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 9 

ABSTRACT 10 

Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of 11 
the human gut microbiome. However, due to practical limitations, the most densely sampled 12 
time series from the human gut are collected at a frequency of about once per day, while the 13 
population doubling times for gut commensals are on the order of minutes-to-hours. Despite 14 
this, much of the prior work on human gut microbiome time series modeling has, implicitly or 15 
explicitly, assumed that day-to-day fluctuations in taxon abundances are related to population 16 
growth or death rates, which is likely not the case. Here, we propose an alternative model of the 17 
human gut as a continuous flow ecosystem at a dynamical steady state, where population 18 
dynamics occur internally and the bacterial population sizes measured in stool represent an 19 
endpoint of these internal dynamics. We formalize this idea as stochastic logistic growth of a 20 
population held at a constant dilution rate. We show how this model provides a path toward 21 
estimating the growth phases of gut bacterial populations in situ. We assess our model 22 
predictions against densely-sampled human stool metagenomic time series data. Consistent 23 
with our model, donors with slower defecation rates tended to harbor a larger proportion of taxa 24 
in later growth phases, while faster defecation rates were associated with more taxa in earlier 25 
growth phases. We discuss how these growth phase estimates may be used to better inform 26 
metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.  27 

 28 

 29 

 30 
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INTRODUCTION 32 

The human gut microbiome is an anaerobic bioreactor, ecologically distinct to each individual, 33 

that transforms dietary and host substrates into bioactive molecules important to host health [1–34 

3]. Disruptions to the ecological composition of the gut have been shown to mediate the 35 

progression of various complex diseases [4–8]. Furthermore, the ecological dynamics of the gut 36 

appear to be relevant to both health and disease states [9, 10]. However, the biological 37 

interpretation of densely-sampled adult human fecal microbiome time series is fraught. 38 

Various dynamical models have been applied to gut microbial abundance data collected 39 

from adult human donors [11–15]. These models often assume, either explicitly or implicitly, that 40 

day-to-day changes in abundance are proportional to population growth and/or death [16]. 41 

However, the underlying data often do not match this assumption [11, 16–20]. The gut is a flow-42 

through ecosystem and commensal gut bacteria must grow fast enough to avoid dilution-to-43 

extinction. As such, gut bacterial doubling times tend to be fast, ranging from minutes-to-hours 44 

[21–23]. However, stool sampling frequency is usually limited to, at most, about once per day. 45 

Consequently, rapid internal population dynamics likely cannot be directly estimated from the 46 

day-to-day measurements obtained from stool [16].  47 

In the absence of major perturbations, is it possible to extract meaningful information 48 

about commensal population dynamics from adult human gut microbiome time series, despite 49 

the fundamental limitations in sampling timescales mentioned above? One work around to 50 

inferring growth rates of bacterial populations in situ is to leverage metagenome-inferred 51 

replication rates [22]. Briefly, instantaneous replication rates can be estimated for abundant 52 

bacterial populations in metagenomic samples by taking advantage of the fact that fast-growing 53 

taxa show an asymmetry in reads mapping to different genomic loci, with higher read depth 54 

near the origin of replication and a lower depth near the terminus due to the initiation of multiple 55 
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replication forks [21–23]. However, even when replication rates and population abundances can 56 

both be estimated from the same metagenomic samples, it is unclear how these measurements 57 

are related to the in situ growth phase of a population (e.g. lag, log, or stationary phases). As 58 

such, biological interpretations regarding population size and replication rate fluctuations in flow-59 

through ecosystems like the human gut, where internal dynamics are much faster than sampling 60 

rates, remain challenging. 61 

Early experiments by Jaques Monod [24] identified distinct growth phases for bacterial 62 

populations in culture, which can be captured by the stochastic logistic growth equation (sLGE) 63 

[25]. The sLGE has been shown to be a good fit for bacterial population growth in vitro and in 64 

real-world, steady-state ecosystems [26–31]. We used the sLGE to study statistical 65 

relationships between population sizes and growth rates across the various phases of growth 66 

