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Abstract

Bacteria use type VI secretion systems (T6SSs) to deliver effector proteins into other cells or
the extracellular space. Those effectors kill microbes!, manipulate eukaryotic cells?, and
sequester nutrients>. Which T6SS-mediated functions are generalisable across bacteria of a
species or are specific to particular strains is little known. Here, we use genomics to test for the
intraspecific diversity of T6SS effectors in the opportunistic pathogen Pseudomonas
aeruginosa. We found effectors that are omnipresent and conserved across strains acting as
‘core effectors’, while additional ‘accessory effectors’ vary. /n vitro and in vivo experiments
demonstrate different roles of the two types of effectors in bacterial killing and virulence.
Further, effectors compose various effector combinations. Within one local population of
clinical isolates, we observed 36 combinations among 52 bacterial lineages. These findings
show the distinct contribution of T6SS effectors to strain-level variation of a bacterial pathogen

and might reveal conserved targets for novel antibiotics.


https://doi.org/10.1101/2022.04.11.487527
http://creativecommons.org/licenses/by-nd/4.0/

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.11.487527; this version posted April 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-ND 4.0 International license.

Introduction

Bacteria benefit from frequent interactions with their biotic and abiotic environment. By
secreting effector proteins directly into target cells or the extracellular space, bacteria kill other
microbes!, manipulate eukaryotic cells? and take up nutrients®. In this regard, the type VI
secretion system (T6SS) has been shown to be an effective protein delivery tool of numerous
Gram-negative bacteria, including symbionts and pathogens*”’. Its function is mostly inferred

from experimental work on a few reference strains of diverse species.

Generalising findings on the function of the T6SS in a particular bacterial species is not trivial.
T6SS-mediated phenotypes are expected to be highly specific to the T6SS effectors of the
respective strains. It is the effectors and their diverse enzymatic activities that mediate anti-
prokaryotic, anti-eukaryotic and nutrient-acquiring activities, ultimately leading to phenotypes

such as killing of prokaryotic and eukaryotic cells®!!

. Experimental studies showed that
effectors and their corresponding immunity proteins, which protect sister cells from getting
killed, are often encoded side-by-side on mobile genetic elements and are subject to
recombination!!>!*, Consequently, some effectors are known to vary between strains'*!7, but
most effector loci have not yet been systematically analysed in a bacterial population of one
species. Although synergies between effectors were reported!®, the combinations in which
effectors occur remain mostly unknown. Inferring the function of the T6SS for a bacterial

species is therefore close to impossible without knowing the intraspecific diversity of T6SS

effectors.

We investigated the intraspecific diversity of Pseudomonas aeruginosa T6SS effectors, which
are both a model system for the T6SS field and a virulence factor of this opportunistic pathogen.

P. aeruginosa is the main driver of chronic lung infections in cystic fibrosis (CF) patients'.
3
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The detection of T6SS components in the sputum of CF patients and recent reports of T6SS-
mediated colonisation resistance to Burkholderia in the CF lung demonstrate the clinical
relevance of this secretion system*2%2!, Each T6SS effector is (i) translocated by one of the
three types of T6SSs (H1, H2, and H3)?222%, (ii) associated with the secretion machinery by
Hcp, VgrG or PAAR-domains®*2, and (iii) targeting nutrient uptake, prokaryotes and/or

eukaryotic cells!?1425:33

. To our best knowledge, more T6SS effectors are known and
characterised in depth for P. aeruginosa than for any other species. They are therefore ideal for

systematically characterising the prevalence of effectors in a bacterial population and testing

the impact of T6SS effector diversity on bacteria-bacteria interactions and pathogenicity.

Our analysis focused on 22 T6SS effector-encoding loci in the available genome sequences of
52 phylogenetically distinct P. aeruginosa isolates (herein referred to as 52 distinct clone types)
collected from a local cohort of 33 CF patients**** (Fig. 1a, Supplementary Table 1). The large
number of isolates in this collection and their extensive diversity uniquely enabled us to study
the variation in T6SS effectors in one local population and later expand our analysis to isolates
from various sources from all around the globe. What causes diverse P. aeruginosa bacteria to
behave similarly in some aspects and not in others could be influenced by differences in the

intraspecific diversity of T6SS effectors and subsequent variation in T6SS function.
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83  Results

