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Summary Paragraph

Gut microbiota may work as an essential organ and its members interact closely with each other
and form a higher-level organization called guilds. How such guild-level structure supports the gut
microbiota to stably provide essential health-relevant functions to the host remains elusive. With
high quality metagenome-assembled genomes as network nodes, here we identified a core
microbiome signature made up of two robust competing guilds that together correlate with a wide
range of host health conditions. Genomes in these two guilds kept their ecological relationship
unchanged despite experiencing profound abundance changes during a 3-month high fiber
intervention and 1-year follow-up in patients with type 2 diabetes. The genomes of one guild
harbored more genes for plant polysaccharide degradation and butyrate production, while the other
guild had more genes for virulence or antibiotic resistance. A Random Forest regression model
showed that the abundance distributions of these genomes were associated with 41 out of 43 bio-
clinical parameters in the study cohort. With these genomes as reference, Random Forest modeling
successfully classified case and control of 8 chronic diseases in 12 independent metagenomic
datasets from 1,816 participants across ethnicity and geography. This core microbiome signature

may facilitate ecological management of chronic diseases.

Introduction

Over eons of co-evolution, humans have developed a robust symbiotic relationship with
their gut microbiome'-2, The gut microbiome supports the host’s homeostasis in metabolism,
immunity, development, and behavior, etc.? It has been regarded as an essential organ because
the attenuation or loss of such health-relevant functions of a dysbiotic gut microbiome has been

linked with the initiation and/or progression of many chronic diseases, including type 2 diabetes
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(T2DM)*®. However, the underlying gut microbiome structural signatures that support the stable
provision of health-relevant functions to the host remain to be identified.

The gut microbiota is a complex adaptive system’, in which the minimum responding units
to environmental perturbations are bacterial genomes®. More importantly, genomes are not
independent microbiome features. They form ecological interactions, such as competition or
cooperation, with each other and organize themselves into a higher-level structure called
“guilds™. Each guild is a potential functional group of bacteria in the gut ecosystem. Guild
members may have widely diverse taxonomic backgrounds but thrive or decline together and
thus show co-abundant behavior. Guild-level variations have been positively or negatively
correlated with disease phenotypes and their members have been demonstrated as having causal
role in host disease phenotypes'®!!. Although a suite of microbiome-wide association studies
(MWAS) has attempted to identify the microbiome signatures (using features such as genes,

pathways, taxa, etc.) that are associated with disease phenotypes >

, genomes and their guild-
level organization have not been extensively employed to describe the ecological structure that
supports the stable provision of health-relevant functions to the host.

To this end, we suggest a genome-centric approach which is based on high-quality draft
genomes assembled directly from metagenomic datasets (high-quality metagenome-assembled
genomes, HQMAGs). This approach uses genomes as nodes of ecological networks and their
guild-level aggregations as ecologically meaningful features for identifying microbiome
signatures of chronic diseases. Furthermore, this approach is completely data-driven and
unsupervised, requiring no reference databases or prior knowledge.

In this study, we hypothesized that bacteria required for providing essential health-relevant

functions to the host?> should maintain stable ecological interactions with each other to form
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81  robust guilds'®!’. To identify microbiome signatures that are based on stable interactions among
82 HQMAGS, we randomized T2DM patients at baseline (MO0) to receive either 3-month (M3) of
83  high fiber intervention (W group; n = 74) or standard care (U group; n= 36) followed by a one-
84  year follow-up (M15) in an open label, controlled trial (Fig. 1A and Fig. S1). The high fiber
85 intervention was used to exert a positive environmental perturbation to dramatically and
86  reversibly change the abundance of members of the gut microbiome'®!!. Co-abundance network
87  analysis at each of the three time points enabled us to identify genome pairs that can keep their
88  correlations unchanged despite significant community-wide abundance changes caused by the
89  perturbations. We found that these robust genome pairs were from 141 HQMAGs and these
90 genomes formed two competing guilds. These two guilds were organized as the two competing
91 ends of a robust seesaw-like network, whenever one guild increased, the other decreased in
92  abundance. Together, these seesaw networked genomes supported machine learning models for
93  predicting the response of a wide range of metabolic phenotypes to dietary intervention in the
94  T2DM cohort, as well as for classifications of case and control of 12 independent metagenomic
95  datasets from 1,816 subjects across different cohorts and various chronic diseases including
96 T2DM, atherosclerotic cardiovascular disease (ACVD), liver cirrhosis (LC), inflammatory bowel
97  diseases (IBD), colorectal cancer (CRC), ankylosing spondylitis (AS), schizophrenia, and
98  Parkinson’s disease (PD), suggesting that we may have identified a core microbiome signature
99 across different chronic diseases.

100

101  Results

102  Reversible changes in the gut microbiota associate with reversible changes of host

103  metabolic phenotypes
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104 Dietary fiber intake in the U group remained unchanged throughout the study, whereas W
105  group had a significant increase in the intake of dietary fibers from MO to M3 and a decrease
106  from M3 to M15 (Fig. 1B). Compared with the U group, fiber intake was significantly higher in
107  the W group at both M3 and M15 (Fig. 1B), but energy and macronutrient consumption were
108  similar across the study period (Fig. S2).

109 To investigate the gut microbial responses to the introduction and withdrawal of the high
110  fiber intervention, we performed shotgun metagenomic sequencing on 315 fecal samples

111  collected from 110 patients of the W and U group, among whom 95 patients provided samples at
112 all 3 time points and 15 provided samples at MO and M3 only (Table S2, Fig S1). To achieve
113  genome-level resolution, we reconstructed 1,845 non-redundant high-quality draft genomes

114  (HQMAGs, two HQMAGs were collapsed into one if the average nucleotide identity, ANI,

115  between them was > 99%) from the metagenomic datasets. These HQMAGs accounted for more
116  than 70% of the total reads. In the context of beta-diversity measured via the Bray-Curtis

117  distance, the overall structure of the gut microbiota in the W group significantly changed from
118 MO to M3 (PERMANOVA test, P < 0.001) and returned to that of MO at M15; there was no

119  difference in the U group across the 3 timepoints (Fig. 1C, D). Similar changes in alpha-diversity
120  based on Shannon and Simpson indices were also observed (Fig. S3). These results showed that
121  high fiber intervention induced significant structural changes of the gut microbiota!!, however
122 the gut microbiota reverted to baseline after the intervention was withdrawn indicating a high
123 resilience in community structure.

