

## Core and accessory effectors of type VI secretion systems

contribute differently to the intraspecific diversity of *Pseudomonas aeruginosa*

3

4 Antonia Habich<sup>1,2</sup>, Alibek Galeev<sup>1,2</sup>, Verónica Chaves Vargas<sup>1,2</sup>, Olga Vogler<sup>1,2</sup>, Melanie  
5 Ghoul<sup>3</sup>, Sandra B. Andersen<sup>4</sup>, Helle Krogh Johansen<sup>5,6,7</sup>, Søren Molin<sup>6</sup>,  
6 Ashleigh S. Griffin<sup>3</sup>\* and Daniel Unterweger<sup>1,2\*</sup>

7

<sup>8</sup> <sup>1</sup> Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel,  
<sup>9</sup> Germany.

10 <sup>2</sup> Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön,  
11 Germany.

12 <sup>3</sup> Department of Zoology, University of Oxford, Oxford, UK.

13 <sup>4</sup> Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353  
14 Copenhagen, Denmark.

15 <sup>5</sup> Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark.

16 <sup>6</sup> The Novo Nordisk Foundation Center for Biosustainability, Technical University of  
17 Denmark, Lyngby, Denmark.

18 <sup>7</sup> Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of  
19 Copenhagen, Copenhagen, Denmark.

20

21 \* Corresponding authors: Daniel Unterweger, e-mail unterweger@evolbio.mpg.de; Ashleigh  
22 S. Griffin, e-mail ashleigh.griffin@zoo.ox.ac.uk

23

24

25

26 **Abstract**

27 Bacteria use type VI secretion systems (T6SSs) to deliver effector proteins into other cells or  
28 the extracellular space. Those effectors kill microbes<sup>1</sup>, manipulate eukaryotic cells<sup>2</sup>, and  
29 sequester nutrients<sup>3</sup>. Which T6SS-mediated functions are generalisable across bacteria of a  
30 species or are specific to particular strains is little known. Here, we use genomics to test for the  
31 intraspecific diversity of T6SS effectors in the opportunistic pathogen *Pseudomonas*  
32 *aeruginosa*. We found effectors that are omnipresent and conserved across strains acting as  
33 ‘core effectors’, while additional ‘accessory effectors’ vary. *In vitro* and *in vivo* experiments  
34 demonstrate different roles of the two types of effectors in bacterial killing and virulence.  
35 Further, effectors compose various effector combinations. Within one local population of  
36 clinical isolates, we observed 36 combinations among 52 bacterial lineages. These findings  
37 show the distinct contribution of T6SS effectors to strain-level variation of a bacterial pathogen  
38 and might reveal conserved targets for novel antibiotics.

39

40 **Introduction**

41 Bacteria benefit from frequent interactions with their biotic and abiotic environment. By  
42 secreting effector proteins directly into target cells or the extracellular space, bacteria kill other  
43 microbes<sup>1</sup>, manipulate eukaryotic cells<sup>2</sup> and take up nutrients<sup>3</sup>. In this regard, the type VI  
44 secretion system (T6SS) has been shown to be an effective protein delivery tool of numerous  
45 Gram-negative bacteria, including symbionts and pathogens<sup>4–7</sup>. Its function is mostly inferred  
46 from experimental work on a few reference strains of diverse species.

47

48 Generalising findings on the function of the T6SS in a particular bacterial species is not trivial.  
49 T6SS-mediated phenotypes are expected to be highly specific to the T6SS effectors of the  
50 respective strains. It is the effectors and their diverse enzymatic activities that mediate anti-  
51 prokaryotic, anti-eukaryotic and nutrient-acquiring activities, ultimately leading to phenotypes  
52 such as killing of prokaryotic and eukaryotic cells<sup>8–11</sup>. Experimental studies showed that  
53 effectors and their corresponding immunity proteins, which protect sister cells from getting  
54 killed, are often encoded side-by-side on mobile genetic elements and are subject to  
55 recombination<sup>1,12,13</sup>. Consequently, some effectors are known to vary between strains<sup>14–17</sup>, but  
56 most effector loci have not yet been systematically analysed in a bacterial population of one  
57 species. Although synergies between effectors were reported<sup>18</sup>, the combinations in which  
58 effectors occur remain mostly unknown. Inferring the function of the T6SS for a bacterial  
59 species is therefore close to impossible without knowing the intraspecific diversity of T6SS  
60 effectors.

61

62 We investigated the intraspecific diversity of *Pseudomonas aeruginosa* T6SS effectors, which  
63 are both a model system for the T6SS field and a virulence factor of this opportunistic pathogen.  
64 *P. aeruginosa* is the main driver of chronic lung infections in cystic fibrosis (CF) patients<sup>19</sup>.

65 The detection of T6SS components in the sputum of CF patients and recent reports of T6SS-  
66 mediated colonisation resistance to *Burkholderia* in the CF lung demonstrate the clinical  
67 relevance of this secretion system<sup>4,20,21</sup>. Each T6SS effector is (i) translocated by one of the  
68 three types of T6SSs (H1, H2, and H3)<sup>9,22-28</sup>, (ii) associated with the secretion machinery by  
69 Hcp, VgrG or PAAR-domains<sup>29-32</sup>, and (iii) targeting nutrient uptake, prokaryotes and/or  
70 eukaryotic cells<sup>1,9,14,25,33</sup>. To our best knowledge, more T6SS effectors are known and  
71 characterised in depth for *P. aeruginosa* than for any other species. They are therefore ideal for  
72 systematically characterising the prevalence of effectors in a bacterial population and testing  
73 the impact of T6SS effector diversity on bacteria-bacteria interactions and pathogenicity.

74

75 Our analysis focused on 22 T6SS effector-encoding loci in the available genome sequences of  
76 52 phylogenetically distinct *P. aeruginosa* isolates (herein referred to as 52 distinct clone types)  
77 collected from a local cohort of 33 CF patients<sup>34-44</sup> (Fig. 1a, Supplementary Table 1). The large  
78 number of isolates in this collection and their extensive diversity uniquely enabled us to study  
79 the variation in T6SS effectors in one local population and later expand our analysis to isolates  
80 from various sources from all around the globe. What causes diverse *P. aeruginosa* bacteria to  
81 behave similarly in some aspects and not in others could be influenced by differences in the  
82 intraspecific diversity of T6SS effectors and subsequent variation in T6SS function.

83 **Results**

84

85 *Core effectors are omnipresent and conserved across clone types whereas accessory effectors*  
86 *are not*

87 We found fourteen effector-encoding genes were present in at least 98% of the analysed clone  
88 types (Fig. 1b, Supplementary Fig. 1). Effectors encoded at all 14 loci had a conserved domain  
89 architecture and shared 84 to 100% amino acid identity in a global alignment (Supplementary  
90 Fig. 2a). Only a small fraction of analysed sequences carried putative loss-of-function  
91 mutations that resulted in a shortened amino acid sequence (2 cases out of 724). Based on the  
92 high similarity and high prevalence of these effectors among the diverse clone types, we  
93 labelled them ‘core effectors’. Among them were effectors transported by all three T6SSs in  
94 association with either Hcp, PAAR or VgrG proteins, representing all T6SS-dependent  
95 mechanisms of secretion (Fig. 1b). Core effectors target prokaryotes, eukaryotic cells, and  
96 extracellular nutrients, suggesting a broad target spectrum.

97

98 Unlike core effectors, we found multiple effector-encoding genes in a fraction of the analysed  
99 clone types only, and we therefore referred to them as ‘accessory effectors’ (Fig. 1c). Among  
100 them, five showed presence-absence variation (Fig. 1c, Supplementary Fig. 2b). T6SS effector-  
101 encoding genes at three loci (PA0093, PA0099, PA5265) differed between clone types and are  
102 referred to as ‘variation in kind’ (Fig. 1c, Supplementary Fig. 2c-e). Characterised accessory  
103 effectors either belonged to the H1- or H2- and not H3-T6SS, and were associated with the  
104 secretion systems via either PAAR or VgrG and not Hcp proteins (Fig. 1c). Effectors secreted  
105 by H3-T6SS or associated with Hcp are unlikely omitted at random (probability  $P < 0.05$ ),  
106 suggesting that accessory effectors are preferentially secreted by certain T6SSs via specific

107 secretory mechanisms. The known targets of accessory effectors were prokaryotic and  
108 eukaryotic cells.

109  
110 Altogether, we found (i) core effectors that are omnipresent and conserved in their domain  
111 architecture, and (ii) accessory effectors that vary in presence-absence or kind. The lack of  
112 diversity in some effectors implies T6SS-mediated phenotypes would be universally present  
113 across members of the species. The existence of accessory effectors opens the possibility of  
114 intraspecific diversity of effector combinations on the level of the individual isolate or strain.

