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Abstract 
Droplet-based 39 single-cell RNA-sequencing (scRNA-seq) methods have proved 

transformational in characterizing cellular diversity and generating valuable hypotheses 

throughout biology1,2. Here we outline a common problem with 39 scRNA-seq datasets where 15 

genes that have been documented to be expressed with other methods, are either completely 

missing or are dramatically under-represented thereby compromising the discovery of cell types, 

states, and genetic mechanisms. We show that this problem stems from three main sources of 

sequencing read loss: (1) reads mapping immediately 39 to known gene boundaries due to poor 
39 UTR annotation; (2) intronic reads stemming from unannotated exons or pre-mRNA; (3) 20 

discarded reads due to gene overlaps3. Each of these issues impacts the detection of thousands 

of genes even in well-characterized mouse and human genomes rendering downstream analysis 

either partially or fully blind to their expression. We outline a simple three-step solution to recover 

the missing gene expression data that entails compiling a hybrid pre-mRNA reference to retrieve 

intronic reads4, resolving gene collision derived read loss through removal of readthrough and 25 

premature start transcripts, and redefining 39 gene boundaries to capture false intergenic reads. 
We demonstrate with mouse brain and human peripheral blood datasets that this approach 

dramatically increases the amount of sequencing data included in downstream analysis revealing 

20 - 50% more genes per cell and incorporates 15-20% more sequencing reads than with 

standard solutions5. These improvements reveal previously missing biologically relevant cell 30 

types, states, and marker genes in the mouse brain and human blood profiling data. Finally, we 

provide scRNA-seq optimized transcriptomic references for human and mouse data as well as 

simple algorithmic implementation of these solutions that can be deployed to both thoroughly as 

well as poorly annotated genomes. Our results demonstrate that optimizing the sequencing read 

mapping step can significantly improve the analysis resolution as well as biological insight from 35 

scRNA-seq. Moreover, this approach warrants a fresh look at preceding analyses of this popular 

and scalable cellular profiling technology. 

 

Main 
Droplet-based single-cell RNA-sequencing methods such as Dropseq and 10x Genomics 40 

platforms have dramatically lowered the cost and improved the throughput of single-cell gene 

expression profiling. These advances have thereby widely democratized the discovery of new cell 

types and states6–8, delineation of developmental mechanisms9 and cellular basis of disease10 as 

well as mapping of behavioral and physiological functions to distinct cell types11,12. The scalability 

of such methods however comes with a few important limitations. First, the droplet-based 45 

methods rely on 39 gene tagging where detection of genes depends on registering sequencing 
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reads predominantly at the 39 end of genes which makes detection of splicing isoforms 

problematic. Second, 39 scRNA-seq datasets despite usually being much more shallowly 

sequenced are in general considered to have lower sensitivity than deep full-length isoform 

sequencing solutions such as provided by the SMART-Seq chemistry13. Indeed, several studies 50 

have observed that genes shown to be expressed with other methods have critically been missing 

in analyses relying on droplet-based scRNA-seq8,11. This shortcoming compromises the potential 

of 39 scRNA-seq high-throughput technologies to uncover the genetic and cellular mechanisms 

giving rise to development and tissue function. 

ScRNA-sequencing workflow consists of several steps including sample preparation, sequencing 55 

library generation, sequencing, read mapping/quantification, and analysis of the gene-cell matrix 

based data. While many of these steps are considered standard, some such as sample 

preparation are widely recognized as critical for the final outcome and can vary significantly 

between protocols and labs. One often overlooked step in this workflow is read 

mapping/quantification that determines which sequencing reads are incorporated in the final 60 

cellular gene expression data. During this process, sequencing reads are mapped to the 

reference transcriptome (i), assigned to genes (ii), assigned to cells (iii), and duplicates are 

removed (iv) 14,15. As a result of this step, often the majority of sequencing reads get excluded 

from further analysis for one of several reasons including failure to map confidently to the 

transcriptome, being a duplicate read, mapping to multiple sites in the genome (multimapping 65 

reads), mapping to more than one gene (multigene reads), mapping intronically or to an intergenic 

region. Some of the discarded read data however reflect endogenous gene expression and can 

render expressed genes missing16,17. Several groups have manually amended the transcriptome 

for individual genes to restore their visibility8,11, however, a systemic effort to evaluate the scale 

of this problem and to provide a whole-transcriptome solution for this issue has been missing.  70 

Here, we show that analysis pipelines relying on standard exonic transcriptomic references are 

blind to many genes that are easily detected with independent methods such as in situ 

hybridization. We demonstrate that this lack of gene detection does not stem from low sensitivity 

but rather inefficiencies of the currently used transcriptomic references and that this is the case 

even with very well annotated genomes including that of mouse and human. Furthermore, we 75 

show that the read loss stems from three sources: poor annotation of 39 untranslated regions, 
gene overlaps stemming from the annotation of rare read-through or prematurely starting 

transcripts and finally exclusion of intronic reads. We outline a three-step strategy to overcome 

these limitations through the inclusion of intronic reads, resolving gene overlaps by excluding rare 

transcript isoforms and identifying and incorporating unannotated gene 39UTRs. This strategy 80 

recovers obscured gene expression data for thousands of genes and reveals previously 

undetected genetic markers, mechanisms and cell types. Consequently, we provide full genome 

optimized transcriptomic references for the mouse and human genomes. In sum, our data argue 

that transcriptomic references need to be optimized for scRNA-seq analysis and that this step can 

dramatically improve the profiling resolution. These findings also warrant a reanalysis of 85 

previously published datasets. 

Results 
In order to characterize gene detection fidelity of 39 gene counting methods we performed scRNA-

sequencing of the median pre-optic nucleus (MnPO) - a mouse brain center implicated in a range 

of physiological functions including thirst, sleep, heat and cold sensation18. Predictably, following 90 

sequencing read mapping to an exonic transcriptomic reference we identified about a dozen 

distinct neuron types in this structure reflecting the functional diversity of this brain center (Fig. 
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1a). We next compared gene detection fidelity with scRNA-sequencing to in situ hybridization – 

an independent method provided by the Allen in situ brain atlas19. While we found many genes 

that were reliably detected with both methods (e.g. Nxph4, Fig. 1b), we observed a number of 95 

genes that were completely missing in scRNA-seq data while robustly detected with in situ 

hybridization (e.g. B4galnt2 and Gpr165, Fig. 1c-d). Follow-up analysis at these loci revealed 

three distinct patterns of sequencing read mapping that determined whether the gene is detected 

or missing in scRNA-sequencing analysis. The first type comprised of genes detected by both 

methods. In this case, sequencing reads mapped near perfectly to the exons of the underlying 100 

gene and were thus included in downstream transcriptomic analysis (Fig. 1b). A second group of 

genes were detected by in situ hybridization but were missing in scRNA-seq data as most 

sequencing reads mapped to an intron of that gene resulting in exclusion from transcriptomic 

analysis (Fig. 1c). Finally, a third group of genes were detected by in situ hybridization but not 

with scRNA-seq and had no sequencing read mapping to known exons and introns (Fig. 1d). 105 

Importantly, the last type of genes displayed excessive read mapping proximal to the known 39 
end of the gene suggesting that scRNAseq fails to detect these genes due to poor annotation of 

39 untranslated regions of genes. These data demonstrate that droplet-based single cell 

sequencing datasets can fail to detect genes due to suboptimal read mapping to the reference 

transcriptome. 110 

In order to evaluate the magnitude of the missing gene problem, we quantified several metrics of 

sequencing read mapping in two vertebrate species with the most thoroughly annotated genomes 

