bioRxiv preprint doi: https://doi.org/10.1101/2022.04.23.489288; this version posted April 24, 2022. The copyright holder for this preprint (which

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29

30

31

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Title: Growth phase estimation for abundant bacterial populations sampled longitudinally from

human stool metagenomes.

Authors: Joe J. Lim*, Christian Diener?, Sean M. Gibbons®*”

Affiliations: ' Department of Environmental & Occupational Health Sciences, University of
Washington, Seattle, WA 98105;  Institute for Systems Biology, Seattle, WA 98109; °
Department of Bioengineering, University of Washington, Seattle, WA 98105; * eScience
Institute, University of Washington, Seattle, WA 98105

" corresponding author: sgibbons@isbscience.org

ABSTRACT

Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of
the human gut microbiome. However, due to practical limitations, the most densely sampled
time series from the human gut are collected at a frequency of about once per day, while the
population doubling times for gut commensals are on the order of minutes-to-hours. Despite
this, much of the prior work on human gut microbiome time series modeling has, implicitly or
explicitly, assumed that day-to-day fluctuations in taxon abundances are related to population
growth or death rates, which is likely not the case. Here, we propose an alternative model of the
human gut as a continuous flow ecosystem at a dynamical steady state, where population
dynamics occur internally and the bacterial population sizes measured in stool represent an
endpoint of these internal dynamics. We formalize this idea as stochastic logistic growth of a
population held at a constant dilution rate. We show how this model provides a path toward
estimating the growth phases of gut bacterial populations in situ. We assess our model
predictions against densely-sampled human stool metagenomic time series data. Consistent
with our model, donors with slower defecation rates tended to harbor a larger proportion of taxa
in later growth phases, while faster defecation rates were associated with more taxa in earlier
growth phases. We discuss how these growth phase estimates may be used to better inform
metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.
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INTRODUCTION

The human gut microbiome is an anaerobic bioreactor, ecologically distinct to each individual,
that transforms dietary and host substrates into bioactive molecules important to host health [1-
3]. Disruptions to the ecological composition of the gut have been shown to mediate the
progression of various complex diseases [4-8]. Furthermore, the ecological dynamics of the gut
appear to be relevant to both health and disease states [9, 10]. However, the biological

interpretation of densely-sampled adult human fecal microbiome time series is fraught.

Various dynamical models have been applied to gut microbial abundance data collected
from adult human donors [11-15]. These models often assume, either explicitly or implicitly, that
day-to-day changes in abundance are proportional to population growth and/or death [16].
However, the underlying data often do not match this assumption [11, 16-20]. The gut is a flow-
through ecosystem and commensal gut bacteria must grow fast enough to avoid dilution-to-
extinction. As such, gut bacterial doubling times tend to be fast, ranging from minutes-to-hours
[21-23]. However, stool sampling frequency is usually limited to, at most, about once per day.
Consequently, rapid internal population dynamics likely cannot be directly estimated from the

day-to-day measurements obtained from stool [16].

In the absence of major perturbations, is it possible to extract meaningful information
about commensal population dynamics from adult human gut microbiome time series, despite
the fundamental limitations in sampling timescales mentioned above? One work around to
inferring growth rates of bacterial populations in situ is to leverage metagenome-inferred
replication rates [22]. Briefly, instantaneous replication rates can be estimated for abundant
bacterial populations in metagenomic samples by taking advantage of the fact that fast-growing
taxa show an asymmetry in reads mapping to different genomic loci, with higher read depth

near the origin of replication and a lower depth near the terminus due to the initiation of multiple
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replication forks [21-23]. However, even when replication rates and population abundances can
both be estimated from the same metagenomic samples, it is unclear how these measurements
are related to the in situ growth phase of a population (e.g. lag, log, or stationary phases). As

such, biological interpretations regarding population size and replication rate fluctuations in flow-
through ecosystems like the human gut, where internal dynamics are much faster than sampling

rates, remain challenging.