84

85  Core effectors are omnipresent and conserved across clone types whereas accessory effectors

86  arenot

87  We found fourteen effector-encoding genes were present in at least 98% of the analysed clone

88  types (Fig. 1b, Supplementary Fig. 1). Effectors encoded at all 14 loci had a conserved domain

89 architecture and shared 84 to 100% amino acid identity in a global alignment (Supplementary

90 Fig. 2a). Only a small fraction of analysed sequences carried putative loss-of-function

91  mutations that resulted in a shortened amino acid sequence (2 cases out of 724). Based on the

92 high similarity and high prevalence of these effectors among the diverse clone types, we

93  labelled them ‘core effectors’. Among them were effectors transported by all three T6SSs in

94  association with either Hcp, PAAR or VgrG proteins, representing all T6SS-dependent

95  mechanisms of secretion (Fig. 1b). Core effectors target prokaryotes, eukaryotic cells, and

96  extracellular nutrients, suggesting a broad target spectrum.

97

98  Unlike core effectors, we found multiple effector-encoding genes in a fraction of the analysed

99  clone types only, and we therefore referred to them as ‘accessory effectors’ (Fig. 1¢). Among
100  them, five showed presence-absence variation (Fig. 1c, Supplementary Fig. 2b). T6SS effector-
101  encoding genes at three loci (PA0093, PA0099, PA5265) differed between clone types and are
102  referred to as ‘variation in kind’ (Fig. 1c, Supplementary Fig. 2c-e). Characterised accessory
103 effectors either belonged to the H1- or H2- and not H3-T6SS, and were associated with the
104  secretion systems via either PAAR or VgrG and not Hep proteins (Fig. 1c). Effectors secreted
105 by H3-T6SS or associated with Hep are unlikely omitted at random (probability P < 0.05),

106  suggesting that accessory effectors are preferentially secreted by certain T6SSs via specific
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107  secretory mechanisms. The known targets of accessory effectors were prokaryotic and
108  eukaryotic cells.

109

110  Altogether, we found (i) core effectors that are omnipresent and conserved in their domain
111 architecture, and (ii) accessory effectors that vary in presence-absence or kind. The lack of
112 diversity in some effectors implies T6SS-mediated phenotypes would be universally present
113 across members of the species. The existence of accessory effectors opens the possibility of
114  intraspecific diversity of effector combinations on the level of the individual isolate or strain.
115

116

117  Effector set diversity across clone-types

118  Next, we characterised how core and accessory effectors were distributed across clone types.
119  To do this, we identified all T6SS effectors present in each genome to define an effector set for
120 each clone type (Fig. 2a). Assuming a random mix-and-match between all accessory effectors,
121  as many as 960 unique effector sets were possible (Fig. 2b). Instead, we found 36 distinct
122 effector sets among the 52 isolates (Fig. 2b, Supplementary Table 3). Each of these isolates
123 belonged to a different clone type, capturing the phylogenetic diversity of a total of 473 clinical
124 isolates in our collection®*. Out of this collection, we analysed 421 additional isolates of the
125  same clone types for other distinct effector sets, but did not find any more.

126

127  Next, we analysed the relative abundance of the different effector sets, which are not randomly
128  distributed across clone types (Monte Carlo simulation, P < 0.001). We found 29 effector sets
129  in one clone type only and seven effector sets in at least two different clone types (Fig. 2c¢).
130  The most abundant effector set (named ‘ES1”) was found in five clone types and consisted of

131  the fourteen core effectors, and six accessory effectors (Fig. 2a, c¢). Of note, the four most
6
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132 abundant effector sets differed from each other only at two loci (presence-absence variation of
133 tseV and variation in kind in PA0099) and were otherwise identical. Although some clone types
134 had the same effector sets as the reference strains PAO1 and PA 14, these sets were only found
135  in one clone type each (highlighted in pink, Fig. 2c¢).

136

137  To test if the effector sets of clone types were indicative of their relatedness between each
138  other, we compared the phylogenetic distances between clone types with their effector sets.
139  We found a positive correlation (Pearson’s correlation coefficient 0.59, P < 0.001, 95%
140  confidence interval 0.56 to 0.61) between differences in the T6SS effectors and differences in
141  the whole genome (Fig. 2d). Two closely related clone types were significantly more likely to
142 have similar effector sets than two distantly related clone types. This result might reflect the
143 gradual diversification of the effector sets during the diversification of the species.

