

1 **A butterfly pan-genome reveals a large amount of structural variation underlies the evolution of**
2 **chromatin accessibility**

3 **Authors**

4 Angelo A. Ruggieri¹, Luca Livraghi², James J. Lewis³, Elizabeth Evans¹, Francesco Cicconardi⁴, Laura
5 Hebberecht⁴, Stephen H. Montgomery⁴, Alfredo Ghezzi¹, José Arcadio Rodriguez-Martinez¹, Chris D.
6 Jiggins⁵, W. Owen McMillan⁶, Brian A. Counterman⁷, Riccardo Papa^{1,8} & Steven M. Van Belleghem¹

7 **Affiliations**

8 ¹Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico.

9 ²Department of Biological Sciences, The George Washington University, Washington DC, USA.

10 ³Department of Zoology, University of British Columbia, Vancouver, BC, Canada.

11 ⁴School of Biological Sciences, Bristol University, UK.

12 ⁵Department of Zoology, University of Cambridge, Cambridge, UK.

13 ⁶Smithsonian Tropical Research Institute, Republic of Panama.

14 ⁷Department of Biological Sciences, Auburn University, Auburn, Alabama, USA.

15 ⁸Molecular Sciences and Research Center, University of Puerto Rico, San Juan, PR.

16 Correspondence: Angelo A. Ruggieri (angelo.ruggieri@upr.edu), Riccardo Papa (rpapa.lab@gmail.com)
17 & Steven M. Van Belleghem (vanbelleghemsteven@hotmail.com)

18 **Abstract**

19 Despite insertions and deletions being the most common structural variants (SVs) found across genomes,
20 not much is known about how much these SVs vary within populations and between closely related
21 species, nor their significance in evolution. To address these questions, we characterized the evolution of
22 indel SVs using genome assemblies of three closely related *Heliconius* butterfly species. Over the
23 relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels
24 between two haplotypes of an individual *H. charithonia* butterfly and up to 62.7% included lineage-
25 specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were
26 mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their
27 overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using
28 chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with
29 potential *cis*-regulatory function, we found that out of the 31,066 identified differences in chromatin
30 accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as
31 TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at
32 random and were enriched for several transcription factor binding site candidates with known function in
33 neuron development in *Drosophila*. We also identified 24 TE insertions with head-specific chromatin
34 accessibility. Our results show high rates of structural genome evolution that were previously overlooked
35 in comparative genomic studies and suggest a high potential for structural variation to serve as raw
36 material for adaptive evolution.

37 **Running title**

38 Functional potential of structural variants

39 **Keywords**

40 *Heliconius* butterflies, structural variation, indels, pan-genome, transposable elements, chromatin
41 accessibility, ATAC-seq

42 Introduction

43 Structural variants (SVs) in genomes, broadly defined here as encompassing insertions or deletions of at
44 least 1 bp, are a ubiquitous component of within and between species genomic variation (Zhang et al.
45 2021; Merot et al. 2020). The larger size of SVs, when compared to single nucleotide polymorphisms
46 (SNPs), may increase their likelihood of being involved in maladaptation (Collins et al. 2020). However,
47 there are a growing number of examples of SV's role in adaptive innovations (Lucek et al. 2019;
48 Wellenreuther et al. 2019). For example, increased linkage disequilibrium and recombination suppression
49 within large inversions can initiate co-adaptation of gene complexes (e.g., supergenes) in the re-arranged
50 genomic haplotype (Jay et al. 2021; Matschiner et al. 2022). Alternatively, insertion-deletion mutations
51 (indels) can include one or multiple functional genetic elements and studies are starting to indicate that
52 genomic indel content might be large relative to the more commonly studied Single Nucleotide
53 Polymorphisms (SNPs). A study of humans found 2.3 million indels of 1 to 49 bp in length and 107,590
54 indels larger than 50 bp that accounted for up to 279 Mb in sequence differences among individuals
55 (Ebert et al. 2021). Another case are *Oedothorax* dwarf spiders, in which a large 3 Mb indel is associated
56 with an elaborate alternative reproductive male morph (Hendrickx et al. 2022).

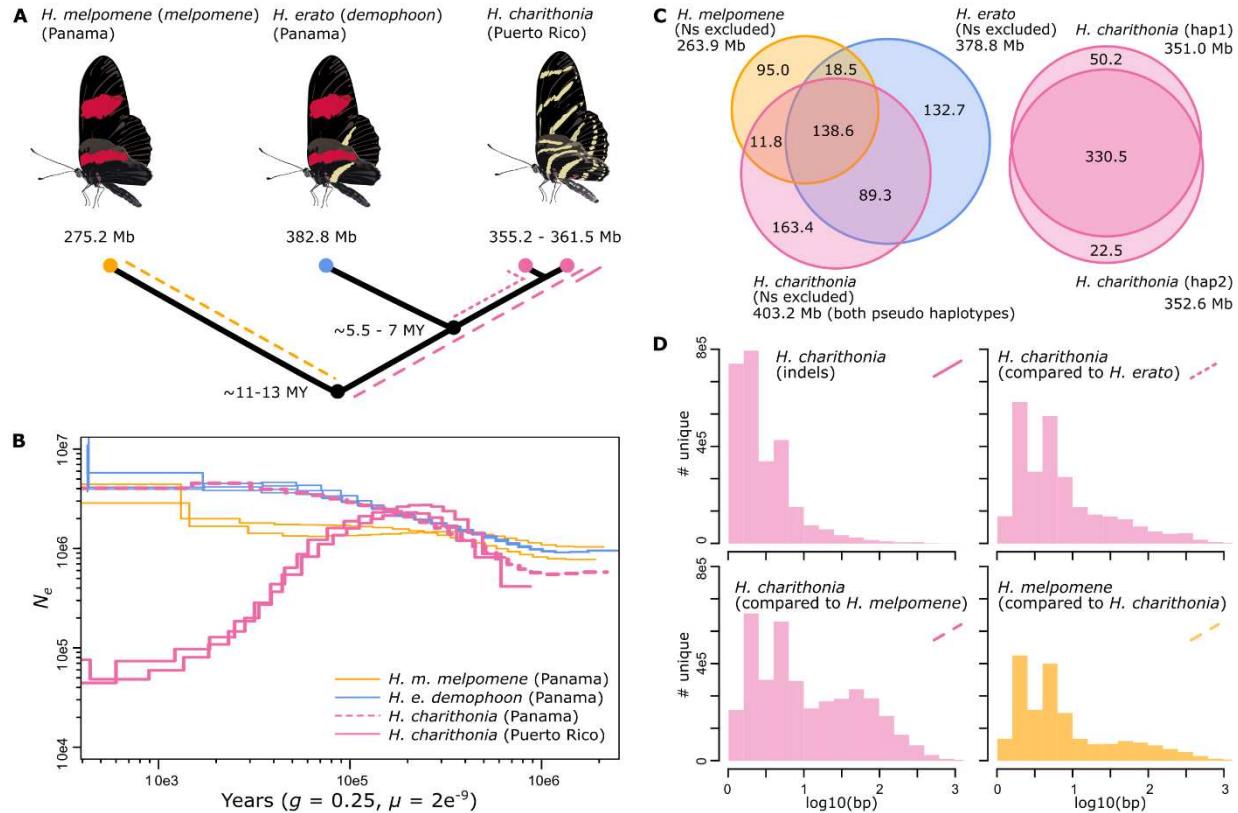
57 A major challenge in studying the relationships between SVs and adaptive diversification has been the
58 difficulty in characterizing the landscape of divergence in repetitive and rearranged regions of genomes.
59 To overcome this, we here used high-quality butterfly genomes of three *Heliconius* species common to
60 Central and South America and constructed a pan-genome alignment that allowed us to quantify the
61 homologous and non-homologous (i.e., lineage-specific insertions or deletions) portions of their genomes.
62 *Heliconius charithonia* is about 11.1 (8.8-13.4) MY divergent from *H. melpomene* and 6.0 (4.8-7.4) MY
63 divergent from *H. erato* (Kozak et al. 2015; Cicconardi et al. In prep.) (Figure 1A). With the pan-genome
64 alignment, we first analyzed the frequency, length distribution, and composition of lineage-specific
65 sequences between the species. This comparative genome-wide quantification strategy for SVs
66 demonstrated their high abundance is mainly driven by transposable element (TE) accumulation and that
67 SVs can underly more than tenfold sequence differences compared to SNPs between two haploid
68 genomes of a single individual.

69 Second, we studied the evolutionary processes affecting the distribution and frequency of SVs. We
70 expected that if SVs have a higher chance of being maladaptive, we will see a lower abundance of SVs on
71 smaller chromosomes compared to SNPs. This expectation is derived from smaller chromosomes having
72 a higher per base pair recombination rate that could lead them to purge maladaptive SVs more efficiently
73 (Hill and Robertson 1966). In contrast, if SVs have a similar maladaptive load as SNPs, we expected their
74 abundance on chromosomes to be similar to SNPs, which have a higher abundance on smaller compared
75 to larger chromosomes in *Heliconius* resulting from the higher recombination rate and thus lower
76 reduction of SNP diversity by linked selection on smaller chromosomes (Cicconardi et al. 2021; Martin et
77 al. 2019). To further understand the maladaptive impact of SVs, we also characterized the distribution of
78 SVs relative to gene density. Our hypothesis is that if intergenic SVs impact gene functioning negatively,
79 then we expected to identify fewer SVs in gene rich regions. Moreover, if SVs negatively impact gene
80 regulation, we expected their distances from the transcription start sites (TSS) of genes to be further
81 compared to a random sample of genome positions.

82 Third, in contrast to maladaptive impacts of SVs, differences in the presence and/or accessibility of *cis*-
83 regulatory loci (i.e., non-coding functional regions of the genome that influence patterns of gene
84 expression) between divergent populations have been shown to house regulatory elements responsible for
85 adaptive differences within and between species of *Heliconius* butterflies (Lewis et al. 2020, 2019;
86 Livraghi et al. 2021). Therefore, to investigate the functional significance of intergenic SVs, we annotated

87 our pan-genome with assays of chromatin accessibility, a powerful approach to identify active *cis*-
88 regulatory sequences (Buenrostro et al. 2013). We focused on chromatin profiles of developing head
89 tissue and wings as a control and observed that lineage-specific open chromatin is substantially associated
90 with SVs. To investigate whether these lineage-specific open chromatin regions within SVs have been
91 involved in recent adaptive evolution, we used selective sweep scans. We also correlated their abundance
92 with gene density and TSS and compared this correlation to that of SVs that do not associate with
93 lineage-specific changes in chromatin accessibility. Finally, using motif enrichment scans for
94 transcription factor (TF) binding sites homologous to *Drosophila*, we investigated whether these lineage-
95 specific SVs carry a high potential for structural variation to serve as material for adaption. In summary,
96 our work here provides a uniquely comprehensive test for the role of SVs in adaptive evolution.

97 **Results & Discussion**

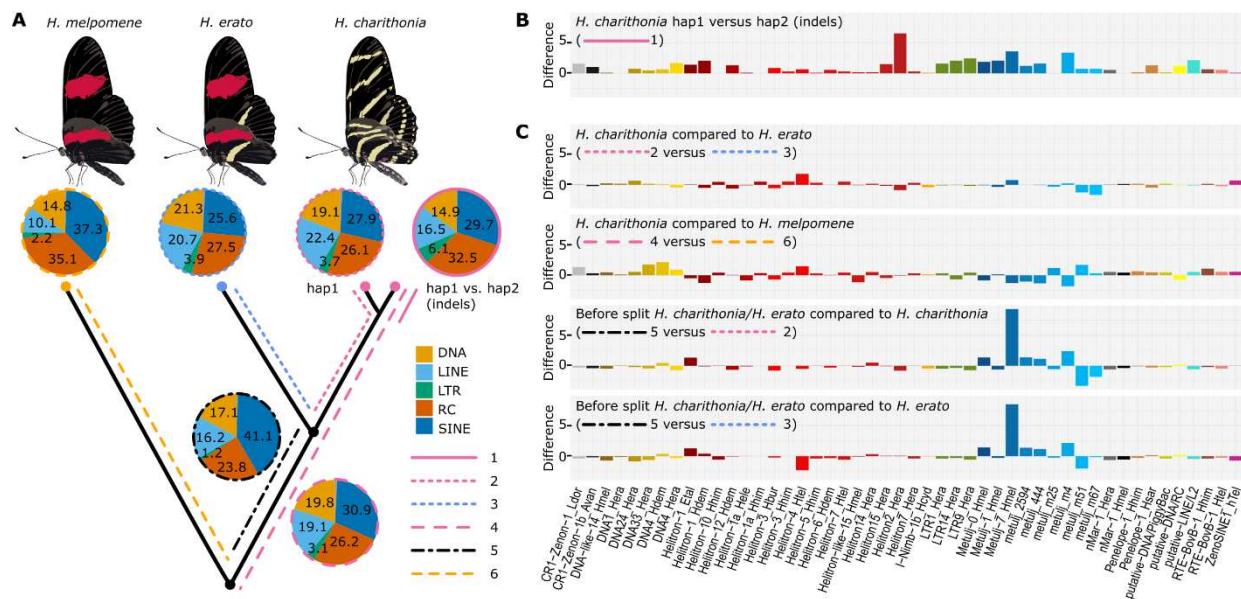

98 *1. Genome assemblies, pan-genome alignment, and lineage-specific sequence composition*

99 We *de novo* sequenced and assembled two haploid genomes from a single *H. charithonia* individual from
100 Puerto Rico using 10X chromium technology (10x Genomics, San Francisco, USA). The two pseudo-
101 haploid *H. charithonia* genomes had a length of 355.2 Mb and 361.5 Mb. For *H. erato* and *H. melpomene*
102 we used previously published reference genomes from individuals from Panama which had assembly
103 lengths of 382.8 Mb and 275.2 Mb, respectively (Van Belleghem et al. 2017; Davey et al. 2016). All
104 assemblies had a BUSCO completeness higher than 98.9% (Table S1).

