

1    **The production of diverse brGDGTs by an Acidobacterium allows a direct test of**  
2    **temperature and pH controls on their distribution**

3

4    Yufei Chen<sup>a,b,1</sup>, Fengfeng Zheng<sup>a,b,1</sup>, Huan Yang<sup>c,1</sup>, Wei Yang<sup>a</sup>, Ruijie Wu<sup>a</sup>, Xinyu Liu<sup>a</sup>,  
5    Huayang Liang<sup>a</sup>, Huahui Chen<sup>a</sup>, Hongye Pei<sup>c</sup>, Chuanlun Zhang<sup>a,b,d</sup>, Richard D. Pancost<sup>e</sup>,  
6    Zhirui Zeng<sup>a,b,\*</sup>

7

8    <sup>a</sup>Department of Ocean Science and Engineering, Southern University of Science and  
9    Technology, Shenzhen 518055, China

10    <sup>b</sup>Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),  
11    Guangzhou, 511458, China

12    <sup>c</sup>State Key Laboratory of Biogeology and Environmental Geology, Hubei Key  
13    Laboratory of Critical Zone Evolution, School of Geography and Information  
14    Engineering, China University of Geosciences, Wuhan, 430074, China

15    <sup>d</sup>Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of  
16    Science and Technology, Shenzhen 518055, China

17    <sup>e</sup>Organic Geochemistry Unit, School of Chemistry, School of Earth Sciences, Cabot  
18    Institute for the Environment, University of Bristol, Cantock's Close, Bristol BS8 1TS,  
19    UK

20    <sup>1</sup>Y.C., F.Z. and H.Y. contributed equally to this work.

21

22 PHYSICAL SCIENCES: Earth, Atmospheric, and Planetary Sciences  
23 BIOLOGICAL SCIENCES: Microbiology  
24  
25 Corresponding Author  
26 Zhirui Zeng, Department of Ocean Science and Engineering, Southern University of  
27 Science and Technology, Shenzhen 518055, China, [zengzr@sustech.edu.cn](mailto:zengzr@sustech.edu.cn)  
28  
29 Keywords: brGDGTs, Acidobacteria, lipid biomarker, membrane adaption,  
30 paleoclimate proxies  
31

32 **Abstract**

33 Microbial lipid biomarkers preserved in geological archives can be used to explore past  
34 climate changes. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are unique  
35 bacterial biomarkers that have been used as molecular tools for the quantitative  
36 determination of terrestrial temperatures and the pH of depositional environments over  
37 a range of geological timescales. However, the exact biological source organisms –  
38 especially of the entire suite of brGDGTs found in the environment – remains unclear;  
39 by extension, so do the mechanisms that govern these proxies. Here, we identified a  
40 brGDGT-producing strain *Candidatus Solibacter usitatus* Ellin6076, by identifying  
41 archaeal tetraether synthase homologs in bacterial genomes. This strain synthesizes  
42 diverse brGDGTs, including regular C<sub>5</sub>-methylated and cyclic brGDGTs, and brGDGTs  
43 comprise up to 66% of the major lipids, far exceeding the proportions found in previous  
44 studies. The degree of C<sub>5</sub>-methylation in cultured strain Ellin6076 is primarily  
45 determined by temperature, whereas cyclization appears to be influenced by multiple  
46 factors. Consequently, culture-derived paleoclimate indices are in agreement with the  
47 global soil-derived MBT<sub>5ME</sub> (methylation index of C<sub>5</sub>-methyl brGDGTs) proxy for  
48 temperature but not the CBT<sub>5ME</sub> (cyclization index of C<sub>5</sub>-methyl brGDGTs) proxy for  
49 pH. Our findings provide important insights from a physiological perspective into the  
50 underlying mechanism of brGDGT-based proxies.

51

52 **Significance Statement**

53 Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are biomarkers widely used  
54 for the quantitative estimation of past climatic changes due to their ubiquitous  
55 occurrence in the environment and the relationships between their distributions and  
56 temperature and pH. However, the ecophysiology of brGDGT-producing bacteria and  
57 the mechanistic basis for brGDGT-based climate proxies remain unknown. Here, we  
58 identify a brGDGT-producing Acidobacterium and present a physiological study of  
59 brGDGTs in response to cultivation variables, which provides pivotal insights into how  
60 brGDGT producers modulate methylation and cyclization under different culturing  
61 conditions. Our study represents a significant advancement in understanding the  
62 physiological role of lipid structures in microbial adaptation and helps us interpret the  
63 relationships between brGDGT-based proxies and environmental conditions of the  
64 geological environment.

65

66 **Introduction**

67 Quantitative estimation of past climate change is important for understanding  
68 Earth history, contextualising the impact of recent human-induced climate change, and  
69 testing models used for future projections. This is challenging, particularly for the  
70 terrestrial environment, due to the scarcity of quantitative proxies for the reconstruction  
71 of climate variables, e.g. temperature and precipitation. Microbial lipid biomarkers  
72 preserved in terrestrial climate archives offer several useful tools for documenting the  
73 evolution of Earth's climate (1). Branched glycerol dialkyl glycerol tetraethers  
74 (brGDGTs) are one class of such lipids and have been used to reconstruct past  
75 temperature, paleohydrology, pH, and terrigenous organic input (2–5). Due to their  
76 ubiquitous occurrence in terrestrial and aquatic settings, the number of their  
77 applications to climate archives, e.g. paleosols, peats, lake sediments, stalagmites,  
78 estuarine and marine sediments, has increased dramatically over the last decade (3, 6).

79 These applications rest on the empirical relationships between the distribution of  
80 brGDGTs and environmental variables, such as temperature, mean annual precipitation,  
81 and pH in modern soils and surface sediments (7–9). In particular, considerable efforts  
82 have been devoted to improving our understanding and the accuracy of brGDGT-based  
83 temperature or pH proxies (2, 10, 11). However, uncertainties persist, many arising  
84 from the fact that the microbial producers of these mysterious lipids in the environment  
85 remain incomplete (12, 13). This has prevented an examination of the ecophysiology  
86 of these microbes and testing of these proxies under laboratory conditions.

87 The quest for the microbial producer(s) of brGDGTs has been ongoing since the  
88 discovery of brGDGTs almost twenty years ago (14). The enantiomeric configuration  
89 of the glycerol backbone, 1,2-di-*O*-alkyl-*sn*-glycerol, assigns brGDGTs as lipids that  
90 are synthesized by bacteria (15). A paired 16S rRNA gene sequencing and brGDGT  
91 approach was used in numerous studies to help constrain the identity of these bacteria  
92 (16–18), yielding a range of bacterial phyla, such as Acidobacteria, Bacteroidetes, and  
93 Verrucomicrobia, as potential producers of brGDGTs in the environment (16–18).  
94 Among these microbes, Acidobacteria were suspected to be the most likely biological  
95 sources of brGDGTs (12), because particularly high abundances of brGDGTs  
96 correspond with the dominance of Acidobacteria in the bacterial community in soils  
97 and peats (18). This was finally confirmed by the examination of the lipid profiles of  
98 more than 40 Acidobacterial strains, revealing their widespread production of the  
99 potential building block (*iso*-diabolic acid) for brGDGTs, and, most importantly, the  
100 positive identification of brGDGT-Ia, a tetramethylated brGDGT, in *Edaphobacter*  
101 *aggregans* Wbg-1 and *Acidobacteriaceae* bacteria A2-4c (12, 19, 20). Subsequent work  
102 has shown that oxygen limitation can trigger the production of more brGDGT-Ia in *E.*  
103 *aggregans* (13), likely explaining the long-observed association of brGDGTs with low  
104 oxygen conditions. However, the majority of brGDGTs that are used in climate proxies  
105 were absent from the lipid profiles of Acidobacteria previously examined in cultures  
106 (12, 19, 20). This necessitates a further search for the biological source(s) of brGDGTs  
107 in the environment.