(i.e., lag, acceleration, log, deceleration, and stationary phases) to see if we could extract in situ 67 

growth phase information from longitudinal data from a steady-state, flow-through ecosystem 68 

sampled at a consistent frequency. Overall, the sLGE model yields statistical relationships that 69 

can be leveraged to identify the in situ growth phase of a bacterial population periodically 70 

sampled from a continuous-flow ecosystem, like the human gut.  71 

To assess our model predictions, we calculated population abundance and 72 

growth/replication rate trajectories from more than a dozen organisms in four densely sampled 73 

human gut metagenomic time series [32]. On average, gut commensal growth rates and 74 

population sizes were positively correlated within each of the stool donor time series, which 75 

suggests that most abundant taxa in the gut are growing exponentially. We were able to identify 76 

signatures of specific growth phases in 20-40% of the abundant bacterial populations in the guts 77 

of these four individuals. We describe how our growth phase inference approach can serve to 78 

inform more accurate mechanistic modeling of flow-through ecosystems (e.g., community-scale 79 

metabolic models, which usually assume exponential growth), which could have broad 80 
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implications for the gut microbiome and host health [8, 33, 34], flow-through agricultural systems 81 

[35, 36], climate change [35, 37, 38], and industrial bioreactor production processes [39, 40]. 82 

 83 

RESULTS 84 

Framing the gut as an anaerobic flow-through bioreactor 85 

The mammalian gut can be understood as an anaerobic bioreactor with a continuous input (i.e., 86 

dietary and host substrates) and output (i.e., stool) [41], and microbial taxa must grow fast 87 

enough to avoid dilution to extinction (Fig. 1A). Stool sampling captures the endpoint of internal 88 

gut bacterial population dynamics. For example, in our cartoon figure we see that Taxon 1 starts 89 

growing higher up in the colon and is in stationary phase by the time a stool sample is collected, 90 

while Taxon 3 starts growing lower in the colon and is still growing exponentially at the point of 91 

stool sampling (Fig. 1A).  Overall, the daily abundances of Taxa 1-3 represent the average (μ) 92 

steady-state population size, plus or minus some amount of biological and technical noise, at 93 

the time of stool sampling (Fig. 1A). To investigate improved methods for interpreting the 94 

dynamics of human gut microbial time series, we downloaded shotgun metagenomic time series 95 

data from the BIO-ML cohort (i.e., health-screened stool donors who provided fecal-transplant 96 

material to the stool bank OpenBiome) [32]. The BIO-ML cohort contained 74 donors, 70 of 97 

which had 1-3 time points collected [32]. To filter for dense longitudinal data, we selected a 98 

subset of donors with more than 50 time points. Four donors (i.e. donors ae, am, an, and ao) 99 

met this criterion, with 3-5 fecal samples per week for >50 days (Fig. 1B). 100 

 101 

Characterizing the relationships between gut commensal population size and growth rate 102 

using metagenomic time series data 103 

We first investigated the statistical properties of day-to-day fluctuations in gut bacterial 104 

population sizes, estimated from metagenomic time series. Specifically, we looked at the 105 
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associations between population abundance estimates (tn) and the changes in abundance 106 

estimates (i.e., deltas) between time points (tn+1 – tn). Naïvely, if most bacterial populations in 107 

the stool were growing exponentially, we would expect that population abundances and growth 108 

rates would be positively correlated. However, prior work has indicated an overall negative 109 

correlation between abundances and changes in abundances in stool 16S rRNA gene amplicon 110 

sequencing data generated from densely sampled human stool time series [15]. Indeed, we 111 

found that abundant bacterial populations in the stool of the four BIO-ML donors maintained 112 

stable average abundances over time (μ), with day-to-day fluctuations above and below this 113 

average, as pictured in the example of Bacteroides cellulosilyticus in donor am (Fig. 2A-B). This 114 

kind of pattern fits a regression-to-the-mean model, which one would expect when randomly 115 

sampling from a stationary distribution (Fig. 2B). This kind of regression-to-the-mean process 116 

will give rise to a negative correlation between population abundances and changes in 117 

abundance between time points, consistent with what has been observed previously [15]. We 118 

observed that the deltas (tn+1 – tn) for the same gut taxon (Bacteroides uniformis) measured 119 

across each donor time series, when plotted against their respective normalized abundances 120 

