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Abstract

Droplet-based 3’ single-cell RNA-sequencing (scRNA-seq) methods have proved
transformational in characterizing cellular diversity and generating valuable hypotheses
throughout biology'?. Here we outline a common problem with 3’ scRNA-seq datasets where
genes that have been documented to be expressed with other methods, are either completely
missing or are dramatically under-represented thereby compromising the discovery of cell types,
states, and genetic mechanisms. We show that this problem stems from three main sources of
sequencing read loss: (1) reads mapping immediately 3’ to known gene boundaries due to poor
3’ UTR annotation; (2) intronic reads stemming from unannotated exons or pre-mRNA; (3)
discarded reads due to gene overlaps®. Each of these issues impacts the detection of thousands
of genes even in well-characterized mouse and human genomes rendering downstream analysis
either partially or fully blind to their expression. We outline a simple three-step solution to recover
the missing gene expression data that entails compiling a hybrid pre-mRNA reference to retrieve
intronic reads*, resolving gene collision derived read loss through removal of readthrough and
premature start transcripts, and redefining 3’ gene boundaries to capture false intergenic reads.
We demonstrate with mouse brain and human peripheral blood datasets that this approach
dramatically increases the amount of sequencing data included in downstream analysis revealing
20 - 50% more genes per cell and incorporates 15-20% more sequencing reads than with
standard solutions®. These improvements reveal previously missing biologically relevant cell
types, states, and marker genes in the mouse brain and human blood profiling data. Finally, we
provide scRNA-seq optimized transcriptomic references for human and mouse data as well as
simple algorithmic implementation of these solutions that can be deployed to both thoroughly as
well as poorly annotated genomes. Our results demonstrate that optimizing the sequencing read
mapping step can significantly improve the analysis resolution as well as biological insight from
scRNA-seq. Moreover, this approach warrants a fresh look at preceding analyses of this popular
and scalable cellular profiling technology.

Main

Droplet-based single-cell RNA-sequencing methods such as Dropseq and 10x Genomics
platforms have dramatically lowered the cost and improved the throughput of single-cell gene
expression profiling. These advances have thereby widely democratized the discovery of new cell
types and states®®, delineation of developmental mechanisms® and cellular basis of disease'® as
well as mapping of behavioral and physiological functions to distinct cell types'!'2. The scalability
of such methods however comes with a few important limitations. First, the droplet-based
methods rely on 3’ gene tagging where detection of genes depends on registering sequencing
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reads predominantly at the 3’ end of genes which makes detection of splicing isoforms
problematic. Second, 3’ scRNA-seq datasets despite usually being much more shallowly
sequenced are in general considered to have lower sensitivity than deep full-length isoform
sequencing solutions such as provided by the SMART-Seq chemistry's. Indeed, several studies
have observed that genes shown to be expressed with other methods have critically been missing
in analyses relying on droplet-based scRNA-seg®''. This shortcoming compromises the potential
of 3' scRNA-seq high-throughput technologies to uncover the genetic and cellular mechanisms
giving rise to development and tissue function.

ScRNA-sequencing workflow consists of several steps including sample preparation, sequencing
library generation, sequencing, read mapping/quantification, and analysis of the gene-cell matrix
based data. While many of these steps are considered standard, some such as sample
preparation are widely recognized as critical for the final outcome and can vary significantly
between protocols and labs. One often overlooked step in this workflow is read
mapping/quantification that determines which sequencing reads are incorporated in the final
cellular gene expression data. During this process, sequencing reads are mapped to the
reference transcriptome (i), assigned to genes (ii), assigned to cells (iii), and duplicates are
removed (iv) '*'°. As a result of this step, often the majority of sequencing reads get excluded
from further analysis for one of several reasons including failure to map confidently to the
transcriptome, being a duplicate read, mapping to multiple sites in the genome (multimapping
reads), mapping to more than one gene (multigene reads), mapping intronically or to an intergenic
region. Some of the discarded read data however reflect endogenous gene expression and can
render expressed genes missing'®'”. Several groups have manually amended the transcriptome
for individual genes to restore their visibility®'", however, a systemic effort to evaluate the scale
of this problem and to provide a whole-transcriptome solution for this issue has been missing.

Here, we show that analysis pipelines relying on standard exonic transcriptomic references are
blind to many genes that are easily detected with independent methods such as in situ
hybridization. We demonstrate that this lack of gene detection does not stem from low sensitivity
but rather inefficiencies of the currently used transcriptomic references and that this is the case
even with very well annotated genomes including that of mouse and human. Furthermore, we
show that the read loss stems from three sources: poor annotation of 3’ untranslated regions,
gene overlaps stemming from the annotation of rare read-through or prematurely starting
transcripts and finally exclusion of intronic reads. We outline a three-step strategy to overcome
these limitations through the inclusion of intronic reads, resolving gene overlaps by excluding rare
transcript isoforms and identifying and incorporating unannotated gene 3'UTRs. This strategy
recovers obscured gene expression data for thousands of genes and reveals previously
undetected genetic markers, mechanisms and cell types. Consequently, we provide full genome
optimized transcriptomic references for the mouse and human genomes. In sum, our data argue
that transcriptomic references need to be optimized for scRNA-seq analysis and that this step can
dramatically improve the profiling resolution. These findings also warrant a reanalysis of
previously published datasets.

Results

In order to characterize gene detection fidelity of 3’ gene counting methods we performed scRNA-
sequencing of the median pre-optic nucleus (MnPQO) - a mouse brain center implicated in a range
of physiological functions including thirst, sleep, heat and cold sensation'®. Predictably, following
sequencing read mapping to an exonic transcriptomic reference we identified about a dozen
distinct neuron types in this structure reflecting the functional diversity of this brain center (Fig.
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1a). We next compared gene detection fidelity with scRNA-sequencing to in situ hybridization —
an independent method provided by the Allen in situ brain atlas'®. While we found many genes
95 that were reliably detected with both methods (e.g. Nxph4, Fig. 1b), we observed a number of
genes that were completely missing in scRNA-seq data while robustly detected with in situ
hybridization (e.g. B4galnt2 and Gpr165, Fig. 1c-d). Follow-up analysis at these loci revealed
three distinct patterns of sequencing read mapping that determined whether the gene is detected
or missing in scRNA-sequencing analysis. The first type comprised of genes detected by both
100 methods. In this case, sequencing reads mapped near perfectly to the exons of the underlying
gene and were thus included in downstream transcriptomic analysis (Fig. 1b). A second group of
genes were detected by in situ hybridization but were missing in scRNA-seq data as most
sequencing reads mapped to an intron of that gene resulting in exclusion from transcriptomic
analysis (Fig. 1c). Finally, a third group of genes were detected by in situ hybridization but not
105  with scRNA-seq and had no sequencing read mapping to known exons and introns (Fig. 1d).
Importantly, the last type of genes displayed excessive read mapping proximal to the known 3’
end of the gene suggesting that scRNAseq fails to detect these genes due to poor annotation of
3’ untranslated regions of genes. These data demonstrate that droplet-based single cell
sequencing datasets can fail to detect genes due to suboptimal read mapping to the reference
110  transcriptome.