– mice and humans. For mice we evaluated the MnPO dataset and for humans we profiled 

peripheral blood mononuclear cells (PBMCs). In mouse brain data we found that out of the 

uniquely mapped sequencing reads 71.8 % are exonic, 19.5 % intronic and 8.7 % intergenic out 115 

of 272 million total reads suggesting that significant gains could be achieved by incorporating 

sequencing data from intronic and intergenic areas to gene expression estimates (Fig. 1e) . We 

found similar metrics in human data with 69.9 % exonic, 23.5 % intronic and 6.7 % intergenic 

reads (272 million total), respectively. Indeed, upon evaluating the number of genes detected as 

a result of including intronic reads, intergenic reads within 10 kb of known 39 gene ends or both, 120 

we observed dramatic gains in the amount of detected genes in scRNA-seq datasets with 13.6%, 

25.8% and 33.6% more genes detected than with a conventional exonic transcriptome reference 

in mouse  (Fig. 1f). Again, comparable gains were observed with 19.9%, 23.2% and 39.2% more 

genes detected, respectively for the human transcriptome. Moreover, we also evaluated the 

dominant source of read information for genes in the mouse and human datasets. Predictably we 125 

found that the majority of mouse genes (79.6%) were dominated by exonic reads with more than 

50% of expression data stemming from exonic reads (Fig. 1g). Somewhat surprisingly, less than 

half of human genes derive their expression data from exonic reads with the rest stemming from 

intronic or 39 intergenic reads. While not all intronic and proximal intergenic sequencing reads 
stem from the respective protein-coding gene transcripts, these data indicate that profound gains 130 

in gene detection sensitivity are feasible by incorporating relevant intronic and intergenic read 

data in downstream scRNA-seq analysis. 
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Figure 1: Missing genes and sequencing read registration in single-cell RNA-seq 

experiments. a. Sc-RNA-seq based profiling of the mouse physiology regulating brain center - 135 

Median Preoptic Nucleus (MnPO). 10x Genomics 39 transcriptomic analysis of MnPO neurons 
(n=906) mapped to an exonic transcriptomic reference reveals 13 neuron types. Data shown in a 

tSNE embedding. b. Sample scRNA-seq detected gene (Nxph4) with sequencing read mapping 

at its genomic locus. The majority of sequencing reads map to known exons of Nxph4 gene and 

are therefore registered (blue) and included in downstream analysis. Discarded reads (red) map 140 

to non-exonic regions or are antisense to the gene and are therefore excluded. Inset violin plot: 

scRNA-seq analysis detects Nxph4 expression in several MnPO neuron types (cell-type specific 

log-transformed expression of Nxph4 in MnPO neuron types with cell-type identity color-coded as 

in Fig1a). Micrograph inset: in situ hybridization of Nxph4 expression in the MnPO (scale bar: 150 

µm, posterior MnPO outlined with white dashed line, data from Allen Brain Atlas Mouse ISH 145 

dataset).  c. Sample gene (B4galnt2) not detected by scRNA-seq due to intronic read mapping. 

Inset violin plot: gene expression is not detected in any of the MnPO neuron types. Inset 

micrograph: in situ hybridization of B4galnt2 expression in the MnPO. d. Sample gene (Gpr165) 
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not detected by scRNA-seq due to intergenic read mapping 39 of known end of the gene. Inset 
violin plot: gene expression is not detected in any of the MnPO neuron types with scRNA-seq. 150 

Inset micrograph: in situ hybridization of Gpr165 expression in the MnPO. e. Proportion of 

uniquely mapped sequencing reads according to mapping site (exonic, intronic or intergenic) for 

mouse brain (MnPO, left) and human peripheral blood mononuclear cells (right) datasets. f. 

Intronic and intergenic reads constitute a promising source to recover missing gene expression 

data in scRNA-seq analysis. Number of detected genes in mouse brain (MnPO, left) and human 155 

PBMC (right) datasets, if reads mapping to exons, exons and introns, exons and intergenic reads 

within 10kb of known 39 ends of genes, or all three sources are included in downstream analysis. 

g. Human and mouse genes according to the dominant source of sequencing read data. Genes 

are classified as 8exonic dominant9, 8intronic dominant9 or 839 intergenic dominant9 if more than 50% 

of sequencing reads map to their exons, introns or within 10kb of their 39 end, respectively. Mixed 160 

genes have less than 50% of reads stemming from any of the three regions. 

We further evaluated the extent to which intergenic reads 39 from gene ends could contribute to 

true gene expression estimates. If unannotated 39 UTRs constitute a significant source of read 
loss in 39 scRNA-seq datasets we would expect to see elevated levels of sequencing reads 

mapping proximal to 39 end of genes. Indeed, we observe several-fold higher mapping of 165 

intergenic reads immediately proximal to the 39 gene ends than at distal sites in both mouse and 
human datasets (Fig. 2a, b). In fact close to 25% of intergenic reads in both mouse and human 

datasets are within 10kb of 39 gene ends, which represents approximately two-fold enrichment as 

compared to the rest of the non-coding genome20,21. These results suggest that improved 

annotation of 39  gene ends is a promising strategy to increase gene detection in 39 single-cell 170 

RNA-sequencing analysis (Fig. 2c). 

 

 

Figure 2: Increased intergenic read mapping proximal to 3’ end of genes. a. Distribution of 

sequencing reads mapping within 10kb of known gene ends in the mouse genome shows 175 

increased mapping proximal to gene ends. b. Distribution of sequencing reads mapping within 

10kb of known gene ends in the human genome shows increased mapping proximal to gene 

ends. c. Fraction of intergenic reads mapping within 10kb of known gene ends from all intergenic 

reads in the mouse brain (MnPO) and human PBMC datasets. 

 180 

Another common source of read loss in scRNA-seq analysis stem from same strand gene 

overlaps. Reads mapping to genomic regions annotated to more than one gene are classified as 

multigene reads and are routinely removed from downstream analysis14,15. We evaluated the 

magnitude of gene overlaps using the Ensembl mouse (v.98) and human (v.98) genome 

annotations which are most commonly used to generate reference transcriptomes for scRNA-seq 185 
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analysis. We found that gene overlaps are a pervasive feature of currently available genome 

annotations with 2035 (6.3 % of all mouse genes) and 5195 (14.2% of all human genes) genes 

showing partial or complete overlap with other same strand genes in the mouse and human 

genomes, respectively (Fig. 3a). The majority of these overlaps in both mouse and human 

genomes originate from single pairs of genes (Fig. 3b, c). 190 

A closer inspection of overlapping genes revealed a few stereotypic patterns of overlaps that 

result in partial or complete blinding of one or more overlapping genes from downstream analysis. 

The first problematic pattern stems from readthrough transcripts where one or several of upstream 

gene9s transcripts incorporate some or all exons of a downstream gene which effectively 
eliminates all sequencing reads mapping to the latter (Fig. 3d). Another problematic feature of 195 

overlapping genes are so called „premature start transcripts< where a single or several transcripts 
from a downstream gene are annotated to start upstream of the upstream gene9s terminal exon 
(Fig. 3e). The latter type of overlap is particularly problematic as the majority of sequencing reads 

in 39 scRNA-seq map to terminal exons and thus premature start transcripts effectively eliminate 

the entire detection of their upstream gene. A version of this issue impacts dozens of genes that 200 

share their terminal exon and are thus completely invisible to analysis (Extended Fig. 1).  Finally, 

multigene overlapping genes pose a particular problem for pre-mRNA references where a single 

large gene can completely eliminate dozens of nested genes rendering downstream analysis blind 

to their expression (Fig. 3f). An important caveat to the latter is that there are currently several 

strategies for compiling a pre-mRNA transcriptomic reference with substantial differences in gene 205 

detection and read mapping fidelity (Extended Fig. 2). In summary, gene overlaps in genome 

annotations constitute a unique challenge to discovering valuable candidate genetic mechanisms 

and marker genes in 39 single-cell RNA-seq analysis. Moreover, these problems impact 

thousands of genes particularly in well annotated genomes.  

