

1 **NetAct: a computational platform to construct core transcription factor regulatory
2 networks using gene activity**

3

4 ^{1,2}#Kenong Su, ^{2,3,4}#Ataur Katebi, ⁴Vivek Kohar, ^{3,5}Benjamin Clauss, ^{2,3}Danya Gordin, ⁶Zhaohui S.
5 Qin, , ^{7,8,9}R. Krishna M. Karuturi, ^{7,8}Sheng Li, ^{2,3,4,7}*Mingyang Lu

6

7 ¹Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA.

8 ²Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.

9 ³Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA

10 ⁴The Jackson Laboratory, Bar Harbor, ME 04609, USA.

11 ⁵Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA
12 02111, USA.

13 ⁶Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA.

14 ⁷The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.

15 ⁸Dept of CSE, University of Connecticut, Storrs, CT

16 ⁹Graduate School of Biological Sciences & Eng., University of Maine, Orono, ME

17 * To whom correspondence should be addressed, m.lu@northeastern.edu

18 # Equal contributions

19 **Abstract**

20 A major question in systems biology is how to identify the core gene regulatory circuit that governs
21 the decision-making of a biological process. Here, we develop a computational platform, named NetAct,
22 for constructing core transcription-factor regulatory networks using both transcriptomics data and
23 literature-based transcription factor-target databases. NetAct robustly infers regulators' activity using target
24 expression, constructs networks based on transcriptional activity, and integrates mathematical modeling for
25 validation. Our in-silico benchmark test shows that NetAct outperforms existing algorithms in inferring
26 transcriptional activity and gene networks. We illustrate the application of NetAct to model networks
27 driving TGF- β induced epithelial-mesenchymal transition and macrophage polarization.

28

29
30 **Keywords**

31 Systems biology, gene regulatory networks, gene regulatory circuits, cellular state transitions,
32 mathematical modeling, transcriptional activity, epithelial-mesenchymal transition, macrophage
33 polarization

34

35 **Background**

36 One of the major goals of systems biology is to infer and model complex gene regulatory networks
37 (GRNs) which underpin the biological processes of human disease^{1–6}. Particularly important are those gene
38 networks that control decisions regarding cellular state transitions (*e.g.*, replicative to quiescent^{7–9}, epithelial
39 to mesenchymal (EMT)¹⁰, pluripotent to differentiated^{11,12}), given the central importance of such regulatory
40 processes to both healthy development as well as diseases such as cancer.

41

42 To construct and model GRNs associated with the biological process under investigation, researchers
43 have developed two primary systems biology approaches. The first is a *bottom-up approach*, in which
44 researchers focus on identifying a core GRN composed of a small set of master regulators¹³. Once the core
45 GRN is obtained, mathematical modeling is then applied to simulate the gene expression dynamics^{14–17},
46 which helps elucidate the potential gene regulatory mechanism driving the biological process in question.
47 The current practice for synthesizing a core GRN is by compiling data via an extensive literature search,
48 *e.g.*, in these studies^{18–20}. While this works well for systems where sufficient knowledge has been gained
49 and accumulated, it is less effective in cases where key component genes and regulatory interactions have
50 yet to be discovered. Due to rapid increase of biomedical publications, manual synthesis of literature
51 information has become extremely time-consuming and prone to human error in data interpretation. One
52 way to address the labor-intensive issue is to rely on existing manually curated databases, such as KEGG²¹
53 and Ingenuity Pathway Analysis (IPA)²². However, these databases often compile gene regulatory
54 interactions from different tissues, species, or diseases. Therefore, it is hard to obtain context-specific
55 interactions directly from these types of databases.

56

57 The second approach adopts a *top-down* perspective, in which researchers apply bioinformatics and
58 statistical methods on genome-wide transcriptomics and/or genomics data to infer large-scale GRNs¹³.
59 These data-driven methods are ideal for obtaining a global picture of gene regulation and the overall
60 structure of gene-gene interactions. This approach also helps to characterize key regulators and regulatory

61 interactions between genes that are specific to the biological context of the study. However, conventional
62 bioinformatics methods for gene network inference are usually not designed to identify an integrated
63 working system. These methods typically rely on significance tests to determine the nodes and edges of a
64 gene network, yet it is rare to evaluate whether the constructed gene network is capable of operating as a
65 functional dynamical system²³. Moreover, many statistical methods work well to identify the association
66 between genes, but not their causation, thus limiting the applicative value of the top-down approach in
67 characterizing gene regulatory mechanisms.

68

69 To overcome the above-mentioned issues, a relatively new approach has been explored in several
70 studies in which the top-down and bottom-up approaches are integrated to infer and model a core GRN^{23–}
71 ³¹. In this combined approach, a GRN is constructed with bioinformatics tools using genome-wide gene
72 expression data, followed by mathematical modeling of the GRN to simulate gene expression steady states
73 and explore their similarity with biological cellular states. The simulations can help validate the accuracy
74 of the constructed GRN and further clarify the regulatory roles of genes and interactions in driving cellular
75 state transitions. This combined approach helps to discover existing and new regulatory interactions specific
76 to the cell types and experimental conditions under study. Additionally, it helps pinpoint master regulators
77 and reduce the system's overall complexity. The GRN modeling is particularly crucial for cases with non-
78 trivial cellular state transitions, such as multi-step state transitions as observed in Epithelial-Mesenchymal
79 Transition (EMT)³², and bifurcating state transitions, as observed in stem cell differentiation³³. This is
80 because the GRNs constructed by the top-down approach are not guaranteed to capture these state transition
81 patterns. So far, to the best of our knowledge, there is no computational platform available that utilizes this
82 combined approach for systematic GRN inference and modeling.

83

84 In this study, we introduce a computational platform, named NetAct, for inferring a core GRN of key
85 transcription factors (TFs) using both transcriptomics data and a literature-based TF-target database.
86 Integrating both resources allows us to take full advantage of the existing knowledgebase of transcriptional

87 regulation. NetAct adopts the combined top-down bioinformatics and bottom-up systems biology
88 approaches, designed specifically to address the following two major issues.

89

90 First, many network inference methods rely on correlations of gene expression data, yet the actual
91 transcriptional activities of many master regulators may not be reflected in their gene expression. Instead,
92 the activity may be better associated with either their protein level, the level of a certain posttranslational
93 modification, localization, or their DNA binding affinity. As a result, the master regulators with weak
94 correlations between the expression level and the transcriptional activity will likely be discarded in the
95 network. Some algorithms have been developed to infer the activities of regulators from transcriptomics
96 data, such as VIPER³⁴, NCA³⁵, AUCELL³⁶. However, most of these algorithms 1) are not designed for
97 gene network modeling, or 2) still rely on coexpression of a TF and its targeted genes, or 3) do not take
98 advantage of known regulatory interactions from the literature, hindering their applicability as automated
99 algorithms for generic use in systems biology.

100

101 Second, conventional mathematical modeling approaches have been applied over the years to simulate
102 the dynamics of a GRN, yet they are not particularly effective in analyzing core GRNs. A popular method
103 models the gene expression dynamics of a system using the chemical rate equations that govern the
104 associated gene regulatory processes. However, it is difficult to directly measure most of the kinetic
105 parameters of a GRN. Although some parameter values can be learned from published results, many others
106 are often based on educated guesses which significantly limits the predictive power of mathematical
107 modeling. Moreover, a core GRN is not an isolated system. Thus, an ideal modeling paradigm should also
108 consider other genes that interact with the core network. To address this infamous parameter issue, we have
109 developed the modeling algorithm RACIPE^{29,37,38} in previous work that analyzes a large ensemble of
110 mathematical models with random kinetic parameters. RACIPE has been applied to model the dynamical
111 behavior of gene regulatory networks of different biological processes, such as epithelial-mesenchymal
112 transition^{23,29}, cell cycle³⁸, stem cell differentiation³⁹.

113

114 The new NetAct platform addresses the above-mentioned issues by (1) inferring the activities of TFs
115 for individual samples using the gene expression levels of their targeted genes, (2) identifying the regulatory
116 interactions between two TFs based on their activities rather than their expressions, (3) and subsequently
117 simulating the constructed core GRN with RACIPE to validate and evaluate the gene expression dynamics
118 of the core GRN. In this paper, we describe in detail the NetAct platform, extensive benchmark tests for
119 TF-target databases, TF activity inference, and network construction, and two examples of applications to
120 model GRNs with time series gene expression data.

121

122 **Results**

123 We developed a computational systems-biology platform, named NetAct, to construct transcription
124 factor (TF)-based GRNs using TF activity. The method uniquely integrates both generic TF-target
125 relationships from literature-based databases and context-specific gene expression data. NetAct also
126 integrates our previously developed mathematical modeling algorithm RACIPE to evaluate whether the
127 constructed network functions properly as a dynamical system. It evaluates the roles of every gene in the
128 network by in-silico perturbation analysis. NetAct has three major steps: (1) identifying the core TFs using
129 gene set enrichment analysis (GSEA)⁴⁰ with an optimized TF-target gene set database (Fig. 1a); (2) inferring
130 TF activity (Fig. 1b); (3) constructing a core TF network (Fig. 1c). Then, the network is validated and
131 analyzed by simulating its dynamics using mathematical modeling by RACIPE (see **Supplemental Material**
132 **SI5**). Details of each step is given in the **Methods** section and **Supplemental Material**. Below, we
133 demonstrate how we optimized the NetAct algorithm, compared its performance of activity inference with
134 three existing methods using in-silico gene expression data, and applied the network modeling approach to
135 two biological datasets.

