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ABSTRACT

Schizophrenia is a highly heritable psychiatric disorder with a complex genetic risk
architecture that reflects the additive impact of hundreds of risk variants. While
many schizophrenia-associated risk variants are thought to regulate the
expression of target genes in a cell-type-specific manner, the mechanisms by
which the effect of these myriad variants combine to contribute to risk remain
unclear. Here we apply a CRISPR-based approach to evaluate in parallel twelve
schizophrenia eGenes (that encompass common variation) in human
glutamatergic neurons. Querying the shared neuronal impacts across risk genes
uncovers a convergent effect concentrated on pathways of brain development and
synaptic signaling. Our analyses reveal shared and divergent downstream effects
of these twelve genes, independent of their previously annotated biological roles.
General convergence of gene expression increases with increasing polygenicity,
while the specificity of convergence increases between functionally similar genes.
Convergent networks show brain-region and developmental period-specific
enrichments, as well as disorder-specific enrichments for both rare and common
variant target genes across schizophrenia, bipolar disorder, autism spectrum
disorder, and intellectual disability. These gene targets are drug-able and
potentially represent novel points of therapeutic intervention. Convergent
signatures are also resolved in the post-mortem brain. Overall, convergence
suggests a model to explain how non-additive interactions arise between risk
genes and may explain cross-disorder pleiotropy of genetic risk for psychiatric
disorders.
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INTRODUCTION

Genome-wide association studies (GWAS) of single nucleotide polymorphisms
(SNPs) continue to identify loci (250 and growing'®) that are significantly
associated with risk for schizophrenia (SCZ). These common variant risk loci are
enriched for genes expressed in pyramidal excitatory neurons (and a subset of
GABAergic interneurons)*®, particularly synaptic pathways®’. Risk genes are
expressed during fetal cortical development®?, highly co-expressed in human brain
tissue'® and cultured neurons'!, and show high connectivity in protein-protein
interaction (PPI) networks'''3. Transcriptomic studies of SCZ post-mortem brains
likewise identify common downregulation of neuronal and synaptic genes as well
as upregulation of immune genes in astrocytes'#'5. An unanswered question is
whether individual risk variants sum linearly'®'” or whether they are amplified'® or
buffered’® by epistatic interactions. Here we ask how the neuronal impact(s) of risk
genes converge in a common genetic background. Identifying the regulatory
node(s) downstream of risk genes could reveal novel SCZ biology and point to new
therapeutic targets.

CRISPR-mediated genetic perturbation of SCZ risk genes in human induced
pluripotent stem cell (hiPSC)-derived neurons can definitively reveal their causal
impact on gene expression, cellular function, and synaptic activity?®-23. Such
genetic studies are typically conducted in a one-gene-at-a-time manner and
require a substantial time and resource investment, but state-of-the-art CRISPR
screens now incorporate a pooled multiplexed design, minimizing experimental
variability, increasing the power of the associated analyses, and more closely
recapitulating the observed polygenic architecture of disease risk. Recent studies
queried an overlapping set of loss-of-function ASD genes in vitro in human neural
progenitor cells (27 genes)?* and human brain organoids (3 genes)?, and in vivo
in fetal mouse brains (35 genes)? and Xenopus tropicalis (10 genes)?’, reporting
convergence impacting neurogenesis®*?’, WNT signaling®*, and gene
expression>26. This approach has not yet been applied to SCZ genes, loss-of-
function?® or otherwise.

We previously integrated hiPSC-based models with CRISPR gene editing,
activation (CRISPRa) and interference (CRISPRI) technologies, in order to study
a putative causal SNP (FURIN rs4702) and top-ranked putative GWAS target
genes (FURIN, SNAP91, TSNARE1, CLCNQ3) associated with SCZ, observing
genotype-dependent transcriptomic differences and resolving specific pre- and
post-synaptic perturbations?®. A CRISPR screen of putative GWAS target genes,
associated with substantially smaller predicted effect sizes than loss-of-function
genes, has not yet been reported in the context of any psychiatric disorder.

Here we resolved the convergent impact of twelve eGenes with strong evidence
of up-regulation by Psychiatric Genomics Consortium (PGC3)-SCZ GWAS loci:
CALN1, CLCN3, FES, INOS8OE, NAGA, NEK4, PLCL1, SF3B1, TMEMZ219,
UBE2Q2L, ZNF823, ZNF804A (Fig. 1a). Two independent pooled single-cell RNA-
sequencing CRISPRa-based experiments3® were applied to resolve the genome-
wide transcriptomic consequences of activating SCZ eGene expression at two
developmental timepoints (day 7 or day 21) in human NGNZ2-induced
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glutamatergic neurons (Fig. 1b)3'32. Our analyses revealed shared and distinct
downstream effects of these twelve SCZ risk eGenes, independent of their
previously annotated biological roles. We uncovered a convergent effect that
increases with increasing polygenicity and within groups of functionally similar
genes. Convergent networks showed brain-region and developmental period-
specific enrichments that enrich for signaling networks involved in neurological
function with known drug targets. Overall, convergent signatures are incredibly
robust, observable across two independent lists of SCZ-GWAS target genes
manipulated in two distinct ECCITE-seq®® experiments, and resolvable in post-
mortem brain. That convergent genes were enriched for risk factors and
transcriptomic signatures associated with a range of other brain disorders
suggests that convergent targets may in part explain shared features of psychiatric
disorders and cross-disorder pleiotropy of risk and supports the hypothesis that
common and rare psychiatric disease-associated variants converge on the same
biological pathways?®, providing crucial insight into potential mechanisms of
polygenicity in complex traits.

RESULTS
Prediction and prioritization of brain genes activated by SCZ GWAS loci.