The systemic issues with read loss stemming from discarding intronic, intergenic and multigene 210 

mapping reads outlined above (Fig. 4a) suggest a straight-forward strategy to optimize 

transcriptomic references. Here, we implement a three step process to overcome these limitations 

that is applicable for any genomic annotation. In the first step we convert an exonic reference to 

a pre-mRNA reference to incorporate intronic reads into gene expression estimates using a hybrid 

intronic mapping strategy (Fig. 4b). Secondly, we resolve gene overlaps by automated 215 

identification and curation of premature and readthrough transcripts eliminating overlapping 

transcripts, gene models and long non-coding RNA genes that obscure or preclude detection of 

protein-coding genes (Fig. 4c). Finally, we incorporate unannotated 39 UTRs into our gene models 
by rank ordering genes with high sequencing read mapping within 10kb of their known gene end 

and supervised 39 gene extension based on one of several criteria: a) read splicing to known 220 

exons, b) extended gene boundary in another genome annotation (e.g. Refseq), c) external 

ground truth evidence (Allen in situ atlas, Protein Atlas etc). As a result we generated optimized 

genome annotations for both mouse and human transcriptomes  (Fig. 4e, Suppl. Tables 1, 2). 

This constitutes a general and scalable strategy for optimizing genome annotations for high-

efficiency 39 scRNA-seq analysis. 225 
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Figure 3: Gene overlap and resulting compromised scRNA-seq gene detection in the 

mouse and human genomes. a. Number of same-strand overlapping genes in the mouse and 

human genomes (mouse annotation - Ensembl v98 for GRCm38 build; human annotation - 

Ensembl v98 for GRCh38 build). b. Number of gene overlaps among mouse overlapping genes. 230 

c. Number of gene overlaps among human overlapping genes. d. Readthrough transcripts 

prevent the incorporation of sequencing reads to gene expression estimates in downstream 

genes. Gene regions where sequencing read data are discarded from gene expression estimates 

due to multigene classification are highlighted in red. e. Premature-start transcripts prevent the 

incorporation of sequencing reads to upstream gene9s expression estimates. Gene regions where 235 

sequencing read data are discarded due to multigene classification are highlighted in red. As most 

sequencing reads map at the 39 end of genes, premature-start transcripts can render upstream 

genes undetectable by scRNA-seq analysis. f. Large multiple gene spanning genes can eliminate 

scRNA-seq detection of dozens of nesting same-strand overlapping genes depending on read 

mapping strategy. With pre-mRNA references, where full gene spans are defined as exons, all 240 

nesting genes will have no sequencing reads incorporated into expression estimates due to 

resulting multi-gene mapping classification. 

In order to evaluate the performance of the optimized reference transcriptomes, we evaluated the 

gene and read detection efficiencies in both mouse brain and human PBMC datasets, and 

contrasted the analyses to the same scRNA-seq dataset mapped to the traditional exonic 245 

reference. We observed dramatic gains in both gene detection and read registration with the 

optimized mouse transcriptome with more than 3000 new detected genes and 14.8% more 

sequencing reads included in downstream analysis. Moreover, the optimized reference yields a 

profound increase in cellular profiling resolution with close to 600 additional genes/cell on a 

median basis for MnPO neurons that constitutes a more than 20% increase in the number of 250 

genes detected per neuron (Fig. 5a). Furthermore, this increase in cellular profiling resolution 

translated into 1 – 3 additional neuron types detected under identical analysis parameters to 

exonic transcriptome based analysis. Predictably, the optimized transcriptome revealed genes 

that were invisible to the traditional exonic reference based scRNA-seq analysis due to 

sequencing read mapping to intronic and un-annotated 39 UTR reigons (Fig. 5b). 255 

We found consistently superior performance of the optimized human genome annotation based 

analysis as compared to the implementation of an exonic transcriptomic reference. We detected 

over 4500 additional genes and more than 21% of additional sequencing reads in the human 

PBMC dataset (Fig. 5c). Similarly to the optimized mouse transcriptome, we observed dramatic 

gains in profiling resolution of cells with more than 400 additional genes/cell detected on a median 260 

basis. These gains in gene and read detection in the human dataset translated to up to 6 

additional cell types detected under identical analysis parameters as compared to the analysis 

based on the exonic trancriptomic reference. Therefore, optimizing genome annotations for 

scRNA-seq analysis can lead to robust gains in sequencing read, gene as well as cell-type 

detection. 265 
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Figure 4: Strategy for compiling an optimized transcriptomic reference. a. Schematic of read 

registration with regular exonic reference. Registered sequencing reads that are incorporated to 

gene expression estimates are highlighted in purple with discarded sequencing reads shown in 

grey. ScRNA-seq analysis with an exonic reference discards several types of sequencing reads 270 

that map to a specific gene including intronically mapped reads, reads mapping to exons that 

overlap with readthrough transcripts from upstream genes (N-1) as well as sequencing reads 

mapping to unannotated 39 untranslated regions (UTRs). b. Step 1 of optimizing a transcriptomic 

reference is incorporating intronic reads thereby generating a <pre-mRNA reference=. c. Step 2 of 

optimizing a transcriptomic reference is resolving gene overlaps by removing rare readthrough 275 

and premature transcripts as well as poorly supported gene models and pseudogenes that result 

in eliminating sequencing data from well-established protein-coding genes. This step incorporates 

sequencing reads mapping to exons and introns that previously overlapped with 

readthrough/premature transcripts. d. Step 3 of optimizing a transcriptomic reference entails 

extending 39 boundaries of genes to incorporate unannotated 39 UTRs with sequencing reads 280 

spliced to reads mapping to known exons. e. Genome annotation modifications for optimized 

mouse and human reference transcriptomes. 
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The key value of implementing an optimized transcriptomic reference is to reveal biological 

hypotheses and pinpoint genetic markers that would otherwise remain unobserved. To test the 

merit of optimizing transcriptomic references we sought to compare and contrast the performance 285 

of exonic to the optimized transcriptomic reference in linking MnPO cell types to their underlying 

physiological functions. MnPO has been implicated in a range of physiological functions including 

thirst, heat stress, cold stress, sleep and licking18. While a comprehensive single cell profiling of 

MnPO has not previously been performed, a number of studies have attempted to find genetic 

markers labeling neurons mediating the previous functions. Thus, MnPO neurons expressing 290 

Vglut2, Nos1, Nxph4 and Pacap22–25 have been implicated in thirst regulation; neurons labeled by 

Pacap, Bdnf, Ptger3 and Trpm2 have been suggested to label MnPO warmth induced neurons 
26–28; Glp1r+ neurons have been shown to be selectively driven by licking and liquid ingestion23; 

and finally Brs3+ neurons have been shown to label cold activated neurons in the MnPO29.  

