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Abstract

Automatic neuroimaging segmentation and parcellation tools provide convenient and systematic
methods for extracting numerous features from brain MRI scans, and are becoming standard
practice for large-scale coordinated studies. One such tool, FreeSurfer, provides an easy-to-use
pipeline to extract metrics describing cortical and subcortical morphometry. Over the past two
decades, there have been over 25 stable releases of FreeSurfer, and different versions are used
across published works. Despite this, the reliability and compatibility of metrics derived from the
most recent major version releases have yet to be assessed empirically. Here, we use test-retest
data from three public brain MRI datasets to assess within-version reliability and between-version
compatibility across 42 regional outputs from three versions of FreeSurfer: the latest, v7.1, and two
previous stable releases - v5.3, and v6.0. We find v7.1 was less compatible with older versions for
measuring cortical thickness. In particular, the thickness of the cingulate gyrus had low compatibility
(intraclass correlation coefficient (ICC) between 0.37 and 0.61) between versions. Temporal and
frontal poles, and the medial orbitofrontal surface area metrics, also showed low to moderate
compatibility with v7.1. While our work compares all three versions, our sub-comparisons between
the older versions (v5.3 and v6.0) replicates earlier findings of low compatibility of pallidum and
putamen volumes. Low between-version compatibility was not always indicative of low
within-version reliability – all versions showed good to excellent reliability across most regional
measures (ICC>0.8). Age associations, quality control metrics, and Dice coefficients in an
independent sample of 106 individual scans, processed with all three versions of FreeSurfer,
revealed differences in results of downstream statistical analysis. As neuroimaging studies adopt
more recently released software, we provide researchers with a reference to highlight the regions
and metrics that may yield findings inconsistent with published works using older FreeSurfer
software. An interactive viewer for the results is provided at
http://data.brainescience.org/Freesurfer_Reliability/

Introduction

The reproducibility of research findings in the biological sciences has recently come to light as a
major problem, particularly for the neuroimaging-heavy fields of psychological and neuro-sciences
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(Button et al., 2013, Boekel et al., 2015, Bowring et al., 2019, Poldrack et al., 2020, Hodge et al.,
2020). Studies on major depressive disorder (MDD), for example, have pointed out inconsistencies in
results as well as difficulties in drawing comparisons due to analytical and study design variability
(Stuhrmann et al., 2011, Dichter et al., 2015, Müller et al., 2017, Fonseka et al., 2018, Beijers et al.,
2019, Kang et al., 2020). In one study, using a more heterogeneous sample and rigorous statistical
testing, Dinga et al. (2019) were unable to replicate the statistical significance used to define MDD
biotypes previously found in the literature. Inconsistent results investigating neuroimaging traits and
diseases have also been found in studies of insomnia (Spiegelhalder et al., 2015) and mild traumatic
brain injury (mTBI). A meta-analysis of 14 reports of working memory in mTBI showed mixed findings
of functional magnetic resonance imaging (MRI) hyperactivity, hypoactivity, and some studies even
report both hyper and hypo activity (Bryer et al., 2013). Neuroimaging offers mechanistic insights into
the variability that leads to risk for brain dysfunction, yet these findings must be replicable in order to
extend the use of MRI-derived biomarkers to a clinical setting.

It is important to understand how and why these discrepancies occur, so that we can better
understand why certain findings are not reproducible. For example, studies may be underpowered,
or the variable of interest might have different effects across populations. Experimental results can
also be affected by methodological factors such as the type of data collection (Yan et al., 2020), data
processing and analysis (Carp 2012, Bennett et al., 2013, Botvinik-Nezer et al., 2020, Lindquist
2020), tool version and selection (Gronenschild et al., 2012, Tustison et al., 2014, Dickie et al., 2017,
Perlaki et al., 2017, Meijerman et al., 2018, Bigler et al., 2020, Zavaliangos-Petropulu et al., 2022),
and even operating system environments (Glatard et al., 2015). The presence of pathological tissue
has also been reported to cause systematic errors in segmentation output (Dadar et al., 2021). If
sample population and methodology differ, it can be difficult to tease apart the main source of the
discrepant findings.

Recent efforts in the neuroimaging community have heightened awareness and partially addressed
concerns surrounding reproducibility. Guides and tools for enhancing reproducibility have been
published in an effort to promote Open Science. Open science aims to provide transparency into
research studies to better understand the data collected, the code implemented and software used,
the analysis performed, and the full scope of results, including null findings (Zuo et al., 2014,
Gorgolewski et al., 2015, Gorgolewski & Poldrack 2016, Poldrack et al., 2017, Nichols et al., 2017,
Vicente-Saez & Martinez-Fuentes 2018, Kennedy et. al., 2019). These efforts often include detailed
documentation and containerization of analytical software to ensure consistency of software version,
and even operating system to the extent possible should the study be replicated. Large consortia,
such as ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis), have also addressed
issues of low power and varying data processing pipelines by conducting large scale harmonized
meta- and mega-analyses across international datasets (Thompson et al., 2020). Analytical protocols
are proposed and approved by the community in advance; they are then distributed and made
readily available. These protocols also include data quality control guidelines to improve analytic
consistency across heterogeneous datasets and populations.

Large, publicly available and densely phenotyped datasets that use these protocols have recently
become a powerful resource that have advanced the field of neuroscience (Horien et al 2021).
Studies like the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the UK Biobank collect data
from one thousand to tens of thousands of individuals (Weiner et al., 2015, Littlejohns et al., 2020)
with some collecting longitudinal data that spans well over a decade (Weiner et al., 2017). Automatic
segmentation tools are widely used on such datasets and have allowed for tens to hundreds of
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thousands of scans to be conveniently processed, thus enabling neuroimaging traits to be used in a
wide range of clinical and epidemiological studies. However, these tools do not come without their
challenges and limitations.