124 To determine if host metabolic phenotypes would show similar reversible changes as the
125  gut microbiota, we examined 43 bio-clinical parameters across the 3 time points. Hemoglobin

126 Alc (HbAlc) in the U group showed no changes throughout the trial. The high fiber intervention
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127  reduced the level of HbAlc in the W group from MO to M3 by 15.22% + 9.82% (mean + s.d.),
128  and such reduction was significantly bigger than what was observed in the U group. At one-year
129  follow-up of the W group, HbAlc was significantly increased from M3 but remained lower than

130  at MO (Fig. 1E). The proportion of patients who achieved adequate glycemic control (HbAlc <

131  7%) was significantly higher in the W group (61.6 % versus 33.3% in the U group) at M3, but
132 showed no difference between the two groups at M15 (Fig. 1F). The level of fasting blood

133 glucose and postprandial glucose in meal tolerance test followed a similar trend as HbAlc (Fig.
134  1G, H). The W group also showed an alleviation of inflammation, hyperlipidemia, obesity, and
135  T2DM complications from MO to M3 but these parameters rebounded at one-year follow-up

136  (Table S3). These results indicate that changes of the host metabolic phenotypes were associated
137  with the reversible changes of the gut microbiota in response to the introduction or withdraw of
138  the high fiber intervention.

139

140 Genome pairs with stable interactions form a seesaw-like network of two competing guilds
141 To facilitate the identification of genome pairs that keep their ecological interactions stable
142 during the trial, particularly in the W group with profound microbiota and host phenotypic

143  changes, we constructed a co-abundance network for each time point based on the abundance
144  matrix of the HQMAGS representing the prevalent microbes. Co-abundance network is a data-
145  driven way to investigate ecological interactions between microbes across habitats'®1%. A total of
146 477 HQMAGs were selected for network construction because they were detectable in more than
147  75% of the samples at each time point in the W group. They also accounted for ~60% of the total
148  abundance of the 1,845 HQMAGs. In the W group, we calculated pairwise correlations of all

149 113,526 possible genome pairs among these 477 prevalent HQMAGs based on their abundance
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150  across the patients at each time point and constructed 3 co-abundance networks (Gmo, Gm3 and
151  Gwis) (Figure 2A, Table S4). The three networks were of similar order S, i.e., the total number of
152  nodes (HQMAGsS), Smo(442), Sm3(421), and Smi5(429), but they varied considerably in their size
153 L, i.e., the total number of edges (correlations), Lmo(4,231), Lm3(2,587) and Lmi5(4,592). L in
154  Gwmsdecreased to 61.14% of that in Gmo and rebounded back in Gmis to 108.53% of that in Gwmo.
155  This pattern was confirmed by changes in connectance, which is defined as the proportion of

156  realized ecological interactions among the potential ones (in undirected network, connectance=

157

SGo0/7 range: [0,1])?°. Connectance decreased from 0.043 in Gwmo to 0.029 in Gm3 and

158  rebounded to 0.050 in Gmis. Changes in L and connectance showed that high fiber intervention
159  dramatically reduced the correlations among the prevalent genomes in the network. In addition,
160  we found that the distributions of degree, i.e. the number of edges a node has, fit well with a

161  power-law model (Fig. S4, R2 values Gwmo: 0.79, Gwms: 0.82, Gwmis: 0.79), indicating the presence
162  of network hubs?!. If we define hubs as nodes that connect with more than one-fifth of the total
163  nodes in the network (Fig. S5), we find 24 hubs, 10 of which were in Gmo and 20 of which in
164  Gwmis but none in Gms. These results indicate that the overall structure of the gut microbiome may
165 have undergone profound changes during the trial, particularly, high fiber intervention resulted in
166 the loss of interactions between genome pairs.

167 We considered genomes having robust and stable ecological relationship if a genome pair
168  keeps the same ecological interaction across all three timepoints. Out of the 113,526 possible
169  genome pairs, 92.39% had no correlations at any of the three time points, suggesting that it may
170  be arare event for two genomes to establish an ecological relationship (Fig. 2B). Of the 477

171  prevalent HQMAGs, 184 had 517 positive correlations and 118 negative correlations at all three

172 time points. Among these 184 HQMAGs, 43 were excluded from subsequent analysis because
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173  they had no interactions with the remaining 141 nodes (Fig. S6). The remaining 141 HQMAGs,
174  which included 586 genome pairs with stable correlations throughout the trial were further

175  defined as genomes with stable ecological interactions (GSEIs) and became our microbiome
176  signature candidates. We then explored how these 141 GSEIs were connected with each other
177  and with the rest of the nodes in Gmo, Gms, and Gwmis. (Fig. S7TA). The 141 GSEIs had

178  significantly higher degree, betweenness centrality, eigenvector centrality, closeness centrality
179  and stress centrality than the rest of the genomes in the networks (Fig. S7B-F). This finding

180 indicates that these GSEIs exerted a relatively large amount of control over the interaction of
181  other nodes (reflected by betweenness centrality and eigenvector centrality) and the information
182  flow in the network (reflected by closeness centrality and stress centrality). Removing these
183  GSEIs would lead to the collapse of the networks since on average 86.08% of the total edges
184  would have been lost. These suggest that the 141 GSEIs can be considered as the core nodes of
185  the networks as they were highly connected not only within themselves but also with other

186  nodes.

187 These 141 GSEIs were also highly prevalent among participants, as 140 of them were in >
188  90%, and 104 were in 100% of the 74 individuals in the W group (Fig. S8). In addition, these
189 141 GSEIs were also mostly predominant members of the gut microbiota as the abundance of
190 111 of them was higher than the median of the 1,845 HQMAGs and accounted for 20.78% of the
191 total sequencing reads. Based on Bray-Curtis distance, beta-diversity analysis showed significant
192  correlations between the profiles of the 141 GSEIs and all the 1,845 HQMAG:s, as evidenced by
193  Mantel test (R> = 0.62, P = 0.001) and Procrustes analysis (P = 0.001) (Fig. S9, Fig. 1C, D).

