

1 **Multishot Tomography for High-Resolution In Situ Subtomogram Averaging.**

2 S. Khavnekar<sup>1\*</sup>, W. Wan<sup>3</sup>, P. Majumder<sup>1</sup>, W. Wietrzynski, P. S. Erdmann<sup>1,2#</sup> and J. M. Plitzko<sup>1#</sup>

3

4 <sup>1</sup> MPI for Biochemistry

5 <sup>2</sup> Human Technopole

6 <sup>3</sup> Vanderbilt University

7 \* 1<sup>st</sup> Author

8 # corresponding authors

9

10 Correspondence should be addressed to:

11 Philipp S Erdmann [philipp.erdmann@fht.org](mailto:philipp.erdmann@fht.org)

12 Jürgen M Plitzko [plitzko@biochem.mpg.de](mailto:plitzko@biochem.mpg.de)

13

14

15 **Abstract**

16 **Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) can resolve protein**  
17 **complexes at near atomic resolution, and when combined with focused ion beam (FIB) milling,**  
18 **macromolecules can be observed within their native context. Unlike single particle acquisition (SPA),**  
19 **cryo-ET can be slow, which may reduce overall project throughput. We here propose a fast, multi-**  
20 **position tomographic acquisition scheme based on beam-tilt corrected beam-shift imaging along the**  
21 **tilt axis, which yields sub-nanometer in situ STA averages.**

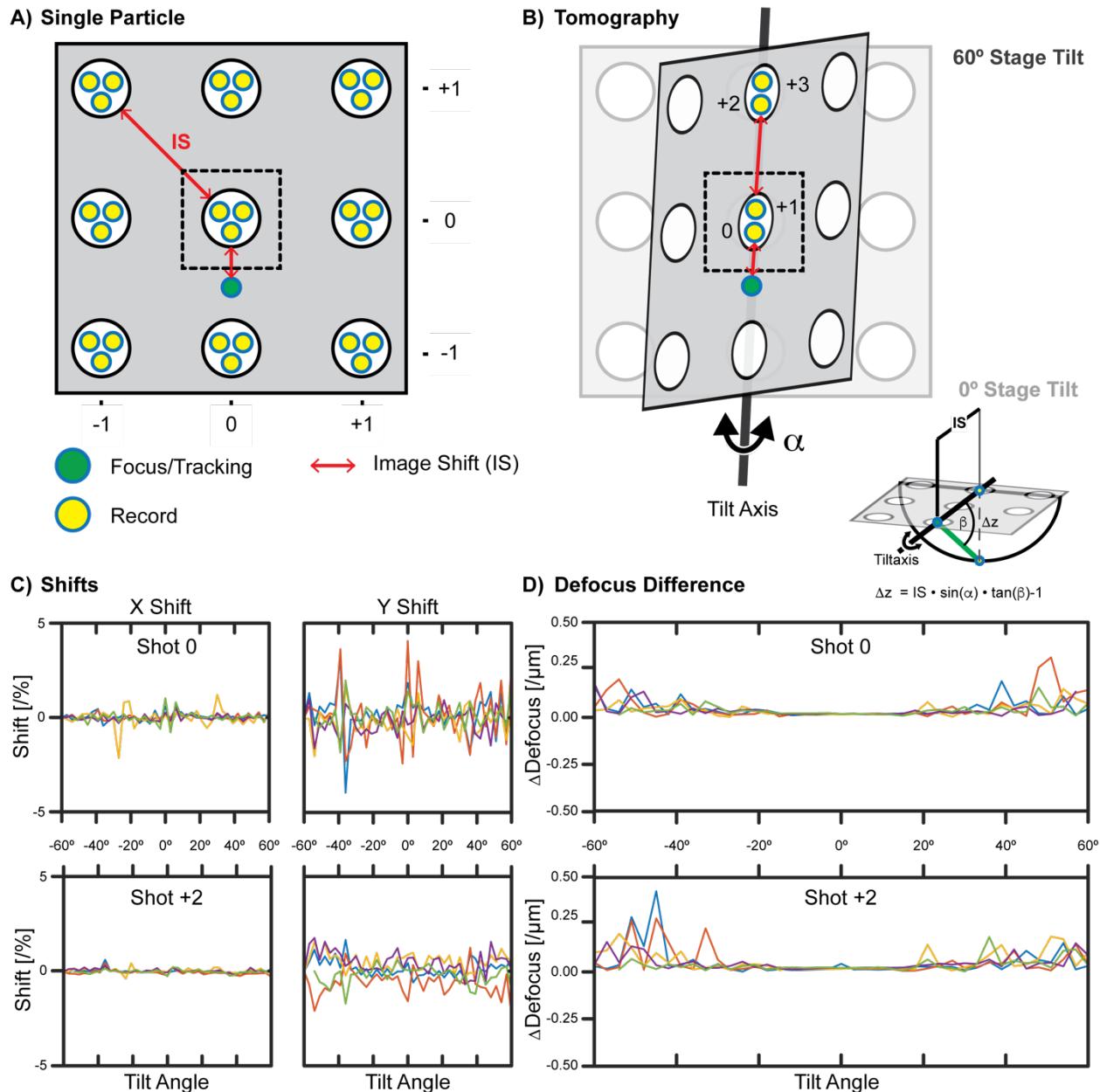
22

23 **Main**

24 Since the resolution revolution<sup>1</sup>, cryo-electron microscopy has yielded numerous structures of biomolecular  
25 complexes at near-atomic resolution. Two key factors have made this advance possible: development of  
26 new imaging hardware, first and foremost direct electron detectors (DEDs)<sup>2</sup>, and automation of both  
27 acquisition and processing<sup>3–6</sup>. For both SPA and STA, each individual particle has a low signal to noise  
28 ratio (SNR), and hence imaging large numbers of the same molecular species, followed by alignment,  
29 averaging, and reconstruction is necessary in order to reveal their high-resolution details. SPA has become  
30 the main method for high resolution structure determination by cryo-EM. It relies on 2D projections of  
31 discreet particles, and ideal specimens contain a monolayer of particles to minimize ice thickness and  
32 prevent overlapping projections. STA first requires reconstruction of a tomogram, a 3D representation of  
33 the specimen. From there, molecules are identified and averaged in 3D, removing issues related to  
34 overlapping particles. Despite its generally accepted versatility, there are inherent limitations to SPA and

35 its derivatives, since they require purification and concentration of the target of interest. Accordingly, all  
36 information on the molecular sociology of the cellular components is lost. Moreover, single particle cryo-  
37 EM is sensitive to concentration and overlap of particles. Tomography and subtomogram averaging on the  
38 other hand use three-dimensional data, and consequently are well equipped to handle both. When combined  
39 with suitable preparation techniques, e.g. FIB milling, *in situ* STA can be used to interrogate the native  
40 architecture of cellular structures without the need for purification, highlighted recently by several sub-  
41 nanometer *in situ* structures.<sup>7-9</sup>