Neuron type resolved view of these markers in the MnPO (Extended Fig. 3a, b) revealed that all 295 

the thirst markers are widely expressed in half or more of the cell types suggesting that these are 

unlikely to be specific for this function. Moreover, we observed that while two of the putative heat 

stress markers (Bdnf and Pacap) are also expressed in the majority of excitatory neurons, two 

remaining markers (Ptger3 and Trpm2) were completely absent in scRNA-seq data analyzed with 

the exonic reference (Extended Fig. 3a). Reanalyzing the data with the optimized transcriptomic 300 

reference uncovered an additional 3 neuron types revealing a total of 16 neuron classes in this 

structure (Extended Fig. 3b). Importantly, the optimized reference also revealed one of the 

missing warmth activated markers – Ptger3 – that was previously missing due to intronically 

mapped sequencing reads (Extended Fig. 3b,c). The recovery of this gene revealed that Glut6MnPO 

is likely the heat activated neuron type as it is labeled by all three warmth markers (Ptger3, Bdnf, 305 

Pacap). Furthermore, this analysis also revealed that three neuron classes Glut1MnPO, Glut2MnPO, 

and Glut3MnPO are likely the thirst state encoding neurons as they are labeled by all thirst markers 

as well as Etv1 that was recently shown to exclusively label thirst activated neuron classes in 

related lamina terminalis nuclei11. Finally, the markers for cold and ingestion activated neurons 

appear to exclusively label a single cell type each (Glut4MnPO for cold, Gaba1MnPO for ingestion) 310 

that collectively suggests a clear mapping of previously uncovered physiological functions to the 

underlying neuron classes (Extended Fig. 3d,e). 

Similarly, we evaluated the potential of revealing previously inaccessible cell-types and states in 

human peripheral blood mononuclear cell (PBMC) data through the application of optimized 

human transcriptomic reference. Although major cell classes in human PBMC datasets are easily 315 

detected by regular scRNA-seq analysis with exonic transcriptomic reference, this analysis fails 

to detect many known cell types including subclasses of CD4 and CD8 T-lymphocytes (Fig. 5f,g) 
30–32. Moreover, the canonical markers for many known cell classes31 such as natural killer cells 

(NK), regulatory T cells (T-regs), T helper 2 cells (Th2), mucosal activated invariant T cells (MAIT) 

and others appear to be missing  with PBMC scRNA-seq that relies on an exonic transcriptomic 320 

reference (Fig. 5f, g). By incorporating the discarded read information with our optimized human 

transcriptome, we were able to uncover several known cell classes within our PBMC dataset 

including Th17 and Th2 T-helper cells, T-regs, MAIT cells and CD8 T terminal effector cell clusters 

with their canonical markers as well as uncover known markers for other cell classes that are 

missing with exonic reference data (Fig. 5g). These data demonstrate, that incorporating intronic, 325 

39 intergenic and multigene mapping read data can robustly reveal biologically relevant cell types 
that would otherwise be obscured by poor cellular profiling resolution. In summary, optimizing 

transcriptomic references for 39 scRNA-seq analysis experiments by incorporating discarded 

sequencing read information dramatically improves the resolution as well as biological insight 

from resulting analyses. 330 
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Figure 5: Evaluation of optimized mouse and human reference transcriptomes. a. 

Quantification of the mouse exonic and optimized transcriptomic reference performance with the 

MnPO scRNA-seq dataset. Detected genes and registered reads are estimated from the raw 

gene-cell matrix produced by Cell Ranger count pipeline using the canonical exonic reference 335 

and the optimized reference, respectively. Profiling resolution is estimated as median genes 

detected per cell based on the same set of neurons (n=906) in the MnPO dataset. Neuron type 

detection is estimated on the same set of neurons with identical preprocessing parameters with 

the x-axis denoting the clustering granularity hyper-parameter for the Louvain algorithm for 

modularity optimization. b. Comparison of scRNA-seq analysis with exonic and optimized 340 

transcriptomic references as deployed to MnPO neurons (n=906). Optimized reference reveals 

more neuron types at identical data preprocessing conditions. Optimized reference also detects 

sample genes with intronic (B4galnt2) and 39 intergenic (Gpr165) read mapping that remain 

invisible with scRNA-seq analysis relying on the exonic transcriptomic reference. c. Quantification 

of the human exonic and optimized transcriptomic reference performance with the peripheral 345 

blood mononuclear cell (PBMC) data. Gene detection and read registration estimates stem from 

full PBMC data evaluation. Cellular profiling resolution and cell-type detection is estimated on the 

same set of T-lymphocytes extracted from the PBMC dataset (n= 4133) with identical 

preprocessing parameters. d. Transcriptomic analyses of the subtypes of T-lymphocytes 

(n=4133) in PBMC data mapped to the exonic reference (above) or optimized human reference 350 

transcripome (below). ScRNA-seq data are shown in a tSNE embedding of 4133 lymphocytes 

with color-coded cell identity. e. Violin plots of log-normalized expression data of T-lymphocyte 

subtype marker genes shown for PBMC data mapped to the exonic reference (above) or 

optimized human reference transcriptome (below). Ambiguous and cell classes newly detected 

with the optimized transcriptomic reference are color coded gray and red, respectively. Canonical 355 

cell class specific markers that are missing in exonic reference analysis and recovered in 

optimized reference analysis have been highlighted with red triangles. 

Discussion 
Previously, several approaches have been adopted to address the issue of missing genes in 39 
single cell RNA-sequencing datasets. One such approach entails using imputation to infer missing 360 

gene expression data33. These approaches however require deeply sequenced full-transcript 

scRNA-seq datasets as input, which is seldom easily available. Furthermore, imputed gene 

expression would have to be experimentally validated which is prohibitive from the resource 

vantage point. Another approach has been the usage of various pre-mRNA references, especially 

in case single nuclei are profiled, to capture reads mapping to unspliced pre-mRNAs34. We have 365 

incorporated a hybrid pre-mRNA reference strategy for registering intornic reads into our 

reference optimization step highlighting that the specific method for generating a pre-mRNA 

reference plays a major role in how many genes and reads are detected as a consequence 

(Extended Fig. 2). Furthermore, recent work has demonstrated that the majority of intronic reads 

stem from aberrant priming of transcripts from intronic poly-A tracts emphasizing the importance 370 

of not discarding these data16,17.  Finally, a few studies have resorted to manually fixing individual 

loci providing a local fix to a global problem8,11. Here, we have undertaken a systemic effort to 

provide genome wide optimized transcriptomic references for mouse and human reference 

transcriptomes and outlined a general strategy to easily achieve the same for any genome of 

interest. 375 

A surprising upshot of this study is that suboptimal use of transcriptomic references in scRNA-

seq analysis impacts detection of thousands of genes for any given experiment. Our findings 

underscore the need to optimize genome annotations to maximize biological insight gained with 
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this popular method. Furthermore, we showed that most exhaustive genome annotations that 

include gene models detailing infrequent transcripts can often be detrimental for the visibility of 380 

genes in scRNA-seq analysis. We find significantly higher number of overlapping genes in the 

mammalian genomes than previous estimates35 as genome annotations in the recent years have 

become more complete incorporating rarer transcript isoforms. These rare isoforms often include 

readthrough and premature start transcripts that severely impact read mapping in scRNA-seq 

analysis. One useful strategy to determine which transcript isoforms to exclude is to compare 385 

gene models between Ensembl36 and the somewhat more conservative Refseq37 genome 

annotations to see the level of support for rare isoforms. Furthermore, we have provided an 

automated classification approach to rapidly identify premature and readthrough transcripts to cut 

down time required for genome annotation curation. This is particularly essential as genome 

annotations are continuously updated. 390 

An important consideration is to recognize that genome annotation optimization is partially 

dependent on the biological sample that is used to inform this process. Although resolving gene 

overlaps is largely independent of that, incorporating unannotated 39 UTRs heavily relies on the 

input scRNA-seq dataset to identify genes with extensive intergenic read mapping proximal to 

their 39 end. This is particularly important in light of recent findings that alternative splicing can 395 

significantly vary across tissues and cell types38 and thereby read mapping to unannotated 39 
UTRs can also vary in a cell-type specific manner39. Moreover, to our surprise we found significant 

intergenic read mapping close to 39 ends of thousands of genes in the mouse and human 
genomes. While we were able to recover this sequencing information convincingly for less than a 

thousand genes per species, our findings point to the need for a concerted effort to update our 400 

gene models for 39UTRs. In summary, our findings stress the importance of optimizing 

transcriptomic references for single-cell RNA-seq analysis, point to the need to improve genome 

annotations with respect to 39 UTR models, and highlight the potential of uncovering new biology 

by analyzing both new and previously deposited 39 single-cell RNA-seq datasets with optimized 

transcriptomic references. 405 

Methods 

Mice 
All animal care and experimental procedures were executed in accordance with the US NIH 
guidance for the care and use of laboratory animals and approved by the California Institute of 
Technology Animal Care and Use Committee (protocol no. 1694-14). Mice were obtained from 410 