105 Effective population size influences genetic diversity in SNPs (Charlesworth 2009; Leffler et al. 2012)
106 and is thus also likely to be a major influence on indel diversity. We therefore reconstructed the historical
107 population sizes from diversity estimates from whole-genome resequenced samples using PSMC
108 (pairwise sequentially Markovian coalescent). These reconstructions suggest that populations from
109 Panama have shared a general demographic trend of an increase in population size over the past 1 Mya,
110 with *H. erato* and *H. charithonia* having a larger population size than *H. melpomene* over the last 300
111 Kya (Figure 1B). In contrast, two *H. charithonia* individuals from Puerto Rico suggest a population size
112 decline over the past 200 Kya. This fits divergence estimates from mtDNA of the Puerto Rican population
113 (Davies and Bermingham 2002) and implies that the indel diversity as estimated from the pseudo-
114 haplotypes of the single Puerto Rican *H. charithonia* individual discussed further on in this study may be
115 a general underestimate of indel diversity in other species or populations such as those from Panama.

116 For this study, we aligned the four genomes (two *H. charithonia* pseudo-haplotypes, *H. erato* and *H.*
117 *melpomene*) into a pan-genome with a total length of 659.4 Mb. Among the three species, only 138.6 Mb
118 (21.0%) of sequence was identified as homologous. However, this conserved sequence part retained a
119 high BUSCO completeness of 94.9%, demonstrating it contains the highly conserved gene coding
120 fraction of the genome (Table S1). Such remarkable differences in genome content are also becoming
121 more obvious in other comparative genome studies that incorporate SVs in their analysis, including
122 comparisons between humans and chimpanzee for which genome similarity is much lower than the 99%
123 estimated from the first comparative genomic studies that only considered SNPs and small indels
124 (Mikkelsen et al. 2005; Suntsova and Buzdin 2020). When investigating the proportions of non-
125 homologous (lineage-specific) sequences as obtained from the pan-genome, we found that lineage-
126 specific sequence proportion increases with phylogenetic distance (Figure 1C). More divergent
127 phylogenetic comparisons also had lineage-specific sequences that were generally longer (Figure 1D),
128 whereas less divergent phylogenetic comparisons had a higher proportion of lineage-specific sequences
129 being accounted for by single base pair insertions (e.g., 25.8% of lineage-specific sequence between the
130 *H. charithonia* haplotypes versus 5.76% of lineage-specific sequences between *H. charithonia* and *H.*
131 *erato*; Table S2).

132 In the different genome comparisons, we could determine the identity of 61.63 to 70.03% of the lineage-
133 specific sequences (Table S2). TEs constituted the most abundant part (27.0 to 37.0%), which was higher
134 than a previous report that TEs comprise about 26 and 25% of the *H. erato* and *H. melpomene* genome
135 sequence, respectively (Lavoie et al. 2013; Ray et al. 2019). While insertions, deletions, duplications, and
136 inversions can all cause SVs, transposable elements (TEs) are thus identified as the most common source
137 of SVs, similar to many other organisms (Garcia-Perez et al. 2016; Cerbin and Jiang 2018).



138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153

Figure 1. Genome divergence, lineage-specific sequence distribution and historical demography of *H. melpomene*, *H. erato* and *H. charithonia* from Panama and Puerto Rico. (A.) Phylogenetic relations, genome sizes and approximate divergence times. Colored lines indicate branches investigated in panel D. (B.) Inference of historical effective population size changes using pairwise sequentially Markovian coalescent (PSMC) analysis. The PSMC estimates are scaled using a generation time of 0.25 years and a mutation rate of $2e-9$. Note that the *H. charithonia* genome was obtained from the Puerto Rican population. (C.) Venn diagrams represent homologous and non-homologous (lineage-specific) genomic sequences (excluding Ns). Between the two pseudo-haplotypes of the *H. charithonia* genome, we observed a total of 72.7 Mb of sequence identified as indel. Of these indels, 63.1 Mb (86.8%) were lineage-specific to *H. charithonia*, whereas 9.6 Mb (13.2%) were present in the *H. erato* genome. Consistent with divergence times, the *H. charithonia* genome comprised 43.5% (175.2 Mb; compared to the ~6 MY divergent *H. erato*) to 62.7% (252.3 Mb; compared to the ~12 MY divergent *H. melpomene*) of lineage-specific sequence resulting from SVs. *Heliconius erato* had 39.0% (151.2 Mb) lineage-specific sequences compared to *H. charithonia* and 58.0% (222.1 Mb) lineage-specific sequences compared to *H. melpomene*. *Heliconius melpomene* had 34.5% (95.0 Mb) lineage-specific genomic sequence compared to *H. erato* and *H. charithonia*. (D.) Length distribution of lineage-specific sequences. Between the two *H. charithonia* haplotypes, indels had an average and median length of 13.5 and 2 bp. The average and median length was 34.2 and 4 bp for lineage-specific *H. charithonia* sequences relative to *H. erato* and 45.6 and 6 bp relative to *H. melpomene*.

154 Among phylogenetic comparisons, we found generally similar patterns of TE family accumulation but
 155 observed several lineage-specific differences (Figure 2). The most abundant elements associated with
 156 lineage-specific sequences in all genome comparisons were SINE elements (25 to 41%), Rolling-circle
 157 elements (23 to 35%), LINE elements (10.1 to 22.4%), and DNA transposable elements (14.8 and
 158 21.25%) (Figure 2A). Between the two *H. charithonia* haplotypes the two most abundant groups
 159 associated with indels were Rolling-circle (32.5%) and SINE (29.7%), with Helitron2_Hera and
 160 Metulj7_Hmel showing highest copy numbers (6.5 and 3.6% variation in activity, respectively; Figure
 161 2B).

162 Our phylogenetic framework next allowed us to characterize the time of accumulation for TEs along the
163 *H. erato*/*H. charithonia* branch (considering *H. melpomene* as the outgroup). Within the TE families, we
164 found that Metulj-7 elements accumulated before *H. erato* and *H. charithonia* split (Figure 2B). This was
165 also supported by relative age of accumulation analysis based on divergence of Metulj-7 that showed
166 accumulation was more ancient than, for example, metulj_m51 that likely increased in number after *H.*
167 *charithonia* and *H. erato* split (Figure S1). Metulj-7 also accrued earlier in the *H. melpomene* lineage
168 (Figure S1). This may imply an accumulation that precedes the split of our butterfly lineages. The
169 reduction of Metulj-7 in more recent times supports a similar finding by Ray *et al.* (2019), who observed
170 a reduction of Metulj-7 accumulation in the *H. charithonia*/*erato* lineage starting at 5 Mya (Ray *et al.*
171 2019).

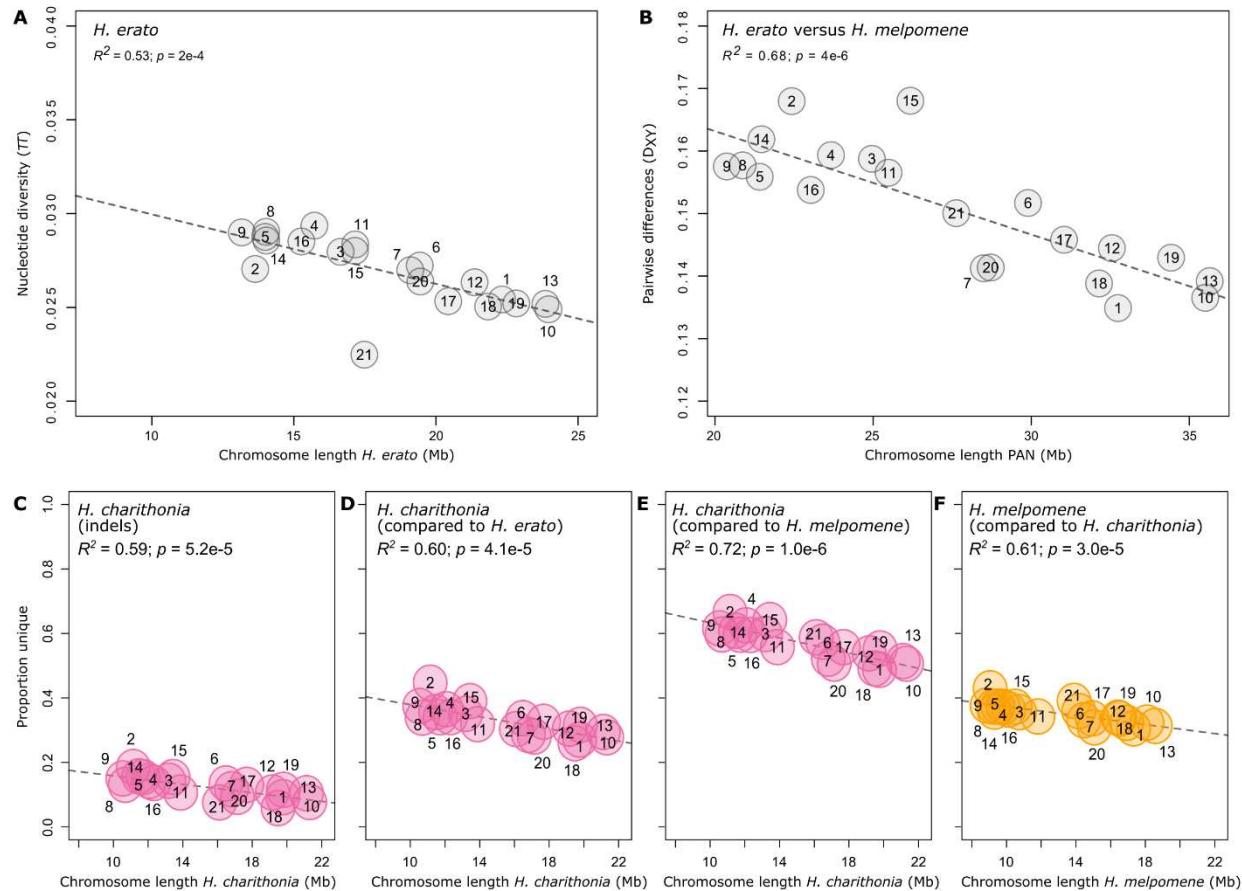


Figure 2. Phylogenetic dynamic of Transposable Elements (TEs). (A) Lineage-specific TE family accumulation. Different line types depict different branches in the phylogeny studied and allow to investigate changes in temporal accumulation of TEs. 1 = TE families associated with indels between the *H. charithonia* haplotypes, 2 = TE families accumulated in *H. charithonia* since the split from *H. erato*, 3 = TE families accumulated in *H. erato* since the split from *H. charithonia*, 4 = TE families accumulated in the *H. erato* lineage since their split from a common ancestor with *H. melpomene*, 5 = TE families accumulated after the *H. charithonia*/*H. erato* lineage split from the common ancestor with *H. melpomene* but before *H. erato* and *H. charithonia* split, 6 = TE families accumulated in the *H. charithonia*/*H. erato* lineage since their split from a common ancestor with *H. melpomene*. DNA = DNA transposons that do not involve an RNA intermediate; LINE = long interspersed nuclear elements, which encode reverse transcriptase but lack LTRs; LTR = long terminal repeats, which encode reverse transcriptase; RC = transpose by rolling-circle replication via a single-stranded DNA intermediate (Helitrons); SINE = short interspersed nuclear elements that do not encode reverse transcriptase. (B.) Difference in TEs (percentage of total) between the two *H. charithonia* haplotypes considering the same 48 most significantly divergent TE families. (C.) Difference in TEs (percentage of total) between branches in the phylogeny considering the same 48 most significantly divergent TE families. Positive values indicate higher accumulation in the first branch, negative values indicated higher accumulation in the second branch of the comparison. Total TE accumulation patterns per lineage are shown in Figure S1.

188 2. *Indel patterns and chromosome sizes*

189 We examined if the abundance of SVs across the genome is similarly affected by linked selection as SNP
190 diversity. In *Heliconius*, there is a negative relationship between average nucleotide diversity (i.e.,
191 average pairwise nucleotide differences) and chromosome size, with larger chromosomes generally
192 carrying lower diversity (Figure 3A; Martin et al. 2019; Cicconardi et al. 2021). In the case of nucleotide
193 diversity and chromosome size, this negative relationship has been explained by an increased reduction of
194 genetic diversity at linked sites by greater background selection and genetic hitchhiking on larger
195 chromosomes (Cicconardi et al. 2021; Campos and Charlesworth 2019; Cutter and Payseur 2013).
196 Genetic linkage map suggests that there is on average a single crossover per meiosis, regardless of
197 chromosomal length (Davey et al., 2016). This results in longer chromosomes having a lower per-base
198 recombination rate, which increases the extent of linked selection and results in lower nucleotide diversity
199 on larger chromosomes. However, if SVs have a higher maladaptive mutation load because of their size,
200 we might expect the opposite pattern in which shorter chromosomes with higher recombination rates were
201 able to purge SVs more easily through recombination (Hill and Robertson 1966). Thus, there might be a
202 positive relationship between SV diversity and chromosome length.