136

137 ***Literature-based TF-target relationships facilitate TF inference***

138

139 To establish a comprehensive gene set database containing TF-target relationships, we considered data
140 from different sources (Table S1, also see Supplemental Material SI1). They are (D1) a literature-based
141 database, consisting of data from TRRUST⁴¹, RegNetwork⁴², TFactS⁴³, and TRED⁴⁴; (D2) a gene regulatory
142 network database FANTOM5⁴⁵, whose interactions are extracted from networks constructed using RNA
143 expression data from 394 individual tissues; (D3) a database derived from resources of putative TF binding
144 targets, including ChEA⁴⁶, TRANSFAC⁴⁷, JASPAR⁴⁸, and ENCODE⁴⁹; and (D4) a database derived from
145 motif-enrichment analysis, RcisTarget⁵⁰. These databases have been frequently used to study transcriptional
146 regulations and have already been utilized for network construction^{29,51}.

147

148 We evaluated the performance of these databases by GSEA on a benchmark dataset. GSEA is a popular
149 statistical method that can be used to evaluate significant overlapping between a set of genes and
150 differentially expressed genes between two experimental conditions. Using various types of TF-target
151 databases, our goal is to find the best version of the database, so that GSEA can detect the target gene sets
152 of the relevant TFs to be statistically significant. This benchmark dataset, denoted as *set B*, consists of a
153 compilation of 11 microarray and 27 RNA-Seq gene expression data (Table S2). Each of these datasets
154 contains at least three samples under the normal condition (control) and three samples under the treatment
155 condition in which a specific TF is treated by knockdown (KD). We applied GSEA (with slight
156 modifications, details in Methods) on the set *B* to evaluate whether the enrichment analysis can detect the
157 perturbed TFs. The underlying assumption is that, with a better TF-target gene set database, GSEA will be
158 more likely to detect the corresponding perturbed TFs. For each TF-target database and each gene
159 expression data in set *B*, we calculated the q-values of all the TFs in the database by GSEA to determine
160 whether the target genes of the perturbed TF are enriched in the differentially expressed genes. We found
161 that more significant q-values are usually associated with relatively larger number of targets for each TF;
162 however, too many (e.g., greater than 2000) targets will result in non-significant q-values. The summary
163 statistics, such as the total number of TFs and the average number of target genes per TF, are summarized
164 in Table S1. Furthermore, these corresponding q-values from all the gene expression data are converted to

165 specificity and sensitivity values (see Methods), and different databases are compared based on the area
166 under the sensitivity-specificity curves (Fig. 1d). We found that the literature-based database has the best
167 overall performance, thus we used this database for further analyses. Our results are in line with a previous
168 benchmark study⁵² that literature-based TF-target database outperforms others in capturing transcriptional
169 regulation.

170

171 ***Inferring TF activity without using TF expression***

172

173 NetAct can accurately infer TF activity for an individual sample directly from the expression of genes
174 targeted by the TF (see Methods). In the following, we will illustrate how NetAct infers TF activity on two
175 cases of microarray KD experiments -- one case for shRNA KD of FOXM1 and shRNA KD of MYB in
176 lymphoma cells (GEO: GSE17172⁵³), and another case for KD of BCL6 on both OCI-Ly7 and Pfeiffer
177 GCB-DLBCL cell lines (GEO: GSE45838³⁴). NetAct first successfully identified the TFs that undergo
178 knockdown in each case, *i.e.*, FOXM1, MYB and BCL6 respectively, by applying GSEA on the optimized
179 TF-target database (q value < 0.15).

180

181 Next, for each identified TF, NetAct calculates its activity using the mRNA expression of the direct
182 targets of the TF. We first constructed a Spearman correlation matrix from the expression of the targeted
183 genes. As shown in Fig. 2a, the correlation matrix after hierarchical clustering analysis typically consists
184 of two red diagonal blocks, two blue off-diagonal blocks, and the remaining elements with low correlations
185 which will be filtered out subsequently (details in Methods). Within the red blocks, the expression of any
186 column gene is positively correlated with that of any row gene; while within the blue blocks, the expression
187 of any column gene is negatively correlated with that of any row gene. This indicates that the genes in the
188 two red blocks are anti-correlated in gene expression with each other. However, if the correlation matrix is
189 constructed from 100 or 200 randomly selected genes (Fig. 2bc), such a clear pattern disappears. Thus, our
190 observation suggests that genes from one of the red blocks are activated by the TF, whereas genes from the

191 other block are inhibited by the TF. Moreover, filtered genes are not likely to be directly targeted by the TF
192 in this context, or they are regulated by multiple factors simultaneously and are thus likely not a good
193 indicator for the TF activity.

194

195 We further evaluated how the filtering step removes noise and retains the important genes in the
196 analysis. We found that, after the filtering step, most of the differentially expressed (DE) genes are retained,
197 as evidenced by Fig. 2d. Here, DE genes from each comparison were retrieved by using *limma* with a cutoff
198 for the adjusted p-values at 0.05 and a cutoff for the log2 fold changes at 2. Subsequently, for DE TFs we
199 evaluated the Spearman correlations between the TFs and the corresponding targeted genes. In traditional
200 approaches (such as ARACNe¹, WGCNA⁵⁴, and BEST⁵⁵), the co-expression between a TF and its targeted
201 genes are commonly used to identify its association and assign the sign (activation or inhibition) of the
202 regulation. We found that, for each TF, most of the genes in a block either positively correlate with the TF
203 expression (Fig. 2fg, blue bars), or they negatively correlate with the TF expression (Fig. 2fg, red bars).
204 The tests demonstrate that, without directly using TF expression, NetAct can successfully identify two
205 groups of important target genes – genes in each group are either activated or inhibited by the TF. These
206 two groups of genes are further used to infer TF activity by a weighted average of their gene expression
207 (Equation 1 in Methods). Additionally, we found that the correlations between inferred TF activity and
208 target expression are usually higher than the correlations between TF expression and target expression (Fig.
209 2h).

210

211 ***Evaluating activity inference and network construction in a simulation benchmark***

212

213 To evaluate the accuracy and robustness of inferred TF activity, we performed extensive benchmark
214 tests to compare NetAct with other existing methods. We first performed the benchmark tests on simulated
215 data because TF activity is usually not directly measurable. The activity of a TF can be related to its protein
216 level or the level of a particular posttranslational modification, such as phosphorylation. Therefore, it is

217 very difficult to obtain the ground truth of TF activity from an experimental data set. Thus, in this
218 benchmark test, we rely on mathematical modeling to simulate both the expression and activity of each TF
219 from a synthetic TF-target network. With this simulated data, we benchmark NetAct against other methods.

220

221 To establish the simulated benchmark data set, we first constructed a synthetic TF-target network with
222 a total of 30 TFs. Each TF has 20 target genes randomly selected with replacement from a pool of 1000
223 genes. In addition, each TF also regulates two (randomly selected) of the 30 TFs. This synthetic network
224 has a hierarchical structure, where a target gene may be co-regulated by multiple TFs. The type of each TF-
225 to-TF regulation is either excitatory, inhibitory, or signaling, with a chance of 25%, 25%, and 50%,
226 respectively; the type of each TF-to-target regulation is either excitatory or inhibitory with a 50% chance
227 for each. Here, the signaling regulation changes the activity of a TF without changing its expression;
228 whereas the excitatory or inhibitory interactions changes both of the activity and expression. From one
229 realization of the synthetic network generation, the final synthetic network contains a total of 477 genes (30
230 TFs, 447 targeted genes) and 660 regulatory links (Fig. 3a). See [Supplemental Material SI4](#) for more details.

231

232 To simulate the gene expression of the TF-target network, we applied a generalized version of the
233 mathematical modeling algorithm, RACIPE³⁸. Using the network topology as the only input, RACIPE can
234 generate an ensemble of random models, each corresponds to a set of randomly sampled parameters. Here,
235 we used RACIPE to generate simulated data including gene expression and TF activity for benchmark.
236 Some previous studies have also adopted a similar modeling approach for benchmarking^{56,57}. To consider
237 the effects of a signaling regulatory link, we generalized RACIPE to simulate both expression and activity
238 for each TF. See [Supplemental Material SI5](#) for more details.

239

240 In the benchmark test, we used RACIPE to simulate 100 models with randomly generated kinetic
241 parameters. From these 100 models we obtained 83 stable steady-state gene expression and activity profiles
242 for the 477 genes. As expected, TF activity and target activity from a regulatory link are correlated (1st

243 column, 2nd row in Fig. 3b); TF activity and target expression (3rd column, 2nd row in Fig. 3b) are correlated;
244 and the expression of two target genes (Fig. 3c) are correlated. However, there is no strong correlation
245 between TF expression and target expression (2nd column, 2nd row in Fig. 3b) and, for a signaling regulatory
246 link, between TF activity and target expression (3rd column, 4th row in Fig. 3b). Next, we applied ARACNe
247 to predict the regulon (*i.e.*, the list of targeted genes by a specific TF) using either the simulated expression
248 profiles or the simulated activity profiles. We found that the regulons predicted from the activity profiles
249 are substantially more similar to the predefined regulons (measured by the Jaccard similarity⁵⁸) than those
250 predicted from the expression profiles (Fig. 3d). The results indicate the need of using the TF activity,
251 instead of TF expression, to identify TF-target relationships.