Early experiments by Jaques Monod [24] identified distinct growth phases for bacterial
populations in culture, which can be captured by the stochastic logistic growth equation (SLGE)
[25]. The sLGE has been shown to be a good fit for bacterial population growth in vitro and in
real-world, steady-state ecosystems [26—31]. We used the sLGE to study statistical
relationships between population sizes and growth rates across the various phases of growth
(i.e., lag, acceleration, log, deceleration, and stationary phases) to see if we could extract in situ
growth phase information from longitudinal data from a steady-state, flow-through ecosystem
sampled at a consistent frequency. Overall, the SLGE model yields statistical relationships that
can be leveraged to identify the in situ growth phase of a bacterial population periodically

sampled from a continuous-flow ecosystem, like the human gut.

To assess our model predictions, we calculated population abundance and
growth/replication rate trajectories from more than a dozen organisms in four densely sampled
human gut metagenomic time series [32]. On average, gut commensal growth rates and
population sizes were positively correlated within each of the stool donor time series, which
suggests that most abundant taxa in the gut are growing exponentially. We were able to identify
signatures of specific growth phases in 20-40% of the abundant bacterial populations in the guts
of these four individuals. We describe how our growth phase inference approach can serve to
inform more accurate mechanistic modeling of flow-through ecosystems (e.g., community-scale

metabolic models, which usually assume exponential growth), which could have broad
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implications for the gut microbiome and host health [8, 33, 34], flow-through agricultural systems

[35, 36], climate change [35, 37, 38], and industrial bioreactor production processes [39, 40].

RESULTS
Framing the gut as an anaerobic flow-through bioreactor

The mammalian gut can be understood as an anaerobic bioreactor with a continuous input (i.e.,
dietary and host substrates) and output (i.e., stool) [41], and microbial taxa must grow fast
enough to avoid dilution to extinction (Fig. 1A). Stool sampling captures the endpoint of internal
gut bacterial population dynamics. For example, in our cartoon figure we see that Taxon 1 starts
growing higher up in the colon and is in stationary phase by the time a stool sample is collected,
while Taxon 3 starts growing lower in the colon and is still growing exponentially at the point of
stool sampling (Fig. 1A). Overall, the daily abundances of Taxa 1-3 represent the average (u)
steady-state population size, plus or minus some amount of biological and technical noise, at
the time of stool sampling (Fig. 1A). To investigate improved methods for interpreting the
dynamics of human gut microbial time series, we downloaded shotgun metagenomic time series
data from the BIO-ML cohort (i.e., health-screened stool donors who provided fecal-transplant
material to the stool bank OpenBiome) [32]. The BIO-ML cohort contained 74 donors, 70 of
which had 1-3 time points collected [32]. To filter for dense longitudinal data, we selected a
subset of donors with more than 50 time points. Four donors (i.e. donors ae, am, an, and ao)

met this criterion, with 3-5 fecal samples per week for >50 days (Fig. 1B).

Characterizing the relationships between gut commensal population size and growth rate
using metagenomic time series data

We first investigated the statistical properties of day-to-day fluctuations in gut bacterial

population sizes, estimated from metagenomic time series. Specifically, we looked at the
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associations between population abundance estimates (t,) and the changes in abundance
estimates (i.e., deltas) between time points (t,+1 — tn). Naively, if most bacterial populations in
the stool were growing exponentially, we would expect that population abundances and growth
rates would be positively correlated. However, prior work has indicated an overall negative
correlation between abundances and changes in abundances in stool 16S rRNA gene amplicon
sequencing data generated from densely sampled human stool time series [15]. Indeed, we
found that abundant bacterial populations in the stool of the four BIO-ML donors maintained
stable average abundances over time (u), with day-to-day fluctuations above and below this
average, as pictured in the example of Bacteroides cellulosilyticus in donor am (Fig. 2A-B). This
kind of pattern fits a regression-to-the-mean model, which one would expect when randomly
sampling from a stationary distribution (Fig. 2B). This kind of regression-to-the-mean process
will give rise to a negative correlation between population abundances and changes in
abundance between time points, consistent with what has been observed previously [15]. We
observed that the deltas (t,.1 — t,) for the same gut taxon (Bacteroides uniformis) measured
across each donor time series, when plotted against their respective normalized abundances
(t,), showed the expected negative association (Fig. 2C). Furthermore, similar negative
associations were observed across all taxa analyzed, across all donors (Fig. 2D). Overall, these
results support our assertion that stool samples provide steady-state population abundance
estimates for gut commensal bacteria, which are representative of the endpoint of internal

dynamics.