In order to evaluate the magnitude of the missing gene problem, we quantified several metrics of
sequencing read mapping in two vertebrate species with the most thoroughly annotated genomes
— mice and humans. For mice we evaluated the MnPO dataset and for humans we profiled
peripheral blood mononuclear cells (PBMCs). In mouse brain data we found that out of the
115  uniquely mapped sequencing reads 71.8 % are exonic, 19.5 % intronic and 8.7 % intergenic out
of 272 million total reads suggesting that significant gains could be achieved by incorporating
sequencing data from intronic and intergenic areas to gene expression estimates (Fig. 1e) . We
found similar metrics in human data with 69.9 % exonic, 23.5 % intronic and 6.7 % intergenic
reads (272 million total), respectively. Indeed, upon evaluating the number of genes detected as
120  aresult of including intronic reads, intergenic reads within 10 kb of known 3’ gene ends or both,
we observed dramatic gains in the amount of detected genes in scRNA-seq datasets with 13.6%,
25.8% and 33.6% more genes detected than with a conventional exonic transcriptome reference
in mouse (Fig. 1f). Again, comparable gains were observed with 19.9%, 23.2% and 39.2% more
genes detected, respectively for the human transcriptome. Moreover, we also evaluated the
125  dominant source of read information for genes in the mouse and human datasets. Predictably we
found that the majority of mouse genes (79.6%) were dominated by exonic reads with more than
50% of expression data stemming from exonic reads (Fig. 1g). Somewhat surprisingly, less than
half of human genes derive their expression data from exonic reads with the rest stemming from
intronic or 3’ intergenic reads. While not all intronic and proximal intergenic sequencing reads
130  stem from the respective protein-coding gene transcripts, these data indicate that profound gains
in gene detection sensitivity are feasible by incorporating relevant intronic and intergenic read
data in downstream scRNA-seq analysis.
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Figure 1: Missing genes and sequencing read registration in single-cell RNA-seq
135  experiments. a. Sc-RNA-seq based profiling of the mouse physiology regulating brain center -
Median Preoptic Nucleus (MnPQ). 10x Genomics 3’ transcriptomic analysis of MnPO neurons
(n=906) mapped to an exonic transcriptomic reference reveals 13 neuron types. Data shown in a
tSNE embedding. b. Sample scRNA-seq detected gene (Nxph4) with sequencing read mapping
at its genomic locus. The majority of sequencing reads map to known exons of Nxph4 gene and
140  are therefore registered (blue) and included in downstream analysis. Discarded reads (red) map
to non-exonic regions or are antisense to the gene and are therefore excluded. Inset violin plot:
SscRNA-seq analysis detects Nxph4 expression in several MnPO neuron types (cell-type specific
log-transformed expression of Nxph4 in MnPQO neuron types with cell-type identity color-coded as
in Fig1a). Micrograph inset: in situ hybridization of Nxph4 expression in the MnPO (scale bar: 150
145  um, posterior MnPO outlined with white dashed line, data from Allen Brain Atlas Mouse ISH
dataset). c. Sample gene (B4galnt2) not detected by scRNA-seq due to intronic read mapping.
Inset violin plot: gene expression is not detected in any of the MnPO neuron types. Inset
micrograph: in situ hybridization of B4galnt2 expression in the MnPQO. d. Sample gene (Gpr165)
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not detected by scRNA-seq due to intergenic read mapping 3’ of known end of the gene. Inset

150  violin plot: gene expression is not detected in any of the MnPO neuron types with scRNA-seq.
Inset micrograph: in situ hybridization of Gpr165 expression in the MnPQO. e. Proportion of
uniquely mapped sequencing reads according to mapping site (exonic, intronic or intergenic) for
mouse brain (MnPO, left) and human peripheral blood mononuclear cells (right) datasets. f.
Intronic and intergenic reads constitute a promising source to recover missing gene expression

155  data in scRNA-seq analysis. Number of detected genes in mouse brain (MnPO, left) and human
PBMC (right) datasets, if reads mapping to exons, exons and introns, exons and intergenic reads
within 10kb of known 3’ ends of genes, or all three sources are included in downstream analysis.
g. Human and mouse genes according to the dominant source of sequencing read data. Genes
are classified as ‘exonic dominant’, ‘intronic dominant’ or ‘3’ intergenic dominant’ if more than 50%

160  of sequencing reads map to their exons, introns or within 10kb of their 3’ end, respectively. Mixed
genes have less than 50% of reads stemming from any of the three regions.

We further evaluated the extent to which intergenic reads 3’ from gene ends could contribute to
true gene expression estimates. If unannotated 3° UTRs constitute a significant source of read
loss in 3 scRNA-seq datasets we would expect to see elevated levels of sequencing reads

165 mapping proximal to 3’ end of genes. Indeed, we observe several-fold higher mapping of
intergenic reads immediately proximal to the 3’ gene ends than at distal sites in both mouse and
human datasets (Fig. 2a, b). In fact close to 25% of intergenic reads in both mouse and human
datasets are within 10kb of 3’ gene ends, which represents approximately two-fold enrichment as
compared to the rest of the non-coding genome?°?!. These results suggest that improved

170  annotation of 3' gene ends is a promising strategy to increase gene detection in 3’ single-cell
RNA-sequencing analysis (Fig. 2c).

a. b. c.
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Figure 2: Increased intergenic read mapping proximal to 3’ end of genes. a. Distribution of

175  sequencing reads mapping within 10kb of known gene ends in the mouse genome shows
increased mapping proximal to gene ends. b. Distribution of sequencing reads mapping within
10kb of known gene ends in the human genome shows increased mapping proximal to gene
ends. c. Fraction of intergenic reads mapping within 10kb of known gene ends from all intergenic
reads in the mouse brain (MnPQ) and human PBMC datasets.

180

Another common source of read loss in scRNA-seq analysis stem from same strand gene
overlaps. Reads mapping to genomic regions annotated to more than one gene are classified as
multigene reads and are routinely removed from downstream analysis'*'5. We evaluated the
magnitude of gene overlaps using the Ensembl mouse (v.98) and human (v.98) genome
185  annotations which are most commonly used to generate reference transcriptomes for scRNA-seq
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analysis. We found that gene overlaps are a pervasive feature of currently available genome

annotations with 2035 (6.3 % of all mouse genes) and 5195 (14.2% of all human genes) genes

showing partial or complete overlap with other same strand genes in the mouse and human

genomes, respectively (Fig. 3a). The majority of these overlaps in both mouse and human
190 genomes originate from single pairs of genes (Fig. 3b, c).

A closer inspection of overlapping genes revealed a few stereotypic patterns of overlaps that
result in partial or complete blinding of one or more overlapping genes from downstream analysis.
The first problematic pattern stems from readthrough transcripts where one or several of upstream
gene’s transcripts incorporate some or all exons of a downstream gene which effectively

195 eliminates all sequencing reads mapping to the latter (Fig. 3d). Another problematic feature of
overlapping genes are so called ,premature start transcripts“ where a single or several transcripts
from a downstream gene are annotated to start upstream of the upstream gene’s terminal exon
(Fig. 3e). The latter type of overlap is particularly problematic as the majority of sequencing reads
in 3’ scRNA-seq map to terminal exons and thus premature start transcripts effectively eliminate

200 the entire detection of their upstream gene. A version of this issue impacts dozens of genes that
share their terminal exon and are thus completely invisible to analysis (Extended Fig. 1). Finally,
multigene overlapping genes pose a particular problem for pre-mRNA references where a single
large gene can completely eliminate dozens of nested genes rendering downstream analysis blind
to their expression (Fig. 3f). An important caveat to the latter is that there are currently several

205  strategies for compiling a pre-mRNA transcriptomic reference with substantial differences in gene
detection and read mapping fidelity (Extended Fig. 2). In summary, gene overlaps in genome
annotations constitute a unique challenge to discovering valuable candidate genetic mechanisms
and marker genes in 3 single-cell RNA-seq analysis. Moreover, these problems impact
thousands of genes particularly in well annotated genomes.