203 In fact, our data are most consistent with the hypothesis that SVs are affected by linked selection in a
204 manner similar to SNPs. Indeed, between the two pseudo-haplotypes of *H. charithonia*, there was a
205 significant negative relationship between the proportion of indels in each chromosome and chromosome
206 sizes (Figure 3C). This suggests that the general diversity of SVs in a population may be driven by linked
207 selection similar to SNPs. Patterns of the proportion of lineage-specific sequences may then have been
208 largely driven by patterns of ancestral diversity, resulting in higher proportions of lineage-specific
209 sequences on smaller chromosomes (Figure 3D-F), as is also observed for pairwise nucleotide divergence
210 patterns between, for example, *H. erato* and *H. melpomene* (Figure 3B; Van Belleghem et al. 2018). This
211 expectation is borne out on the sex (Z) chromosome (21), where there was a reduction in SV diversity that
212 roughly mirrored the patterns of SNP diversity. Due to its hemizygous state in females, there is a smaller
213 effective population size (0.75 relative to autosomes) and an expected reduction in SNP diversity
214 (Charlesworth 2001). For indels within *H. charithonia*, we found a 0.61 ratio of indel proportion on
215 chromosome 21 compared to the autosomes, suggesting that indels are subject to differences in effective
216 population size similarly to SNPs.

217
218
219
220
221
222
223
224
225
226

Figure 3. Patterns of lineage-specific sequence distribution and chromosome lengths. (A.) Correlation between *H. erato* chromosome lengths and nucleotide diversity (obtained from whole genome resequence data of ten *H. e. demophoon* samples from Panama). (B.) Correlation between pan-genome chromosome lengths and pairwise nucleotide differences (D_{xy}) averaged for each chromosome between *H. erato* and *H. melpomene*. D_{xy} was calculated from homologous sequences in the pan-genome. (C.) Correlation between chromosome lengths and proportion of indels in the chromosomes of *H. charithonia*. Correlation between chromosome lengths and proportion of lineage-specific sequences in the chromosomes of (D.) *H. charithonia* compared to *H. erato*, (E.) *H. charithonia* compared to *H. melpomene*, and (F.) *H. melpomene* compared to *H. charithonia*. Dashed lines indicate regression fit. Numbers indicate chromosome numbers. Colors refer to sequences specific to *H. charithonia* (pink) and *H. melpomene* (orange).

227 We next characterized the distribution of SVs relative to genes to further explore the potential
228 maladaptive impact of SVs. TEs, the most abundant SVs, are argued to most often have a neutral or
229 negative impact and end up silenced by genome defense mechanisms (Okamoto and Hirochika 2001;
230 Rigal and Mathieu 2011). If intergenic TEs impact gene functioning negatively, we expected to identify
231 fewer TEs in gene rich regions. Moreover, if TEs negatively impact gene regulation, we expected their
232 distances from the 5'-end of genes (as a proxy for the transcription start site (TSS)) to be further compared
233 to a random sample of genome positions. In agreement with the former expectation, the frequency of
234 lineage-specific TEs correlated negatively with gene frequency ($R^2 = -0.27$, $p < 0.001$; Figure 4A),
235 suggesting a general purifying selection against SVs and TEs in gene dense regions. The distance
236 distribution of TEs to TSS was significantly higher than random expectations although visually similar
237 (Figure 4B), which may reflect their tendency to randomly insert in the genome in terms of genomic
238 position.

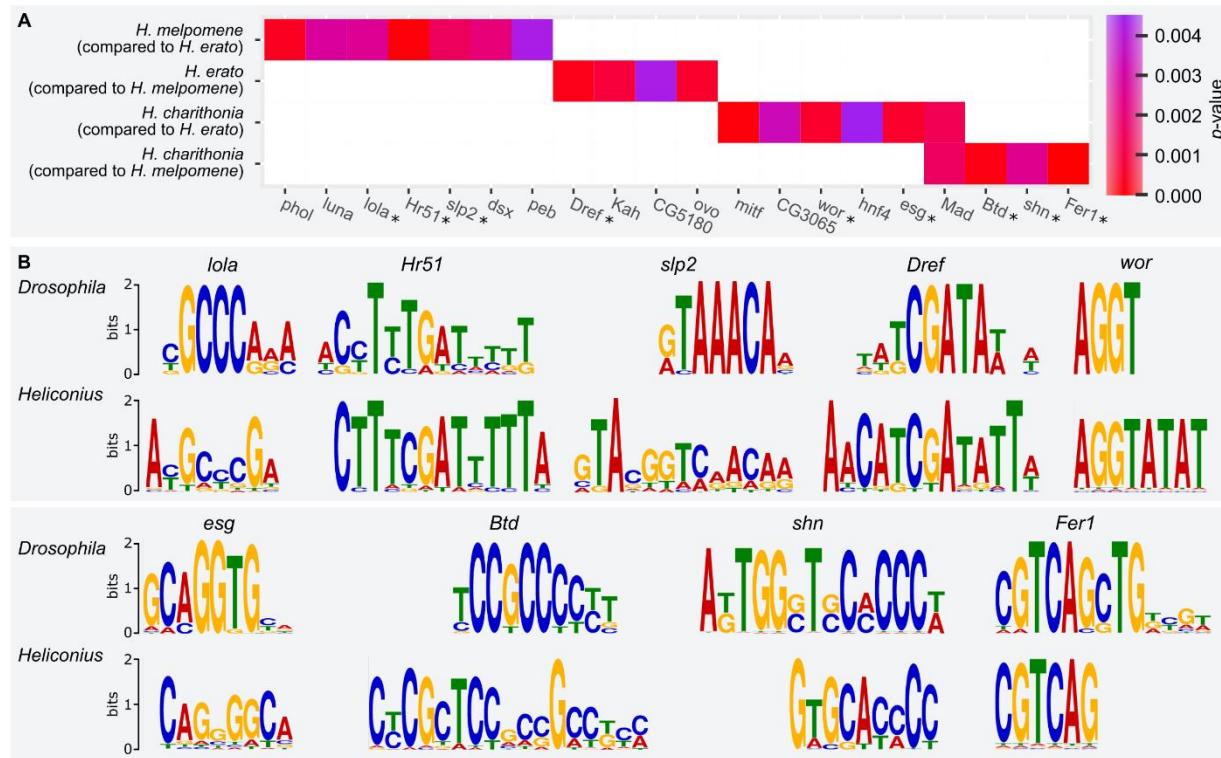
239 3. Genomic landscape of DNA accessibility and functional potential of TEs

240 Although the genome-wide distribution patterns of SVs and TEs seems to resemble that of SNPs, we next
241 wanted to investigate the functional and adaptive significance of lineage-specific intergenic SVs. TEs, for
242 example, have been suggested to be important genomic material for *cis*-regulatory element evolution
243 (Branco and Chuong 2020; Pontis et al. 2019; Fueyo et al. 2022). To test this, we studied the genomic
244 distribution of potential *cis*-regulatory elements (CREs) using Assays for Transposase-Accessible
245 Chromatin using sequencing (ATAC-seq) (Buenrostro et al. 2013). We obtained ATAC-seq data for head
246 tissue from 5th instar caterpillars, a tissue labile to adaptive change (Montgomery and Merrill 2017;
247 Montgomery et al. 2021) and a developmental stage that can be confidently timed to minimize species
248 differences in developmental rates or heterochrony (Reed et al. 2007). In *H. melpomene*, *H. erato* and *H.*
249 *charithonia*, we counted, respectively, 21,708, 28,264 and 21,097 ATAC-seq peaks that significantly
250 represented open chromatin (Figure 4C). Of these peaks, 6,611 (13.8%) of the total recorded peaks were
251 identified as homologous (overlapped at least 50% reciprocally between all three species), whereas
252 31,066 were lineage-specific.

253 If open chromatin indeed correlates with active gene regulation, we expected to find more ATAC-seq
254 peaks in gene dense regions of the genome. In agreement with such active gene regulation, ATAC-seq
255 peaks were indeed enriched in regions of the genome with higher gene density ($R^2 = 0.23, p < 0.001$;
256 Figure 4D). This positive correlation with gene density was also observed for ATAC-seq peaks that were
257 lineage-specific ($R^2 = 0.36, p < 0.001$), and ATAC-seq peaks that were within lineage-specific SVs and
258 TEs ($R^2 = 0.22, p < 0.001$), which supports that they may also have *cis*-regulatory activity. Moreover,
259 these ATAC-seq peaks were closer to TSS than random (Figure 4E). Although some of the lineage-
260 specific chromatin accessible peaks may result from differences in developmental timing between the
261 three species, out of these 31,066 lineage-specific peaks, 9,456 (30.4%) were within SVs of which 2,915
262 (9.4%) could be annotated as TEs. We also note that the absolute number of functional elements within
263 SVs and TEs may be much higher than what is described in our study because we restricted our chromatin
264 data to only one tissue type and developmental time point. As a comparison, a genomic study across 20
265 mammalian genomes spanning 180 MY of evolution identified roughly half of all active liver enhancers
266 specific to each species, but argued that most of these lineage-specific enhancers evolved through
267 redeployment of ancestral DNA and that a significant contribution of repeat elements to enhancer
268 evolution was only found for more recently evolved enhancers less than 40 Mya old (Villar et al. 2015).

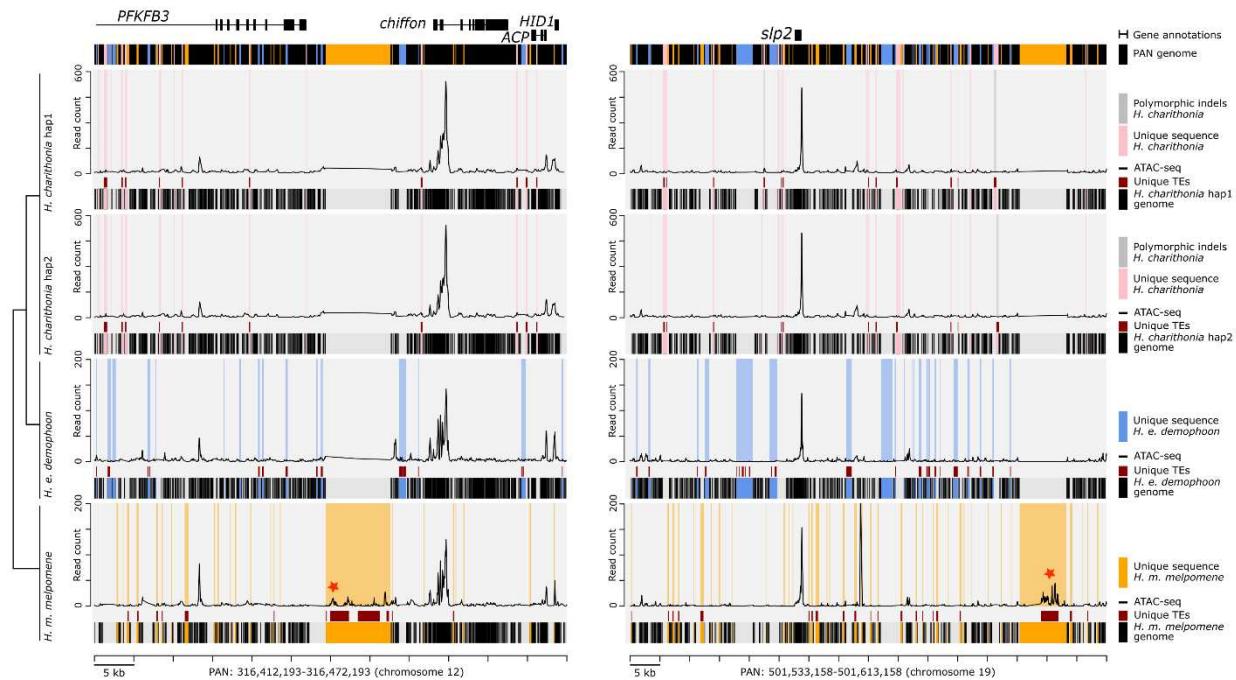
269 Considering that ATAC-seq peaks identified in the head tissue could also be accessible in the germline,
270 we next investigated if the distribution of lineage-specific ATAC-seq peaks within TEs closer to TSS may
271 have been caused by inserting in open chromatin, or whether these TE insertions may have caused the
272 open chromatin and have been selectively retained at these positions. For this analysis, we looked for
273 chromatin signals in homologous sequences flanking the TEs in the other species. We found that 395
274 (13.5%) out of 2,915 lineage-specific TEs with ATAC-seq peaks had a significant ATAC-seq signal in
275 the other species within 2,000 bp of homologous sequence flanking the insert. This was higher than an
276 expected 2% obtained from 1,000 random permutations of an equal number of TEs that did not associate
277 with ATAC-seq peaks. Nevertheless, 2,520 (86.4%) did not have any ATAC-seq signal in the other
278 species. To further test whether these TEs have been selectively retained closer to TSS, we performed a
279 TSS distance distribution comparison of SVs within ATAC-seq peaks specific to *H. charithonia* (Figure
280 4F). A comparison relative to *H. erato* and *H. melpomene* showed significantly closer TSS distances of
281 lineage-specific sequences with ATAC-seq peaks compared to random (Wilcoxon p -value < 0.001).

282 whereas the distribution of indels with ATAC-seq peaks within the single *H. charithonia* individual was
283 not statistically different compared to a random distribution of positions in the genome (Wilcoxon *p*-value
284 = 0.18). Therefore, the pattern of TE insertions associated with open chromatin being closer to TSS could
285 have potentially arisen over time because of TE insertions closer to TSS having a higher chance of
286 affecting gene expression and being involved in adaptive changes between species.