Next, we looked at the statistical associations between calculated peak-to-trough ratios
(i.e., PTRs; a proxy for growth-rate) [22] of abundant bacterial populations from each
metagenomic sample and their respective metagenomic population abundance estimates. If the
deltas, presented above, were truly proportional to growth and/or death rates, we would expect

that the statistical relationships between deltas and population size would be similar to those
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between PTRs and population size. However, unlike the regression-to-the-mean signature
identified for the deltas, we found variable statistical relationships between PTR and centered
log-ratio (CLR) transformed population abundances for the same taxon (Bacteroides ovatus)
across the four donors (Fig. 3A). Similarly, we saw a wide range of positive, negative, and null
associations between PTRs and CLR abundances across all measured taxa within each donor
(Fig. 3B). These results are inconsistent with a regression-to-the-mean signal, and suggest a
more complex relationship between growth rate and population size [42—-44]. Finally, we
calculated temporally-averaged PTRs and population sizes for each abundant taxon within each
of the donors. Overall, there was a significantly positive (linear regression, p-values = 0.0318,
0.125, 0.155, 0.031 for donors ae, am, an, and ao, respectively; combined p-value using
Fisher's method = 0.005), albeit noisy, association between average PTR and average CLR
abundance across all four donors (Fig. 3C), indicating that taxa with higher average population
sizes tend to have higher average growth rates. This result is consistent with what we would

expect to observe in exponentially-growing populations.

Stochastic logistic growth equation provides insights into growth phases

In order to better understand and interpret the varying relationships we observe between PTRs
and CLR abundances, we turn to modeling. The basic properties of growth curves of microbial
taxa can be captured using the logistic growth equation (Fig. 4). This model is defined such that
the change in abundance for each taxon i (dxi/dt) is captured by the current abundance at time t,
xi(t), multiplied by the maximal growth rate, r, and the carrying capacity (k) term (1-x;(t)/k) [45]. In
this model, population size over time shows a sigmoidal curve, with the abundance
asymptotically approaching k (Fig. 4A, top panel). The derivative of this curve with respect to
time yields the change in growth rate over time, which peaks during log-phase growth (Fig. 4A,

middle panel). The second derivative of abundance with respect to time, which is the
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instantaneous change in growth with respect to time and is often referred to as the acceleration
rate, shows a peak during the acceleration phase and a trough during the deceleration phase
(Fig. 4A, bottom panel). Based on this second-derivative curve, we show the expected
relationships between growth rate and abundance as you move across the logistic growth
curve, along the time axis (Fig. 4B). These expected relationships provide a potential path
forward for inferring the in situ growth phase of a bacterial population sampled at a consistent

frequency from a flow-through ecosystem.

The logistic growth model is a deterministic equation. However, the abundances of
commensal bacterial populations in the gut fluctuate due to myriad factors including interspecies
competition, resource fluctuations, and stool residence time [46]. In order to approximate these
fluctuations in our modeling, we introduced a stochastic term to the logistic growth model (Fig.
5A). Herein, o denotes the noise magnitude and w(t) represents a white noise term [27]. Five
growth phases (i.e., lag, acceleration, log, deceleration, and stationary phases) were defined
using the half-maximum and half-minimum, respectively, of the second derivative LGE curve
(Fig. S1A). We grouped these phases into three major categories: lag-acceleration phase, log
phase, and deceleration-stationary phase. We simulated 100 iterations of the stochastic logistic
growth equation (sLGE) for each of a range of parameterizations (see Methods), which
recapitulated the expected statistical relationships between growth rates and abundances for
populations consistently sampled within our three major growth phase categories (Fig. 5A-C).
For example, the Pearson’s R values between growth rates and abundances were significantly
positive in lag-acceleration phase and significantly negative in deceleration-stationary phase
(Fig. 5B). Log phase growth was more variable, but showed little-to-no significant association
between growth rates and abundances. These results were reproduced across a wide range of