Data processed from updated versions of these softwares are continuously released
(http://adni.loni.usc.edu/2021/) and this leaves researchers questioning which version is most
reliable or whether data and results from work that used prior versions are compatible with those of
later releases. If the detected effects depend on the software version used, then that variability could
threaten the reproducibility of published research and compromise clinical translation. However,
these version updates are often needed to keep up with the many advancements made in the
neuroimaging field. For example, version updates may include added options or tools to work with
higher resolution images, or more computational efficient image processing pipelines (e.g., the use
of GPUs for processing). As newer software releases are made available, we often lack information
on whether new results will be consistent with prior findings, and what the impact of a software
upgrade will be. To understand sources of study variability, it is important to understand how version
upgrades may impact outcome measures.

One such automatic feature extraction and quantification tool that is widely used in neuroimaging is
FreeSurfer (Fischl, 2012). FreeSurfer is a structural MRI processing suite that allows researchers to
obtain brain parcellations and metrics from just a single T1-weighted image. Running the software
involves just a one command, but the process itself is quite extensive – where the single image
undergoes 34 stepwise processing stages (https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all).
Notably, more than 60 research papers have been published detailing FreeSurfer’s algorithms and
workflows (https://www.zotero.org/freesurfer/collections/F5C8FNX8). The overall processing steps
include: image preprocessing, brain extraction, gray and white matter segmentation, reconstruction
of the white matter and pial surfaces, labeling of cortical and subcortical regions, and a spherical
nonlinear registration of the cortical surface using a stereotaxic atlas, allowing for a more accurate
alignment of gyral and sulcal landmarks. Users can then extract features, such as cortical thickness
(defined as the distance between the white matter and pial surfaces), surface area (or the area of all
the triangles on the mesh representing the white matter surface), and cortical and subcortical
volumes, measured in cubic millimeters (Fischl, 2012).

A PubMed search of “freesurfer”, in the year 2020 alone, results in a total of 344 publications,
indicating its wide use as a neuroimaging resource
(https://pubmed.ncbi.nlm.nih.gov/?term=%28freesurfer%29&filter=years.2020-2020)​​. It has been a
popular tool for over 20 years throughout which over 25 different stable releases have been
disseminated (https://surfer.nmr.mgh.harvard.edu/fswiki/PreviousReleaseNotes). Version release
updates have included, for example, improvements in accuracy of the cortical labels or a
change/addition in a preprocessing step such as denoising or bias field correction
(https://surfer.nmr.mgh.harvard.edu/fswiki/ReleaseNotes). These version changes may affect certain
extracted measures. Gronenschild et al. (2012) compared volumes and cortical thickness measures
across FreeSurfer v4.3.1, v4.5.0, and v5.0.0 and found many measurements differed significantly.
After the release of the next version, v5.3, Dickie et al. (2017) performed correlation analysis between
cortical thickness measures output from FreeSurfer v5.1 and v5.3, and found high compatibility
between the two versions. Such work helped inform protocols for consortia such as ENIGMA, where
groups that had run FreeSurfer versions older than v5.0, were asked to rerun their processing
pipeline, whereas both v5.1 and v5.3 were used for analyses within certain working groups. A more
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recent study, Bigler et al. (2020), compared FreeSurfer v5.3 and v6.0 across a select set of volumes,
finding low compatibility between versions within the globus pallidus.

The latest stable release, v7.1, has yet to be thoroughly assessed for intra-version reliability and
between-version compatibility. Here, we assessed the reliability and compatibility of the last three
stable FreeSurfer version releases – v5.3 (2013), v6.0 (2017), and v7.1 (2020) – across three publicly
available test-retest datasets. We set out to determine the (1) between-version compatibility and (2)
within-version reliability, for cortical thickness, surface area, and subcortical volumes. To test how
these version differences may influence population-level findings, we ran all three FreeSurfer
versions on a subset of cross-sectional data from the UK Biobank, a cohort of middle-aged to older
adults. We visually quality controlled and computed Dice overlap scores between each pair of
versions for all regional outputs. Finally, we determined the linear effect of age for each region and
metric of interest, to understand the stability of this effect across software versions.

Methods

Datasets

Test-retest datasets from the Human Connectome Project (HCP) (Van Essen et al., 2013), Kennedy
Krieger Institute (KKI) (Landman et al., 2010), and Open Access Series of Imaging Studies (OASIS-1)
(Marcus et al., 2007) were used to assess reliability within and between FreeSurfer versions. We
limited the analysis to 76 healthy individuals with T1-weighted brain MRI scans aged 19–61. KKI
includes retest data from 21 healthy volunteers with no history of neurological conditions; a retest
subset of 35 healthy young adults are provided by HCP, and OASIS-1 includes 20 nondemented
subjects imaged twice. The max inter-scan interval of 11 months in the HCP dataset is longer than
OASIS and KKI, yet we do not suspect considerable changes in brain structure between sessions
given that HCP is comprised of young healthy adults between the ages of 22 to 35 (Van Essen et al.,
2013).

See Table 1 for more details.

Cohort
Age range;
mean(SD)

No. of
subjects (%F)

Max inter-scan
interval in days

(mean)

Manufacturer/
Field strength

Voxel size [mm]3

HCP 22–35; 30.7(2.97) 35 (44%) 330 (144) Siemens 3T [0.7 × 0.7 × 0.7]

KKI 22–61; 31.8(9.47) 21 (48%) 14 Philips 3T [1 × 1 × 1.2]

OASIS 19–34; 23.4(4.03) 20 (60%) 90 (20.6) Siemens 1.5T [1.0 × 1.0 × 1.25]
Table 1. Cohort demographics and scan parameters for test-retest datasets analyzed. HCP is a
family-based dataset including up to 4 individuals per family, so we limited our ICC investigations to
one randomly chosen individual per family.