(tn), showed the expected negative association (Fig. 2C). Furthermore, similar negative 121 

associations were observed across all taxa analyzed, across all donors (Fig. 2D). Overall, these 122 

results support our assertion that stool samples provide steady-state population abundance 123 

estimates for gut commensal bacteria, which are representative of the endpoint of internal 124 

dynamics.  125 

Next, we looked at the statistical associations between calculated peak-to-trough ratios 126 

(i.e., PTRs; a proxy for growth-rate) [22] of abundant bacterial populations from each 127 

metagenomic sample and their respective metagenomic population abundance estimates. If the 128 

deltas, presented above, were truly proportional to growth and/or death rates, we would expect 129 

that the statistical relationships between deltas and population size would be similar to those 130 
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between PTRs and population size. However, unlike the regression-to-the-mean signature 131 

identified for the deltas, we found variable statistical relationships between PTR and centered 132 

log-ratio (CLR) transformed population abundances for the same taxon (Bacteroides ovatus) 133 

across the four donors (Fig. 3A). Similarly, we saw a wide range of positive, negative, and null 134 

associations between PTRs and CLR abundances across all measured taxa within each donor 135 

(Fig. 3B). These results are inconsistent with a regression-to-the-mean signal, and suggest a 136 

more complex relationship between growth rate and population size [42–44].  Finally, we 137 

calculated temporally-averaged PTRs and population sizes for each abundant taxon within each 138 

of the donors. Overall, there was a significantly positive (linear regression, p-values = 0.0318, 139 

0.125, 0.155, 0.031 for donors ae, am, an, and ao, respectively; combined p-value using 140 

Fisher’s method = 0.005), albeit noisy, association between average PTR and average CLR 141 

abundance across all four donors (Fig. 3C), indicating that taxa with higher average population 142 

sizes tend to have higher average growth rates. This result is consistent with what we would 143 

expect to observe in exponentially-growing populations.  144 

 145 

Stochastic logistic growth equation provides insights into growth phases 146 

In order to better understand and interpret the varying relationships we observe between PTRs 147 

and CLR abundances, we turn to modeling. The basic properties of growth curves of microbial 148 

taxa can be captured using the logistic growth equation (Fig. 4). This model is defined such that 149 

the change in abundance for each taxon i (dxi/dt) is captured by the current abundance at time t, 150 

xi(t), multiplied by the maximal growth rate, r, and the carrying capacity (k) term (1-xi(t)/k) [45]. In 151 

this model, population size over time shows a sigmoidal curve, with the abundance 152 

asymptotically approaching k (Fig. 4A, top panel). The derivative of this curve with respect to 153 

time yields the change in growth rate over time, which peaks during log-phase growth (Fig. 4A, 154 

middle panel). The second derivative of abundance with respect to time, which is the 155 
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instantaneous change in growth with respect to time and is often referred to as the acceleration 156 

rate, shows a peak during the acceleration phase and a trough during the deceleration phase 157 

(Fig. 4A, bottom panel). Based on this second-derivative curve, we show the expected 158 

relationships between growth rate and abundance as you move across the logistic growth 159 

curve, along the time axis (Fig. 4B). These expected relationships provide a potential path 160 

forward for inferring the in situ growth phase of a bacterial population sampled at a consistent 161 

frequency from a flow-through ecosystem. 162 

The logistic growth model is a deterministic equation. However, the abundances of 163 

commensal bacterial populations in the gut fluctuate due to myriad factors including interspecies 164 

competition, resource fluctuations, and stool residence time [46]. In order to approximate these 165 

fluctuations in our modeling, we introduced a stochastic term to the logistic growth model (Fig. 166 

5A). Herein, σ denotes the noise magnitude and ω(t) represents a white noise term [27]. Five 167 

growth phases (i.e., lag, acceleration, log, deceleration, and stationary phases) were defined 168 

using the half-maximum and half-minimum, respectively, of the second derivative LGE curve 169 

