreated versus 361 

IFN+IL4 treated samples. Using our mouse literature-based TF-target database, we identified 79 TFs (q-362 

value cutoff 0.05 for UT vs IL4-2h and 0.01 for all others). The expression and activity profiles of these 363 

TFs (Fig. 6abc) captures the essential dynamics of transcriptional state transitions during macrophage 364 

polarization as follows. NetAct successfully identified important TFs in these processes, including Stat1, 365 

the major target of IFN, Stat2,  Stat6, Cebpb, Nfkb family members, Hif1a and Myc68–70. Myc is known to 366 

be induced by IL-4 at later phases of M2 activation and required for early phases of M1 activation69. 367 

Interestingly, we find Myc has high expression in both IL4 stimulation and its co-stimulation with IFN but 368 
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its activity is high only in IL4 stimulation. We then constructed a TF regulatory network that connects 60 369 

TFs (Fig. 6d) and simulated the network with RACIPE, from which we found that simulated gene 370 

expression (Fig. 6f) matches well with experimental gene expression data (Fig.6a) (see Supplemental 371 

Information SI7). RACIPE simulations display disparate trajectories from UT to IL4 or IFN activation and 372 

stimulation with both IL4 and IFN. Strikingly, we found in the simulation that there is a spectrum of hybrid 373 

M states between M1 and M2 (Fig. 6e), which is consistent with experimental observations of macrophage 374 

polarization68.  Moreover, we also predict from our GRN modeling that the transition from UT to hybrid M 375 

is likely to first undergo a transition to either M1 or M2 before a second transition to hybrid M (Fig. 6e). 376 

This is because of our observation from the simulation data that there are fewer models connecting UT and 377 

hybrid M than any of the other two routes (i.e., UT to M1, and UT to M2) (Fig. S10). Taken together we 378 

showed that the NetAct-constructed GRN model captures the multiple cellular state transitions during 379 

macrophage polarization.  380 

 381 

In conclusion, we show that NetAct can identify the core TF-based GRN using both the literature-based 382 

TF-target database and the gene expression data. We also demonstrate how RACIPE-based mathematical 383 

modeling complements NetAct-based GRN inference in elucidating the dynamical behaviors of the inferred 384 

GRNs. Together these two methods can be applied to infer biologically relevant regulatory interactions and 385 

the dynamical behavior of biological processes.  386 

 387 

Discussion 388 

In this study, we have developed NetAct – a computational platform for constructing and modeling 389 

core transcription factor (TF)-based regulatory networks. NetAct takes a data-driven approach to establish 390 

gene regulatory network (GRN) models directly from transcriptomics data and takes a mathematical 391 

modeling approach to characterize cellular state transitions driven by the inferred GRN. The method 392 

specifically integrates both literature-based TF-target databases and transcriptomics data of multiple 393 
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experimental conditions to accurately infer TF transcriptional activity based on the expression of their target 394 

genes. Using the inferred TF activity, NetAct further constructs a TF-based GRN, whose dynamics can then 395 

be evaluated and explored by mathematical modeling. Our approach in combining top-down and bottom-396 

up systems biology approaches will contribute to a better understanding of gene regulatory mechanism of 397 

cellular decision making. NetAct is made freely available as an R package71. 398 

 399 

One of the key components of NetAct is a pre-compiled TF-target gene set database. Here, we have 400 

evaluated different types of TF-target databases in identifying knocked down TFs using publicly available 401 

transcriptomics data sets. In this test, we have considered databases derived from literature, gene co-402 

expression, cis-motif prediction, and TF-binding motif data. Our benchmark tests suggest that the literature-403 

based database clearly outperformed the other databases. The literature-based database usually contains a 404 

small (~30) number of target genes for each TF, but these data have direct experimental evidence, therefore 405 

being more reliable than those from the other sources. However, the literature-based database for sure has 406 

missing regulatory interactions, therefore maybe limiting the overall performance of NetAct. One way to 407 

address this issue is to further update the literature-based database, once new information is available. 408 

Another potential approach is to compile a database by combining different types of databases together. 409 

However, this might be quite challenging as different databases have data of very different sizes (the 410 

number of target genes) and quality. Future investigations on this direction can help to expand our 411 

knowledge of transcriptional regulation and meanwhile improve the performance of the algorithm.  412 