A subset of 106 neurologically healthy individuals was selected from the UK Biobank (Miller et al.,
2016) to test age association outcome differences between versions. This included 56 females with a
mean age and standard deviation of 62.3 (7.2) years and 50 males with a mean age and standard
deviation of 61.2 (7.7) years. In this case, being neurologically healthy was defined based on the
following exclusion criteria: cancers and diseases of the nervous system, aortic valve diseases, head
injuries, and schizophrenia/bipolar disorders. While the UK Biobank has over 40,000 individual
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scans, we selected a relatively small subset, with a sample size more in line with most single-site
current neuroimaging studies.

FreeSurfer Regions and Metrics of Interest

All scans were run through the same recon-all pipeline provided by FreeSurfer for stable v5.3, v6.0,
and v7.1 releases. Cortical parcellations were computed based on the Desikan-Killiany atlas
(Desikan et al., 2006), where 34 distinct regions on each cortical hemisphere are labeled according
to the gyral patterns. For each cortical region, FreeSurfer outputs the average cortical thickness,
surface area, and volume. We focus our analyses on cortical thickness and surface area, as these
are largely independent measures (Winkler et al., 2010) and volume is a composite of the two. We
also extract and evaluate the FreeSurfer derived measures of total intracranial volume (ICV) and
volumes of eight subcortical regions: the nucleus accumbens, amygdala, caudate, hippocampus,
lateral ventricle, pallidum, putamen, and the thalamus. These metrics are all ones that have been
repeatedly used throughout multinational ENIGMA projects, and are therefore of particular interest to
many collaborative investigators invested in reproducible findings. For all of our ICC analysis here,
we report left and right measures, as well as average cortical thickness, total surface area, and
average subcortical volumes. We also include hemisphere and whole brain cortical thickness and
surface area.

Statistics and Quality Control

Intra-class correlation coefficients (ICCs) were calculated using the psych library in R
(https://CRAN.R-project.org/package=psych). The following three compatibility comparisons were
evaluated: v7.1 vs. v6.0, v7.1 vs. v5.3, and v6.0 vs. v5.3. Only the first time points from the
test-retest data were selected for these comparisons. ICC2 was used to compute between-version
compatibility measures to account for any systematic errors using the following formula:

𝐼𝐶𝐶2 = 𝐵𝑀𝑆 − 𝐸𝑀𝑆
𝐵𝑀𝑆+ (𝑘− 1)𝐸𝑀𝑆+𝑘(𝐽𝑀𝑆− 𝐸𝑀𝑆)/𝑛'

where BMS is the between-targets mean square, EMS is the residual mean square, k is the number
of judges, JMS is the between-judges mean square, and n’ is the number of targets (in our context,
the judges would correspond to different software versions used to compute the measures).

Within-version reliability measures were performed on within-subject test-retest data for FreeSurfer
versions v7.1, v6.0, and v5.3. ICC3 was used to measure within-version reliability using the following
formula:

𝐼𝐶𝐶3 =  𝐵𝑀𝑆 − 𝐸𝑀𝑆
𝐵𝑀𝑆+ (𝑘− 1)𝐸𝑀𝑆

where BMS is the between-targets mean square, EMS is the residual mean square, and k is the
number of judges. The reported ICC2 and ICC3 measures represent a weighted average to account
for the number of participants in each dataset. ICC interpretation was based on Koo and Li (2016):
ICCs<0.50 are considered poor; between 0.50 and 0.75 are moderate, between 0.75 and 0.90
denote good agreement; and values greater than 0.90 indicate excellent reliability.
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To test if FreeSurfer version affects population level findings in studies of modest sample size, age
associations were performed in a cross-sectional subset of the UK Biobank using linear regressions.
Sex was used as a covariate; intracranial volume (ICV) was added as a covariate for subcortical
volumes. In that same subset, detailed quality control (QC) was performed using the ENIGMA QC
protocol (http://enigma.ini.usc.edu/protocols/imaging-protocols/) to test differences in regional fail
rates across the versions. 54 subjects were assigned to rater #1 and 52 to rater #2. Each rater QC’ed
the same subset across all three versions. Rater #3 then reviewed all QC fails for consistency. All
subcortical QC was performed by rater #3 where a fail constitutes any notable over- or
under-estimation of volume for any structure. Age associations were also performed in this QC'ed
subset, where subjects were excluded if the QC of any ROI was inconsistent across versions. If
subjects had consistent regional fails, they were kept in the analysis, but those regions were
excluded. While many studies of such sample size may perform manual segmentation corrections,
there is no way to ensure consistent manual editing across the outputs of all software versions. We
therefore opted to exclude QC fails to ensure our reported differences were due to changes in
software version.

For each set of regressions within a version, statistical significance was determined after controlling
the false discovery rate at q=0.05 across 234 measures, which included all bilateral, unilateral, and
full brain measures. False-discovery rate (FDR; Benjamini & Hochberg, 1995) corrected p-values and
z-statistics were plotted on brain surfaces for comparison. All values, including uncorrected
p-values, are tabulated on our web-viewer. Dice coefficients (Dice, 1945) were also calculated in the
UK Biobank subset to assess the extent of spatial overlap of ROIs across versions, for all regions in
the Desikan-Killiany atlas.

Results

The full set of our reliability, compatibility, and association results are available through an interactive
3D brain viewer here: http://data.brainescience.org/Freesurfer_Reliability/.