115  
116

117 *Effector set diversity across clone-types*

118 Next, we characterised how core and accessory effectors were distributed across clone types.  
119 To do this, we identified all T6SS effectors present in each genome to define an effector set for  
120 each clone type (Fig. 2a). Assuming a random mix-and-match between all accessory effectors,  
121 as many as 960 unique effector sets were possible (Fig. 2b). Instead, we found 36 distinct  
122 effector sets among the 52 isolates (Fig. 2b, Supplementary Table 3). Each of these isolates  
123 belonged to a different clone type, capturing the phylogenetic diversity of a total of 473 clinical  
124 isolates in our collection<sup>34</sup>. Out of this collection, we analysed 421 additional isolates of the  
125 same clone types for other distinct effector sets, but did not find any more.

126  
127 Next, we analysed the relative abundance of the different effector sets, which are not randomly  
128 distributed across clone types (Monte Carlo simulation,  $P < 0.001$ ). We found 29 effector sets  
129 in one clone type only and seven effector sets in at least two different clone types (Fig. 2c).  
130 The most abundant effector set (named ‘ES1’) was found in five clone types and consisted of  
131 the fourteen core effectors, and six accessory effectors (Fig. 2a, c). Of note, the four most

132 abundant effector sets differed from each other only at two loci (presence-absence variation of  
133 *tseV* and variation in kind in PA0099) and were otherwise identical. Although some clone types  
134 had the same effector sets as the reference strains PAO1 and PA14, these sets were only found  
135 in one clone type each (highlighted in pink, Fig. 2c).

136

137 To test if the effector sets of clone types were indicative of their relatedness between each  
138 other, we compared the phylogenetic distances between clone types with their effector sets.  
139 We found a positive correlation (Pearson's correlation coefficient 0.59,  $P < 0.001$ , 95%  
140 confidence interval 0.56 to 0.61) between differences in the T6SS effectors and differences in  
141 the whole genome (Fig. 2d). Two closely related clone types were significantly more likely to  
142 have similar effector sets than two distantly related clone types. This result might reflect the  
143 gradual diversification of the effector sets during the diversification of the species.

144

145 In summary, we demonstrated (i) that multiple diverse effector sets exist, (ii) which of the  
146 theoretically possible effector combinations are found in the isolate collection, and (iii) that  
147 some effector sets are more common than others. These findings indicate that the varying  
148 effectors might provide one clone type with an advantage over another clone type.

149

150

151 *Effector sets with the accessory effector PldA have a competitive advantage*

152 To determine the minimal and maximal number of effectors per set, we analysed the total  
153 number of effectors in each of the 36 distinct sets. We found effector sets with as few as 17  
154 and as many as 22 effectors (Fig. 3a). Of note, effector sets of the same size can differ in their  
155 effector composition, for example by accessory effectors that vary in kind. The frequencies of  
156 distinct effector sets were binomially distributed across the number of effectors per set ( $P >$

157 0.05, Fig. 3a, Supplementary Fig. 3a), indicating that most sets had a size of 19 or 20 effectors  
158 whereas relatively few sets were small (17 to 18 effectors) or big (21 to 22 effectors). When  
159 taking into account that some effector sets are found in more than one clone type, effector sets  
160 with 19 and 20 effectors are also most common among the 52 distinct clone types (Fig. 3b).  
161 These results show that effector sets differ in size, and an intermediate number of effectors is  
162 most common among distinct effector sets and clone types.

163

164 Effectors with presence-absence variation have previously been shown to be translocated with  
165 the T6SS and identified as toxins with anti-bacterial activity<sup>45</sup>. To test the difference between  
166 having one effector more or less in an effector set, we chose the accessory effector PldA that  
167 is present in some effector sets and absent from others. Competition experiments were  
168 performed between two variants of the same strain that only differ in this one effector of the  
169 otherwise identical effector set. Because effector protein-encoding genes are accompanied by  
170 immunity protein-encoding genes<sup>1</sup>, the presence or absence of an effector also reflects the  
171 presence or absence of its cognate immunity protein in our dataset (Supplementary Fig. 3b, c).  
172 A strain with a PldA-containing effector set of 21 effectors (here PAO1 wild-type) was  
173 observed to kill an otherwise identical strain with a PldA-deficient effector set of 20 effectors  
174 (here PAO1 $\Delta$ pldA $\Delta$ li5a) (Fig. 3c). No killing was observed when two strains with the same  
175 effector sets were competed against each other (Fig 3c). This result demonstrates the advantage  
176 of a bigger, PldA-containing effector set in outnumbering a competing strain with a smaller,  
177 PldA-deficient effector set and confirms previous findings on the anti-prokaryotic activity of  
178 this<sup>45</sup> accessory effector.

179

180 T6SS-mediated killing is known to affect the spatial organisation of bacteria within  
181 communities<sup>46</sup>. To characterise the gain in space mediated by the PldA-containing effector set,

182 we performed microscopic analysis of the two competing strains with a PldA-containing bigger  
183 effector set and a PldA-deficient smaller effector set (here PAO1 and PAO1 $\Delta$ pldAtli5a). An  
184 expanding spot enables the observation of the spatial distribution of bacteria in an established  
185 model of a mixed community<sup>46,47</sup>. Therefore, mixed bacteria were spotted onto an agar surface  
186 and analysed for their spatial organization. We found that the strain with a PldA-containing,  
187 bigger effector set strongly dominated the centre and the periphery of the community (Fig. 3d).  
188 Radial profiles of fluorescence intensity across the community (Fig. 3e) further quantified the  
189 changes in spatial distribution and demonstrated the resulting advantage of the accessory  
190 effector PldA.

191  
192 Taken together, we now know (i) the average size of effector sets in our dataset and (ii) that a  
193 larger effector set with the accessory effector PldA can mediate a competitive advantage in  
194 bacterial numbers and space.

195  
196  
197 *Differences in accessory effectors are detected between isolates of the same patient*  
198 Next, we tested whether intraspecific diversity in T6SS effectors, which we observed in a  
199 population of clinical isolates of an entire patient cohort from one geographic location, is also  
200 detected in a bacterial population of an individual patient. When analysing clone types that had  
201 been isolated from the same patient simultaneously, we find differences in their accessory  
202 effectors (Fig. 4). Clone types DK01, DK15, and DK53 from patient PID12139 differ in four  
203 of the accessory effectors with presence absence variation (such as *pldA*) and three accessory  
204 effectors that vary in kind. In patient PID61790, variation is observed in three accessory  
205 effectors with presence absence variation. In patient PID08136, four accessory effectors differ  
206 between clone types DK02 and DK20. These data show that T6SS effector sets not only differ

207 between patients but also within patients. Whether the clone types were found in the same  
208 patient because or despite their different effector sets, which form the genetic basis also for  
209 T6SS-mediated killing between the clone types, remains unknown for now.

210

211

212 *Core effectors are omnipresent across isolate collections and contribute to the virulence of*  
213 *P. aeruginosa in vivo*

214 Having established the diversity of T6SS effector sets, we decided to test whether our  
215 observations on core effectors were generalisable across isolates of various geographic regions  
216 and sources. Genome sequences of twenty diverse isolates collected from across the world  
217 from various clinical and environmental sources<sup>48</sup> were analysed. We found all 14 core  
218 effectors in each of those isolates (Fig. 5a, Supplementary Fig. 4a). The genes were mostly  
219 intact and only very few sequences with putative loss-of-function mutations were detected that  
220 resulted in truncated amino acid sequences (2 cases out of 276 analysed sequences)  
221 (Supplementary Fig. 4a). Further, we analysed over 200 whole-genome sequences of *P.*  
222 *aeruginosa* available on NCBI, and found core effectors with a prevalence of at least 95% (Fig.  
223 5a, Supplementary Fig. 4b). Two percent of the isolates lacked at least five core effectors; this  
224 may be attributed to the fact that they belonged to a distinct phylogenetic group (Supplementary  
225 Fig. 4c). Only few sequences contained putative loss-of-function mutations (40 cases out of  
226 2937 analysed sequences). These findings (i) show a very high prevalence of core effectors  
227 across the species and (ii) suggest that they may be functional in the vast majority and confer  
228 a broad benefit.