287 Although the distribution of ATAC-seq peaks within TEs can fit selective retention of these SVs, we
288 wanted to directly test for the influence of selection using selective sweep analysis. Given the
289 demographic history of our taxa and using an effective population size of 2 million individuals (Moest et
290 al. 2020), it is important to recognize that our ability to identify signals of adaptation is restricted to
291 selection acting within the past 80,000 years (0.6% of the studied evolutionary timescale). Under these
292 restricted conditions, we did not find a pattern of recent adaptive evolution (Figure S3). Nevertheless, we
293 did observe that TE insertions associated with open chromatin were more fragmented compared to other
294 TEs in the genome, suggesting selection for immobilization of these TEs (Joly-Lopez and Bureau 2018)
295 (Figure S2). Thus, strong signals for recent selection were not obvious in our comparative data.
296 Nonetheless, even if SVs are mostly neutral or deleterious, their shear abundance and association with
297 chromatin accessibility changes between species underscores their adaptive potential. In agreement with
298 the importance of TEs to adaptive evolution, several examples come from the genomes of Lepidoptera. In
299 the classic example of industrial melanism of the peppered moth, a novel 21 kb TE insertion that impacts
300 function of the gene *cortex* is responsible for the development of the different color morphs (Van't Hof
301 2016). Another TE insertion has been linked to the silencing of a *cortex* regulatory region and may be
302 responsible for the yellow band on the hindwing in geographic variants of *Heliconius melpomene*
303 butterflies (Livragli et al. 2021).

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

Figure 4. Lineage-specific sequences and their relationship with chromatin accessibility and gene distribution. (A.) Correlation of gene density in 100 kb windows with frequency of transposable elements (TEs). (B.) Density plot of distance of lineage-specific TEs to closest transcription start site (TSS) pooled over all species genome comparisons. (C.) Lineage-specific and shared open chromatin signals (ATAC-seq peaks) found in head tissue of 5th instar caterpillars in each species. Peaks are considered shared (homologous) when they overlap at least 50% reciprocally. (D.) Correlation of gene frequency in 100 kb windows with frequency of all lineage-specific structural variants (SVs), all ATAC-seq peaks, lineage-specific ATAC-seq peaks, and lineage-specific TE insertions with ATAC-seq peaks. (E.) Density plot of distance of lineage-specific sequence features to closest transcription start site (TSS) pooled over all species genome comparisons. We found the distribution of lineage-specific SVs was most similar to a random distribution of positions in the genome (overlapping index = 95%), with a median/mean distance of 21,701/40,790 bp of a lineage-specific sequence and 20,801/39,908 bp of any random position to a TSS. (F.) Density plot of distance of lineage-specific TEs with ATAC-seq peaks in *H. charithonia* to closest TSS. Dashed lines show the distance distribution to TSS of 100,000 randomly selected positions. Tables at the top left in panels B, E and F report overlapping indexes and pairwise Wilcoxon test p-values between the distributions of lineage-specific sequence features and the random positions. Numbers on the right indicate the number of the respective sequence features.


319 In several studies, TEs have been correlated to evolutionary changes in chromatin state, gene expression,
320 and adaptive evolution at a genome-wide scale (Bourque et al. 2018; Diehl et al. 2020; Ohtani and
321 Iwasaki 2021; Liu et al. 2019). The TE family composition of TEs that associated with open ATAC-seq
322 peaks was markedly different between the three *Heliconius* species (Figure S4). To infer the evolutionary
323 potential of the accumulation of these TE families, we next identified enrichment of sequence motifs in
324 chromatin changes that are within lineage-specific TE insertions and investigated their potential as
325 transcription factor (TF) binding sites. TF binding motif enrichment analysis on the 2,915 lineage-specific
326 ATAC-seq peaks within TE insertions showed that each genome has unique signals of binding site
327 enrichment that were homologous to binding sites of TFs in *Drosophila* (Figure 5). Eight of the identified
328 21 enriched binding motifs were for TFs with known functions in nervous system development in
329 *Drosophila*. For example, *lola*, *Dref*, and *shn* are involved in dendrite morphogenesis (Iyer et al. 2013),
330 *Hr51* is related to neuron remodeling and circadian rhythm regulation (Kozlov et al. 2017), *slp2* regulates
331 a wide variety of developmental processes in *Drosophila*, including embryonic segmentation, ventral fate
332 specification in the retina, and temporal patterning of the neuroblasts that produce medulla neurons (Sato
333 and Tomlinson 2007), *wor* regulates neurogenesis (Ashraf et al. 2004), *esg* is involved in central nervous
334 system development (Ashraf et al. 1999), *Btd* contributes to embryonic head segmentation (Wimmer et al.
335 2010), and *Fer1* is involved in the maintenance of neuronal identity (Guo et al. 2019). Three other TF
336 motifs have been previously linked to wing or color pattern development in lepidoptera. *Mad* is a TF
337 linked to wing development in *H. melpomene* (Baxter et al. 2010). *Mitf* has been associated with color
338 pattern development in other animals (Mallarino et al. 2016; Poelstra et al. 2015), and in *Heliconius*
339 butterflies potentially interacts with *aristaless* (Westerman et al. 2018). Finally, *dsx* controls sex-limited
340 mimicry patterns in *Papilio polytes* and *Zerene cesonia* butterflies (Rodriguez-Caro et al. 2021;
341 Nishikawa et al. 2015).

342
343
344
345
346
347
348
349
350
351
352
353
354
355

Figure 5. Transcription factor (TF) binding motif enrichment among lineage-specific TE insertions with ATAC-seq peaks.
 (A.) Lineage-specific ATAC-seq peaks within TE insertions in *Heliconius melpomene* (compared to *H. erato*) were significantly enriched for binding sites with significant homology to flybase *D. melanogaster* TF binding of *pleiohomeotic like* (*phol*; FBgn0035997), *luna* (*luna*; FBgn0040765), *longitudinals lacking* (*lola*; FBgn0283521), *Hormone receptor 51* (*Hr51*; FBgn0034012), *sloppy paired 2* (*slp2*; FBgn0004567), *doublesex* (*dsx*; FBgn0000504), and *pebbled* (*peb*; FBgn0003053). *Heliconius erato* (compared to *H. melpomene*) was significantly enriched for binding sites for DNA replication-related element factor (*Dref*; FBgn0015664), *Kahuli* (*Kah*; FBgn0035144), *CG5180* (*CG5180*; FBgn0043457), and *ovo* (*ovo*; FBgn0003028). *H. charithonia* (compared to *H. erato*) was enriched in binding sites for *Mitf* (*Mitf*; FBgn0263112), *CG3065* (*CG3065*; FBgn0034946), *worniu* (*wor*; FBgn0001983), *hnf4* (*hnf4*; FBgn0004914), *escargot* (*esg*; FBgn0287768), and *Mothers against dpp* (*Mad*; FBgn0011648). *H. charithonia* (compared to *H. erato*) was enriched in binding sites for *Mothers against dpp* (*Mad*; FBgn0011648), *buttonhead* (*btd*; FBgn0000233), *schnurri* (*shn*; FBgn0003396), and *48 related 1* (*Fer1*; FBgn0037475). TFs with known functions in neuron development are indicated with an asterisk. P-value is the significance of enrichment as obtained by the MEME analysis (B.) Homology of identified enriched motifs to *D. melanogaster* motifs of TFs with known functions in neuron development.

356 Finally, using the ATAC-seq data of the wing tissue as a control, we looked for head-specific chromatin
 357 changes within lineage-specific TE insertions. The tissue-specific accessibility of these TE insertions
 358 would provide strong indications that these SVs interact with tissue-specific factors and could provide
 359 strong candidates as targets of adaptive evolution. We identified 24 head-specific ATAC-seq peaks within
 360 a lineage-specific TE insertion that were not accessible in wing tissues (Figure 6; Table S3). Of these, 2, 4
 361 and 18 were specific to *H. charithonia*, *H. erato* and *H. melpomene*, respectively. Five were located less
 362 than 50 kb from genes with known functions in nervous system development in *Drosophila*. Interestingly,
 363 in *H. melpomene*, this included the gene *sloppy paired 2* (*slp2*) that also showed TF binding site
 364 enrichment in lineage-specific ATAC-seq peaks within a TE.

365
366
367
368
369
370
371
372
373
374

Figure 6. Example intervals of the pan-genome assembly of *H. charithonia* (pink), *H. erato* (blue) and *H. melpomene* (orange) with alignment of lineage-specific genome sequences, transposable element (TE) annotations and ATAC-seq profiles in the pan-genome coordinate space. The plots show an illustrative interval of the pan-genome assembly near the gene *chiffon* and *slp2* that highlights sequences present in each of the genomes relative to the pan-genome (black shading underneath each of the graphs), lineage-specific sequences in each of the genomes (pink, blue and orange shading in graphs), TEs that overlap with lineage-specific sequences (dark red), and ATAC-seq profiles for head tissue (average of two biological replicates). Gray shading in the *H. charithonia* haplotype 2 (hap2) graph indicates an indel in the genome of a single *H. charithonia* individual. Red stars indicate ATAC-seq peaks with head-specific accessibility (compared to wing tissue) that intersect with a lineage-specific TE insertion.

375 **Conclusion**

376 In *Heliconius*, the extent of SV within and between species has been previously limited to studies of the
377 repetitive sequence content within individual reference genomes (Lavoie et al. 2013; Ray et al. 2019), co-
378 linearity of genomes (Davey et al. 2017; Cicconardi et al. 2021), structural rearrangements in a
379 ‘supergene’ related to a color pattern polymorphism (Joron et al. 2011; Edelman et al. 2019), and of
380 duplications that likely underestimated the extent of SV due to stringent confidence cutoffs needed when
381 using short-read sequences (Pinharanda et al. 2017). Our approach combined three high-quality
382 *Heliconius* genome assemblies with a pan-genome alignment to quantify the extensive uniqueness
383 between these genomes due to SVs. For example, genome wide nucleotide diversity (π) obtained from
384 SNPs was 0.0098 within *H. charithonia* and D_{XY} (average pairwise nucleotide differences) ranged from
385 0.10 between *H. charithonia* and *H. erato* to 0.15 between *H. charithonia* and *H. melpomene*. This
386 suggests an average sequence divergence of 0.98% between the haplotypes of *H. charithonia* and 10 to
387 15% of sequence divergence between homologous parts of the genomes of these species. In contrast, SV
388 analysis demonstrated that an additional 18.0% of the genome of *H. charithonia* included indel sequences
389 and up to 43.5% and 62.7% of additional genomic differences between *H. charithonia* and *H. erato* and
390 *H. melpomene*, respectively, resulted from SVs. Next, using ATAC-seq data, we assessed the extent to
391 which differences in chromatin accessibility resulted from SVs and TE insertions. We observed that out
392 of the 515,884 SVs identified as lineage-specific TE insertions, only 0.56% were associated with changes
393 in chromatin accessibility between species. However, out of the 31,066 identified lineage-specific
394 changes in chromatin accessibility, 30.4% were within SVs and 9.4% were characterized as lineage-
395 specific TEs. While we did not find any indication of recent adaptive evolution through selective sweep
396 analysis, our observations indicate an important potential of TEs in generating genetic variation with
397 functional effects through changes in chromatin state and potentially the regulation of nearby genes. In
398 support with this, lineage-specific TEs that underlie changes in chromatin accessibility included 21
399 enriched motifs homologous to *Drosophila* TF binding sites and 24 had head-specific accessibility
400 compared to wing tissues and provide strong candidates as targets of adaptive evolution.

401 Recent examples that characterized SVs and, in particular, TE insertions as the mutational changes
402 underlying adaptive phenotypic changes are accumulating. For example, in the bird genus *Corvus*,
403 adaptive evolution of plumage patterning, a pre-mating isolation trait, was found to be the result of a TE
404 insertion that reduced the expression of the *NDP* gene (Weissensteiner et al. 2020). Together with
405 examples of adaptive phenotype changes associated with TEs in Lepidoptera (Livragli et al. 2021; Van’t
406 Hof 2016), our pan-genome strategy that allowed to efficiently study the genomic distribution of SVs and
407 the evolutionary factors that affect them, suggest that TE insertions coupled to gene regulation may be an
408 underappreciated source of variation for natural selection to act upon. We expect that the accumulation of
409 high-quality genome assemblies thanks to long-read sequencing technologies will continue to improve the
410 identification of SVs and highlight their importance in generating adaptive genetic variation.

411 **Materials and methods**

412 *Heliconius charithonia* haploid genome assemblies

413 For *Heliconius charithonia*, we extracted high-molecular-weight DNA from a flash frozen pupa obtained
414 from a wild-caught female sampled in San Juan, Puerto Rico using QIAGEN Inc. Genomic-tip 100/G.
415 Library preparation using 10X Chromium technology for linked reads (10x Genomics, San Francisco,
416 USA) and Illumina sequencing was carried out by Novogene Co., Ltd, which generated 44.9 Gb for a
417 target coverage of 100X. We assembled the linked-read sequencing data using the Supernova 2.1.1
418 assembler (Weisenfeld et al. 2014) using the default recommended settings and a maximum number of
419 reads of 200 million. Raw assembly outputs were transformed to fasta format using the pseudohap2
420 option to generate two parallel pseudo-haplotypes from the diploid genome. Quality control of the *H.*
421 *charithonia* genome was performed using genome-wide statistics calculated on the phase blocks, synteny
422 with the *H. melpomene* v2.5 genome using Tigmint v1.2.3 (Jackman et al. 2018), and using BUSCO to
423 assess genome assembly and annotation completeness (Simão et al. 2015). Fragmented *H. charithonia*
424 scaffolds were ordered with Tigmint using synteny with the *H. melpomene* v2.5 genome.