108 Recently, tetraether synthase (Tes), a key protein responsible for the formation of  
109 archaeal isoprenoid GDGTs (isoGDGTs) via the combination of two archaeol  
110 molecules, has been identified (21). Bacterial brGDGTs bear a structural resemblance  
111 to archaeal isoGDGTs, i.e., both of them consisting of two alkyl chains linked to two  
112 glycerol backbones via four ether bonds (15). The Tes protein could, therefore, also be  
113 involved in the biosynthesis of bacterial brGDGTs, since Tes homologs have been  
114 found in bacterial genomes of diverse phyla including Acidobacteria (21).

115 In this study, we identified a brGDGT-producing strain *Candidatus Solibacter*  
116 *usitatus* Ellin6076, a member of Acidobacteria subdivision 3, through searching  
117 archaeal Tes homologs in bacterial genomes. Crucially, strain Ellin6076 can synthesize  
118 regular brGDGTs with more than 4 methyl groups and cyclopentane moieties as its  
119 major membrane lipids. This allows us to assess the physiological basis for the brGDGT  
120 responses to changes in temperature, pH, and oxygen level, which provides insights  
121 into the underlying mechanism of brGDGT-based paleoclimate proxies.

122

123

## 124 **Results**

125 **Identification of brGDGTs in Acidobacteria culture.** Following our hypothesis that  
126 the Tes homolog protein is associated with bacterial brGDGT production, we searched  
127 for Tes homologs in bacterial genomes to determine the potential biological source of  
128 brGDGTs. Strain Ellin6076 was noteworthy, as it has one Tes homolog with high  
129 sequence alignment scores (identity = 40%, e-value = 1e<sup>-139</sup>) with archaeal functional

130 Tes (MA\_1486). Moreover, it also contains a possible archaeal GDGT ring synthase  
131 (Grs) (22) homolog (identity = 25%, e-value = 1e<sup>-40</sup>). We cultured strain Ellin6076  
132 aerobically under optimal growth conditions at 25 °C and pH 5.5 for 14 days, and then  
133 identified its lipid profile with reversed-phase–liquid chromatography–high-resolution  
134 mass spectrometer (RP–LC–HRMS) and normal-phase–liquid chromatography–mass  
135 spectrometer (NP–LC–MS). The results showed that strain Ellin6076 produced a series  
136 of brGDGT compounds, including brGDGT-Ia, Ib, Ic, IIa, IIb, IIc, and IIIa. The  
137 brGDGT-IIIb and IIIc components were not detected, perhaps due to their absence or  
138 concentrations below the detection limit. Compounds anticipated to be related to  
139 brGDGT biosyntheses, such as *iso*C<sub>15</sub>-dialkyl glycerol ether (DGE), branched glycerol  
140 trialkyl glycerol tetraethers (brGTGTs), and branched glycerol dialkanol diethers  
141 (brGDDs), were also detected. The intact polar lipids (IPLs) corresponding to some of  
142 the above core lipids were also identified (Fig. 1; *SI Appendix*, Fig. S1–3).

143 The harvested cell mass was treated with acid hydrolysis to increase the yield of  
144 core lipids for the analyses of brGDGTs and their core lipid derivatives.  
145 The fragmentation patterns of five representative compounds are shown as examples in  
146 Fig. 1A. The MS<sup>2</sup> behavior of *iso*C<sub>15</sub>-DGE corresponds to the loss of one *iso*C<sub>15</sub>-alkyl  
147 chain, resulting in a product ion of *m/z* 303.28 ([C<sub>18</sub>H<sub>38</sub>O<sub>3</sub>+H]<sup>+</sup>). This characteristic  
148 fragment ion is also present in the MS<sup>2</sup> spectra of brGTGT-Ia as reported by Halamka  
149 et al. (2021) (13). The MS<sup>2</sup> spectrum of brGDGT-Ia exhibits a featured product ion of  
150 *m/z* 603.56 ([C<sub>36</sub>H<sub>74</sub>O<sub>6</sub>+H]<sup>+</sup>) and brGDGT-IIb exhibits an additional product ion of *m/z*

151 615.55 ( $[\text{C}_{37}\text{H}_{74}\text{O}_6+\text{H}]^+$ ), both of which are regular fragments observed in the  $\text{MS}^2$   
152 spectra of brGDGT compounds (23).

153 To further determine the alkyl chain structures of brGDGT-IIIa isomers, brGDGT-  
154 IIIa purified from the total lipid extract of the hydrolyzed cells cultured at 10 °C was  
155 subjected to ether cleavage. The released alkanes were analyzed by gas  
156 chromatography–mass spectrometer (GC–MS). Three alkanes, including 13,16-  
157 dimethyloctacosane (m2), 5,13,16-trimethyloctacosane (m3), and 5,13,16,24-  
158 tetramethyloctacosane (m4), were found, indicating that brGDGT-IIIa was composed  
159 of two co-eluting isomers, i.e., one consisting of m2 and m4, and the other consisting  
160 of two m3 (Fig. 1B). The alkyl chain structures of the two brGDGT-IIIa isomers can  
161 also be confirmed by the fragment ions of  $m/z$  631.59 ( $[\text{C}_{38}\text{H}_{78}\text{O}_6+\text{H}]^+$ ) and  $m/z$  617.57  
162 ( $[\text{C}_{37}\text{H}_{76}\text{O}_6+\text{H}]^+$ ) in the mass spectra of IIIa, which correspond to a neutral loss of m2  
163 and m3 in  $\text{IIIa}_{(m2+m4)}$  and  $\text{IIIa}_{(m3+m3)}$ , respectively (Fig. 1A). The estimated ratio of  
164 82%:18% between  $\% \text{IIIa}_{(m3+m3)}$  and  $\% \text{IIIa}_{(m2+m4)}$  (the abundance percentage of IIIa  
165 isomers in total IIIa) suggests more  $\text{IIIa}_{(m3+m3)}$  was produced in the culture of strain  
166 Ellin6076, consistent with the observation in a peat sample (24).

167 The brGDGTs found in the environment contain isomers with an outer methyl  
168 group at either the  $\alpha/\omega 5$  or  $\alpha/\omega 6$  position, i.e. C5-methylated and C6-methylated  
169 brGDGTs (2). To determine which brGDGT isomers are produced by strain Ellin6076,  
170 we used a soil sample containing both C5- and C6-methylated brGDGTs as a reference,  
171 and compared the chromatogram and the retention time of target compounds using NP–

172 LC–MS. The results showed that strain Ellin6076 produced C<sub>5</sub>-methylated brGDGTs  
173 (*SI Appendix*, Fig. S4). This is also confirmed by the GC–MS analysis of alkyl chains  
174 released from the ether cleavage of purified brGDGT-IIIa (Fig. 1B) and brGDGT-IIa  
175 (*SI Appendix*, Fig. S5).

176 To analyze the head groups of brGDGTs, we extracted IPLs from harvested cell  
177 mass with a modified Bligh-Dyer method. Phosphohexose (PH) was the most common  
178 polar head group detected in the culture, and this has also been identified in peat  
179 samples (25). IPLs such as PH-*iso*C<sub>15</sub>-DGE, PH-brGDGT-Ia, and PH-brGDGT-Ia-PH  
180 were identified and confirmed by MS<sup>2</sup> spectra (*SI Appendix* Fig. S3).

181  
182 **The abundance of brGDGTs in Acidobacteria cells.** To estimate the proportion of  
183 brGDGTs in the total lipids of strain Ellin6076, the core lipid inventory of Ellin6076  
184 cells was analyzed by gas chromatography–mass spectrometer (GC–MS) and NP–LC–  
185 MS. Strain Ellin6076 contains a variety of lipids including fatty acids, brGDGTs,  
186 hopanoids, and 3-hydroxy fatty acids. The total abundance of regular fatty acids,  
187 including saturated and unsaturated C<sub>15–20</sub> fatty acids, was 13.8 fg/cell, accounting for  
188 30% of the total quantified lipids. On the other hand, the abundance of all brGDGTs,  
189 including brGTGTs, was 30.3 fg/cell, accounting for 66% of the total lipids (Fig. 2).