Between Version Compatibility

Version compatibility results between FreeSurfer v5.3, v6.0. and v7.1 for all cortical and subcortical
metrics are shown in Figure 1. Overall, the version compatibility across all versions for average
cortical thickness was good to excellent (ICCv7.1:v6.0=0.81; ICCv7.1:v5.3=0.85; ICCv6.0:v5.3=0.91). Similarly,
left and right hemispheric thicknesses were good for v7.1 comparisons (left: ICCv7.1:v6.0=0.80,
ICCv7.1:v5.3=0.86; right: ICCv7.1:v6.0=0.81, ICCv7.1:v5.3=0.83), and excellent when comparing v6.0 to v5.3
(left: ICCv6.0:v5.3=0.91; right: ICCv6.0:v5.3=0.90). Furthermore, version compatibility was excellent for v7.1
vs. v6.0 in several bilateral regional parcellations including the paracentral, postcentral, superior
frontal, transverse temporal, and superior parietal cortices (ICCv7.1:v6.0>0.90). The postcentral
(ICCv7.1:v5.3=0.91) and superior parietal (ICCv7.1:v5.3=0.91) gyri also showed excellent compatibility
between v7.1 and v5.3. Additionally, v6.0 was highly compatible with v5.3 in the superior frontal,
superior temporal, parahippocampal, supramarginal, pars orbitalis, and the banks of the superior
temporal sulcus (ICCv6.0:v5.3≥0.90). Several bilateral regions showed poor compatibility between v7.1
and other versions, however. In particular, the lowest ICCs were found for the isthmus
(ICCv7.1:v5.3=0.37; ICCv7.1:v6.0=0.58), posterior (ICCv7.1:v5.3=0.41; ICCv7.1:v6.0=0.55), caudal anterior
(ICCv7.1:v5.3=0.46; ICCv7.1:v6.0=0.45), and rostral anterior (ICCv7.1:v5.3=0.61; ICCv7.1:v6.0=0.50) subregions of
the cingulate gyrus. An example subject with notable differences in cingulate segmentations is
displayed in Figure 2A. Other regions that showed moderate agreement with v7.1 and either v6.0 or
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v5.3 included the entorhinal (ICCv7.1:v5.3=0.64; ICCv7.1:v6.0=0.67), middle temporal (ICCv7.1:v5.3=0.68), and
insular (ICCv7.1:v6.0=0.67) cortices, as well as the temporal (ICCv7.1:v5.3=0.69) and frontal poles
(ICCv7.1:v5.3=0.70; Figure 1A).

Total surface area showed excellent compatibility across all three versions (ICCv7.1:v6.0=0.99;
ICCv7.1:v5.3=0.96; ICCv6.0:v5.3=0.99). Left and right hemispheric surface area compatibility between
versions were also excellent across all comparisons (ICCs>0.96). Overall, the two most compatible
versions were v7.1 vs. v6.0, where, notably, 29/34 bilateral regions had ICCs>0.90. Several regions
also showed excellent compatibility (ICC>0.90) across all three version comparisons: these included
the caudal middle frontal, the inferior parietal, postcentral, posterior cingulate, rostral middle frontal,
superior parietal, and the supramarginal gyri. However, we did find surface area compatibility
discrepancies not only in regions mostly distinct from cortical thickness, but also between the pairs
of versions being compared as well. The lowest bilateral regional surface area compatibility ICCs
were observed in frontal and temporal areas when comparing newer versions to v5.3, where v7.1
showed lower compatibility to v5.3 than to v6.0. Frontal regions included the medial orbitofrontal
cortex (ICCv7.1:v5.3=0.51; ICCv6.0:v5.3=0.76), pars orbitalis (ICCv7.1:v5.3=0.54; ICCv6.0:v5.3=0.66) and the
frontal poles which were not compatible between either v7.1 (ICCv7.1:v5.3=0.19) or v6.0
(ICCv6.0:v5.3=0.32). However, compatibility between v7.1 and v6.0 was moderate for the medial
orbitofrontal cortex (ICCv7.1:v6.0=0.71), excellent for the pars orbitalis (ICCv7.1:v6.0=0.94), and moderate
for the frontal pole (ICCv7.1:v6.0=0.63). Temporal regions that followed similar trends included the
parahippocampal gyrus (ICCv7.1:v5.3=0.61; ICCv6.0:v5.3=0.70) and the temporal poles (ICCv7.1:v5.3=0.43;
ICCv6.0:v5.3=0.66), where in contrast v7.1 has excellent compatibility with v6.0 for the parahippocampal
gyrus (ICCv7.1:v6.0=0.90) and moderate compatibility for the temporal pole (ICCv7.1:v6.0=0.73; Figure 1D).

ICV was highly compatible across all versions (ICCs>0.97). All bilateral subcortical volumes showed
good to excellent compatibility when comparing v7.1 to v6.0 (ICCs>0.87). Good to excellent
compatibility was also found comparing v5.3 to the newer versions in the lateral ventricle,
hippocampus, thalamus, caudate, and amygdala (ICCs>0.82). Compatibility issues arose when
comparing v7.1 and v6.0 against v5.3. Poor to moderate regional compatibility was found in the
pallidum (ICCv7.1:v5.3=0.34; ICCv6.0:v5.3=0.36), putamen (ICCv7.1:v5.3=0.56; ICCv6.0:v5.3=0.52; Figure 2B),
and to a lesser extent, the nucleus accumbens (ICCv7.1:v5.3=0.78; ICCv6.0:v5.3=0.73; Figure 1G).
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Figure 1. Regional compatibility ICC2 measures. Bilateral, left, and right ICC2 values comparing
cortical thickness (A, B, C), cortical surface area (D, E, F), and subcortical volumes (G, H, I) between
versions. Outer concentric circles represent lower ICC2 values, truncated at 0.50, while the center
represents ICC2=1. Regions with the lowest compatibility differ for cortical thickness and surface
area. These compatibility estimates shown are a sample-size weighted average of results in each of
HCP,  KKI, and OASIS datasets.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488251doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488251
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2. A. Axial slices from the same UK Biobank participant across versions. Arrows indicate
posterior and isthmus cingulate differences in v7.1 vs. v5.3 and v6.0. B. Coronal slices from the
same subject across versions. Arrows demonstrate v5.3 volume differences in the putamen and
pallidum vs. v6.0 and v7.1. C. Medial surface representations of two UK Biobank participants across
versions. Arrows highlight differences in the medial wall pinning, particularly in the entorhinal cortex,
in v7.1 compared to the two prior releases.
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Within-Version Reliability