210  The systemic issues with read loss stemming from discarding intronic, intergenic and multigene
mapping reads outlined above (Fig. 4a) suggest a straight-forward strategy to optimize
transcriptomic references. Here, we implement a three step process to overcome these limitations
that is applicable for any genomic annotation. In the first step we convert an exonic reference to
a pre-mRNA reference to incorporate intronic reads into gene expression estimates using a hybrid

215 intronic mapping strategy (Fig. 4b). Secondly, we resolve gene overlaps by automated
identification and curation of premature and readthrough transcripts eliminating overlapping
transcripts, gene models and long non-coding RNA genes that obscure or preclude detection of
protein-coding genes (Fig. 4c). Finally, we incorporate unannotated 3’ UTRs into our gene models
by rank ordering genes with high sequencing read mapping within 10kb of their known gene end

220 and supervised 3’ gene extension based on one of several criteria: a) read splicing to known
exons, b) extended gene boundary in another genome annotation (e.g. Refseq), c) external
ground truth evidence (Allen in situ atlas, Protein Atlas etc). As a result we generated optimized
genome annotations for both mouse and human transcriptomes (Fig. 4e, Suppl. Tables 1, 2).
This constitutes a general and scalable strategy for optimizing genome annotations for high-

225  efficiency 3’ scRNA-seq analysis.
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Figure 3: Gene overlap and resulting compromised scRNA-seq gene detection in the
mouse and human genomes. a. Number of same-strand overlapping genes in the mouse and
human genomes (mouse annotation - Ensembl v98 for GRCm38 build; human annotation -

230  Ensembl v98 for GRCh38 build). b. Number of gene overlaps among mouse overlapping genes.
c. Number of gene overlaps among human overlapping genes. d. Readthrough transcripts
prevent the incorporation of sequencing reads to gene expression estimates in downstream
genes. Gene regions where sequencing read data are discarded from gene expression estimates
due to multigene classification are highlighted in red. e. Premature-start transcripts prevent the

235  incorporation of sequencing reads to upstream gene’s expression estimates. Gene regions where
sequencing read data are discarded due to multigene classification are highlighted in red. As most
sequencing reads map at the 3’ end of genes, premature-start transcripts can render upstream
genes undetectable by scRNA-seq analysis. f. Large multiple gene spanning genes can eliminate
ScRNA-seq detection of dozens of nesting same-strand overlapping genes depending on read

240  mapping strategy. With pre-mRNA references, where full gene spans are defined as exons, all
nesting genes will have no sequencing reads incorporated into expression estimates due to
resulting multi-gene mapping classification.

In order to evaluate the performance of the optimized reference transcriptomes, we evaluated the
gene and read detection efficiencies in both mouse brain and human PBMC datasets, and
245  contrasted the analyses to the same scRNA-seq dataset mapped to the traditional exonic
reference. We observed dramatic gains in both gene detection and read registration with the
optimized mouse transcriptome with more than 3000 new detected genes and 14.8% more
sequencing reads included in downstream analysis. Moreover, the optimized reference yields a
profound increase in cellular profiling resolution with close to 600 additional genes/cell on a
250 median basis for MnPO neurons that constitutes a more than 20% increase in the number of
genes detected per neuron (Fig. 5a). Furthermore, this increase in cellular profiling resolution
translated into 1 — 3 additional neuron types detected under identical analysis parameters to
exonic transcriptome based analysis. Predictably, the optimized transcriptome revealed genes
that were invisible to the traditional exonic reference based scRNA-seq analysis due to
255  sequencing read mapping to intronic and un-annotated 3’ UTR reigons (Fig. 5b).

We found consistently superior performance of the optimized human genome annotation based
analysis as compared to the implementation of an exonic transcriptomic reference. We detected
over 4500 additional genes and more than 21% of additional sequencing reads in the human
PBMC dataset (Fig. 5c). Similarly to the optimized mouse transcriptome, we observed dramatic
260  gains in profiling resolution of cells with more than 400 additional genes/cell detected on a median
basis. These gains in gene and read detection in the human dataset translated to up to 6
additional cell types detected under identical analysis parameters as compared to the analysis
based on the exonic trancriptomic reference. Therefore, optimizing genome annotations for
scRNA-seq analysis can lead to robust gains in sequencing read, gene as well as cell-type
265  detection.
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Figure 4: Strategy for compiling an optimized transcriptomic reference. a. Schematic of read
registration with regular exonic reference. Registered sequencing reads that are incorporated to
gene expression estimates are highlighted in purple with discarded sequencing reads shown in

270  grey. ScCRNA-seq analysis with an exonic reference discards several types of sequencing reads
that map to a specific gene including intronically mapped reads, reads mapping to exons that
overlap with readthrough transcripts from upstream genes (N-1) as well as sequencing reads
mapping to unannotated 3’ untranslated regions (UTRs). b. Step 1 of optimizing a transcriptomic
reference is incorporating intronic reads thereby generating a “pre-mRNA reference”. ¢. Step 2 of

275  optimizing a transcriptomic reference is resolving gene overlaps by removing rare readthrough
and premature transcripts as well as poorly supported gene models and pseudogenes that result
in eliminating sequencing data from well-established protein-coding genes. This step incorporates
sequencing reads mapping to exons and introns that previously overlapped with
readthrough/premature transcripts. d. Step 3 of optimizing a transcriptomic reference entails

280 extending 3’ boundaries of genes to incorporate unannotated 3’ UTRs with sequencing reads
spliced to reads mapping to known exons. e. Genome annotation modifications for optimized
mouse and human reference transcriptomes.
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The key value of implementing an optimized transcriptomic reference is to reveal biological
hypotheses and pinpoint genetic markers that would otherwise remain unobserved. To test the

285  merit of optimizing transcriptomic references we sought to compare and contrast the performance
of exonic to the optimized transcriptomic reference in linking MnPO cell types to their underlying
physiological functions. MnPO has been implicated in a range of physiological functions including
thirst, heat stress, cold stress, sleep and licking'®. While a comprehensive single cell profiling of
MnPO has not previously been performed, a number of studies have attempted to find genetic

290 markers labeling neurons mediating the previous functions. Thus, MnPO neurons expressing
Vglut2, Nos1, Nxph4 and Pacap?®-2° have been implicated in thirst regulation; neurons labeled by
Pacap, Bdnf, Ptger3 and Trpm2 have been suggested to label MNnPO warmth induced neurons
26-28; Glp1r+ neurons have been shown to be selectively driven by licking and liquid ingestion?;
and finally Brs3+ neurons have been shown to label cold activated neurons in the MnPO?.

295  Neuron type resolved view of these markers in the MnPO (Extended Fig. 3a, b) revealed that all
the thirst markers are widely expressed in half or more of the cell types suggesting that these are
unlikely to be specific for this function. Moreover, we observed that while two of the putative heat
stress markers (Bdnf and Pacap) are also expressed in the majority of excitatory neurons, two
remaining markers (Ptger3 and Trpm2) were completely absent in scRNA-seq data analyzed with

300 the exonic reference (Extended Fig. 3a). Reanalyzing the data with the optimized transcriptomic
reference uncovered an additional 3 neuron types revealing a total of 16 neuron classes in this
structure (Extended Fig. 3b). Importantly, the optimized reference also revealed one of the
missing warmth activated markers — Ptger3 — that was previously missing due to intronically
mapped sequencing reads (Extended Fig. 3b,c). The recovery of this gene revealed that GlutgMF°

305 s likely the heat activated neuron type as it is labeled by all three warmth markers (Ptger3, Bdnf,
Pacap). Furthermore, this analysis also revealed that three neuron classes Glut1M"P°, Glut2MnPO,
and Glut3M"P° are likely the thirst state encoding neurons as they are labeled by all thirst markers
as well as Etv1 that was recently shown to exclusively label thirst activated neuron classes in
related lamina terminalis nuclei''. Finally, the markers for cold and ingestion activated neurons

310 appear to exclusively label a single cell type each (Glut4M"F° for cold, Gaba1M"© for ingestion)
that collectively suggests a clear mapping of previously uncovered physiological functions to the
underlying neuron classes (Extended Fig. 3d,e).