144

145  In summary, we demonstrated (i) that multiple diverse effector sets exist, (ii) which of the
146  theoretically possible effector combinations are found in the isolate collection, and (iii) that
147  some effector sets are more common than others. These findings indicate that the varying
148  effectors might provide one clone type with an advantage over another clone type.

149

150

151  Effector sets with the accessory effector PldA have a competitive advantage

152 To determine the minimal and maximal number of effectors per set, we analysed the total
153  number of effectors in each of the 36 distinct sets. We found effector sets with as few as 17
154  and as many as 22 effectors (Fig. 3a). Of note, effector sets of the same size can differ in their
155  effector composition, for example by accessory effectors that vary in kind. The frequencies of

156  distinct effector sets were binomially distributed across the number of effectors per set (P >
7
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157  0.05, Fig. 3a, Supplementary Fig. 3a), indicating that most sets had a size of 19 or 20 effectors
158  whereas relatively few sets were small (17 to 18 effectors) or big (21 to 22 effectors). When
159  taking into account that some effector sets are found in more than one clone type, effector sets
160  with 19 and 20 effectors are also most common among the 52 distinct clone types (Fig. 3b).
161  These results show that effector sets differ in size, and an intermediate number of effectors is
162  most common among distinct effector sets and clone types.

163

164  Effectors with presence-absence variation have previously been shown to be translocated with
165  the T6SS and identified as toxins with anti-bacterial activity**. To test the difference between
166  having one effector more or less in an effector set, we chose the accessory effector PIdA that
167 is present in some effector sets and absent from others. Competition experiments were
168  performed between two variants of the same strain that only differ in this one effector of the
169  otherwise identical effector set. Because effector protein-encoding genes are accompanied by
170  immunity protein-encoding genes!, the presence or absence of an effector also reflects the
171  presence or absence of its cognate immunity protein in our dataset (Supplementary Fig. 3b, c).
172 A strain with a PIdA-containing effector set of 21 effectors (here PAO1 wild-type) was
173 observed to kill an otherwise identical strain with a PldA-deficient effector set of 20 effectors
174  (here PAO1ApldAtliSa) (Fig. 3¢). No killing was observed when two strains with the same
175  effector sets were competed against each other (Fig 3¢). This result demonstrates the advantage
176  of a bigger, PIdA-containing effector set in outnumbering a competing strain with a smaller,
177  PldA-deficient effector set and confirms previous findings on the anti-prokaryotic activity of
178  this *° accessory effector.

179

180  T6SS-mediated killing is known to affect the spatial organisation of bacteria within

181  communities*. To characterise the gain in space mediated by the PIdA-containing effector set,
8
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182  we performed microscopic analysis of the two competing strains with a PIJdA-containing bigger
183  effector set and a PIdA-deficient smaller effector set (here PAO1 and PAO1ApldAtli5a). An
184  expanding spot enables the observation of the spatial distribution of bacteria in an established

4647 Therefore, mixed bacteria were spotted onto an agar surface

185  model of a mixed community
186  and analysed for their spatial organization. We found that the strain with a PldA-containing,
187  bigger effector set strongly dominated the centre and the periphery of the community (Fig. 3d).
188  Radial profiles of fluorescence intensity across the community (Fig. 3e) further quantified the
189  changes in spatial distribution and demonstrated the resulting advantage of the accessory
190  effector PIdA.

191

192  Taken together, we now know (i) the average size of effector sets in our dataset and (ii) that a
193 larger effector set with the accessory effector PIdA can mediate a competitive advantage in
194  bacterial numbers and space.

195

196

197  Differences in accessory effectors are detected between isolates of the same patient

198  Next, we tested whether intraspecific diversity in T6SS effectors, which we observed in a
199  population of clinical isolates of an entire patient cohort from one geographic location, is also
200  detected in a bacterial population of an individual patient. When analysing clone types that had
201  been isolated from the same patient simultaneously, we find differences in their accessory
202  effectors (Fig. 4). Clone types DKO1, DK15, and DK53 from patient PID12139 differ in four
203  of the accessory effectors with presence absence variation (such as pldA) and three accessory
204  effectors that vary in kind. In patient PID61790, variation is observed in three accessory
205  effectors with presence absence variation. In patient PID08136, four accessory effectors differ

206  between clone types DK02 and DK20. These data show that T6SS effector sets not only differ
9
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207  between patients but also within patients. Whether the clone types were found in the same
208  patient because or despite their different effector sets, which form the genetic basis also for
209  T6SS-mediated killing between the clone types, remains unknown for now.