252

253 Next, we compared the performance of NetAct with several related algorithms, NCA, VIPER, and
254 AUCell, in inferring TF activity using both the simulated expression profiles from the 83 models and a
255 predefined regulon (*i.e.*, the association of each TF with its target genes) (details for the implementation of
256 these algorithms in Supplemental Information SI3). The predicted activity was then compared with the
257 simulated activity (ground truth) to evaluate the performance. To mimic the real-life scenario where the
258 target information may not be complete and accurate, we consider more challenging tests where the regulon
259 data is randomly perturbed. Here, for a specific perturbation level, we generated 100 sets of regulon data
260 by replacing a certain number of target genes for each TF with non-interacting genes. The numbers of
261 replaced genes are 0 (0% level of perturbation), 5 (25%), 10 (50%) and 15 (75%), respectively, in different
262 tests. We then evaluated the performance of NetAct, NCA, and VIPER. AUCell protocol advises to include
263 the target genes with only positive interactions in the regulons. To satisfy this criterion, we updated the
264 regulons for both unperturbed and perturbed regulons. For the unperturbed regulons, we retained only the
265 positive interactions; for the perturbed regulons, we retained the positive target genes that were not replaced
266 and a random half of the replaced target genes (assuming that half of the genes are positively regulated by
267 the TF). We then evaluated AUCell performance using these updated regulons (denoted AUCell 1) and
268 non-updated regulons (denoted AUCell 2). As shown in Fig. 4a (also Figs. S3-S6), NetAct significantly

269 outperforms each of the other methods in reproducing the simulated activity profiles at each perturbation
270 level. As expected, the performance of NetAct is decreased by increasing the perturbation levels of the
271 regulon data; however, NetAct still performs reasonably well even when only 25% of the actual target genes
272 are kept in the regulon data. The results indicate that NetAct can robustly and accurately infer TF activity
273 even with a noisy TF-target database.

274

275 Furthermore, we tested another scenario where the test data contains simulated data from two
276 experimental conditions, *e.g.*, one representing an unperturbed condition and the other representing a
277 perturbed condition. Here, we used the same synthetic network but compiled 40 expression and activity
278 data from the above-mentioned simulation (unperturbed condition), together with 43 expression and activity
279 data from the simulations in which a specific TF (TF9) is knocked down (perturbed condition). We then
280 performed a similar test as above and found that NetAct outperformed each of the other methods (Fig. S2
281 and Fig. S7a). The notable performance gain of NetAct mainly emanates from the removal of incoherent
282 (or noisy) targets of a TF before the activity calculation in NetAct (see Methods).

283

284 In addition, we performed a network construction benchmark of NetAct and a few other network
285 construction algorithms using the in-silico simulation data set, as shown in Fig. 4bcd. NetAct, using the
286 TF activity inferred from the original regulon database, outperforms not only network construction
287 methods using gene expression, such as GENIE3⁵⁹, GRNBoost2⁶⁰, and ppcor^{61,62}, but also GENIE3 using
288 the TF activity inferred by AUCell (Fig. 4b). The last approach was presented to mimic a popular method
289 SCENIC. Moreover, we evaluated the performance of NetAct when using a perturbed regulon database.
290 We found that NetAct remains performing well when the perturbation level is as large as 50%, when
291 evaluated by all the ground-truth interactions (Fig. 4c) and by those not presented in regulon database
292 (Fig. 4d). The latter case was designed to evaluate the capability of NetAct in predicting novel
293 interactions. We observed similar outcomes for the case of the second scenario of the simulation data
294 from two conditions (Fig. S7bcd) (see Supplemental Information SI6 for details of the benchmark

295 method). In summary, our in-silico benchmark test demonstrates the high performance of NetAct over
296 existing state-of-the-art methods in both inferring TF activity and gene regulatory networks.

297

298 ***Characterizing cellular state transitions by GRN construction and modeling***

299

300 In the previous sections, we demonstrated the capability of NetAct in identifying the key TFs and
301 predicting TF activity. With these data, NetAct further constructs a TF-based GRN using the mutual
302 information (MI) of the activity from the identified TFs (details in [Methods](#)). We then applied RACIPE to
303 the constructed network to check whether the simulated network dynamics are consistent with experimental
304 observations. In the following, we show the utility of NetAct with two biological examples: epithelial-
305 mechanical transition (EMT) and macrophage polarization.

306

307 In the first case (EMT), we analyzed a set of time-series microarray data on A549 epithelial cells
308 undergoing TGF- β induced epithelial-mesenchymal transition (EMT) (GEO: GSE17708)⁶³. According to
309 the overall structure of the transcriptomics profiles, we arranged samples from different time points into
310 three groups – early stage (time points 0h, 0.5h and 1h), middle stage (time points 2h, 4h, and 8h) and late
311 stage (time points 16h, 24h, and 72h). We then performed three-way GSEA with our human literature-
312 based TF-target database to identify enriched TFs that are active between either early-middle, early-late
313 and middle-late timepoints. Forty-one TFs (q-value cutoff 0.01) were identified including many major
314 transcriptional master regulators, such as BRCA1, CTNNB1, MYC, TWIST1, TWIST2 and ZEB1, and
315 factors that are directly associated with TGF- β signaling pathway, such as SMAD3⁶⁴, FOS and JUN⁶⁵. The
316 hierarchical clustering analysis (HCA) of the expression and activity profiles for these TFs is shown in [Fig.](#)
317 [5a](#). While the expression profiles are quite noisy, the activities show a clear gradual transition from the
318 epithelial to mesenchymal (M) state. Note that the signs of the activity of a few non-DE TFs were flipped

319 according to experimental evidence of protein-protein interactions and the nature of transcriptional
320 regulation (see **Methods** for detailed procedures and **Table S3** for a list of the changes).

321

322 We then constructed a TF regulatory network (Fig. 5b) and performed mathematical modeling to
323 simulate the dynamical behavior of the network using RACIPE (Fig. 5cd). We found that, consistent with
324 the expression and activity profiles (Fig.5a), the network clearly allows two distinct transcriptional clusters
325 that can be associated with E (the yellow cluster in Fig.5d) and M states (the blue cluster in Fig.5d). To
326 assess the role of TGF- β signaling in inducing EMT, we performed a global bifurcation analysis²⁹ in which
327 the SMAD3 level is used as the control parameter (Fig. 5c). Here, SMAD3 was selected as it is the direct
328 target of TGF- β signaling⁶⁴. As shown in (Fig. 5c), when SMAD3 level is either very low or high, the cells
329 reside in E or M states. However, when SMAD3 is at the intermediate level, the cells could be driven into
330 some rare hybrid phenotypes. These results are consistent with our previous studies on the hybrid states of
331 EMT^{32,66}. Using RACIPE, we systematically performed perturbation analyses by knocking down every TF
332 in the network. Our simulation results (Fig. 5e) suggest that knocking down TFs, such as RELA, SP1,
333 EGR1, and CREBBP, *etc.*, has major effects in driving M to E transition (MET), while knocking down TFs,
334 such as TP53, AR, and KLF4, *etc.*, has major effects in driving E to M transition (EMT). These predictions
335 are all consistent with existing experimental evidence (**Table S4**).

336

337 Compared to a previous model of the EMT network based on an extensive literature survey¹⁹, the
338 GRN constructed by NetAct identified some of the same regulators induced by the TGF- β pathway, such
339 as SMAD3/4, TWIST2, ZEB1, CTNNB1, NFKB1, RELA, FOS and EGR1. Because of the lack of
340 microRNAs and protein-protein interactions in the database, NetAct didn't identify factors like miR200
341 and signaling molecules like PI3K. Interestingly, the NetAct model identifies STAT1/3, which was
342 connected to other signaling pathways, such as HGF, PDGF, IGF1and FGR, but not TGF- β in the
343 previous network model. In addition, the NetAct model identified regulators in other important pathways

344 in TGF- β -induced EMT in cancer cells, *e.g.*, cell cycle pathway (RB1 and E2F1) and DNA damage
345 pathway (P53).

346

347 In the second case, we studied the macrophage polarization program in mouse bone-marrow-derived
348 macrophage cells using time series RNA-seq data (GEO: GSE84517)⁶⁷. In this experiment, macrophage
349 progenitor cells (denoted as UT condition) were treated with (1) IFN γ to induce a transition to the M1 state;
350 (2) IL4 to induce a transition to the M2 state; (3) both IFN γ and IL4 to induce a transition to a hybrid M
351 state. Here, we reprocessed the raw counts of RNA-seq with a standard protocol (details in **Supplemental**
352 **Material SI2**). From principal component analysis (PCA) on the whole transcriptomics (Fig.6b), we found
353 that the gene expression undergoes distinct trajectories when macrophage cells were treated with either
354 IFN γ (M1 state) or IL4 (M2 state). When both IFN γ and IL4 were administered, the gene expression
355 trajectories are in the middle of the previous two trajectories, suggesting that cells are in a hybrid state
356 (hybrid M state). We aim to use NetAct to elucidate the crosstalk in transcriptional regulation downstream
357 of cytokine-induced signaling pathways during macrophage polarization.

358

359 Here, we applied GSEA on six comparisons – untreated versus IFN γ treated samples (one comparison
360 between the untreated and the treated after two hours, another between the untreated and the treated after
361 four hours, same for the other comparisons), untreated versus IL4 treated samples, and untreated versus
362 IFN γ +IL4 treated samples. Using our mouse literature-based TF-target database, we identified 79 TFs (q-
363 value cutoff 0.05 for UT vs IL4-2h and 0.01 for all others). The expression and activity profiles of these
364 TFs (Fig. 6abc) captures the essential dynamics of transcriptional state transitions during macrophage
365 polarization as follows. NetAct successfully identified important TFs in these processes, including Stat1,
366 the major target of IFN γ , Stat2, Stat6, Cebpb, Nfkb family members, Hif1a and Myc⁶⁸⁻⁷⁰. Myc is known to
367 be induced by IL-4 at later phases of M2 activation and required for early phases of M1 activation⁶⁹.
368 Interestingly, we find Myc has high expression in both IL4 stimulation and its co-stimulation with IFN but

369 its activity is high only in IL4 stimulation. We then constructed a TF regulatory network that connects 60
370 TFs (Fig. 6d) and simulated the network with RACIPE, from which we found that simulated gene
371 expression (Fig. 6f) matches well with experimental gene expression data (Fig.6a) (see Supplemental
372 Information SI7). RACIPE simulations display disparate trajectories from UT to IL4 or IFN γ activation and
373 stimulation with both IL4 and IFN γ . Strikingly, we found in the simulation that there is a spectrum of hybrid
374 M states between M1 and M2 (Fig. 6e), which is consistent with experimental observations of macrophage
375 polarization⁶⁸. Moreover, we also predict from our GRN modeling that the transition from UT to hybrid M
376 is likely to first undergo a transition to either M1 or M2 before a second transition to hybrid M (Fig. 6e).
377 This is because of our observation from the simulation data that there are fewer models connecting UT and
378 hybrid M than any of the other two routes (*i.e.*, UT to M1, and UT to M2) (Fig. S10). Taken together we
379 showed that the NetAct-constructed GRN model captures the multiple cellular state transitions during
380 macrophage polarization.