42 For both STA and SPA, particle numbers and therefore acquisition speed are determining factors for sorting  
43 out molecular heterogeneity and achieving high resolution. Symmetrical, repetitive, and/or abundant  
44 structures are therefore particularly well suited for high resolution studies. Since the introduction of fast  
45 DEDs, the acquisition time is no longer limited by the cameras, and modern single tilt stages offer improved  
46 stability compared to dual axis holders.<sup>10</sup> However, stage movement and the resulting settling times still  
47 take a major toll on the overall acquisition time<sup>11</sup>. This is especially true for tomography, where the sample  
48 needs to be tilted over a broad range of angles (usually  $\pm 60^\circ$ ), while individual projection images are  
49 recorded. This requires that the sample be kept in eucentric height and on the same field of view as  
50 accurately as possible. While modern dose-symmetric tilt schemes help to distribute the available electron  
51 dose as efficiently as possible,<sup>11</sup> as opposed to monodirectional or bidirectional schemes they are more time  
52 consuming. To address this problem, fast tilting schemes have been developed that rely on pre-calibrated  
53 stage movements rather than tracking and focusing on each individual tilt.<sup>10,12</sup> However, the data quality  
54 from these fast tomograms may require additional tilt-series refinement approaches.<sup>13-15</sup>


55 While not as essential, stage stability still is a factor to consider in SPA and defined settling times are used  
56 to allow stage drift to stabilize after each stage move. To work around this limitation, beam image-shift  
57 (BIS) based acquisition (multishot) has been developed (Fig. 1A).<sup>16</sup> Using this technique, several positions  
58 within the same hole of a grid and even adjacent holes can be imaged using just image shift (IS) and without  
59 additional stage movements. The IS-induced coma can be compensated for within modern acquisition  
60 software packages,<sup>17</sup> leaving no or very little beam tilt to be considered during reconstruction.

61 In cryo-electron tomography, particle numbers are in general more limited than in SPA since tomogram  
62 acquisition requires a lot of mechanical movement and therefore is slow compared to single particle  
63 acquisition. A lot of the movements could be substituted by BIS, however multishot acquisition has not yet  
64 been applied to subtomogram averaging from tomographic reconstructions. With a few limitations (see  
65 below) and based on the implementation of constrained single particle tomography (CSPT),<sup>18</sup> the same  
66 concept should nonetheless be applicable to cryo-ET in general, but in particular to *in situ* tomography,  
67 where it would significantly increase its throughput. For a perfect (i.e. flat) sample, imaging along the tilt  
68 axis does not require any specialized tracking, because points along this axis are co-planar and co-focal.

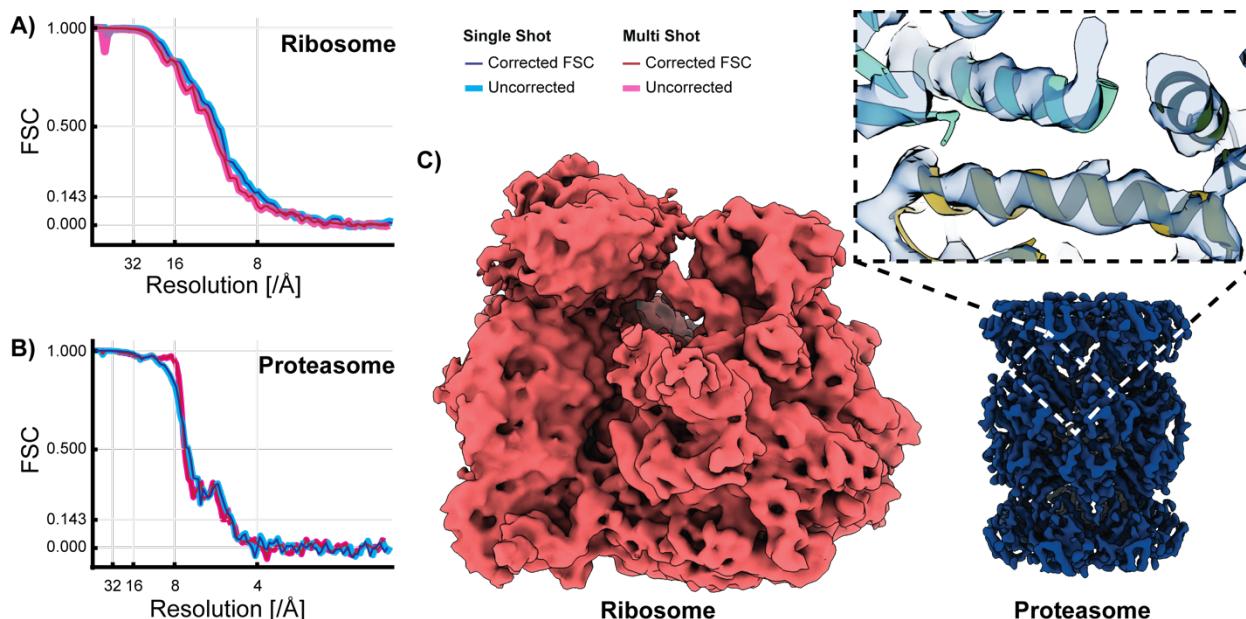
69 Consequently, there should be no to very little tilt-induced x,y movement for a sample at eucentric height.  
70 Multiple tilted projection images can therefore be taken using BIS-based acquisition if the imaging areas  
71 are co-planar. Tilt series can therefore simply be “expanded” and multiple tomograms be recorded at the  
72 same time. Such an axial multishot scheme should be straightforward to implement because all required  
73 components have already been implemented for SPA. In SerialEM for example, we realized multishot  
74 tomography with just a few changes to the existing dose-symmetric acquisition scripts, or by using the  
75 built-in tilt-series (TS) controller with some additional scripting (See Methods). Even though slightly more  
76 time-consuming, we chose to implement a dose-symmetric routine, as our screening of different tilt series  
77 (Supporting Fig. 1) and previous publications suggested that there is a substantial gain in resolution  
78 compared to the other options.<sup>19</sup> While off-axis shots can be implemented, they require additional tracking  
79 and external software,<sup>20</sup> so we opted to just consider on-axis imaging for now.  
80

## 81 **Results and Discussion**

82 As a proof of concept, we first tested if x,y shifts were small enough to not lose tracking over an extended  
83 axial multishot tilt series. Therefore, we recorded tomograms on carbon with five shots (sequence 0, +2, -2,  
84 +1, -1), each time tracking on both the focusing and the center record area (0 shot). The entire series thereby  
85 spanned a total of 4  $\mu\text{m}$  along the tilt axis between the +2 and -2 shots. For examples on other possible  
86 multishot schemes and nomenclature see Supporting Fig. 2. After tomogram reconstruction, relative shifts  
87 of the individual fields of view were calculated with respect to the initial (0) tilt. Results for the most  
88 extreme shot (+2 vs. 0) are summarized in Fig. 1C (See Supporting Fig. 3 for all other shots). While the  
89 illustrated examples show acquisition on a holey grid, the concept extends to more general sample types  
90 such as lacey grids or focused ion beam-milled lamellas (see below) and does not – in general – require  
91 grids aligned with the tilt axis.  
92