(Fig. S1A). We grouped these phases into three major categories: lag-acceleration phase, log 170 

phase, and deceleration-stationary phase. We simulated 100 iterations of the stochastic logistic 171 

growth equation (sLGE) for each of a range of parameterizations (see Methods), which 172 

recapitulated the expected statistical relationships between growth rates and abundances for 173 

populations consistently sampled within our three major growth phase categories (Fig. 5A-C). 174 

For example, the Pearson’s R values between growth rates and abundances were significantly 175 

positive in lag-acceleration phase and significantly negative in deceleration-stationary phase 176 

(Fig. 5B). Log phase growth was more variable, but showed little-to-no significant association 177 

between growth rates and abundances. These results were reproduced across a wide range of 178 

parameter space and were robust to varying the noise term (Fig. S1B). Overall, the relationships 179 
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between growth rate and abundance across growth phases were highly consistent with our 180 

expectations (Fig. 5C).  181 

 182 

Inferring in situ growth phases for abundant gut commensal populations sampled in 183 

metagenomic time series 184 

Based on these sLGE results, we assigned putative in situ growth phases to abundant gut 185 

bacterial populations from the four BIO-ML gut metagenomic time series. Specifically, we 186 

suggest that significantly positive associations (linear regression, adjusted p-value < 0.05, with a 187 

positive beta-coefficient) between PTRs and CLR abundances indicate early-phase exponential 188 

growth (i.e. acceleration phase; we can likely exclude lag phase due to the fact that we would 189 

be unlikely to detect taxa with very low levels of biomass), significantly negative associations 190 

(linear regression, adjusted p-value < 0.05, with negative beta-coefficient) indicate deceleration 191 

or stationary phases, and the absence of a significant association could indicate either log-192 

phase growth or a false negative (i.e., not powered enough to detect a positive or negative 193 

association with the number of time points sampled). Bacteroides cellulosilyticus, Bacteroides 194 

ovatus 1, and Megaspaera eldenii showed significantly positive PTR-abundance associations 195 

within donor ae (Figs. 6A and S2). Bacteroides ovatus 1 and Parabacteroides distasonis 196 

showed positive PTR-abundance associations, while Alistipes finegoldii, Bacteroides uniformis, 197 

and Bacteroides xylanisolvens showed negative associations in donor am (Figs. 6A and S3). 198 

Alistipes shahii, Bacteroides intestinalis, Bacteroides thetaiotaomicron, Bacteroides uniformis, 199 

Bacteroides xylanisolvens, and Odoribacter splanchnicus showed significantly negative PTR-200 

abundance associations in donor an (Fig. 6A and S4). Finally, Favonifractor plautii showed a 201 

positive PTR-abundance association and Bacteroides fragilis, Bacteroides ovatus 1, 202 

Bacteroides uniformis, and Bacteroides xylanisolvens showed negative associations in donor ao 203 

(Fig. 6A and S5). 204 
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We observed a slight difference in the number of significantly positive and negative PTR-205 

abundance associations between donors ae/am, and an/ao, with donors an and ao tending to 206 

have a larger proportion of negative associations when compared to donors ae and am. 207 

Interestingly, donors an and ao had a lower average defecation frequency (≤ 1 per day) than 208 

donors ae and am (> 1 per day). Concordantly, based on our flow-through model of the gut 209 

ecosystem (Fig. 1A), we would expect that bacterial populations would be pushed towards 210 

earlier growth phases at faster flow rates (Fig. 6B). Over half of the taxa with PTR and 211 

abundance time series data did not show significant associations (Fig. 6A and Fig. S2-5). This 212 

suggests that either these taxa are in the log growth phase or we were not powered enough to 213 

detect significant positive or negative associations for these taxa given the effect sizes and the 214 

number of samples. We suggest that many of these taxa may well be in log phase, due to the 215 

significant association observed between average PTRs and average CLR abundances across 216 

donors (Fig. 3C). Overall, our approach provides a new path toward identifying the in situ growth 217 

phase of microbial populations in flow-through ecosystems.  218 

 219 

DISCUSSION 220 

Many prior studies assumed, either implicitly or explicitly, that the growth and death rates of gut 221 

bacterial populations were proportional to day-to-day changes in abundances, as measured 222 

from human stool samples. However, we outline how this assumption is likely invalid due to the 223 
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fact that human gut bacterial population growth/death processes inside the intestinal tract are 224 

known to be faster (minutes-to-hours) than our sampling timescales (days). In support of this 225 

assertion, we show how the statistical relationships between changes in abundance (tn+1 – tn) 226 

and abundances (tn), estimated from stool metagenomic time series, indicate a regression-to-227 

the-mean effect that one would expect when sampling from a stationary distribution (Figs. 1-2). 228 