 413 

NetAct also has a unique approach to infer the TF activity from the gene expression of the target genes 414 

with the consideration of activation/inhibition nature. From our in-silico benchmark tests, we found that 415 

NetAct outperforms major activity inference methods, owing to the design of the filtering step and the use 416 

of a high-quality TF-target database. NetAct is also robust against some inaccuracy in the TF-target 417 

database and noises in gene expression data, because of its capability of filtering out irrelevant targets as 418 

well as remaining key targets.  419 
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 420 

One potential issue is the assignment of the sign of TF activity, as it is algorithmically assigned 421 

according to the correlation with TF expression. In the case where the TF expression is very noisy or the 422 

expression is completely unrelated to TF activity, the sign assignment might be inaccurate. To deal with 423 

this issue, we have devised a semi-manual approach that identifies the sign of TF activity according to the 424 

sign of other interacting TFs. Another potential issue is that some TFs from the same family may have very 425 

similar target genes, therefore NetAct will have difficulty in identifying exactly which TF from the family 426 

is most relevant. Additional data resources, such as epigenomics72, TF-binding data36 and Hi-C data73, will 427 

be helpful to address this problem. One of the future directions is to design methods to integrate these data 428 

resources. 429 

 430 

Lastly, instead of constructing a global transcriptional regulatory network, NetAct focuses on modeling 431 

a core regulatory network with only interactions between key TFs. The underlying hypothesis is that these 432 

TFs and the associated regulatory interactions play major roles in controlling the gene expression of 433 

different cellular states and the patterns of state transitions. With the core network identified using NetAct, 434 

we can further perform simulations with mathematical modeling algorithms, such as RACIPE, to analyze 435 

the control mechanism of the core network. These simulations allow us to generate new hypotheses, which 436 

can be further tested experimentally. The validation data can further help to improve the model. Ideally, 437 

this needs to be an iterative process to refine a core network model, which is indeed another interesting 438 

future direction. 439 

 440 

Conclusions 441 

We developed NetAct, a computational platform for constructing and modeling core transcription-442 

factor regulatory networks using both transcriptomics data and literature-based transcription factor-target 443 

gene databases. Utilizing both types of resources allows us to identify regulatory genes and links specific 444 

to the data and fully take advantage of the existing knowledgebase of transcriptional regulation. Our method 445 
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in combining top-down and bottom-up systems biology approaches contributes to a better understanding of 446 

the mechanism of gene regulation driving cellular state transitions. 447 

  448 
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Methods 449 

Selecting Enriched TFs 450 

For a comparison between two experimental conditions, we obtained a ranked gene list quantified by 451 

the absolute value of the test statistics (t statistics in microarray and Wald test statistics in RNA-Seq) from 452 

differential expression (DE) analysis74, followed by gene set enrichment analysis (GSEA)75 using our 453 

optimized transcription factor (TF)-target gene set database. Here, for each TF, the corresponding gene set 454 

consists of all its target genes. GSEA identifies important TFs whose targets are enriched in DE genes 455 

between the two conditions. The significance test is achieved through 10,000 permutations of the gene list 456 

names and TFs are kept for further analysis when q value is below a certain threshold cutoff (0.05 by 457 

default). A C++ implementation of this version of GSEA, specifically for gene name permutations, has 458 

been provided in NetAct for fast computation. For multiple comparisons, a set of enriched TFs are first 459 

identified from each pairwise comparison and then a union of the multiple sets of TFs is considered.   460 

 461 

In the database benchmark test, for each database, we computed the sensitivity and specificity values 462 

for different q-value cutoffs. Here, for each cutoff value, we defined the sensitivity as the proportion of data 463 

sets where the gene sets for the KD TFs were enriched with q-values below the cutoff value. We also 464 

defined specificity as the fraction of cases where the gene sets for the other TFs (non-KD TFs in the 465 

benchmark) were not enriched with q-values above the cutoff value. We then computed area under the ROC 466 

curve (AUC) using the DescTools R package76.  467 

 468 

Inferring TF activity 469 

TF activity is inferred from the expression of target genes retrieved from the TF-target database. NetAct 470 

defines the activity of the selected TFs using two different schemes – one using only the expression of 471 

target genes and the other using the expression of both the TF and its target genes. The second scheme is 472 

only used for the situation of noisy target gene expression. For each TF, the algorithm selects the better 473 

scheme according to their performance, as described below.  474 
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 475 