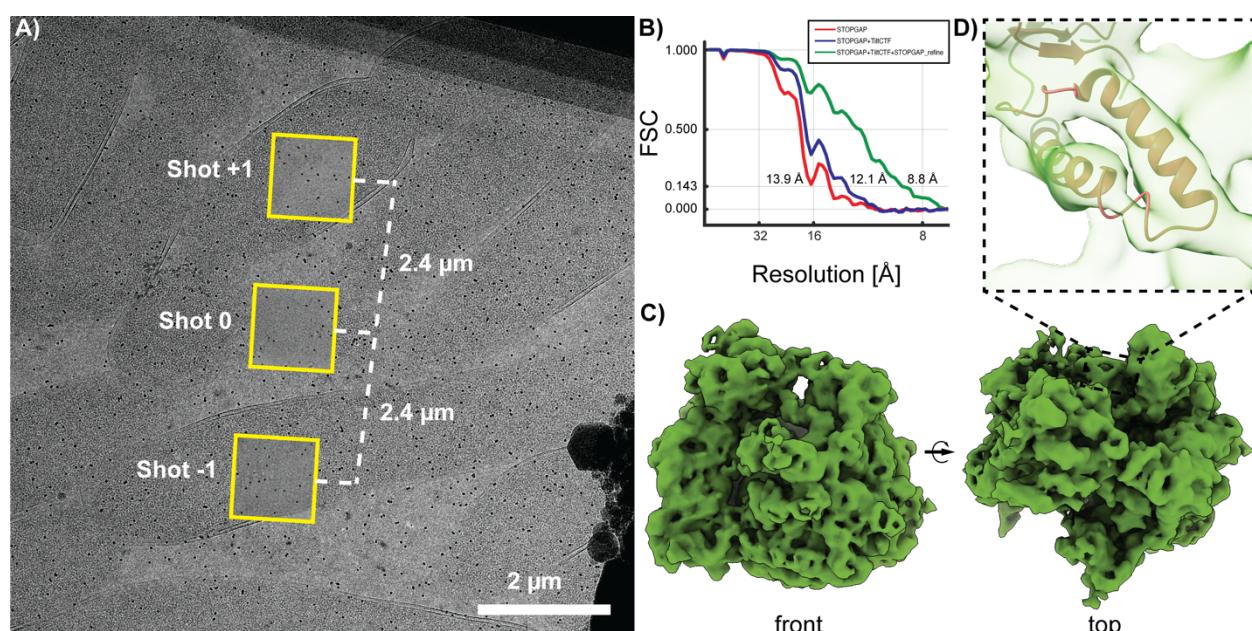
93  
 94 **Figure 1.** A) The concept of multishot imaging in SPA using beam image shift (BIS) on a holey grid. Positions are  
 95 indexed from  $[\pm n, \pm m]$  (for an  $n$ -by- $m$  grid). B) Proposed application of BIS to cryo-ET. Here, only  $+n$  to  $-n$  shifts are  
 96 acquired along the tilt axis for an “ideally aligned” holey carbon grid. The expected displacement is a function of x-tilt  
 97 ( $\beta$ ), applied image shift (IS) and stage tilt ( $\alpha$ ). C) Measured x,y shifts of tilt series on carbon, relative to the full image  
 98 size and as function of tilt angle and shot position for a 5-shot series (sequence: 0,+2,-2,+1,-1). The 0 and +2 shots  
 99 (2  $\mu$ m IS) are compared. D) Comparison of defocus difference for the 0 and +2 shots of the same tilt series.


100  
 101 For an ideal specimen with no x-tilt ( $\beta$ ), shifts parallel to the tilt-axis are expected to be of similar magnitude  
 102 with regards to tracking errors after stage tilting. Similarly, difference in defocus, which could also vary as

103 a function of IS and  $\beta$  (Fig. 1B small insert), would be expected, however were observed to be stable over  
104 the multishot tilt series on carbon (Fig. 1D; Supporting Fig. 2).

105 To evaluate the attainable resolution, we next tested the axial multishot scheme on purified (*in vitro*) non-  
106 symmetrical (C1) and symmetrical (D7) particles, i.e. ribosomes from *E. coli* and 20S proteasomes from *T.*  
107 *acidophilum*, on the same grid. After acquiring both single and double shot tilt series, we subjected them to  
108 our STA workflow and obtained sub-nanometer resolution averages both in Relion<sup>21</sup> and STOPGAP<sup>22</sup> from  
109 just a few thousand particles without the need for tilt series refinement. The D7 symmetrical 20S  
110 proteasome (5.2k particles) reached 4.7 Å. Additionally, the 8.3 Å 70S ribosome average (C1) show that  
111 this resolution is not simply due to virtual inflation of particle numbers because of high particle symmetry  
112 (Fig. 2A & B; Supporting Fig. 3).

113 To address if there is any variation in image quality with the extent of the BIS, we recorded a series of 5x  
114 axial multishots on purified *C. reinhardtii* RuBisCo complexes, which are significantly smaller than both  
115 ribosomes and 20S proteasomes. We then divided the data based on their image shifts and hence their  
116 relative position in the series. As can be seen from Supporting Fig. 4, no significant difference in resolution  
117 was found between the zero (0) and the  $\pm 1$  and  $\pm 2$  shots, implying that the residual IS-induced beam tilt  
118 after coma-vs-IS alignment is negligible and does not affect subtomogram data quality when performing  
119 multishot cryo-ET on *in vitro* samples.


120



121

122 **Figure 2.** A) Obtainable resolution using two shots on C1 particles (ribosome from *E. Coli*) at 7.8 Å (single) vs. 8.3 Å  
123 (multi) resolution. B) Same for D7 20S proteasome (from *T. acidophilum*) particles at 4.7 Å (both; FSC = 0.143).  
124 C) Subtomogram averages of both species (from Relion) in the multishot acquisition with zoom in on a helix of the T20S  
125 proteasome.

126  
127 No significant tilt-based offset along the tilt axis is expected for sufficiently flat samples. Multishot  
128 tomography along the tilt axis of *in vitro* samples is therefore only limited by the hole size vs. beam diameter  
129 and grid orientation relative to the tilt axis. For large holes such as multi-A, beam-induced motion may pose  
130 a problem, but can be reduced using a thin, continuous support film (e.g. graphene oxide or carbon) as is  
131 commonplace for SPA. For *in situ* samples on the other hand, FIB-milling results in a pre-tilt of the lamella  
132 with respect to the surface of the grid support. This pre-tilt is perpendicular to the milling axis. When  
133 loading lamella grids, they are rarely perfectly aligned (perpendicular) with the TEM's stage, resulting in a  
134 significant x-tilt of up to 5-11 degrees. To investigate, how well the axial multishot scheme would perform  
135 on cryo-FIB milled lamellas, we prepared samples from plunge-frozen *E. coli* cells by automated milling  
136 and subjected them to our acquisition and processing pipeline. In total, 3x multishot (Fig. 3A) tomograms  
137 were acquired on nine positions. Despite their average x-tilt of  $\beta = \sim 5^\circ$ , tracking and CTF were stable for  
138 all series (Supporting Fig. 5) and yielded 27 high quality tomograms, which were subjected to template  
139 matching and STA. From just 7.6k particles, an initial average with 14 Å resolution was obtained, proving  
140 that multishot tomography can indeed be used to quickly screen particles within intact cells. Higher  
141 resolution averages at 8.8 Å, where secondary structure elements are clearly visible (Fig. 3 C&D), were  
142 obtained using tilt-series refinement in STOPGAP\_refine (Fig. 3B) or Warp/M<sup>23</sup> (Supporting Fig. 6).  
143



144  
145 **Figure 3.** A) Setup of multishot tomograms on an automatically milled lamella of *E. coli*. B) Average and FSC plot from  
146 7.6k *in situ* ribosome particles before computational refinement (27 tomograms from nine positions, each with 3x  
147 multishot series).