Similarly, we evaluated the potential of revealing previously inaccessible cell-types and states in
human peripheral blood mononuclear cell (PBMC) data through the application of optimized
315  human transcriptomic reference. Although major cell classes in human PBMC datasets are easily
detected by regular scRNA-seq analysis with exonic transcriptomic reference, this analysis fails
to detect many known cell types including subclasses of CD4 and CD8 T-lymphocytes (Fig. 5f,g)
3032 Moreover, the canonical markers for many known cell classes®' such as natural killer cells
(NK), regulatory T cells (T-regs), T helper 2 cells (Th2), mucosal activated invariant T cells (MAIT)
320 and others appear to be missing with PBMC scRNA-seq that relies on an exonic transcriptomic
reference (Fig. 5f, g). By incorporating the discarded read information with our optimized human
transcriptome, we were able to uncover several known cell classes within our PBMC dataset
including Th17 and Th2 T-helper cells, T-regs, MAIT cells and CD8 T terminal effector cell clusters
with their canonical markers as well as uncover known markers for other cell classes that are
325  missing with exonic reference data (Fig. 5g). These data demonstrate, that incorporating intronic,
3’ intergenic and multigene mapping read data can robustly reveal biologically relevant cell types
that would otherwise be obscured by poor cellular profiling resolution. In summary, optimizing
transcriptomic references for 3° scRNA-seq analysis experiments by incorporating discarded
sequencing read information dramatically improves the resolution as well as biological insight
330 from resulting analyses.
10
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Figure 5: Evaluation of optimized mouse and human reference transcriptomes. a.
Quantification of the mouse exonic and optimized transcriptomic reference performance with the
MnPO scRNA-seq dataset. Detected genes and registered reads are estimated from the raw
335  gene-cell matrix produced by Cell Ranger count pipeline using the canonical exonic reference
and the optimized reference, respectively. Profiling resolution is estimated as median genes
detected per cell based on the same set of neurons (n=906) in the MnPO dataset. Neuron type
detection is estimated on the same set of neurons with identical preprocessing parameters with
the x-axis denoting the clustering granularity hyper-parameter for the Louvain algorithm for
340  modularity optimization. b. Comparison of scRNA-seq analysis with exonic and optimized
transcriptomic references as deployed to MnPO neurons (n=906). Optimized reference reveals
more neuron types at identical data preprocessing conditions. Optimized reference also detects
sample genes with intronic (B4galint2) and 3’ intergenic (Gpr165) read mapping that remain
invisible with scRNA-seq analysis relying on the exonic transcriptomic reference. c. Quantification
345  of the human exonic and optimized transcriptomic reference performance with the peripheral
blood mononuclear cell (PBMC) data. Gene detection and read registration estimates stem from
full PBMC data evaluation. Cellular profiling resolution and cell-type detection is estimated on the
same set of T-lymphocytes extracted from the PBMC dataset (n= 4133) with identical
preprocessing parameters. d. Transcriptomic analyses of the subtypes of T-lymphocytes
350 (n=4133) in PBMC data mapped to the exonic reference (above) or optimized human reference
transcripome (below). ScRNA-seq data are shown in a tSNE embedding of 4133 lymphocytes
with color-coded cell identity. e. Violin plots of log-normalized expression data of T-lymphocyte
subtype marker genes shown for PBMC data mapped to the exonic reference (above) or
optimized human reference transcriptome (below). Ambiguous and cell classes newly detected
355  with the optimized transcriptomic reference are color coded gray and red, respectively. Canonical
cell class specific markers that are missing in exonic reference analysis and recovered in
optimized reference analysis have been highlighted with red triangles.

Discussion
Previously, several approaches have been adopted to address the issue of missing genes in 3’
360  single cell RNA-sequencing datasets. One such approach entails using imputation to infer missing
gene expression data®. These approaches however require deeply sequenced full-transcript
scRNA-seq datasets as input, which is seldom easily available. Furthermore, imputed gene
expression would have to be experimentally validated which is prohibitive from the resource
vantage point. Another approach has been the usage of various pre-mRNA references, especially
365 in case single nuclei are profiled, to capture reads mapping to unspliced pre-mRNAs3*. We have
incorporated a hybrid pre-mRNA reference strategy for registering intornic reads into our
reference optimization step highlighting that the specific method for generating a pre-mRNA
reference plays a major role in how many genes and reads are detected as a consequence
(Extended Fig. 2). Furthermore, recent work has demonstrated that the majority of intronic reads
370  stem from aberrant priming of transcripts from intronic poly-A tracts emphasizing the importance
of not discarding these data'®'’. Finally, a few studies have resorted to manually fixing individual
loci providing a local fix to a global problem?®''. Here, we have undertaken a systemic effort to
provide genome wide optimized transcriptomic references for mouse and human reference
transcriptomes and outlined a general strategy to easily achieve the same for any genome of
375 interest.

A surprising upshot of this study is that suboptimal use of transcriptomic references in scRNA-
seq analysis impacts detection of thousands of genes for any given experiment. Our findings
underscore the need to optimize genome annotations to maximize biological insight gained with
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this popular method. Furthermore, we showed that most exhaustive genome annotations that
380 include gene models detailing infrequent transcripts can often be detrimental for the visibility of
genes in scRNA-seq analysis. We find significantly higher number of overlapping genes in the
mammalian genomes than previous estimates®® as genome annotations in the recent years have
become more complete incorporating rarer transcript isoforms. These rare isoforms often include
readthrough and premature start transcripts that severely impact read mapping in scRNA-seq
385 analysis. One useful strategy to determine which transcript isoforms to exclude is to compare
gene models between Ensembl*® and the somewhat more conservative Refseq®” genome
annotations to see the level of support for rare isoforms. Furthermore, we have provided an
automated classification approach to rapidly identify premature and readthrough transcripts to cut
down time required for genome annotation curation. This is particularly essential as genome
390 annotations are continuously updated.

An important consideration is to recognize that genome annotation optimization is partially
dependent on the biological sample that is used to inform this process. Although resolving gene
overlaps is largely independent of that, incorporating unannotated 3’ UTRs heavily relies on the
input scRNA-seq dataset to identify genes with extensive intergenic read mapping proximal to
395 their 3’ end. This is particularly important in light of recent findings that alternative splicing can
significantly vary across tissues and cell types® and thereby read mapping to unannotated 3’
UTRs can also vary in a cell-type specific manner3®. Moreover, to our surprise we found significant
intergenic read mapping close to 3’ ends of thousands of genes in the mouse and human
genomes. While we were able to recover this sequencing information convincingly for less than a
400 thousand genes per species, our findings point to the need for a concerted effort to update our
gene models for 3’'UTRs. In summary, our findings stress the importance of optimizing
transcriptomic references for single-cell RNA-seq analysis, point to the need to improve genome
annotations with respect to 3 UTR models, and highlight the potential of uncovering new biology
by analyzing both new and previously deposited 3’ single-cell RNA-seq datasets with optimized
405  transcriptomic references.

Methods

Mice

All animal care and experimental procedures were executed in accordance with the US NIH

guidance for the care and use of laboratory animals and approved by the California Institute of
410  Technology Animal Care and Use Committee (protocol no. 1694-14). Mice were obtained from

Jackson Laboratory and allowed to acclimate in the animal facility for a week. Mice were on a 12-

h light—dark cycle and were provided food and water ad libitum. 6 male C57BL/6J mice at 8 weeks

of age were used for microdissection of the Median Preoptic Nucleus tissue.

415 Human samples
All studies were performed on human peripheral blood mononuclear cells obtained from
Hemacare. The California Institute of Technology Institutional Review board (IRB) has determined
that this work is exempt from the requirement for IRB review and approval (Reference #17-0727),
and informed consent was not required.