229

230 Core effectors are known to be translocated with the T6SSs and most are known to mediate  
231 bacteria-bacteria killing<sup>1,24–30,49–51</sup>. Those observations were often made after the introduction

232 of mutations to artificially activate the secretion systems *in vitro*, which is useful to study the  
233 T6SS molecular biology but might exaggerate phenotypes and is therefore of limited value to  
234 understand the ecological impact of core effectors. To test the role of each core effector for  
235 bacterial killing without artificially activating the secretion systems, we generated single-  
236 deletion mutants of twelve core effectors and, if present, their corresponding immunity protein-  
237 encoding genes (Supplementary Fig. 5). We find that the effector TseT (PA3907), with  
238 predicted endonuclease activity<sup>24</sup>, mediated the biggest competitive advantage among all core  
239 effectors under the conditions tested (Fig. 5b). Upon microscopic analysis of the community  
240 of competing bacteria, we observed nearly complete eradication of the strain sensitive to TseT-  
241 mediated killing (Fig. 5c). These results add value to the field by (i) demonstrating bacterial  
242 killing by core effectors without introducing genetic modifications to activate the secretion  
243 systems, (ii) providing a side-by-side comparison between effectors that have previously been  
244 studied independently by different laboratories in slightly different experimental set-ups and  
245 (iii) showing the power of core effectors in bacterial killing by reducing the competitor's  
246 number and gaining space in a mixed community.

247  
248 To test the contribution of core effectors to bacterial virulence *in vivo*, we used an established  
249 infection model of *Galleria mellonella*. We note that this infection model does not aim to  
250 reflect a specific human disease here but rather to improve our understanding of T6SS-  
251 mediated virulence in an organism more broadly. Although mutants with dysfunctional H1-  
252 T6SS and H3-T6SS have previously shown attenuated virulence upon systemic infection of *G.*  
253 *mellonella*<sup>16,52</sup>, the contribution of individual core effectors to the virulence of *P. aeruginosa*  
254 remains mostly unclear. We systemically infected *G. mellonella* larvae with mutants lacking  
255 the core effectors and recorded survival times. We observed less virulence for a mutant that  
256 lacks the putative endonuclease TseT, which had only been tested for anti-prokaryotic activity

257 so far ( $\Delta tseTtsiT$ ; Fig. 5d, e; *t*-test  $P = 0.029$ ). We also observed on average a prolonged  
258 survival time for the mutant lacking *tse2* ( $\Delta tse2tsi2$ ; Fig. 5d; *t*-test  $P = 0.053$ ), which encodes  
259 a putative mono-ADP-ribosyltransferase that has been reported as cytotoxic when expressed  
260 in mammalian cells *in vitro*<sup>1,53</sup>. These findings (i) present a first indication for the role of the  
261 core effector TseT during infection, (ii) show that core effectors contribute to the virulence of  
262 *P. aeruginosa*, and (iii) highlight the relevance of those effectors for bacterial pathogenesis.

263 **Discussion**

264

265 Here, we report the diversity of T6SS effector sets in a population of clinical *P. aeruginosa*  
266 clone types and present evidence for the different roles of core and accessory effectors for the  
267 intraspecific diversity of this bacterial pathogen (Fig. 6). Our results show that caution should  
268 be taken when generalising conclusions about T6SS-mediated phenotypes based on the  
269 analysis of few strains: while we show on clinical isolates that combinations of accessory  
270 effectors differ considerably between clone types and enable intra-specific killing between *P.*  
271 *aeruginosa* bacteria, we found that core effectors with nutrient-acquiring, anti-prokaryotic, and  
272 anti-eukaryotic activity are indeed highly prevalent among strains even beyond our isolate  
273 collection. As such, *P. aeruginosa* stands out in comparison to other species that show  
274 intraspecific diversity in all known T6SS effectors<sup>13,54–56</sup> or do not encode a T6SS in all  
275 strains<sup>55,57,58</sup>.

276

277 We propose that the herein described core effectors are among the few hundred genes in the  
278 core genome of *P. aeruginosa*, which has a pangenome of over 50,000 genes in total<sup>59</sup>. Many  
279 of these rare genes of the core genome are considered essential and fulfil housekeeping  
280 functions required for the growth of a bacterial cell<sup>60</sup>. Core effectors are not essential for  
281 bacterial survival in rich laboratory growth media, as was shown in here and by others<sup>1,9,24,25,27–</sup>  
282 <sup>30,33,45,51,61,62</sup>. Nevertheless, the high prevalence of the core effectors might be an indication for  
283 the importance of their function in the bacterium's natural environment. Outside of the  
284 laboratory, *P. aeruginosa* faces diverse microbial competitors and scarce nutrient conditions,  
285 in which the anti-prokaryotic and nutrient-acquiring activities of core effectors might be  
286 universally beneficial to bacteria of this species. Although individual strains might differ in the  
287 regulation of core effectors, the genes are present across strains. We argue that our findings on

288 virulence mediated by at least one core effector highlights the clinical relevance of the T6SSs  
289 for strains across the species.

290

291 Accessory effectors are some of many genes that differ between strains and contribute to strain-  
292 specific behaviour and pathogenicity. We found variation in accessory effectors between  
293 strains of the same and of different patients. Having or not having a certain accessory effector,  
294 like PldA, might affect the virulence of a particular strain. This notion is supported by  
295 experimental work showing PldA-mediated activation of the PI3K/Akt pathway of eukaryotic  
296 cells<sup>14</sup> and by an association between an increased prevalence of *pldA* and a higher risk of  
297 exacerbations in non-CF bronchiectasis patients<sup>21</sup>. Further, strains with *pldA* were associated  
298 with acute pulmonary infections and multi-drug resistance<sup>15</sup>. However, we warn from  
299 measuring an isolate's virulence by looking at T6SS effectors only. A PA7-related clinical  
300 isolate had previously been expected to be less virulent based on its lack of a type III secretion  
301 system but turned out more virulent because it had acquired another toxin<sup>63</sup>.

302

303 The herein described diversity of effector sets with various combinations of accessory effectors  
304 provides the genetic basis for extensive T6SS-mediated killing between *P. aeruginosa* strains.  
305 As observed in other species, strains with the same effector sets provide immunity to each  
306 other's effectors and are considered compatible, whereas strains with different effector sets kill  
307 each other and cannot co-exist in a mixed community<sup>54</sup>. In this scenario, even seemingly  
308 redundant accessory effectors with a similar enzymatic activity to core effectors could confer  
309 a benefit. The accessory effector PldA and the core effector PldB are both lipases, which might  
310 be redundant when interacting with a bacterium outside the species<sup>14</sup> and could be one reason  
311 for PldA not being present in all strains. However, the respective immunity proteins are specific  
312 to PldA or PldB, so that a *P. aeruginosa* strain with a PldA-containing effector set is able to

313 kill a strain with an otherwise similar effector set that lacks PldA and the respective immunity  
314 protein<sup>14</sup>. Even if PldA is substituted by another effector that is yet unknown and encoded  
315 elsewhere in the genome, the two strains likely remain incompatible. Considering that  
316 additional T6SS effectors are still being discovered, the effector sets will likely become bigger  
317 and even more diverse in the upcoming years.

318

319 Our findings on diverse effector sets give hope for an applied use of the secretion system as a  
320 protein delivery tool. Recent attempts to engineer proteins for transport by the T6SS turned out  
321 challenging<sup>26,64,65</sup>. We showed that the effector sets that exist in our collection do not comprise  
322 effectors at random. Among the multiple mechanisms by which effectors are associated with  
323 the T6SS, we found Hcp-associated transport in the inner tube of the secretion system  
324 exclusively among core effectors. In contrast, the tip of the T6SS allows for transport of diverse  
325 accessory effectors with a PAAR domain, suggesting PAAR-mediated transport as the method  
326 of choice when developing T6SS delivery platforms<sup>66</sup> and associating diverse engineered  
327 effectors with the secretion system.