148

149 In Summary, we show that the obtainable resolution for subtomogram averaging is not affected when tilt  
150 series are acquired using beam image-shift axial multishot tomography. This method does not require  
151 external software and is straightforward to implement on cryo-EM microscopes, which are run using  
152 SerialEM. We show that this simple extension to the cryo-ET acquisition routine enables a faster, yet  
153 reliable way to collect tilt series without compromising data quality over throughput. Our method is  
154 applicable to both *in vitro* samples and *in situ* cryo-FIB milled lamellas, yielding high quality sub-  
155 nanometer subtomogram averages for biological investigations.

156 **Methods**

157 **Sample Preparation**

158 a) In Vitro Samples: For the mixed ribosome and proteasome dataset (subsequently called ‘RiboProt’),  
159 purified *E. coli* 70S ribosomes and *T. acidophilum* 20S proteasomes at equimolar concentration (3.0 mg/mL  
160 and 1.5 mg/mL, respectively) were mixed with 10 nm gold fiducials (Aurion). 4.5  $\mu$ l of this mixture were  
161 applied onto a glow-discharged 200 mesh Quantifoil R2/1 copper grid. For the T20S dataset, the purified  
162 *T. acidophilum* 20S proteasome sample was mixed with 10 nm gold fiducials, and 4.5  $\mu$ l of the mix was  
163 applied onto a glow-discharged 200 mesh Quantifoil MultiA copper grid. The same procedure was used for  
164 purified RuBisCo complexes (*C. reinhardtii*) at 1.8 mg/mL For the carbon tilt-series dataset, a 1:4  
165 suspension of 3x concentrated 10 nm gold fiducials (Aurion) in water was applied onto a glow-discharged  
166 200 mesh Quantifoil MultiA copper grid.

167 In all cases, samples were vitrified in a liquid ethane/propane mixture using a Vitrobot Mark IV (Thermo  
168 Fisher Scientific) set to 4 °C and 100% humidity. Settings: blot force = 20 or 8; blot time = 4.5 s; wait time  
169 = 0 s. Before loading, all grids were clipped in Autogrids (Thermo Fisher Scientific).

170 b) In Situ Samples: *E. coli* cells were grown in log phase conditions to an OD<sub>600</sub> of 0.8. 4  $\mu$ L of the cells  
171 were applied to a glow-discharged 200 mesh Quantifoil R2/1 copper grid and vitrified in a liquid  
172 ethane/propane mixture on a Vitrobot Mark IV (Thermo Scientific) set at 4 °C and 100% humidity with  
173 backside blotting only. Settings: blot force = 10; blot time = 10 s; wait time = 1 s. Samples were stored  
174 under liquid nitrogen until use. Grids were clipped in modified Autogrids with a round cutout and subjected  
175 to automated FIB-milling on an Aquilos (Thermo Fisher Scientific) using AutoTEM cryo (Thermo Fisher  
176 Scientific) as described elsewhere.<sup>24</sup> After final milling, the samples were sputter coated with a thin layer  
177 of metallic platinum using the in-chamber plasma coater.

178

179 **Data acquisition**

180 The RiboProt and *E. coli* lamella datasets were collected using a Thermo Scientific Titan Krios equipped  
181 with Gatan Bioquantum energy filter and K2 summit Direct Electron Detector. Tilt-series were collected  
182 with a dose-symmetric tilt scheme<sup>11</sup> using SerialEM 3.8 with automated stigmation, coma-free alignment,  
183 and coma vs. image shift compensation.<sup>3</sup>

184 For the RiboProt datasets, the tilt range was  $\pm$  60° with 3° increments. In case of the RiboProt singleshot  
185 dataset, each tilt image was preceded by tracking and autofocus and was tracked after acquisition. In case  
186 of RiboProt multishot dataset, two shots in a hole without center shot were acquired at each tilt using the  
187 Multiple records dialogue (see protocol for detailed description). Each multiple records acquisition was  
188 preceded by a by tracking and autofocus. The second shot was tracked after each tilt. In both cases, target  
189 focus was changed per multishot tilt-series in steps of 0.25  $\mu$ m over a range of -1.25  $\mu$ m to -2.75  $\mu$ m. Tilt

190 images were acquired in counting mode with a calibrated pixel size of 1.1 Å and total dose of 3 e<sup>-</sup>/Å<sup>2</sup> over  
191 ten frames.

192 For the *E. coli* lamella dataset, tilt range was +49° to -66° with 3° steps starting at -10° to compensate for  
193 the pre-tilt. At each angle, two shots ( $\pm 1$ ) followed by a center shot (0) were acquired using the multiple  
194 records dialogue box. Each multiple records acquisition was preceded by tracking and autofocus. The center  
195 shot was tracked after each tilt. Target focus was changed per tilt-series in steps of 0.25 μm over a range of  
196 -1.25 μm to -2.75 μm. Tilt images were acquired in counting mode with a calibrated physical pixel size of  
197 1.79 Å and total dose of 3 e<sup>-</sup>/Å<sup>2</sup> over ten frames.

198 The *T. acidophilum* 20S proteasome, and carbon tilt-series datasets were collected using a Thermo  
199 Scientific Titan Krios G3i equipped with a modified Selectris X energy filter and Falcon4 direct detector.  
200 Tilt-series were collected with dose-symmetric tilt scheme<sup>11</sup> using SerialEM software.<sup>3</sup> Tilt range was  $\pm$   
201 60° with 3° angular increments. At each tilt, five shots ( $\pm 2$ ,  $\pm 1$ , 0) were acquired using Multiple records  
202 dialogue box. Each multiple records acquisition was preceded by tracking and autofocus. The center shot  
203 was tracked before acquiring remaining four shots using a custom pattern. Target focus was changed per  
204 tilt-series in steps of 0.1 μm over a range of -0.8 μm to -2.2 μm. Tilt images were acquired in EER (Electron  
205 Event Registration) mode<sup>25</sup> with a calibrated physical pixel size of 1.224 Å and total dose of 3 e<sup>-</sup>/Å<sup>2</sup>.

206

## 207 Image processing

208 a) Tilt-series preprocessing and tomogram reconstruction: The data was preprocessed using TOMOgram  
209 MANager (TOMOMAN)<sup>26</sup>. In case of K2 summit data acquisition, MOTIONCOR2<sup>27</sup> was used for motion  
210 correction. For Falcon 4 EER data, motion correction was performed using Relion's implementation of  
211 MOTIONCOR with EER support<sup>28</sup>. The tilt-series were corrected for dose-exposure using MATLAB  
212 (MathWorks) scripts adapted for tilt series<sup>26</sup>. Defocus was estimated using CTFFIND4<sup>29</sup>. Tilt series were  
213 aligned using fiducial based alignment in IMOD<sup>30</sup>. In case of RiboProt, T20S proteosome, and carbon tilt-  
214 series datasets, gold beads were automatically selected and tracked. In case of the in situ *E. coli* dataset, ~  
215 25 nm platinum granules (resulting from the Pt-sputter coating) were automatically selected and tracked.  
216 The resulting fiducial model was corrected manually in all cases where automatic selection and tracking  
217 failed. Tilt series alignment was computed without solving for any distortions. Initial tomograms without  
218 CTF correction were reconstructed by weighted back projection (WBP) at 8x binning and used for template  
219 matching<sup>22</sup>. For subtomogram averaging, tomograms were reconstructed with 3D-CTF correction using  
220 novaCTF<sup>31</sup> with phase-flip correction, astigmatism correction using 15 nm slab thickness. Tomograms  
221 were binned 2x, 4x, and 8x using FourierCrop3D<sup>31</sup>.