190 Compared to fatty acids and brGDGTs, *iso*C<sub>15</sub> glycerol ethers including *iso*C<sub>15</sub>–  
191 monoalkyl glycerol ether (MGE) and *iso*C<sub>15</sub>-DGE had a much lower abundance, 0.9–  
192 1.8 fg/cell. Other lipids such as 3-hydroxy fatty acids and hopanoids were minor, with

193 the summed abundance < 0.5 fg/cell (*SI Appendix*, Table S1). Intriguingly, *iso*-diabolic  
194 acids were absent from the lipid profile of strain Ellin6076. The fractional abundance  
195 of brGDGTs in the total lipids of strain Ellin6076 is much higher than that in *E.*  
196 *aggregans*, whose brGDGTs account for only approximately 3% of total lipids (13).  
197 Our findings demonstrate that some Acidobacteria, such as Ellin6076, use the  
198 membrane-spanning lipids brGDGTs and fatty acids as major components to form  
199 unique cell membranes with a mixed monolayer and bilayer structure (Fig. 2C).  
200

201 **The response of brGDGTs to cultivation conditions in Acidobacteria culture.** The  
202 production of multiple brGDGTs by the strain Ellin6076 allows us to directly assess the  
203 brGDGT changes under controlled experimental conditions. We cultured strain  
204 Ellin6076 independently at temperatures ranging from 10–35 °C and pH ranging from  
205 4.5–6.5 (*SI Appendix*, Fig. S6). Then we evaluated the changes in the fractional  
206 abundance of brGDGT-Ia, Ib, IIa, IIb, and IIIa, since these components are critical for  
207 the calculation of brGDGT-based proxies (e.g. MBT<sup>5ME</sup> and CBT<sup>5ME</sup>).

208 The MBT<sup>5ME</sup> index, expressing the methylation degree of C<sub>5</sub>-methylated  
209 brGDGTs showed a significant positive correlation with culture temperature (10 °C to  
210 25 °C), having a determination coefficient ( $R^2$ ) up to 0.97 (Fig. 3A). Specifically, %Ia,  
211 the abundance percentage of brGDGT-Ia in total brGDGTs, increased with temperature  
212 in this range, while %IIa and %IIIa decreased (*SI Appendix*, Fig. S7, and Table S2).  
213 Importantly, the MBT<sup>5ME</sup> values at 30 °C and 35 °C were nearly 1.00 (*SI Appendix*,

214 Table S2), the upper limit of this index. BrGDGT-Ia was overwhelmingly dominant at  
215 30 °C (%Ia > 93%) and 35 °C (%Ia > 97%), consistent with environmental studies and  
216 confirming that the MBT'5ME index is insensitive to temperature changes above 25 °C.  
217 Excluding these data showed a remarkable influence of temperature on the distributions  
218 of C<sub>5</sub>-methylated brGDGTs and the MBT'5ME index in the culture of strain Ellin6076.

219 The cyclization degree of brGDGTs was assessed by the CBT index, with a higher  
220 CBT value indicating a lower degree of cyclization (7). A positive correlation between  
221 CBT<sub>5ME</sub> and pH from pH 4.5 to 6.5 was found for the culture samples, opposed to the  
222 general negative relationship derived from the global soil database (2, 7) (Fig. 3B).

223 In addition to temperature and pH, we also examined whether strain Ellin6076  
224 adjusts its brGDGT composition in response to oxygen limitation. When strain  
225 Ellin6076 was cultured under oxygen limitation (1% O<sub>2</sub> concentration, 25 °C, pH 5.5),  
226 the abundance of total brGDGTs decreased to 10 fg/cell compared to 30 fg/cell under  
227 aerobic condition (21% O<sub>2</sub> concentration, 25 °C, pH 5.5), in contrast to the enhanced  
228 production under low oxygen reported in *E. aggregans* (13). Intriguingly, %IIa  
229 and %IIIa increased and %Ib, %Ic, and %IIb decreased under the stress of low  
230 oxygen. %Ia was effectively constant (87–91%) under both conditions (*SI Appendix*,  
231 Fig. S9 and Table S2). Consequently, MBT'5ME values slightly decreased but CBT<sub>5ME</sub>  
232 values strikingly increased under oxygen limitation (Fig. 3C).

233

234

235 **Discussion**

236 **The conundrum of brGDGT-producers.** The biological sources of brGDGTs in the  
237 environment have puzzled many scientists for more than two decades. Despite  
238 substantial effort devoted to solving this conundrum (12, 13, 16, 18–20, 26–28), a  
239 bacterial pure culture producing the multiple brGDGTs that have been used to construct  
240 paleoclimate has been lacking. Here, we found a bacterial strain Ellin6076 is capable  
241 of synthesizing multiple brGDGTs as its major cell membrane lipids. This is a crucial  
242 step towards understanding the source of diverse brGDGTs in the environment via  
243 culturing under different conditions, shedding new insights into the ecophysiology and  
244 taxonomy of brGDGT-producers.

245 Several lines of evidence, in particular from peats, suggest that brGDGT-producers  
246 might be anaerobic or facultative anaerobic bacteria (15, 18, 27). However, strain  
247 Ellin6076 is an obligately aerobic bacteria, indicating that at least a portion of brGDGTs  
248 in peats, soils, and lakes can be produced by aerobic Acidobacteria. This is consistent  
249 with one order of magnitude higher rates of brGDGT production in incubations with  
250 surface peat under oxic conditions than anoxic deeper peats (27), as well as the  
251 occurrence of abundant *in situ* brGDGTs produced in oxic lake water columns (29).  
252 However, these observations are inconsistent with the increased production of  
253 brGDGTs by *E. aggregans* under low O<sub>2</sub> concentrations (13) and the high abundance  
254 of brGDGTs in low oxygen environments (15, 18). It is likely that brGDGTs are  
255 synthesized by a range of bacteria and/or at least some observations from the

256 environment reflect preservation of brGDGTs in anoxic settings rather than higher  
257 production. Strain Ellin6076 uses glucose as the carbon source for the  
258 chemoheterotrophic lifestyle, consistent with the previous views on the lifestyle of  
259 brGDGT-producers based on the carbon isotopic compositions of brGDGTs in the  
260 environment (27, 30).

261 The previous identification of brGDGT-Ia in two Acidobacteria belonging to  
262 subdivision 1, together with the occurrence of more diverse brGDGTs in Ellin6076,  
263 indicates different Acidobacteria can produce completely distinct brGDGT profiles.  
264 This suggests that at least some variations in environmental brGDGT distributions  
265 reflect community change rather than physiological adaptations within a single taxon.  
266 In altitudinal or latitudinal transects with a large temperature or pH gradient, the impact  
267 of these environmental factors on brGDGTs overwhelmingly exceeds the community  
268 effect, resulting in significant correlations between brGDGT distribution and  
269 temperature or pH (9, 31, 32); however, at local scales, the community effect can  
270 dominate, as De Jonge et al. previously observed in high and mid-latitude soils (33, 34).  
271 It is, therefore, necessary to evaluate the community effect on existing brGDGT  
272 paleoclimate proxies in their applications to paleo-reconstructions.

273 For example, the occurrence of tetramethylated brGDGTs and C<sub>5</sub>-methylated  
274 brGDGTs with an absence of C<sub>6</sub>-methylated brGDGTs in Ellin6076 suggests that C<sub>5</sub>-  
275 and C<sub>6</sub>-methylated brGDGTs are produced by different (Acido)bacteria. The relative  
276 abundance of C<sub>6</sub>- vs. C<sub>5</sub>-methylated brGDGTs (generally expressed in the IR<sub>6ME</sub> proxy)

277 appears to be dependent on pH or salinity in a variety of environmental samples (10,  
278 35, 36). This study suggests that pH proxies based upon the relative abundance of C<sub>6</sub>-  
279 vs. C<sub>5</sub>-methylated brGDGTs are essentially regulated by a shift in the Acidobacteria  
280 community. Ellin6076 falls within Acidobacteria subdivision 3, a clade that is abundant  
281 in acidic soils and peats (37–39), agreeing well with the dominance of C<sub>5</sub>-methylated  
282 brGDGTs over their C<sub>6</sub>-methylated isomers in these environments (9, 10). Future work  
283 should ascertain the biological source(s) of C<sub>6</sub>-methylated brGDGTs, perhaps by  
284 examining Acidobacteria with a Tes homolog that are abundant in alkaline  
285 environments, e.g. Acidobacteria subdivision 4 and 6.