425

426 *Pan-genome alignment*

427 In comparison to using a single genome as a reference, a pan-genome represents a composite of different
428 genomes and serves as a global reference with which to make comparisons between genomes (e.g.,
429 conservation and unique sequences) or genome features (e.g., gene and TE annotations). We aligned the
430 two newly assembled haploid *H. charithonia* genomes with the *H. e. demophoon* and *H. m. melpomene*
431 genome using seq-seq-pan (Jandrasits et al. 2018). Seq-seq-pan extends the functionality of the multiple
432 genome aligner progressiveMauve (Darling et al. 2010) by constructing a composite consensus or pan-
433 genome that includes both homologous sequences or locally collinear blocks (LCBs) as well as lineage-
434 specific (non-homologous) sequences in each of the genomes. This pan-genome is then used as the
435 reference coordinates space for the multi genome alignment which can then include sequences specific to
436 any of the genomes. We used the *H. e. demophoon* v1 reference genome as the first genome in the
437 genome list so that the resulting pan-genome alignment would be ordered according to the *H. e.*
438 *demophoon* reference. This resulted in a pan-genome sequence with a total length of 659,350,588 bp. To
439 avoid spurious feature mappings (i.e., TEs and ATAC-seq peaks), we removed scaffolds that have not
440 been linked to chromosome positions in *H. e. demophoon* by cutting the pan-genome alignment at the end
441 of chromosome 21 (position 578,665,626 in the alignment). The absence and presence of genome
442 sequences in each of the genomes relative to the pan-genomes was assessed with a custom Python script
443 generating a bed file of start and end positions of presence and absence data. These bed files were used to
444 identify lineage-specific or homologous sequences between genomes using bedtools v2.27.1 (Quinlan and
445 Hall 2010). Lineage-specific sequences were obtained by first recording sequence coordinates of each
446 genome relative to the pan-genome using a custom Python script and intersecting these coordinates of
447 each genome against a merged library of sequence coordinates of all other genomes using bedtools.

448 *Transposable Element (TE) annotation and analysis*

449 To identify TEs, we used a two-stage strategy combining the programs RepeatModeler2 (Flynn et al.
450 2020) and RepeatMasker (Taráilo-Graovac and Chen 2009) using available curated TE libraries as well as
451 novel TE discovery. In the first stage, RepeatModeler 2.0.1 was run on the four genomes for *de novo*
452 identification of TEs, to classify them into families, and merge the results into a single library. We used
453 the Perl script “cleanup_nested.pl” from the LTR_retriever package (Ou and Jiang 2018) with default
454 parameters to reduce redundant and nested TEs. The TE library was then filtered to eliminate all
455 sequences shorter than 200 bp and all sequences that matched any non TE-related genes using Blast2GO
456 (Conesa et al. 2005) with the insect-only default library (non-redundant protein sequence nr v5). Finally,
457 the filtered TEs were matched with the *Heliconius* specific TE library from Ray *et al.* (2019) using
458 Blast2GO. This library was produced with *de novo* TE annotations of 19 Heliconiinae and including *H.*
459 *erato* and *H. melpomene*. The remaining sequences with a TE annotation from RepeatModeler that did
460 not match the *Heliconius* specific TE library from Ray *et al.* (2019) were analyzed with different
461 strategies appropriate for the transposon type. First, the putative autonomous elements (DNA, LTR, and
462 LINE) were analyzed with Blast2GO against the insect-only default library. DNA and LTR elements had
463 to have at least a TE-derived transposase and/or match with other DNA/LTR elements. The LINE
464 required the presence of a reverse transcriptase. Second, the putative SINEs were searched in SINEbase
465 (Vassetzky and Kramerov 2013) and accepted only if at least one of their parts (head, body, tail) matched
466 with a SINE element in the database. Third, the putative Helitrons were identified using DeepTE with the
467 parameters -sp M -m M -fam ClassII (Yan et al. 2020). TEs identified as Helitrons were then scanned
468 with CENSOR (Kohany et al. 2006) to confirm their origin. From these analyses we annotated an
469 additional 93 TEs compared to Ray *et al.* (2019). These TEs were labelled as “putative TEs” and were
470 added to the library from Ray *et al.* (2019) to obtain the final library.

471 In the second stage, we used the non-redundant library as a custom library in RepeatMasker 4.1.0 to
472 annotate the TEs within our genomes. The RepeatMasker results were cleaned with “one code to find
473 them all” (Bailly-Bechet et al. 2014). This script combines fragmented RepeatMasker hits into complete
474 TE copies and solves ambiguous cases of nested TE. We identified TE families that have been
475 differentially active between phylogenetic branches using a chi-square test with false discovery rate
476 correction. We characterized temporal variation of Metulj-7 and Metulj-m51, two TEs that showed the
477 strongest temporal changes in activity, using the percent of divergence compared to the TE library
478 reference sequence obtained from RepeatMasker, corrected with the Jukes-Cantor model. Finally, TE
479 fragmentation was calculated based on the total length of each element recovered from the reference
480 library.

481

482 *ATAC-seq library preparation*

483 ATAC-seq libraries were constructed as in Lewis and Reed (2019), a protocol modified from Buenrostro
484 et al. (2013), with minor modifications. *H. melpomene rosina* and *H. erato demophoon* butterflies were
485 collected in Gamboa, Panama; *H. charithonia* butterflies were collected in San Juan, Puerto Rico. Two
486 caterpillars of each species were reared on their respective host plants and allowed to grow until the
487 wandering stage at 5th instar. Live larvae were placed on ice for 1-2 minutes and then pinned and
488 dissected in 1X ice cold PBS. Using dissection scissors, the head was removed, and incisions were

489 performed between the mandibles and at the base of the vertexes. Fine forceps were then used to remove
490 the head cuticle to expose the tissue below. The brain and eye-antennal tissue was subsequently dissected
491 out, by removing the remaining cuticle still attached to the tissue. Similarly, developing wings were
492 dissected from the 5th instar caterpillars and the left and right forewing and left and right hindwing were
493 pooled, respectively.

494 The tissues were then submerged in 350 μ l of sucrose solution (250mM D-sucrose, 10mM Tris-HCl,
495 1mM. MgCl₂, 1x protease inhibitors) inside 2 ml dounce homogenizers for tissue homogenization and
496 nuclear extraction. After homogenizing the tissue on ice, the resulting cloudy solution was centrifuged at
497 1000 rcf for 7 minutes at 4 °C. The pellet was then resuspended in 150 μ l of cold lysis buffer (10mM
498 Tris-HCl, 10mM NaCl, 3mM MgCl₂, 0.1% IGEPAL CA-630 (SigmaAldrich), 1x protease inhibitors) to
499 burst the cell membranes and release nuclei into the solution. Samples were then checked under a
500 microscope with a counting chamber following each nuclear extraction, to confirm nuclei dissociation and
501 state and to assess the concentration of nuclei in the sample. Finally based on these observations a
502 calculation to assess the number of nuclei, and therefore DNA, to be exposed to the transposase was
503 performed. This number was fixed on 400,000, as it is the number of nuclei required to obtain the same
504 amount of DNA from a ~0.4 Gb genome, such as that of *H. erato* and *H. charithonia*, as is contained in
505 50,000 human nuclei – the amount of DNA for which ATAC-seq is optimized (Buenrostro et al. 2013).
506 For *H. melpomene* this number was 500,333, where the genome size of *H. melpomene* is 0.275 Gb. For
507 this quality control, a 15 μ l aliquot of nuclear suspension was stained with trypan blue, placed on a
508 hemocytometer and imaged at 64x. After confirmation of adequate nuclear quality and assessment of
509 nuclear concentration, a subsample of the volume corresponding to 400,000 nuclei (*H. erato* and *H.*
510 *charithonia*) and 500,333 (*H. melpomene*) was aliquoted, pelleted 1000 rcf for 7 minutes at 4 °C and
511 immediately resuspended in a transposition mix, containing Tn5 enzyme (Illumina DNA Prep) in a
512 transposition buffer. The transposition reaction was incubated at 37 °C for exactly 30 minutes. A PCR
513 Minelute Purification Kit (Qiagen) was used to interrupt the tagmentation and purify the resulting tagged
514 fragments, which were amplified using custom-made Nextera primers and a NEBNext High-fidelity 2x
515 PCR Master Mix (New England Labs). The amplified libraries were sequenced as 37 to 76 bp paired-end
516 fragments with NextSeq 500 Illumina technology at the Sequencing and Genomics Facility of the
517 University of Puerto Rico (Table S4).

518

519 *ATAC-seq data analysis*

520 Raw Illumina reads were filtered for adapters and quality using Trimmomatic v0.39 (Bolger et al. 2014).
521 Filtered reads for each sample were then mapped to their respective reference genome using bowtie2
522 v2.2.6 (Langmead and Salzberg 2013) using default parameters. We used; samtools v1.2 (Li et al. 2009)
523 to sort mapped reads and only retain reads with a mapping phred score higher than 20 (-q 20) and that
524 were uniquely mapped and properly oriented (-f 0x02). PCR duplicates were identified and removed
525 using picard-tools v2.5 (<http://picard.sourceforge.net>).

526 ATAC-seq peak intervals were called on the mapped reads (bam files) of each sample using the MACS2
527 ‘callpeak’ command with –g set to the respective reference genome size and –shift set to -100 and –
528 extsize set to 200 (Zhang et al. 2008). Peaks were only retained if they occurred in both replicates with a
529 reciprocal minimal 25% overlap, as determined with bedtools intersect function. The function ‘multicov’

530 from bedtools was used to obtain read counts within ATAC-seq peaks. These read counts were used to
531 obtain library size scaling factors using the function ‘estimateSizeFactors’ from the R package DESeq2
532 (Love et al. 2014). Next, bam files were converted to bedgraphs using the bedtools function ‘genomcov’
533 and scaled using the size scaling factors. Mean ATAC-seq traces for each species were obtained from the
534 two replicate samples using wiggletools (Zerbino et al. 2014). Differential accessibility between head and
535 wing tissues was tested in each species using DESeq2 (Love et al. 2014) with an adjusted p-value smaller
536 than 0.05 and fold change larger than 1.

537

538 *Feature mapping to pan-genome coordinates and comparisons*

539 Features, including genome sequences that are lineage-specific, TE annotations from RepeatMasker, gene
540 annotations (obtained from *H. e. demophoon*), and ATAC-seq peaks from MACS2 were compared after
541 converting their genome coordinates to pan-genome coordinates. This was done by first using the ‘map’
542 utility of the seq-seq-pan software (Jandrasits et al. 2018) and custom scripts. Features that overlapped
543 with scaffold starts or ends in any of the genomes were masked using bedtools ‘subtract’ (-A) to avoid
544 including results from fragmented or missing sequences. Next, lineage-specific sequences were
545 intersected with TE annotations and ATAC-seq peaks using bedtools ‘intersect’ with a minimum overlap
546 of 25% (-f 0.25). Lineage-specific sequences in one of the genomes that did not match a TE annotation
547 were identified as duplications when identifying a blast hit with a similarity higher than 70% elsewhere in
548 the genome using blast v2.10.0.

549

550 *Feature distribution*

551 We measured the genomic distance along the pan-genome of lineage-specific sequences, TEs and ATAC-
552 seq peaks from the closest transcription start site (TSS) of a gene using the function ‘annotatePeaks’ from
553 the software suite Homer (Heinz et al. 2010). Each distribution was compared with that of 100,000
554 random positions with a pairwise Wilcoxon test. For each distribution pair an overlapping index was
555 measured, using the R package *overlapping* v1.6 (Pastore 2018).

556

557 *Motif enrichment*

558 Differential motif enrichment analysis was performed for ATAC-seq peaks that overlapped with lineage-
559 specific TEs using the STREME tool from the MEME suite (Machanick & Bailey 2011; Bailey 2020).
560 This was done for four phylogenetic comparisons: *H. charithonia* compared to *H. erato*, *H. charithonia*
561 compared to *H. melpomene*, *H. erato* compared to *H. melpomene*, and *H. melpomene* compared to *H.*
562 *erato*. As a background model, we constructed a custom dataset including a combined set of lineage-
563 specific TEs without ATAC-seq peaks from the phylogenetic comparisons. Motifs with a p-value smaller
564 than 0.001 were analyzed with Tomtom from the MEME-suite to identify motifs similar transcription
565 factor binding sites in *Drosophila melanogaster* (Gupta et al. 2007).

566 *Historical population demography*

567 Changes in historical population sizes from individual genome sequences were inferred using the pairwise
568 sequentially Markovian coalescent (PSMC) as implemented in MSMC (Schiffels and Durbin 2014).
569 Genotypes were inferred using SAMTOOLS v0.1.19 (Li et al. 2009) from reads mapped to the respective
570 reference genomes using BWA v0.7 (Li and Durbin 2010). This involved a minimum mapping (-q) and
571 base (-Q) quality of 20 and adjustment of mapping quality (-C) 50. A mask file was generated for regions
572 of the genome with a minimum coverage depth of 30 and was provided together with heterozygosity calls
573 to the MSMC tool. MSMC was run on heterozygosity calls from all contiguous scaffolds longer than 500
574 kb, excluding scaffolds on the Z chromosome. We scaled the PSMC estimates using a generation time of
575 0.25 years and a mutation rate of 2e-9 as estimated for *H. melpomene* (i.e., spontaneous *Heliconius*
576 mutation rate corrected for selective constraint (Keightley et al. 2014; Martin et al. 2015)). We obtained
577 whole-genome resequencing reads for *H. e. demophoon* and *H. m. melpomene* from two individuals each
578 from Panama (SAMN05224182, SAMN05224183, SAMEA1919255, and SAMEA1919258 from Van
579 Belleghem et al. 2018). For *H. charithonia*, we obtained resequencing data for one sample from Panama
580 (SAMN05224120 from Van Belleghem et al. 2017) and two samples from Puerto Rico (SAMN05224121
581 from Van Belleghem et al. (2017) and one using the 10X linked-read sequencing data used for the
582 genome assembly from the Puerto Rican population).