210

211

212 Core effectors are omnipresent across isolate collections and contribute to the virulence of
213 P. aeruginosa in vivo

214  Having established the diversity of T6SS effector sets, we decided to test whether our
215  observations on core effectors were generalisable across isolates of various geographic regions
216  and sources. Genome sequences of twenty diverse isolates collected from across the world
217  from various clinical and environmental sources*® were analysed. We found all 14 core
218  effectors in each of those isolates (Fig. 5a, Supplementary Fig. 4a). The genes were mostly
219 intact and only very few sequences with putative loss-of-function mutations were detected that
220 resulted in truncated amino acid sequences (2 cases out of 276 analysed sequences)
221  (Supplementary Fig. 4a). Further, we analysed over 200 whole-genome sequences of P.
222 aeruginosa available on NCBI, and found core effectors with a prevalence of at least 95% (Fig.
223 5a, Supplementary Fig. 4b). Two percent of the isolates lacked at least five core effectors; this
224  may be attributed to the fact that they belonged to a distinct phylogenetic group (Supplementary
225  Fig. 4c). Only few sequences contained putative loss-of-function mutations (40 cases out of
226 2937 analysed sequences). These findings (i) show a very high prevalence of core effectors
227  across the species and (ii) suggest that they may be functional in the vast majority and confer
228  abroad benefit.

229

230  Core effectors are known to be translocated with the T6SSs and most are known to mediate

1.24-3049-51 ' Those observations were often made after the introduction

10

231  bacteria-bacteria killing
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232 of mutations to artificially activate the secretion systems in vitro, which is useful to study the
233 T6SS molecular biology but might exaggerate phenotypes and is therefore of limited value to
234 understand the ecological impact of core effectors. To test the role of each core effector for
235  bacterial killing without artificially activating the secretion systems, we generated single-
236  deletion mutants of twelve core effectors and, if present, their corresponding immunity protein-
237  encoding genes (Supplementary Fig. 5). We find that the effector TseT (PA3907), with
238  predicted endonuclease activity?*, mediated the biggest competitive advantage among all core
239  effectors under the conditions tested (Fig. 5b). Upon microscopic analysis of the community
240  of competing bacteria, we observed nearly complete eradication of the strain sensitive to TseT-
241  mediated killing (Fig. 5¢). These results add value to the field by (i) demonstrating bacterial
242  killing by core effectors without introducing genetic modifications to activate the secretion
243 systems, (ii) providing a side-by-side comparison between effectors that have previously been
244  studied independently by different laboratories in slightly different experimental set-ups and
245  (iii) showing the power of core effectors in bacterial killing by reducing the competitor’s
246  number and gaining space in a mixed community.

247

248  To test the contribution of core effectors to bacterial virulence in vivo, we used an established
249  infection model of Galleria mellonella. We note that this infection model does not aim to
250  reflect a specific human disease here but rather to improve our understanding of T6SS-
251  mediated virulence in an organism more broadly. Although mutants with dysfunctional H1-
252 T6SS and H3-T6SS have previously shown attenuated virulence upon systemic infection of G.
253 mellonella'®>, the contribution of individual core effectors to the virulence of P. aeruginosa
254  remains mostly unclear. We systemically infected G. mellonella larvae with mutants lacking
255  the core effectors and recorded survival times. We observed less virulence for a mutant that

256  lacks the putative endonuclease TseT, which had only been tested for anti-prokaryotic activity
11
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so far (AtseTtsiT; Fig. 5d, e; t-test P = 0. 029). We also observed on average a prolonged
survival time for the mutant lacking tse2 (Atse2tsi2; Fig. 5d; t-test P = 0.053), which encodes
a putative mono-ADP-ribosyltransferase that has been reported as cytotoxic when expressed

in mammalian cells in vitro'~3

. These findings (i) present a first indication for the role of the
core effector TseT during infection, (ii) show that core effectors contribute to the virulence of