222 b) Subtomogram Averaging

223 Initial particle positions and orientations were determined using noise correlation template matching  
224 approach implemented in STOPGAP<sup>22</sup>. Subsequent subtomogram averaging and classification were  
225 performed using STOPGAP<sup>22</sup>. Classification was performed using simulated annealing stochastic hill  
226 climbing multi reference alignment as described before<sup>32</sup>.

227

228 c) Tilt-Series Refinement

229 In case of the 70S Ribosome from cryo-FIB milled E.coli lamellas, we performed tilt series refinement  
230 using STOPGAP\_refine<sup>15</sup> as well as Warp/M/Relion3.0 pipeline<sup>14</sup>. In both cases, the tilt -series refinement  
231 was performed on 2x binned data and resulted in 8.8 Å 70S ribosome average.

232

233 d) Data visualization and statistics

234 Wherever applicable, data statistics was calculated and plotted using custom scripts written MATLAB  
235 (Mathworks). Subtomogram averages were visualized using ChimeraX<sup>33</sup>. Atomic models were docked into  
236 the electron density maps using rigid body docking in ChimeraX<sup>33</sup>. The model to map fit was refined using  
237 ISOLDE<sup>34</sup>.

238

239

240 **Data/Material Availability**

241 The raw cryo-ET datasets that support the findings of this study have been uploaded to EMPIAR and can  
242 be downloaded using accession codes XXX, YYY, and ZZZ. Cryo-EM maps have been deposited on  
243 EMDB and can be accessed using codes XXX. [These will be available upon publication or by reviewer  
244 request]

245

246 **Literature**

247 1. Kühlbrandt, W. The resolution revolution. *Science (80-.)*. **343**, 1443–1444 (2014).

248 2. McMullan, G., Faruqi, A. R. & Henderson, R. Direct Electron Detectors. *Resolut. Revolut. Recent*  
249 *Adv. cryoEM* **579**, 1–17 (2016).

250 3. Mastronarde, D. N. Advanced Data Acquisition From Electron Microscopes With SerialEM.  
*Microsc. Microanal.* **24**, 864–865 (2018).

251 4. Carragher, B. *et al.* Leginon: {An} {Automated} {System} for {Acquisition} of {Images} from  
253 {Vitreous} {Ice} {Specimens}. *J. Struct. Biol.* **132**, 33–45 (2000).

254 5. Scheres, S. H. W. {RELION}: {Implementation} of a {Bayesian} approach to cryo-{EM}  
255 structure determination. *J. Struct. Biol.* **180**, 519–530 (2012).

256 6. Grant, T., Rohou, A. & Grigorieff, N. CisTEM, user-friendly software for single-particle image  
257 processing. *Elife* **7**, (2018).

258 7. Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM  
259 refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. *Nat. Methods* **2021**  
260 **182** **18**, 186–193 (2021).

261 8. Wang, Z. *et al.* Structures from intact myofibrils reveal mechanism of thin filament regulation  
262 through nebulin. *Science* **375**, eabn1934 (2022).

263 9. von Kügelgen, A. *et al.* In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface  
264 Layer. *Cell* **180**, 348–358.e15 (2020).

265 10. Chreifi, G., Chen, S., Metskas, L. A., Kaplan, M. & Jensen, G. J. Rapid tilt-series acquisition for  
266 electron cryotomography. *J. Struct. Biol.* **205**, 163–169 (2019).

267 11. Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-  
268 scheme optimized for high resolution subtomogram averaging. *J. Struct. Biol.* **197**, 191–198  
269 (2017).

270 12. Eisenstein, F., Danev, R. & Pilhofer, M. Improved applicability and robustness of fast cryo-  
271 electron tomography data acquisition. *J. Struct. Biol.* (2019) doi:10.1016/j.jsb.2019.08.006.

272 13. Himes, B. A. & Zhang, P. emClarity: software for high-resolution cryo-electron tomography and  
273 subtomogram averaging. *Nat. Methods* **15**, 955–961 (2018).

274 14. Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM  
275 refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. *Nat. Methods* **18**,  
276 186–193 (2021).

277 15. Khavnekar, S., Wan, W., Erdmann, P. & Plitzko, J. STOPGAP\_refine: Tilt series refinement for  
278 high-resolution subtomogram averaging. *Microsc. Microanal.* **27**, 3240–3240 (2021).

279 16. Cheng, A. *et al.* High resolution single particle cryo-electron microscopy using beam-image shift.

280 *J. Struct. Biol.* **204**, 270–275 (2018).

281 17. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of  
282 specimen movements. *J. Struct. Biol.* **152**, 36–51 (2005).

283 18. Bouvette, J. *et al.* Beam image-shift accelerated data acquisition for near-atomic resolution single-  
284 particle cryo-electron tomography. *Nat. Commun.* **2021** *12*, 1–11 (2021).

285 19. Turoňová, B. *et al.* Benchmarking tomographic acquisition schemes for high-resolution structural  
286 biology. *Nat. Commun.* **11**, 1–9 (2020).

287 20. Bouvette, J. *et al.* Beam image-shift accelerated data acquisition for near-atomic resolution single-  
288 particle cryo-electron tomography. *bioRxiv* 2020.09.24.294983 (2020)  
289 doi:10.1101/2020.09.24.294983.

290 21. Bharat, T. A. M. & Scheres, S. H. W. Resolving macromolecular structures from electron cryo-  
291 Tomography data using subtomogram averaging in RELION. *Nat. Protoc.* **11**, 2054–2065 (2016).

292 22. Wan, W. williamnwan/STOPGAP: STOPGAP 0.7.1. (2020) doi:10.5281/ZENODO.3973664.

293 23. Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM  
294 refinement with M visualizes ribosome-antibiotic complex at 3.7 Å inside cells. *bioRxiv*  
295 2020.06.05.136341 (2020) doi:10.1101/2020.06.05.136341.

296 24. Tacke, S. *et al.* A streamlined workflow for automated cryo focused ion beam milling. *bioRxiv*  
297 2020.02.24.963033 (2020) doi:10.1101/2020.02.24.963033.

298 25. Guo, H. *et al.* Electron-event representation data enable efficient cryoEM file storage with full  
299 preservation of spatial and temporal resolution. *urn:issn:2052-2525* **7**, 860–869 (2020).

300 26. Wan, W. williamnwan/TOMOMAN: TOMOMAN 08042020. (2020)  
301 doi:10.5281/ZENODO.4110737.

302 27. Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved  
303 cryo-electron microscopy. *Nat. Methods* **2017** *14*, 331–332 (2017).

304 28. Nakane, T. *et al.* Single-particle cryo-EM at atomic resolution. *Nat.* **2020** *5877832* **587**, 152–156  
305 (2020).

306 29. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron  
307 micrographs. *J. Struct. Biol.* **192**, 216–221 (2015).