583

584 *Signatures of selective sweeps*

585 SweepFinder2 (Degiorgio et al. 2016) was used to detect signatures of selective sweeps in genomic
586 regions with ATAC-seq peaks with lineage-specific TEs. Genotypes from 10 *H. erato demophoon* and 10
587 *H. melpomene rosina* individuals from Panamanian populations were obtained from Van Belleghem et al.
588 (2018). Allele counts for biallelic SNPs were generated using a custom Python script. SNPs were
589 polarized using *H. hermathena* and *H. numata* for the *H. erato* and *H. melpomene* population,
590 respectively. SweepFinder2 was run using default settings and set to test SNPs every 2000 bp (-sg 2000).

591 **Data accessibility**

592 This Whole Genome Shotgun project for the *H. charithonia* pseudo-haplotypes has been deposited at
593 DDBJ/ENA/GenBank under the accession JAKFBP000000000. The version described in this paper is
594 version JAKFBP010000000. The raw 10X chromium sequencing reads for the genome assembly are
595 deposited on SRA (SAMN24661992). ATAC-seq raw reads are available under NCBI Bioproject ID
596 PRJNA795145 (SAMN24689923-SAMN24689940). Code for analyses is available at
597 <https://github.com/StevenVB12/Genomics>.

598

599 **Acknowledgements**

600 We thank Christine Jandrasits for advice in using seq-seq-pan, Markus Möst for help with running
601 SweepFinder2 and Simon H. Martin for help in interpreting chromosomal indel diversity patterns. We
602 also thank Yadira Ortiz-Ruiz and Silvia Planas from the Sequencing and Genomics Facility of the
603 University of Puerto Rico-Rio Piedras for their assistance with DNA extractions and ATAC-seq library
604 preparation and sequencing. This work was supported by a National Institutes of Health-4 NIGMS
605 COBRE Phase 2 Award – Center for Neuroplasticity at the University of Puerto Rico (Grant No.
606 1P20GM103642) to SMVB, a Puerto Rico Science, Technology & Research Trust catalyzer award
607 (#2020-00142) to SMVB and RP, and an NSF EPSCoR RII Track-2 FEC (grant no. OIA 1736026), an
608 NSF IOS 1656389, and a Fondo Institucional para la Investigació n (FIPI), Universidad de Puerto Rico -
609 Recinto de Río Piedras, Decanato de Estudios Graduados e Investigación to RP. For sequencing and
610 computational resources, we thank the University of Puerto Rico, the Puerto Rico INBRE Grant P20
611 GM103475 from the National Institute for General Medical Sciences (NIGMS), a component of the
612 National Institutes of Health (NIH), and the Bioinformatics Research Core of the INBRE. Its contents are
613 solely the responsibility of the authors and do not necessarily represent the official view of NIGMS or
614 NIH.

615 **References**

616 Ashraf S, Hu X, Roote J, Ip Y. 1999. The mesoderm determinant Snail collaborates with related zinc-finger proteins to control
617 Drosophila neurogenesis. *EMBO J* **18**: 6426–6438.

618 Ashraf SI, Ganguly A, Roote J, Ip YT. 2004. Wormiu, a snail family zinc-finger protein, is required for brain development in
619 *Drosophila*. *Dev Dyn* **231**: 379–386.

620 Bailly-Bechet M, Haudry A, Lerat E. 2014. “One code to find them all”: A perl tool to conveniently parse RepeatMasker output
621 files. *Mob DNA* **5**: 1–15.

622 Baxter SW, Nadeau NJ, Maroja LS, Wilkinson P, Counterman B a, Dawson A, Beltran M, Perez-Espona S, Chamberlain N,
623 Ferguson L, et al. 2010. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the *Heliconius*
624 melpomene clade. *PLoS Genet* **6**: e1000794.

625 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* **30**: 2114–
626 2120.

627 Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, et
628 al. 2018. Ten things you should know about transposable elements. *Genome Biol* **19**: 1–12.

629 Branco MR, Chuong EB. 2020. Crossroads between transposons and gene regulation. *Philos Trans R Soc B Biol Sci* **375**: 2–5.

630 Buenrostro J, Giresi P, Zaba L, Chang H, Greenleaf W. 2013. Transposition of native chromatin for multimodal regulatory
631 analysis and personal epigenomics. *Nat Methods* **10**: 1213–1218.

632 Campos JL, Charlesworth B. 2019. The effects on neutral variability of recurrent selective sweeps and background selection.
633 *Genetics* **212**: 287–303.

634 Cerbin S, Jiang N. 2018. Duplication of host genes by transposable elements. *Curr Opin Genet Dev* **49**: 63–69.

635 Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. *Nat Rev Genet* **10**: 195–205.

636 Charlesworth B. 2001. The effect of life-history and mode of inheritance on neutral genetic variability. *Genet Res* **77**: 153–166.

637 Cicconardi F, Lewis JJ, Martin SH, Reed RD, Danko CG, Montgomery SH. 2021. Chromosome Fusion Affects Genetic
638 Diversity and Evolutionary Turnover of Functional Loci but Consistently Depends on Chromosome Size. *Mol Biol Evol*
639 **38**: 4449–4462.

640 Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, Khera A V., Lowther C, Gauthier LD, Wang H, et al.
641 2020. A structural variation reference for medical and population genetics. *Nature* **581**: 444–451.

642 Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: A universal tool for annotation,
643 visualization and analysis in functional genomics research. *Bioinformatics* **21**: 3674–3676.

644 Cutter AD, Payseur BA. 2013. Genomic signatures of selection at linked sites: Unifying the disparity among species. *Nat Rev
645 Genet* **14**: 262–274.

646 Darling AE, Mau B, Perna NT. 2010. Progressivemauve: Multiple genome alignment with gene gain, loss and rearrangement.
647 *PLoS One* **5**: e11147.

648 Davey JW, Barker SL, Rastas PM, Pinharanda A, Martin SH, Durbin R, McMillan WO, Merrill RM, Jiggins CD. 2017. No
649 evidence for maintenance of a sympatric *Heliconius* species barrier by chromosomal inversions. *Evol Lett* **1**: 138–154.

650 Davey JW, Chouteau M, Barker SL, Maroja L, Baxter SW, Simpson F, Merrill RM, Joron M, Mallet J, Dasmahapatra KK, et al.
651 2016. Major improvements to the *Heliconius melpomene* genome assembly used to confirm 10 chromosome fusion events
652 in 6 million years of butterfly evolution. *G3 Genes|Genomes|Genetics* **6**: 695–708.

653 Davies N, Bermingham E. 2002. The historical biogeography of two Caribbean butterflies (Lepidoptera: Heliconiidae) as inferred
654 from genetic variation at multiple loci. *Evolution (N Y)* **56**: 573–589.

655 Degiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. 2016. SweepFinder2: Increased sensitivity, robustness and
656 flexibility. *Bioinformatics* **32**: 1895–1897.

657 Diehl AG, Ouyang N, Boyle AP. 2020. Transposable elements contribute to cell and species-specific chromatin looping and gene
658 regulation in mammalian genomes. *Nat Commun* **11**: 1–18.

659 Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, Sulovari A, Ebler J, Zhou W, Mari RS, et al. 2021.
660 Haplotype-resolved diverse human genomes and integrated analysis of structural variation. *Science (80-)* **372**.

661 Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow R, García-accinelli G, Van Belleghem SM, Patterson N,
662 Daniel E, et al. 2019. Genomic architecture and introgression shape a butterfly radiation. *Science (80-)* **366**: 24174–24183.

663 Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020. RepeatModeler2 for automated genomic
664 discovery of transposable element families. *Proc Natl Acad Sci U S A* **117**: 9451–9457.

665 Fueyo R, Judd J, Feschotte C, Wysocka J. 2022. Roles of transposable elements in the regulation of mammalian transcription.
666 *Nat Rev Mol Cell Biol* **24**: 19–24.

667 Garcia-Perez JL, Widmann TJ, Adams IR. 2016. The impact of transposable elements on mammalian development. *Dev* **143**:
668 4101–4114.

669 Guo X, Yin C, Yang F, Zhang Y, Huang H, Wang J, Deng B, Cai T, Rao Y, Xi R. 2019. The cellular diversity and transcription
670 factor code of *Drosophila* enteroendocrine cells. *Cell Rep* **29**: 4172–4185.e5.

671 Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. 2007. Quantifying similarity between motifs. *Genome Biol* **8**.

672 Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple combinations
673 of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.
674 *Mol Cell* **38**: 576–589.

675 Hendrickx F, Corte Z De, Sonet G, Belleghem SM Van, Köstlbacher S, Vangestel C. 2022. A masculinizing supergene underlies
676 an exaggerated male reproductive morph in a spider. *Nat Ecol Evol* **6**: 195–206.

677 Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. *Genet Res (Camb)* **8**: 269–294.

678 Iyer EPR, Iyer SC, Sullivan L, Wang D, Meduri R, Graybeal LL, Cox DN. 2013. Functional genomic Analyses of two
679 morphologically distinct classes of *Drosophila* sensory neurons: Post-mitotic roles of transcription factors in dendritic
680 patterning. *PLoS One* **8**.

681 Jackman SD, Coombe L, Chu J, Warren RL, Vandervalk BP, Yeo S, Xue Z, Mohamadi H, Bohlmann J, Jones SJM, et al. 2018.
682 Tigmint: Correcting assembly errors using linked reads from large molecules. *BMC Bioinformatics* **19**: 1–10.

683 Jandrasits C, Dabrowski PW, Fuchs S, Renard BY. 2018. Seq-seq-pan: Building a computational pan-genome data structure on
684 whole genome alignment. *BMC Genomics* **19**: 1–12.

685 Jay P, Chouteau M, Whibley A, Bastide H, Parrinello H, Llaurens V, Joron M. 2021. Mutation load at a mimicry supergene sheds
686 new light on the evolution of inversion polymorphisms. *Nat Genet* **53**: 288–293.

687 Joly-Lopez Z, Bureau TE. 2018. Exaptation of transposable element coding sequences. *Curr Opin Genet Dev* **49**: 34–42.

688 Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, Whibley A, Becuwe M, Baxter SW, Ferguson L, et al. 2011.
689 Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. *Nature* **477**: 203–206.

690 Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, Davey JW, Jiggins CD. 2014. Estimation of the
691 spontaneous mutation rate in *Heliconius melpomene*. *Mol Biol Evol* **32**: 239–243.

692 Kohany O, Gentles AJ, Hankus L, Jurka J. 2006. Annotation, submission and screening of repetitive elements in Repbase:
693 RepbaseSubmitter and Censor. *BMC Bioinformatics* **7**: 1–7.

694 Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD. 2015. Multilocus species trees show the recent
695 adaptive radiation of the mimetic *Heliconius* butterflies. *Syst Biol* **64**: 505–524.

696 Kozlov A, Jaumouillé E, Almeida PM, Koch R, Rodriguez J, Abruzzi KC, Nagoshi E. 2017. A screening of UNF targets
697 identifies Rnb, a novel regulator of *Drosophila* circadian rhythms. *J Neurosci* **37**: 6673–6685.

698 Langmead B, Salzberg SL. 2013. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**: 357–359.

699 Lavoie CA, Ii RNP, Novick PA, Counterman BA, Ray DA. 2013. Transposable element evolution in *Heliconius* suggests
700 genome diversity within Lepidoptera. *Mob DNA* **4**: 1–10.

701 Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, Andolfatto P, Przeworski M. 2012. Revisiting an old
702 riddle: What determines genetic diversity levels within species? *PLoS Biol* **10**: e1001388.

703 Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Belleghem SM Van. 2019. Parallel evolution of ancient, pleiotropic enhancers
704 underlies butterfly wing pattern mimicry. *Proc Natl Acad Sci* **116**: 24174–24183.

705 Lewis JJ, Reed RD. 2019. Genome-wide regulatory adaptation shapes population-level genomic landscapes in *Heliconius* ed. P.
706 Wittkopp. *Mol Biol Evol* **36**: 159–173.

707 Lewis JJ, Van Belleghem SM, Papa R, Danko CG, Reed RD. 2020. Many functionally connected loci foster adaptive
708 diversification along a neotropical hybrid zone. *Sci Adv* **6**: 1–11.

709 Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **26**: 589–595.

710 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence
711 Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078–2079.

712 Liu Y, Ramos-Womack M, Han C, Reilly P, Brackett KLR, Rogers W, Williams TM, Andolfatto P, Stern DL, Rebeiz M. 2019.
713 Changes throughout a genetic network Mask the contribution of Hox gene evolution. *Curr Biol* **29**: 2157–2166.e6.

714 Livraghi L, Hanly J, Van Belleghem S, Montejo-Kovacevich G, van der Heijden E, Loh LS, Ren A, Warren I, Lewis J, Concha
715 C, et al. 2021. Cortex *cis*-regulatory switches establish scale colour identity and pattern diversity in *Heliconius*. *Elife* **10**:
716 e68549.

717 Lucek K, Gompert Z, Nosil P. 2019. The role of structural genomic variants in population differentiation and ecotype formation
718 in *Timema cristinae* walking sticks. *Mol Ecol* **28**: 1224–1237.

719 Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C, Vallejo M, Beronja S, Barsh GS, Hoekstra HE. 2016.
720 Developmental mechanisms of stripe patterns in rodents. *Nature* **539**: 518–523.

721 Martin SH, Davey JW, Salazar C, Jiggins CD. 2019. Recombination rate variation shapes barriers to introgression across
722 butterfly genomes. *PLOS Biol* **17**: e2006288.

723 Martin SH, Eriksson A, Kozak KM, Manica A, Jiggins CD. 2015. Speciation in *Heliconius* Butterflies : Minimal Contact
724 Followed by Millions of Generations of Hybridisation. *BioRxiv* 1–24.

725 Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C, Bradbury I, Jakobsen KS, Jentoft S.
726 2022. Supergene origin and maintenance in Atlantic cod. *Nat Ecol Evol*.