Without directly using TF expression: For each TF, its downstream targets are first divided into two 476 

modules using the Newman’s community detection algorithm77 on the pairwise Spearman correlation 477 

matrix of the target genes. Then, within each module some less-correlated genes are filtered out to improve 478 

the quality of the inference.  Here, the filtering step is achieved as follows: (1) each target gene is assigned 479 

a vector of correlations with the other target genes, where the distance between two genes is calculated as 480 

the sum of squares of the correlation vectors of two genes. (2) k-mean algorithm (k = 1) is performed within 481 

each cluster to determine the center vector. (3) genes are filtered out if the distance between the genes and 482 

the center is larger than the average distance.  483 

 484 

This step outputs two groups of genes – genes in one group are supposed to be activated by the TF, 485 

while genes in the other group are inhibited by the TF. Note, at this stage, the nature of activation/inhibition 486 

of the individual group is not yet determined. The activity of the TF is calculated as  487 

�(Ā�) = ∑ ���=1 �����∑ ���=1 �      (eq 1), 488 

where ��  is the standardized expression value of a target gene �, �� is the weighting factor defined as a Hill 489 

function: 490 �� = 1/[1 + (���0)�]    (eq 2), 491 

where �� is the adjusted p value from DE analysis for gene �, the threshold ÿ0 is 0.05, and n is set to be 1/5 492 

for best performance (Fig. S8). �� is 1 if the corresponding gene belongs to the first group and -1 if it belongs 493 

to the second group. If the calculated TF activity pattern is not consistent with the TF expression trend 494 

(evaluated by Spearman correlation), both the sign of the two groups and the sign of the activity are flipped. 495 

According to our in-silico benchmark test (Fig. S9), we found that majority of the targets in one group are 496 

activated by the TF, and majority of those in the other group are inhibited by the TF. For genes in the 497 

inhibition group, the higher the TF activity, the more the genes are suppressed. Thus, the formula in 498 

Equation (1) captures well the activity of TFs for their effects to both activating and inhibitory targets.  We 499 
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also explored a few other community detection algorithms78–80 and found they produced similar results (Fig. 500 

S1). 501 

 502 

Using TF expression: For each TF, its downstream targets are first divided into two groups according to 503 

the sign of the Spearman correlation between the TF expression and the target expression. Similar to the 504 

previous scheme, in each group, target genes are filtered out if the correlation value is less than the average 505 

correlation of all the targets. The activity of the TF is also calculated using Equation 1. 506 

 507 

Sign assignment for DE TF: For any DE TF (i.e., there is significant difference in TF expression across cell 508 

type conditions) of interest, NetAct computes the activity values from both the schemes (with or without 509 

TF’s expression), and selects the better way based on how well the activity values correlate with target 510 

expression. To this end, NetAct calculates the absolute value of Spearman correlation between the TF 511 

activity and the expression of each target, and selects the scheme whose activity gives larger average 512 

correlations. 513 

 514 

Sign assignment for non-DE TF: If the expression patterns of the identified TFs fail to show the significant 515 

differences between cell type conditions, a semi-manual method to assign the sign of activity can be adopted. 516 

Putative interaction partners between DE and non-DE TFs in the inferred network are identified using the 517 

Fisher’s Exact Test between TF targets in the NetAct TF-target database. The most significant pairs are 518 

then cross referenced with the STRING database to identify instances of PPI. A literature search is then 519 

performed to identify the nature of the PPI, and the sign of the non-DE TF is adjusted based on the DE TF 520 

and the type of PPI. Note that the last step needs to be done manually for each modeling application. Table 521 