P. aeruginosa, and (iii) highlight the relevance of those effectors for bacterial pathogenesis.

12
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263  Discussion

264

265  Here, we report the diversity of T6SS effector sets in a population of clinical P. aeruginosa
266  clone types and present evidence for the different roles of core and accessory effectors for the
267 intraspecific diversity of this bacterial pathogen (Fig. 6). Our results show that caution should
268  be taken when generalising conclusions about T6SS-mediated phenotypes based on the
269 analysis of few strains: while we show on clinical isolates that combinations of accessory
270  effectors differ considerably between clone types and enable intra-specific killing between P.
271  aeruginosa bacteria, we found that core effectors with nutrient-acquiring, anti-prokaryotic, and
272  anti-eukaryotic activity are indeed highly prevalent among strains even beyond our isolate
273  collection. As such, P. aeruginosa stands out in comparison to other species that show

1354236 or do not encode a T6SS in all

274  intraspecific diversity in all known T6SS effectors
275  straing®-7-%8,

276

277  We propose that the herein described core effectors are among the few hundred genes in the
278  core genome of P. aeruginosa, which has a pangenome of over 50,000 genes in total’®. Many
279  of these rare genes of the core genome are considered essential and fulfil housekeeping
280  functions required for the growth of a bacterial cell®®. Core effectors are not essential for
281  bacterial survival in rich laboratory growth media, as was shown in here and by others!--242>27-
282 303345516162 Nevertheless, the high prevalence of the core effectors might be an indication for
283  the importance of their function in the bacterium’s natural environment. Outside of the
284  laboratory, P. aeruginosa faces diverse microbial competitors and scarce nutrient conditions,
285 in which the anti-prokaryotic and nutrient-acquiring activities of core effectors might be

286  universally beneficial to bacteria of this species. Although individual strains might differ in the

287  regulation of core effectors, the genes are present across strains. We argue that our findings on
13
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288  virulence mediated by at least one core effector highlights the clinical relevance of the T6SSs
289  for strains across the species.

290

291  Accessory effectors are some of many genes that differ between strains and contribute to strain-
292  specific behaviour and pathogenicity. We found variation in accessory effectors between
293  strains of the same and of different patients. Having or not having a certain accessory effector,
294  like PIdA, might affect the virulence of a particular strain. This notion is supported by
295  experimental work showing PldA-mediated activation of the PI3K/Akt pathway of eukaryotic
296  cells!* and by an association between an increased prevalence of pld4 and a higher risk of
297  exacerbations in non-CF bronchiectasis patients?!. Further, strains with p/d4 were associated
298  with acute pulmonary infections and multi-drug resistance!>. However, we warn from
299  measuring an isolate’s virulence by looking at T6SS effectors only. A PA7-related clinical
300 isolate had previously been expected to be less virulent based on its lack of a type III secretion
301  system but turned out more virulent because it had acquired another toxin®,

302

303  The herein described diversity of effector sets with various combinations of accessory effectors
304  provides the genetic basis for extensive T6SS-mediated killing between P. aeruginosa strains.
305  As observed in other species, strains with the same effector sets provide immunity to each
306  other’s effectors and are considered compatible, whereas strains with different effector sets kill
307  each other and cannot co-exist in a mixed community>*. In this scenario, even seemingly
308 redundant accessory effectors with a similar enzymatic activity to core effectors could confer
309  abenefit. The accessory effector PIdA and the core effector P1dB are both lipases, which might
310  be redundant when interacting with a bacterium outside the species'* and could be one reason
311  for PIdA not being present in all strains. However, the respective immunity proteins are specific

312 to PIdA or PIdB, so that a P. aeruginosa strain with a PIdA-containing effector set is able to
14
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313 kill a strain with an otherwise similar effector set that lacks PIdA and the respective immunity
314  protein'*, Even if PIdA is substituted by another effector that is yet unknown and encoded
315  elsewhere in the genome, the two strains likely remain incompatible. Considering that
316  additional T6SS effectors are still being discovered, the effector sets will likely become bigger
317  and even more diverse in the upcoming years.