286

287 **The physiological function of methylation and cyclization in brGDGTs.** Our strain  
288 Ellin6076 culture experiments allow direct examination of how methylation and  
289 cyclization of brGDGTs in a single species respond to different temperature, pH and  
290 oxygen conditions. Canonically, modifications in the degree of methylation and  
291 cyclization are thought to be a microbial strategy – homeoviscous or homeostatic  
292 adaptation – to adapt to ambient environmental change (40, 41). Microbes modulate  
293 their lipid compositions to maintain appropriate fluidity and permeability of cell  
294 membranes (42, 43). Bacteria can modify the degree of branching in their fatty acids at  
295 varying temperatures (44), for example, with more branched-chain fatty acids observed  
296 at 45 °C than at 65 °C in the culture of a thermophilic bacteria *Bacillus*  
297 *stearothermophilus* (45). We observed a similar modification in Ellin6076, which

298 produced more C<sub>5</sub>-methylated brGDGTs (e.g. brGDGT-IIa and IIIa) and fewer  
299 tetramethylated brGDGT-Ia, thereby increasing the degree of methylation, at  
300 temperatures below 25 °C. Recent molecular dynamics simulations of bacterial  
301 membranes consisting of brGDGTs confirm that a higher degree of methylation results  
302 in a less rigid and more fluid membrane (46). Our culturing experiments support this  
303 theory and suggest that the increase in brGDGT methylation is a physiological  
304 adaptation strategy for brGDGT-producing bacteria in cold conditions. In contrast, pH  
305 and oxygen limitation exert a minor effect on the degree of brGDGT methylation (SI  
306 *Appendix*, Fig. S8 and Fig. S9).

307 The degree of cyclization in isoGDGTs is a key strategy for archaea to adapt to  
308 extreme environments, with more cyclopentyl moieties generally produced by archaea  
309 growing at a higher temperature or a lower pH (47–49). Molecular modeling suggests  
310 that an increase in isoGDGT cyclization degree leads to tighter membrane packing that  
311 enhances membrane thermal stability and reduces overall membrane permeability (50,  
312 51). Given the similarity in structure, it is reasonable to hypothesize that cyclopentane  
313 rings in brGDGTs have a similar function. Indeed, our results demonstrate that lower  
314 pH and higher temperature generally cause a higher degree of brGDGT cyclization (SI  
315 *Appendix*, Fig. S7 and Fig. S8), which is consistent with the behaviour of isoGDGTs in  
316 a thermoacidophilic archaeon *Sulfolobus acidocaldarius* (49). However, this  
317 relationship is opposite to the well-established empirical relationship of soil pH with  
318 the degree of brGDGT cyclization. This could mean that Ellin6076 (or our culture

319 conditions) are atypical or that brGDGT cyclization is sensitive to multiple variables,  
320 instead of pH alone. Given the similarity in behaviour between the cyclization of  
321 Ellin6076 brGDGTs and that in archaea, as well as the predictions of molecular  
322 modelling, we instead propose that the widely observed environmental relationship  
323 documents changes in the brGDGT-producing community rather than an  
324 ecophysiological relationship.

325

326 **Implications for brGDGT-based temperature and pH proxies.** The physiological  
327 function of methylation and cyclization in brGDGTs helps to interpret MBT and CBT  
328 proxies and their relationships with environmental factors in nature. The positive  
329 correlation between MBT'<sub>5ME</sub> and temperature for the culture of Ellin6076 is consistent  
330 with the empirical observation of global soils (Fig. 3A). The calibration equation for  
331 the strain Ellin6076 is:

332 
$$\text{MBT}'_{5\text{ME}} = 0.047 \times T - 0.22 \quad (R^2 = 0.97, p < 0.0001, n = 12) \quad [1]$$

333 The slope of the regression line for strain Ellin6076 is significantly steeper than  
334 that for the global soil dataset. There could be two explanations for this. First, the  
335 majority of brGDGTs in soils are produced by other (Acido)bacteria species with a  
336 brGDGT response to temperatures differing from the strain Ellin6076. Second, the  
337 MBT'<sub>5ME</sub> for global soils could record the growing season temperatures. The difference  
338 in MBT'<sub>5ME</sub> values between the strain Ellin6076 and global soils increases with  
339 decreasing temperature, which might relate to the increased seasonal production of

340 brGDGTs in colder soils. The strain Ellin6076 cannot grow well below 10 °C. Likewise,  
341 Acidobacteria producing brGDGTs in soils are unlikely to proliferate at a low  
342 temperature. If the MBT'5ME-temperature calibration for the strain Ellin6076 is applied  
343 to the global soils, the temperature estimates for soils from cold regions would be  
344 significantly higher than the mean annual air temperature (MAT). In contrast, the  
345 MBT'5ME values for the strain Ellin6076 agree well with those for global soils at  
346 temperatures > 20 °C, where the effect of temperature seasonality is minor. This  
347 suggests caution in the application of brGDGT temperature proxies in low temperature  
348 contexts. At the same time, MBT'5ME values reached saturation at 25 °C in the culture  
349 experiments (*SI Appendix*, Table S2), which is consistent with the observations in soils,  
350 suggesting the MBT'5ME index cannot be used to reconstruct temperature changes  
351 above that (Fig. 3A).

352 Temperature was the only factor controlling MBT'5ME variation in the culture  
353 experiment, whereas other environmental variables such as pH and oxygen availability  
354 exerted only minor effects on this index. The MBT'5ME values for strain Ellin6076  
355 barely changed under different pH conditions (*SI Appendix*, Table S2) and decreased  
356 only slightly under oxygen limitation (Fig. 3C). This suggests that pH and oxygen  
357 availability could be excluded as potential factors affecting the MBT'5ME in the  
358 environment. However, this only applies at the species level. Several previous studies  
359 showed that soil pH or oxygen level are key factors that determine the variation of  
360 MBT'5ME in soils and peats (10, 52, 53). We attribute this to the community effect

361 inferred above. A shift in the Acidobacteria community would cause a change in  
362 brGDGT distribution since some Acidobacteria can only produce brGDGT-Ia (12, 13),  
363 whereas other Acidobacteria like Ellin6076 are capable of synthesizing more diverse  
364 brGDGTs. It also appears that changes in pH drive shifts in the Acidobacteria  
365 community as documented by the unexpected change in brGDGT cyclization (see  
366 above). This could explain why changes in brGDGT-reconstructed pH are sometimes  
367 associated with unexpected changes in MBT-derived temperatures (54, 55).

368 In addition, oxygen limitation could trigger the production of more brGDGTs,  
369 especially brGDGT-Ia (12, 13). Although not observed in strain Ellin6076, this effect  
370 would also increase the MBT'<sub>5ME</sub> values in soils. While our study demonstrates the  
371 robustness of MBT'<sub>5ME</sub> as a paleothermometer, factors that potentially affect the  
372 Acidobacteria community (not limited to oxygen limitation and pH) need to be  
373 considered as well.

374 Our work provides fundamental new insights into brGDGT biosynthesis and  
375 adaptation. By identifying archaeal tetraether synthase homologs in bacterial genomes,  
376 we were able to identify a brGDGT-producing Acidobacterium, strain Ellin6076.  
377 Crucially, because this organism shows to produce a suite of brGDGTs, we were able  
378 to conduct culture experiments to determine the response of brGDGT distributions to  
379 changes in temperature, pH and oxygen. Such work reaffirms confidence in brGDGT-  
380 temperature proxies but also suggests that much of the environmental variation in  
381 brGDGT distributions ascribed to pH is instead due to community change.