727 Mérot C, Oomen RA, Tigano A, Wellenreuther M. 2020. A roadmap for understanding the evolutionary significance of structural
728 genomic variation. *Trends Ecol Evol* **35**: 561–572.

729 Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Jaffe DB, Yang SP, Enard W, Hellmann I, Lindblad-Toh K, Altheide TK, et
730 al. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. *Nature* **437**: 69–87.

731 Moest M, Van Belleghem SM, James J, Salazar C, Martin S, Barker S, Moreira G, Mérot C, Joron M, Nadeau N, et al. 2020.
732 Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. *PLoS Biol* **18**:
733 e3000597.

734 Montgomery S, Rossi M, WO M, Merrill R. 2021. Neural divergence and hybrid disruption between ecologically isolated
735 *Heliconius* butterflies. *Proc Natl Acad Sci* **118**: e2015102118.

736 Montgomery SH, Merrill RM. 2017. Divergence in brain composition during the early stages of ecological specialization in
737 *Heliconius* butterflies. *J Evol Biol* **30**: 571–582.

738 Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, Sugano S, Fujiyama A, Kosugi S, Hirakawa H, et al. 2015.

739 A genetic mechanism for female-limited Batesian mimicry in *Papilio* butterfly. *Nat Genet* **47**: 405–409.

740 Ohtani H, Iwasaki Y. 2021. Rewiring of chromatin state and gene expression by transposable elements. *Dev Growth Differ.*

741 Okamoto H, Hirochika H. 2001. Silencing of transposable elements in plants. *Trends Plant Sci* **6**: 527–534.

742 Ou S, Jiang N. 2018. *LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat*
743 *retrotransposons.*

744 Pastore M. 2018. Overlapping: a R package for Estimating Overlapping in Empirical Distributions. *J Open Source Softw* **3**: 1023.

745 Pinharanda A, Martin SH, Barker SL, Davey JW, Jiggins CD. 2017. The comparative landscape of duplications in *Heliconius*
746 *melpomene* and *Heliconius cydno*. *Heredity (Edinb)* **118**: 78–87.

747 Poelstra JW, Vijay N, Hoeppner MP, Wolf JBW. 2015. Transcriptomics of colour patterning and coloration shifts in crows. *Mol*
748 *Ecol* **24**: 4617–4628.

749 Pontis J, Planet E, Offner S, Turelli P, Duc J, Coudray A, Theunissen TW, Jaenisch R, Trono D. 2019. Hominoid-specific
750 transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human
751 ESCs. *Cell Stem Cell* **24**: 724–735.e5.

752 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**: 841–2.

753 Ray DA, Grimshaw JR, Halsey MK, Korstian JM, Osmanski AB, Sullivan KAM, Wolf KA, Reddy H, Foley N, Stevens RD, et
754 al. 2019. Simultaneous TE Analysis of 19 Heliconiine Butterflies Yields Novel Insights into Rapid TE-Based Genome
755 Diversification and Multiple SINE Births and Deaths. *Genome Biol Evol* **11**: 2162–2177.

756 Reed RD, Chen PH, Frederik Nijhout H. 2007. Cryptic variation in butterfly eyespot development: The importance of sample
757 size in gene expression studies. *Evol Dev* **9**: 2–9.

758 Rigal M, Mathieu O. 2011. A “mille-feuille” of silencing: Epigenetic control of transposable elements. *Biochim Biophys Acta -*
759 *Gene Regul Mech* **1809**: 452–458.

760 Rodriguez-Caro F, Fenner J, Bhardwaj S, Cole J, Benson C, Colombara AM, Papa R, Brown MW, Martin A, Range RC, et al.
761 2021. Novel *doublesex* duplication associated with sexually dimorphic development of Dogface butterfly wings. *Mol Biol*
762 *Evol* **38**: 5021–5033.

763 Sato A, Tomlinson A. 2007. Dorsal-ventral midline signaling in the developing *Drosophila* eye. *Development* **134**: 659–667.

764 Schiffels S, Durbin R. 2014. Inferring human population size and separation history from multiple genome sequences. *Nat Genet*
765 **46**: 919–925.

766 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V. 2015. BUSCO: assessing genome assembly and annotation
767 completeness with single-copy orthologs. *Bioinformatics* **31**: 3210–3212.

768 Suntsova M V., Buzdin AA. 2020. Differences between human and chimpanzee genomes and their implications in gene
769 expression, protein functions and biochemical properties of the two species. *BMC Genomics* **21**: 1–12.

770 Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. *Curr Protoc*
771 *Bioinforma Chapter 4: Unit 4.10.*

772 Van't Hof AE. 2016. The industrial melanism mutation in British peppered moths is a transposable element. *Nature* **534**: 102–
773 105.

774 Van Belleghem SM, Baquero M, Papa R, Salazar C, Mcmillan WO, Counterman BA, Jiggins CD, Martin SH. 2018. Patterns of Z
775 chromosome divergence among *Heliconius* species highlight the importance of historical demography. *Mol Ecol* **27**:
776 3852–3872.

777 Van Belleghem SM, Rastas P, Papanicolaou A, Martin SH, Arias CF, Supple MA, Hanly JJ, Mallet J, Lewis JJ, Hines HM, et al.
778 2017. Complex modular architecture around a simple toolkit of wing pattern genes. *Nat Ecol Evol* **1**: 52.

779 Vassetzky NS, Kramerov DA. 2013. SINEBase: A database and tool for SINE analysis. *Nucleic Acids Res* **41**: 83–89.

780 Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, Park TJ, Deaville R, Erichsen JT, Jasinska AJ, et al. 2015.
781 Enhancer evolution across 20 mammalian species. *Cell* **160**: 554–566.

782 Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R, Holmes L, Sogoloff B, Tabbaa D, Williams L, Russ C, et al. 2014.
783 Comprehensive variation discovery in single human genomes. *Nat Genet* **46**: 1350–1355.

784 Weissensteiner MH, Bunikis I, Catalán A, Francoijis KJ, Knief U, Heim W, Peona V, Pophaly SD, Sedlazeck FJ, Suh A, et al.
785 2020. Discovery and population genomics of structural variation in a songbird genus. *Nat Commun* **11**: 1–11.

786 Wellenreuther M, Mérot C, Berdan E, Bernatchez L. 2019. Going beyond SNPs: The role of structural genomic variants in
787 adaptive evolution and species diversification. *Mol Ecol* **28**: 1203–1209.

788 Westerman EL, Vankuren NW, Massardo D, Buerkle N, Palmer SE, Kronforst MR. 2018. *Aristaless* controls butterfly wing color
789 variation used in mimicry and mate choice. *Curr Biol* **28**: 1–6.

790 Wimmer E, Jäckle H, C P, SM C. 2010. A *Drosophila* homologue of human Sp1 is a head-specific segmentation gene. *J Am*
791 *Chem Soc* **132**: 2517–2528.

792 Yan H, Bombara A, Li S. 2020. DeepTE: A computational method for de novo classification of transposons with convolutional
793 neural network. *Bioinformatics* **36**: 4269–4275.

794 Zerbino DR, Johnson N, Juettemann T, Wilder SP, Flieck P. 2014. WiggleTools: Parallel processing of large collections of
795 genome-wide datasets for visualization and statistical analysis. *Bioinformatics* **30**: 1008–1009.

796 Zhang L, Reifová R, Halenková Z, Gompert Z. 2021. How important are structural variants for speciation? *Genes (Basel)* **12**.

797 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, et al. 2008.
798 Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**.

799

800 SUPPLEMENTAL MATERIALS

801

802 **Table S1. Genome assembly sizes, N50 and BUSCO completeness.** Busco: C = complete, S = complete and single-copy, D =
803 complete and duplicated, F = fragmented, M = missing.

Species	Assembly size (Mb)	N50 (kb)	BUSCO completeness
<i>H. melpomene</i>	275.3	14,309	C:99.3% [S:98.3%, D:1.0%], F:0.3%, M:0.4%
<i>H. erato</i>	382.8	10,689	C:98.8% [S:97.6%, D:1.2%], F:0.2%, M:1.0%
<i>H. charithonia</i> (hap 1)	355.2	11,106	C:98.9% [S:97.9%, D:1.0%], F:0.8%, M:0.4%
<i>H. charithonia</i> (hap 2)	361.5	11,118	C:98.2% [S:97.4%, D:0.8%], F:0.8%, M:1.0%
Homologous (pan-genome)	138.6	NA	C:94.9% [S:94.8%, D:0.1%], F:1.4%, M:3.7%

804

805

806

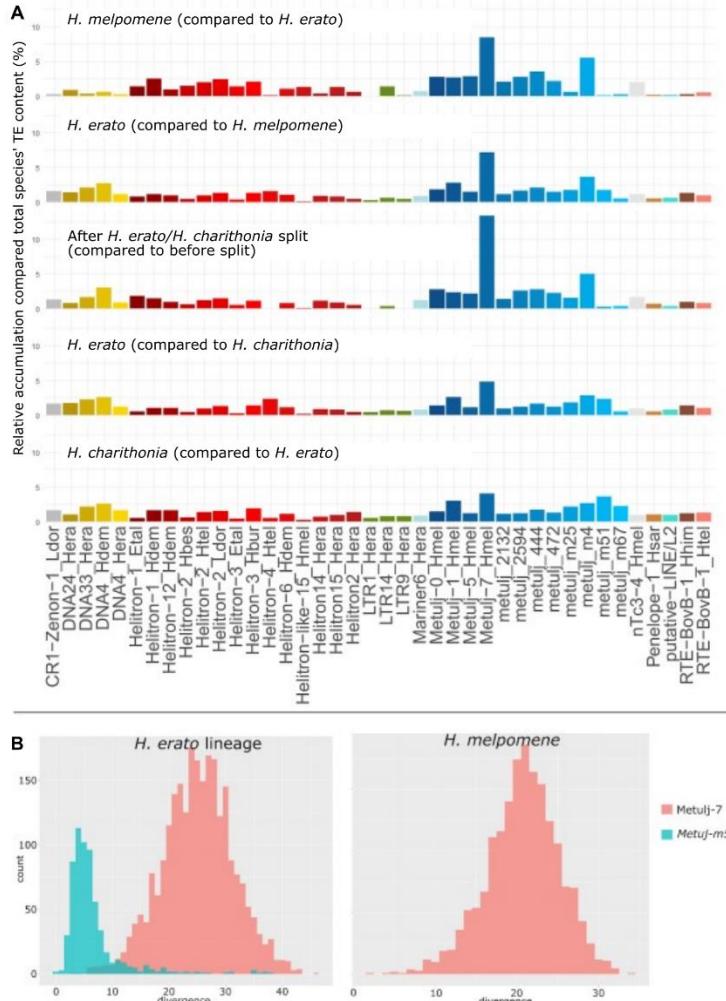
807 **Table S2. Lineage-specific sequence composition.** Lineage-specific (unique) sequences were characterized as being 1 bp,
808 shorter than 20 bp (< 20 bp), larger than 1,000 bp, Transposable Elements (TE), or duplicated. % genome = percentage of total
809 length of genome, % count = percentage of unique sequence count, % unique = percentage of unique sequence base pairs.

	Unique sequence in Mb (% genome)	1 bp in Mb (% genome /% count /% unique)	< 20 bp in Mb (% genome /% count /% unique)	> 1000 bp in Mb (% genome /% count /% unique)	TE unique)	Dupl. (% unique)	Total identified (% unique)
<i>H. charithonia</i> (indels)	72.7 (18.0)	0.74 (0.18 / 25.78 / 1.92)	8.04 (2.00 / 95.49 / 20.88)	20.46 (5.07 / 0.13 / 53.09)	42.36	5.21	63.79
<i>H. charithonia</i> (compared to <i>H. erato</i>)	175.2 (43.45)	0.16 (0.04 / 5.76 / 1.57)	11.02 (2.73 / 81.96 / 10.64)	33.74 (8.37 / 0.35 / 32.58)	52.22	6.17	69.78
<i>H. erato</i> (compared to <i>H. charithonia</i>)	151.21 (39.49)	0.21 (0.05 / 7.11 / 0.14)	11.44 (2.99 / 77.91 / 67.57)	63.98 (16.71 / 0.71 / 42.31)	52.85	10.66	70.03
<i>H. charithonia</i> (compared to <i>H. melpomene</i>)	252.7 (62.67)	0.27 (0.07 / 6.90 / 0.15)	12.83 (3.18 / 67.50 / 7.09)	34.82 (8.64 / 0.27 / 19.24)	42.50	9.10	58.69
<i>H. erato</i> (compared to <i>H. melpomene</i>)	222.12 (58.02)	0.17 (0.04 / 4.48 / 0.08)	12.93 (3.38 / 64.67 / 5.82)	65.39 (17.08 / 0.56 / 29.44)	49.48	7.12	61.63
<i>H. melpomene</i> (compared to <i>H. charithonia</i>)	113.5 (41.24)	0.17 (0.06 / 6.14 / 0.15)	10.27 (3.73 / 75.87 / 9.06)	29.18 (10.60 / 0.44 / 25.73)	47.34	5.29	61.83
<i>H. melpomene</i> (compared to <i>H. erato</i>)	106.83 (38.82)	0.13 (0.05 / 4.93 / 0.12)	9.64 (3.50 / 78.34 / 9.02)	29.01 (10.54 / 0.46 / 27.15)	47.34	5.29	61.83

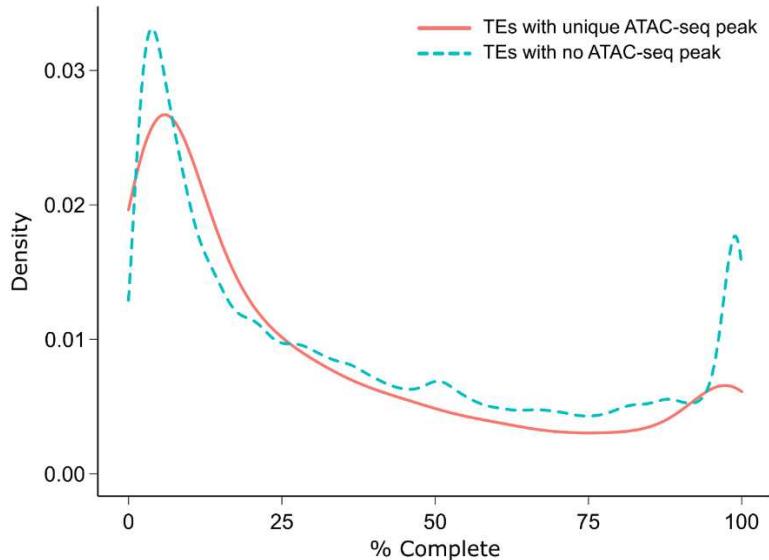
810

811 **Table S3. Genes near lineage-specific ATAC-seq peaks with head-specific accessibility and that associate with lineage-
812 specific TE insertions.** Rows indicated with an asterisk are peaks near genes with a known function related to eye or neuron
813 development. Note that origin relative to their split can only be presented for *H. erato* and *H. charithonia*.