SCZ-associated risk SNPs identified by GWAS are highly enriched
in cis regulatory elements, including promoters and enhancers, and frequently
regulate the expression of one or more target genes3-3 as cis- or trans-acting
expression quantitative trait loci (eQTLs)%€. Transcriptomic imputation studies
predict trait-associated genetically regulated gene expression by combining large-
scale genetic data (GWAS summary statistics) with tissue-specific eQTL reference
panels®’-3, These approaches infer pathophysiological consequences of GWAS
association statistics, conferring magnitude, directionality, and tissue-level
precision. eGenes (i.e. genes with an associated eQTL) whose brain expression
was predicted to be up-regulated by PGC3-SCZ GWAS SNPs?® were selected by
two complementary approaches. Each list of genes was used to design, construct,
and validate a distinct gRNA library.

First, transcriptome and epigenome imputation were performed for SCZ to
prioritize: NEK4, PLCL1, UBE2Q2L, NAGA, FES, CALN1, and ZNF804. The
PsychENCODE transcriptome datasets of genotyped individuals (brain
homogenate, n=924)'440 were leveraged to impute brain transcriptomes at the
level of genes and isoforms with EpiXcan*'; EpiXcan increases power to identify
trait-associated genes under a causality model by integrating epigenetic
annotation*?. In addition, we used PrediXcan® to perform epigenomic activity
imputation for H3K27ac (brain homogenate, n=122; neuronal, n=191) and
H3K4me3 (neuronal, n=163)*3 to more confidently identify cis regulatory elements
associated with risk for SCZ. Overall, SCZ eGenes were prioritized from PGC3-
GWAS? based on: i) significant genetic up-regulation of expression (z-score >6 for
genes; (Table 1), ii) epigenetic support (>1 epigenome assay with association
within the promoter of the gene) (Table 1; Supplementary Fig. 1b), iii) exclusion
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of genes located in the major histocompatibility complex (MHC) locus. Six top
coding genes and one top pseudo-gene were selected; all seven were
subsequently robustly detected by scRNAseq (see below).

Second, transcriptomic imputation was considered together with the strength of
co-localization between GWAS risk loci and brain eQTL peaks to identify: CALN1,
CLCN3, CUL9, DOC2A, PLCL1, INOSEO, SF3B1, SNAP91, TMEMZ219, ZNF823.
Post-mortem Common Mind Consortium (CMC)* and PGC3-SCZ GWAS? data was
leveraged to calculate predicted differential expression in brain (using prediXcan®®;
623 CMC samples), and colocalization of fine-mapped GWAS and eQTL
associations (using COLOC#*+¢; 537 EUR-CMC samples; 65,205 cases and
87,919 controls GWAS). Our analysis yielded ~250 genes with significant (p<6x10-
6)39 predicted differential expression between SCZ-cases and controls using
PrediXcan and 25 loci with very strong evidence (PP4>0.8) of colocalization of
PGC3-GWAS loci and brain eQTLs; there was significant overlap between the two
analyses (22/25 COLOC genes were PrediXcan significant; binomial test p-value
3.03x10°12). Overall, SCZ eGenes were prioritized from PGC3-GWAS? based on:
i) significant genetic up-regulation (Table 2), ii) colocalization of GWAS and eQTL
associations, iii) exclusion of genes located in the MHC locus, iv) robust expression
in our hiPSC neuron RNAseq (Table 2). Although ten top coding genes were
selected, only five were subsequently robustly detected by scRNAseq (see below).

A pooled CRISPRa approach to resolve the transcriptomic effects of SCZ eGenes
at two developmental time-points in human excitatory neurons.

Fusion of a catalytically inactive dCas9 to the tripartite activator VP64-p65-
Rta (VPR)*748 achieves efficient up-regulation in hiPSC neurons*®. Coupling
CRISPR screening to single-cell RNA sequencing readouts yields rich, high-
dimensional phenotypes from pooled screens and permits direct detection of
sgRNAs (Expanded CRISPR-compatible CITE-seq, ECCITE-seq)®. To evaluate
the impact of the twelve SCZ prioritized genes, the two independently designed,
constructed, and validated pooled CRISPRa libraries were transduced into NGN2-
neurons from two donors in independent experiments (three donors across
experiments) at unique developmental time-points.

In order to evaluate the impact of the seven SCZ prioritized genes, a pooled library
of ten new sgRNAs per SCZ eGene was designed (NEK4, PLCL1, UBE2Q2L,
NAGA, FES, CALN1, ZNF804A: 10 gRNAs each), and pooled together with 1
scramble gRNA negative control previously functionally validated by CRISPRa?°.
The synthesized, annealed, and pooled gRNAs were cloned into a lentiviral
expression vector (lentiGuide-Hygro-mTagBFP2)4°.

To validate a high-quality pooled sgRNA library, an innovative and more accurate
method to determine individual sgRNA abundance was developed. Note that the
20-bp gRNA sequences are the only different small parts in the ~8,000 bp
expression plasmid. DNA fragmentation by sonication yields redundant and
repetitive DNA fragments that are not of interest. To increase the probability of
getting sequences of the specific gRNAs, the gRNA library was digested with two
restriction enzymes to yield a ~378 bp DNA fragment containing different gRNAs
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(Supplementary Fig. 1c). Following lllumina's protocol for library preparation,
index adapter sequences were added to the ends of a DNA fragment for MiSeq
(25 million sequencing reads and 2x 250 bp read lengths). After confirming the
equal distribution of individual gRNA within the library (Supplementary Fig. 1d),
it was packaged into lentivirus and titrated.

Second, three sgRNAs were designed for each of the genes (CALN1, CLCNS3,
CULY, DOC2A, PLCL1, INOSEO, SF3B1, SNAP91, TMEM219, ZNF823). gRNAs
were cloned for expression from our LV expression vector*®, individually
expressed, and validated by qPCR. The gRNAs with validated expression
predicted to mimic the strength of the eQTL effect most closely was selected.
Individual gRNAs were packaged as lentiviruses and tittered prior to pooling.

An sgRNA library targeting promoters (low MOI, ~300 cells/sgRNA) was used to
generate strong-effect up-regulation and maximize detection of trans effects. After
maturation, 7-day-old (7-gene) and 21-day-old (10-gene) NGN2-neurons were
dissociated to single cell suspensions with papain, and bar-coded single cell cDNA
generated using 10X Genomics Chromium. Normalization and downstream
analysis of RNA-seq data were performed using the Seurat R package (v.2.3.0),
which enables the integrated processing of multimodal single-cell datasets.
Differential gene expression analysis was performed on demultiplexed cells for
each experiment individually, with a total of 12 target genes being compared to
their matched scramble control targeted cells, treating each cell as a replicate.