420
Single-cell RNA-sequencing
Single-cell RNA-sequencing library was prepared from mouse median preoptic nucleus tissue as
previously described'. Briefly, mice were anaesthetized with isoflurane in an isolated plexiglass

chamber. Brains were rapidly extracted and dropped into ice-cold carbogenated (95% O2 and 5%
425  CO2) NMDG-HEPES-ACSF (93 mM NMDG, 2.5 mM KCI, 1.2 mM NaH2PO4, 30 mM NaHCQOS,
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20 mM HEPES, 25 mM glucose, 10 mM MgSO4, 1 mM CaCl2, 1 mM kynurenic-acid Na salt, 5
mM Na-ascorbate, 2 mM thiourea and 3 mM Na-pyruvate, pH adjusted to 7.4, osmolarity ranging
300-310 mOsm). Brain sections (2 mm) containing MnPO were cut with a razor blade on a
stainless steel brain matrix (51392, Stoelting) and transferred to a dissection dish on ice
430  containing NMDG-HEPES-ACSF. MnPO was microdissected with a microsurgical stab knife (72-
1501, Surgical Specialties). Microdissected tissue was aggregated from 6 animals in a collection
tube on ice containing NMDG-HEPES-ACSF. For enzymatic digestion of tissue, NMDG-HEPES-
ACSF was replaced by trehalose-HEPES-ACSF (92 mM NaCl, 2.5 mM KClI, 1.25 mM NaH2PO4,
30 mM NaHCOS3, 20 mM HEPES, 25 mM glucose, 2 mM MgS0O4, 2 mM CaCl2, 1 mM kynurenic
435 acid Na salt and 2.5 wt/vol trehalose, pH adjusted to 7.4, osmolarity ranging 330-340 mOsm)
containing papain (60 U/ml; P3125, Sigma Aldrich, re-activated with 2.5 mM cysteine and a 30-
min incubation at 34 °C and supplemented with 0.5 mM EDTA). Extracted MnPO tissue was
incubated at 34 °C with gentle carbogenation for 45 min. During enzymatic digestion the tissue
was pipetted periodically every 10 min. At the end of enzymatic digestion, the medium was
440  replaced with 200 pl of room temperature trehalose-HEPES-ACSF containing 3 mg/ml ovomucoid
inhibitor (OI-BSA, Worthington) 25 U/ml DNase | (90083, Thermo Scientific) and tissue was gently
triturated into a uniform single-cell suspension with consecutive rounds of trituration with fire-
polished glass Pasteur pipettes with tip diameters of 600, 300 and 150 um. The resulting cell
suspension volume was brought up to 1 ml with trehalose-HEPES-ACSF with 3 mg/ml ovomucoid
445  inhibitor and pipetted through a 40-pm cell strainer (352340, Falcon) into a new microcentrifuge
tube. Thereafter, the single-cell suspension was centrifuged down at 300g for 5 min at 4 °C and
the supernatant was replaced with fresh ice-cold trehalose-HEPES-ACSF and the cell pellet was
resuspended. Cells were pelleted again and resuspended in 100 ul of ice-cold resuspension-
ACSF (117 mM NaCl, 2.5 mM KCI, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25
450 mM glucose, 1 mM MgS0O4, 2 mM CaCl2, 1 mM kynurenic acid Na salt and 0.05% BSA, pH
adjusted to 7.4, osmolarity ranging 330-340 mOsm). Cell suspension volumes estimated to
retrieve ~6,000 single-cell transcriptomes were added to the 10x Genomics RT reaction mix and
loaded to the 10X Single Cell A chip (230027, 10x Genomics) per the manufacturer’s protocol.
We used the Chromium Single Cell 3’ Library and Gel Bead Kit v2 (120237, 10x Genomics) and
455  the Chromium i7 Multiplex Kit (120262) to prepare lllumina sequencing libraries.

Human peripheral blood mononuclear cell scRNA-seq libraries were prepared as prevously
reported*. Briefly, human cryopreserved PBMCs were thawed in 37 °C RPMI-1640 medium and
pelleted at 300 x gfor 2 min. Cells were resuspended to 1e® cells/mL in RPMI-1640. Cells

460  estimated to retrieve 10 000 single-cell transcriptomes were loaded into a 10X Genomics lane
using single-cell 3' v2 reagents following manufacturer’s protocol.

Sequencing, read-mapping and generation of digital expression data
scRNA-seq sequencing libraries were sequenced on an lllumina HiSeq 4000 sequencer. Mouse
sequencing data were aligned to either the latest mouse exonic transcriptomic reference provided
465 by 10x Genomics (mouse GRCm38 primary sequence assembly and Ensembl 98 genome
annotation) or optimized transcriptomic reference based on the latter using Cell Ranger 6.1.2 (10x
Genomics) or STARsolo (STAR 2.7.9a). Cell Ranger count pipeline was run under default
parameters to generate exonic read mapping based gene-cell matrices. STARsolo readmapping
pipeline was run with the following specified parameters: --clipAdapterType CellRanger4 --
470  outFilterScoreMin 30 --soloCBmatchWLtype 1MM_multi_Nbase pseudocounts --soloUMlfiltering
MultiGeneUMI_CR --soloUMIdedup 1MM_CR  --outSAMtype BAM SortedByCoordinate --
readFilesCommand  zcat --soloType CB_UMI_Simple  --bamRemoveDuplicatesType
UniqueldenticalNotMulti --outSAMattributes NH HI AS nM GX CB UB GN sM sQ --soloFeatures
GeneFull --soloCBwhitelist /<location folder>/737K-august-2016.txt. Intronic data was
475  incorporated by specifying --include-introns parameter in Cell Ranger or --soloFeatures GeneFull
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in STARsolo. Human sequencing data was aligned to the latest human exonic transcriptomic
reference provided by 10x Genomics (based on human GRCh38 primary sequence assembly
and Ensembl 98 genome annotation) or optimized reference based on the latter and processed
as above.

480

Data analysis
Estimation of exonic, intronic and intergenic read fractions
Read idenitiy (exonic, intronic or intergenic) of confidently mapped reads was evaluated with the
Genomic Alignments (1.28.0) R package. Aligned reads from the Cell Ranger output bam file from
485  sequencing data mapped to the regular exonic reference were imported with RE, NH and AN tags
including duplicate reads and excluding secondary alignments (param = ScanBamParam(flag =
scanBamFlag(isSecondaryAlignment = FALSE). Read itentity proportions were estimated from
all non-secondary uniquely mapped reads (NH=1). The number of exonic reads was estimated
by extracting all reads classified as exonic (RE=“E") and subtracting all exonic reads with
490 registered mapping to antisense reads (AN!=NA). Removing exonic reads with antisense gene
annotations was necessary since Cell Ranger 6 and earlier versions wrongly classify intergenic
reads mapping antisense to known exons as exonic. Intronic read number was obtained by
identifying reads classified as intronic (RE="N®). Finally, the total number of intergenic reads was
obtained by adding reads classified as intergenic (RE=“I) to false exonic reads mapped antisense
495  to known exons (RE=“E* & AN!=NA).

Determining dominant source of read mapping for genes
In order to determine which fraction of genes is detected mostly by exonically, intronically or
intergenically mapped reads we estimated exonic, intronic and 3’ intergenic read counts within
10kb of known gene ends for each gene. To determine the number of exonic reads for each gene
500 we extracted all reads annotated to a specific gene from the raw gene-cell matrix from scRNA-
seq dataset mapped to the exonic reference with Cell Ranger 6.1.2. Intronic reads mapping to
each gene were estimated by subtracting the exonic read estimates from gene expression
estimates obtained from mapping scRNA-seq data to the traditional pre-mRNA reference where
full transcripts are defined as exons. Finally, 3’ intergenic read estimates within 10kb of known
505 gene ends were obtained by extracting all intergenic reads (RE=I as well as RE=E & AS!= NA as
Cell Ranger misclassifies reads mapping antisense to exons as exonic, whereas they are mostly
intergenic reads) from the Cell Ranger genome aligned sequenging data .bam file with
GenomicAlignments R package. Only unique intergenic reads with non-defective molecular and
cellular barcodes were retained and ascribed to the closest 3’ end of a gene with bedtools. All
510 intergenic reads further than 10kb from known gene ends were filtered out with the rest used to
estimate 3’ intergenic read mapping for each gene. Dominant source of read mapping was
estimated for all genes with more than 100 reads mapping per locus with exonic dominant genes
with more than 50% of reads stemming from exons, intronic dominant genes with more than 50%
of reads stemming from introns and intergenic dominant genes with more than 50% of reads
515  stemming from within 10kb 3’ of known gene ends.