Thus, as prior work has indicated [15], bacterial taxa in the gut have stable average population 229 

sizes, which likely represent steady-state endpoints of internal dynamics (Figs. 1-2). Despite the 230 

fundamental mismatch between gut bacterial population dynamics and sampling timescales, we 231 

attempt to identify statistical signatures within these daily-sampled human gut time series that 232 

might provide accurate insights into in situ population dynamics. 233 

While changes in abundance between time points (i.e., deltas) do not appear to be 234 

related to population growth, PTRs enable direct estimates of in situ growth rates from 235 

metagenomic samples [22, 23, 47–49]. Unlike the relationships between deltas and 236 

abundances, which were always negative (Fig. 2C-D), the relationships between PTRs and 237 

abundances were quite variable (Fig. 3A-3B). While regression-to-the-mean is a plausible 238 

mechanism for the consistent negative delta-abundance relationships (Fig. 2), the underlying 239 

processes driving variable PTR-abundance relationships appear to be more nuanced (Fig. 3).  240 

We turned to the sLGE to explore relationships between growth rate and abundance 241 

across different phases of growth (Fig. 4). The sLGE recapitulated the key relationships 242 

observed in the metagenomic time series between PTRs and abundances and provided 243 

predictions for in situ growth phases (Figs. 5-6). Consistent with our sLGE predictions, we found 244 

that individuals with higher defecation rates tended to be enriched for taxa in earlier growth 245 

phases (Fig. 6). Thus, our results reveal a promising approach to inferring in situ growth phases 246 

for abundant organisms detected in human gut metagenomic time series. A major limitation of 247 

this approach is our lack of knowledge about the effect size distributions for these relationships 248 
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in real-world data and an understanding of the statistical power needed for detecting these 249 

associations from metagenomic time series. The absence of a PTR-abundance relationship 250 

could represent a false negative or it could indicate log-phase growth. Future in vitro 251 

experimental work (e.g., in chemostats) should focus on better quantifying these PTR-252 

abundance relationships across parameter space to build a more quantitative understanding of 253 

these phenomena (e.g., through varying maximal growth rates, the carrying capacities, the flow 254 

rates, and volumes). 255 

We observed that the average PTR and average abundance of a given taxon over time 256 

were positively correlated, which is consistent with exponentially-growing populations (Fig. 3C). 257 

This result is especially relevant to the metabolic modeling community. Ecological interactions 258 

within free-living and host-associated microbial communities are largely governed by exchanges 259 

of small-molecule metabolites [50, 51]. Genome-scale metabolic modeling and flux-balance 260 

analysis (FBA) has been effective mechanistic tools for simulating these metabolic exchanges, 261 

especially in controlled bioreactor systems [52]. The objective function used to find a unique 262 

solution to bacterial FBA models is often biomass maximization, which assumes that these 263 

organisms are growing exponentially at steady state. Exponential growth is a valid assumption 264 

for organisms in acceleration or log growth phases, but this assumption is violated for 265 

organisms in deceleration or stationary phases. Prior work has demonstrated that biomass 266 

composition can change depending on the growth phase of a population, which ideally would be 267 

taken into account to more accurately model metabolic fluxes within the system [53–55]. 268 

Overall, our work suggests that most organisms in the human gut are amenable to FBA, and our 269 

growth phase estimation approach allows for the identification of populations that may not fit 270 

classical FBA assumptions.  271 

 In conclusion, we provide a new path forward for the biological interpretation of 272 

metagenomic time series data generated from adult human stool samples. We hope that in situ 273 
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growth phase estimation will be applied more broadly to other kinds of flow-through 274 

environments to improve our understanding of internal dynamics in these systems and provide 275 

improved constraints for mechanistic modeling of microbial communities. 276 

 277 

METHODS 278 

Shotgun metagenomics data processing and analysis 279 

Longitudinal shotgun metagenomics sequencing data from healthy human stool samples was 280 

downloaded from NCBI BioProject accession PRJNA544527, and the associated metadata was 281 

downloaded from the associated article [32]. Raw FASTQ files were filtered and trimmed using 282 