We were able to successfully resolve cell perturbations of all seven genes queried
in the first set (each of which had 10 unique gRNAs) and five of the ten genes
queried in the second set (each of which had 3 unique gRNAs). The inability to
resolve all ten of the perturbations in the day 21 NGN2s is likely due to the
difference in gRNA number used to target the eGenes and suggests that either
more cells or more gRNAs per target would be necessary to resolve all 10
perturbations. Overall, scBRNA-seq on 8000 and 6000 cells respectively were
adequate to resolve: the sgRNA in each cell, the cis target gene with differential
expression, and the downstream trans alterations to pathways resulting from initial
cis up-regulation. Following QC and normalization, twelve successful perturbations
across both experiments were identified, with an average of 76 cells per
perturbation (ranging from 21-284) for a total of 892 perturbed cells and 116
scramble controls.

Perturbations of individual SCZ eGenes have shared and distinct transcriptomic
impacts. Successful CRISPR-activation of seven and five SCZ eGenes impacted
the global transcriptome of 7-day and 21-day NGNZ2-excitatory neurons
respectively and revealed shared and distinct effects. (Supplementary Fig. 2a; i-
viii, Supplemental Data 1). Across both experiments, CRISPRa led to an average
1.5 log fold increase in most target genes [CALN1=1.54; CLCN3=1.75; FES=1.38;
NAGA=1.6; NEK4=1.48; INO8BOE=1.5; PLCL1=1.50; SF3B1=1.38;
UBE2Q2L=1.44; ZNF823=1.35] and roughly 2.0 log fold increase in the expression
of the remainder [ZNF804A (logFC=1.93) and TMEMZ219 (logFC=2.05)]
(Supplementary. Fig. 2b; i-vi). Gene set enrichment analyses (GSEA) of the 7-
Target and 5-Target perturbations were performed individually across Gene
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Ontology Terms and KEGG Pathways GSEA terms. Neurodegenerative disorders
pathways were significantly enriched across 3 or more perturbations in the 7
Targets in D7 Neurons and the 5 Targets in D21 Neurons. Additionally,
perturbations across both experiments were enriched for neuroactive ligand-
receptor interaction, protein processing in the endoplasmic reticulum, as well as
enrichments in the proteasome and spliceosome. While five perturbations in the 7-
target D7 NGN2 set were notably enriched for WNT signaling and three or more
perturbations in the 5-Target set were notably enriched for dopaminergic synapse
and synaptic vesicle cycling (Supplemental Data 2). Overall, these shared
enrichments suggest that perturbation of these genes might impact similar neural
processes and pathways. Supporting this, meta-analysis of DEGs across all 12
SCZ eGene perturbations in NGN2-neurons identified 790 significantly down-
regulated genes and 10 significantly up-regulated genes that shared the same
direction of effect across all targets (Bonferroni meta p-value<=0.05), suggesting
they may be involved in similar neuronal pathways (Supplemental Data 1). These
overlapping DEGs were enriched for numerous gene ontology terms related to
brain development, neuronal morphology, signaling, and transcriptional regulation
(Supplemental Data 2). Notably, these shared genes were enriched for the
Hallmark Signaling by MTORC1 (adj. p=2.72e-2) and Interferon Alpha (ad,.
p=2.24e-3) and Interferon Alpha Response (adj. p=3.10e-2), and TNF alpha
signaling via NFKB (adj. p=2.72e-2)—pathways contributing to biological
mechanisms underlying effects of Maternal Immune Activation (MIA) on risk for
development of psychiatric disorders.

Convergent downstream impacts change with increasing polygenicity. To further
investigate the potential downstream convergent effects of these perturbations,
Bayesian bi-clustering and Target-Convergent Network (TCN) reconstruction was
performed using the normalized average gene expression across all cells
(N=1006). To account for neuronal maturity differences, expression matrices were
batch corrected and normalized and the scramble cells from both experiments
(matched gRNA) used as a single control population. Network reconstruction of
genes clustering across all 12-Target CRISPRa-perturbed cells, representing the
highest level of polygenicity modeled in these experiments, only (and not found in
Scramble cells; n=892) identified 1048 node genes, with a total membership of
1248 genes that clustered together in at least 50% of the runs (Fig. 2a). Network
reconstruction of genes clustering together across all 7 CRISPRa-perturbations
(mid-level polygenicity) identified 319 node genes with a total membership of 1029
genes that clustered together in at least 50% of the runs (n=502) (Fig. 2b). Network
reconstruction of genes across all 5 CRISPRa-perturbations (low-level
polygenicity) showed less clustering-based convergence, identifying 163 nodes
and 166 total genes with only 15% duplication of nodes to target connections
across all 40 runs (n=390) (Fig. 2c).

To understand the biological pathways within the convergent networks, node sub-
networks were explored, and functional gene set annotation was performed
(Supplementary Data 3,4).. Target-convergent networks identified by Bayesian
bi-clustering across high-, mid-, and low-polygenicity sets show shared and distinct
pathway enrichments. Both the high- and mid-polygenicity networks are
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significantly enriched for brain and embryonic developmental traits, including
neuron subtype differentiation, patterning and regionalization, and brain-region
specific development (Fig. 2d). Additionally, there are across-network enrichments
in shared cellular components including channel and receptor complexes and
neuron/synapse parts (Fig 2e-f). Enrichments unique to each network were found,
including enrichments observed only in the high-polygenicity network, but not mid-
or low-polygenicity networks. Overall, the high- and mid-polygenicity networks
share numerous enrichments for terms related to brain development, signaling,
and receptor activity. However, the high-polygenicity network uniquely converges
on neurotransmitter transport and signaling (including glutamate, catecholamine,
and norepinephrine) while the mid-polygenicity network uniquely converges on
membrane depolarization (adj. p=0.03) and action potential propagation (adj.
p=0.03) (Fig. 2f).