Evaluation of intergenic read distribution at 3’ gene ends

3’ intergenic read data was extracted from Cell Ranger genome aligned sequenging data .bam

file with GenomicAlignments R package (intergenic reads were identified by read tag RE=l).

Extracted reads were ascribed to the closest 3’ end of a gene with estimated distance from
520 respective gene end with bedtools and resulting intergenic read distribution from gene ends was

plotted.

Evaluation of intronic read incorporation with different pre-mRNA references
15
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In order to evaluate different strategies for incorporating intronic reads in scRNA-seq analysis, we
evaluated gene and sequencing read detection with three independent approaches. (a) in “Cell
525 Ranger pre-mRNA reference” we compiled a new genome annotation file by transferring all
“transcript” feature entries from the original genome annotation (GENCODE vM23/Ensembl 98
for mouse data and GENCODEv32/Ensembl 98 for human data) to a new gene transfer format
(gtf) file and renaming the feature field for all entries as “exon” effectively redefining all full length
transcripts as exons and thereby enabling registration of intronic reads. We compiled a new Cell
530 Ranger transcriptomic reference with Cell Ranger 6.1.2 using the cellranger mkref pipeline with
default parameters and applied the newly assembled transcriptomic reference in sequencing read
mapping with cellranger count pipeline again with standard parameters (see
https://github.com/PoolLab/Generecovery for details); (b) for “STARsolo GeneFull mode” we
generated the STAR reference transcriptome using STAR 2.7.9a in genomeGenerate run mode
535  with mouse or human genome sequence (mouse GRCm38 genome build or human GRCh38
genome build, respectively) and corresponding genome annotation using default parameters.
Sequencing read data was then mapped to the generated STAR reference transcrtiptome using
STARsolo with the following parameters: STAR --genomeDir <location of transcriptomic
reference> --readFilesin <location of sequencing fastq files> --clipAdapterType CellRangerd --
540  outFilterScoreMin 30 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMlfiltering
MultiGeneUMI_CR --soloUMIdedup 1MM_CR  --outSAMtype BAM SortedByCoordinate --
readFilesCommand  zcat --soloType CB_UMI_Simple  --bamRemoveDuplicatesType
UniqueldenticalNotMulti --outSAMattributes NH HI AS nM GX GN sM sQ CB UB --soloFeatures
GeneFull --soloCBwhitelist <location of barcode whitelist>/737K-august-2016.txt. Note that
545  specifying “FullGene” mode results in intronically mapped reads being incorporated in the gene-
cell matrix. Finally,in “Cell Ranger --include-introns mode” (c), we used the previously generated
Cell Ranger transcriptomic reference to run the cellranger count pipeline with --include-introns
parameter specified resulting in inclusion of intronic reads in the resulting gene-cell matrix.

In order to compare gene detection fidelity between the above approaches, we imported raw
550 unfiltered gene-cell matrices generated by Cell Ranger or STAR into Seurat 4.1.0 and identified
all expressed genes from raw gene expression data. Unique and shared gene sets were identified
by intersection of individual gene sets in R. We compared the read detection efficiency for the
three strategies by extracting individual sequencing reads from Cell Ranger and STAR generated
BAM files with GenomicAlignments 1.28.0 package in R. For Cell Ranger generated BAM files
555 we extracted non-duplicate reads with readGAlignments(bamfile, index=indexfile, param =
ScanBamParam(flag = scanBamFlag(isDuplicate = FALSE, isSecondaryAlignment = FALSE),
tag = ¢("GN", "RE", "xf", "CB", "UB"), what = "flag")). We identified all reads contributing to the
gene-cell matrix in Cell Ranger BAM files by pulling out reads where xf==25 and extracted their
unique molecular and cellular barcodes by combining their CB and UB fields. For STAR BAM files
560 we imported sequencing read data with readGAlignments(bamfile, index=indexfile, param =
ScanBamParam(flag = scanBamFlag(isDuplicate = FALSE, isSecondaryAlignment = FALSE),
tag = ¢("GX", "GN", "CB", "UB"), what = "flag")). Reads contributing to gene-cell matrices in STAR
BAM files were identified by pulling out reads where GX/=NA, and length of cell and UMI barcodes
were and 10 characters, respectively. Unique and shared detected reads was evaluated by
565 intersecting the combined CB/UB indeces of reads between different methods.

Assembling optimized transcriptomic references

We took a three pronged approach to generating a sScRNA-seq optimized transcriptomic reference
which involved the following steps: a) resolving gene overlap derived read loss; b) recovering
intergenic reads from 3’ unannotated exons; and c) recovering intronic reads. Each of these steps
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570 generated input data for a custom R script for automated assembly of the scRNA-seq optimized
genome annotation.

Resolving gene overlap derived read loss
We generated a custom code (available at https://github.com/PoolLab/Generecovery) to identify
same-strand overlapping genes in a given input genome annotation and triage genes for manual
575  curation to resolve the overlap derived sequencing read loss. Overlapping genes were identified
by evaluating chromosomal location (seqname, start and end coordinates as well strand in the
gene transfer format file for all “gene” features) based on which we generated an output file
summarizing the overlapping gene list specifying the number of overlapping genes and their
identity. Gene overlaps can be resolved by one of several strategies including (i) leaving
580 overlapping gene annotations unchanged if their exons don’t directly overlap, (ii) deleting
offending readthrough transcripts from upstream genes, (iii) deleting offending premature gene
transcripts from downstream genes, (iv) deleting pseudogenes and non-protein-coding genes
with poor support and no read mapping that obscure well established protein-coding genes or (v)
for extensively overlapping genes deleting one and renaming the other to capture otherwise
585 discarded reads. As well annotated genomes contain several thousand same-strand overlapping
genes and properly resolving gene overlaps often requires manual inspection of the locus to
determine best course of action, prioritization of genes for manual curation is often desirable. To
this end, we generated a gene classification algorithm to prioritize genes for direct inspection. The
following algorithm was used to classify genes for appropriate curation:

590 1. If gene overlaps with several genes:

a. Classify for “Manual inspection” if multigene overlapping gene as well as its
corresponding nested genes have overlapping exons.

b. Classify as “keep as is” if multigene overlapping gene’s individual exons do not
overlap.