The meta-analyzed scan-rescan reliability for all cortical and subcortical metrics within each of
FreeSurfer v5.3, v6.0. and v7.1 are shown in Figure 3. All versions showed high reliability for average
bilateral, left hemispheric, and right hemispheric cortical thickness (ICC>0.90). Regional bilateral
metrics with the lowest thickness ICCs – but still considered moderate to good – included the
temporal pole (ICCv7.1=0.71; ICCv6.0=0.83; ICCv5.3=0.74), rostral anterior cingulate (ICCv7.1=0.83;
ICCv6.0=0.79; ICCv5.3=0.78), and the medial orbitofrontal cortex (ICCv7.1=0.85; ICCv6.0=0.88;
ICCv5.3=0.80; Figure 3A). Total bilateral, left hemispheric, and right hemispheric surface area
reliability was also high (ICC=0.99) for all three FreeSurfer versions. The regions with the lowest
surface area ICC were all still highly reliable, but included the frontal poles (ICCv7.1=0.88;
ICCv6.0=0.87; ICCv5.3=0.77), insula (ICCv7.1=0.91; ICCv6.0=0.86; ICCv5.3=0.89), and entorhinal cortex
(ICCv7.1=0.92; ICCv6.0=0.95; ICCv5.3=0.88) (Figure 3D). Regional bilateral subcortical volumes were all
reliable for each of the three versions (ICC > 0.86; Figure 3G). ICV reliability was also very high
(ICC>0.97) for all versions.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488251doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488251
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3. Regional reliability ICC3 measures. Bilateral, left, and right ICC3 values comparing
cortical thickness (A, B, C), cortical surface area (D, E, F), and subcortical volumes (G, H, I) between
versions. Outer concentric circles represent smaller ICC3 values, truncated at 0.70. Regions with the
lowest reliability differ for cortical thickness and surface area. These reliability estimates shown are a
sample-size weighted average of results in each of HCP,  KKI, and OASIS datasets.
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Quality Control and Population-Level Analysis

Figure 4 highlights regional cortical quality issues noted in the subset of UK Biobank participant
scans across each of the evaluated FreeSurfer versions. The region that showed the greatest
difference in failure rate was the left superior temporal gyrus – where v7.1 performed the best (5.7%
fails) followed by v6.0 (7.5% fails), and v5.3 performed the worst (12.3% fails; Figure 4A). In one
subject with poor image quality, a general underestimation occurred throughout the brain in v5.3 but
not in v6.0 and v7.1 (see Figure 4B). Other regions that failed at a relatively similar rate across all
three versions included the left banks of the superior temporal sulcus (v7.1=17%; v6.0=17%;
v5.3=18.9%), the left (v7.1=14.2%; v6.0=13.2%; v5.3=12.3%) and right (v7.1=11.3%; v6.0=12.3%;
v5.3=13.2%) pericalcarine, the left middle temporal (v7.1=13.2%; v6.0=12.3%; v5.3=13.2%), the left
cuneus (v7.1=13.2%; v6.0=12.3%; v5.3=10.4%), and the right cuneus (v7.1=8.5%; v6.0=10.4%;
v5.3=10.4%).

The highest overlap was between v7.1 and v6.0 where most regions had a Dice coefficient of 0.90 or
greater. The lowest overlap occurred when comparing v5.3 to both v7.1 and v6.0, particularly in the
frontal pole (left: DCv7.1:v5.3=0.74, DCv6.0:v5.3=0.76; right: DCv7.1:v5.3=0.79, DCv6.0:v5.3=0.81), entorhinal (left:
DCv7.1:v5.3=0.78, DCv6.0:v5.3=0.79; right: DCv7.1:v5.3=0.75, DCv6.0:v5.3=0.77), and right cuneus
(DCv7.1:v5.3=0.75, DCv6.0:v5.3=0.77). Other regions with lower Dice coefficients were the cingulate
regions, temporal pole, pericalcarine, and the banks of the superior temporal sulcus (Figure 4C).

Figure 4. Cortical quality control results. Results based on 106 neurologically healthy UK Biobank
participants. A. Manual cortical quality control results (percentage fail) based on the ENIGMA QC
protocol across versions. Gray regions indicate no failures. Note more widespread failures
particularly in the temporal and frontal regions due to a single subject in B. We also note generally
higher rates of failure in the left temporal lobes across all versions. C. Dice scores across left and
right hemisphere Desikan-Killiany atlas labels. We note the lowest overlap in the cuneus, entorhinal,
pericalcarine, cingulate cortices, and temporal and frontal poles, particularly when comparing v5.3 to
the newer versions.
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Figure 5 highlights the subcortical quality issues noted across each of the evaluated FreeSurfer
versions. The most regional failures were detected in v5.3. Failures occurred more often in the left
hemisphere (Figure 5A). The most notable differences in failure rates were for the left pallidum
(v7.1=0.9%; v6.0=0.9%; v5.3=18.9%), left amygdala (v7.1=7.5%; v6.0=11.3%; v5.3=17.9%), and left
putamen (v7.1=0.9%; v6.0=1.9%; v5.3=14.2%). Example outputs may be viewed in Figure 5B. The
regions with the lowest overlap were in the left and right pallidum (left: DCv7.1:v5.3=0.66,
DCv6.0:v5.3=0.67; right: DCv7.1:v5.3=0.78, DCv6.0:v5.3=0.78) as well as the left and right nucleus accumbens
(left: DCv7.1:v5.3=0.72, DCv6.0:v5.3=0.71; right: DCv7.1:v5.3=0.70, DCv6.0:v5.3=0.69) when comparing v5.3 to
both newer versions. Notably, the segmentation of the left putamen often appeared larger and the
left pallidum smaller in v5.3 compared to the newer versions (Figure 5B).