FASTP [56], removing the first 5 nucleotides of the read 5’ end to avoid leftover primer and 283 

adapter sequencing not removed during demultiplexing and an adaptive sliding window filter on 284 

the 3’ end of the read with a required minimum quality score of 20. Reads containing ambiguous 285 

base calls, having a mean quality score less than 20, or with a length smaller than 50nt after 286 

trimming were removed from the analysis. Taxonomic assignment on the read level was 287 

performed with Kraken2 using the Kraken2 default database [57]. Abundances on the kingdom, 288 

phylum, genus, and species ranks were then obtained using Bracken [58]. Trimmed and filtered 289 

reads were then aligned to 2,935 representative bacterial reference genomes taken from the 290 

IGG database (version 1.01) using Bowtie2 [59, 60]. Coverage profiles and log2 estimates of 291 

peak-to-trough ratios were estimated using COPTR v1.1.2 on the species level within each 292 

sample [61]. PTR estimates were then merged with Bracken abundance estimates, retaining 293 

only those species identified by both methods (Kraken2 and Bowtie2 alignment to IGGdb).   294 

 The processed data containing the raw reads and log2 peak-to-trough ratios (log2PTRs) 295 

were read into R version 4.1.3 for analysis ([62]).  All plots were generated using ggplot2 [63], 296 

unless indicated otherwise. Donor time series were selected by only retaining individuals with 297 

over 50 metagenomic time points, resulting in four time series (i.e., donors ae, am, an, and ao).  298 
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Distinct Bacteroides ovatus strains across all four donors contained duplicated taxon names 299 

with unique taxonomic identifiers, and were renamed to “Bacteroides ovatus_1” and 300 

“Bacteroides ovatus_2.” Raw read counts for a given taxon within a sample were centered log-301 

ratio (CLR) transformed [64]. Taxa that had matched log2PTR information available across more 302 

than 5 time points within an individual, with time differences between samples less than three 303 

days, were used in subsequent analyses. Changes in normalized abundance were calculated 304 

as ��������� �
�����
������ � �
� � 1� � �
��,where �� � 3 ����.  To assess the regression-305 

to-the-mean effect, CLR-normalized abundances were plotted against deltas for each taxon, 306 

and the regression coefficients, aggregating all microbial taxa, were plotted as boxplots 307 

(showing median and interquartile range), summarized by donor.  308 

 For each donor, to estimate the growth phase of each individual taxon, we used linear 309 

regression of CLR-normalized abundances vs. log2PTRs, followed by a Benjamini-Hochberg p-310 

value correction to control for the false discovery rate (FDR) in base R.  FDR-adjusted p-values 311 

< 0.05 were considered significant.  Taxa with significantly positive or negative associations 312 

were considered to be in lag-acceleration or deceleration-stationary phase, respectively.  Those 313 

with no correlation were not assigned a growth phase, as this result could either be a false 314 

negative or indicative of log-phase growth.  Linear regression was also used to test whether or 315 

not average CLR-normalized abundances and average log2PTRs were significantly associated 316 

within each donor, and p-values from individual tests were combined using Fisher’s method 317 

[65]. 318 

 319 

Stochastic logistic growth model simulation  320 

The stochastic logistic growth equation (SLE) was implemented as:  
���
��

� ���
�� �1 � �����

�
� �321 

���
���
��, where t is time, r is the growth rate, ��  is the abundance of taxon i, K is the carrying 322 

capacity, � is the noise magnitude term, and �
�� is the noise distribution term.  Using the R 323 
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package sde [66], taxonomic growth was simulated with ��,	 � 1, �	 � 1 to �
���
 � 100, for 100 324 

iterations. The other parameters were varied as described in the results and below. To 325 

investigate the impact of noise on sLGE trajectories, noise levels were set from 0.001 to 1, with 326 