381

382 In conclusion, we show that NetAct can identify the core TF-based GRN using both the literature-based
383 TF-target database and the gene expression data. We also demonstrate how RACIPE-based mathematical
384 modeling complements NetAct-based GRN inference in elucidating the dynamical behaviors of the inferred
385 GRNs. Together these two methods can be applied to infer biologically relevant regulatory interactions and
386 the dynamical behavior of biological processes.

387

388 **Discussion**

389 In this study, we have developed NetAct – a computational platform for constructing and modeling
390 core transcription factor (TF)-based regulatory networks. NetAct takes a data-driven approach to establish
391 gene regulatory network (GRN) models directly from transcriptomics data and takes a mathematical
392 modeling approach to characterize cellular state transitions driven by the inferred GRN. The method
393 specifically integrates both literature-based TF-target databases and transcriptomics data of multiple

394 experimental conditions to accurately infer TF transcriptional activity based on the expression of their target
395 genes. Using the inferred TF activity, NetAct further constructs a TF-based GRN, whose dynamics can then
396 be evaluated and explored by mathematical modeling. Our approach in combining top-down and bottom-
397 up systems biology approaches will contribute to a better understanding of gene regulatory mechanism of
398 cellular decision making. NetAct is made freely available as an R package⁷¹.

399

400 One of the key components of NetAct is a pre-compiled TF-target gene set database. Here, we have
401 evaluated different types of TF-target databases in identifying knocked down TFs using publicly available
402 transcriptomics data sets. In this test, we have considered databases derived from literature, gene co-
403 expression, cis-motif prediction, and TF-binding motif data. Our benchmark tests suggest that the literature-
404 based database clearly outperformed the other databases. The literature-based database usually contains a
405 small (~30) number of target genes for each TF, but these data have direct experimental evidence, therefore
406 being more reliable than those from the other sources. However, the literature-based database for sure has
407 missing regulatory interactions, therefore maybe limiting the overall performance of NetAct. One way to
408 address this issue is to further update the literature-based database, once new information is available.
409 Another potential approach is to compile a database by combining different types of databases together.
410 However, this might be quite challenging as different databases have data of very different sizes (the
411 number of target genes) and quality. Future investigations on this direction can help to expand our
412 knowledge of transcriptional regulation and meanwhile improve the performance of the algorithm.

413

414 NetAct also has a unique approach to infer the TF activity from the gene expression of the target genes
415 with the consideration of activation/inhibition nature. From our in-silico benchmark tests, we found that
416 NetAct outperforms major activity inference methods, owing to the design of the filtering step and the use
417 of a high-quality TF-target database. NetAct is also robust against some inaccuracy in the TF-target
418 database and noises in gene expression data, because of its capability of filtering out irrelevant targets as
419 well as remaining key targets.

420

421 One potential issue is the assignment of the sign of TF activity, as it is algorithmically assigned
422 according to the correlation with TF expression. In the case where the TF expression is very noisy or the
423 expression is completely unrelated to TF activity, the sign assignment might be inaccurate. To deal with
424 this issue, we have devised a semi-manual approach that identifies the sign of TF activity according to the
425 sign of other interacting TFs. Another potential issue is that some TFs from the same family may have very
426 similar target genes, therefore NetAct will have difficulty in identifying exactly which TF from the family
427 is most relevant. Additional data resources, such as epigenomics⁷², TF-binding data³⁶ and Hi-C data⁷³, will
428 be helpful to address this problem. One of the future directions is to design methods to integrate these data
429 resources.

430

431 Lastly, instead of constructing a global transcriptional regulatory network, NetAct focuses on modeling
432 a core regulatory network with only interactions between key TFs. The underlying hypothesis is that these
433 TFs and the associated regulatory interactions play major roles in controlling the gene expression of
434 different cellular states and the patterns of state transitions. With the core network identified using NetAct,
435 we can further perform simulations with mathematical modeling algorithms, such as RACIPE, to analyze
436 the control mechanism of the core network. These simulations allow us to generate new hypotheses, which
437 can be further tested experimentally. The validation data can further help to improve the model. Ideally,
438 this needs to be an iterative process to refine a core network model, which is indeed another interesting
439 future direction.

440

441 **Conclusions**

442 We developed NetAct, a computational platform for constructing and modeling core transcription-
443 factor regulatory networks using both transcriptomics data and literature-based transcription factor-target
444 gene databases. Utilizing both types of resources allows us to identify regulatory genes and links specific
445 to the data and fully take advantage of the existing knowledgebase of transcriptional regulation. Our method

446 in combining top-down and bottom-up systems biology approaches contributes to a better understanding of
447 the mechanism of gene regulation driving cellular state transitions.
448

449 **Methods**

450 ***Selecting Enriched TFs***

451 For a comparison between two experimental conditions, we obtained a ranked gene list quantified by
452 the absolute value of the test statistics (t statistics in microarray and Wald test statistics in RNA-Seq) from
453 differential expression (DE) analysis⁷⁴, followed by gene set enrichment analysis (GSEA)⁷⁵ using our
454 optimized transcription factor (TF)-target gene set database. Here, for each TF, the corresponding gene set
455 consists of all its target genes. GSEA identifies important TFs whose targets are enriched in DE genes
456 between the two conditions. The significance test is achieved through 10,000 permutations of the gene list
457 names and TFs are kept for further analysis when q value is below a certain threshold cutoff (0.05 by
458 default). A C++ implementation of this version of GSEA, specifically for gene name permutations, has
459 been provided in NetAct for fast computation. For multiple comparisons, a set of enriched TFs are first
460 identified from each pairwise comparison and then a union of the multiple sets of TFs is considered.

461

462 In the database benchmark test, for each database, we computed the sensitivity and specificity values
463 for different q-value cutoffs. Here, for each cutoff value, we defined the sensitivity as the proportion of data
464 sets where the gene sets for the KD TFs were enriched with q-values below the cutoff value. We also
465 defined specificity as the fraction of cases where the gene sets for the other TFs (non-KD TFs in the
466 benchmark) were not enriched with q-values above the cutoff value. We then computed area under the ROC
467 curve (AUC) using the DescTools R package⁷⁶.

468

469 ***Inferring TF activity***

470 TF activity is inferred from the expression of target genes retrieved from the TF-target database. NetAct
471 defines the activity of the selected TFs using two different schemes – one using only the expression of
472 target genes and the other using the expression of both the TF and its target genes. The second scheme is
473 only used for the situation of noisy target gene expression. For each TF, the algorithm selects the better
474 scheme according to their performance, as described below.

475

476 Without directly using TF expression: For each TF, its downstream targets are first divided into two
477 modules using the Newman's community detection algorithm⁷⁷ on the pairwise Spearman correlation
478 matrix of the target genes. Then, within each module some less-correlated genes are filtered out to improve
479 the quality of the inference. Here, the filtering step is achieved as follows: (1) each target gene is assigned
480 a vector of correlations with the other target genes, where the distance between two genes is calculated as
481 the sum of squares of the correlation vectors of two genes. (2) k-mean algorithm ($k = 1$) is performed within
482 each cluster to determine the center vector. (3) genes are filtered out if the distance between the genes and
483 the center is larger than the average distance.

484

485 This step outputs two groups of genes – genes in one group are supposed to be activated by the TF,
486 while genes in the other group are inhibited by the TF. Note, at this stage, the nature of activation/inhibition
487 of the individual group is not yet determined. The activity of the TF is calculated as

488
$$A(TF) = \frac{\sum_{i=1}^n w_i g_i I_i}{\sum_{i=1}^n w_i} \quad (\text{eq 1}),$$

489 where g_i is the standardized expression value of a target gene i , w_i is the weighting factor defined as a Hill
490 function:

491
$$w_i = 1/[1 + (\frac{s_i}{s_0})^n] \quad (\text{eq 2}),$$

492 where s_i is the adjusted p value from DE analysis for gene i , the threshold S_0 is 0.05, and n is set to be 1/5
493 for best performance (Fig. S8). I_i is 1 if the corresponding gene belongs to the first group and -1 if it belongs
494 to the second group. If the calculated TF activity pattern is not consistent with the TF expression trend
495 (evaluated by Spearman correlation), both the sign of the two groups and the sign of the activity are flipped.
496 According to our in-silico benchmark test (Fig. S9), we found that majority of the targets in one group are
497 activated by the TF, and majority of those in the other group are inhibited by the TF. For genes in the
498 inhibition group, the higher the TF activity, the more the genes are suppressed. Thus, the formula in
499 Equation (1) captures well the activity of TFs for their effects to both activating and inhibitory targets. We

500 also explored a few other community detection algorithms⁷⁸⁻⁸⁰ and found they produced similar results (Fig.
501 S1).

502

503 Using TF expression: For each TF, its downstream targets are first divided into two groups according to
504 the sign of the Spearman correlation between the TF expression and the target expression. Similar to the
505 previous scheme, in each group, target genes are filtered out if the correlation value is less than the average
506 correlation of all the targets. The activity of the TF is also calculated using Equation 1.