308 30. Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction  
309 in {IMOD}. *J. Struct. Biol.* **197**, 102–113 (2017).

310 31. Turoňová, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-  
311 electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å. *J.*  
312 *Struct. Biol.* **199**, 187–195 (2017).

313 32. Erdmann, P. S. *et al.* In situ cryo-electron tomography reveals gradient organization of ribosome

314                    biogenesis in intact nucleoli. *Nat. Commun.* 2021 **12**, 1–9 (2021).

315    33. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and  
316                    developers. *Protein Sci.* **30**, 70–82 (2021).

317    34. Croll, T. I. ISOLDE: A physically realistic environment for model building into low-resolution  
318                    electron-density maps. *Acta Crystallogr. Sect. D Struct. Biol.* **74**, 519–530 (2018).

319

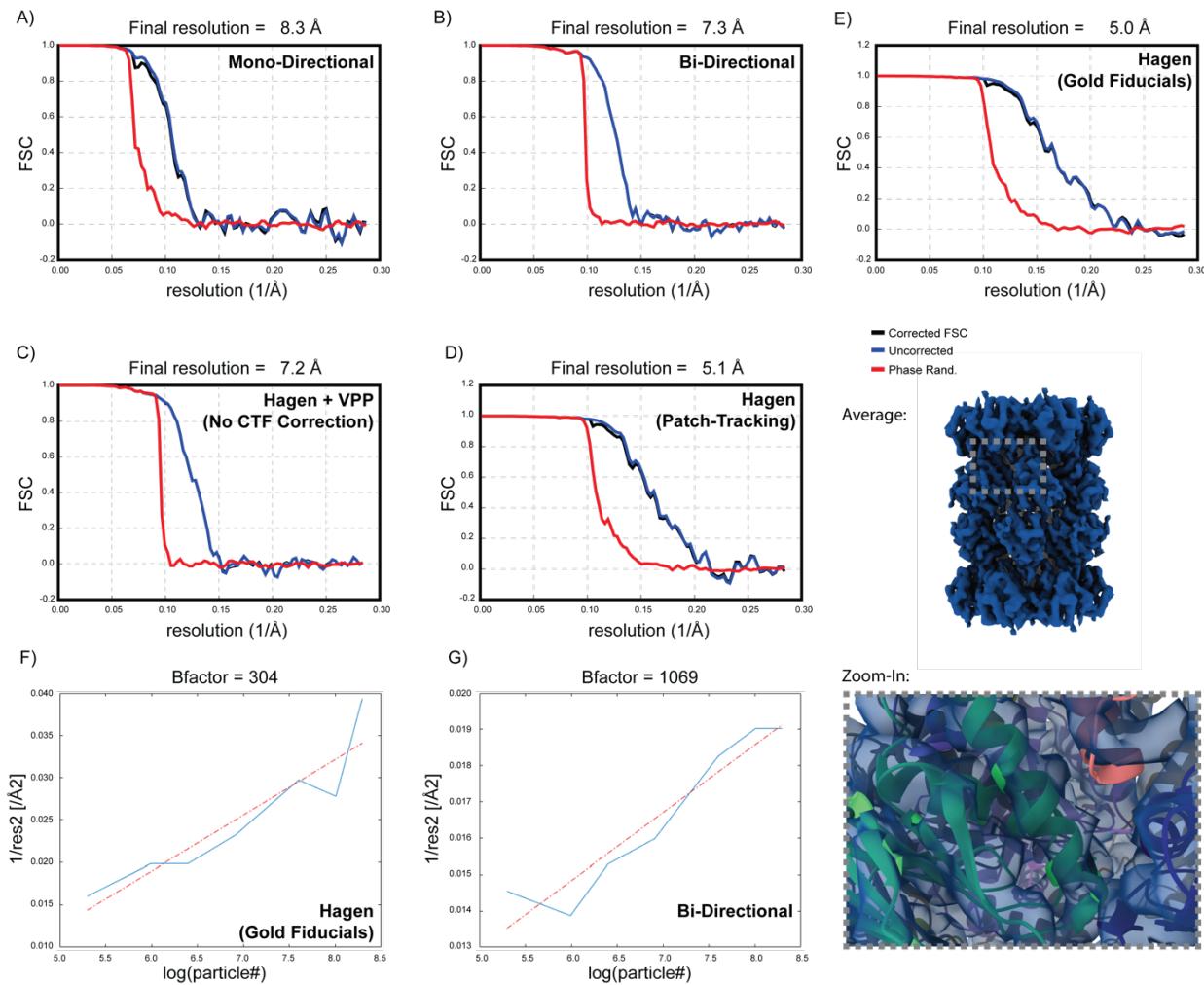
320

321

322

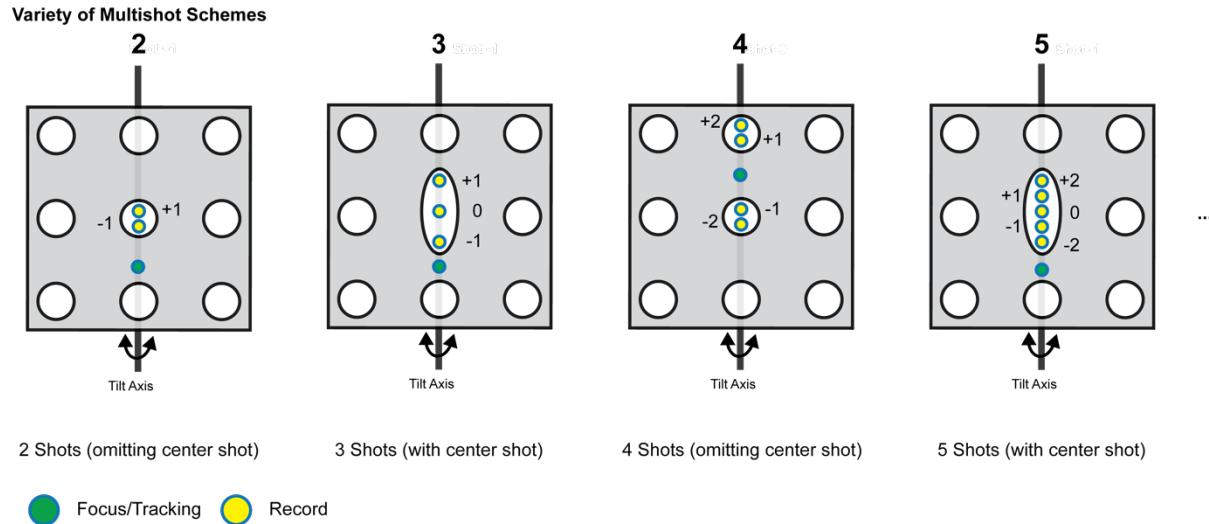
323

324 **Author Contributions**


325

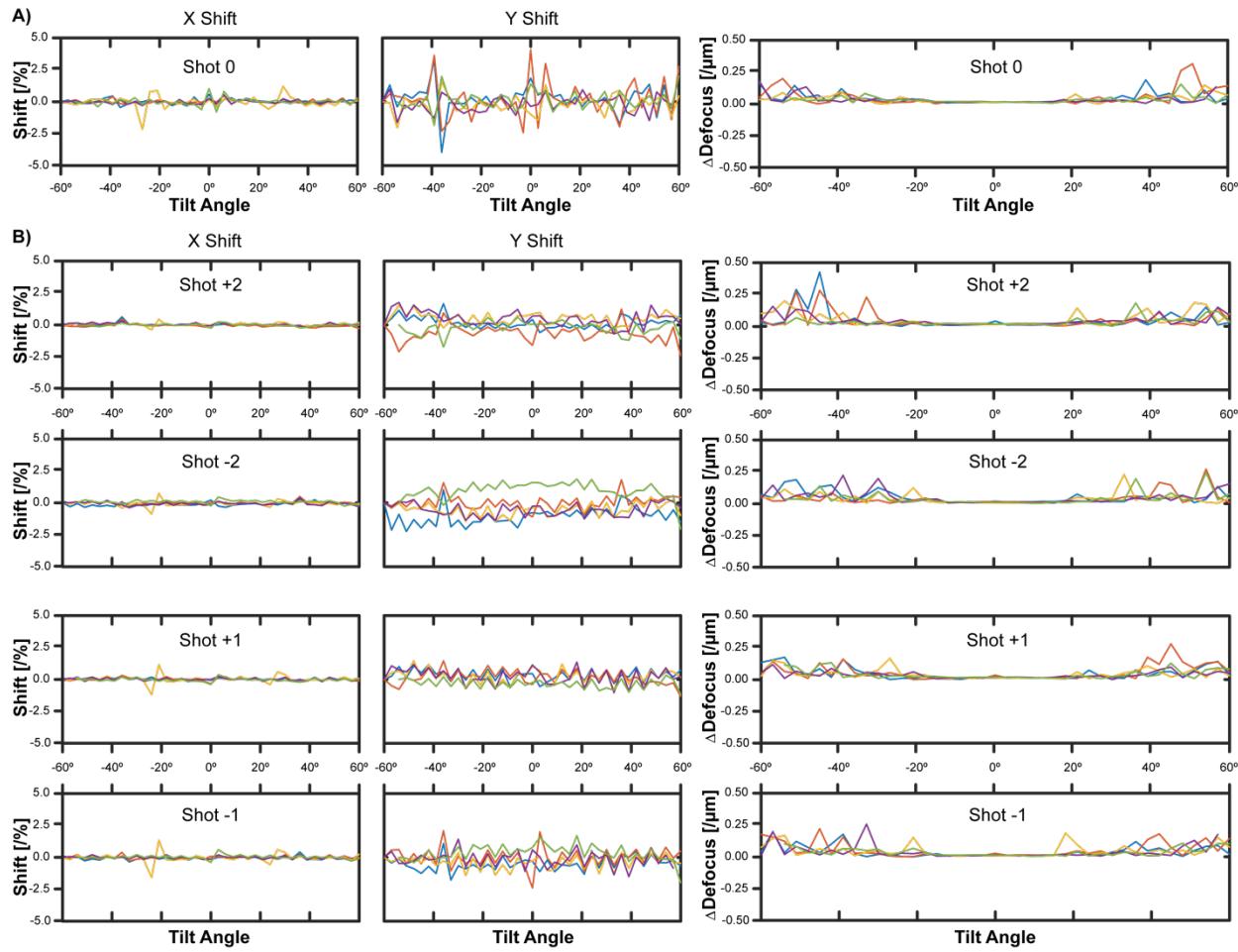
326 PSE, SK and JMP designed the study. SK, W. Wi and PM prepared materials. SK and PSE collected data.  
327 SK, PSE and W.Wa wrote software and processed the data. SK, PSE and JMP wrote the manuscript with  
328 suggestions and comments from all authors.