Overall, our network-based characterization of the global gene expression
changes following CRISPRa of these 12 SCZ eGenes in hiPSC-derived
glutamatergic neurons revealed multiple points of SCZ-relevant convergence. Of
note, developmental pathways involved in patterning, regionalization, and growth
(WNT and Homeobox signaling), neuro-active ligand receptor interactions, and
voltage-gated ion channels. While many of these enrichments were shared when
restricting the network to seven SCZ eGene perturbations, modeling mid-level
polygenicity in these experiments, unique convergence was identified between the
two sets. Additionally, there were dramatically fewer enrichments across the five
SCZ eGene perturbations, indicating increases convergence with increasing
polygenicity.

Convergent downstream impacts of functionally similar SCZ eGenes. To
investigate whether downstream convergent effects of these perturbations would
increase in strength or specificity based on shared function, the 12 targets were
subset into two functional groupings of six target genes each. Network
reconstruction of clustering across 6 “signaling” target genes (CALN1, CLCNS,
FES, NAGA, PLCL1, TMEMZ219; n=385) identified 123 nodes and a total network
of 177 genes whose connections duplicated in at least 25% of the bi-clustering
runs (Fig. 3a). Network reconstruction of clustering across 6
“epigenetic/regulatory” target genes (NEK4, INOSOE, SF3B1, UBE2Q2L, ZNF823,
ZNF804A; n=527) identified 99 node genes with a total membership of 105 genes
that clustered together in at least 15% of the runs (Fig. 3d).

The signaling network converged on embryonic and brain development and
voltage-gated ion channel signaling activity. Specifically, it was significantly
enriched for numerous terms related to neurogenesis, pattern specification,
regionalization, neuron and glial cell differentiation and voltage-gated potassium
channel activity and potassium ion transport (Fig. 3b-c). The regulatory network
converged on secretory pathways, significantly enriched for multiple gene ontology
terms related to regulation of hormone and peptide secretion. It was also
significantly enriched for positive regulation of pathway restricted SMAD protein
phosphorylation (adj. p<0.01), which plays a role in regulating tissue patterning
during embryonic development and receptor protein serine threonine kinase
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signaling important (adj. p<0.05) for regulating gene expression and cell
homeostasis, proliferation, and death (Fig. 3e). Overall, perturbations of SCZ
eGenes with shared functional pathways show greater specificity in convergence.

Target-convergent networks show brain-region and developmental-period specific
enrichments. Enrichment analysis GTeX v8 brain tissues for the three convergent
networks of increasing polygenicity and the two functionally convergent networks
revealed that convergent genes identified in the high- and mid-polygenicity
networks are most strongly upregulated in the cortex (Frontal Cortex BA9: 12-
Target adj. p=2.85e-29; 7-Target adj. p=5.76e-37, Cortex: 12-Target ad]. p=2.94e-
36, 7-Target adj. p=2.21e-31) while those in the low-polygenicity network are most
strongly upregulated in the hippocampus (adj. p=9.77e-18), hypothalamus (adj. p=
2.09e-17), and caudate basal ganglia (adj. p=3.90e-16) relative to its other
enrichments (Fig. 4a). Enrichment analysis across BrainSpan developmental time-
points showed that genes shared across the high- and mid-polygenicity networks
are strongly up-regulated during adolescence (12-Target adj. p= 1.09e-07; 7-
Target adj. p=3.17e-07) and young adulthood (12-Target adj. p=8.76e-06; 7-
Target adj. p=1.01e-06). Overall, individual networks have both shared and distinct
developmental and tissue-specific directional enrichments based on (1)
polygenicity and (2) function (Fig. 4b). Given this developmental and regional
specificity, over-representation analysis was run on a curated set of rare and
common variant target genes across autism spectrum disorder (ASD), bipolar
disorder (BIP), SCZ, and intellectual disability (ID) to determine if target-
convergent networks distinctly contribute to psychiatric risk. Convergent genes
present in the high- and mid-polygenicity networks are enriched for ASD, BIP, SCZ,
and ID common and rare variant genes, while low-polygenicity and functionally
curated networks are only enriched for rare variant gene targets. Networks
modeling higher polygenicity are enriched for rare and common psychiatric risk
variants while low-polygenicity and functional networks are only enriched for rare
variants (Fig. 4c¢).

SCZ eGene perturbations converge on signaling networks involved in neurological
function with known druqg targets. Looking across network membership, functional
annotation identified 900 annotated drugs and compounds in the DrugBank
database targeting 187 genes (Fig. 4d). Over representation analysis revealed
that targets of anti-psychotics, anesthetic, hypnotics, and sedatives were broadly
present across networks. Distinct clustering of drug enrichments included calcium
channel blockers in the mid-polygenicity network, hormone signaling and steroids
in the low-polygenicity network, anticholinergics in the signaling network, and anti-
depressants and amphetamines in the regulatory network (Fig. 5A). Although
none of these enrichments were significant after multi-testing correction, they show
a tendency for distinct drug-type clusters within each network and provide a list of
drug-able targets.

Targetable genes shared across the high-/low-polygenicity and 6-signaling
networks include numerous neuroactive ligand receptors such as gamma-
aminobutyric acid receptors (GABBR1, GABRD, GABRG?2), glutamate ionotropic
kainate receptors (GRIK2, GRIK3, GRIK4), cholinergic muscarinic (CHRM4), and
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nicotinic receptors (CHRFAMZ7A), glutamate ionotropic NMDA receptors
(GRINZ2D), purinergic receptor (P2R), neuro-peptide Y receptor (NPY5R) and G
protein-coupled receptors (ADORA2A, ADORAZ2B, ADRB2, GPER, GPRC5A).
They also included drug-targetable ion channels, notably voltage-gated potassium
channels (KCNB1, KCNB2, KCNH6, KCNJ11, KCNJ12, KCNN2, KCNN4,
KCNQT), voltage-gated calcium channels (CACNA1H, CACNA2D3, CACNB?2),
and voltage-gated (SCN1B, SCN2B) and ligand-gated (SCNN1D) sodium ion
channels. Additionally, phosphodiesterase protein family genes (PDE10A, PDE1C,
PDE1C, PDE3A, PDE4B, PDES5A), involved in neuro-infammatory and cAMP
signaling in the brain, and the solute carrier family (SLC16A3, SLC16AG6,
SLC29A2, SLC32A1, SLC6A3), involved in GABAergic and dopaminergic
transmission, were represented across all networks with numerous known
targeting-drugs (Supplementary Data 4).