Figure 5. Subcortical quality control results. Results based on 106 neurologically healthy UK
Biobank participants. A. Manual subcortical quality control results (percentage fail) across versions.
Gray regions indicate no failures. Note generally higher fail rates in the left hemisphere and when
comparing v5.3 to the newer versions. B. Example subcortical outputs. Arrows indicate the left
putamen (cyan) and pallidum (light green) mis-segmentation in v5.3. C. Dice scores across left and
right hemisphere subcortical regions. Note the lowest overlap when comparing v5.3 to v6.0 and
v7.1.

Age associations are shown in Figure 6 and Figure 7. In the full set (106 UK Biobank scans) age
associations for cortical thickness (Figure 6), v7.1 had 29 regions that survived FDR correction, less
than both v6.0 with 32 and v5.3 with 43; all these regions showed lower thickness with age other
than the right rostral anterior cingulate, which showed a positive association with age across all
versions. The strongest associations were in the left supramarginal (zv7.1=-5.55, qv7.1=3x10-5;
zv6.0=-6.24, qv6.0=1x10-6; zv5.3=-5.90, qv5.3=4x10-6) and left superior temporal (zv7.1=-4.88, qv7.1=1x10-4;
zv6.0=-5.21, qv6.0=4x10-5; zv5.3=-5.33, qv5.3=2x10-5) for all three versions. All regions that were significant
in v7.1 and v6.0 were also significant in v5.3, except for the left frontal pole in v6.0 (zv7.1=-2.19,
qv7.1=9x10-2; zv6.0=-2.55, qv6.0=4x10-2; zv5.3=-1.83, qv5.3=1x10-1). Generally, v5.3 gave the lowest
p-values and the highest effect sizes compared to v7.1 and v6.0. For the surface area age
associations, no regions survived FDR correction in v7.1, whereas in v6.0 the left frontal pole
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survived correction, and in v5.3 the right paracentral, left banks of the superior temporal sulcus, right
entorhinal, right lateral orbitofrontal, and right temporal pole were considered significantly associated
with age after correction. For subcortical volumes, all regions were significantly associated with age,
except for the left and right caudate and pallidum for all three versions and the right amygdala for
v7.1 (qv7.1=0.08).

Figure 6. Regional age associations in all subjects. Results based on 106 neurologically healthy
UK Biobank participants. A. FreeSurfer v5.3, B. v6.0, and C. v7.1. Top row indicates the effect sizes
and bottom indicates -log10(q<0.05) for left and right surface area, thickness, and subcortical
volumes. We note that v5.3 generally has the largest effect sizes, particularly for cortical thickness,
and the largest number of statistically significant regions.

A total of 69 subjects remained for regression analysis in the cortical QC’ed subset (37F, mean age:
61.1 ± 7.11). In this subset, cortical thickness was associated with age in 13 regions for v7.1, 16 for
v6.0, and 22 for v5.3 (Figure 7). As with the full set above, all regions that survived FDR correction in
v7.1 also survived in v6.0 and v5.3 and all regions that survived in v6.0 were also significant in v5.3.
Cortical thickness regions that had a considerable proportion of fails and no longer reached the
significance threshold in the QC’ed subset included the left banks of the superior temporal sulcus,
left middle temporal, right precentral, and the right superior parietal gyrus. The left lingual, left
cuneus, right pericalcarine, and the right banks of the superior temporal sulcus were all regions that
had considerable quality issues and for which cortical thickness associations met FDR significance
criteria for v5.3 in the full subset, yet these thickness associations were no longer significant in the
QC’ed subset. The only surviving region in the QC’ed subset for surface area was the right entorhinal
cortex in v5.3, although it is worth noting this region was not heavily QC’ed. The external surface in
this area was apparently different in v7.1 compared to the previous versions (Figure 2C) and the rate
at which this occurred would have resulted in the majority of participants being considered as a “fail”
in the older versions.

61 subjects (35F, mean age: 62.6 ± 6.8 years) were found to have no quality issues in the subcortical
segmentations across any versions. Age associations with these subjects indicated that only the
thalamic volumes were significantly associated with age in v5.3 (both right and left) and v6.0 (left
only).
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Figure 7. Regional age associations in subjects with no segmentation quality issues. Results
based on n=69 (cortical) and 61 (subcortical) of the 106 neurologically healthy UK Biobank
participants. A. FreeSurfer v5.3, B. v6.0, and C. v7.1. Top row indicates the effect sizes and bottom
indicates -log10(q<0.05) for left and right surface area, thickness, and subcortical volumes. Several
regions found to be significant in the full sample of n=106 did not survive FDR correction here.

Discussion

Our work has four main findings that may help explain how a FreeSurfer version upgrade may impact
results:

1) The compatibility between v7.1 and the previous version, v6.0, was largely good to excellent
for measures of cortical surface area and subcortical volume, with the exception of the medial
orbitofrontal cortex and the frontal/temporal poles. Most compatibility issues arose in regional
cortical thickness estimates, where moderate or even poor compatibility was seen in the thickness
estimates of the cingulate gyrus (rostral anterior, caudal anterior, posterior, and isthmus), entorhinal,
insula, and orbitofrontal regions (medial and lateral).
2) There were substantial compatibility issues between v7.1 and v5.3, in cortical regional
thickness, area, and subcortical volume. Thickness measures with low compatibility between v7.1
and v5.3 were the same as those between v7.1 and v6.0, suggesting these thickness compatibility
issues have been more recently introduced with the latest 7.1 version. Regions with cortical surface
area and subcortical volume compatibility issues between v7.1 and v5.3 were the same as the
regions that were less compatible between v5.3 and v6.0, suggesting these area and volume
differences were introduced with v6.0, not v7.1.
3) The test-retest reliability for all v7.1 metrics evaluated here was good to excellent, except for
the temporal pole. This is in line with the reliability previously established in v6.0 and v5.3, and again
confirmed here.
4) Age associations revealed generally smaller effect sizes in v7.1 compared to earlier releases,
where v5.3 detected the largest effects overall. Quality issues were more prevalent in v5.3,
particularly in the left superior temporal gyrus, pallidum, and putamen. Age associations did not
meet the statistical significance threshold in many of the heavily quality controlled regions.