parameter space and were robust to varying the noise term (Fig. S1B). Overall, the relationships
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between growth rate and abundance across growth phases were highly consistent with our

expectations (Fig. 5C).

Inferring in situ growth phases for abundant gut commensal populations sampled in

metagenomic time series

Based on these sLGE results, we assigned putative in situ growth phases to abundant gut
bacterial populations from the four BIO-ML gut metagenomic time series. Specifically, we
suggest that significantly positive associations (linear regression, adjusted p-value < 0.05, with a
positive beta-coefficient) between PTRs and CLR abundances indicate early-phase exponential
growth (i.e. acceleration phase; we can likely exclude lag phase due to the fact that we would
be unlikely to detect taxa with very low levels of biomass), significantly negative associations
(linear regression, adjusted p-value < 0.05, with negative beta-coefficient) indicate deceleration
or stationary phases, and the absence of a significant association could indicate either log-
phase growth or a false negative (i.e., hot powered enough to detect a positive or negative
association with the number of time points sampled). Bacteroides cellulosilyticus, Bacteroides
ovatus 1, and Megaspaera eldenii showed significantly positive PTR-abundance associations
within donor ae (Figs. 6A and S2). Bacteroides ovatus 1 and Parabacteroides distasonis
showed positive PTR-abundance associations, while Alistipes finegoldii, Bacteroides uniformis,
and Bacteroides xylanisolvens showed negative associations in donor am (Figs. 6A and S3).
Alistipes shahii, Bacteroides intestinalis, Bacteroides thetaiotaomicron, Bacteroides uniformis,
Bacteroides xylanisolvens, and Odoribacter splanchnicus showed significantly negative PTR-
abundance associations in donor an (Fig. 6A and S4). Finally, Favonifractor plautii showed a
positive PTR-abundance association and Bacteroides fragilis, Bacteroides ovatus 1,
Bacteroides uniformis, and Bacteroides xylanisolvens showed negative associations in donor ao

(Fig. 6A and S5).
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We observed a slight difference in the number of significantly positive and negative PTR-

abundance associations between donors ae/am, and an/ao, with donors an and ao tending to

have a larger proportion of negative associations when compared to donors ae and am.

Interestingly, donors an and ao had a lower average defecation frequency (< 1 per day) than

donors ae and am (> 1 per day). Concordantly, based on our flow-through model of the gut

ecosystem (Fig. 1A), we would expect that bacterial populations would be pushed towards

earlier growth phases at faster flow rates (Fig. 6B). Over half of the taxa with PTR and

abundance time series data did not show significant associations (Fig. 6A and Fig. S2-5). This

suggests that either these taxa are in the log growth phase or we were not powered enough to

detect significant positive or negative associations for these taxa given the effect sizes and the

number of samples. We suggest that many of these taxa may well be in log phase, due to the

significant association observed between average PTRs and average CLR abundances across

donors (Fig. 3C). Overall, our approach provides a new path toward identifying the in situ growth

phase of microbial populations in flow-through ecosystems.