Loxapine, bupropion, and nomifensine are antipsychotics used in the treatment of
schizophrenia spectrum disorders, mania in bipolar disorder, and psychotic
depression. They target SLC6A3, a dopamine transporter and node gene shared
across the high-/mid-polygenicity and regulatory networks, but not the low-
polygenicity or signaling networks (Fig. 5C). While trifluptomazine and sulpride are
antipsychotics that target BCHE, a cholinesterase involved in cholinergic signaling
and a node gene shared between the mid-polygenicity and functional signaling
network (Fig. 5D).

Replication of convergent signatures in the post-mortem dorsolateral prefrontal
cortex (DLPFC). K-means clustering of CMC post-mortem DLPFC genes identified
individuals with shared patterns of upregulation in the 12 SCZ eGenes; the
average Z-scores of each target gene across all clusters reported in
Supplemental Data 5. Targets within each cluster with Z-score >= +0.250 were
assigned as perturbed (Fig. 6A). Target-convergent network reconstruction was
run in our scBRNA-seq data based on the CMC cluster perturbation assignments.
Of the eight clusters, networks were recovered for the combination of targets
represented in cluster 1 (7 targets, 417 cells; 22.5% duplication; 52 node genes),
cluster 3 (6 targets; 526 cells; 20% duplication; 184 node genes), cluster 4 (4
targets; 300 cells; 20% duplication; 142 node genes), cluster 5 (3 targets, 419 cells,
12.5% duplication, 181 node genes); cluster 6 (2 targets, 60 cells, 5% duplication,
64 node genes), cluster 7 (9 targets; 721 cells; 25% duplication; 772 node genes)
and cluster 8 (8 targets; 664 cells; 25% duplication, 325 node genes), but not for
cluster 2 (4 targets; 199 cells). For network connections that duplicated in at least
20% out of the 40 runs, we calculated the variance in gene expression of their
node genes in the CMC DLPFC.

To assess if convergence of the recovered networks replicated in the post-mortem
DLPFC, we compared the gene variance of node genes in one cluster to the gene
variance of the same genes in all other clusters. The variance in node gene
expression of cluster 3 was less than that in all other clusters, except cluster 4,
while the variance in node gene expression for cluster 1 was not less than the
variance in all other clusters (Fig, 6B; Table 3). CMC clusters were significantly
different based on the diagnosis status of individuals within a cluster (Pearson’s
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Chi-squared; X-square=140.84, df=21, p-value=9.51e-20) (Fig. 6D). Cluster 3 was
strongly positively associated with SCZ (Chi-square Residual = 3.984), while
cluster 1 was negatively associated with SCZ (-3.782) and positively associated
with control status (2.946) (Fig. 6C).

Overall, we were able to recover convergent networks in our scRNA-seq data
using matched perturbation status and replicate convergent signatures of network
node genes in the post-mortem DLPFC (Supplementary Figure 3). CMC clusters
associated with SCZ had less variance in node gene expression than those
strongly associated with control status. Additionally, clusters with the most overlap
in represented perturbation targets were most like one another, having similar
variance in their respective node gene expression.

DISCUSSION

A multiplexed CRISPR-based approach resolved the impact of twelve SCZ
eGenes (CALN1, CLCN3, FES, INO8OE, NAGA, NEK4, PLCL1, SF3B1,
TMEM219, UBE2Q2L, ZNF823, ZNF804A) in human glutamatergic neurons,
uncovering a convergent effect concentrated on neurodevelopmental pathways,
neuroactive ligand receptor signaling, and voltage-gated ion channel activity.
Because convergence increased with increasing polygenicity and specificity
increased within groups of functionally similar genes, our results are overall
consistent with the polygenic additive model®°, but do suggest that variants may
sum in different patterns and with greater specificity depending upon the extent to
which their target genes converge within the same biological pathways®'. The most
highly shared convergent nodes occur where the impact of aggregate genetic risk
is strongest, are predicted to be druggable, and so represent novel points of
therapeutic intervention.

Overall, convergent signatures are incredibly robust, observable across two
independent lists of SCZ-GWAS target genes manipulated in two distinct ECCITE-
seq experiments and are resolvable in post-mortem brain. Two independent
pooled single-cell RNA-sequencing CRISPRa-based experiments®® were applied
to resolve the genome-wide transcriptomic consequences of activating SCZ
eGene expression in two distinct sets of genes, at two developmental timepoints
(day 7 or day 21) in human NGNZ2-induced glutamatergic neurons across three
donors and generated either directly from hiPSCs or instead from hiPSC-derived
neural progenitor cells (NPCs)3'-22, The clinical relevance of our results was further
supported through replication of target convergent networks reconstruction of
perturbation groupings based on post-mortem gene signatures of our targets in the
dorsa-lateral pre-frontal cortex (DLPFC). In the post-mortem DLPFC, convergence
was stronger in clusters enriched for individuals diagnosed with SCZ, and
convergent signatures were more similar between individuals with the most
overlap in upregulation of the 12 SCZ eGenes.