The regions in which v7.1 had the lowest compatibility with the previous versions were along the
caudal-rostral axis of cingulate cortex. The subdivisions of the cingulate cortex play distinct roles in
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large-scale brain networks including the visceromotor, ventral salience, dorsal executive/salience,
and default mode networks (Touroutoglou & Dickerson 2019). Alterations in the subregions of the
cingulate cortex have been demonstrated throughout the lifespan and in association with different
neuropsychiatric disorders. For example, compared to controls, developmental delays in
adolescents with attention deficit hyperactivity disorder are seen most prominently in the thickness
of the prefrontal regions including the cingulate cortices (Vogt 2019). In post traumatic stress
disorder (PTSD) studies, the anterior midcingulate, and in some cases the posterior cingulate, show,
on average, lower thickness in individuals with PTSD compared to healthy controls (Hinojosa et al.
2019). Subregions of the cingulate cortex have also been associated with age related cognitive
performance. In “SuperAgers”, or adults over the age of 80 years, whose episodic memory is
resistant to age-related decline, a preservation of the anterior cingulate thickness is observed
(Harrison et al., 2012, Gefen et al., 2015, Sun et al., 2016, Harrison et al., 2018, de Godoy et al.,
2021). Many of these studies were performed using versions of FreeSurfer that precede v7.1, so
possible replication issues in future studies may be partially explained by the version incompatibility
described in this work.

Other regions with lower thickness compatibility with v7.1 included the medial and lateral
orbitofrontal, entorhinal, and insular cortices. Inferior frontal regions such as the medial and lateral
orbitofrontal cortices are often susceptible to signal loss and bias field inhomogeneities. v7.1 uses
an updated bias field and denoising method that could affect the gray/white matter contrast in these
areas. Temporal regions, such as the entorhinal and insular cortex, which were less compatible with
v7.1, could be due to an algorithmic update that pins the pial surface in the medial wall to the white
matter surface. This prevents a premature cutoff through the hippocampus and amygdala, which
may affect surrounding regions in earlier versions. Notably, visual inspection of the external surface
of the entorhinal cortex revealed an improvement of the entorhinal pinning to the medial wall in v7.1
– as opposed to prior versions (Figure 2C). This issue was extremely prevalent, and considering
these subjects as “QC-fail” would have resulted in the majority of subjects failing; therefore subject
scans affected by cutoff in v5.3 and v6.0 remained included in our “error-free” subset. Downstream
effects of this may be demonstrated in our age associations within the full n=106 sample. Here, the
left insular thickness showed significant age effects in v5.3 and v6.0, as well as the thickness of the
right entorhinal cortex in v5.3, but neither showed associations with age in v7.1. The entorhinal
cortex plays an important role in mediating information transfer between the hippocampus and the
rest of the brain (Garcia & Buffalo 2020, Coutureau & Scala 2009). Measurements of its thickness are
widely assessed in Alzheimer’s disease, as it is one of the first regions to be impacted in the disease
(Braak & Braak 1991) and researchers have found associations between its thickness and markers of
amyloid and tau (Thaker et al., 2017). Entorhinal thickness is often a feature of interest in models that
are designed to predict progressive cognitive decline due to its early vulnerability and role in the
prodromal stages of Alzheimer’s disease. Although v7.1 may have a more anatomically accurate
segmentation, we advise caution when comparing the performance of predictive models that use
earlier releases of FreeSurfer for deriving this metric.

Compatibility issues between v7.1 and older versions were less frequent with surface area and did
not occur in the same regions as cortical thickness. This could be due to the relative independence
of these measures: surface area is calculated as the area of all the triangles on the white matter
surface, the large area covered by many surfaces makes them more robust to slight variation in
vertex counts. On the other hand, cortical thickness is measured as the distance between the
vertices of the white matter and pial triangulated surfaces, and is often between 2-4mm thick, a span
of only 2-4 voxels; slight variability in partial voluming may have a more dramatic effect on cortical

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488251doi: bioRxiv preprint 

https://paperpile.com/c/xozjV4/qFdH
https://paperpile.com/c/xozjV4/N1BR
https://paperpile.com/c/xozjV4/n6B4
https://paperpile.com/c/xozjV4/n6B4
https://paperpile.com/c/xozjV4/ARnI
https://paperpile.com/c/xozjV4/y2Cv
https://paperpile.com/c/xozjV4/djdD
https://paperpile.com/c/xozjV4/NJOr
https://paperpile.com/c/xozjV4/UGQn
https://paperpile.com/c/xozjV4/UGQn
https://paperpile.com/c/xozjV4/F4Yq
https://paperpile.com/c/xozjV4/gvnM
https://paperpile.com/c/xozjV4/TBfB
https://paperpile.com/c/xozjV4/3ZSR
https://doi.org/10.1101/2022.04.13.488251
http://creativecommons.org/licenses/by-nd/4.0/


thickness, yet as the thickness is averaged in the entire area, a slight variation in the number of
vertices on the surface will have little effect on the averaged cortical thickness estimates. The
independence of these measures has also been established in relation to their genetic associations
(Winkler et al., 2010, Grasby & Jahanshad et al., 2020) overall suggesting that our results are not
unexpected. Measures of v7.1 surface area that had poor compatibility with v5.3 (and moderate with
v6.0) included the frontal and temporal poles. The release of v7.1 included a remeshing of the white
matter surface to improve triangle quality in the surface mesh models – potentially impacting the
most rounded points of the frontal and temporal lobes. We find that v7.1 had the lowest fail rate in
the temporal pole compared to v5.3 and v6.0 suggesting an improvement in the parcellation.