r and K ranging from 1 to 3 and 10 to 1000, respectively. To investigate the statistical 327 

relationships between deltas and abundances across growth phases and across model 328 

parameterizations, Pearson’s R coefficients and p-values were calculated for each of the three 329 

growth phase categories. The growth phases for each model parameterization were defined 330 

using the non-stochastic logistic growth equation (LGE): 
���
��

� ���
�� �1 � �����

�
�, the solution for 331 

which can be written as �� � ��,�����

�����,�����,����
. 332 

 The ��values for each simulated time point from solving the LGE were used to calculate 333 

the first derivative (i.e., the growth rate), which is exactly equal to the LGE. The second 334 

derivative (i.e., growth acceleration), 
����
���

�  ��� �1 � ��
�

� !1 � ����
�

�", was calculated using 335 

solved ��values. Growth phases from the SLM were defined using the second derivative curves. 336 

First, the intersections of the acceleration curve and the half-max, ��and  ��, and the half-337 

min, ��and ��, were calculated (Fig. S1). The corresponding simulated time points of ��, 338 

denoted as ��, where j = 1 - 4, were then used to define growth phases as follows: lag 339 

phase: � � ��; acceleration phase:�� � � � ��; log phase: �� � � � ��; deceleration phase:�� �340 

� � ��; and stationary phase:� # ��. Here, lag and acceleration, and deceleration and stationary 341 

phases were combined, as these phases display similar delta-abundance relationships along 342 

the logistic growth curve. Conceptual diagrams were created using BioRender.  343 

 344 

Data and code availability 345 

Nextflow pipelines implementing the processing of metagenomic shotgun sequencing data from 346 

raw reads to taxonomic abundance matrices and PTR estimates can be found at 347 
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https://github.com/Gibbons-Lab/pipelines/ (metagenomics pipelines). R scripts and code used to 348 

analyze the data, run the sLGE simulations, and produce the figures in the manuscript have 349 

been deposited at https://github.com/Gibbons-Lab/human-microbiome-time-series-growth-350 

phase-estimation. 351 
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FIGURES 527 

 528 

Figure 1. Conceptual figure showing two flow-through microbial ecosystems: a 529 
bioreactor and a human gut. A. Both bioreactors and guts are continuous flow-through 530 
systems. Prior to reaching the measured abundances in stool, taxa grow in the large intestine 531 
with varying growth rates, carrying capacities, and steady-state population sizes, which may be 532 
in different growth phases at the time of measurement. For example, see dynamics for Taxa 1-533 
3. Daily stool collections show variation in abundances, but this variation likely does not reflect 534 
internal growth dynamics in the gut. B. Healthy BIO-ML stool donors (subject IDs: ae, am, an, 535 
and ao) with samples collected 3-5 days per week for a total of >50 time points. Red indicates 536 
presence of shotgun metagenomic sequencing data and gray represents absence of 537 
metagenomic data from consecutive daily time points. 538 
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539 

Figure 2. Regression-to-the-mean effect in human microbial time series data. A. Yellow 540 
line represents the mean abundance (µ) of Bacteroides cellulosilyticus over time in donor am. 541 
Time points t1 and t3 indicate fluctuations below and above the mean abundance, and t2 and t4 542 
show the return to the mean abundance. B. Distribution of time series delta values (e.g., t2-t1) 543 
for Bacteroides cellulosilyticus in donor am, which is approximately normally distributed. C. 544 
Deltas vs. abundances for Bacteroides uniformis time series from donors ae, am, an, and ao.  545 
D. Boxplots (showing median and interquartile range) of linear regression coefficients for deltas 546 
vs. abundances across all taxa time series in all four donors. Red line indicates a regression 547 
coefficient of 0.  548 
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549 

Figure 3. Variable relationships between PTRs and CLR-normalized abundances across 550 
human gut microbial time series. A. Log2(PTR) and CLR-normalized abundance relationships551 
for donors ae, am, an, and ao. Orange and blue lines show significantly positive and negative 552 
linear regression coefficients (linear regression, FDR adjusted p-value < 0.05), respectively. 553 
Gray lines indicate no statistically significant association. B. Boxplots (showing median and 554 
interquartile range) of linear regression coefficient combined for all filtered taxa for each donor. 555 
C. Mean log2(PTR) and mean CLR-normalized abundance for all abundant taxa in each donor 556 
(p-values for regressions run within each donor were combined using Fisher’s method; 557 
combined p-value = 0.005). 558 
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 559 