Jackson Laboratory and allowed to acclimate in the animal facility for a week. Mice were on a 12-
h light–dark cycle and were provided food and water ad libitum. 6 male C57BL/6J mice at 8 weeks 
of age were used for microdissection of the Median Preoptic Nucleus tissue. 
 

Human samples 415 

All studies were performed on human peripheral blood mononuclear cells obtained from 
Hemacare. The California Institute of Technology Institutional Review board (IRB) has determined 
that this work is exempt from the requirement for IRB review and approval (Reference #17-0727), 
and informed consent was not required.  
 420 

Single-cell RNA-sequencing 
Single-cell RNA-sequencing library was prepared from mouse median preoptic nucleus tissue as 
previously described11. Briefly, mice were anaesthetized with isoflurane in an isolated plexiglass 
chamber. Brains were rapidly extracted and dropped into ice-cold carbogenated (95% O2 and 5% 
CO2) NMDG-HEPES-ACSF (93 mM NMDG, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 425 
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20 mM HEPES, 25 mM glucose, 10 mM MgSO4, 1 mM CaCl2, 1 mM kynurenic-acid Na salt, 5 
mM Na-ascorbate, 2 mM thiourea and 3 mM Na-pyruvate, pH adjusted to 7.4, osmolarity ranging 
300–310 mOsm). Brain sections (2 mm) containing MnPO were cut with a razor blade on a 
stainless steel brain matrix (51392, Stoelting) and transferred to a dissection dish on ice 
containing NMDG-HEPES-ACSF. MnPO was microdissected with a microsurgical stab knife (72-430 

1501, Surgical Specialties). Microdissected tissue was aggregated from 6 animals in a collection 
tube on ice containing NMDG-HEPES-ACSF. For enzymatic digestion of tissue, NMDG-HEPES-
ACSF was replaced by trehalose-HEPES-ACSF (92 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 
30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM MgSO4, 2 mM CaCl2, 1 mM kynurenic 
acid Na salt and 2.5 wt/vol trehalose, pH adjusted to 7.4, osmolarity ranging 330–340 mOsm) 435 

containing papain (60 U/ml; P3125, Sigma Aldrich, re-activated with 2.5 mM cysteine and a 30-
min incubation at 34 °C and supplemented with 0.5 mM EDTA). Extracted MnPO tissue was 
incubated at 34 °C with gentle carbogenation for 45 min. During enzymatic digestion the tissue 
was pipetted periodically every 10 min. At the end of enzymatic digestion, the medium was 
replaced with 200 μl of room temperature trehalose-HEPES-ACSF containing 3 mg/ml ovomucoid 440 

inhibitor (OI-BSA, Worthington) 25 U/ml DNase I (90083, Thermo Scientific) and tissue was gently 
triturated into a uniform single-cell suspension with consecutive rounds of trituration with fire-
polished glass Pasteur pipettes with tip diameters of 600, 300 and 150 μm. The resulting cell 
suspension volume was brought up to 1 ml with trehalose-HEPES-ACSF with 3 mg/ml ovomucoid 
inhibitor and pipetted through a 40-μm cell strainer (352340, Falcon) into a new microcentrifuge 445 

tube. Thereafter, the single-cell suspension was centrifuged down at 300g for 5 min at 4 °C and 
the supernatant was replaced with fresh ice-cold trehalose-HEPES-ACSF and the cell pellet was 
resuspended. Cells were pelleted again and resuspended in 100 μl of ice-cold resuspension-
ACSF (117 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 
mM glucose, 1 mM MgSO4, 2 mM CaCl2, 1 mM kynurenic acid Na salt and 0.05% BSA, pH 450 

adjusted to 7.4, osmolarity ranging 330–340 mOsm). Cell suspension volumes estimated to 
retrieve ~6,000 single-cell transcriptomes were added to the 10x Genomics RT reaction mix and 
loaded to the 10X Single Cell A chip (230027, 10x Genomics) per the manufacturer9s protocol. 
We used the Chromium Single Cell 39 Library and Gel Bead Kit v2 (120237, 10x Genomics) and 
the Chromium i7 Multiplex Kit (120262) to prepare Illumina sequencing libraries. 455 

 

Human peripheral blood mononuclear cell scRNA-seq libraries were prepared as prevously 

reported40. Briefly, human cryopreserved PBMCs were thawed in 37 °C RPMI-1640 medium and 

pelleted at 300 × g for 2 min. Cells were resuspended to 1e6 cells/mL in RPMI-1640. Cells 

estimated to retrieve 10 000 single-cell transcriptomes were loaded into a 10X Genomics lane 460 

using single-cell 3′ v2 reagents following manufacturer9s protocol. 

Sequencing, read-mapping and generation of digital expression data 
scRNA-seq sequencing libraries were sequenced on an Illumina HiSeq 4000 sequencer. Mouse 

sequencing data were aligned to either the latest mouse exonic transcriptomic reference provided 

by 10x Genomics (mouse GRCm38 primary sequence assembly and Ensembl 98 genome 465 

annotation) or optimized transcriptomic reference based on the latter using Cell Ranger 6.1.2 (10x 

Genomics) or STARsolo (STAR 2.7.9a). Cell Ranger count pipeline was run under default 

parameters to generate exonic read mapping based gene-cell matrices. STARsolo readmapping 

pipeline was run with the following specified parameters: --clipAdapterType CellRanger4 --

outFilterScoreMin 30 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering 470 

MultiGeneUMI_CR --soloUMIdedup 1MM_CR  --outSAMtype BAM SortedByCoordinate --

readFilesCommand zcat --soloType CB_UMI_Simple --bamRemoveDuplicatesType 

UniqueIdenticalNotMulti --outSAMattributes NH HI AS nM GX CB UB GN sM sQ --soloFeatures 

GeneFull --soloCBwhitelist /<location folder>/737K-august-2016.txt. Intronic data was 

incorporated by specifying --include-introns parameter in Cell Ranger or --soloFeatures GeneFull 475 
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in STARsolo. Human sequencing data was aligned to the latest human exonic transcriptomic 

reference provided by 10x Genomics (based on human GRCh38 primary sequence assembly 

and Ensembl 98 genome annotation) or optimized reference based on the latter and processed 

as above. 