328

329 **References**

- 330 1. Hood, R. D. *et al.* A type VI secretion system of *Pseudomonas aeruginosa* targets a  
331 toxin to bacteria. *Cell Host Microbe* **7**, 25–37 (2010).
- 332 2. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion  
333 system translocates a phage tail spike-like protein into target cells where it cross-links  
334 actin. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 15508–13 (2007).
- 335 3. Si, M. *et al.* Manganese scavenging and oxidative stress response mediated by type VI  
336 secretion system in *Burkholderia thailandensis*. *Proc. Natl. Acad. Sci.* **114**, E2233–  
337 E2242 (2017).
- 338 4. Mougous, J. D. *et al.* A virulence locus of *Pseudomonas aeruginosa* encodes a protein  
339 secretion apparatus. *Science (80-.)* **312**, 1526–1530 (2006).
- 340 5. Russell, A. B. *et al.* A type VI secretion-related pathway in *Bacteroidetes* mediates  
341 interbacterial antagonism. *Cell Host Microbe* **16**, 227–236 (2014).
- 342 6. Speare, L. *et al.* Bacterial symbionts use a type VI secretion system to eliminate  
343 competitors in their natural host. *Proc. Natl. Acad. Sci.* **115**, E8528–E8537 (2018).
- 344 7. Pukatzki, S. *et al.* Identification of a conserved bacterial protein secretion system in  
345 *Vibrio cholerae* using the *Dictyostelium* host model system. *Proc. Natl. Acad. Sci. U. S.*  
346 *A.* **103**, 1528–33 (2006).
- 347 8. Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors:  
348 poisons with a purpose. *Nat. Rev. Microbiol.* **12**, 137–48 (2014).
- 349 9. Lin, J. *et al.* A *Pseudomonas* T6SS effector recruits PQS-containing outer membrane  
350 vesicles for iron acquisition. *Nat. Commun.* **8**, 1–12 (2017).
- 351 10. Trunk, K. *et al.* The type VI secretion system deploys antifungal effectors against  
352 microbial competitors. *Nat. Microbiol.* **3**, 920–931 (2018).
- 353 11. Le, N.-H., Pinedo, V., Lopez, J., Cava, F. & Feldman, M. F. Killing of Gram-negative  
354 and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. *Proc.*  
355 *Natl. Acad. Sci.* **118**, e2106555118 (2021).
- 356 12. Russell, A. B. *et al.* A widespread bacterial type VI secretion effector superfamily  
357 identified using a heuristic approach. *Cell Host Microbe* **11**, 538–549 (2012).
- 358 13. Kirchberger, P. C., Unterweger, D., Provenzano, D., Pukatzki, S. & Boucher, Y.  
359 Sequential displacement of type VI secretion system effector genes leads to evolution  
360 of diverse immunity gene arrays in *Vibrio cholerae*. *Sci. Rep.* **7**, 1–12 (2017).
- 361 14. Jiang, F., Waterfield, N. R., Yang, J., Yang, G. & Jin, Q. A *Pseudomonas aeruginosa*  
362 type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.  
363 *Cell Host Microbe* **15**, 600–610 (2014).
- 364 15. Boulant, T. *et al.* Higher prevalence of PldA, a *Pseudomonas aeruginosa* trans-kingdom  
365 H2-type VI secretion system effector, in clinical isolates responsible for acute infections  
366 and in multidrug resistant strains. *Front. Microbiol.* **9**, 1–7 (2018).
- 367 16. Pissaridou, P. *et al.* The *Pseudomonas aeruginosa* T6SS-VgrG1b spike is topped by a  
368 PAAR protein eliciting DNA damage to bacterial competitors. *Proc. Natl. Acad. Sci. U.*  
369 *S. A.* **115**, 12519–12524 (2018).
- 370 17. Ahmad, S. *et al.* An interbacterial toxin inhibits target cell growth by synthesizing  
371 (p)ppApp. *Nature* **575**, 674–678 (2019).
- 372 18. LaCourse, K. D. *et al.* Conditional toxicity and synergy drive diversity among  
373 antibacterial effectors. *Nat. Microbiol.* **3**, 440–446 (2018).
- 374 19. Gibson, R. L., Burns, J. L. & Ramsey, B. W. Pathophysiology and management of  
375 pulmonary infections in cystic fibrosis. *Am. J. Respir. Crit. Care Med.* **168**, 918–951  
376 (2003).

377 20. Perault, A. I. *et al.* Host adaptation predisposes *Pseudomonas aeruginosa* to type VI  
378 secretion system-mediated predation by the *Burkholderia cepacia* Complex. *Cell Host*  
379 *Microbe* **28**, 534-547.e3 (2020).

380 21. Luo, R.-G. *et al.* Presence of *pldA* and *exoU* in mucoid *Pseudomonas aeruginosa* is  
381 associated with high risk of exacerbations in non-cystic fibrosis bronchiectasis patients.  
382 *Clin. Microbiol. Infect.* **25**, 601–606 (2019).

383 22. Sana, T. G., Berni, B. & Bleves, S. The T6SSs of *Pseudomonas aeruginosa* strain PAO1  
384 and their effectors: Beyond bacterial-cell targeting. *Front. Cell. Infect. Microbiol.* **6**, 61  
385 (2016).

386 23. Lesic, B., Starkey, M., He, J., Hazan, R. & Rahme, L. G. Quorum sensing differentially  
387 regulates *Pseudomonas aeruginosa* type VI secretion locus I and homologous loci II and  
388 III, which are required for pathogenesis. *Microbiology* **155**, 2845–2855 (2009).

389 24. Burkinshaw, B. J. *et al.* A type VI secretion system effector delivery mechanism  
390 dependent on PAAR and a chaperone-co-chaperone complex. *Nat. Microbiol.* **3**, 632–  
391 640 (2018).

392 25. Han, Y. *et al.* A *Pseudomonas aeruginosa* type VI secretion system regulated by CueR  
393 facilitates copper acquisition. *PLoS Pathog.* **15**, e1008198 (2019).

394 26. Wettstadt, S., Wood, T. E., Fecht, S. & Filloux, A. Delivery of the *Pseudomonas*  
395 *aeruginosa* phospholipase effectors PldA and PldB in a VgrG- And H2-T6SS-dependent  
396 manner. *Front. Microbiol.* **10**, 1–18 (2019).

397 27. Wang, T. *et al.* A type VI secretion system delivers a cell wall amidase to target bacterial  
398 competitors. *Mol. Microbiol.* **114**, 308–321 (2020).

399 28. Nolan, L. M. *et al.* Identification of Tse8 as a type VI secretion system toxin from  
400 *Pseudomonas aeruginosa* that targets the bacterial transamidosome to inhibit protein  
401 synthesis in prey cells. *Nat. Microbiol.* **6**, 1199–1210 (2021).

402 29. Hachani, A., Allsopp, L. P., Oduko, Y. & Filloux, A. The VgrG proteins are ‘à la carte’  
403 delivery systems for bacterial type VI effectors. *J. Biol. Chem.* **289**, 17872–17884  
404 (2014).

405 30. Whitney, J. C. *et al.* Genetically distinct pathways guide effector export through the type  
406 VI secretion system. *Mol. Microbiol.* **92**, 529–542 (2014).

407 31. Cianfanelli, F. R. *et al.* VgrG and PAAR proteins define distinct versions of a functional  
408 type VI secretion system. *PLoS Pathog.* **12**, 1–27 (2016).

409 32. Howard, S. A. *et al.* The breadth and molecular basis of Hcp-driven type VI secretion  
410 system effector delivery. *MBio* (2021). doi:10.1128/mBio.00262-21

411 33. Wang, T. *et al.* *Pseudomonas aeruginosa* T6SS-mediated molybdate transport  
412 contributes to bacterial competition during anaerobiosis. *Cell Rep.* **35**, 108957 (2021).

413 34. Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and  
414 adaptation of *Pseudomonas aeruginosa* within patients with cystic fibrosis. *Nat. Genet.*  
415 **47**, 57–64 (2015).

416 35. Andersen, S. B., Marvig, R. L., Molin, S., Krogh Johansen, H. & Griffin, A. S. Long-  
417 term social dynamics drive loss of function in pathogenic bacteria. *Proc. Natl. Acad.*  
418 *Sci.* **112**, 10756–10761 (2015).

419 36. La Rosa, R., Rossi, E., Feist, A. M., Johansen, H. K. & Molin, S. Compensatory  
420 evolution of *Pseudomonas aeruginosa*’s slow growth phenotype suggests mechanisms  
421 of adaptation in cystic fibrosis. *Nat. Commun.* **12**, 3186 (2021).

422 37. Andersen, S. B. *et al.* Diversity, prevalence, and longitudinal occurrence of type II toxin-  
423 antitoxin systems of *Pseudomonas aeruginosa* infecting cystic fibrosis lungs. *Front.*  
424 *Microbiol.* **8**, 1–12 (2017).

425 38. Ghoul, M. *et al.* Bacteriocin-mediated competition in cystic fibrosis lung infections.

426 39. *Proc. R. Soc. B Biol. Sci.* **282**, 20150972 (2015).

427 39. Andersen, S. B. *et al.* Privatisation rescues function following loss of cooperation. *Elife*  
428 7, (2018).

429 40. Rossi, E., Falcone, M., Molin, S. & Johansen, H. K. High-resolution in situ  
430 transcriptomics of *Pseudomonas aeruginosa* unveils genotype independent patho-  
431 phenotypes in cystic fibrosis lungs. *Nat. Commun.* **9**, 3459 (2018).

432 41. Bartell, J. A. *et al.* Evolutionary highways to persistent bacterial infection. *Nat.*  
433 *Commun.* **10**, (2019).

434 42. Gabrielaite, M., Johansen, H. K., Molin, S., Nielsen, F. C. & Marvig, R. L. Gene loss  
435 and acquisition in lineages of *Pseudomonas aeruginosa* evolving in cystic fibrosis  
436 patient airways. *MBio* **11**, 1–16 (2020).