Coupling CRISPR-based perturbations to single-cell RNA sequencing of isogenic
neuronal experiments, we not only increased the number of genes that can be
queried, but likewise reduced experimental variation, altogether increasing our
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power to resolve convergence. However, there are limitations to this approach.
First, it is necessary to test the generalizability of our findings beyond the set of
twelve genes chosen here; new CRISPRa and CRISPRi systems use different
gRNA scaffold sequences®®%2, making new bi-directional, combinatorial gene
perturbations in the same cell theoretically possible. Second, our CRISPRa
analyses are from glutamatergic neurons only, and so do not consider the
convergence across cell types or within more complex neuronal circuits. Finally,
being most like fetal brain cells, hiPSC neurons cannot capture convergence that
occurs at the time of symptom onset and thereafter; transcriptional consequences
that may affect neurobiology during childhood or adolescence cannot be easily
modelled with hiPSC-based platforms. Thus, future investigation to assess how
transcriptional convergence differs across gene sets, drug/environmental
contexts®?, brain regions®® and cell types®*, developmental timespans®®, and donor
backgrounds®® will inform the cell-type-specific and context-dependent nature of
convergence.

Given that our gene targets were prioritized based on the genetic and genomic
evidence supporting their activation by SCZ-GWAS loci, it will be informative to
revisit our findings across a larger number of genes and pathways, specifically
considering whether manipulations made within or between biological pathways
impact the convergence observed. Likewise, it would be interesting to repeat these
studies in neural progenitor cells and/or immature neurons. Intriguingly, although
extensive evidence links ASD risk genes to both glutamatergic and GABAergic
neurons®’, previously reported convergence of ASD genes impacts occurred in
neural progenitor cells?*2627 impacting neurogenesis?42%27 WNT signaling®* and
gene expression?6. A pressing question is thus the mechanisms by which
convergence ultimately impacts synaptic activity, circuit function, and behavior.
Notably, here we included one pseudo-gene; given the unexpected phenotypic
impact of its manipulation, and because multiple GWAS variants map to pseudo-
genes, which may play critical roles in gene silencing and transcriptional
regulation, it would be particularly interesting to explore the functional impact of
these less well-explored genomic elements.

Our convergent genes are interesting to consider in the context of additive'6-°0,
epistatic®®, and omnigenic'®5" models of inheritance. Do they represent “core
genes” as conceptualized in the omnigenic model? Given our previous findings
that there is emergent biology that results from combinatorial perturbation of SCZ
risk genes beyond what would be expected from the additive effect of individually
perturbed genes®®, and that these synergistic effects converges on synaptic
function and psychiatric risk genes, an important next step will be to manipulate
these risk genes alone and together. Our hope is that high-throughput
combinatorial CRISPR-based perturbation methods will better resolve the complex
genetic risk architecture of psychiatric disorders, including the convergent gene
regulatory networks and/or the identity of peripheral master genes directing genetic
risk.

There is great value in continuing to explore as many rare and common risk loci
as possible, agnostic to previously defined function, in a cell-type-specific and
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context-dependent manner. The translational impact of our work includes potential
improvements to additive polygenic risk scores, prioritization of convergent genes
for mechanistic follow-up, and identification of pathways that might serve as
potential therapeutic targets. Overall, the as-yet unidentified regulatory nodes that
lead to disruptions in synaptic function related to psychiatric endophenotypes
represent exciting and unexplored therapeutic targets. Our overarching goal is to
advance the field towards an era of precision medicine®®, whereby not just each
patient’s genetic variants, but also the expected interactions between them, can
be used to predict symptom development, disorder trajectory, and potential
therapeutic interventions.

MATERIALS AND METHODS

Prioritization of Seven SCZ eGene List: Day 7 hiPSC-derived NGNZ2-neuron
library. eGenes are defined as genes with significant genetic regulation of gene
expression levels. For prioritization, we used the Psychiatric Genomics
Consortium (PGC3)-SCZ GWAS'2. Transcriptomic imputation was performed with
the EpiXcan*' method utilizing the PsychENCODE transcriptome datasets of
genotyped individuals'* and epigenetic annotations from REMC®® as previously
described®'; transcriptomes were imputed at the gene and isoform levels and
features with training cross-validation R2>0.01 were retained. The epigenetic
imputation models were built with the PrediXcan3® method (using a 50kbp window
instead of 1Mbp for transcripts) utilizing the recently described ChlPseq datasets*?;
summary-level imputation was performed with S-PrediXcan®. Peaks were
assigned to genes with the ChlPseeker R package®?. Genes were ranked based
on the association z-score for imputed gene expression. Genes that had no
nominally associated imputed epigenetic activity (p<0.01) across the three
different assays were not considered. Genes within the MHC were not considered.
Six top coding genes and one top pseudo-gene were selected: NEK4, PLCL1,
UBE2Q2L, NAGA, FES, CALN1, and ZNF804.

SCZ eGene Prioritization: Day 21 NPC-derived NGN2-neuron library.

Transcriptomic imputation calculated using PrediXcan?®® from post-mortem CMC#4
and PGC3-SCZ GWAS?® data identified genes with significant (p<6x10-6)3°
predicted differential expression between SCZ-cases and controls. Colocalization
(using COLOC*46) identified fine-mapped GWAS and eQTL associations with
very strong evidence (PP4>0.8) of colocalization. The top significant SCZ eGenes
identified by both analyses were prioritized. Any genes located in the major
histocompatibility complex (MHC) locus were subsequently removed from the list.
Ten top coding genes were selected: CALN1, CLCN3, CUL9, DOC2A, PLCL1,
INO8SEO, SF3B1, SNAP91, TMEMZ219, ZNF823. This list was intersected with the
eGene set previously prioritized and functionally evaluated in hiPSC-neurons??; of
the 108 SCZ-GWAS loci identified by the Psychiatric Genomics Consortium
(PGC2)-SCZ GWAS'2, 19 were shown to harbor co-localized SCZ-GWAS and cis-
eQTL (SNP—gene pairs within 1 Mb of a gene; COLOC PP4>0.8) signals in the
CommonMind Consortium (CMC) post-mortem brain RNA-Seq analysis of the
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Dorsa-Lateral Pre-Frontal Cortex (DLPFC)*4, five of which were predicted to
involve only a single protein-coding gene, four were well-expressed in NGN2-
neurons, and three were up-regulated in SCZ and could be robustly manipulated
by CRISPRa: SNAP91, TSNARE1, and CLCN3. One functionally validated gRNA
was included for each of these three genes?®.