S3 shows the details of TF sign flipping and supported experimental evidence for the two network modeling 522 

applications.  523 

 524 

Network construction and mathematical modeling 525 
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NetAct constructs a TF regulatory network using both the TF-TF regulatory interactions from the TF-526 

target database and the activity values. (1) The network is constructed using mutual information between 527 

the activity values of two TFs. (2) Interactions are filtered out if they cannot be found in the TF-target 528 

regulatory database (i.e., D1). (3) The sign of each link is determined by the sign of the Spearman 529 

correlation between the activity of two TFs. (4) We keep the interaction between two TFs if their mutual 530 

information is higher than a threshold cutoff.  With different cutoff values for mutual information, NetAct 531 

establishes networks of different sizes. To identify the best network model capturing gene expression 532 

profiles, we apply mathematical modeling to each of the TF networks using RACIPE29. RACIPE takes 533 

network topology as the input and generates an ensemble of mathematical models with random kinetic 534 

parameters. By simulating the network, we expect to obtain multiple clusters of gene expression patterns 535 

that are constrained by the complex interactions in the network. RACIPE was also applied to generate 536 

simulated benchmark test sets for a synthetic TF-target network (see Supplemental Material SI5). 537 
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Figures 753 

 754 

Fig.1. Schematics of NetAct. (a) First, key transcription factors (TFs) are identified using gene set 755 

enrichment analysis (GSEA) with a literature-based TF-target database. (b) Second, the TF activity of an 756 

individual sample is inferred from the expression of target genes. From the co-expression and modularity 757 

analysis of target genes, we find target genes that are either activated (blue), inhibited (red), or not 758 

strongly related to the TF (grey). The activity is defined as the weighted average of target genes activated 759 

by the TF minus the weighted average of target genes inhibited by the TF. (c) Lastly, a TF regulatory 760 

network is constructed according to the mutual information of inferred TF activity and literature-based 761 

regulatory interactions. (d) Performance of GSEA for various TF-target gene set databases. The plot 762 

shows the sensitivity and specificity with different q-value cutoffs. The gene set databases in the 763 

benchmark include the combined literature-based database (D1), FANTOM5-based databases (D2) with 764 

20, 50, 100 target genes per TF, the combined experimental-based database (D3, ChIP), and RcisTarget 765 

databases (D4), one with 10 targets per TF binding motif and another with 50 total number of targets per 766 

TF.  767 
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 768 
Fig.2. Illustration of the grouping scheme for target genes of a transcription factor. (a) shows the co-769 

expression matrix of MYB target genes in shRNA knockdown of MYB lymphoma cells by hierarchical 770 

clustering analysis (Pearson correlation and complete linkage). (b, c) demonstrate the poor clustering 771 

results from the co-expression of randomly selected 100 (in b) and 200 genes (in c). In panels (a – c), the 772 

left subplots show the outcomes of all tested genes, and the right subplots show the outcomes of genes 773 

after the filtering step. Compared to the random cases, MYB target genes have a clear pattern of red and 774 

blue diagonal blocks from their co-expression. (d, e) show the percentage of differentially expressed 775 

genes remained after the filtering step in the case of FOXM1 and MYB knockdown, respectively. (f, g) 776 

show the proportion of genes from the activation group that are positively correlated with the TF 777 

expression (red bars) and the proportion of genes from the inhibition group that are negatively correlated 778 

with the TF expression (blue bars). (h) Pearson correlation (average and standard deviation) between TF 779 

activity and target expression (red) and between TF expression and target expression (blue). 780 
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 786 

Fig. 3. Simulation of both gene expression and activity of a synthetic GRN. (a) shows the synthetic 787 

GRN consisting of 30 TFs and 447 target genes. An edge of transcriptional activation is shown as black 788 

line with an arrowhead; an edge of transcriptional inhibition as red line with a blunt head; an edge of 789 

signaling interaction as green line with an arrowhead. Transcription factor labeled as TF9 was selected for 790 

knockdown simulations. (b) shows the summary of the correlation analyses of the simulated expression 791 

and activity. The left, middle, and right columns represent the outcomes for TF and target activities, TF 792 

and target expressions, and TF activities and target expressions, respectively. For each category, the 793 

histograms of Spearman correlations are shown for non-interacting gene pairs (first row), interacting gene 794 

pairs (second row), gene pairs of excitatory transcriptional regulation (third row), gene pairs of excitatory 795 

signaling regulation (fourth row), gene pairs of inhibitory transcriptional regulation (fifth row). Here, the 796 

target activity is set to be the same as the target expression for non-TF genes. (c) shows the histograms of 797 