382 **Methods**

383 **Strain and Culturing.** *Candidatus Solibacter usitatus* Ellin6076 (DSM 22595) was  
384 purchased from the German Collection of Microorganisms and Cell Cultures (DSMZ).  
385 The strain was routinely cultured in the modified liquid MM medium under the optimal  
386 growth conditions aerobically at 25 °C and pH 5.5 for 14 days to reach the stationary  
387 phase. To investigate how brGDGT distribution responds to environmental changes,  
388 strain Ellin6076 was cultured under different temperatures (10–35 °C), pH values  
389 (4.5–6.5), and oxygen levels (1% vs. 21% O<sub>2</sub> concentration in the headspace). All the  
390 experiments were performed in biological triplicates. The details of culturing  
391 experiments are described in *SI Appendix*.

392 **Lipid Extraction and Analyses.** Culture samples were harvested at the stationary  
393 phase and collected by 10,000 × g centrifugation for 15 min and cell pellets were kept  
394 at –80 °C before further experiments. An aliquot of wet cell mass was treated with acid  
395 hydrolysis for core lipid (CL) analysis, and another aliquot was directly extracted using  
396 a modified Bligh-Dyer method for intact polar lipid (IPL) analysis as described in *SI*  
397 *Appendix*.

398 BrGDGTs together with their CL and IPL derivatives were identified using a  
399 Waters ACQUITY I-Class Ultra-performance liquid chromatography (UPLC) coupled  
400 to SYNAPT G2-Si quadrupole time-of-flight (qTOF) high-resolution mass  
401 spectrometer. The quantification of brGDGTs with the C<sub>46</sub> GTGT internal standard was  
402 performed on an Agilent 1260 series high-performance liquid chromatography (HPLC)

403 system coupled with Agilent 6135B quadrupole mass spectrometer. The CL inventory  
404 including fatty acids, mono/dialkyl glycerol ethers, and other lipids in the cultures was  
405 analyzed by a Thermo Finnigan Trace 1300 gas chromatography coupled to an ISQ  
406 7000 mass spectrometer (GC–MS). The purification and ether cleavage were performed  
407 on target compounds such as brGDGT-IIa and IIIa to further determine the methyl  
408 positions of brGDGTs and co-eluting isomers of IIIa produced by strain Ellin6076. The  
409 alkanes released from brGDGTs were analyzed by GC and GC–MS. The details of lipid  
410 extraction, analyses, identification and quantification are described in *SI Appendix*.

411 **Calculation of MBT and CBT proxies.** We used MBT'<sub>5ME</sub> and CBT<sub>5ME</sub> proxies  
412 following De Jonge et al. (2014) to evaluate the distribution of brGDGTs (2), as only  
413 C<sub>5</sub>-methyl isomers were identified in strain Ellin6076. The calculation was based on  
414 the relative abundances of major brGDGTs:

$$415 \quad \text{MBT}'_{5ME} = \frac{\text{Ia} + \text{Ib} + \text{Ic}}{\text{Ia} + \text{Ib} + \text{Ic} + \text{IIa} + \text{IIb} + \text{IIc} + \text{IIIa}} \quad [2]$$

$$416 \quad \text{CBT}_{5ME} = -\log_{10}\left(\frac{\text{Ib} + \text{IIb}}{\text{Ia} + \text{IIa}}\right) \quad [3]$$

417

## 418 **Acknowledgments**

419 We thank Wenyong Yao, Wan Zhang, and Jing Guo for microscopy observation and cell  
420 counting. This study was supported by the National Natural Science Foundation of  
421 China (No. 92051112 to Z.Z., No. 32170041 to Z.Z., and No. 42073072 to H.Y.), the  
422 Science, Technology, and Innovation Commission of Shenzhen Municipality (No.  
423 20200925154325002 to Z.Z.), the Southern Marine Science and Engineering  
424 Guangdong Laboratory (Guangzhou) (No. K19313901), and the Shenzhen Key  
425 Laboratory of Marine Archaea Geo-Omics, Southern University of Science and  
426 Technology (No. ZDSYS201802081843490).

427

428 **Figure Legends**

429 **Fig. 1.** Identification of brGDGTs in strain Ellin6076 by RP–LC–HRMS and GC–MS.  
430 (A) Extracted ion chromatograms (EIC) and  $MS^2$  mass spectra of five representative  
431 compounds analyzed by RP–LC–HRMS are shown. (B) The partial total ion  
432 chromatogram (TIC) and mass spectra of brGDGT-IIIa derived alkyl chains analyzed  
433 by GC–MS are shown. IIIa<sub>(m2+m4)</sub> and IIIa<sub>(m3+m3)</sub> represent co-eluting isomers of  
434 brGDGT-IIIa with distinct alkyl chains. The m2, m3, and m4 refer to the alkyl chains  
435 with 2, 3, and 4 methyl groups, respectively. The precursor ions, such as [M+H]<sup>+</sup> in  
436 RP–LC–HRMS and [M<sup>+</sup>–15] in GC–MS, are marked with stars. The characteristic  
437 product ions are marked by colors and fragment positions are denoted by dash lines.  
438 The pie chart shows the proportion of IIIa isomers in total IIIa. The calculation is based  
439 on the results of GC analysis and the contribution of co-eluting IIa to m2 and m3 in Fig.  
440 1B is subtracted as described in *SI Appendix*.

441

442 **Fig. 2.** The lipid profile of strain Ellin6076. (A) The cellular contents and (B) the  
443 fractional abundances of major lipids in strain Ellin6076. The cellular content of  
444 brGDGTs includes that of brGTGTs, and the cellular content of *isoC<sub>15</sub>* glycerol ethers  
445 includes that of *isoC<sub>15</sub>*-MGE and *isoC<sub>15</sub>*-DGE (*SI Appendix*, Table S1). Error bars  
446 represent the standard deviations among mean values of biological triplicate. The  
447 quantification is based on internal standards and cell amounts as described in *SI*  
448 *Appendix*. (C) Schematic cell membrane of strain Ellin6076 containing monolayer and  
449 bilayer structures with proposed permeability trend.

450

451 **Fig. 3.** Relationships between brGDGT-based proxies and environmental factors. (A)  
452 The MBT'<sub>5ME</sub> vs. temperature in the culture of strain Ellin6076 (red line) together with  
453 the MBT'<sub>5ME</sub> in the global soil database (gray line; De Jonge et al., 2014). The data at  
454 30 °C and 35 °C are excluded from the linear regression. (B) The CBT'<sub>5ME</sub> vs. pH in the  
455 culture of strain Ellin6076 (blue line) and the global soil database (gray line; De Jonge  
456 et al., 2014). The shaded area and dash lines show 95% confidence interval and 95%  
457 prediction interval of the linear regression, respectively. (C) The comparison of  
458 MBT'<sub>5ME</sub> and CBT'<sub>5ME</sub> values between oxygen limitation and aerobic condition. Each  
459 biological replicate is displayed and lines represent the mean values.