Neuronal Differentiation of clonal hiPSCs: Clonal hiPSCs from two donors (#690
and #2607) with lenti-EF1a-dCas9-VPR-Puro (Addgene #99373), pLV-TetO-
hNGN2-eGFP-Neo, and lentiviral FUW-M2rtTA (Addgene #20342) were
maintained in StemFlex™ Medium (ThermoFisher #A3349401) and passaged with
EDTA (Life Technologies #15575-020).

On day 1, induction media (DMEM/F12 (ThermoFisher #10565,), 1x N2
(ThermoFisher #17502-048), 1x B27-RA (ThermoFisher #12587-010), 1x
Antibiotic-Antimycotic (ThermoFisher #15240096), and 1 pg/mL doxycycline) was
prepared and dispensed 2 mL of suspension at 1.2x10° cells/well in induction
media onto a 6-well plate coated with matrigel (Corning #354230). On day 3, media
is replaced with induction medium containing 1 pg/mL puromycin and 1
mg/mLG418. On day 5, split neurons were replated onto matrigel-coated plates
and cells were dissociate with Accutase (Innovative Cell Technologies) for 5-10
min, washed with DMEM/10%FBS, gently resuspended, counted and centrifuged
at 1,000xg for 5 min. The pellet was resuspended at a concentration of 1x10°
cells/mL in neuron media [Brainphys (StemCell Technologies #05790), 1xN2
(ThermoFisher #17502-048), 1xB27-RA (ThermoFisher #12587-010), 1 mg/ml
Natural Mouse Laminin (ThermoFisher #23017015), 20 ng/mL BDNF (Peprotech
#450-02), 20 ng/mL GDNF (Peptrotech #450-10), 500 mg/mL Dibutyryl cyclic-AMP
(Sigma #D0627), 200 nM L-ascorbic acid (Sigma #A0278)] with doxycycline,
puromycin, G418 [4uM Ara-C (Sigma #C6645)] and 1xThiazovivin (Sigma
#420220). Cells were seeded 5x10° per 12-well plate. On day 7, neurons were
harvested for scRNA sequencing.

NGN2-glutamatergic neuron induction of hiPSC-derived NPCs*'%?: hiPSCs-
derived NPCs were dissociated with Accutase Cell Detachment Solution
(Innovative Cell Technologies, # AT-104), counted and transduced with rtTA
(Addgene 20342) and NGNZ2 (Addgene 99378) lentiviruses in StemFlex media
containing 10 uM Thiazovivin (Millipore, #51459). They were subsequently seeded
at 1x108 cells/well in the prepared 6-well plate. On day 1, medium was switched to
non-viral induction medium (DMEM/F12 (Thermofisher, #10565018), 1% N-2
(Thermofisher, #17502048), 2% B-27-RA (Thermofisher, #12587010)) and
doxycycline (dox) was added to each well at a final concentration of 1 ug/mL. At
day 2, transduced hiPSCs were treated with 500 yg/mL G418 (Thermofisher,
#10131035). At day 4, medium was replaced including 1 pg/mL dox and 4 uM
cytosine arabinoside (Ara-C) to reduce the proliferation of non-neuronal cells. On
day 5, young neurons were dissociated with Accutase Cell Detachment Solution
(Innovative Cell Technologies, # AT-104), counted and seeded at a density of
1x10¢ per well of a Matrigel-coated 12-well plate. Medium was switched to
Brainphys neuron medium (Brainphys (STEMCELL, # 05790), 1% N-2, 2% B--27-
RA, 1 uyg/mL Natural Mouse Laminin (Thermofisher, # 23017015), 10 ng/mL BDNF
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(R&D, #248), 10 ng/mL GDNF (R&D, #212), 500 pg/mL Dibutyryl cyclic-AMP
(Sigma, #D0627), 200 nM L-ascorbic acid (Sigma, # A4403)). For seeding, 10 uM
Thiazovivin (Millipore, #51459), 500 pyg/mL G418 and 4 uM Ara-C and 1 ug/mLdox
were added. At day 6, medium was replaced with Brainphys neuron medium with
4 uM Ara-C and 1 pg/mL dox. Subsequently, 50% of the medium was replaced
with fresh neuronal medium (lacking dox and Ara-C) once every other day until the
neurons were harvested at day 21.

Neuronal ECCITE-seq. CRISPRa hiPSC NGN2-neurons (mid-PRS control donors
2607 (XY) and 690 (XY)) were transduced with the pooled gRNA at day -1. After
maturation, 7-day-old NGN2-neurons were dissociated to single cell suspensions
with papain, antibody-hashed®, and bar-coded single cell cDNA generated using
10X Genomics Chromium®. NPC-derived NGN2-neurons (mid-PRS control
donors 2607 (XY) and 553 (XY)) were transduced with the mixed-pooled gRNA
vectors (Addgene 99374) at day 17. At day 21, media was replaced by 0.5ml/well
accutase containing 10 um Rock inhibitor, THX (catalog no. 420220; Millipore) for
1 hour to dissociate neurons. Neurons were spun down (3 mins X 300g) and
resuspended in DMEM/F12 + THX before proceeding to single cell sequencing.

ECCITE-seq library  generation. Expanded CRISPR-compatible CITE-seq
(ECCITE-seq)®®, combines Cellular Indexing of Transcriptomes and Epitopes
by sequencing (CITE-seq) and Cell Hashing for multiplexing and doublet
detection® with direct detection of sgRNAs to enable single cell CRISPR screens
with multi-modal single cell readout. By capturing pol Ill-expressed guide RNAs
directly, this approach overcomes limitations of other single-cell CRISPR methods,
which detect guide sequences by a proxy transcript, resulting in barcode switching
and lower capture rates®5-¢7.