437 43. Bartell, J. A. *et al.* Bacterial persisters in long-term infection: Emergence and fitness in  
438 a complex host environment. *PLOS Pathog.* **16**, e1009112 (2020).

439 44. La Rosa, R., Johansen, H. K. & Molin, S. Convergent metabolic specialization through  
440 distinct evolutionary paths in *Pseudomonas aeruginosa*. *MBio* **9**, (2018).

441 45. Russell, A. B. *et al.* Diverse type VI secretion phospholipases are functionally plastic  
442 antibacterial effectors. *Nature* **496**, 508–512 (2013).

443 46. McNally, L. *et al.* Killing by Type VI secretion drives genetic phase separation and  
444 correlates with increased cooperation. *Nat. Commun.* **8**, 14371 (2017).

445 47. Kalziki, A. *et al.* Immotile active matter: Activity from death and reproduction. *Phys.*  
446 *Rev. Lett.* **120**, 018101 (2018).

447 48. Hilker, R. *et al.* Interclonal gradient of virulence in the *Pseudomonas aeruginosa*  
448 pangenome from disease and environment. *Environ. Microbiol.* **17**, 29–46 (2015).

449 49. Hachani, A. *et al.* Type VI secretion system in *Pseudomonas aeruginosa*: Secretion and  
450 multimerization of VgrG proteins. *J. Biol. Chem.* **286**, 12317–12327 (2011).

451 50. Russell, A. B. *et al.* Type VI secretion delivers bacteriolytic effectors to target cells.  
452 *Nature* **475**, 343–347 (2011).

453 51. Silverman, J. M. *et al.* Haemolysin coregulated protein is an exported receptor and  
454 chaperone of type VI secretion substrates. *Mol. Cell* **51**, 584–593 (2013).

455 52. Li, Y., Chen, L., Zhang, P., Bhagirath, A. Y. & Duan, K. ClpV3 of the H3-type VI  
456 secretion system (H3-T6SS) affects multiple virulence factors in *Pseudomonas*  
457 *aeruginosa*. *Front. Microbiol.* **11**, (2020).

458 53. Robb, C. S., Robb, M., Nano, F. E. & Boraston, A. B. The structure of the toxin and  
459 type six secretion system substrate Tse2 in complex with its immunity protein. *Structure*  
460 **24**, 277–284 (2016).

461 54. Unterweger, D. *et al.* The *Vibrio cholerae* type VI secretion system employs diverse  
462 effector modules for intraspecific competition. *Nat. Commun.* **5**, 1–9 (2014).

463 55. Steele, M. I., Kwong, W. K., Whiteley, M. & Moran, N. A. Diversification of type VI  
464 secretion system toxins reveals ancient antagonism among bee gut microbes. *MBio* **8**,  
465 (2017).

466 56. Santoriello, F. J., Kirchberger, P. C., Boucher, Y. & Pukatzki, S. Pandemic *Vibrio*  
467 *cholerae* acquired competitive traits from an environmental *Vibrio* species. *bioRxiv*  
468 (2021). doi:10.1101/2021.05.28.446156

469 57. Fridman, C. M., Keppel, K., Gerlic, M., Bosis, E. & Salomon, D. A comparative  
470 genomics methodology reveals a widespread family of membrane-disrupting T6SS  
471 effectors. *Nat. Commun.* **11**, (2020).

472 58. García-Bayona, L., Coyne, M. J. & Comstock, L. E. Mobile Type VI secretion system  
473 loci of the gut *Bacteroidales* display extensive intra-ecosystem transfer, multi-species  
474 spread and geographical clustering. *PLOS Genet.* **17**, e1009541 (2021).

475 59. Freschi, L. *et al.* The *Pseudomonas aeruginosa* pan-genome provides new insights on  
476 its population structure, horizontal gene transfer, and pathogenicity. *Genome Biol. Evol.*  
477 **11**, 109–120 (2019).

478 60. Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential  
479 genome of *Pseudomonas aeruginosa* in cystic fibrosis sputum. *Proc. Natl. Acad. Sci.*  
480 **112**, 4110–4115 (2015).

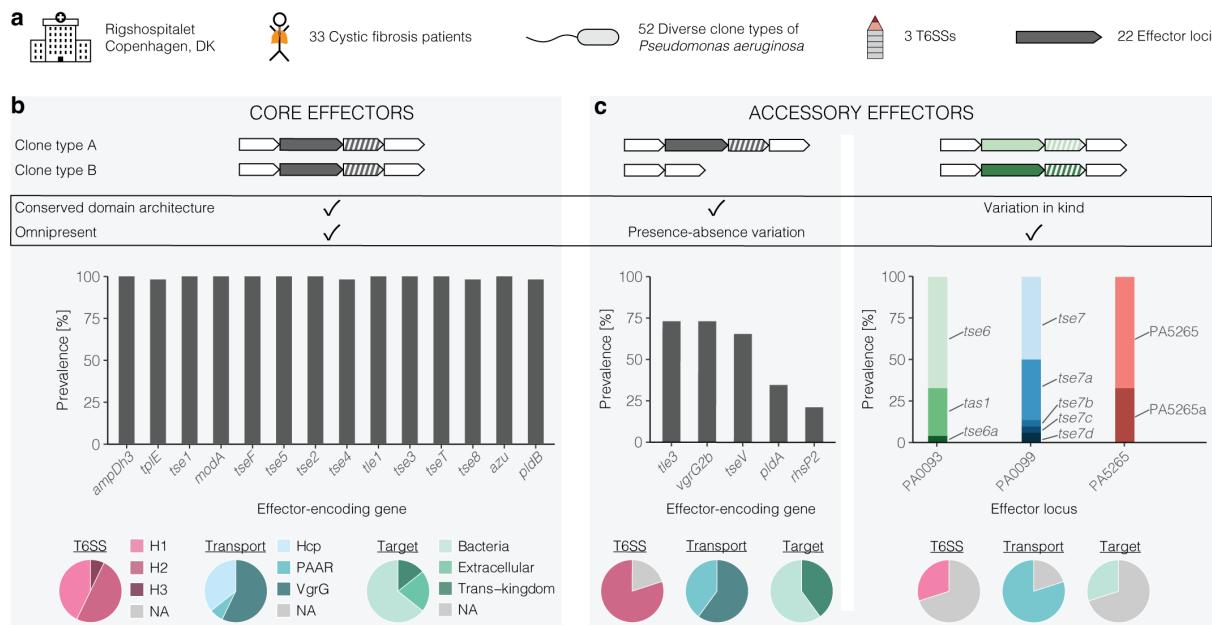
481 61. Jiang, F. *et al.* The *Pseudomonas aeruginosa* type VI secretion PGAP1-like effector  
482 induces host autophagy by activating endoplasmic reticulum stress. *Cell Rep.* **16**, 1502–  
483 1509 (2016).

484 62. Barret, M., Egan, F., Fargier, E., Morrissey, J. P. & O’Gara, F. Genomic analysis of the  
485 type VI secretion systems in *Pseudomonas* spp.: Novel clusters and putative effectors  
486 uncovered. *Microbiology* **157**, 1726–1739 (2011).

487 63. Elsen, S. *et al.* A type III secretion negative clinical strain of *Pseudomonas aeruginosa*  
488 employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. *Cell Host*  
489 *Microbe* **15**, 164–176 (2014).

490 64. Wettstadt, S. & Filloux, A. Manipulating the type VI secretion system spike to shuttle  
491 passenger proteins. *PLoS One* **15**, 1–20 (2020).

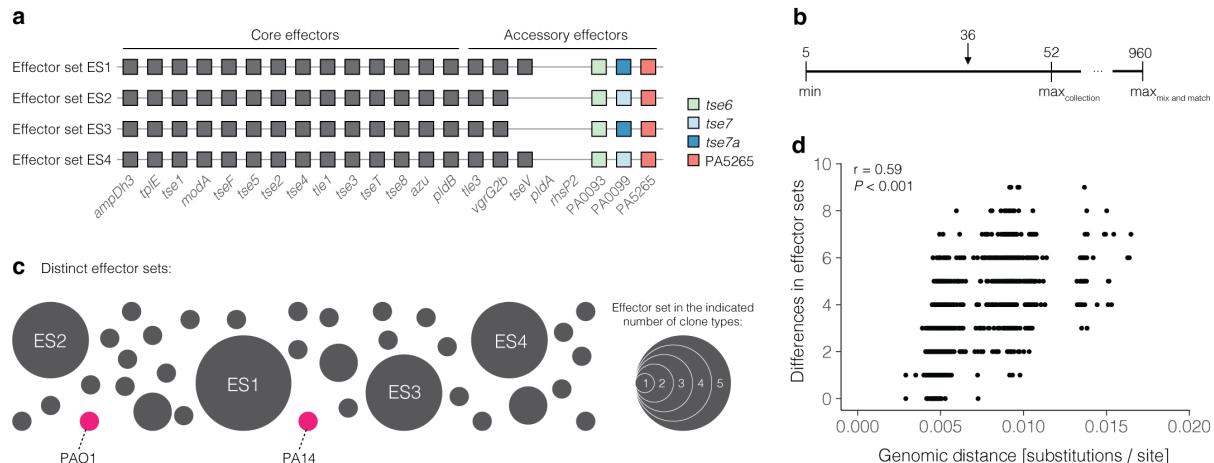
492 65. Wettstadt, S., Lai, E.-M. & Filloux, A. Solving the puzzle: Connecting a heterologous  
493 *Agrobacterium tumefaciens* T6SS effector to a *Pseudomonas aeruginosa* spike  
494 complex. *Front. Cell. Infect. Microbiol.* **10**, (2020).