194  These indicate that the variations of the 141 GSEIs contributed to the major variations of the

195  whole gut microbial community across the 3 time points.
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196 Bacteria which are positively correlated with each other and show robust co-occurrence

197  behavior can be recognized as ecological guilds®. The 141 GSEIs organized themselves into two
198  guilds and genomes in each guild were highly interconnected with positive correlations. Fifty
199  genomes were in Guild 1 and 91 genomes were in Guild 2 (Fig.2C, Fig. S10). All the genomes in
200  Guild 1 were from the phylum Firmicutes whereas those in Guild 2 were from 5 different phyla,
201  including Firmicutes, Bacteroidota, Proteobacteria, Actinobacteriota and Fusobacteriota. The two
202  guilds were connected by negative edges only, indicating a competitive relationship. Members of
203  Guild 1 increased its abundance from MO to M3 and then decreased from M3 to M15 while

204  members of Guild 2 showed an opposite abundance change (Fig. 2C). Thus, members within
205  each guild had robust cooperative relationships, while competitive relationships existed between
206  the two guilds (Fig. 2D). Our data showed that the two guilds of the 141 GESIs formed a stable
207  seesaw-like network that existed in all three ecological networks Gmo, Gm3, and Gwmis in the W
208  group. Furthermore, the finding of the seesaw-like network in the W group at MO suggests that
209 the existence of such microbial organization is supposed to be irrelevant to the high fiber

210 intervention in our study. Given similar overall gut microbiota structure between the W and U
211 groups at MO and in the U group across 3 timepoints (Fig. 1C, D), we speculated that the seesaw-
212 like network can be observed in the U group across the trial. Thus, we constructed the co-

213  abundance networks based on the abundance of the 141 GESIs across the individuals in the U
214  group at each time point. 99.8%, 99.51% and 99.74% of the total edges in the co-abundance

215 networks agreed with our seesaw-like network (Fig. S11A). This suggests that the detection of
216  these seesaw networked genomes was independent of the high fiber intervention, indicating that
217  the seesaw-like network may be an inherent structure of the gut microbiome in our study.

218
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219  Functionality of the metagenomes of the two competing guilds modulates host metabolic
220 phenotypes

221 We sought to determine whether the balance between the two competing guilds could be
222  modulated by dietary fiber and describe how the two competing guilds affects the host metabolic
223 phenotypes. In the W group, the total abundance of Guild 1 increased and Guild 2 decreased
224 significantly from MO to M3. Then at M15, Guild 1 decreased to a level similar to that at MO,
225  and Guild 2 bounced back but remained lower than that at MO. Subsequently, from MO to M3,
226  high fiber intervention significantly increased the Guild 1 to Guild 2 ratio. At one-year follow-
227  up, the ratio significantly decreased and was not different from MO (Fig. 3A). Neither the

228  abundances of the 2 guilds nor their ratio was changed in the U group across the trial (Fig.

229  S11B). These results showed that the changes of the balance between the two guilds composed
230  of GSEIs were concomitant with the change patterns of dietary intake, overall gut microbiota and
231  host phenotypes. To further validate our hypothesis that GSEIs may be essential to host health,
232 we used the GSEIs as the selected features and applied machine leaning algorithms to explore
233 the associations between GSEIs and each host bio-clinical parameter. Random Forest regression
234  via leave-one-out cross-validation based on the 141 GSEIs showed 41 out of the 43 bio-clinical
235  parameters with significant Pearson’s correlation coefficient ranged from 0.11 to 0.44 (adjusted
236 P value < 0.05) between the predicted and measured values (Fig. 3B). These results showed that
237  the 141 genomes, as two competing guilds in a seesaw-like network, constitute an important
238  microbiome signature for T2DM and the related metabolic phenotypes.

239 Next, we performed genome-centric analysis of the metagenomes of the two competing
240  guilds to explore the genetic basis underlying the association between the dynamic changes of

241  the seesaw networked microbiome signature and the response of the host’s metabolic

10
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242  phenotypes. As the balance between the two guilds can be shifted by dietary fibers, we first

243 sought to identify carbohydrate-active enzyme (CAZy)-encoding genes and genes encoding key
244 enzymes in short-chain fatty acids (SCFAs) production to compare the genetic capacity for

245  carbohydrate utilization between the two guilds. Compared with genomes in Guild 2, those in
246  Guild 1 enriched CAZy genes for arabinoxylan (P < 0.001), cellulose (P < 0.01) and had lower
247  proportion of CAZy genes for inulin utilization (P < 0.01) (Fig. 3C, Table S5). There was no
248  difference in genes for starch, pectin, and mucin utilization between the two guilds. Our previous
249  study showed that gut microbiota benefited patients with T2DM via acetic and butyric acid

250  production from carbohydrate fermentation!'. Among the terminal genes for the butyrate

251  biosynthetic pathways from both carbohydrates (i.e., but and buk) and proteins (i.e., atoA/D and
252  4Hbt), the copy number of but was significantly higher in Guild 1 and there was no difference in
253  the other terminal genes between the two guilds (Fig. 3C). More than one-third of the genomes in
254  Guild 1 harbored the but gene while less then 5% of the genomes in Guild 2 had this gene

255  (Fisher’s exact test P < 0.001). Compared with Guild 2, Guild 1 also trended higher in its genetic
256  capacity for acetate production (P = 0.06) but a lower genetic capacity for propionate production
257 (P <0.05) (Fig. 3C). These results showed that compared to Guild 2, Guild 1 had significantly
258  higher genetic capacity for utilizing complex plant polysaccharides and producing acetate and
259  butyrate.

260 From the perspective of pathogenicity, 21 out of the 1,845 HQMAGs encoded 750

261  virulence factor (VF) genes. Among the 21 VF-encoding genomes, 3 were in Guild 1 while 18
262  were in Guild 2. Three out of the 50 genomes in Guild 1 had one VF gene involved in

263  antiphagocytosis. In Guild 2, 18 out of the 91 genomes encoded 747 VF genes across 15

264  different VF classes i.e., acid resistance, adherence, antiphagocytosis, biofilm formation, efflux

11
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265 pump, endotoxin, invasion, iron uptake, manganese uptake, motility, nutritional factor, protease,
266  regulation, secretion system, and toxin (Fig. 3C, S12A). Notably, 98.53% of all the VF genes in
267  Guild 2 were harbored in 8 genomes (1 in Enterobacter kobei, 2 in Escherichia flexneri, 3 in

268  Escherichia coli and 2 in Klebsiella). The highly enriched genes for virulence factors in genomes
269  of Guild 2 (P < 2.2x107'%, Fisher’s Exact test) indicates that this guild may play an important role
270 in aggravating the metabolic disease phenotypes. In terms of antibiotic resistance genes (ARG),
271  in Guild 1, only 1 genome (2.00% of the genomes in this guild) harbored a copy of an ARG

272  related to phenicol (Fig. 3C, S12B). In Guild 2, 17 genomes (18.68% of the genomes in this

273  guild) encode 40 ARGs for resistance to 7 different antibiotic classes i.e., aminoglycosides, beta-
274  lactam, fosfomycin, glycopeptide, quinolone, macrolide, and tetracycline. Thus, Guild 2 may
275  serve as a reservoir of ARGs for horizontal transfer to opportunistic pathogens. Taken together,
276  our data showed that the two competing guilds had distinct genetic capacity with Guild 1 being
277  potentially beneficial and Guild 2 detrimental'!.