507

508 Sign assignment for DE TF: For any DE TF (*i.e.*, there is significant difference in TF expression across cell
509 type conditions) of interest, NetAct computes the activity values from both the schemes (with or without
510 TF's expression), and selects the better way based on how well the activity values correlate with target
511 expression. To this end, NetAct calculates the absolute value of Spearman correlation between the TF
512 activity and the expression of each target, and selects the scheme whose activity gives larger average
513 correlations.

514

515 Sign assignment for non-DE TF: If the expression patterns of the identified TFs fail to show the significant
516 differences between cell type conditions, a semi-manual method to assign the sign of activity can be adopted.
517 Putative interaction partners between DE and non-DE TFs in the inferred network are identified using the
518 Fisher's Exact Test between TF targets in the NetAct TF-target database. The most significant pairs are
519 then cross referenced with the STRING database to identify instances of PPI. A literature search is then
520 performed to identify the nature of the PPI, and the sign of the non-DE TF is adjusted based on the DE TF
521 and the type of PPI. Note that the last step needs to be done manually for each modeling application. Table
522 S3 shows the details of TF sign flipping and supported experimental evidence for the two network modeling
523 applications.

524

525 **Network construction and mathematical modeling**

526 NetAct constructs a TF regulatory network using both the TF-TF regulatory interactions from the TF-
527 target database and the activity values. (1) The network is constructed using mutual information between
528 the activity values of two TFs. (2) Interactions are filtered out if they cannot be found in the TF-target
529 regulatory database (*i.e.*, D1). (3) The sign of each link is determined by the sign of the Spearman
530 correlation between the activity of two TFs. (4) We keep the interaction between two TFs if their mutual
531 information is higher than a threshold cutoff. With different cutoff values for mutual information, NetAct
532 establishes networks of different sizes. To identify the best network model capturing gene expression
533 profiles, we apply mathematical modeling to each of the TF networks using RACIPE²⁹. RACIPE takes
534 network topology as the input and generates an ensemble of mathematical models with random kinetic
535 parameters. By simulating the network, we expect to obtain multiple clusters of gene expression patterns
536 that are constrained by the complex interactions in the network. RACIPE was also applied to generate
537 simulated benchmark test sets for a synthetic TF-target network (see [Supplemental Material SI5](#)).

538

539 **Declarations:**

540 **Ethics approval and consent to participate**

541 Not applicable

542

543 **Consent for publication**

544 Not applicable

545

546 **Availability of data and materials**

547 The information of the TF-target gene set databases is listed in [Table S1](#). The public gene expression
548 datasets for algorithm optimization and benchmark are listed in [Table S2](#). The datasets and computational
549 scripts for in-silico benchmark, the network modeling scripts, including those for data processing, network

550 construction and network simulations, and the inferred network topology files are available in the GitHub
551 repository at <https://github.com/lusystemsbio/NetActAnalysis>. The NetAct software is available at
552 <https://github.com/lusystemsbio/NetAct> as an R package. NetAct is platform independent, written in R with
553 a partial of codes in C++ for improved performance. NetAct is licensed under the MIT License.

554

555 **Competing interests**

556 The authors declare that they have no competing interests

557

558 **Funding**

559 The study is supported by startup funds from The Jackson Laboratory and Northeastern University, by the
560 National Cancer Institute of the National Institutes of Health under Award Number P30CA034196, and by
561 the National Institute of General Medical Sciences of the National Institutes of Health under Award Number
562 R35GM128717.

563

564 **Authors' contributions**

565 M.L conceived the study. K.S. developed and V.K. and A.K. improved the NetAct algorithm. A.K.
566 constructed and performed in-silico benchmark. K.S. and V.K. performed benchmark tests on public
567 experimental gene expression data. B.C. and V.K. performed network modeling. D.D. helped to refine the
568 NetAct code. S.L, K.K., and Z.S.Q. provided conceptual input to the manuscript. K.S., A.K., V.K. and M.L
569 wrote the manuscript, with helps from all other authors. The authors read and approved the final manuscript.

570

571 **Acknowledgements**

572 Not applicable

573

574

575 **Reference:**

- 576 1. Margolin, A. A. *et al.* ARACNE: An Algorithm for the Reconstruction of Gene Regulatory
577 Networks in a Mammalian Cellular Context. *BMC Bioinformatics* **7**, S7 (2006).
- 578 2. Alvarez, M. J. *et al.* Functional characterization of somatic mutations in cancer using network-
579 based inference of protein activity. *Nat. Genet.* **48**, 838 (2016).
- 580 3. Ament, S. A. *et al.* Transcriptional regulatory networks underlying gene expression changes in
581 Huntington's disease. *Mol. Syst. Biol.* **14**, e7435 (2018).
- 582 4. Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene Regulatory Network Inference from
583 Single-Cell Data Using Multivariate Information Measures. *Cell Syst.* **5**, 251-267.e3 (2017).
- 584 5. Carré, C., Mas, A. & Krouk, G. Reverse engineering highlights potential principles of large
585 gene regulatory network design and learning. *Npj Syst. Biol. Appl.* **3**, 17 (2017).
- 586 6. Fiers, M. W. E. J. *et al.* Mapping gene regulatory networks from single-cell omics data. *Brief.
587 Funct. Genomics* doi:10.1093/bfgp/elx046.
- 588 7. Gérard, C. & Goldbeter, A. Temporal self-organization of the cyclin/Cdk network driving the
589 mammalian cell cycle. *Proc. Natl. Acad. Sci.* **106**, 21643–21648 (2009).
- 590 8. Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global Analysis of
591 the Genetic Network Controlling a Bacterial Cell Cycle. *Science* **290**, 2144–2148 (2000).
- 592 9. Li, F., Long, T., Lu, Y., Ouyang, Q. & Tang, C. The yeast cell-cycle network is robustly
593 designed. *Proc. Natl. Acad. Sci.* **101**, 4781–4786 (2004).
- 594 10. Nieto, M. A., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. *Cell* **166**, 21–45
595 (2016).
- 596 11. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An Extended Transcriptional Network for
597 Pluripotency of Embryonic Stem Cells. *Cell* **132**, 1049–1061 (2008).

598 12. Loh, Y.-H. *et al.* The Oct4 and Nanog transcription network regulates pluripotency in mouse
599 embryonic stem cells. *Nat. Genet.* **38**, 431 (2006).

600 13. Katebi, A., Ramirez, D. & Lu, M. Computational systems-biology approaches for modeling
601 gene networks driving epithelial–mesenchymal transitions. *Comput. Syst. Oncol.* **1**, e1021
602 (2021).

603 14. Alon, U. *An Introduction to Systems Biology : Design Principles of Biological Circuits*.
604 (Chapman and Hall/CRC, 2006). doi:10.1201/9781420011432.

605 15. Kirk, P. D. W., Babbie, A. C. & Stumpf, M. P. H. Systems biology (un)certainties. *Science*
606 **350**, 386–388 (2015).

607 16. Chasman, D. & Roy, S. Inference of cell type specific regulatory networks on mammalian
608 lineages. *Curr. Opin. Syst. Biol.* **2**, 130–139 (2017).

609 17. Ben-Jacob, E., Lu, M., Schultz, D. & Onuchic, J. N. The physics of bacterial decision
610 making. *Front. Cell. Infect. Microbiol.* **4**, 154 (2014).

611 18. Dutta, P., Ma, L., Ali, Y., Sloot, P. M. A. & Zheng, J. Boolean network modeling of β -cell
612 apoptosis and insulin resistance in type 2 diabetes mellitus. *BMC Syst. Biol.* **13**, 36 (2019).

613 19. Steinway, S. N. *et al.* Network Modeling of TGF β Signaling in Hepatocellular Carcinoma
614 Epithelial-to-Mesenchymal Transition Reveals Joint Sonic Hedgehog and Wnt Pathway
615 Activation. *Cancer Res.* **74**, 5963–5977 (2014).

616 20. Zeigler, A. C. *et al.* Computational model predicts paracrine and intracellular drivers of
617 fibroblast phenotype after myocardial infarction. *Matrix Biol.* **91–92**, 136–151 (2020).

618 21. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG:
619 integrating viruses and cellular organisms. *Nucleic Acids Res.* **49**, D545–D551 (2021).

620 22. Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in Ingenuity
621 Pathway Analysis. *Bioinforma. Oxf. Engl.* **30**, 523–530 (2014).

622 23. Ramirez, D., Kohar, V. & Lu, M. Toward Modeling Context-Specific EMT Regulatory
623 Networks Using Temporal Single Cell RNA-Seq Data. *Front. Mol. Biosci.* **7**, 54 (2020).

624 24. Dunn, S., Li, M. A., Carbognin, E., Smith, A. & Martello, G. A common molecular logic
625 determines embryonic stem cell self-renewal and reprogramming. *EMBO J.* **38**, e100003
626 (2019).

627 25. Wooten, D. J., Gebru, M., Wang, H.-G. & Albert, R. Data-Driven Math Model of FLT3-ITD
628 Acute Myeloid Leukemia Reveals Potential Therapeutic Targets. *J. Pers. Med.* **11**, 193
629 (2021).

630 26. Udyavar, A. R. *et al.* Novel Hybrid Phenotype Revealed in Small Cell Lung Cancer by a
631 Transcription Factor Network Model That Can Explain Tumor Heterogeneity. *Cancer Res.*
632 **77**, 1063–1074 (2017).

633 27. Wooten, D. J. *et al.* Systems-level network modeling of Small Cell Lung Cancer subtypes
634 identifies master regulators and destabilizers. *PLOS Comput. Biol.* **15**, e1007343 (2019).

635 28. Khan, F. M. *et al.* Unraveling a tumor type-specific regulatory core underlying E2F1-
636 mediated epithelial-mesenchymal transition to predict receptor protein signatures. *Nat.*
637 *Commun.* **8**, 198 (2017).