495 66. Jana, B., Keppel, K. & Salomon, D. Engineering a customizable antibacterial T6SS-  
496 based platform in *Vibrio natriegens*. *EMBO Rep.* (2021). doi:10.15252/embr.202153681

497

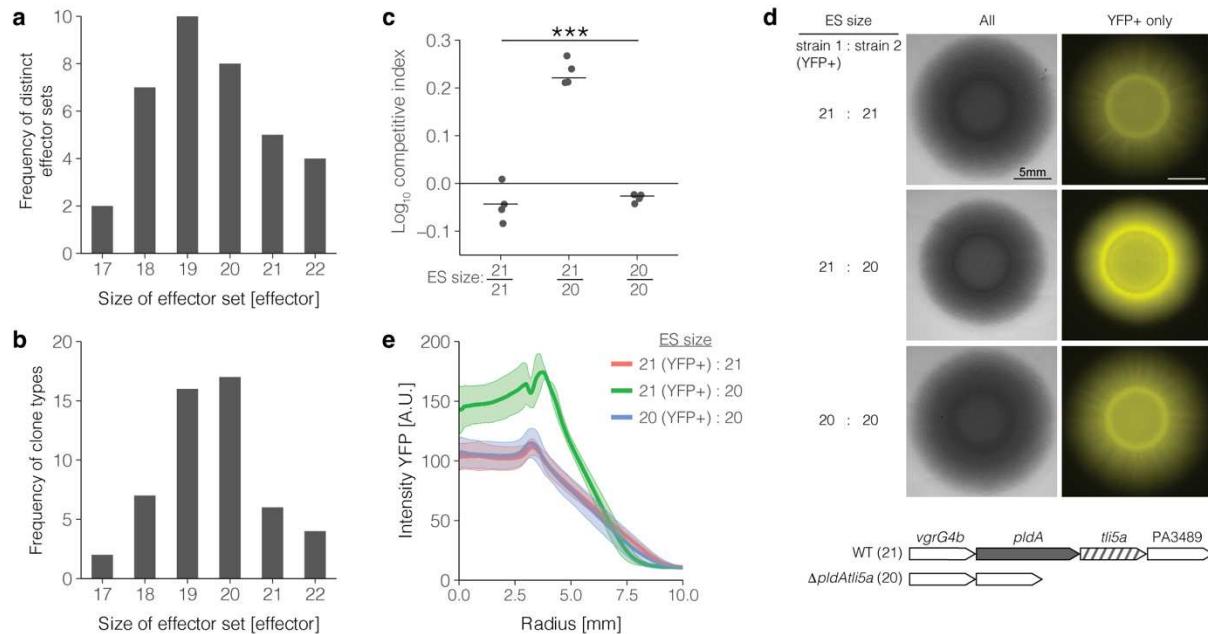
498

499 **Figures and figure legends**


500



501

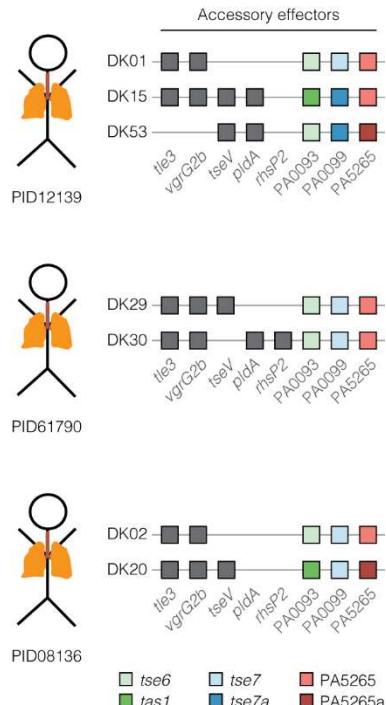

502 **Figure 1. T6SS effectors are either omnipresent and conserved or show presence-absence**  
503 **variation and variation in kind. a**, Overview of the analysed clone types and the known T6SS  
504 effector-encoding genes in *P. aeruginosa*. **b, c**, Core effectors are omnipresent and have a  
505 conserved domain architecture, accessory effectors show presence-absence variation or vary  
506 in their catalytic site. Graphical depictions of T6SS effector-encoding genes (filled in grey),  
507 immunity protein-encoding genes (striped in grey), and neighbouring genes (filled in white).  
508 Bar graphs show the prevalence of a given effector-encoding gene. For orientation, effector  
509 loci are labelled with PA numbers of the reference strain PAO1. Pie charts provide information  
510 on the type of T6SS an effector is linked to, the mechanism of effector translocation, and the  
511 effector targets. NA, not yet known. **b**, The blue horizontal line indicates a prevalence of 95%.  
512 **c**, Each shade of a given colour represents an effector with less than 30% amino acid identity  
513 at the catalytic site compared to another variant of the same locus.

514



515 **Figure 2. Fifty-two clone types harbour 36 distinct T6SS effector sets (ES).** **a**, Schematic  
 516 of four effector sets. Each set consists of all known effectors in a given genome. Each box  
 517 represents one effector, shades of colour indicate different effector variants. **b**, Number of  
 518 observed distinct effector sets ( $n=36$ ) among the 52 clone types and a total of 960 theoretically  
 519 possible distinct effector sets assuming mix and match. **c**, Total number of distinct effector sets  
 520 among the analysed clone types. Each bubble represents one effector set, the size of the bubble  
 521 depends on the number of clone types with a respective effector set. Bubbles of effector sets  
 522 that are also found in lab reference strains are coloured in pink. Distribution of effector sets  
 523 among clone types is not random (Monte Carlo simulation,  $P < 0.001$ ). **d**, The correlation  
 524 between the differences in effector sets (y-axis) and the genomic distance based on whole  
 525 genomes (x-axis) was tested with a Pearson's correlation coefficient.