460

461 **References**

- 462 1. R. E. Summons, P. V Welander, D. A. Gold, Lipid biomarkers: molecular tools  
463 for illuminating the history of microbial life. *Nat. Rev. Microbiol.* **20**, 174–185  
464 (2022).
- 465 2. C. De Jonge, *et al.*, Occurrence and abundance of 6-methyl branched glycerol  
466 dialkyl glycerol tetraethers in soils: Implications for palaeoclimate  
467 reconstruction. *Geochim. Cosmochim. Acta* **141**, 97–112 (2014).
- 468 3. S. Schouten, E. C. Hopmans, J. S. Sinninghe Damsté, The organic geochemistry  
469 of glycerol dialkyl glycerol tetraether lipids: A review. *Org. Geochem.* **54**, 19–61  
470 (2013).
- 471 4. E. C. Hopmans, *et al.*, A novel proxy for terrestrial organic matter in sediments  
472 based on branched and isoprenoid tetraether lipids. *Earth Planet. Sci. Lett.* **224**,  
473 107–116 (2004).
- 474 5. H. Wang, W. Liu, C. L. Zhang, Dependence of the cyclization of branched  
475 tetraethers on soil moisture in alkaline soils from arid-subhumid China:  
476 Implications for palaeorainfall reconstructions on the Chinese Loess Plateau.  
477 *Biogeosciences* **11**, 6755–6768 (2014).
- 478 6. G. N. Inglis, *et al.*, Biomarker approaches for reconstructing terrestrial  
479 environmental change. *Annu. Rev. Earth Planet. Sci.* **50**, 369–394 (2022).
- 480 7. J. W. H. Weijers, S. Schouten, J. C. van den Donker, E. C. Hopmans, J. S.  
481 Sinninghe Damsté, Environmental controls on bacterial tetraether membrane  
482 lipid distribution in soils. *Geochim. Cosmochim. Acta* **71**, 703–713 (2007).
- 483 8. F. Peterse, *et al.*, Revised calibration of the MBT–CBT paleotemperature proxy  
484 based on branched tetraether membrane lipids in surface soils. *Geochim.  
485 Cosmochim. Acta* **96**, 215–229 (2012).
- 486 9. B. D. A. Naafs, A. V. Gallego-Sala, G. N. Inglis, R. D. Pancost, Refining the  
487 global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature  
488 calibration. *Org. Geochem.* **106**, 48–56 (2017).
- 489 10. B. D. A. Naafs, *et al.*, Introducing global peat-specific temperature and pH  
490 calibrations based on brGDGT bacterial lipids. *Geochim. Cosmochim. Acta* **208**,  
491 285–301 (2017).
- 492 11. P. Martínez-Sosa, *et al.*, A global Bayesian temperature calibration for lacustrine  
493 brGDGTs. *Geochim. Cosmochim. Acta* **305**, 87–105 (2021).
- 494 12. J. S. Sinninghe Damsté, *et al.*, 13,16-Dimethyl octacosanedioic acid (*iso*-  
495 Diabolic Acid), a common membrane-spanning lipid of *Acidobacteria*  
496 subdivisions 1 and 3. *Appl. Environ. Microbiol.* **77**, 4147–4154 (2011).
- 497 13. T. A. Halamka, *et al.*, Oxygen limitation can trigger the production of branched  
498 GDGTs in culture. *Geochemical Perspect. Lett.* **19**, 36–39 (2021).
- 499 14. J. S. Sinninghe Damsté, E. C. Hopmans, R. D. Pancost, S. Schouten, J. A. J.  
500 Geenevasen, Newly discovered non-isoprenoid glycerol dialkyl glycerol  
501 tetraether lipids in sediments. *Chem. Commun.* **17**, 1683–1684 (2000).

502 15. J. W. H. Weijers, *et al.*, Membrane lipids of mesophilic anaerobic bacteria  
503 thriving in peats have typical archaeal traits. *Environ. Microbiol.* **8**, 648–657  
504 (2006).

505 16. C. L. Zhang, *et al.*, In situ production of branched glycerol dialkyl glycerol  
506 tetraethers in a great basin hot spring (USA). *Front. Microbiol.* **4**, 181 (2013).

507 17. J. Guo, *et al.*, Soil pH and aridity influence distributions of branched tetraether  
508 lipids in grassland soils along an aridity transect. *Org. Geochem.* **164**, 104347  
509 (2021).

510 18. J. W. H. Weijers, *et al.*, Constraints on the biological source(s) of the orphan  
511 branched tetraether membrane lipids. *Geomicrobiol. J.* **26**, 402–414 (2009).

512 19. J. S. Sinninghe Damsté, *et al.*, Ether- and ester-bound *iso*-diabolic acid and other  
513 lipids in members of *Acidobacteria* subdivision 4. *Appl. Environ. Microbiol.* **80**,  
514 5207–5218 (2014).

515 20. J. S. Sinninghe Damsté, *et al.*, An overview of the occurrence of ether- and ester-  
516 linked *iso*-diabolic acid membrane lipids in microbial cultures of the  
517 Acidobacteria: Implications for brGDGT paleoproxies for temperature and pH.  
518 *Org. Geochem.* **124**, 63–76 (2018).

519 21. Z. Zeng, *et al.*, Identification of a protein responsible for the synthesis of  
520 archaeal membrane-spanning GDGT lipids. *Nat. Commun.* **13**, 1545 (2022).

521 22. Z. Zeng, *et al.*, GDGT cyclization proteins identify the dominant archaeal  
522 sources of tetraether lipids in the ocean. *Proc. Natl. Acad. Sci. U. S. A.* **116**,  
523 22505–22511 (2019).

524 23. X.-L. Liu, R. E. Summons, K.-U. Hinrichs, Extending the known range of  
525 glycerol ether lipids in the environment: structural assignments based on tandem  
526 mass spectral fragmentation patterns. *Rapid Commun. Mass Spectrom.* **26**, 2295–  
527 2302 (2012).

528 24. C. De Jonge, *et al.*, Identification of novel penta- and hexamethylated branched  
529 glycerol dialkyl glycerol tetraethers in peat using HPLC–MS<sup>2</sup>, GC–MS and GC–  
530 SMB–MS. *Org. Geochem.* **54**, 78–82 (2013).

531 25. F. Peterse, *et al.*, Identification and distribution of intact polar branched  
532 tetraether lipids in peat and soil. *Org. Geochem.* **42**, 1007–1015 (2011).

533 26. Y. Chen, *et al.*, Branched GDGT production at elevated temperatures in  
534 anaerobic soil microcosm incubations. *Org. Geochem.* **117**, 12–21 (2018).

535 27. A. Huguet, *et al.*, Production rates of bacterial tetraether lipids and fatty acids in  
536 peatland under varying oxygen concentrations. *Geochim. Cosmochim. Acta* **203**,  
537 103–116 (2017).

538 28. P. Martínez-Sosa, J. E. Tierney, Lacustrine brGDGT response to microcosm and  
539 mesocosm incubations. *Org. Geochem.* **127**, 12–22 (2019).

540 29. J. Wu, *et al.*, Variations in dissolved O<sub>2</sub> in a Chinese lake drive changes in  
541 microbial communities and impact sedimentary GDGT distributions. *Chem.  
542 Geol.* **579**, 120348 (2021).

543 30. J. W. H. Weijers, G. L. B. Wiesenberg, R. Bol, E. C. Hopmans, R. D. Pancost,

544 Carbon isotopic composition of branched tetraether membrane lipids in soils  
545 suggest a rapid turnover and a heterotrophic life style of their source  
546 organism(s). *Biogeosciences* **7**, 2959–2973 (2010).

547 31. V. J. Anderson, T. M. Shanahan, J. E. Saylor, B. K. Horton, A. R. Mora, Sources  
548 of local and regional variability in the MBT'/CBT paleotemperature proxy:  
549 Insights from a modern elevation transect across the Eastern Cordillera of  
550 Colombia. *Org. Geochem.* **69**, 42–51 (2014).

551 32. H. Yang, *et al.*, The 6-methyl branched tetraethers significantly affect the  
552 performance of the methylation index (MBT') in soils from an altitudinal  
553 transect at Mount Shennongjia. *Org. Geochem.* **82**, 42–53 (2015).

554 33. C. De Jonge, *et al.*, Lipid biomarker temperature proxy responds to abrupt shift  
555 in the bacterial community composition in geothermally heated soils. *Org.*  
556 *Geochem.* **137**, 103897 (2019).

557 34. C. De Jonge, *et al.*, The influence of soil chemistry on branched tetraether lipids  
558 in mid- and high latitude soils: Implications for brGDGT-based  
559 paleothermometry. *Geochim. Cosmochim. Acta* **310**, 95–112 (2021).

560 35. H. Wang, *et al.*, Salinity-controlled isomerization of lacustrine brGDGTs  
561 impacts the associated MBT'<sub>5ME</sub> terrestrial temperature index. *Geochim.*  
562 *Cosmochim. Acta* **305**, 33–48 (2021).

563 36. H. Wang, Z. An, H. Lu, Z. Zhao, W. Liu, Calibrating bacterial tetraether  
564 distributions towards *in situ* soil temperature and application to a loess-paleosol  
565 sequence. *Quat. Sci. Rev.* **231**, 106172 (2020).