329


330 **Supporting Material**

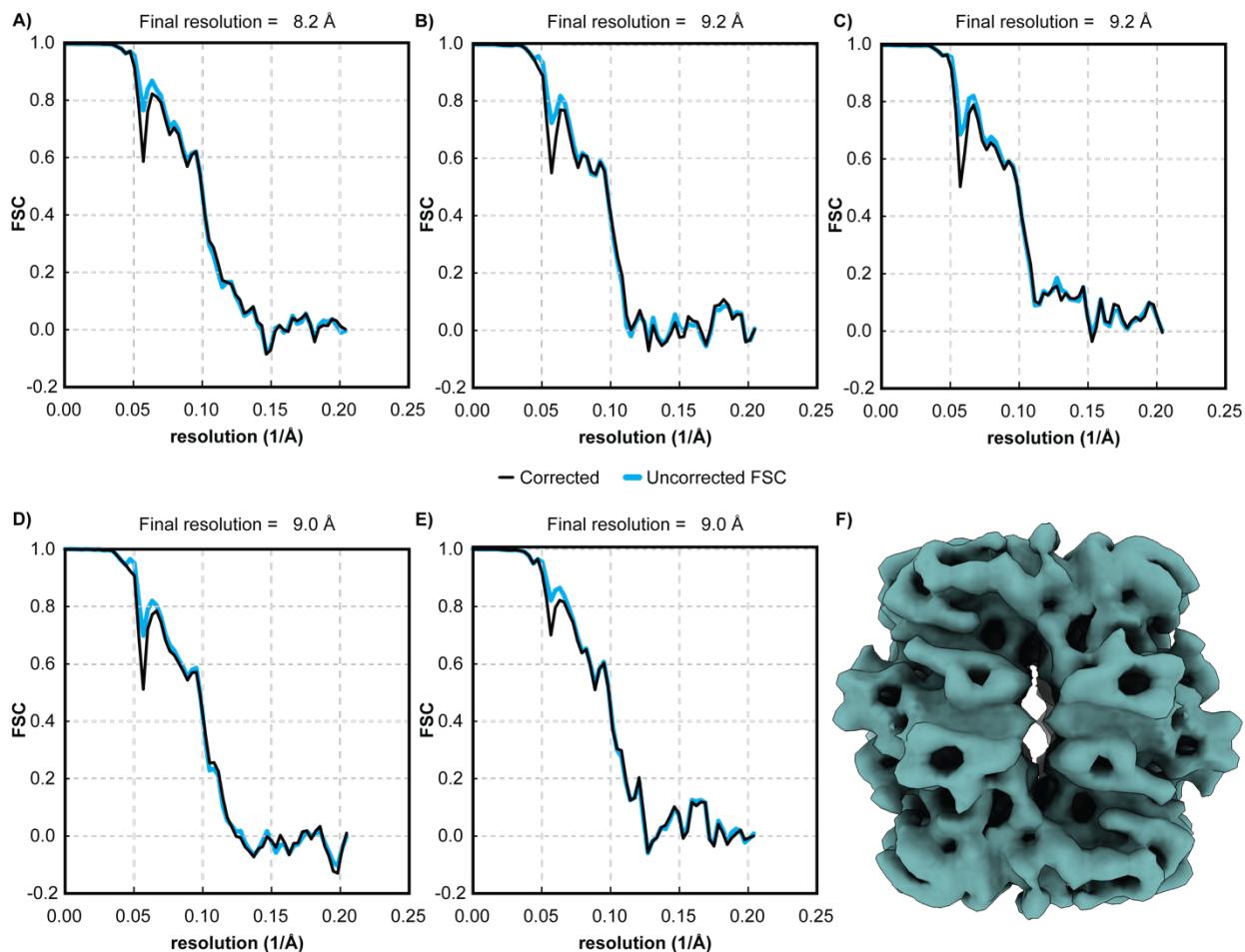
331




332

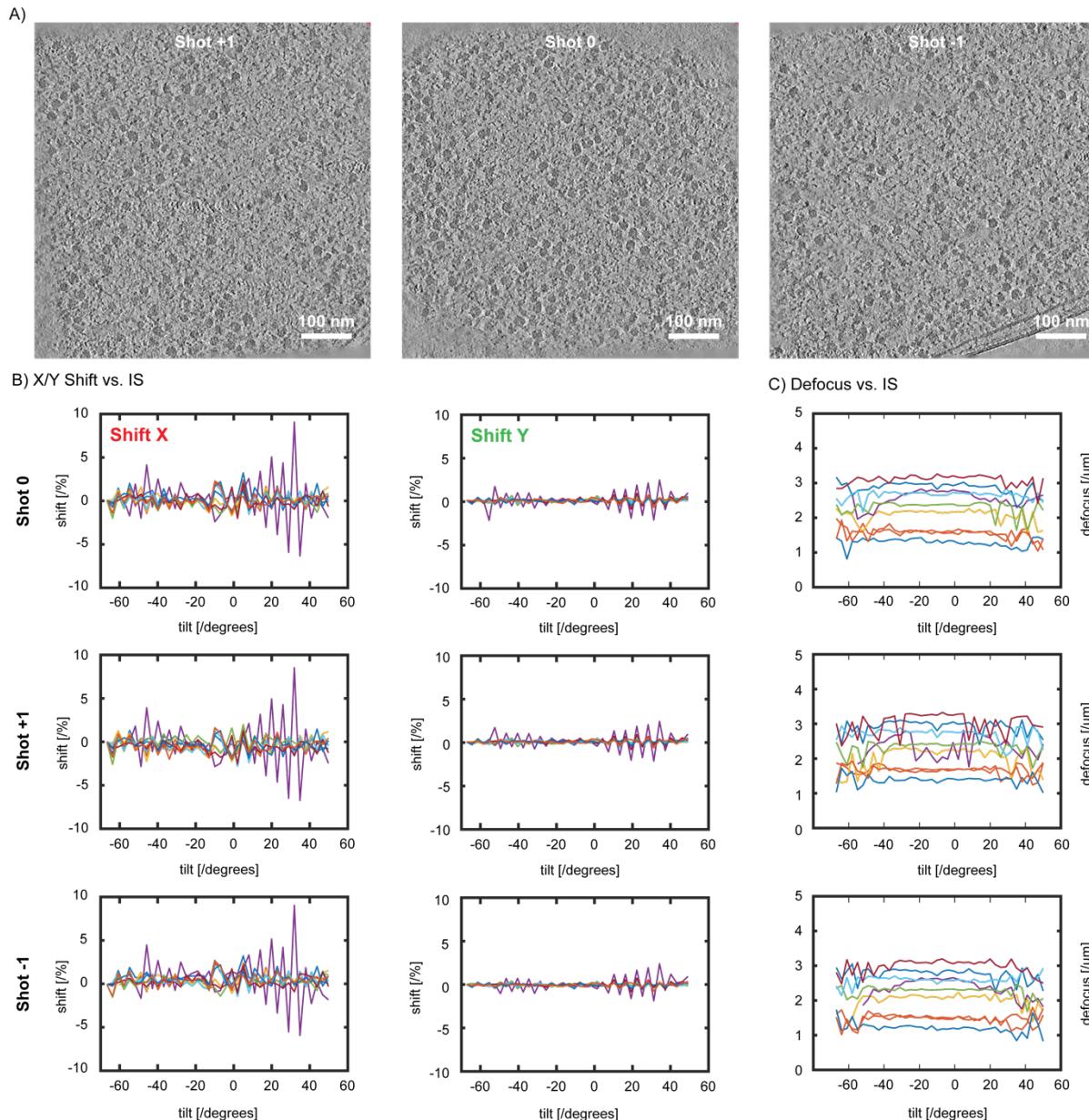
333 **Supporting Figure 1.** Evaluating the performance of different tilting and acquisition schemes on a *T. acidophilum* 20S  
334 proteasome sample: monodirectional (A), bi-directional (B), dose-symmetrical with the Volta Phase Plate (VPP; C),  
335 dose-symmetrical using defocus imaging and patch tracking (D), and dose-symmetrical using gold fiducials (E). (FSC  
336 = 0.143 criterion). F) and G) Corresponding log-res plots for schemes E and B, respectively. Insert shows STA average  
337 of the Hagen (Patch Tracking) results with a zoom-in on a secondary structure element.




338

339 **Supporting Figure 2.** Schematic and numbering of different multishot series from two to five shots on regular grids  
340 using built-in SerialEM functions. For perfectly aligned samples with regular geometry, shots can be acquired across  
341 holes. For special types like MultiA (elongated holes, e.g. 3 & 5), multiple areas can be acquired within the same hole.  