DISCUSSION

Many prior studies assumed, either implicitly or explicitly, that the growth and death rates of gut
bacterial populations were proportional to day-to-day changes in abundances, as measured

from human stool samples. However, we outline how this assumption is likely invalid due to the
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fact that human gut bacterial population growth/death processes inside the intestinal tract are
known to be faster (minutes-to-hours) than our sampling timescales (days). In support of this
assertion, we show how the statistical relationships between changes in abundance (t,+1 — ty)
and abundances (t,), estimated from stool metagenomic time series, indicate a regression-to-
the-mean effect that one would expect when sampling from a stationary distribution (Figs. 1-2).
Thus, as prior work has indicated [15], bacterial taxa in the gut have stable average population
sizes, which likely represent steady-state endpoints of internal dynamics (Figs. 1-2). Despite the
fundamental mismatch between gut bacterial population dynamics and sampling timescales, we
attempt to identify statistical signatures within these daily-sampled human gut time series that

might provide accurate insights into in situ population dynamics.

While changes in abundance between time points (i.e., deltas) do not appear to be
related to population growth, PTRs enable direct estimates of in situ growth rates from
metagenomic samples [22, 23, 47-49]. Unlike the relationships between deltas and
abundances, which were always negative (Fig. 2C-D), the relationships between PTRs and
abundances were quite variable (Fig. 3A-3B). While regression-to-the-mean is a plausible
mechanism for the consistent negative delta-abundance relationships (Fig. 2), the underlying

processes driving variable PTR-abundance relationships appear to be more nuanced (Fig. 3).

We turned to the sLGE to explore relationships between growth rate and abundance
across different phases of growth (Fig. 4). The sLGE recapitulated the key relationships
observed in the metagenomic time series between PTRs and abundances and provided
predictions for in situ growth phases (Figs. 5-6). Consistent with our SLGE predictions, we found
that individuals with higher defecation rates tended to be enriched for taxa in earlier growth
phases (Fig. 6). Thus, our results reveal a promising approach to inferring in situ growth phases
for abundant organisms detected in human gut metagenomic time series. A major limitation of

this approach is our lack of knowledge about the effect size distributions for these relationships
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in real-world data and an understanding of the statistical power needed for detecting these
associations from metagenomic time series. The absence of a PTR-abundance relationship
could represent a false negative or it could indicate log-phase growth. Future in vitro
experimental work (e.g., in chemostats) should focus on better quantifying these PTR-
abundance relationships across parameter space to build a more quantitative understanding of
these phenomena (e.g., through varying maximal growth rates, the carrying capacities, the flow

rates, and volumes).

We observed that the average PTR and average abundance of a given taxon over time
were positively correlated, which is consistent with exponentially-growing populations (Fig. 3C).
This result is especially relevant to the metabolic modeling community. Ecological interactions
within free-living and host-associated microbial communities are largely governed by exchanges
of small-molecule metabolites [50, 51]. Genome-scale metabolic modeling and flux-balance
analysis (FBA) has been effective mechanistic tools for simulating these metabolic exchanges,
especially in controlled bioreactor systems [52]. The objective function used to find a unique
solution to bacterial FBA models is often biomass maximization, which assumes that these
organisms are growing exponentially at steady state. Exponential growth is a valid assumption
for organisms in acceleration or log growth phases, but this assumption is violated for
organisms in deceleration or stationary phases. Prior work has demonstrated that biomass
composition can change depending on the growth phase of a population, which ideally would be
taken into account to more accurately model metabolic fluxes within the system [53-55].
Overall, our work suggests that most organisms in the human gut are amenable to FBA, and our
growth phase estimation approach allows for the identification of populations that may not fit

classical FBA assumptions.

In conclusion, we provide a new path forward for the biological interpretation of

metagenomic time series data generated from adult human stool samples. We hope that in situ
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growth phase estimation will be applied more broadly to other kinds of flow-through
environments to improve our understanding of internal dynamics in these systems and provide

improved constraints for mechanistic modeling of microbial communities.