318

319  Our findings on diverse effector sets give hope for an applied use of the secretion system as a
320  protein delivery tool. Recent attempts to engineer proteins for transport by the T6SS turned out
321  challenging?®%*6>, We showed that the effector sets that exist in our collection do not comprise
322 effectors at random. Among the multiple mechanisms by which effectors are associated with
323  the T6SS, we found Hcp-associated transport in the inner tube of the secretion system
324  exclusively among core effectors. In contrast, the tip of the T6SS allows for transport of diverse
325  accessory effectors with a PAAR domain, suggesting PAAR-mediated transport as the method
326  of choice when developing T6SS delivery platforms® and associating diverse engineered

327  effectors with the secretion system.

328
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Figure 1. T6SS effectors are either omnipresent and conserved or show presence-absence
variation and variation in kind. a, Overview of the analysed clone types and the known T6SS
effector-encoding genes in P. aeruginosa. b, ¢, Core effectors are omnipresent and have a
conserved domain architecture, accessory effectors show presence-absence variation or vary
in their catalytic site. Graphical depictions of T6SS effector-encoding genes (filled in grey),
immunity protein-encoding genes (striped in grey), and neighbouring genes (filled in white).
Bar graphs show the prevalence of a given effector-encoding gene. For orientation, effector
loci are labelled with PA numbers of the reference strain PAO1. Pie charts provide information
on the type of T6SS an effector is linked to, the mechanism of effector translocation, and the
effector targets. NA, not yet known. b, The blue horizontal line indicates a prevalence of 95%.
¢, Each shade of a given colour represents an effector with less than 30% amino acid identity

at the catalytic site compared to another variant of the same locus.
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516  Figure 2. Fifty-two clone types harbour 36 distinct T6SS effector sets (ES). a, Schematic
517  of four effector sets. Each set consists of all known effectors in a given genome. Each box
518 represents one effector, shades of colour indicate different effector variants. b, Number of
519  observed distinct effector sets (n=36) among the 52 clone types and a total of 960 theoretically
520  possible distinct effector sets assuming mix and match. ¢, Total number of distinct effector sets
521  among the analysed clone types. Each bubble represents one effector set, the size of the bubble
522 depends on the number of clone types with a respective effector set. Bubbles of effector sets
523  that are also found in lab reference strains are coloured in pink. Distribution of effector sets
524  among clone types is not random (Monte Carlo simulation, P < 0.001). d, The correlation
525  between the differences in effector sets (y-axis) and the genomic distance based on whole
526  genomes (x-axis) was tested with a Pearson’s correlation coefficient.

527

21


https://doi.org/10.1101/2022.04.11.487527
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.11.487527; this version posted April 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

a 10, c d ES size Al YFP+ only
kK — —
. < O 3 1 — strain 1 : strain 2 f” -
8 81 3 % (YFP+)
HE
5 ? 61 = 21 21
<] = |
g3 g o
5541 g
s S 001—=
T o9 & — -
o L]
— -01
s : 4 y 21 ;20
17 18 19 20 21 22 essize 2l 2L 2 :
Size of effector set [effector] ©
b 20, e 2004 ES size
& = 21 (YFP+): 21
(03
Q = e
S 45 — 21 (YFP+): 20
o < =20 (YFP+) : 20 20 : 20
A o
o w
5 10 > 100
2 =
g -
& 51 < 50
[ = vgrG4b pldA tliba  PA3489
w WT (21)
0- 0 - . . . ApldAtii5a (20) ——>———>
17 18 19 20 21 22 0.0 25 50 7.5 10.0
528 Size of effector set [effector] Radius [mm]

529  Figure 3. Effector set with additional anti-prokaryotic effector mediates bacteria-
530  bacteria killing. a, Frequency distribution of effector sets of a certain size. b, Frequency
531  distribution of clone types with a given size of effector sets. c-e, Competition experiments
532  between two variants of the same strain with differing T6SS effector sets. Presence and absence
533 of the accessory effector-encoding genes pldA results in an effector set of 20 and 21 effectors.
534  Indicated strains were mixed at a 1:1 ratio and spotted onto agar plates. The experiment was
535  performed four times. ¢, Strain with a bigger effector set outnumbers strain with a smaller
536  effector set. Bars represent the mean ratio of bacterial counts (= SD) with ANOVA (***P <
537 0.001). d, Spatial distribution of the marked strain within the community of two competing
538  strains (scale bars, Smm). Representative images of one of four experiments are shown. e,
539  Radial profiles (mean + SD of four experiments) of the fluorescently marked strain starting at
540  the centre towards the periphery of the community.
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544  Figure 4. Simultaneously isolated clone types from the same patient differ in their effector
545  sets. Schematic of the clone types’ accessory effectors and the patient they were isolated from.
546  Each box represents one accessory effector. Grey boxes refer to effectors with presence