638 29. Kohar, V. & Lu, M. Role of noise and parametric variation in the dynamics of gene
639 regulatory circuits. *Npj Syst. Biol. Appl.* **4**, 1–11 (2018).

640 30. Moignard, V. *et al.* Decoding the regulatory network of early blood development from
641 single-cell gene expression measurements. *Nat. Biotechnol.* **33**, 269–276 (2015).

642 31. Sha, Y., Wang, S., Zhou, P. & Nie, Q. Inference and multiscale model of epithelial-to-
643 mesenchymal transition via single-cell transcriptomic data. *Nucleic Acids Res.* **48**, 9505–
644 9520 (2020).

645 32. Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N. & Ben-Jacob, E. MicroRNA-based
646 regulation of epithelial–hybrid–mesenchymal fate determination. *Proc. Natl. Acad. Sci.* **110**,
647 18144–18149 (2013).

648 33. Jang, S. *et al.* Dynamics of embryonic stem cell differentiation inferred from single-cell
649 transcriptomics show a series of transitions through discrete cell states. *eLife* **6**, e20487
650 (2017).

651 34. Alvarez, M. J. *et al.* Functional characterization of somatic mutations in cancer using
652 network-based inference of protein activity. *Nat. Genet.* **48**, 838 (2016).

653 35. Liao, J. C. *et al.* Network component analysis: Reconstruction of regulatory signals in
654 biological systems. *Proc. Natl. Acad. Sci.* **100**, 15522–15527 (2003).

655 36. Aibar, S. *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nat.*
656 *Methods* **14**, 1083–1086 (2017).

657 37. Huang, B. *et al.* Interrogating the topological robustness of gene regulatory circuits by
658 randomization. *PLOS Comput. Biol.* **13**, e1005456 (2017).

659 38. Katebi, A., Kohar, V. & Lu, M. Random Parametric Perturbations of Gene Regulatory
660 Circuit Uncover State Transitions in Cell Cycle. *iScience* **23**, 101150 (2020).

661 39. Huang, B. *et al.* Decoding the mechanisms underlying cell-fate decision-making during stem
662 cell differentiation by random circuit perturbation. *J. R. Soc. Interface* **17**, 20200500 (2020).

663 40. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
664 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545–
665 15550 (2005).

666 41. Han, H. *et al.* TRRUST: a reference database of human transcriptional regulatory
667 interactions. *Sci. Rep.* **5**, 11432 (2015).

668 42. Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional
669 and post-transcriptional regulatory networks in human and mouse. *Database* **2015**, (2015).

670 43. Essaghir, A. & Demoulin, J.-B. A Minimal Connected Network of Transcription Factors
671 Regulated in Human Tumors and Its Application to the Quest for Universal Cancer
672 Biomarkers. *PLOS ONE* **7**, e39666 (2012).

673 44. Jiang, C., Xuan, Z., Zhao, F. & Zhang, M. Q. TRED: a transcriptional regulatory element
674 database, new entries and other development. *Nucleic Acids Res.* **35**, D137–D140 (2007).

675 45. Abugessaisa, I. *et al.* FANTOM5 transcriptome catalog of cellular states based on Semantic
676 MediaWiki. *Database J. Biol. Databases Curation* **2016**, (2016).

677 46. Lachmann, A. *et al.* ChEA: transcription factor regulation inferred from integrating genome-
678 wide ChIP-X experiments. *Bioinformatics* **26**, 2438–2444 (2010).

679 47. Wingender, E., Dietze, P., Karas, H. & Knüppel, R. TRANSFAC: A Database on
680 Transcription Factors and Their DNA Binding Sites. *Nucleic Acids Res.* **24**, 238–241 (1996).

681 48. Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. JASPAR: an
682 open-access database for eukaryotic transcription factor binding profiles. *Nucleic Acids Res.*
683 **32**, D91–D94 (2004).

684 49. null, null. The ENCODE (ENCylopedia Of DNA Elements) Project. *Science* **306**, 636–640
685 (2004).

686 50. Aibar, S. *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nat. Methods* **14**, 1083–1086 (2017).

688 51. Abugessaisa, I. *et al.* FANTOM5 transcriptome catalog of cellular states based on Semantic
689 MediaWiki. *Database J. Biol. Databases Curation* **2016**, baw105 (2016).

690 52. Garcia-Alonso, L., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and
691 integration of resources for the estimation of human transcription factor activities. *bioRxiv*
692 337915 (2018) doi:10.1101/337915.

693 53. Alvarez, M. J., Sumazin, P., Rajbhandari, P. & Califano, A. Correlating measurements across
694 samples improves accuracy of large-scale expression profile experiments. *Genome Biol.* **10**,
695 R143 (2009).

696 54. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
697 analysis. *BMC Bioinformatics* **9**, 559 (2008).

698 55. Hu, M. & Qin, Z. S. Query Large Scale Microarray Compendium Datasets Using a Model-
699 Based Bayesian Approach with Variable Selection. *PLOS ONE* **4**, e4495 (2009).

700 56. Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: in silico benchmark generation
701 and performance profiling of network inference methods. *Bioinformatics* **27**, 2263–2270
702 (2011).

703 57. Margolin, A. A. *et al.* ARACNE: An Algorithm for the Reconstruction of Gene Regulatory
704 Networks in a Mammalian Cellular Context. *BMC Bioinformatics* **7**, S7 (2006).

705 58. Levandowsky, M. & Winter, D. Distance between Sets. *Nature* **234**, 34 (1971).

706 59. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring Regulatory Networks
707 from Expression Data Using Tree-Based Methods. *PLOS ONE* **5**, e12776 (2010).

708 60. Moerman, T. *et al.* GRNBoost2 and Arboreto: efficient and scalable inference of gene
709 regulatory networks. *Bioinformatics* **35**, 2159–2161 (2019).

710 61. Kim, S. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients.
711 *Commun. Stat. Appl. Methods* **22**, 665–674 (2015).

712 62. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking
713 algorithms for gene regulatory network inference from single-cell transcriptomic data. *Nat.*
714 *Methods* **17**, 147–154 (2020).

715 63. Sartor, M. A. *et al.* ConceptGen: a gene set enrichment and gene set relation mapping tool.
716 *Bioinformatics* **26**, 456–463 (2010).

717 64. Schiffer, M., Von Gersdorff, G., Bitzer, M., Susztak, K. & Böttlinger, E. P. Smad proteins
718 and transforming growth factor- β signaling. *Kidney Int.* **58**, S45–S52 (2000).

719 65. Zhang, Y., Feng, X.-H. & Derynck, R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to
720 mediate TGF- β -induced transcription. *Nature* **394**, 909–913 (1998).

721 66. Jolly, M. K. *et al.* Implications of the Hybrid Epithelial/Mesenchymal Phenotype in
722 Metastasis. *Front. Oncol.* **5**, (2015).

723 67. Piccolo, V. *et al.* Opposing macrophage polarization programs show extensive epigenomic
724 and transcriptional cross-talk. *Nat. Immunol.* **18**, 530–540 (2017).

725 68. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. *Nat.*
726 *Rev. Immunol.* **8**, 958–969 (2008).

727 69. Bae, S. *et al.* MYC-mediated early glycolysis negatively regulates proinflammatory
728 responses by controlling IRF4 in inflammatory macrophages. *Cell Rep.* **35**, 109264 (2021).

729 70. Hu, X. & Ivashkiv, L. B. Cross-regulation of Signaling Pathways by Interferon- γ :
730 Implications for Immune Responses and Autoimmune Diseases. *Immunity* **31**, 539–550
731 (2009).

732 71. NetAct: <https://github.com/lusystemsbio/NetAct>.

733 72. Pliner, H. A. *et al.* Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell
734 Chromatin Accessibility Data. *Mol. Cell* **71**, 858-871.e8 (2018).

735 73. Malysheva, V., Mendoza-Parra, M. A., Saleem, M.-A. M. & Gronemeyer, H. Reconstruction
736 of gene regulatory networks reveals chromatin remodelers and key transcription factors in
737 tumorigenesis. *Genome Med.* **8**, 57 (2016).

738 74. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and
739 microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

740 75. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for
741 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci.* **102**, 15545–15550
742 (2005).

743 76. Signorell, A. *et al.* DescTools: Tools for Descriptive Statistics. (2022).

744 77. Newman, M. E. J. Modularity and community structure in networks. *Proc. Natl. Acad. Sci.*
745 **103**, 8577–8582 (2006).

746 78. Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. *Phys. Rev. E* **74**,
747 016110 (2006).