METHODS

Shotgun metagenomics data processing and analysis
Longitudinal shotgun metagenomics sequencing data from healthy human stool samples was
downloaded from NCBI BioProject accession PRINA544527, and the associated metadata was
downloaded from the associated article [32]. Raw FASTQ files were filtered and trimmed using
FASTP [56], removing the first 5 nucleotides of the read 5’ end to avoid leftover primer and
adapter sequencing not removed during demultiplexing and an adaptive sliding window filter on
the 3’ end of the read with a required minimum quality score of 20. Reads containing ambiguous
base calls, having a mean quality score less than 20, or with a length smaller than 50nt after
trimming were removed from the analysis. Taxonomic assignment on the read level was
performed with Kraken2 using the Kraken2 default database [57]. Abundances on the kingdom,
phylum, genus, and species ranks were then obtained using Bracken [58]. Trimmed and filtered
reads were then aligned to 2,935 representative bacterial reference genomes taken from the
IGG database (version 1.01) using Bowtie2 [59, 60]. Coverage profiles and log2 estimates of
peak-to-trough ratios were estimated using COPTR v1.1.2 on the species level within each
sample [61]. PTR estimates were then merged with Bracken abundance estimates, retaining
only those species identified by both methods (Kraken2 and Bowtie2 alignment to IGGdb).

The processed data containing the raw reads and log, peak-to-trough ratios (log,PTRS)
were read into R version 4.1.3 for analysis ([62]). All plots were generated using ggplot2 [63],
unless indicated otherwise. Donor time series were selected by only retaining individuals with

over 50 metagenomic time points, resulting in four time series (i.e., donors ae, am, an, and ao).
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299 Distinct Bacteroides ovatus strains across all four donors contained duplicated taxon names
300 with unique taxonomic identifiers, and were renamed to “Bacteroides ovatus_1" and

301 “Bacteroides ovatus_2.” Raw read counts for a given taxon within a sample were centered log-
302 ratio (CLR) transformed [64]. Taxa that had matched log,PTR information available across more
303 than 5 time points within an individual, with time differences between samples less than three
304  days, were used in subsequent analyses. Changes in normalized abundance were calculated
305 as Abundance changes(delta) = x(t + 1) — x(t),where 4t < 3 days. To assess the regression-
306 to-the-mean effect, CLR-normalized abundances were plotted against deltas for each taxon,
307 and the regression coefficients, aggregating all microbial taxa, were plotted as boxplots

308 (showing median and interquartile range), summarized by donor.

309 For each donor, to estimate the growth phase of each individual taxon, we used linear
310 regression of CLR-normalized abundances vs. 10g,PTRs, followed by a Benjamini-Hochberg p-
311  value correction to control for the false discovery rate (FDR) in base R. FDR-adjusted p-values
312 < 0.05 were considered significant. Taxa with significantly positive or negative associations
313  were considered to be in lag-acceleration or deceleration-stationary phase, respectively. Those
314  with no correlation were not assigned a growth phase, as this result could either be a false

315 negative or indicative of log-phase growth. Linear regression was also used to test whether or
316 not average CLR-normalized abundances and average log,PTRs were significantly associated
317  within each donor, and p-values from individual tests were combined using Fisher’'s method
318 [65].

319

320 Stochastic logistic growth model simulation

321 The stochastic logistic growth equation (SLE) was implemented as: % = rx;(t) (1 - x‘T(t)) +

322 ox;(t)w(t), where tis time, r is the growth rate, x; is the abundance of taxon i, K is the carrying

323  capacity, o is the noise magnitude term, and w(t) is the noise distribution term. Using the R
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package sde [66], taxonomic growth was simulated with x; ; = 1, t; = 110 tf;,4; = 100, for 100
iterations. The other parameters were varied as described in the results and below. To
investigate the impact of noise on SLGE trajectories, noise levels were set from 0.001 to 1, with
r and K ranging from 1 to 3 and 10 to 1000, respectively. To investigate the statistical
relationships between deltas and abundances across growth phases and across model
parameterizations, Pearson’s R coefficients and p-values were calculated for each of the three

growth phase categories. The growth phases for each model parameterization were defined
. . .. . dx; xi(t) .
using the non-stochastic logistic growth equation (LGE): - = rx;(t) (1 - T) the solution for