278

279  The seesaw networked microbiome signature exists in cohorts across ethnicity and

280 geography

281 We then asked that whether these 141 genomes, organized as two competing guilds in a
282  stable seesaw-like network, may be a common microbiome signature for different diseases in
283  other independent metagenomically studied cohorts. To answer this question, we used these 141
284  GSEIs in our seesaw-like network as reference genomes to perform read recruitment analysis,
285  which is a commonly used method to estimate abundance of reference genomes???3 in

286  metagenomes (Fig. S13). In an independent T2DM study?*, 32.92% of the reads were recruited

287 and 128 of the GSEIs were detected as part of a co-abundance network based on their estimated

12
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288  abundance across the T2DM patients. In this co-abundance network, 97.82% of the total edges
289  followed the pattern in our seesaw-like network (i.e., positive edges within each guild and

290 negative edges between the 2 guilds) (Fig. 4A), which further supported the existence of this
291  seesaw-like network in T2DM patients. Moreover, 35.28% of the reads were recruited in the
292  metagenomes of 136 healthy controls of the same study24, 119 of the GSEIs were constructed
293  into a co-abundance network in which 99.45 % of the total edges agreed with our seesaw-like
294  network (Fig. 4A). In the context of beta diversity based on Bray-Curtis distance, our

295  microbiome signature showed significant differences (PERMAONVA test P = 2x10%) between
296  T2DM patients and the healthy controls based on the abundance matrix of the reference genomes
297  (Fig. 4B). This suggests that the variation of this microbiome signature was associated with

298 T2DM in this independent dataset. To further validate such associations, using the abundance
299  matrix of the genomes in the microbiome signature as input features and the phenotype data, we
300 constructed Random Forest regression models and found that this microbiome signature was
301 significantly correlated with BMI, fasting insulin, and HbAlc (Fig S14). Furthermore, we

302 developed a machine learning classifier based on a Random Forest algorithm to see if we can
303 classify patients and control. Receiver operating characteristic curve analysis showed a moderate
304  diagnostic power with area under the curve (AUC) of 0.70 by a leave-one-out cross-validation.
305  Thus, we showed that our seesaw networked microbiome signature not only existed in an

306 independent T2DM study but also maintained a similar relationship with the host metabolic

307 phenotypes.

308 We then extended our hypothesis that the seesaw networked microbiome signature

309 represents an inherent feature of human gut microbiome and the disruption of which may be

310 related to diseases in addition to T2DM. We first performed the same validation analysis in
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311 metagenomic datasets of three different types of diseases, including ACVD?*(a chronic

312  metabolic disease), LC? (a liver disease) and AS?’(an autoimmune disease). In ACVD patients
313  and their controls, 36.21% and 32.73% of the reads were recruited, and 134 genomes from the
314  patients and 133 genomes from the controls were constructed into co-abundance networks with
315 97.32% and 97.70% of the total edges respectively agreed with our seesaw-like network (Fig.
316 4A).33.84%, 35.83% and 41.02% of the reads were recruited to the reference genomes in the
317 metagenomic datasets of the healthy control (the studies on LC and AS employed the same

318  control cohort), LC and AS patients respectively. 112, 113 and 113 reference genomes were
319  constructed into co-abundance networks with 99.80%, 98.81% and 98.19% of the total edges
320 agreed with our seesaw-like network in the metagenomic datasets of the healthy control, LC and
321  AS patients respectively (Fig. 4A). In the PCoA plot based on Bray-Curtis distance, our

322  microbiome signature showed significant differences (PERMANOVA test, P < 0.001) between
323  control and patients in all 3 datasets (Fig. 4B). In the LC study, we also used the abundance

324  matrix of the genomes in the microbiome signature as input features and the phenotype data to
325  construct Random Forest regression models and found that our microbiome signature was

326  significantly correlated with total bilirubin, albumin level, and BMI (Fig. S15). Compared with
327  the T2DM dataset?*, the Random Forest classifier based on our microbiome signature showed
328  better diagnostic power in distinguishing case from control for ACVD (AUC = 0.80), LC (AUC
329 =0.90), and AS (AUC = 0.98) (Fig. 4C).

330 To further confirm the relevance of this microbiome signature to human diseases, we

331 estimated the abundances of the genomes from this microbiome signature in datasets from more
332  disease types and across different ethnicity and geography. These datasets included IBD

333  (American cohort and Dutch cohort), CRC (Chinese cohort, Australian cohort and German
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334  cohort), schizophrenia (Chinese cohort), and PD (Chinese cohort). On average, 31.32% +4.21%
335 (mean =+ s.d.) of reads were recruited to the reference genomes in these datasets. We validated
336 that this microbiome signature showed diagnostic power to classify case and control in the

337  metagenomic dataset from studies on IBD (AUC = 0.71 for IBD dataset 12%, AUC=0.91 for IBD
338  dataset 2% and AUC=0.83 for IBD dataset 3%°), CRC (AUC = 0.74 for CRC dataset 13, AUC =
339  0.75 for CRC dataset 23! and AUC = 0.71 for CRC dataset 33?), schizophrenia®* (AUC = 0.68),
340 and PD* (AUC = 0.77) (Fig. S16). In addition, we used MMUPHin?* to correct batch effects
341  from the different cohorts in IBD and CRC and applied leave-one-cohort-out (LOCO) analysis3®
342  to evaluate the universality of the diagnostic power of this microbiome signature in these two
343  diseases. The AUC values from LOCO analysis were 0.77 to 0.84 for IBD and 0.68 to 0.70 for
344  CRC (Fig. S17). These results showed the existence of our microbiome signature in healthy

345  controls and various patient populations across ethnicity and geography from independent

346  studies. The associations between the 141 genomes and host phenotypes and their discriminative
347  power as biomarkers to classify controls vs. patients with various types of diseases indicate that
348 these genomes, organized as two guilds in a seesaw-like network, represent a common

349  microbiome signature associated with widely different human disease phenotypes.

350

351 Discussion

352 In the current study, our genome-centric, reference-free, and ecological-interaction-focused
353  approach led to the identification of a robust seesaw-like network of two competing guilds of
354  bacterial genomes, whose changes were associated with a wide range of host phenotypes in

355  patients with T2DM. Moreover, random forest models based on these genomes classified case

356 and control across a wide range of diseases, indicating that these genomes may form a novel
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357 microbiome signature that exists in populations of widely different ethnicity, geography, and
358  disease status.