Spearman correlations for gene pairs of target genes from the same TF. (d) Jaccard indices between the 798 

ground-truth regulons of the synthetic GRN and the regulons inferred by ARACNe using either the 799 

simulated expression (red) or activity data (blue).  800 
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 801 

Fig. 4. The performance of activity and network inference from a simulation benchmark. (a) TF 802 

activity inference. TF activity was inferred by several methods using the gene expression data simulated 803 

from the synthetic TF-target gene regulatory network (GRN) and the corresponding regulons. For each 804 

TF, we computed Spearman correlations between the inferred activity and simulated activity (ground 805 

truth) for all the simulated models. Then, we calculated the average correlation values over all TFs. The 806 

plots show the median of average correlations for the cases where we used the original regulons defined 807 

by the TF-target network (0% perturbation), and the regulons where 5 (25% perturbation), 10 (50% 808 

perturbation), and 15 (75% perturbation) target genes are randomly replaced with non-interacting genes, 809 

respectively. The median values were computed over 100 repeats of random replacement for each 810 

perturbation level, and the values of the average correlations are reported for the case of zero perturbation. 811 

Shown are the results for NetAct (red), NCA (blue), VIPER (cyan), AUCELL 1 where regulons contain 812 

only positively associated target genes (orange), and AUCELL 2 where regulons contain all target genes 813 

(green). (b-d) Network inference. The panels show the performance of network inference algorithms from 814 

the simulation benchmark by the precision and recall for different link selection thresholds. (b) Network 815 

inference performance against all ground-truth regulatory interactions. Tested methods are GENIE3, 816 

GRNBoost2, and PPCOR, using transcription factor (TF) expression; GENIE3 using TF activity inferred 817 

by AUCell; NetAct using its inferred TF activity. For the latter two methods, original (unperturbed) 818 

regulons obtained from the regulatory network were used. (c) Network inference performance of NetAct 819 

against all ground-truth regulatory interactions using the regulons with 0% (the original), 25%, 50%, and 820 

75% target perturbations. (d) Network inference performance of NetAct in discovering new regulatory 821 

interactions not existing in the regulons. NetAct was applied using the regulons at different perturbation 822 

levels (25%, 50%, and 75%). The benchmark results shown here are for the case of the untreated 823 

simulation. The results for the case of the knockdown simulation are shown in Fig. S7.  824 
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 828 

Fig. 5 Network modeling of TGF-β induced EMT. Application of NetAct to an EMT in human cell 829 

lines using time-series microarray data. (a) Experimental expression and activity of enriched transcription 830 

factors.  (b) Inferred TF regulatory network. Blue lines and arrowheads represent gene activation; Red 831 

lines and blunt heads represent gene inhibition. (c) The relationship between SMAD3 gene activity and 832 

the first principal component of the activity of all network genes from RACIPE simulations. (d) 833 

Hierarchical clustering analysis of simulated gene activity (with Pearson correlation as the distance 834 

function and Ward.D2 linkage method). Colors at top indicate the two clusters from the simulated gene 835 

activity. The blue cluster represents the mesenchymal state, and the yellow cluster represents the 836 

epithelial state. The color legend for the heatmap is at the bottom right. (e) Knockdown simulations of the 837 

TF regulatory network. The bar plot shows the proportion of RACIPE models in each state (epithelial or 838 

mesenchymal) for the conditions of the knockdown of every TF. 839 
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 851 

Fig 6. Network modeling of macrophage polarization. Application of NetAct to induced macrophage 852 

polarization via drug treatment in mice using RNA-seq data. (a) Experimental expression and activity of 853 

enriched TFs. (b) PCA projection of genome-wide gene expression profiles. Different point shapes 854 

indicate time after treatment, and colors indicate treatment types (c) PCA projection of gene activity of 855 

enriched TFs. (d) Inferred TF regulatory network. Blue lines and arrowheads represent gene activation; 856 

Red lines and blunt heads represent gene inhibition. (e) PCA projection of simulated gene activity of 857 

inferred network colored by mapping each model back to experimental data. (f) Hierarchical clustering 858 

analysis of simulated gene activity (with Pearson correlation as the distance function and Ward.D2 859 

linkage method). Colors at top indicate the mapped experimental conditions. The color legend of the 860 

heatmap is at the bottom. 861 
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