527




528

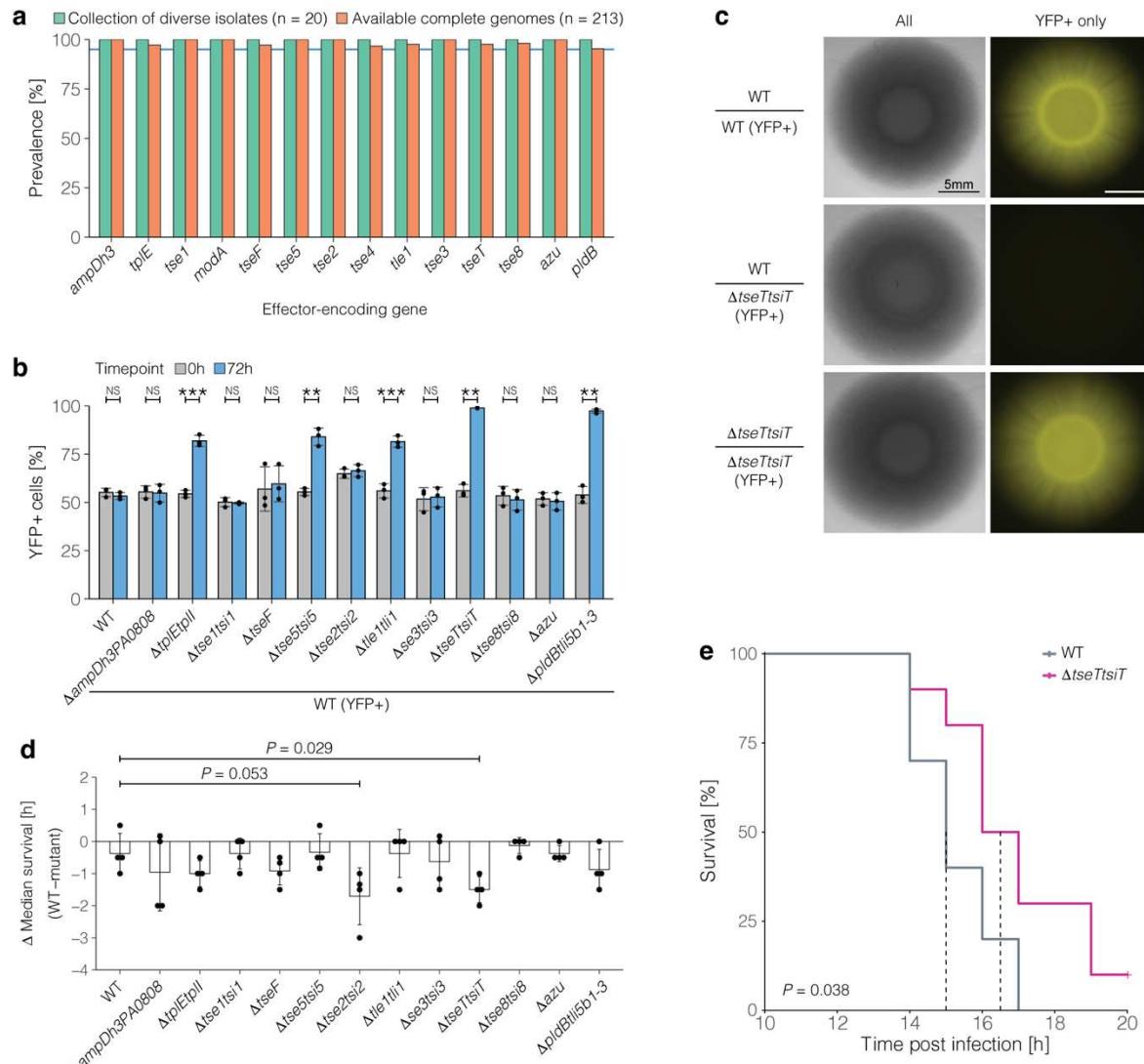
529 **Figure 3. Effector set with additional anti-prokaryotic effector mediates bacteria-**  
 530 **bacteria killing. a, Frequency distribution of effector sets of a certain size. b, Frequency**  
 531 **distribution of clone types with a given size of effector sets. c-e, Competition experiments**  
 532 **between two variants of the same strain with differing T6SS effector sets. Presence and absence**  
 533 **of the accessory effector-encoding genes *pldA* results in an effector set of 20 and 21 effectors.**  
 534 **Indicated strains were mixed at a 1:1 ratio and spotted onto agar plates. The experiment was**  
 535 **performed four times. c, Strain with a bigger effector set outnumbers strain with a smaller**  
 536 **effector set. Bars represent the mean ratio of bacterial counts ( $\pm$  SD) with ANOVA ( $***P <$**   
 537 **0.001). d, Spatial distribution of the marked strain within the community of two competing**  
 538 **strains (scale bars, 5mm). Representative images of one of four experiments are shown. e,**  
 539 **Radial profiles (mean  $\pm$  SD of four experiments) of the fluorescently marked strain starting at**  
 540 **the centre towards the periphery of the community.**

541

542



543

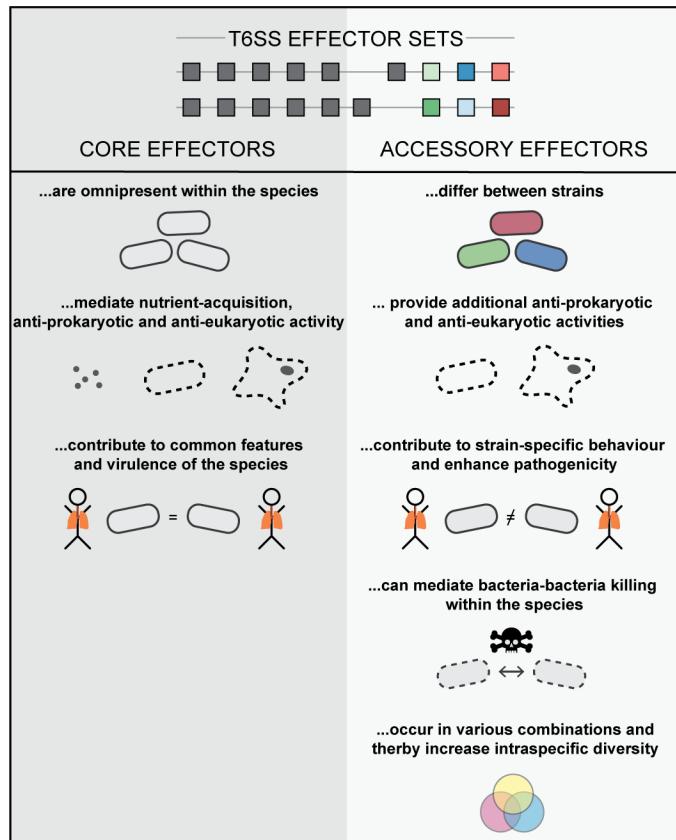

544 **Figure 4. Simultaneously isolated clone types from the same patient differ in their effector**

545 **sets.** Schematic of the clone types' accessory effectors and the patient they were isolated from.

546 Each box represents one accessory effector. Grey boxes refer to effectors with presence

547 absence variation and coloured boxes refer to effectors that vary in kind.

548




549

550 **Figure 5. Core effectors mediate bacterial killing and contribute to the virulence of *P.***  
 551 ***aeruginosa*. a**, Prevalence of core effectors in diverse isolate collections<sup>48</sup>. The blue horizontal  
 552 line indicates a prevalence of 95%. **b**, Competition experiments to assess bacteria-bacteria  
 553 killing between the indicated strains. Mean and standard deviation of three independent  
 554 experiments are shown. Welch two-sample *t*-test was used to evaluate statistical significance  
 555 ( $***P < 0.001$ ;  $**P < 0.01$ ; NS, not significant). **c**, Killing by TseT results in nearly complete  
 556 eradication of sensitive strain. **d**, Virulence mediated by core effectors in *Galleria mellonella*  
 557 infection experiments. Larvae were infected in the last left proleg with the indicated strain or  
 558 PBS as a control. Mean and standard deviation of four independent experiments (each with 10

559 larvae) are shown. Each dot indicates the result of one experiment. Statistical significance was  
560 tested with a Welch two-sample *t*-test. e, Larvae infected with the core effector mutant  
561  $\Delta tseTtsiT$  live significantly longer than larvae infected with the wild type strain PAO1. Dotted  
562 lines indicate median survival times. Log-rank test was used for statistical evaluation.

563



564

565 **Figure 6. T6SS effector sets of *P. aeruginosa* are composed of core and accessory effectors.**

566 Core effectors (i) are highly prevalent within the species, (ii) mediate nutrient-acquisition, anti-  
567 prokaryotic, and anti-eukaryotic activity, and (iii) equally contribute to behaviour and virulence  
568 across strains of the species. In contrast, accessory effectors are less prevalent and differ  
569 between strains. They provide additional anti-prokaryotic and anti-eukaryotic activities. As a  
570 consequence of different accessory effectors, strains might differ in their behaviour and are  
571 more virulent. Two strains with differing accessory effectors can engage in T6SS-mediated  
572 killing of each other. The various combinations in which accessory effectors occur result in a  
573 multitude of diverse effector sets.

574

575

576 **Materials and Methods**

577

578 Bacterial strains and growth conditions

579 *P. aeruginosa* was grown in LB broth at 37°C. A list of strains used in this study is provided  
580 in Supplementary Table 4. In-frame deletions were generated via homologous recombination.  
581 In brief, fragments upstream and downstream of the gene of interest were PCR-amplified with  
582 primers p1, p2 and p3, p4 (all primers are listed in Supplementary Table 5). One continuous  
583 fragment was generated out of the two overlapping fragments in a second PCR and ligated into  
584 the vector pME3087<sup>67</sup>. The recombinant plasmid was transferred into the respective recipient  
585 strain during mating. Upon serial growth, tetracycline-sensitive cells were screened, mutants  
586 verified by PCR and confirmed by Sanger Sequencing. Fluorescently marked strains were  
587 generated as described by Schlechter *et al.*<sup>68</sup> with the plasmid pMRE-Tn7-143 provided by  
588 addgene (#118495). Tetracycline was used at concentrations of 100µg ml<sup>-1</sup>.

589

590 Competition in expanding colony

591 Bacterial strains were grown in liquid broth overnight, sub-cultured 1:100 on the day of the  
592 experiment and grown to early mid-logarithmic phase. Two strains were mixed at equal  
593 numbers to a final concentration of 5x10<sup>7</sup> bacteria/30µl, of which 10µl were spotted onto LB  
594 agar plates (1.5% w/v). Plates were incubated at room temperature for 72h. During this time,  
595 plates were kept in a plastic box to prevent the agar from drying out.