359 Our novel microbiome signature organizes genomes in a seesaw-like network exhibiting
360 both cooperative and competitive interactions. Though cooperative ecological networks are

361 expected to promote overall metabolic efficiency, such as the co-operative metabolism that

362  benefits the host?’, it creates dependency and the potential for mutual downfall that may bring
363  destabilizing effect on the gut microbial ecosystem. This destabilizing effect of cooperation can
364  be dampened by introducing ecological competition into the network®’. Thus, a seesaw-like

365 network with both cooperative and competitive interactions may represent the key characteristic
366  of a stable microbiome structure?’. Interestingly, while the seesaw-like network is stable, the
367  weight of the two ends i.e., the abundances of Guild 1 and Guild 2, are modifiable and such

368 changes are associated with host health. When large amount of complex fiber became available,
369  Guilds 1 and 2 showed no change in membership nor in the types of interactions with each other
370  but experienced dramatic shifts in guild-level abundance in a competing manner. Members in
371  Guild 1 have higher genetic capacity for degrading complex plant polysaccharides and produce
372  beneficial metabolites including SCFAs which may suppress populations of pathobionts in Guild
373 2!, Members of Guild 2 need to be kept low since their overgrowth may jeopardize host health

374 by increasing inflammation, etc.’®. However, pathobionts in Guild 2 cannot be eliminated, e.g.,

375 they could serve as the necessary agents that train our immune system from early days®,

376  Therefore, the balance between Guild 1 and Guild 2 becomes critical in determining whether the
377  gut microbiome supports health or aggravate diseases. This seesaw-like network between Guilds
378 1 and 2 allows the genomes in our microbiome signature to readily respond to changes of

379  external energy input to the gut microbial ecosystem and mediate its impact on host health, while
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380 simultaneously maintains its structural integrity. Such structural integrity may be key to long-
381 term ecological stability of the gut microbiome and its ability to provide essential health-relevant
382  functions to the host.

383 Such a seesaw networked structure may have been stabilized by natural selection over a
384  long history of co-evolution between microbiomes and their hosts!6 4!, A selection pressure may
385 have been exerted by dietary fibers that interact directly with gut bacteria as external energy

386  source*?*. Studies on coprolites showed that dietary fiber intake was much higher in ancient
387  humans and only reduced significantly in the past 150 years** (130 g/d of plant fiber intake in
388  prehistoric diet* vs. a median intake of 12—14 g/d in the modern American diet*’). Such a high
389 fiber intake over evolutionary history may have favored beneficial bacteria in Guild 1 due to

390 their higher genetic capacity to utilize plant polysaccharides as an external energy supply,

391  enabling them to gain competitive advantage over pathobionts in Guild 243, Akin to tall trees as
392  the foundation species for a closed forest, Guild 1 may work as the “foundation guild” for

393  stabilizing a healthy gut microbiome and keeping the pathobionts at bay*. The dominance of
394  Guild 1 over Guild 2 can increase host fitness as shown by the epidemiologically and clinically
395 proven health benefits of dietary fibers in both preventing and alleviating a wide range of chronic
396  conditions!!43-3051,

397 Moreover, the seesaw networked microbiome signature may be considered as part of the
398  core gut microbiome in humans?°3, since 1) they are commonly shared among populations

399 across ethnicity and geography; 2) they show temporal stability not only in membership but also
400 in their interactions with each other and the host; 3) they make up about 10% of the gut

401 microbiome membership but are disproportionally important for shaping the ecological

402  community; 4) they support the provision of essential health-relevant functions to the host; and
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403  5) such a core microbiome organized in a seesaw-like network may have been established over a
404  long history of co-evolution.

405 The fact that this seesaw-like network can be detected in other independent metagenomic
406  datasets and is shown correlated with different diseases indicates that this core microbiome

407  signature could be an evolutionarily conserved ecological structure and may be fundamentally
408 important to human health recovery and maintenance. In addition, our seesaw-like network

409 demonstrated stable relationships both internally within the network and externally with multiple
410  host clinical markers, suggesting that genome-based bacterial guilds may serve as robust disease
411  biomarkers. Within the seesaw-like network, it is the imbalance between the two competing

412  guilds that may play a role as the common biological basis for many human diseases. Targeting
413  this core microbiome signature to restore and maintain dominance of the beneficial guild over
414  the detrimental guild could help reduce disease risk or alleviate symptoms, thus opening a new
415  avenue for chronic diseases management and prevention.

416

417  Materials and Methods

418  Clinical Experiment

419  Study design'': This clinical trial, conducted at the Qidong People’s Hospital (Jiangsu, China),
420 examined the effect of a high fiber diet in free-living conditions in a cohort of individuals

421  clinically diagnosed T2DM (QIDONG). The study protocol was approved by Ethics Committee
422  of Shanghai General Hospital (2014KY 104), and the study was conducted in accordance with the
423  principles of the Declaration of Helsinki. All participants provided written informed consent. The
424  trial was registered in the Chinese Clinical Trial Registry (ChiCTR-IPC-14005346). The study

425  design and participant flow are shown in Fig. S1.
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426 T2DM patients of the Chinese Han ethnicity were recruited for the study (age: 37 - 70 years;
427  HbAlc: 6.5% - 12.0%. More detailed description of inclusion and exclusion criteria were shown

428  in Chinese Clinical Trial registry (http://www.chictr.org.cn).

429 Patients received either a high-fiber diet (WTP diet) as the treatment group (W group) or the
430  usual care (Usual diet) as the control group (U group) for 3 months. Total caloric and

431 macronutrients prescriptions were based on age-specific Chinese Dietary Reference Intakes

432  (Chinese Nutrition Society, 2013). The WTP diet, based on wholegrains, traditional Chinese

433  medicinal foods and prebiotics, included three ready-to-consume pre-prepared foods!!. The usual
434  care included standard dietary and exercise advice that was made according to the Chinese

435  Diabetes Society guidelines for T2DM3. Patients in W group were provided with the WTP diet
436  to perform a self-administered intervention at home for three months, while patients in U group
437  accepted the usual care. W group stopped WTP diet intervention at the end of the third month (at
438  M3). Then W and U continued a one-year follow-up (M15). A meal-based food frequency

439  questionnaire and 24-h dietary recall were used to calculate nutrient intake based on the China
440  Food Composition 2009%. Patients in both groups continued with their antidiabetic medications
441  according to their physician prescriptions (Table S1).