595 i. If nested gene does not overlap with any other gene, classify as “Keep as

is”

ii. If nested gene overlaps with more than one gene, classified for “Manual
inspection”

2. If gene overlaps with only one other gene, test whether gene is non-protein-

600 coding/pseudogene (“Gm” and “...Rik” gene models in mice; “AC...” and “AL...” gene

models in humans)
a. If both overlapping genes are non-protein-coding/pseudogenes, classify for
“Manual inspection”
b. If only one gene in the overlapping gene pair is hon-protein-coding/pseudogene,

605 test if genes have overlapping exons:

i. In case no overlapping exons, classify both genes as “Keep as is”

ii. In case exons overlap, mark non-protein-coding/pseudogene for deletion
(“Delete”).

c. If both genes are well supported genes:

610 i. If their exons don’t overlap, mark both genes as “Keep as is”

ii. If their exons do overlap, determine the number of opposing gene’s exonic
overlap for each exon of each gene and find the exon with most overlaps
for both upstream and downstream gene to determine appropriate course
of action:

615 1. If downstream gene’s exon has more overlaps than its upstream
counterpart, classify downstream gene as “Premature transcript
deletion” and upstream gene as “Keep as is”
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2. If upstream gene’s exon has more overlaps than its downstream

counterpart, classify upstream gene as “Readthrough transcript
620 deletion” and downsream gene as “Keep as is”.
3. Otherwise classify both for “Manual inspection”

The resulting recommendations were used in the manual curation step, where all genes that were
not classified in the “Keep as is” category were directly scrutinized in the Ensembl genome
browser (ensemble.org, with GRCm38 and GRCh38 genome builds for mouse and human data,

625  respectively) and/or cross-referenced to the respective Refseq genome annotation within the
Integrated Genome Browser (IGV 2.11.9). For genes with multiple transcripts, readthrough and
premature transcripts were marked for deletion in a separate column in the overlapping gene list
file if the remaining transcripts enabled registration of reads from core exons of both genes. In the
few cases where the terminal exons of genes were completely overlapping we deleted one of the

630 genes and marked the other for renaming to avoid discarding expression data from both genes.
For genes marked for deletion, we cross-referenced the gene structure to Refseq annotation and
confirmed the deletion if the gene model was not supported by both Ensembl and Refseq genome
annotations and the gene overlap could not be resolved by deleting a specific transcript. For
candidate genes for deletion we also confirmed that the gene models in question would not have

635 any reads mapping to their loci with the mouse brain and human PBMC datasets. The resulting
curated ‘overlapping gene list’ file with final action recommendations and transcript identities for
deletion was saved and used as input in the automated generation of optimized genome
annotation.

Recovering intergenic reads from 3’ unannotated exons

640 Gene detection in 3’ single-cell RNA-sequencing depends on registering sequencing reads
predominantly at the 3’ end of transcripts. Therefore, inaccurate annotation of 3’ exons and UTRs
causes misclassification of exonic sequencing reads as intergenic and thereby compromised
detection of gene expression. In order to identify candidate genes with poorly annotated 3’ regions
for manual correction of gene boundaries we identified and rank-ordered genes with high numbers

645  of intergenic sequencing reads mapping within 10kb of known gene ends. This candidate gene
list was stored in a ‘gene extension candidates’ output file and subjected to case-by-case scrutiny
for evidence for unannotated 3’ exons with Integrated Genomics Viewer (IGV 2.11.9). New
estimates for 3’ gene boundaries were recorded in the ‘gene extension candidates’ file for genes
displaying evidence of unannotated exons. Evidence for the latter included sequencing read

650  splicing between known and putative unannotated exons, continuous sequencing read mapping
extending 3’ of known gene end or independent expression validation with an independent
method (e.g. Human Protein Atlas and Allen In Situ Mouse Brain Atlas datasets).

To achieve this, we mapped mouse MnPO and human PBMC scRNA-seq data to their respective
reference transcriptomes with Cell Ranger and imported all intergenic reads from aligned read
655  data (bam file) with GenomicRanges R package using readGAlignments(bamfile, index=indexfile,
param = ScanBamParam(flag = scanBamFlag(isDuplicate = FALSE, isSecondaryAlignment =
FALSE), tag = ¢("GN", "RE"), what = "flag", tagFilter = list("RE"="1"))). Duplicate and defective
intergenic reads were removed by retaining reads with unique barcodes with 10x defined correct
length of cellular and molecular barcodes. We generated a bed file of the intergenic reads using
660 the GenomicRanges and rtracklayer R packages. Next we generated the reference bed file with
gene boundaries by extracting all gene feature entries form the genome annotation (gtf file) and
reformatted to match the bed file requirements. We used bedtools (2.30.0) to identify the closest
3 gene end to all intergenic reads with bedtools closest -a intergenic_reads.bed -b
gene_ranges.bed -s -D a -fu > <results>.txt. We used these data to estimate the total number of
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665  all intergenic reads within 10kb of each gene, rank ordered genes from highest to lowest number
of intergenic reads proximal to 3’ end and saved the resulting data to ‘gene extension candidates’
file. We proceeded to scrutinize the resulting gene list and evaluated evidence for unannotated 3’
exons by visualizing read mapping and splicing data in the aligned sequencing data (bam file)
with Integrated Genomics Viewer following the criteria above. For genes where these criteria were

670  satisfied we recorded the new extended gene boundary in the ‘gene extension candidates’ file.
Furthermore, we extracted genomic coordinates for 3' gene ends from the Refseq annotation for
all mouse and human genes and updated 3’ gene ends to reflect Refseq coordinates if Refseq
genome annotation placed the gene end 3’ of the Ensembl annotation. The resulting ‘gene
extension candidates’ file was used as input in the automated generation of optimized genome

675  annotation.

Recovering intronic reads
All currently available strategies for incorporating intronic reads come with their own limitations
and can differentially detect several hundred genes. The traditional approach for generating a
pre-mRNA reference entails redefining all transcripts as exons. Despite robustly increasing overall
680  registered reads in the resulting gene-cell matrix, this approach significantly exacerbates gene
overlap derived read loss and fails to detect many spliced intronic reads due to eliminating known
exon boundaries. Later versions of sequencing read aligners allow specific intronic mapping
modes such as specifying --include-introns attribute in Cell Ranger. However, although this latter
method circumvents issues with gene overlap derived read loss common for traditional pre-mRNA
685 references and it outperforms the traditional pre-mRNA reference approach by detected read
number, surprisingly this solution fails to detect many intronic sequencing reads that are
commonly detected by the latter. Therefore we adopted a hybrid approach to capturing intronic
reads by generating a reference transcriptome that incorporates both normal exonic gene
structures as well as full transcript length exons that enabled us to effeciently capture all intronic
690 reads under Cell Ranger --include-introns mode. To this end we generated the traditional pre-
mRNA reference genome annotation by transferring all transcript feature entries from the genome
annotation gtf file and redefinined their feature value as exon saving it as a new ’traditional pre-
mRNA annotation’ file that we used as input in the final generation of the scRNA-seq optimized
genome annotation assembly.

695  Automated generation of the scRNA-seq optimized genome annotation
The following input data was used to generate the scRNA-seq optimized genome annotation: (i)
regular genome annotation (.gtf file containing Ensembl v98 genome annotations from 10x
Genomics for the respective genome build), (ii) 'traditional pre-mRNA annotation’ (.gtf file), (iii)
‘overlapping gene list’ file specifying transcripts and genes for deletion and (iv) ‘gene extension
700 candidates’ file specifying updated 3’ gene boundaries for genes with unannotated 3' UTRs. We
wrote an R script for assembling the final scRNA-seq optimized genome reference (available at
https://github.com/PoolLab/Generecovery). Briefly, we imported the regular genome annotation
with rtracklayer R package, removed genes and transcripts marked for deletion in the ‘overlapping
gene list’ file, adjusted 3’ gene boundaries for genes specified in the ‘gene extension candidates’
705 file, imported the ‘traditional premRNA annotation’ data and added full transcript length exonic
annotations to all genes excluding genes in the overlapping gene list, renamed defined genes
and exported the resulting genome annotation to a new <scRNA-seq optimized genome
annotation.gtf> file. The resulting genome annotation thus eliminates the structural problems of
existing genome annotations that unnecessarily discard sequencing read data that reflect true
710  endogenous gene expression.
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Assembly and use of the scRNA-seq optimized transcriptomic reference

The resulting <scRNA-seq optimized genome annotation.gtf> was used to compile the optimized

transcriptomic reference with Cell Ranger using the cellranger mkref pipeline. The resulting
715  optimized transcriptomic reference was used to align sequencing data with the cellranger count

pipeline with --inculde-introns attribute specified.