Figure 4. Logistic growth model. A. The logistic growth curve models abundance (x) with 560 
respect to time (top panel). The first derivative of the logistic growth curve models the growth 561 
rate with respect to time (middle panel). The second derivative of the logistic growth curve 562 
models growth rate acceleration with respect to time (bottom panel). B. Expected relationships 563 
between abundance and growth rate at different locations along the logistic growth curve. 564 
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565 

Figure 5. Distinguishing growth phases using the stochastic logistic growth model. A. 566 
Stochastic logistic growth curves with growth rate (r) = 1.2, carrying capacity (k) = 100, and 567 
noise level (n) = 0.1 across 100 iterations. Major growth phase groups in orange (lag-568 
acceleration), gray (log), and blue (deceleration-stationary). B. Pearson’s R values between 569 
abundances and growth rates in each of our three growth phase windows across variable model570 
parameterizations (r = 1-3, k = 10-1000) and a fixed noise level (� = 0.1).  C. Scatter plots 571 
showing relationships between abundances and deltas across the three growth phase regions 572 
defined in panel A.  573 
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574 

Figure 6. in vivo growth phase estimation. A. We find variable relationships between PTRs 575 
and population abundances across taxa in each of the four donors, consistent with the growth 576 
phase patterns observed in sLGE simulations. Donors with higher defecation rates tended to 577 
have a larger fraction of taxa with positive PTR-abundance associations and fewer with negative578 
associations, indicating lag-acceleration and deceleration-stationary phases, respectively. B. 579 
We suggest that higher defecation rates (i.e., higher dilution rates) push bacterial populations 580 
towards earlier growth phases, which is consistent with our results in panel A. C. Growth phase 581 
estimates can be leveraged to identify taxa that are more-or-less amenable to metabolic 582 
modeling techniques, like Flux Balance Analysis, which assumes exponential growth. 583 

 584 

 585 
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 588 
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SUPPLEMENTAL FIGURES 591 

 592 

Figure S1. Definition of major growth phases using the stochastic logistic growth model. 593 
A. The half-maximum of the peak and half-minimum of the trough of the second derivative of 594 
abundance were used to define growth phases across model parameterizations. B. Pearson’s R595 
values between abundances and growth rates in the three growth phase categories obtained 596 
from combined sLGE simulation results across a range of growth rates (r = 1-3), carrying 597 
capacities (k = 10-1000), and noise levels (n = 0.001-1). 598 

l. 
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599 
Figure S2. Relationships between abundance and log2(PTR) for abundant taxa in donor 600 
ae. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 601 
matched data points; time differences between adjacent samples less than three days) were 602 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 603 
indicate significant positive correlations, and blue trend lines represent significant negative 604 
correlations (linear regression, BH-FDR < 0.05).   605 
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606 

Figure S3. Relationships between abundance and log2(PTR) for abundant taxa in donor 607 
am. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 608 
matched data points; time differences between adjacent samples less than three days) were 609 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 610 
indicate significant positive correlations, and blue trend lines represent significant negative 611 
correlations (linear regression, BH-FDR < 0.05).  612 
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613 
Figure S4. Relationships between abundance and log2(PTR) for abundant taxa in donor 614 
an. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 615 
matched data points; time differences between adjacent samples less than three days) were 616 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 617 
indicate significant positive correlations, and blue trend lines represent significant negative 618 
correlations (linear regression, BH-FDR < 0.05).   619 
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620 
Figure S5. Relationships between abundance and log2(PTR) for individual taxon in donor 621 
ao. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5 622 
matched data points; time differences between adjacent samples less than three days) were 623 
selected for analysis. Gray trend lines show no significant correlations, orange trend lines 624 
indicate significant positive correlations, and blue trend lines represent significant negative 625 
correlations (linear regression, BH-FDR < 0.05).  626 

 627 
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