442 Before a 2-week run-in period, all participants attended a lecture on diabetes intervention and
443  improvements and received diabetes education and metabolic assessments. 119 eligible

444  individuals were enrolled based on the inclusion and exclusion criteria and assigned into two
445  groups in a 2:1 ratio (n =79 in W group, n = 40 in U group) determined by SAS software.

446 Physical examinations were carried out at MO, M3, and M 15 in Qidong People's Hospital

447  (Jiangsu, China). Sample collection instructions were provided to the participants at the day

448  before. The participants provided the feces and first early morning urine as requested. After
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449  collecting fasting venous blood sample, a 3-h meal tolerance test (Chinese buns containing 75 g
450  of available carbohydrates; MTT test) was conducted and the postprandial venous blood samples
451  at 30, 60, 120, and 180 min were collected. All the blood samples were centrifuged at 3000 rpm
452  for 20 min at 4°C after standing at room temperature for 30 min to obtain serum. The fasting

453  blood serum were divided into two parts, one used for hospital tests and the other used for lab

454  tests. The feces, urine, and serum samples were stored in dry ice immediately then transported to

455  lab and frozen at -80°C. Subsequently, anthropometric markers and diabetic complication

456  indexes were measured. Ewing test>

and 24-h dynamic electrocardiogram were conducted to
457  estimate diabetic autonomic neuropathy (DAN). B-mode carotid ultrasound was conducted to
458  estimate atherosclerosis. Michigan Neuropathy Screening Instrument’’ was conducted to

459  estimate diabetic peripheral neuropathy (DPN). In addition, A meal-based food frequency

460  questionnaire and the 24-h dietary review were recorded for nutrient intake calculation. The drug
461  use was self-reported and presented in table S1.

462 The fasting venous blood was used to measure HbAlc, fasting blood glucose, fasting insulin,
463  fasting C-Peptide, C-reactive protein (CRP), blood routine examination, blood biochemical

464  examination and five analytes of thyroid. The venous blood samples at 30, 60, 120, and 180 min
465  of MTT were used to measure the postprandial blood glucose, insulin, and C-Peptide. The

466  fasting early morning urine was used to measure the routine urine examination and urinary

467  microalbumin creatinine ratio. The measurements above were completed at Qidong People’s
468  Hospital. Fasting venous blood was used to quantify TNF-a (R&D Systems, MN, USA),

469  lipopolysaccharide-binding protein (Hycult Biotech, PA, USA), leptin (P&C, PCDBH0287,

470  China) and adiponectin (P&C, PCDBH0016, China) by enzyme-linked immunosorbent assays

471  (ELISAs) at Shanghai Jiao Tong University.
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472 The homeostatic model assessments of insulin resistance (HOMA-IR) and islet -cell function
473  (HOMA-pB) were calculated based on fasting blood glucose (mmol/L) and fasting C-Peptide

474  (pmol/L)**: HOMA-IR = 1.5 + FBG * Fasting-C-Peptide / 2800;

475 HOMA-B =0.27 * Fasting-C-Peptide / (FBG - 3.5). Glomerular Filtration Rate was estimated by
476  formula GFR (ml/min per 1.73 m?) = 186 * Scr'!-1>* * age0-203 % () 742 (if female) * 1.233 (if
477  Chinese)*®, where Scr (serum creatinine) is in mg/dl and age is in years.

478

479  Gut microbiome analysis

480 Metagenomic sequencing. DNA was extracted from fecal samples using the methods as

481  previously described'?. Metagenomic sequencing was performed using Illumina Hiseq 3000 at
482 GENEWIZ Co. (Beijing, China). Cluster generation, template hybridization, isothermal

483  amplification, linearization, and blocking denaturing and hybridization of the sequencing primers
484  were performed according to the workflow specified by the service provider. Libraries were

485  constructed with an insert size of approximately 500 bp followed by high-throughput sequencing
486  to obtain paired-end reads with 150 bp in the forward and reverse directions. Table S3 shows the
487  number of raw reads of each sample.

488

489  Data quality control. Prinseq® was used to: 1) trim the reads from the 3’ end until reaching the
490 first nucleotide with a quality threshold of 20; 2) remove read pairs when either read was < 60 bp
491  or contained “N” bases; and 3) de-duplicate the reads. Reads that could be aligned to the human
492  genome (H. sapiens, UCSC hg19) were removed (aligned with Bowtie2°' using --reorder --no-hd
493  --no-contain --dovetail). Table S3 shows the number of high-quality reads of each sample for

494  further analysis.
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495

496  De novo assembly, abundance calculation, and taxonomic assignment of genomes. De novo
497  assembly was performed for each sample by using IDBA_UD®? (--step 20 --mink 20 --maxk 100
498  --min_contig 500 --pre_correction). The assembled contigs were further binned using

499  MetaBAT® ( --minContig 1500 --superspecific -B 20). The quality of the bins was assessed

500 using CheckM®. Bins had completeness > 95%, contamination < 5% and strain heterogeneity <
501 5% were retained as high-quality draft genomes (Table S6). The assembled high-quality draft
502  genomes were further dereplicated by using dRep®. DiTASiC®, which applied kallisto for

503  pseudo-alignment%” and a generalized linear model for resolving shared reads among genomes,
504  was used to calculate the abundance of the genomes in each sample, estimated counts with P-
505 value > 0.05 were removed, and all samples were downsized to 36 million reads (One sample
506  with read mapping ratio < 25%, which could not be well represented by the high quality

507 genomes, were removed in downstream analysis). Taxonomic assignment of the genomes was
508  performed by using GTDB-Tk® (Table S7).

509

510 Gut microbiome functional analysis. Prokka®® was used to annotate the genomes. KEGG

511  Orthologue (KO) IDs were assigned to the predicted protein sequences in each genome by

512 HMMSEARCH against KOfam using KofamKOALA°. Antibiotic resistance genes were

513  predicted using ResFinder’! with default parameters. The identification of virulence factors were
514  based on the core set of Virulence Factors of Pathogenic Bacteria Database (VFDB’2, download
515  July 2020). The predicted proteins sequences were aligned to the reference sequence in VFDB
516  using BLASTP (best hist with E-value < le-5, identity > 80% and query coverage > 70%).