342 However, their arrangement can be disregarded for other sample types such as lacey grids or FIB lamellas.

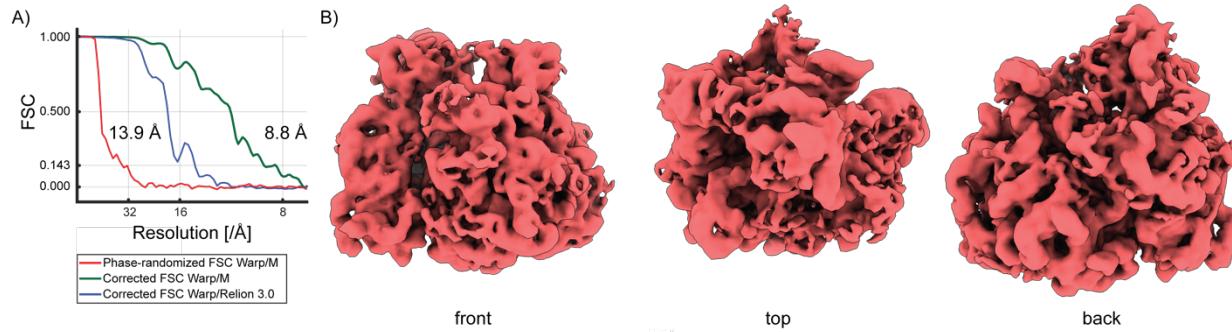



343

344 **Supporting Figure 3.** Carbon 5x axial multishot series. A) Alignment data for the zero shot (0) of a five-shot series. B)  
345 Alignment data for the remaining four shots ( $\pm 1, \pm 2$ ).



346


347 **Supporting Figure 4.** STA results for a 5x axial multishot series on RubisCo. In the order of acquisition 0, +1, -1,  
348 +2, -2 (A-E). F) Consensus map after reconstruction and sharpening (Relion).



349

350 **Supporting Figure 5.** A) Representative slices through the middle of the tomograms of a three-shot *in situ* series on  
351 E. coli lamellae. B) Alignment and C) Defocus vs. image shift for the three-shot series consisting out of 27 tomograms  
352 (3x9) in total.

353



354

355 **Supporting Figure 6.** A) Resolution before and after refinement in Warp/M (FSC = 0.143 cutoff), and B) ribosome STA  
356 maps after refinement.