566 37. A. M. Kielak, C. C. Barreto, G. A. Kowalchuk, J. A. van Veen, E. E. Kuramae,  
567 The Ecology of *Acidobacteria*: Moving beyond Genes and Genomes. *Front.*  
568 *Microbiol.* **7**, 744 (2016).

569 38. S. Kalam, *et al.*, Recent Understanding of Soil Acidobacteria and Their  
570 Ecological Significance: A Critical Review. *Front. Microbiol.* **11**, 580024  
571 (2020).

572 39. S. A. Eichorst, *et al.*, Genomic insights into the *Acidobacteria* reveal strategies  
573 for their success in terrestrial environments. *Environ. Microbiol.* **20**, 1041–1063  
574 (2018).

575 40. M. Sinensky, Homeoviscous adaptation: a homeostatic process that regulates the  
576 viscosity of membrane lipids in *Escherichia coli*. *Proc. Natl. Acad. Sci. U. S. A.*  
577 **71**, 522–525 (1974).

578 41. J. E. Cronan, E. P. Gelmann, Physical properties of membrane lipids: biological  
579 relevance and regulation. *Bacteriol. Rev.* **39**, 232–256 (1975).

580 42. R. Ernst, C. S. Ejsing, B. Antonny, Homeoviscous Adaptation and the  
581 Regulation of Membrane Lipids. *J. Mol. Biol.* **428**, 4776–4791 (2016).

582 43. Y. M. Zhang, C. O. Rock, Membrane lipid homeostasis in bacteria. *Nat. Rev.*  
583 *Microbiol.* **6**, 222–233 (2008).

584 44. M. Suutari, S. Laakso, Microbial fatty acids and thermal adaptation. *Crit. Rev.*  
585 *Microbiol.* **20**, 285–328 (1994).

586 45. J. Reizer, N. Grossowicz, Y. Barenholz, The effect of growth temperature on the  
587 thermotropic behavior of the membranes of a thermophilic *Bacillus*.  
588 Composition-structure-function relationships. *BBA - Biomembr.* **815**, 268–280  
589 (1985).

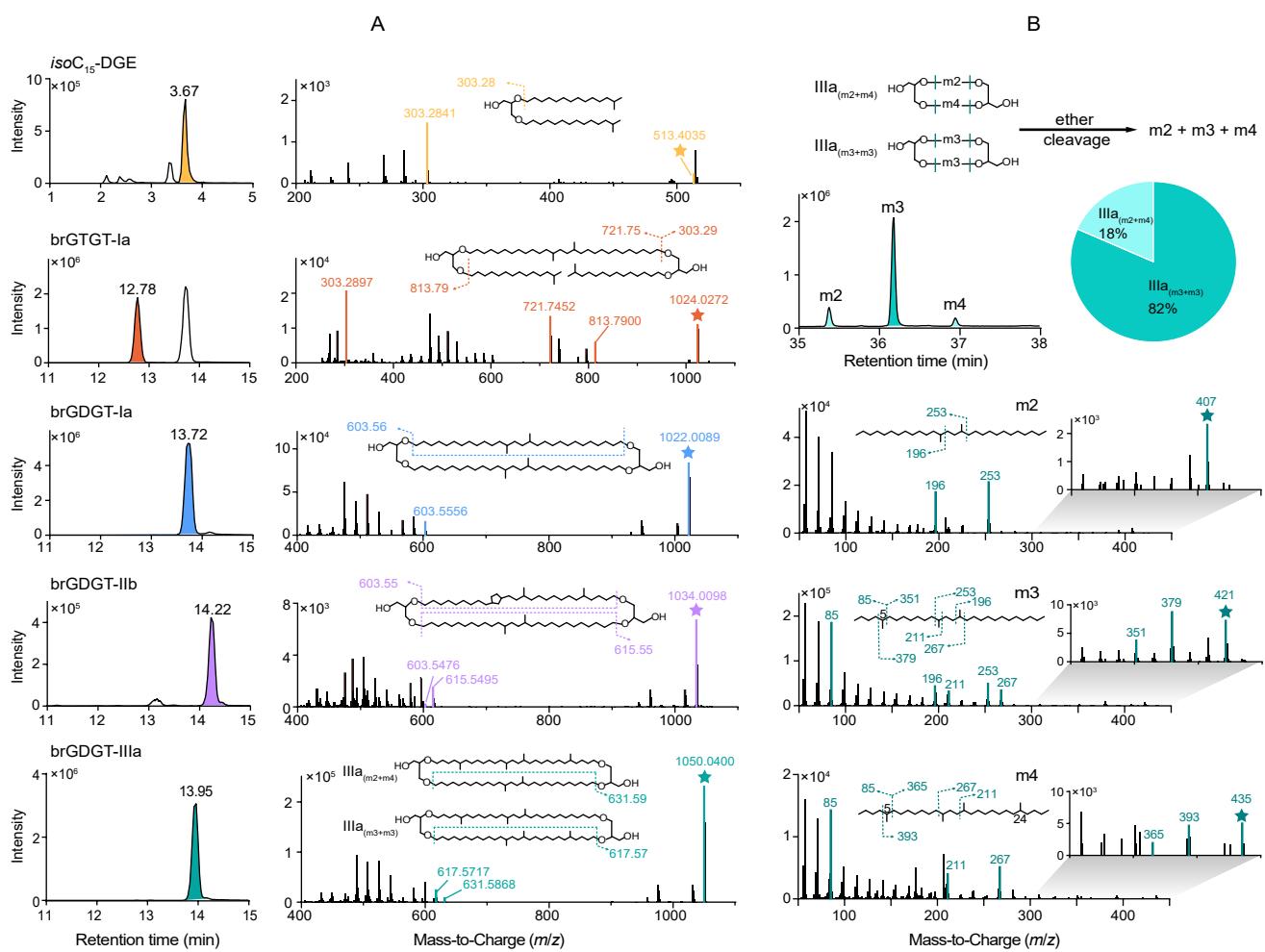
590 46. B. D. A. Naafs, A. S. F. Oliveira, A. J. Mulholland, Molecular dynamics  
591 simulations support the hypothesis that the brGDGT paleothermometer is based  
592 on homeoviscous adaptation. *Geochim. Cosmochim. Acta* **312**, 44–56 (2021).

593 47. J. Feyhl-Buska, *et al.*, Influence of growth phase, pH, and temperature on the  
594 abundance and composition of tetraether lipids in the thermoacidophile  
595 *Picrophilus torridus*. *Front. Microbiol.* **7**, 1323 (2016).

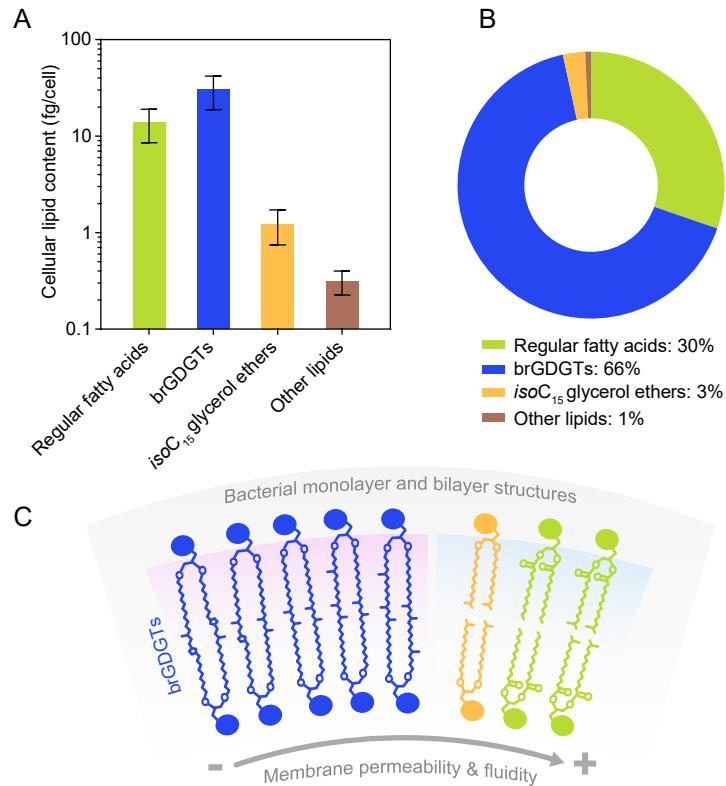
596 48. W. Qin, *et al.*, Confounding effects of oxygen and temperature on the TEX<sub>86</sub>  
597 signature of marine Thaumarchaeota. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 10979–  
598 10984 (2015).