517  Genes encoding carbohydrate-active enzymes (CAZys) were identified using dbCAN (releasee
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518  6.0)"3, and the best-hit alignment was retained. Genes encoding formate-tetrahydrofolate ligase,
519  propionyl-CoA: succinate-CoA transferase, propionate CoA-transferase, 4Hbt, AtoA, AtoD, Buk
520 and But were identified as described previously!'!.

521

522 Gut microbiome network construction and analysis. In W group, prevalent genomes shared
523 by more than 75% of the samples at every timepoint were used to construct the co-abundance
524  network at each timepoint. Fastspar’>, a rapid and scalable correlation estimation tool for

525  microbiome study, was used to calculate the correlations between the genomes with 1,000

526  permutations at each time point based on the abundances of the genomes across the patients and

527  the correlations with P < 0.001 were retained for further analysis. The networks were visualized

528  with Cystoscape v3.8.17. The layout of the nodes and edges was determined by Edge-weighted
529  Spring Embedded Layout using the correlation coefficient as weights. The links between the
530 nodes are treated as metal springs attached to the pair of nodes. The correlation coefficient was
531  used to determine the repulsion and attraction of the spring’. The layout algorithm sets the
532  position of the nodes to minimize the sum of forces in the network. We defined robust stable
533  edges as the unchanged positive/negative correlations between the same two genomes across all
534  the 3 networks at MO, M3, and M15. Stable genome pairs were clustered based on robust

535  positive (set as 1) and negative (set as -1) edges with average clustering. We used iTOL”’, an
536  online tool for display, manipulation, and annotation for various trees, to integrate and visualize
537 the clustering tree, taxonomy information, and abundance changes of the 141 genomes.

538

539 Validation in independent cohorts. Twelve independent metagenomic datasets were

540 downloaded from SRA or ENA database. The group information was collected from the
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541  corresponding papers or from curatedMetagenomicData’® (Table S8). DiTASIiC was used to
542  recruit reads and estimate the abundance of the 141 genomes in each sample, estimated counts
543  with P-value > 0.05 were removed and further converted to relative abundance divided by the
544  total number of reads. To reduce false positive in the validation dataset, relative abundance <
545  0.001% were further removed. A random forest classification model to classify case and control
546  was constructed based on the estimated abundances of the genomes in each dataset with leave-
547  one-out cross-validation.

548 MMUPHin* was used to adjust the estimated abundances of the genomes by correcting
549  batched effects from the different cohorts in IBD and CRC studies. Random forest classification
550 models with leave-one-cohort-out analysis were further performed on the adjusted abundance
551  matrix3®.

552 Datasets from 4 studies were included to validate the commonality of the seesaw-like
553  network. These datasets were from 136 control and 136 T2DM individuals in Qin et al., 2012%*;
554 171 control and 214 atherosclerotic cardiovascular disease individuals in Jie et al., 2017%; 83
555  control and 84 liver cirrhosis individuals in Qin et al., 2014?%; and 83 control and 97 ankylosing
556  spondylitis individuals in Wen et al., 201727, Fastspar was used to calculate the correlations

557  between the genomes with 1,000 permutations and the correlations with P < 0.001 were

558 remained for constructing the networks. 30 repeat 5-fold cross-validation was used and the

559  correlations shared by more than 95% of the 150 networks constructed from the cross-validation
560  process were remained in the final network.

561

562  Statistical Analysis
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563 Statistical analysis was performed in the R environment (R version3.6.1). Friedman test
564  followed by Nemenyi post-hoc test was used for intra-group comparisons. Mann-Whitney test
565  (two-sided) was used for comparisons between W and U at the same time point. Pearson Chi-
566  square tests was performed to compare the differences of categorical data between groups or
567  timepoints. PERMANOVA test (9,999 permutations) was used to compare the groups of gut
568  microbiota structure. P value less than 0.05 was accepted as statistical significance.

569 Mann-Whitney test (two-sided) and Fisher’s exact test (two sided) were used to compare
570 the functions between Guild 1 and Guild 2. Random Forest with leave-one-out cross-validation
571  was used to perform regression and classification analysis based on this microbiome signature
572  and clinical parameters/groups.