Subcortical volumes are also another set of metrics derived from FreeSurfer that are of major interest
to neuroimaging researchers (Satizabal et al., 2019, Ohi et al., 2020). Efforts to provide references of
normative subcortical volume changes that occur as a result of aging have been put forth (Potvin et
al., 2016, Coupé et al., 2017, Narvacan et al., 2017, Dima et al., 2022, Miletić et al., 2022, Bethlehem
et al., 2022). For example, Potvin et al., 2016 pooled data from 21 research groups (n=2790) and
segmented subcortical volumes using FreeSurfer v5.3 to provide norms of volumetric estimate
changes during healthy aging. Although this study, along with many others, provides a valuable
resource to researchers, we advise caution with the newer versions when referencing normative data
derived from v5.3, particularly in the lentiform nucleus. The lentiform nucleus (i.e., the putamen and
globus pallidus combined) has often been found to be difficult to segment due to the high white
matter content in the pallidum – making it more difficult to distinguish gray-white matter contrast
(Ochs et al., 2015, Visser et al., 2016, Makowski et al., 2018, Bigler et al., 2020). We find poor
compatibility in the pallidum and moderate in the putamen when comparing v7.1 and v5.3. Visual QC
of these regions revealed a higher failure rate and lower Dice overlap in v5.3 compared to v7.1,
particularly in the left hemisphere. However, we find the compatibility between v7.1 and v6.0 to be
excellent and the Dice overlap was greater than 90% in the lentiform nucleus. This suggests that
changes made in the release of v6.0 contributed to v5.3 discrepancies. For example, the putamen
does not extend so far laterally in the two newer versions — a known issue noted in the release
notes of v6.0.

The main goal of our work was to evaluate FreeSurfer’s latest stable release, v7.1, yet it is also worth
noting how v6.0 differs from v5.3. While compatibility was generally good for cortical thickness,
regional surface area estimates were more moderately compatible, with the frontal pole even
showing poor compatibility, similar to v7.1 compared to v5.3. Temporal lobe regions showing
moderate compatibility in surface area between v6.0 and v5.3 included the entorhinal, insula,
parahippocampal, and temporal pole. Updates that accompanied the release of v6.0 that may
contribute to these compatibility discrepancies include improved accuracy of the cortical labels and
an updated template (fsaverage) that “fixes” the peri/entorhinal labels. As previously mentioned, v6.0
compatibility with v5.3 was poorest in the pallidum and putamen. Our results coincide with Bigler et
al. (2020) where the lowest agreement was also found in the pallidum and putamen when comparing
v5.3 to v6.0.

One limitation of our study was that there was no available higher-resolution or post-mortem ground
truth data to know which FreeSurfer version most represents true anatomical structure. However,
given that many of these measures have been widely studied regarding their relationship with age,
even in the absence of postmortem or higher resolution data (Salat et al., 2004, Fischl, 2012,
Frangou et al., 2022), we instead assess age associations to gauge the downstream consequences
of version differences. Here, QC of regional parcellations was performed to rule out any spurious
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associations with gross missegmentations. One example worth noting is that v7.1 and v6.0 may be
better able to handle images with lower quality and/or motion as evidenced by one subject in our UK
biobank subset that failed in v5.3 but not with the newer versions (Figure 4B). This could be due to
the improved error handling of the Talairach registration: if one registration fails, v7.1 and v6.0 would
try an older atlas. Another example involved the left middle temporal gyrus, which is often
susceptible to underestimations due to the spillage/overestimation of the banks of the superior
temporal sulcus into that gyrus. This occurred at approximately the same rate across versions. When
associating the thickness of both the left banks of the superior temporal sulcus and the middle
temporal gyrus with age before quality control, all versions reveal significant associations for both
regions. After removing subjects encountering this issue, although the direction of the effects stayed
the same, neither region was associated with age in any of the versions. While this may be due to a
reduced sample size and study power, it is also possible that findings in these regions may not
represent true anatomical structure, and may instead be due to common segmentation errors. It is
also worth noting that our results are solely based on the Desikan-Killiany (DK) atlas (Desikan et al.,
2006) and translation to other atlases may not apply. We chose the DK atlas as it consists of a set of
coarse regions defined by anatomical landmarks that can be reasonably quality controlled. Most
other atlases, while possibly more precise, define finer parcellations based on cortical function,
connectivity, topography, myelin, or a combination thereof (Glasser et al., 2016, Schaefer et al.,
2018). Visual quality control by region may not be readily possible when cortical parcellations are
finer and there are over 100 regions in each hemisphere, so version performance of segmentation
accuracy may be more difficult to compare. Our datasets were exclusively from adults without major
neurological abnormalities, so our findings may not necessarily generalize to cohorts of young
children, adolescents, or individuals with significant brain abnormalities.

Overall, we find generally high within-version reliability across most versions, and many advantages
to using FreeSurfer v7.1 over older versions for adult neuroimaging studies. However, considerable
differences are observed when analyzing between-version compatibility for regional cortical
thickness, surface area, and subcortical volumes. It is important to consider these compatibility
differences when pooling data or statistical inferences across software versions, and when
comparing findings across published works, especially for those regions with lower compatibility.
Understanding these differences may help researchers to make informed decisions on study design
and provide insight into reproducibility issues.
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