Data analysis and visualization software

scRNA-seq data were processed in R 4.1.2 using the following analysis and data visualization

packages: RStudio 1.4.1717, Seurat v.4.1.0., ggplot2 3.3.5, GenomicAlignments 1.28.0,
720  GenomicRanges 1.44.0, IRanges 2.26.0, rtracklayer 1.52.1, Matrix 1.3-4, readxl 1.3.1 and stringr

1.4.0. Gene overlaps in genome annotations and overlapping gene classification code was

generated by Python3 and R. We used bedtools 2.30.0 to identify intergenic gene reads proximal

to known 3’ gene ends.

Reference transcriptomes for sequencing read mapping were generated by either Cell Ranger

725 6.1.2 or STARsolo (STAR 2.7.9) using mkref and genomeGenerate pipelines, respectively.
Sequencing data were mapped to dedicated reference transcripomes with either Cell Ranger
6.1.2 count pipeline or STARsolo as described above.

Sequencing read mapping data in Cell Ranger aligned BAM files was visualized and evaluated
with Integrated Genomics Viewer 2.11.9. Read mapping data with respect to specific gene exons

730 and introns was plotted in R with Sushi (1.30.0) package. Transcript and gene structures were
plotted with Gviz 1.36.2 R package. We used Graphpad Prism 8 to plot summary data.

Data Availability

Raw and processed scRNA-seq data are available at the NCBI Gene Expression Omnibus (GEO

accession no. GSE198528). Latest versions of the mouse and human reference transcriptomes
735  and genome annotations are available for download at www.thepoollab.org/resources.

Code Availability
Code to reproduce data analysis in this manuscript and generate scRNA-seq optimized
genomic annotations is available at https://github.com/PoolLab/Generecovery.
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Extended data Figure 1: Genes with shared terminal exon sequences are obscured from
scRNA-seq analysis. a. The terminal exons of human genes TIFAB and DCANP1 overlap

850 resulting in all sequencing reads mapping to the overlapping area being discarded due to
‘multigene mapping” classification. Thereby, 3’ sScRNA-seq is mostly blind to the expression of
these genes. b. Expression information for TIFAB and DCANP1 genes can be recovered by
removing one of the genes and renaming the remaining gene’s transcript recovering discarded
expression data.

855

23


https://doi.org/10.1101/2022.04.26.489449
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.26.489449; this version posted April 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a b.
25000 = 3x107 1
20000 = B unique I unique
= I shared 2 2x107 I shared
£ 15000 = 3
[}
° K]
A o
@ 10000 = k7]
g g 1x107]
5000
0= 0 -
4 (2] < 2 ) (/)
@,\\o 6‘06 @Ob «‘?’Qo 6‘06 @Ob
N3 D & g D &
@ & S @ & &
N N N
$ F & F
< o N PN o O
4 I O @ S &
< & N < & £
& ?‘} p & Q& /
S A & S <Y e
'DQ © (9 'DQ © (\Q
& e & &
R P ® &
Strategy for including intronic reads Strategy for including intronic reads

Extended data Figure 2: Different strategies for incorporating intronic reads into scRNA-
seq analysis varie by detection of several hundred genes and up to 6.5% of sequencing
reads. a. Comparison of detected genes by distinct methods for incorporating intronic sequencing

860  reads into scRNA-seq analysis with mouse MnPO brain nucleus dataset. “Cell Ranger pre-mRNA
reference” data was generated with Cell Ranger software in reqular mapping mode using a
genome annotation where all transcripts were defined as exons thus leading to incorporation of
previously intronically mapping reads. “STARsolo GeneFull mode” data was generated by the
STARsolo software by specifying the “GeneFull” attribute integrating intronically mapped reads

865  into the assembled gene-cell matrix. “Cell Ranger --include-introns mode” was generated with the
Cell Ranger software with “--include-introns” parameter specified leading to integration of intronic
reads to assembly of the gene-cell matrix. Black — genes detected by all three methods for
incorporating intronic reads; red — genes that are either unique or shared by only one other mehod
for detecting intronic reads due to gene overlaps or problems with incorporating a subset of

870 intronic reads with one or more of the methods. b. Comparison of detected sequencing reads
incorporated into the gene-cell matrix by distinct methods registering intronic sequencing reads
into scRNA-seq analysis. Black - reads detected by all three methods; red - reads that are either
uniquely detected by a given method or shared with only one other strategy.

24


https://doi.org/10.1101/2022.04.26.489449
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.26.489449; this version posted April 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

MnPO analysis with exonic reference MnPO analysis with optimized reference

Suggested markers for Suggested markers

Suggested markers for
warmth induced neurons for cold induced neurons

warmth induced neurons Suggested markers

fSng:Ees(ted markers |—| for cold induced neurons ;Sug{rg’es:ed markers [—]
or thirst neurons or thirst neurons
Suggested | ﬁ,—|8uggested -
markers for licking | markers for licking
1877 1327 1155 1492 1544 1136 1223 745 486 1014 1034
2224 1420 1385 1913 1982 1395 1712 402 501 1180 1295 — .
il —
Glut1 —— Glut2
Glut2 Glut3 —
Glut3 - n Glutd — O
Glutd — - |- Sl — |
Gluté —
, Gt 5 2
2 =3 Glut7 — =
5 o - —F c .
< g Gluts
E Glut? - — - 2 Gabat — [
[e]
O  Gabat - » g Gaba2 |-
£ = Gaba3 |
Gaba2 = N
Gaba4 P~ e
Gaba3 = Gabas L -
Gaba4 p — I Gaba6é = - r
Gaba5 - + Gaba7 — =
Gabab |, . - Gaba8 B, B
o @ z Zz m > ©p 2 4 o ®
® z z T > D o ® 9 2 $5 = & e €@ 3 4 o
e 3 5 =8 8¢ 37 % B 33" 3L REE
N = Z 3 > & & ¢ = = 2
23 =, = 3
= T
< < o} >
@ > c o)
= = S >
c 5 N o
N} o Q a
Q @ ) e
3
@ o ) &
3 3 3
c Ptger3 d.
lut8 ,Glut2
chr3 157]600 Kb Sibaf 'Bé ,};ﬁ'ﬁ? f(gluﬁ
7 P |ut6é
'wﬁ. GluZ. s _ Gl
5§ ' w3 : Gabas W3 & -~-%"‘
e P ol (Y
oo ot v 1 5% 1 Gabas vy Gaka7 e
| ba4 <
Gaba8 g;f% < lutd
@ . 2$%1Gaba3
g &6
1%} Gaba2
tSNE1
e. Thirst
ot
M Discarded reads Licking :'ﬁ-:':sf‘?"‘ﬂ‘% a
M Registered reads \ﬁ‘_ . . Yo W "
o . Peg Warmth
R ’
-‘.X‘—ﬁ
o
Cold

875

Extended data figure 3: Elucidation of neuron types, cell-type-specific markers and
physiological functions of cells in the mouse Median Preoptic Nucleus (MnPO) with regular
exonic and optimized transcriptomic reference based scRNA-seq analyses. a. Violin plot of
the expression of previously implicated genetic markers labeling thirst, warmth, cold or licking
880  activated neurons in the MnPQO as analyzed by a regular exonic reference based analysis pipeline.
Red arrow — absence of Ptger3 — a marker for warmth activated neurons in the MnPQO — in the
ScRNA-seq dataset. Expression is shown on a log-normalized scale with maximum counts per
million (max CPM). b. Violin plot of the same marker expression in the MnPO as analyzed with
the optimized transcriptomic reference pipeline. Red arrow — detected warmth activated neuronal
885  marker Ptger3 expression. ¢. Mapping of sequencing reads to the Ptger3 locus with the majority
being discarded from downstream analysis with an exonic reference due to their intronic mapping.
d. Nomenclature of neuron types in the MnPO as identified by scRNA-seq with the optimized
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transcriptomic reference (data same as in Figure 5b). e. Suggested function to cell-type mapping
in the MnPO neurons based on overlap of previously identified genetic markers in the new
890  neuronal nomenclature.
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