599 49. A. Cobban, *et al.*, Multiple environmental parameters impact lipid cyclization in  
600 *Sulfolobus acidocaldarius*. *Environ. Microbiol.* **22**, 4046–4056 (2020).

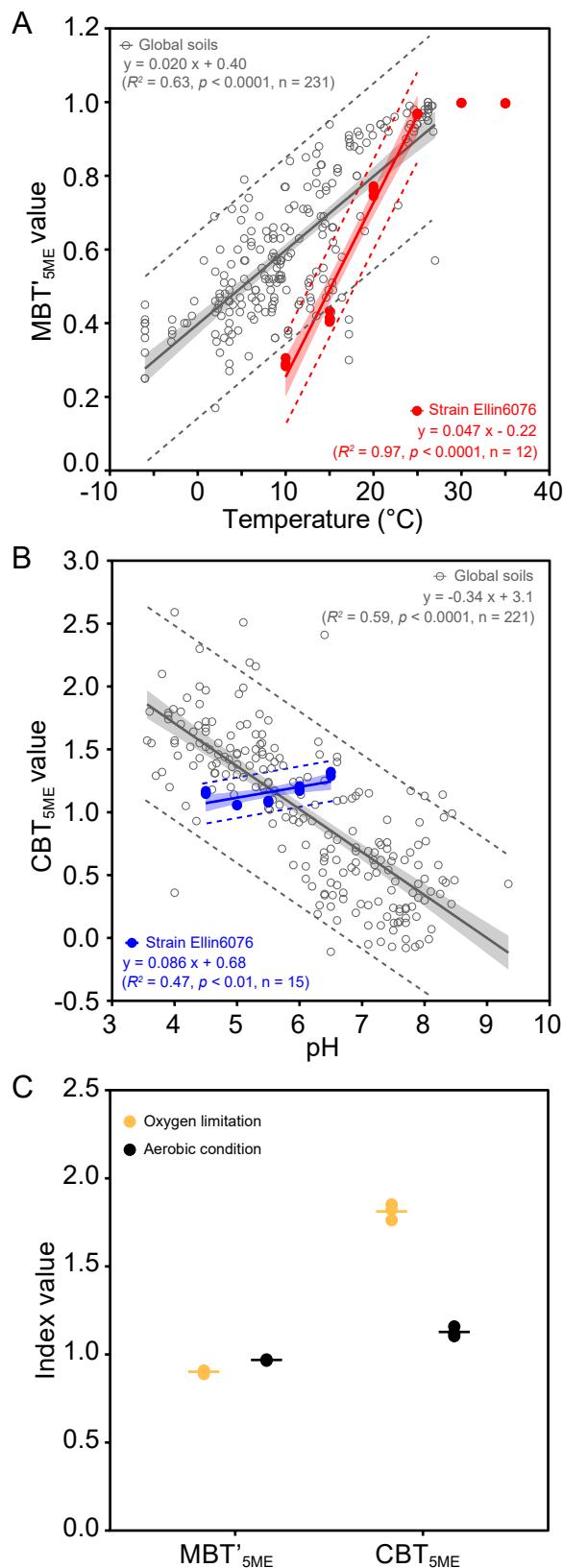
601 50. J. L. Gabriel, P. Lee Gau Chong, Molecular modeling of archaeabacterial bipolar  
602 tetraether lipid membranes. *Chem. Phys. Lipids* **105**, 193–200 (2000).


603 51. A. O. Chugunov, P. E. Volynsky, N. A. Krylov, I. A. Boldyrev, R. G. Efremov,  
604 Liquid but durable: Molecular dynamics simulations explain the unique  
605 properties of archaeal-like membranes. *Sci. Rep.* **4**, 7462 (2014).

606 52. H. Pei, S. Zhao, H. Yang, S. Xie, Variation of branched tetraethers with soil  
607 depth in relation to non-temperature factors: Implications for paleoclimate  
608 reconstruction. *Chem. Geol.* **572**, 120211 (2021).


609 53. X. Dang, H. Yang, B. D. A. Naafs, R. D. Pancost, S. Xie, Evidence of moisture  
610 control on the methylation of branched glycerol dialkyl glycerol tetraethers in  
611 semi-arid and arid soils. *Geochim. Cosmochim. Acta* **189**, 24–36 (2016).

612 54. G. N. Inglis, *et al.*, Terrestrial environmental change across the onset of the  
613 PETM and the associated impact on biomarker proxies: A cautionary tale. *Glob.*  
614 *Planet. Change* **181**, 102991 (2019).


615 55. J. W. H. Weijers, P. Steinmann, E. C. Hopmans, S. Schouten, J. S. Sinninghe  
616 Damsté, Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-  
617 CBT temperature proxy for climate reconstruction. *Org. Geochem.* **42**, 477–486  
618 (2011).



**Fig. 1.** Identification of brGDGTs in strain Ellin6076 by RP–LC–HRMS and GC–MS. (A) Extracted ion chromatograms (EIC) and  $MS^2$  mass spectra of five representative compounds analyzed by RP–LC–HRMS are shown. (B) The partial total ion chromatogram (TIC) and mass spectra of brGDGT-IIIa derived alkyl chains analyzed by GC–MS are shown.  $IIIa_{(m2+m4)}$  and  $IIIa_{(m3+m3)}$  represent co-eluting isomers of brGDGT-IIIa with distinct alkyl chains. The  $m2$ ,  $m3$ , and  $m4$  refer to the alkyl chains with 2, 3, and 4 methyl groups, respectively. The precursor ions, such as  $[M+H]^+$  in RP–LC–HRMS and  $[M^+-15]$  in GC–MS, are marked with stars. The characteristic product ions are marked by colors and fragment positions are denoted by dash lines. The pie chart shows the proportion of IIIa isomers in total IIIa. The calculation is based on the results of GC analysis and the contribution of co-eluting IIa to  $m2$  and  $m3$  in Fig. 1B is subtracted as described in *SI Appendix*.



**Fig. 2.** The lipid profile of strain Ellin6076. (A) The cellular contents and (B) the fractional abundances of major lipids in strain Ellin6076. The cellular content of brGDGTs includes that of brGTGTs, and the cellular content of  $\text{isoC}_{15}$  glycerol ethers includes that of  $\text{isoC}_{15}$ -MGE and  $\text{isoC}_{15}$ -DGE (SI Appendix, Table S1). Error bars represent the standard deviations among mean values of biological triplicate. The quantification is based on internal standards and cell amounts as described in SI Appendix. (C) Schematic cell membrane of strain Ellin6076 containing monolayer and bilayer structures with proposed permeability trend.



**Fig. 3.** Relationships between brGDGT-based proxies and environmental factors. (A) The MBT'<sub>5ME</sub> vs. temperature in the culture of strain Ellin6076 (red line) together with the MBT'<sub>5ME</sub> in the global soil database (gray line; De Jonge et al., 2014). The data at 30 °C and 35 °C are excluded from the linear regression. (B) The CBT<sub>5ME</sub> vs. pH in the culture of strain Ellin6076 (blue line) and the global soil database (gray line; De Jonge et al., 2014). The shaded area and dash lines show 95% confidence interval and 95% prediction interval of the linear regression, respectively. (C) The comparison of MBT'<sub>5ME</sub> and CBT<sub>5ME</sub> values between oxygen limitation and aerobic condition. Each biological replicate is displayed and lines represent the mean values.