 480 

Data analysis 
Estimation of exonic, intronic and intergenic read fractions 

Read idenitiy (exonic, intronic or intergenic) of confidently mapped reads was evaluated with the 

Genomic Alignments (1.28.0) R package. Aligned reads from the Cell Ranger output bam file from 

sequencing data mapped to the regular exonic reference were imported with RE, NH and AN tags 485 

including duplicate reads and excluding secondary alignments (param = ScanBamParam(flag = 

scanBamFlag(isSecondaryAlignment = FALSE). Read itentity proportions were estimated from 

all non-secondary uniquely mapped reads (NH=1). The number of exonic reads was estimated 

by extracting all reads classified as exonic (RE=<E<) and subtracting all exonic reads with 
registered mapping to antisense reads (AN!=NA). Removing exonic reads with antisense gene 490 

annotations was necessary since Cell Ranger 6 and earlier versions wrongly classify intergenic 

reads mapping antisense to known exons as exonic. Intronic read number was obtained by 

identifying reads classified as intronic (RE=<N<). Finally, the total number of intergenic reads was 

obtained by adding reads classified as intergenic (RE=<I<) to false exonic reads mapped antisense 

to known exons (RE=<E< & AN!=NA). 495 

Determining dominant source of read mapping for genes 

In order to determine which fraction of genes is detected mostly by exonically, intronically or 

intergenically mapped reads we estimated exonic, intronic and 39 intergenic read counts within 

10kb of known gene ends for each gene. To determine the number of exonic reads for each gene 

we extracted all reads annotated to a specific gene from the raw gene-cell matrix from scRNA-500 

seq dataset mapped to the exonic reference with Cell Ranger 6.1.2. Intronic reads mapping to 

each gene were estimated by subtracting the exonic read estimates from gene expression 

estimates obtained from mapping scRNA-seq data to the traditional pre-mRNA reference where 

full transcripts are defined as exons. Finally, 39 intergenic read estimates within 10kb of known 
gene ends were obtained by extracting all intergenic reads (RE=I as well as RE=E & AS!= NA as 505 

Cell Ranger misclassifies reads mapping antisense to exons as exonic, whereas they are mostly 

intergenic reads) from the Cell Ranger genome aligned sequenging data .bam file with 

GenomicAlignments R package. Only unique intergenic reads with non-defective molecular and 

cellular barcodes were retained and ascribed to the closest 39 end of a gene with bedtools. All 
intergenic reads further than 10kb from known gene ends were filtered out with the rest used to 510 

estimate 39 intergenic read mapping for each gene. Dominant source of read mapping was 

estimated for all genes with more than 100 reads mapping per locus with exonic dominant genes 

with more than 50% of reads stemming from exons, intronic dominant genes with more than 50% 

of reads stemming from introns and intergenic dominant genes with more than 50% of reads 

stemming from within 10kb 39 of known gene ends. 515 

Evaluation of intergenic read distribution at 3’ gene ends 

39 intergenic read data was extracted from Cell Ranger genome aligned sequenging data .bam 
file with GenomicAlignments R package (intergenic reads were identified by read tag RE=I). 

Extracted reads were ascribed to the closest 39 end of a gene with estimated distance from 

respective gene end with bedtools and resulting intergenic read distribution from gene ends was 520 

plotted. 

Evaluation of intronic read incorporation with different pre-mRNA references 
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In order to evaluate different strategies for incorporating intronic reads in scRNA-seq analysis, we 

evaluated gene and sequencing read detection with three independent approaches. (a) in <Cell 
Ranger pre-mRNA reference= we compiled a new genome annotation file by transferring all 525 

<transcript= feature entries from the original genome annotation (GENCODE vM23/Ensembl 98 

for mouse data and GENCODEv32/Ensembl 98 for human data) to a new gene transfer format 

(gtf) file and renaming the feature field for all entries as <exon= effectively redefining all full length 
transcripts as exons and thereby enabling registration of intronic reads. We compiled a new Cell 

Ranger transcriptomic reference with Cell Ranger 6.1.2 using the cellranger mkref pipeline with 530 

default parameters and applied the newly assembled transcriptomic reference in sequencing read 

mapping with cellranger count pipeline again with standard parameters (see 

https://github.com/PoolLab/Generecovery for details); (b) for <STARsolo GeneFull mode= we 
generated the STAR reference transcriptome using STAR 2.7.9a in genomeGenerate run mode 

with mouse or human genome sequence (mouse GRCm38 genome build or human GRCh38 535 

genome build, respectively) and corresponding genome annotation using default parameters. 

Sequencing read data was then mapped to the generated STAR reference transcrtiptome using 

STARsolo with the following parameters: STAR --genomeDir <location of transcriptomic 

reference> --readFilesIn <location of sequencing fastq files> --clipAdapterType CellRanger4 --

outFilterScoreMin 30 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering 540 

MultiGeneUMI_CR --soloUMIdedup 1MM_CR  --outSAMtype BAM SortedByCoordinate --

readFilesCommand zcat --soloType CB_UMI_Simple --bamRemoveDuplicatesType 

UniqueIdenticalNotMulti --outSAMattributes NH HI AS nM GX GN sM sQ CB UB --soloFeatures 

GeneFull --soloCBwhitelist <location of barcode whitelist>/737K-august-2016.txt. Note that 

specifying <FullGene= mode results in intronically mapped reads being incorporated in the gene-545 

cell matrix. Finally,in <Cell Ranger --include-introns mode= (c), we used the previously generated 

Cell Ranger transcriptomic reference to run the cellranger count pipeline with --include-introns 

parameter specified resulting in inclusion of intronic reads in the resulting gene-cell matrix. 

In order to compare gene detection fidelity between the above approaches, we imported raw 

unfiltered gene-cell matrices generated by Cell Ranger or STAR into Seurat 4.1.0 and identified 550 

all expressed genes from raw gene expression data. Unique and shared gene sets were identified 

by intersection of individual gene sets in R. We compared the read detection efficiency for the 

three strategies by extracting individual sequencing reads from Cell Ranger and STAR generated 

BAM files with GenomicAlignments 1.28.0 package in R. For Cell Ranger generated BAM files 

we extracted non-duplicate reads with readGAlignments(bamfile, index=indexfile, param = 555 

ScanBamParam(flag = scanBamFlag(isDuplicate = FALSE, isSecondaryAlignment = FALSE), 

tag = c("GN", "RE",  "xf", "CB", "UB"), what = "flag")). We identified all reads contributing to the 

gene-cell matrix in Cell Ranger BAM files by pulling out reads where xf==25 and extracted their 

unique molecular and cellular barcodes by combining their CB and UB fields. For STAR BAM files 

we imported sequencing read data with readGAlignments(bamfile, index=indexfile, param = 560 

ScanBamParam(flag = scanBamFlag(isDuplicate = FALSE, isSecondaryAlignment = FALSE), 

tag = c("GX", "GN", "CB", "UB"), what = "flag")). Reads contributing to gene-cell matrices in STAR 

BAM files were identified by pulling out reads where GX!=NA, and length of cell and UMI barcodes 

were and 10 characters, respectively. Unique and shared detected reads was evaluated by 

intersecting the combined CB/UB indeces of reads between different methods. 565 

Assembling optimized transcriptomic references 
We took a three pronged approach to generating a scRNA-seq optimized transcriptomic reference 

which involved the following steps: a) resolving gene overlap derived read loss; b) recovering 

intergenic reads from 39 unannotated exons; and c) recovering intronic reads. Each of these steps 
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generated input data for a custom R script for automated assembly of the scRNA-seq optimized 570 

genome annotation. 