547  absence variation and coloured boxes refer to effectors that vary in kind.
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Figure 5. Core effectors mediate bacterial killing and contribute to the virulence of P.
aeruginosa. a, Prevalence of core effectors in diverse isolate collections*®. The blue horizontal
line indicates a prevalence of 95%. b, Competition experiments to assess bacteria-bacteria
killing between the indicated strains. Mean and standard deviation of three independent
experiments are shown. Welch two-sample #-test was used to evaluate statistical significance
(***P <0.001; **P < 0.01; NS, not significant). ¢, Killing by TseT results in nearly complete
eradication of sensitive strain. d, Virulence mediated by core effectors in Galleria mellonella
infection experiments. Larvae were infected in the last left proleg with the indicated strain or

PBS as a control. Mean and standard deviation of four independent experiments (each with 10
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559  larvae) are shown. Each dot indicates the result of one experiment. Statistical significance was
560 tested with a Welch two-sample t-test. e, Larvae infected with the core effector mutant
561  AtseltsiT live significantly longer than larvae infected with the wild type strain PAO1. Dotted
562 lines indicate median survival times. Log-rank test was used for statistical evaluation.

563
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Figure 6. T6SS effector sets of P. aeruginosa are composed of core and accessory effectors.
Core effectors (i) are highly prevalent within the species, (ii) mediate nutrient-acquisition, anti-
prokaryotic, and anti-eukaryotic activity, and (iii) equally contribute to behaviour and virulence
across strains of the species. In contrast, accessory effectors are less prevalent and differ
between strains. They provide additional anti-prokaryotic and anti-eukaryotic activities. As a
consequence of different accessory effectors, strains might differ in their behaviour and are
more virulent. Two strains with differing accessory effectors can engage in T6SS-mediated
killing of each other. The various combinations in which accessory effectors occur result in a

multitude of diverse effector sets.
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576  Materials and Methods
577

578  Bacterial strains and growth conditions

579  P. aeruginosa was grown in LB broth at 37°C. A list of strains used in this study is provided
580  in Supplementary Table 4. In-frame deletions were generated via homologous recombination.
581  In brief, fragments upstream and downstream of the gene of interest were PCR-amplified with
582  primers pl, p2 and p3, p4 (all primers are listed in Supplementary Table 5). One continuous
583  fragment was generated out of the two overlapping fragments in a second PCR and ligated into
584  the vector pME3087%7. The recombinant plasmid was transferred into the respective recipient
585  strain during mating. Upon serial growth, tetracycline-sensitive cells were screened, mutants
586  verified by PCR and confirmed by Sanger Sequencing. Fluorescently marked strains were
587  generated as described by Schlechter er al.®® with the plasmid pMRE-Tn7-143 provided by
588  addgene (#118495). Tetracycline was used at concentrations of 100ug ml!.

589

590 Competition in expanding colony

591  Bacterial strains were grown in liquid broth overnight, sub-cultured 1:100 on the day of the
592  experiment and grown to early mid-logarithmic phase. Two strains were mixed at equal
593  numbers to a final concentration of 5x107 bacteria/30ul, of which 10ul were spotted onto LB
594  agar plates (1.5% w/v). Plates were incubated at room temperature for 72h. During this time,
595  plates were kept in a plastic box to prevent the agar from drying out.

596

597  Microscopic imaging

598  An Axio Zoom.V16 microscope (Zeiss) with a PlanApo Z 0.5X objective was used to take
599  brightfield and fluorescent images of the macrocolonies. Images were processed with Fiji®.

600 Intensity profiles were created with the plug-in “Radial Profile Plot” and visualised using R.
27
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601

602  Flow cytometry

603  The BD Accuri C6 flow cytometer was used to quantify individual strains in the mixed
604  community. Therefore, bacteria were scraped off the agar plate, resuspended in PBS and
605  diluted. Threshold for the parameters forward scatter was set at 3,000 and for side scatter at
606  1,000. 10,000 events were quantified per sample. The competitive index was calculated by
607  dividing the percentage of yellow fluorescent protein (YFP) cells per spot at 72h by the
608  percentage of YFP cells at the start of the experiment.