573
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784 Fig.1 Reversible changes of gut microbiota associates with reversible shifts of metabolic phenotypes in patients
785 with T2DM. (A) Study design. Before Run-in, written informed consent, questionnaire of personal information and
786 measuring HbA1lc at screening. After Run-in, medical checkup and sample collection at baseline (M0), three months
787 after on the high fiber intervention or usual diet (M3) and one year after the high fiber intervention stopped (M15).
788 (B) Changes of fiber intake. (C) Global changes of the gut microbiome as shown by the principal coordinate analysis
789 based on the Bray-Curtis distance for the 1845 genomes and (D) Average Bray-Curtis distance between the groups.
790 PERMANOVA test (9,999 permutations) was performed to compare the groups. * P < 0.05 and *** P < 0.001. The
791 color of the square showed the magnitude of average Bray-Curtis distance. (E) Change of HbA1c, (F) The percentage
792 of participants with adequate glycemic control, (G) Fasting blood glucose, and (H) The glucose area under the curve
793 (AUC) in a meal tolerance test (MTT). For (E), (G) and (H), data shown as percent changes from baseline (+ S.E.M).
794 Friedman test followed by Nemenyi post-hoc test was used for comparison in the same group, compact letters reflect
795 significance (P < 0.05). n = 67 in W group and n = 28 in U group. Mann-Whitney test (two-sided) was used for
796 comparison between W and U at the same time point, * P < 0.05, ** P < 0.01 and *** P < 0.001. n = 74 in W (MO)
797 (For panel H, n=72), n=74in W (M3), n=67 in W (M15), n=36in U (M0), n=36in U (M3) and n =28 in U (M15).
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Fig. 2. Two competing guilds of bacteria constitute a robust seesaw-like network despite the profound global
changes in the gut microbial ecosystem induced by introduction and withdrawal of the high fiber intervention. (A)
Co-abundance networks of the prevalent genomes in W group at M0, M3 and M15 during the trial, denoted as
Gmo(442; 4231), Gms(421; 2587) and Gmis(429; 4592), numbers in parenthesis are order and size of the network. The
correlations between genomes were calculated using FastSpar, n = 67 patients. All significant correlations with P <
0.001 were included. Edges between nodes represent correlations. Red and blue colors indicate positive and
negative correlations, respectively. Node size indicates the average abundance of the genomes. The layout of the
nodes and edges was determined by Edge-weighted Spring Embedded Layout with correlation efficient as weight.
(B) The distribution of different types of correlations of the genome pairs during the trial. The 3 letters show the
correlations of the genome pairs at MO, M3 and M15 subsequently. Stable correlations, NNN and PPP, were
highlighted (C) Average clustering of the 141 nodes based on their robust positive and negative correlations showed
two clusters (green and purple range). The bar plots show the abundance changes of each node throughout the trial,
which is expressed as median abundance with Z-score transformation. The differences of each node over time were
tested using the Friedman test followed by Nemenyi post-hoc test. P < 0.05 was considered as significant. This panel
was plotted using iTOL. (D) The seesaw-like network with the 141 nodes in two polarizing clusters. Edges between
nodes represent correlations. Red and blue colors indicate positive and negative correlations, respectively. For (C)
and (D), the color of the node represents the members in the two guilds: green for Guild 1 and purple for Guild 2.
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821 Fig. 3. The balance between the two competing guilds in the seesaw-like network was associated with the
822 metabolic health of patients with type 2 diabetes. (A) Change of the total abundance of Guild 1, Guild 2, and their
823 ratio across the trial in the W group. Friedman test followed by Nemenyi test was used to analyze the difference
824 between time points. Compact letters reflect the significance at P < 0.05. (B) Random Forest regression with leave-
825 one-out cross-validation was used to explore the associations between the 141 genomes and the clinical parameters.
826 The bar plot shows the Pearson’s correlations coefficient between the predicted and measured values. The asterisk
827 before the parameter’s name shows the significance of the Pearson’s correlations. P values were adjusted by
828 Benjamini & Hochberg’s method. * adjusted P < 0.05, ** adjusted P < 0.01 and adjusted *** P < 0.001. BMI, body
829 mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WC, waist circumference; HP, hip
830 circumference; TNF-a, tumor necrosis factor-a; WBC, white blood cell count; CRP, C-reactive protein; LBP,
831  lipopolysaccharide-binding protein; TC, total cholesterol; TG, triglyceride; Lpa, lipoprotein a; HDL, high-density
832 lipoprotein; APOA, apolipoprotein A; LDL, low-density lipoprotein; APOB, apolipoprotein B; GFR (MDRR), glomerular
833 filtration rate; CysC, Cystatin C; ACR, urinary microalbumin to creatinine ratio; IMT, intima-media thickness; DAN,
834 diabetic autonomic neuropathy score; MHR, mean heart rate; SDNN, standard deviation of NN intervals; SDANN,
835 standard deviation of the average NN intervals calculated over 5 minutes; SDNNIndex, mean of standard deviation
836 of NN intervals for 5-minute segments; rMSSD, root-mean-square of the differences of successive NN intervals;
837 pNN50, percentage of the interval differences of successive NN intervals greater than 50 ms; TP, total power; VLF,
838 very low frequency power; LF, low frequency power; HF, high frequency power; DPN, diabetic peripheral neuropathy
839 score. (C) Differences in genetic capacity of carbohydrate substrate utilization (CAZy), short-chain fatty acid
840 production (SCFA), number of antibiotic resistance genes (ARG) and number of virulence factor genes (VF). (C) The
841 heatmaps show the proportion (CAZy) or gene copy numbers (SCFA, ARG and VF) of each category in each genome.
842 For carbohydrate substrate utilization, CAZy genes were predicted in each genome. The proportion of CAZy genes
843 for a particular substrate was calculated as the number of the CAZy genes involved in its utilization divided by the
844 total number of the CAZy genes. Arabinoxylan-related CAZy families: CE1, CE2, CE4, CE6, CE7, GH10, GH11, GH115,
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GHA43, GH51, GH67, GH3 and GH5; cellulose-related: GH1, GH44, GH48, GH8, GH9, GH3 and GHS5; inulin-related:
GH32 and GH91; mucin-related families: GH1, GH2, GH3, GH4, GH18, GH19, GH20, GH29, GH33, GH38, GH58, GH79,
GH84, GH85, GH88, GH89, GH92, GH95, GH98, GH99, GH101, GH105, GH109, GH110, GH113, PL6, PL8, PL12, PL13
and PL21;pectin-related: CE12, CE8, GH28, PL1 and PL9; starch-related: GH13, GH31 and GH97. For short chain fatty
acid production, FTHFS: formate-tetrahydrofolate ligase for acetate production; ScpC: propionyl-CoA succinate-CoA
transferase and Pct: propionate-CoA transferase for propionate production; But: Butyryl-coenzyme A (butyryl-CoA):
acetate CoA transferase, Buk: butyrate kinase, 4Hbt: butyryl- CoA: 4-hydroxybutyrate CoA transferase, Ato: butyryl-
CoA:acetoacetate CoA transferase (AtoA: alpha subunit, AtoD: beta subunit) for butyrate production. Mann-Whitney
test (two-sided) was used to analyze the difference between Guild 1 and Guild 2. #P < 0.1, * P < 0.05, ** P < 0.01
and *** P <0.001. Guild 1 (green bar): n = 50, Guild 2 (purple bar): n =91.
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Fig.4. The seesaw networked microbiome signature exists in other independent human cohorts and supports
classification models for different diseases. (A) Members of the two competing Guilds in the seesaw networked
microbiome signature showed similar ecological interactions in four independent human gut metagenomic datasets.
The correlations between the genomes were calculated using FastSpar. All significant correlations (P < 0.001)
belonged to seesaw-like network (positive correlations within Guilds and negative correlations between Guilds) were
included. Lines between nodes represent correlations, and red and blue colors indicate positive and negative
correlations, respectively. The color of the node represents the members in the two competing guilds: green for
Guild 1 and purple for Guild 2. The percentage of correlations followed the pattern in the seesaw networked
microbiome signature (i.e., positive edges within each guild, negative edges between the 2 guilds) was in yellow, and
the ratio of correlations that were negative within each guild and positive between the guilds was in black of the
100% stacked bar. (B) The composition of the ¢ microbiome signature was different between control and patients in
each dataset as shown in the Principal Coordinates Analysis plot based on Bray-Curtis distance. 95% confidence
ellipses were projected for control and patients respectively. The p values of the PERMANOVA test were indicated.
(C) The microbiome signature supports classification models for the four different diseases. The area under the ROC
curve (AUC) of the Random Forest classifier based on the 141 genomes in the microbiome signature to classify
control and patients in each dataset. Leave-one-out cross validation was applied. Type 2 diabetes (T2DM): Control n
=136, T2D n=136; Atherosclerotic cardiovascular disease (ACVD): Control n = 171 and ACVD n = 214; Liver cirrhosis
(LC): control n = 83 and LC n =84; Ankylosing spondylitis: Control n = 83 and AS n = 97.
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