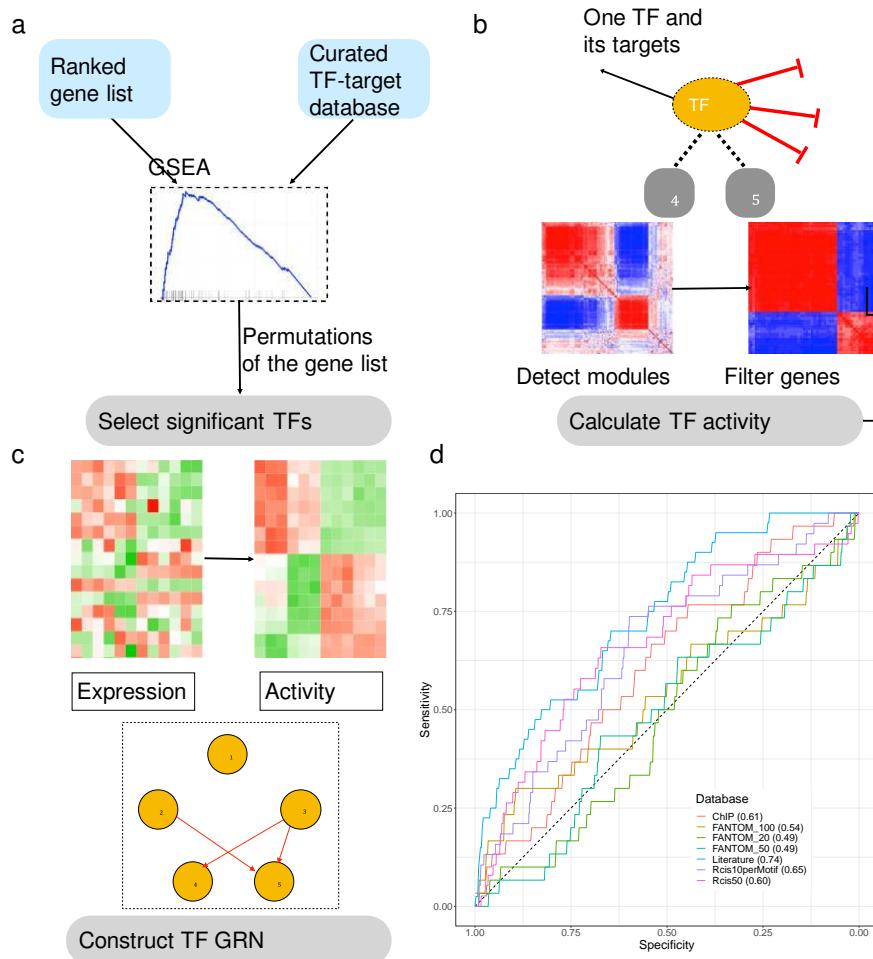
748 79. Newman, M. E. J. Analysis of weighted networks. *Phys. Rev. E* **70**, 056131 (2004).

749 80. Newman, M. E. J. Finding community structure in networks using the eigenvectors of
750 matrices. *Phys. Rev. E* **74**, 036104 (2006).

751

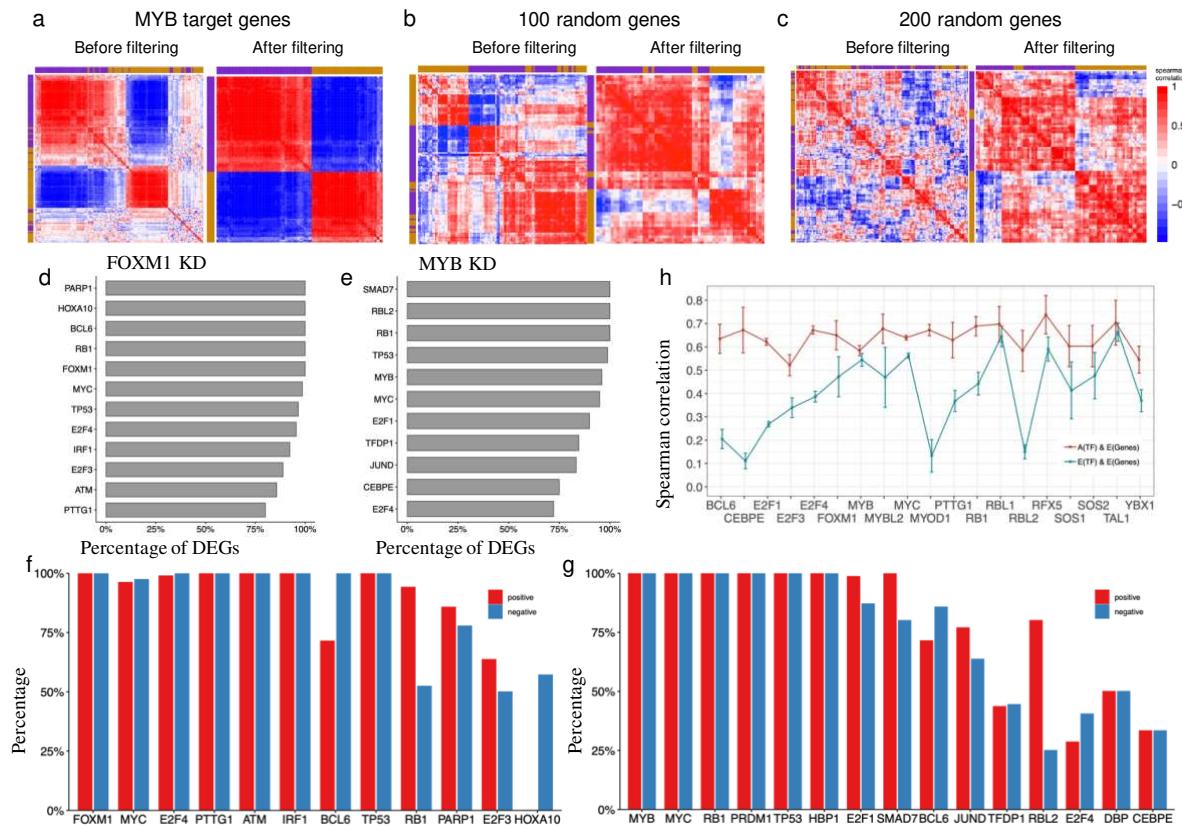
752

753 **Figures**



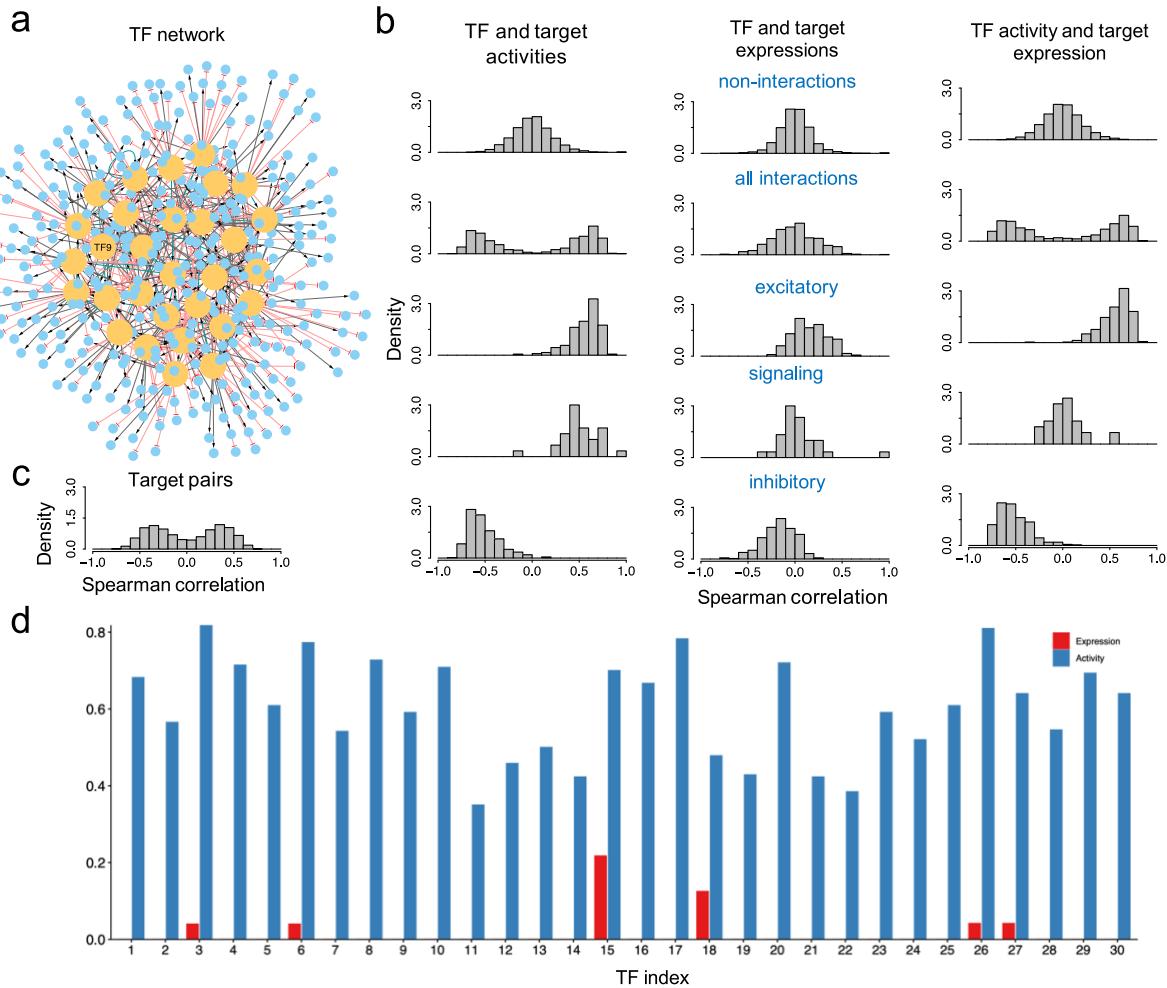
754

755 **Fig.1. Schematics of NetAct.** (a) First, key transcription factors (TFs) are identified using gene set
756 enrichment analysis (GSEA) with a literature-based TF-target database. (b) Second, the TF activity of an
757 individual sample is inferred from the expression of target genes. From the co-expression and modularity
758 analysis of target genes, we find target genes that are either activated (blue), inhibited (red), or not
759 strongly related to the TF (grey). The activity is defined as the weighted average of target genes activated
760 by the TF minus the weighted average of target genes inhibited by the TF. (c) Lastly, a TF regulatory
761 network is constructed according to the mutual information of inferred TF activity and literature-based
762 regulatory interactions. (d) Performance of GSEA for various TF-target gene set databases. The plot
763 shows the sensitivity and specificity with different q-value cutoffs. The gene set databases in the
764 benchmark include the combined literature-based database (D1), FANTOM5-based databases (D2) with
765 20, 50, 100 target genes per TF, the combined experimental-based database (D3, ChIP), and RcisTarget
766 databases (D4), one with 10 targets per TF binding motif and another with 50 total number of targets per
767 TF.