. . xioKe™t
which can be written as x; = m
—Xi,0 i,0

The x;values for each simulated time point from solving the LGE were used to calculate

the first derivative (i.e., the growth rate), which is exactly equal to the LGE. The second

derivative (i.e., growth acceleration),

2, . .
iz? = K2x, ( - %) (1 - (%)) was calculated using

solved x;values. Growth phases from the SLM were defined using the second derivative curves.
First, the intersections of the acceleration curve and the half-max, a;and a,, and the half-

min, azand a,, were calculated (Fig. S1). The corresponding simulated time points of a;,
denoted as s;, where j = 1 - 4, were then used to define growth phases as follows: lag

phase: t < s;; acceleration phase:s; < t < s,; log phase: s, < t < s3; deceleration phase:s; <

t < s4; and stationary phase:t > s,. Here, lag and acceleration, and deceleration and stationary
phases were combined, as these phases display similar delta-abundance relationships along

the logistic growth curve. Conceptual diagrams were created using BioRender.

Data and code availability
Nextflow pipelines implementing the processing of metagenomic shotgun sequencing data from

raw reads to taxonomic abundance matrices and PTR estimates can be found at
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https://github.com/Gibbons-Lab/pipelines/ (metagenomics pipelines). R scripts and code used to

analyze the data, run the sLGE simulations, and produce the figures in the manuscript have

been deposited at https://github.com/Gibbons-Lab/human-microbiome-time-series-growth-

phase-estimation.
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Figure 1. Conceptual figure showing two flow-through microbial ecosystems: a
bioreactor and a human gut. A. Both bioreactors and guts are continuous flow-through
systems. Prior to reaching the measured abundances in stool, taxa grow in the large intestine
with varying growth rates, carrying capacities, and steady-state population sizes, which may be
in different growth phases at the time of measurement. For example, see dynamics for Taxa 1-
3. Daily stool collections show variation in abundances, but this variation likely does not reflect
internal growth dynamics in the gut. B. Healthy BIO-ML stool donors (subject IDs: ae, am, an,
and ao) with samples collected 3-5 days per week for a total of >50 time points. Red indicates
presence of shotgun metagenomic sequencing data and gray represents absence of
metagenomic data from consecutive daily time points.
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540 Figure 2. Regression-to-the-mean effect in human microbial time series data. A. Yellow
541 line represents the mean abundance (u) of Bacteroides cellulosilyticus over time in donor am.
542  Time points t; and t; indicate fluctuations below and above the mean abundance, and t, and t4
543  show the return to the mean abundance. B. Distribution of time series delta values (e.g., t>-t;)
544  for Bacteroides cellulosilyticus in donor am, which is approximately normally distributed. C.

545 Deltas vs. abundances for Bacteroides uniformis time series from donors ae, am, an, and ao.
546  D. Boxplots (showing median and interquartile range) of linear regression coefficients for deltas
547  vs. abundances across all taxa time series in all four donors. Red line indicates a regression
548  coefficient of O.
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550 Figure 3. Variable relationships between PTRs and CLR-normalized abundances across
551  human gut microbial time series. A. Log,(PTR) and CLR-normalized abundance relationships
552  for donors ae, am, an, and ao. Orange and blue lines show significantly positive and negative
553 linear regression coefficients (linear regression, FDR adjusted p-value < 0.05), respectively.

554  Gray lines indicate no statistically significant association. B. Boxplots (showing median and

555 interquartile range) of linear regression coefficient combined for all filtered taxa for each donor.
556 C. Mean log,(PTR) and mean CLR-normalized abundance for all abundant taxa in each donor
557  (p-values for regressions run within each donor were combined using Fisher's method;

558  combined p-value = 0.005).
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560 Figure 4. Logistic growth model. A. The logistic growth curve models abundance (x) with
561 respect to time (top panel). The first derivative of the logistic growth curve models the growth
562 rate with respect to time (middle panel). The second derivative of the logistic growth curve

563  models growth rate acceleration with respect to time (bottom panel). B. Expected relationships
564  between abundance and growth rate at different locations along the logistic growth curve.