Resolving gene overlap derived read loss 

We generated a custom code (available at https://github.com/PoolLab/Generecovery) to identify 

same-strand overlapping genes in a given input genome annotation and triage genes for manual 

curation to resolve the overlap derived sequencing read loss. Overlapping genes were identified 575 

by evaluating chromosomal location (seqname, start and end coordinates as well strand in the 

gene transfer format file for all <gene= features) based on which we generated an output file 

summarizing the overlapping gene list specifying the number of overlapping genes and their 

identity. Gene overlaps can be resolved by one of several strategies including (i) leaving 

overlapping gene annotations unchanged if their exons don9t directly overlap, (ii) deleting 580 

offending readthrough transcripts from upstream genes, (iii) deleting offending premature gene 

transcripts from downstream genes, (iv) deleting pseudogenes and non-protein-coding genes 

with poor support and no read mapping that obscure well established protein-coding genes or (v) 

for extensively overlapping genes deleting one and renaming the other to capture otherwise 

discarded reads. As well annotated genomes contain several thousand same-strand overlapping 585 

genes and properly resolving gene overlaps often requires manual inspection of the locus to 

determine best course of action, prioritization of genes for manual curation is often desirable. To 

this end, we generated a gene classification algorithm to prioritize genes for direct inspection. The 

following algorithm was used to classify genes for appropriate curation: 

1. If gene overlaps with several genes: 590 

a. Classify for <Manual inspection= if multigene overlapping gene as well as its 

corresponding nested genes have overlapping exons. 

b. Classify as <keep as is= if multigene overlapping gene9s individual exons do not 

overlap. 

i. If nested gene does not overlap with any other gene, classify as <Keep as 595 

is= 
ii. If nested gene overlaps with more than one gene, classified for <Manual 

inspection= 
2. If gene overlaps with only one other gene, test whether gene is non-protein-

coding/pseudogene (<Gm= and <…Rik= gene models in mice; <AC…= and <AL…= gene 600 

models in humans)  

a. If both overlapping genes are non-protein-coding/pseudogenes, classify for 

<Manual inspection= 
b. If only one gene in the overlapping gene pair is non-protein-coding/pseudogene, 

test if genes have overlapping exons: 605 

i. In case no overlapping exons, classify both genes as <Keep as is= 
ii. In case exons overlap, mark non-protein-coding/pseudogene for deletion 

(<Delete=). 
c. If both genes are well supported genes: 

i. If their exons don9t overlap, mark both genes as <Keep as is= 610 

ii. If their exons do overlap, determine the number of opposing gene9s exonic 
overlap for each exon of each gene and find the exon with most overlaps 

for both upstream and downstream gene to determine appropriate course 

of action: 

1. If downstream gene9s exon has more overlaps than its upstream 615 

counterpart, classify downstream gene as <Premature transcript 
deletion= and upstream gene as <Keep as is= 
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2. If upstream gene9s exon has more overlaps than its downstream 
counterpart, classify upstream gene as <Readthrough transcript 
deletion= and downsream gene as <Keep as is=. 620 

3. Otherwise classify both for <Manual inspection= 

The resulting recommendations were used in the manual curation step, where all genes that were 

not classified in the <Keep as is= category were directly scrutinized in the Ensembl genome 

browser (ensemble.org, with GRCm38 and GRCh38 genome builds for mouse and human data, 

respectively) and/or cross-referenced to the respective Refseq genome annotation within the 625 

Integrated Genome Browser (IGV 2.11.9). For genes with multiple transcripts, readthrough and 

premature transcripts were marked for deletion in a separate column in the overlapping gene list 

file if the remaining transcripts enabled registration of reads from core exons of both genes. In the 

few cases where the terminal exons of genes were completely overlapping we deleted one of the 

genes and marked the other for renaming to avoid discarding expression data from both genes. 630 

For genes marked for deletion, we cross-referenced the gene structure to Refseq annotation and 

confirmed the deletion if the gene model was not supported by both Ensembl and Refseq genome 

annotations and the gene overlap could not be resolved by deleting a specific transcript. For 

candidate genes for deletion we also confirmed that the gene models in question would not have 

any reads mapping to their loci with the mouse brain and human PBMC datasets. The resulting 635 

curated 8overlapping gene list9 file with final action recommendations and transcript identities for 

deletion was saved and used as input in the automated generation of optimized genome 

annotation. 

Recovering intergenic reads from 3’ unannotated exons 

Gene detection in 39 single-cell RNA-sequencing depends on registering sequencing reads 640 

predominantly at the 39 end of transcripts. Therefore, inaccurate annotation of 39 exons and UTRs 

causes misclassification of exonic sequencing reads as intergenic and thereby compromised 

detection of gene expression. In order to identify candidate genes with poorly annotated 39 regions 
for manual correction of gene boundaries we identified and rank-ordered genes with high numbers 

of intergenic sequencing reads mapping within 10kb of known gene ends. This candidate gene 645 

list was stored in a 8gene extension candidates9 output file and subjected to case-by-case scrutiny 

for evidence for unannotated 39 exons with Integrated Genomics Viewer (IGV 2.11.9). New 

estimates for 39 gene boundaries were recorded in the 8gene extension candidates9 file for genes 

displaying evidence of unannotated exons. Evidence for the latter included sequencing read 

splicing between known and putative unannotated exons, continuous sequencing read mapping 650 

extending 39 of known gene end or independent expression validation with an independent 

method (e.g. Human Protein Atlas and Allen In Situ Mouse Brain Atlas datasets). 

To achieve this, we mapped mouse MnPO and human PBMC scRNA-seq data to their respective 

reference transcriptomes with Cell Ranger and imported all intergenic reads from aligned read 

data (bam file) with GenomicRanges R package using readGAlignments(bamfile, index=indexfile, 655 

param = ScanBamParam(flag = scanBamFlag(isDuplicate = FALSE, isSecondaryAlignment = 

FALSE), tag = c("GN", "RE"), what = "flag", tagFilter = list("RE"="I"))). Duplicate and defective 

intergenic reads were removed by retaining reads with unique barcodes with 10x defined correct 

length of cellular and molecular barcodes. We generated a bed file of the intergenic reads using 

the GenomicRanges and rtracklayer R packages. Next we generated the reference bed file with 660 

gene boundaries by extracting all gene feature entries form the genome annotation (gtf file) and 

reformatted to match the bed file requirements. We used bedtools (2.30.0) to identify the closest 

39 gene end to all intergenic reads with bedtools closest -a intergenic_reads.bed -b 

gene_ranges.bed -s -D a -fu > <results>.txt. We used these data to estimate the total number of 
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all intergenic reads within 10kb of each gene, rank ordered genes from highest to lowest number 665 

of intergenic reads proximal to 39 end and saved the resulting data to 8gene extension candidates9 
file. We proceeded to scrutinize the resulting gene list and evaluated evidence for unannotated 39 
exons by visualizing read mapping and splicing data in the aligned sequencing data (bam file) 

with Integrated Genomics Viewer following the criteria above. For genes where these criteria were 

satisfied we recorded the new extended gene boundary in the 8gene extension candidates9 file. 670 

Furthermore, we extracted genomic coordinates for 39 gene ends from the Refseq annotation for 

all mouse and human genes and updated 39 gene ends to reflect Refseq coordinates if Refseq 

genome annotation placed the gene end 39 of the Ensembl annotation. The resulting 8gene 
extension candidates9 file was used as input in the automated generation of optimized genome 

annotation. 675 

Recovering intronic reads 

All currently available strategies for incorporating intronic reads come with their own limitations 

and can differentially detect several hundred genes. The traditional approach for generating a 

pre-mRNA reference entails redefining all transcripts as exons. Despite robustly increasing overall 

registered reads in the resulting gene-cell matrix, this approach significantly exacerbates gene 680 

overlap derived read loss and fails to detect many spliced intronic reads due to eliminating known 

exon boundaries. Later versions of sequencing read aligners allow specific intronic mapping 

modes such as specifying --include-introns attribute in Cell Ranger. However, although this latter 

method circumvents issues with gene overlap derived read loss common for traditional pre-mRNA 

references and it outperforms the traditional pre-mRNA reference approach by detected read 685 

number, surprisingly this solution fails to detect many intronic sequencing reads that are 

commonly detected by the latter. Therefore we adopted a hybrid approach to capturing intronic 

reads by generating a reference transcriptome that incorporates both normal exonic gene 

structures as well as full transcript length exons that enabled us to effeciently capture all intronic 

reads under Cell Ranger --include-introns mode. To this end we generated the traditional pre-690 

mRNA reference genome annotation by transferring all transcript feature entries from the genome 

annotation gtf file and redefinined their feature value as exon saving it as a new 9traditional pre-

mRNA annotation9 file that we used as input in the final generation of the scRNA-seq optimized 

genome annotation assembly. 