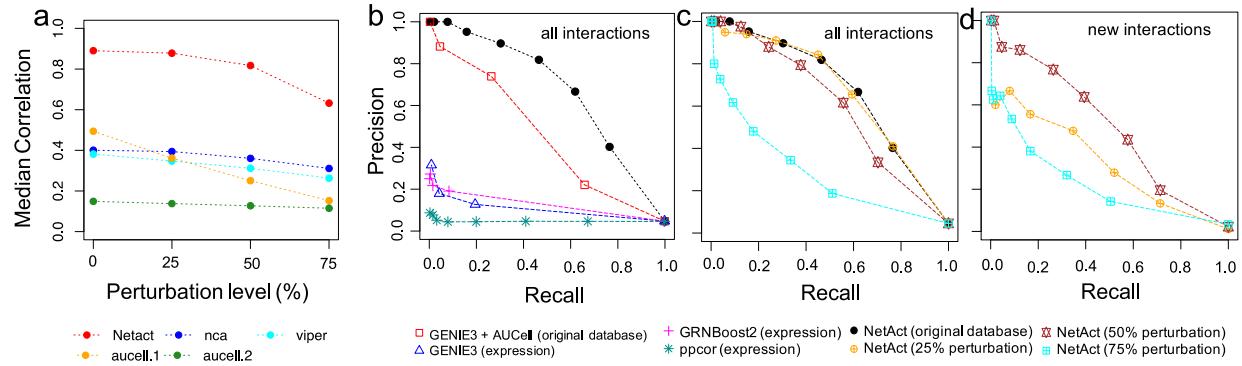
768
 769 **Fig.2. Illustration of the grouping scheme for target genes of a transcription factor.** (a) shows the co-
 770 expression matrix of MYB target genes in shRNA knockdown of MYB lymphoma cells by hierarchical
 771 clustering analysis (Pearson correlation and complete linkage). (b, c) demonstrate the poor clustering
 772 results from the co-expression of randomly selected 100 (in b) and 200 genes (in c). In panels (a – c), the
 773 left subplots show the outcomes of all tested genes, and the right subplots show the outcomes of genes
 774 after the filtering step. Compared to the random cases, MYB target genes have a clear pattern of red and
 775 blue diagonal blocks from their co-expression. (d, e) show the percentage of differentially expressed
 776 genes remained after the filtering step in the case of FOXM1 and MYB knockdown, respectively. (f, g)
 777 show the proportion of genes from the activation group that are positively correlated with the TF
 778 expression (red bars) and the proportion of genes from the inhibition group that are negatively correlated
 779 with the TF expression (blue bars). (h) Pearson correlation (average and standard deviation) between TF
 780 activity and target expression (red) and between TF expression and target expression (blue).

781
 782
 783
 784
 785



786

787 **Fig. 3. Simulation of both gene expression and activity of a synthetic GRN.** (a) shows the synthetic
788 GRN consisting of 30 TFs and 447 target genes. An edge of transcriptional activation is shown as black
789 line with an arrowhead; an edge of transcriptional inhibition as red line with a blunt head; an edge of
790 signaling interaction as green line with an arrowhead. Transcription factor labeled as TF9 was selected for
791 knockdown simulations. (b) shows the summary of the correlation analyses of the simulated expression
792 and activity. The left, middle, and right columns represent the outcomes for TF and target activities, TF
793 and target expressions, and TF activities and target expressions, respectively. For each category, the
794 histograms of Spearman correlations are shown for non-interacting gene pairs (first row), interacting gene
795 pairs (second row), gene pairs of excitatory transcriptional regulation (third row), gene pairs of excitatory
796 signaling regulation (fourth row), gene pairs of inhibitory transcriptional regulation (fifth row). Here, the
797 target activity is set to be the same as the target expression for non-TF genes. (c) shows the histograms of
798 Spearman correlations for gene pairs of target genes from the same TF. (d) Jaccard indices between the
799 ground-truth regulons of the synthetic GRN and the regulons inferred by ARACNe using either the
800 simulated expression (red) or activity data (blue).



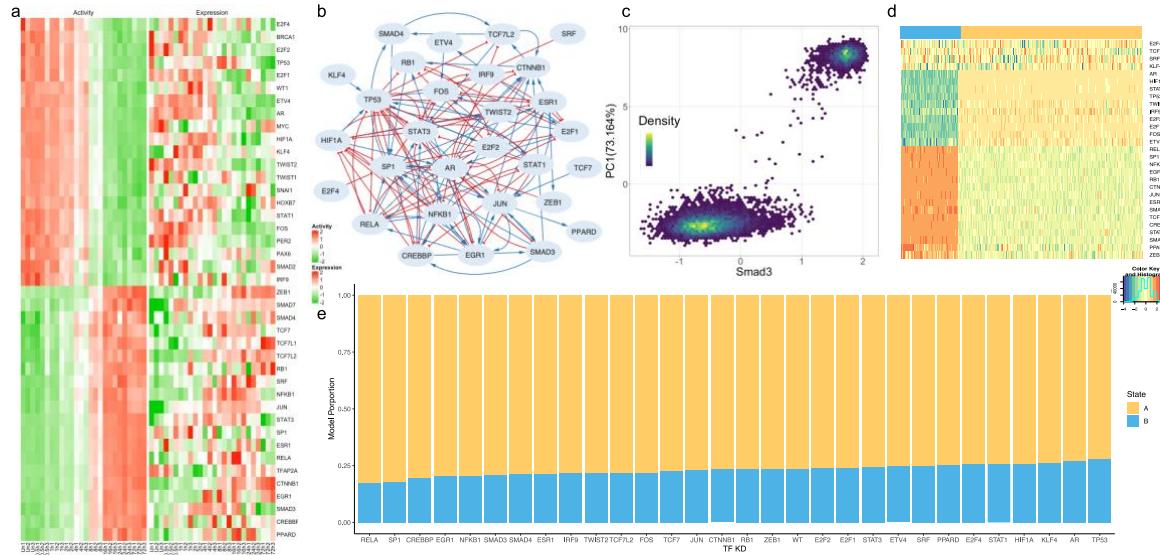
801

Fig. 4. The performance of activity and network inference from a simulation benchmark. (a) TF activity inference. TF activity was inferred by several methods using the gene expression data simulated from the synthetic TF-target gene regulatory network (GRN) and the corresponding regulons. For each TF, we computed Spearman correlations between the inferred activity and simulated activity (ground truth) for all the simulated models. Then, we calculated the average correlation values over all TFs. The plots show the median of average correlations for the cases where we used the original regulons defined by the TF-target network (0% perturbation), and the regulons where 5 (25% perturbation), 10 (50% perturbation), and 15 (75% perturbation) target genes are randomly replaced with non-interacting genes, respectively. The median values were computed over 100 repeats of random replacement for each perturbation level, and the values of the average correlations are reported for the case of zero perturbation. Shown are the results for NetAct (red), NCA (blue), VIPER (cyan), AUCELL 1 where regulons contain only positively associated target genes (orange), and AUCELL 2 where regulons contain all target genes (green). **(b-d)** Network inference. The panels show the performance of network inference algorithms from the simulation benchmark by the precision and recall for different link selection thresholds. **(b)** Network inference performance against all ground-truth regulatory interactions. Tested methods are GENIE3, GRNBoost2, and PPCOR, using transcription factor (TF) expression; GENIE3 using TF activity inferred by AUCell; NetAct using its inferred TF activity. For the latter two methods, original (unperturbed) regulons obtained from the regulatory network were used. **(c)** Network inference performance of NetAct against all ground-truth regulatory interactions using the regulons with 0% (the original), 25%, 50%, and 75% target perturbations. **(d)** Network inference performance of NetAct in discovering new regulatory interactions not existing in the regulons. NetAct was applied using the regulons at different perturbation levels (25%, 50%, and 75%). The benchmark results shown here are for the case of the untreated simulation. The results for the case of the knockdown simulation are shown in **Fig. S7**.

825

826

827



828
829 **Fig. 5 Network modeling of TGF- β induced EMT.** Application of NetAct to an EMT in human cell
830 lines using time-series microarray data. (a) Experimental expression and activity of enriched transcription
831 factors. (b) Inferred TF regulatory network. Blue lines and arrowheads represent gene activation; Red
832 lines and blunt heads represent gene inhibition. (c) The relationship between SMAD3 gene activity and
833 the first principal component of the activity of all network genes from RACIPE simulations. (d)
834 Hierarchical clustering analysis of simulated gene activity (with Pearson correlation as the distance
835 function and Ward.D2 linkage method). Colors at top indicate the two clusters from the simulated gene
836 activity. The blue cluster represents the mesenchymal state, and the yellow cluster represents the
837 epithelial state. The color legend for the heatmap is at the bottom right. (e) Knockdown simulations of the
838 TF regulatory network. The bar plot shows the proportion of RACIPE models in each state (epithelial or
839 mesenchymal) for the conditions of the knockdown of every TF.
840
841
842
843
844
845
846
847
848
849
850



851
852 **Fig 6. Network modeling of macrophage polarization.** Application of NetAct to induced macrophage
853 polarization via drug treatment in mice using RNA-seq data. (a) Experimental expression and activity of
854 enriched TFs. (b) PCA projection of genome-wide gene expression profiles. Different point shapes
855 indicate time after treatment, and colors indicate treatment types (c) PCA projection of gene activity of
856 enriched TFs. (d) Inferred TF regulatory network. Blue lines and arrowheads represent gene activation;
857 Red lines and blunt heads represent gene inhibition. (e) PCA projection of simulated gene activity of
858 inferred network colored by mapping each model back to experimental data. (f) Hierarchical clustering
859 analysis of simulated gene activity (with Pearson correlation as the distance function and Ward.D2
860 linkage method). Colors at top indicate the mapped experimental conditions. The color legend of the
861 heatmap is at the bottom.