609

610  Growth curves

611  Overnight cultures were diluted 1:100 in LB, grown to exponential phase, further diluted and
612  transferred into a 96-well plate to a starting OD600 of 0.001. The plate was incubated at 37 °C,
613  shaken at 162rpm, and OD600 measurements were taken every 15 minutes (Tecan, Spark).
614  Three independent experiments were performed for each strain.

615

616  Galleria mellonella infection assay

617  G. mellonella 6" instar larvae were purchased from Faunatopics GmbH (Marbach, Germany).
618  Upon arrival, larvae were stored at 10°C, for a maximum of 3 weeks. One day prior to infection,
619  healthy looking, motile larvae with a body weight of 350 - 450 mg and without any signs of
620  melanisation were selected and acclimatised at room temperature.

621  Infection assays of G. mellonella larvae were performed as previously described by McCarthy
622 et al.’® with some modifications. In brief, P. aeruginosa overnight cultures were sub-cultured
623  1:50 in fresh LB medium and grown on a shaker at 37°C, 180 RPM until an 0D, of 0.6.

624  Bacteria were pelleted by centrifugation, resuspended in sterile PBS, and serially diluted to
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625  107*.10 ul bacterial suspension containing approximately 60 bacterial cells or 10 ul PBS alone
626  (mock control) were injected into the last left proleg of larvae (n = 10 per treatment) using a
627  Hamilton syringe. Larvae were stored at 4°C until all injections were completed and then
628 transferred to a 37°C incubator. Twelve hours post infection, G. mellonella larvae were
629  monitored on an hourly basis and checked for unresponsiveness and death. P. aeruginosa
630 inocula were plated onto LB agar plates and enumerated for each experiment. Survival data is
631  depicted as Kaplan-Meier curves. Kaplan-Meier curves of different conditions were compared
632  using the log-rank test.

633

634  Data accession

635  Genome assemblies for isolates belonging to the Copenhagen collection®* were downloaded
636  from the European Nucleotide Archive (ENA). See Supplementary Table 1 for the accession
637  codes of individual isolates. The accession codes for the reference strains PAO1 and PA14 are
638 NC 002516 and CVON00000000, respectively. Raw reads of the 20 most common clones *8
639  were downloaded from the Sequence Read Archive (SRA). See Supplementary Table 6 for
640  detailed accession information. All whole genomes of P. aeruginosa strains that were available
641  on ENA by December 2020 were downloaded. Accession codes are found in Supplementary
642  Table 7. Phylogenetic analysis of whole genomes was performed using andi’'.

643

644  De novo assembly

645  Raw reads were trimmed using BBDuk’? (Version 38.37) with default settings expect for the
646  minimum quality, which was set to 20. Trimmed reads were de novo assembled into scaffolds
647  using SPAdes” (version 3.13.0) with default settings.

648
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649  T6SS effector-encoding gene analysis

650  Nucleotide sequences encoding for known P. aeruginosa T6SS effectors (Supplementary
651  Table 2) (in case of vgrG2b only nucleotides 2271 to 3060 were used, which encode the
652  enzymatically active domain) were extracted from the annotated reference strains PAOI and
653 PA14. These sequences were used as query sequences in a local blastn search against the
654  contigs from the Copenhagen collection, assembled scaffolds from the most common clones,
655 and all publicly available whole genomes to determine the prevalence of effector-encoding
656  genes in the respective datasets. Nucleotide identities were calculated as described by Rohwer
657 et al.’*. The absence of genes was confirmed by analysing neighbouring genes. Additionally,
658  sequences were manually inspected with Geneious”® (version 2019.2.3). Nucleotide sequences
659  were translated, aligned to the PAOI reference sequence using the Geneious’ alignment
660  algorithm with default settings (version 2019.2.3), and the amino acid sequence identity was
661 calculated as the percentage of residues that are identical to the reference. Effector variants
662  share an amino acid sequence similarity of less than 30 % in the domain with the catalytic
663  site’®78. The length of intact amino acid sequences was analysed as a read out for loss-of-
664  function mutations by premature stop codons or frameshift mutations. Combinatorial analysis
665  and stochastics were used to test if the distribution of core and accessory effectors is random
666  among the associated T6SS, the mechanism of transport or their target.

667
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