https://doi.org/10.1101/2022.04.23.489288
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.23.489288; this version posted April 24, 2022. The copyright holder for this preprint (which

565

566
567
568
569
570
571
572
573

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Simulated growth 104 T
o 051
w
c
& 8 0.04 &
: %
‘g" o)
2 Q s
<
1.0
o S 3
° W R
@ %)
& XN
25 50 75 100 OQ.- G‘:’@‘
Time W &
dx; I8 x;lt] 0 (¢) aa,c; ,bQ‘o
—=rxl|t]|1—-———|+ox|t|wlt v AN
dt ' K ' Q¥
Q’(.-
Q
Lag-

Acceleration, | |

dx/dt

Figure 5. Distinguishing growth phases using the stochastic logistic growth model. A.
Stochastic logistic growth curves with growth rate (r) = 1.2, carrying capacity (k) = 100, and
noise level (n) = 0.1 across 100 iterations. Major growth phase groups in orange (lag-
acceleration), gray (log), and blue (deceleration-stationary). B. Pearson’s R values between
abundances and growth rates in each of our three growth phase windows across variable model
parameterizations (r = 1-3, k = 10-1000) and a fixed noise level (I1 = 0.1). C. Scatter plots
showing relationships between abundances and deltas across the three growth phase regions
defined in panel A.
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Figure 6. in vivo growth phase estimation. A. We find variable relationships between PTRs
and population abundances across taxa in each of the four donors, consistent with the growth
phase patterns observed in sSLGE simulations. Donors with higher defecation rates tended to
have a larger fraction of taxa with positive PTR-abundance associations and fewer with negative
associations, indicating lag-acceleration and deceleration-stationary phases, respectively. B.
We suggest that higher defecation rates (i.e., higher dilution rates) push bacterial populations
towards earlier growth phases, which is consistent with our results in panel A. C. Growth phase
estimates can be leveraged to identify taxa that are more-or-less amenable to metabolic
modeling techniques, like Flux Balance Analysis, which assumes exponential growth.
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593  Figure S1. Definition of major growth phases using the stochastic logistic growth model.
594  A. The half-maximum of the peak and half-minimum of the trough of the second derivative of
595  abundance were used to define growth phases across model parameterizations. B. Pearson’s R
596 values between abundances and growth rates in the three growth phase categories obtained
597  from combined sLGE simulation results across a range of growth rates (r = 1-3), carrying

598 capacities (k = 10-1000), and noise levels (n = 0.001-1).
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Figure S2. Relationships between abundance and log2(PTR) for abundant taxa in donor
ae. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5
matched data points; time differences between adjacent samples less than three days) were
selected for analysis. Gray trend lines show no significant correlations, orange trend lines
indicate significant positive correlations, and blue trend lines represent significant negative

correlations (linear regression, BH-FDR < 0.05).
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Figure S3. Relationships between abundance and log2(PTR) for abundant taxa in donor
am. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5
matched data points; time differences between adjacent samples less than three days) were
selected for analysis. Gray trend lines show no significant correlations, orange trend lines
indicate significant positive correlations, and blue trend lines represent significant negative
correlations (linear regression, BH-FDR < 0.05).
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Figure S4. Relationships between abundance and log2(PTR) for abundant taxa in donor
an. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5
matched data points; time differences between adjacent samples less than three days) were
selected for analysis. Gray trend lines show no significant correlations, orange trend lines
indicate significant positive correlations, and blue trend lines represent significant negative
correlations (linear regression, BH-FDR < 0.05).
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621 Figure S5. Relationships between abundance and log2(PTR) for individual taxon in donor
622 ao. Abundant taxa with relatively dense longitudinal PTR and abundance data (at least 5

623  matched data points; time differences between adjacent samples less than three days) were
624  selected for analysis. Gray trend lines show no significant correlations, orange trend lines

625 indicate significant positive correlations, and blue trend lines represent significant negative

626  correlations (linear regression, BH-FDR < 0.05).
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