596

597 Microscopic imaging

598 An Axio Zoom.V16 microscope (Zeiss) with a PlanApo Z 0.5X objective was used to take  
599 brightfield and fluorescent images of the macrocolonies. Images were processed with Fiji<sup>69</sup>.  
600 Intensity profiles were created with the plug-in “Radial Profile Plot” and visualised using R.

601

602 Flow cytometry

603 The BD Accuri C6 flow cytometer was used to quantify individual strains in the mixed  
604 community. Therefore, bacteria were scraped off the agar plate, resuspended in PBS and  
605 diluted. Threshold for the parameters forward scatter was set at 3,000 and for side scatter at  
606 1,000. 10,000 events were quantified per sample. The competitive index was calculated by  
607 dividing the percentage of yellow fluorescent protein (YFP) cells per spot at 72h by the  
608 percentage of YFP cells at the start of the experiment.

609

610 Growth curves

611 Overnight cultures were diluted 1:100 in LB, grown to exponential phase, further diluted and  
612 transferred into a 96-well plate to a starting OD<sub>600</sub> of 0.001. The plate was incubated at 37 °C,  
613 shaken at 162rpm, and OD<sub>600</sub> measurements were taken every 15 minutes (Tecan, Spark).  
614 Three independent experiments were performed for each strain.

615

616 Galleria mellonella infection assay

617 *G. mellonella* 6<sup>th</sup>- instar larvae were purchased from Faunatopics GmbH (Marbach, Germany).  
618 Upon arrival, larvae were stored at 10°C, for a maximum of 3 weeks. One day prior to infection,  
619 healthy looking, motile larvae with a body weight of 350 - 450 mg and without any signs of  
620 melanisation were selected and acclimatised at room temperature.

621 Infection assays of *G. mellonella* larvae were performed as previously described by McCarthy  
622 *et al.*<sup>70</sup> with some modifications. In brief, *P. aeruginosa* overnight cultures were sub-cultured  
623 1:50 in fresh LB medium and grown on a shaker at 37°C, 180 RPM until an *OD*<sub>600</sub> of 0.6.  
624 Bacteria were pelleted by centrifugation, resuspended in sterile PBS, and serially diluted to

625  $10^{-4}$ . 10  $\mu$ l bacterial suspension containing approximately 60 bacterial cells or 10  $\mu$ l PBS alone  
626 (mock control) were injected into the last left proleg of larvae (n = 10 per treatment) using a  
627 Hamilton syringe. Larvae were stored at 4°C until all injections were completed and then  
628 transferred to a 37°C incubator. Twelve hours post infection, *G. mellonella* larvae were  
629 monitored on an hourly basis and checked for unresponsiveness and death. *P. aeruginosa*  
630 inocula were plated onto LB agar plates and enumerated for each experiment. Survival data is  
631 depicted as Kaplan-Meier curves. Kaplan-Meier curves of different conditions were compared  
632 using the log-rank test.

633

634 Data accession

635 Genome assemblies for isolates belonging to the Copenhagen collection<sup>34</sup> were downloaded  
636 from the European Nucleotide Archive (ENA). See Supplementary Table 1 for the accession  
637 codes of individual isolates. The accession codes for the reference strains PAO1 and PA14 are  
638 NC\_002516 and CVON00000000, respectively. Raw reads of the 20 most common clones<sup>48</sup>  
639 were downloaded from the Sequence Read Archive (SRA). See Supplementary Table 6 for  
640 detailed accession information. All whole genomes of *P. aeruginosa* strains that were available  
641 on ENA by December 2020 were downloaded. Accession codes are found in Supplementary  
642 Table 7. Phylogenetic analysis of whole genomes was performed using andi<sup>71</sup>.

643

644 De novo assembly

645 Raw reads were trimmed using BBduk<sup>72</sup> (Version 38.37) with default settings except for the  
646 minimum quality, which was set to 20. Trimmed reads were *de novo* assembled into scaffolds  
647 using SPAdes<sup>73</sup> (version 3.13.0) with default settings.

648

649 T6SS effector-encoding gene analysis

650 Nucleotide sequences encoding for known *P. aeruginosa* T6SS effectors (Supplementary  
651 Table 2) (in case of *vgrG2b* only nucleotides 2271 to 3060 were used, which encode the  
652 enzymatically active domain) were extracted from the annotated reference strains PAO1 and  
653 PA14. These sequences were used as query sequences in a local blastn search against the  
654 contigs from the Copenhagen collection, assembled scaffolds from the most common clones,  
655 and all publicly available whole genomes to determine the prevalence of effector-encoding  
656 genes in the respective datasets. Nucleotide identities were calculated as described by Rohwer  
657 *et al.*<sup>74</sup>. The absence of genes was confirmed by analysing neighbouring genes. Additionally,  
658 sequences were manually inspected with Geneious<sup>75</sup> (version 2019.2.3). Nucleotide sequences  
659 were translated, aligned to the PAO1 reference sequence using the Geneious<sup>75</sup> alignment  
660 algorithm with default settings (version 2019.2.3), and the amino acid sequence identity was  
661 calculated as the percentage of residues that are identical to the reference. Effector variants  
662 share an amino acid sequence similarity of less than 30 % in the domain with the catalytic  
663 site<sup>76-78</sup>. The length of intact amino acid sequences was analysed as a read out for loss-of-  
664 function mutations by premature stop codons or frameshift mutations. Combinatorial analysis  
665 and stochastics were used to test if the distribution of core and accessory effectors is random  
666 among the associated T6SS, the mechanism of transport or their target.

667

668 **Methods references**

669 67. Scott, T. A., Heine, D., Qin, Z. & Wilkinson, B. An L-threonine transaldolase is required  
670 for L-threo- $\beta$ -hydroxy- $\alpha$ -amino acid assembly during obafluorin biosynthesis. *Nat. Commun.* **8**, 15935 (2017).

672 68. Schlechter, R. O. *et al.* Chromatic bacteria – A broad host-range plasmid and  
673 chromosomal insertion toolbox for fluorescent protein expression in bacteria. *Front. Microbiol.* **9**, (2018).

675 69. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–682 (2012).

677 70. McCarthy, R. R. *c-di-GMP Signaling*. **1657**, (Springer New York, 2017).

678 71. Haubold, B., Klötzl, F. & Pfaffelhuber, P. Andi: Fast and accurate estimation of  
679 evolutionary distances between closely related genomes. *Bioinformatics* **31**, 1169–1175  
680 (2015).

681 72. Bushnell, B. BBMap (BBDuk plugin). (2015).

682 73. Nurk, S. *et al.* Assembling single-cell genomes and mini-metagenomes from chimeric  
683 MDA products. *J. Comput. Biol.* **20**, 714–737 (2013).

684 74. Rohwer, R. R., Hamilton, J. J., Newton, R. J. & McMahon, K. D. TaxAss: Leveraging  
685 a custom freshwater database achieves fine-scale taxonomic resolution. *mSphere* **3**, 1–  
686 14 (2018).

687 75. Kearse, M. *et al.* Geneious Basic: An integrated and extendable desktop software  
688 platform for the organization and analysis of sequence data. *Bioinformatics* **28**, 1647–  
689 1649 (2012).

690 76. Rost, B. Twilight zone of protein sequence alignments. *Protein Eng. Des. Sel.* **12**, 85–  
691 94 (1999).

692 77. Orengo, C. A. & Thornton, J. M. Protein families and their evolution - a structural  
693 perspective. *Annu. Rev. Biochem.* **74**, 867–900 (2005).

694 78. Yu, L. *et al.* Grammar of protein domain architectures. *Proc. Natl. Acad. Sci.* **116**, 3636–  
695 3645 (2019).

696

697

698 **Acknowledgments**

699 We thank Yasmin Claussen and Florian Schröder for technical assistance, Bernhard Haubold  
700 for discussions, and Rahul Unni, Sabrina Jabs, and Petra Bacher for comments on the  
701 manuscript. This work was funded by a European Molecular Biology Organization Long-Term  
702 Fellowship (ALTF 80-2015), the Daimler and Benz Foundation (grant 32-10/18), the German  
703 Cystic Fibrosis Association and the German Federal Ministry for Education and Research  
704 (grant 01KI2020) (to DU). AH receives support from the International Max Planck Research  
705 School for Evolutionary Biology.

706

707

708 **Author contributions**

709 DU, ASG, MG, SBA, HKJ, SM, AH, VCV and AG contributed to the experimental design and  
710 provided advice, tools, and materials. AH and VCV performed the bioinformatics. OV  
711 generated bacterial mutants. AH, AG, and OV performed experiments. AH, AG, VCV and DU  
712 analysed the data. AH and DU wrote the first draft of the manuscript that was revised by all  
713 authors. DU and ASG conceived the project and supervised the study.

714

715 **Competing interests**

716 The authors declare no competing interests.

717