Species	Origin relative to split	PAN start	PAN end	Distance to TSS	Nearest Gene	Blast description
<i>H. melpomene</i>		43439207	43439817	-53871	evm.model.Herato0211.54	nardilysin-like isoform X2
		53556044	53557026	-52466	evm.model.Herato0215.115	ATP-dependent RNA helicase WM6
		81976962	81977176	70377	evm.model.Herato0401.20	unnamed protein product
		113559102	113559581	13883	evm.model.Herato0503.140	arylphorin subunit alpha-like
		141307229	141307607	4610	evm.model.Herato0606.195	odorant receptor 13a-like
		244127509	244127706	5262	evm.model.Herato1003.231	F-box/WD repeat-containing protein 9-like
		249090365	249090829	6302	evm.model.Herato1005.147	nuclear speckle splicing regulatory protein 1
		316442193	316442554	-12875	evm.model.Herato1202.784	protein chiffon
		337485755	337486339	-18528	evm.model.Herato1301.495	elongation of very long chain fatty acids protein AAEL008004-like isoform X1
		422443342	422443560	-70418	evm.model.Herato1605.106	HMG box transcription factor BBX isoform X1
		441652772	441653477	3975	evm.model.Herato1701.397	RNA transcription, translation and transport factor protein
		442836249	442836683	225826	evm.model.Herato1703.4	nose resistant to fluoxetine protein 6-like
		472668250	472669760	-63199	evm.model.Herato1805.136	serine/threonine-protein kinase PAK 3
		501603158	501603392	-41438	evm.model.Herato1904.173	flybase fork head domain transcription factor slp2-like
		506155200	506155751	62769	evm.model.Herato1904.273	zwei Ig domain protein zig-8-like
		521680935	521681435	14258	evm.model.Herato1910.196	DNA replication complex GINS protein PSF1-like
		550702397	550702548	-126489	evm.model.Herato2001.741	uncharacterized protein LOC117985494
		559001222	559002513	7196	novel_gene_269	unnamed protein product
<i>H. erato</i>	After split from <i>H. charithonia</i>	492945962	492946224	30444	evm.model.Herato1901.113	MICOS complex subunit Mic60-like
	After split from <i>H. charithonia</i>	492946674	492947610	31493	evm.model.Herato1901.113	MICOS complex subunit Mic60-like
	After split from <i>H. charithonia</i>	526831481	526832240	1266	novel_gene_251	unnamed protein product
	After split from <i>H. charithonia</i>	526832505	526833450	2383	novel_gene_251	unnamed protein product
<i>H. charithonia</i>	Before split from <i>H. erato</i>	549632384	549632712	18655	evm.model.Herato2001.719	importin subunit alpha-1-like
	After split from <i>H. erato</i>	143139789	143140178	19714	evm.model.Herato0606.238	tropomodulin-1 isoform X5

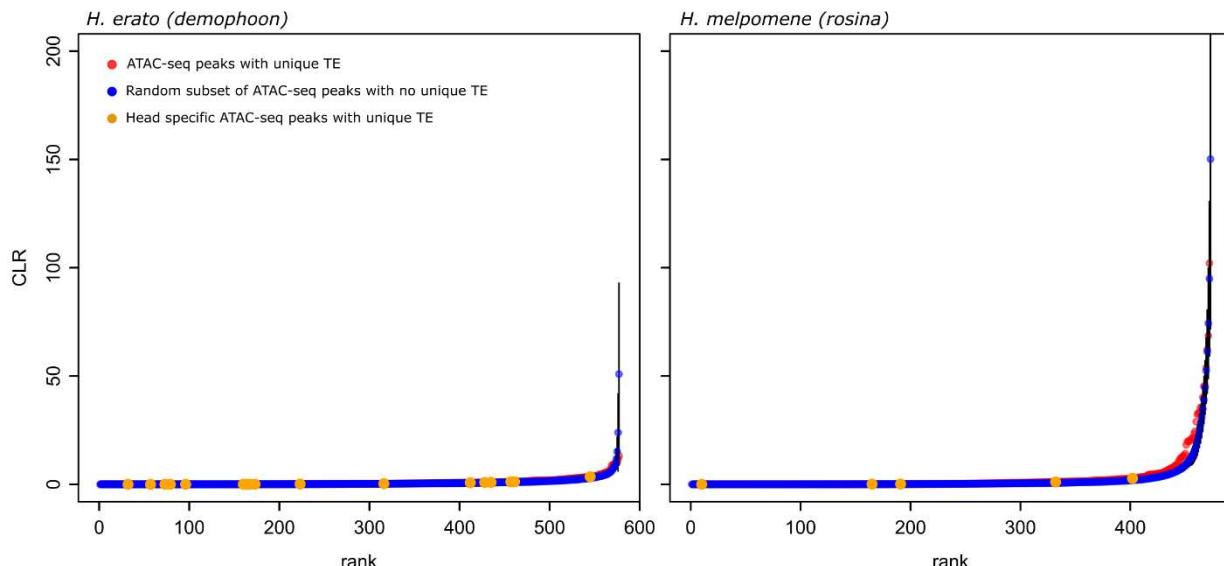

814

815


Table S4. ATAC-seq samples. Number of reads are quality filtered and properly paired.

Sample ID	Tissue	Species	Locality	Accession #	# reads
CH_head2	Head	<i>H. charithonia</i>	Puerto Rico	SAMN24689923	14,045,582
CH_head6	Head	<i>H. charithonia</i>	Puerto Rico	SAMN24689924	36,694,766
BR12	Head	<i>H. erato demophoon</i>	Panama	SAMN24689925	18,019,744
BR14	Head	<i>H. erato demophoon</i>	Panama	SAMN24689926	57,988,466
BR11	Head	<i>H. melpomene rosina</i>	Panama	SAMN24689927	10,214,746
M4_head	Head	<i>H. melpomene rosina</i>	Panama	SAMN24689928	45,921,776
CH_FW2	Forewing	<i>H. charithonia</i>	Puerto Rico	SAMN24689929	8,605,992
CH_FW7	Forewing	<i>H. charithonia</i>	Puerto Rico	SAMN24689930	23,397,866
LI7_demophoon_FW	Forewing	<i>H. erato demophoon</i>	Panama	SAMN24689931	17,294,536
FW-pboy	Forewing	<i>H. erato demophoon</i>	Panama	SAMN24689932	49,257,240
LI14_rosina_FW	Forewing	<i>H. melpomene rosina</i>	Panama	SAMN24689933	23,449,240
M4_FW	Forewing	<i>H. melpomene rosina</i>	Panama	SAMN24689934	24,353,808
CH_HW2	Hindwing	<i>H. charithonia</i>	Puerto Rico	SAMN24689935	26,910,064
CH_HW7	Hindwing	<i>H. charithonia</i>	Puerto Rico	SAMN24689936	21,029,072
LI7_demophoon_HW	Hindwing	<i>H. erato demophoon</i>	Panama	SAMN24689937	14,631,856
LB_42	Hindwing	<i>H. erato demophoon</i>	Panama	SAMN24689938	26,635,566
LI14_rosina_HW	Hindwing	<i>H. melpomene rosina</i>	Panama	SAMN24689939	23,176,622
M4_HW	Hindwing	<i>H. melpomene rosina</i>	Panama	SAMN24689940	36,959,108

816



817 *divergence* *divergence*
818 **Figure S1. Lineage specific transposable element activity.** (A.) Scaccumulation of the 40 most active TE families in each lineage
819 (values are percentages among the total lineage-specific TEs in the species). These families were obtained by grouping the 20
820 most active families for each lineage comparison (see Figure 3). (B.) Divergence distribution plots of Metulj-7 and Metulj-m51
821 represent times of activity in *H. erato* and *H. melpomene*. The x-axis represents the divergence (percentage) from the reference
822 sequence corrected with the Jukes-Cantor model, the y-axis represents the sequence count.

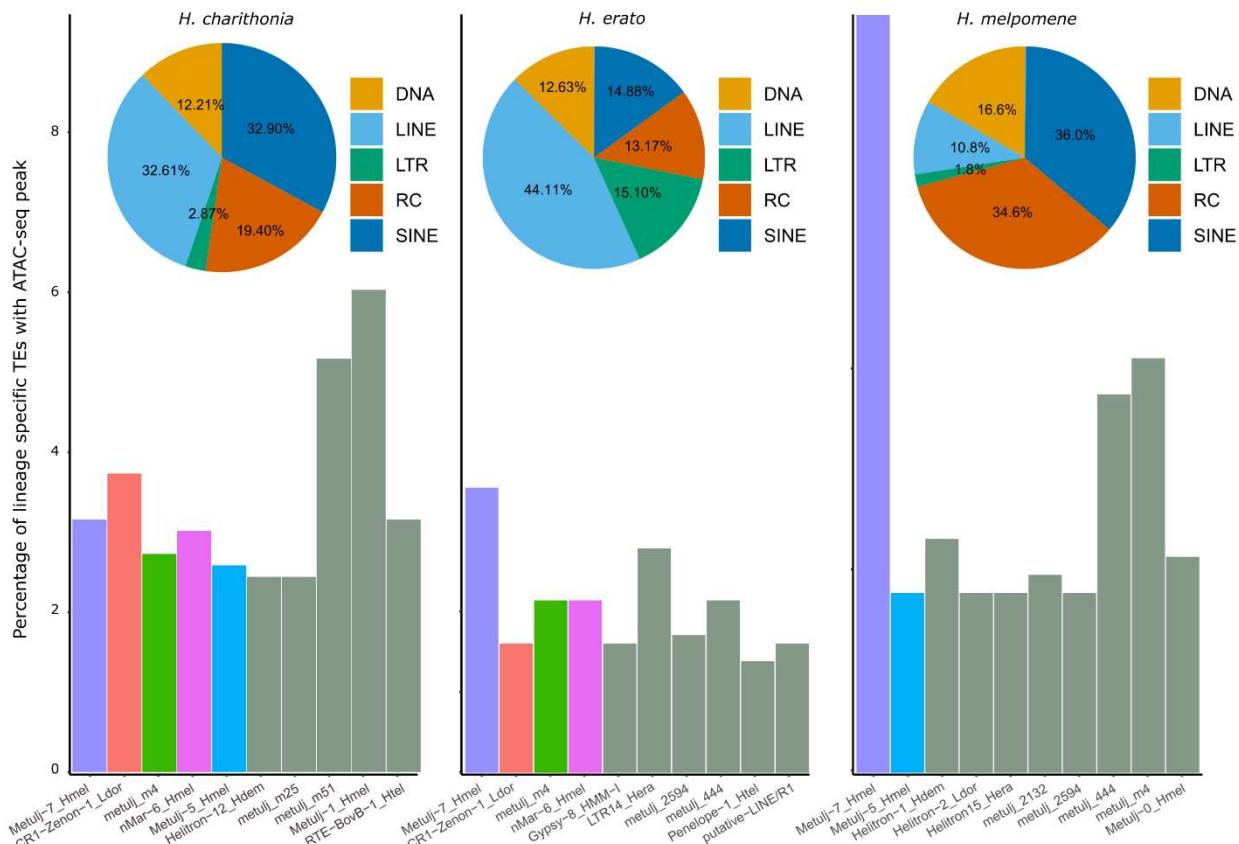

823
824
825
826
827
828
829

Figure S2. Completeness of Transposable Elements (TEs) for TEs associated with lineage-specific ATAC-peaks and TEs with no ATAC-seq peak association. TE completeness was calculated based on the total length of each element recovered from the reference library.

830
831
832
833
834
835

Figure S3. Ranked SweepFinder2 Composite Likelihood Ratio (CLR) values for ATAC-seq peaks with and without lineage-specific Transposable Element (TE). ATAC-seq peaks with lineage-specific TE (red) do not show greater signatures of selective sweeps than expected from random subsets of ATAC-seq peaks with no lineage-specific TE (blue) in both populations of *H. erato demophoon* (left) and *H. melpomene rosina* (right). Head-specific ATAC-seq peaks with a lineage-specific TE are indicated in orange.

836

837 **Figure S4. Transposable Element (TE) composition of lineage-specific (i.e., compared to all other species) ATAC-seq**
838 **peaks within TEs.** Pie charts show the TE family distribution. Bar plots show the percentage of the ten most represented TEs in
839 each lineage relative to the total number lineage-specific ATAC-seq peaks within TEs.