Automated generation of the scRNA-seq optimized genome annotation 695 

The following input data was used to generate the scRNA-seq optimized genome annotation: (i) 

regular genome annotation (.gtf file containing Ensembl v98 genome annotations from 10x 

Genomics for the respective genome build), (ii) 9traditional pre-mRNA annotation9 (.gtf file), (iii) 

8overlapping gene list9 file specifying transcripts and genes for deletion and (iv) 8gene extension 
candidates9 file specifying updated 39 gene boundaries for genes with unannotated 39 UTRs. We 700 

wrote an R script for assembling the final scRNA-seq optimized genome reference (available at 

https://github.com/PoolLab/Generecovery). Briefly, we imported the regular genome annotation 

with rtracklayer R package, removed genes and transcripts marked for deletion in the 8overlapping 
gene list9 file, adjusted 39 gene boundaries for genes specified in the 8gene extension candidates9 
file, imported the 8traditional premRNA annotation9 data and added full transcript length exonic 705 

annotations to all genes excluding genes in the overlapping gene list, renamed defined genes 

and exported the resulting genome annotation to a new <scRNA-seq optimized genome 

annotation.gtf> file. The resulting genome annotation thus eliminates the structural problems of 

existing genome annotations that unnecessarily discard sequencing read data that reflect true 

endogenous gene expression. 710 
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Assembly and use of the scRNA-seq optimized transcriptomic reference 

The resulting <scRNA-seq optimized genome annotation.gtf> was used to compile the optimized 

transcriptomic reference with Cell Ranger using the cellranger mkref pipeline. The resulting 

optimized transcriptomic reference was used to align sequencing data with the cellranger count 715 

pipeline with --inculde-introns attribute specified. 

Data analysis and visualization software  
scRNA-seq data were processed in R 4.1.2 using the following analysis and data visualization 

packages: RStudio 1.4.1717, Seurat v.4.1.0., ggplot2 3.3.5, GenomicAlignments 1.28.0, 

GenomicRanges 1.44.0, IRanges 2.26.0, rtracklayer 1.52.1, Matrix 1.3-4, readxl 1.3.1 and stringr 720 

1.4.0. Gene overlaps in genome annotations and overlapping gene classification code was 

generated by Python3 and R. We used bedtools 2.30.0 to identify intergenic gene reads proximal 

to known 39 gene ends. 

Reference transcriptomes for sequencing read mapping were generated by either Cell Ranger 

6.1.2 or STARsolo (STAR 2.7.9) using mkref and genomeGenerate pipelines, respectively. 725 

Sequencing data were mapped to dedicated reference transcripomes with either Cell Ranger 

6.1.2 count pipeline or STARsolo as described above.  

Sequencing read mapping data in Cell Ranger aligned BAM files was visualized and evaluated 

with Integrated Genomics Viewer 2.11.9. Read mapping data with respect to specific gene exons 

and introns was plotted in R with Sushi (1.30.0) package. Transcript and gene structures were 730 

plotted with Gviz 1.36.2 R package. We used Graphpad Prism 8 to plot summary data. 

Data Availability 
Raw and processed scRNA-seq data are available at the NCBI Gene Expression Omnibus (GEO 

accession no. GSE198528). Latest versions of the mouse and human reference transcriptomes 

and genome annotations are available for download at www.thepoollab.org/resources.  735 

Code Availability 
Code to reproduce data analysis in this manuscript and generate scRNA-seq optimized 

genomic annotations is available at https://github.com/PoolLab/Generecovery. 
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Supplemental figures 845 

 

 

Extended data Figure 1: Genes with shared terminal exon sequences are obscured from 

scRNA-seq analysis. a. The terminal exons of human genes TIFAB and DCANP1 overlap 

resulting in all sequencing reads mapping to the overlapping area being discarded due to 850 

<multigene mapping= classification. Thereby, 39 scRNA-seq is mostly blind to the expression of 

these genes. b. Expression information for TIFAB and DCANP1 genes can be recovered by 

removing one of the genes and renaming the remaining gene9s transcript recovering discarded 
expression data.  

 855 
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Extended data Figure 2: Different strategies for incorporating intronic reads into scRNA-

seq analysis varie by detection of several hundred genes and up to 6.5% of sequencing 

reads. a. Comparison of detected genes by distinct methods for incorporating intronic sequencing 

reads into scRNA-seq analysis with mouse MnPO brain nucleus dataset. <Cell Ranger pre-mRNA 860 

reference= data was generated with Cell Ranger software in regular mapping mode using a 
genome annotation where all transcripts were defined as exons thus leading to incorporation of 

previously intronically mapping reads. <STARsolo GeneFull mode= data was generated by the 
STARsolo software by specifying the <GeneFull= attribute integrating intronically mapped reads 
into the assembled gene-cell matrix. <Cell Ranger --include-introns mode= was generated with the 865 

Cell Ranger software with <--include-introns= parameter specified leading to integration of intronic 
reads to assembly of the gene-cell matrix. Black – genes detected by all three methods for 

incorporating intronic reads; red – genes that are either unique or shared by only one other mehod 

for detecting intronic reads due to gene overlaps or problems with incorporating a subset of 

intronic reads with one or more of the methods. b. Comparison of detected sequencing reads 870 

incorporated into the gene-cell matrix by distinct methods registering intronic sequencing reads 

into scRNA-seq analysis. Black - reads detected by all three methods; red - reads that are either 

uniquely detected by a given method or shared with only one other strategy. 
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 875 

Extended data figure 3: Elucidation of neuron types, cell-type-specific markers and 

physiological functions of cells in the mouse Median Preoptic Nucleus (MnPO) with regular 

exonic and optimized transcriptomic reference based scRNA-seq analyses. a. Violin plot of 

the expression of previously implicated genetic markers labeling thirst, warmth, cold or licking 

activated neurons in the MnPO as analyzed by a regular exonic reference based analysis pipeline. 880 

Red arrow – absence of Ptger3 – a marker for warmth activated neurons in the MnPO – in the 

scRNA-seq dataset. Expression is shown on a log-normalized scale with maximum counts per 

million (max CPM). b. Violin plot of the same marker expression in the MnPO as analyzed with 

the optimized transcriptomic reference pipeline. Red arrow – detected warmth activated neuronal 

marker Ptger3 expression. c. Mapping of sequencing reads to the Ptger3 locus with the majority 885 

being discarded from downstream analysis with an exonic reference due to their intronic mapping. 

d. Nomenclature of neuron types in the MnPO as identified by scRNA-seq with the optimized 
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transcriptomic reference (data same as in Figure 5b). e. Suggested function to cell-type mapping 

in the MnPO neurons based on overlap of previously identified genetic markers in the new 

neuronal nomenclature. 890 
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