Bioinformatics. mMRNA sequencing reads were mapped to the GRCh38 reference
genome using the Cellranger Software. To generate count matrices for HTO and
GDO libraries, the kallisto indexing and tag extraction (kite) workflow were used.
Count matrices were used as input into the R/Seurat package®® to perform
downstream analyses, including QC, normalization, cell clustering, HTO/GDO
demultiplexing, and DEG analysis3%-6°

Normalization and downstream analysis of RNA data were performed using the
Seurat R package (v.2.3.0), which enables the integrated processing of multimodal
single-cell datasets. Each ECCITE-seq experiment was initially processed
separately. Hashtag and guide-tag raw counts were normalized using centered log
ratio transformation, where counts were divided by the geometric mean of the
corresponding tag across cells and log-transformed. For demultiplexing based on
hashtag, Seurat:HTODemux function was used; and for guide-tag counts
Seurat::MULTIsegDemux function within the Seurat package was performed with
additional MULTIseq semi-supervised negative-cell reclassification. Cells with
RNA UMI feature counts were filtered (200 < nFeature_ RNA < 8000) and the
percentage of all the counts belonging to the mitochondrial, ribosomal, and
hemoglobin genes calculated using Seurat::PercentageFeatureSet. To remove
variation related to cell-cycle phase of individual cells, cell cycle scores were
assigned using Seurat::CellCycleScoring which using a list of cell cycle markers”®
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to segregate by markers of G2/M phase and markers of S phase. RNA UMI count
data was then normalized, log-transformed and the percent mitochondrial,
ribosomal, and hemoglobin genes, cell cycle scores, and HTO-maxID regressed
out using Seurat::SCTransform. The scaled residuals of this model represent a
‘corrected’ expression matrix, that was used for all downstream analyses. To
ensure that cells assigned to a guide-tag identity class demonstrated successful
perturbation of the target gene, the percentage of the feature counts belonging to
the corresponding target gene for each cell was calculated using
Seurat::PercentageFeatureSet and cells removed with target gene count
percentages equal to 0. For the non-targeting identity class (scramble gRNA), cells
were filtered based on having count percentages across all target genes equal to
0. These cells were then used for differential gene expression analysis 7.

Analysis of the transcriptomic impact of activating SCZ risk eGenes. Differential
gene expression analysis was performed between each CRISPRa target group
(cells assigned by targeting sgRNAs of that gene) and control group (cells
assigned by non-targeting control sgRNAs) using the R packages EdgeR"? and
Limma?2 treating each cell as one replicate as in”'. Mitochondrial, ribosomal, and
hemoglobin genes from all downstream analyses were removed ([*MT-
|*"RP[SL][[:digit:]]|*RPLP[[:digit:]]|*"RPSA|"HB[ABDEGMQZ][[:digit:]]) as well as
genes that had zero read counts in more than 90% of samples leaving 17,462
genes for analysis in set 1 and 17,471 genes for analysis in set 2. Limma:voom’4
was used to transform data into log2cpm, and limma:ImFit’® to fit a linear
regression model and test the effect of each CRISPRa perturbations against the
Scramble-gRNA Control individually. Bayes shrinkage (limma::eBayes) estimated
modified t- and p- values and identified differentially expressed genes (DEGs)
based on an FDR <= 0.05 (limma::TopTable)’”>. Gene-set Enrichment Analysis
(GSEA) for individual perturbations was performed using the R package
ClusterProfiler’® (Supplemental Data 1).

Meta-analysis of gene expression across perturbations. We performed a meta-
analysis and heterogeneity test (METAL’’) using the p-values and direction of
effects (t-statistic), weighted according to sample size across all twelve
perturbations (Target vs. Scramble DEGs). Genes were assigned as convergent if
they (1) had the same direction of effect across all 12, 7, and 5 target combinations,
(2) had a META Bonferroni adjusted p-value <= 0.05, and (3) had a heterogeneity
Bonferroni adjusted p-value = 1 (Supplemental Table 1).

Bayesian _Bi-clustering to _identify _Target-Convergent Networks. Target-
Convergent gene co-expression Networks (TCN) were built using an unsupervised
Bayesian biclustering model, BicMix on the log2cpm expression data from all the
cells across 12 targets and Scramble gRNA jointly”8. To perform this as a joint
analysis across two experiments, (1) gene expression matrices retaining genes
only present in both experiments (N=16650) were combined, (2) and limma:voom
normalization and transformation were used to correct for batch and to compute
the log2cpm counts from the effective pooled library sizes. 40 runs of BicMix was
conducted on these data and the output from iteration 300 of the variational
Expectation-Maximization algorithm was used. The hyperparameters for BicMix
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were set based on previous extensive simulation studies’. Target-Convergent
Network reconstruction®® was performed to identify convergent networks across all
12 targets, the 7 EpiXcan prioritized targets, the 5 PrediXcan prioritized targets,
and specific clustering of 6 targets to generate functionally similar convergent
networks for regulatory (NEK4, INOSOE, SF3B1, UBE2Q2L, ZNF804A, ZNF823)
and signaling targets (CALN1, CLCN3, FES, NAGA, PLCL1, TMEMZ219). Network
connections that did not replicate in more than 15% of the runs were excluded and
nodes with less than 5 edges were removed from gene set enrichment analyses.
Using FUMAGWAS: GENE2FUNC, the protein-coding genes were functionally
annotated and overrepresentation gene-set analysis for each network gene set
was performed?®'.

Functional enrichment for drug and disorder specific variant targets. Functional
enrichment analysis was performed using WebGestalt (WEB-based Gene SeT
AnalLysis Toolkit)8. Over-representation analysis (ORA) was performed on all
convergent network gene sets against known drug targets from DrugBank and
against a curated list of common and rare variant target genes across ASD, BIP,
SCZ, and ID?°.

Replication of Bayesian Bi-clustering to identify Target-Convergent Networks in
Post-mortem Dorsa-lateral Pre-frontal Cortex. In vivo target convergent network
reconstruction was replicated in the Common Mind Consortium (CMC; n=991 after
QC) post-mortem dorsa-lateral pre-frontal cortex (DLPFC) gene expression data.
We performed K-means clustering to subset the data into 8 clusters based the Z-
scored gene expression of the 12 target genes. Perturbation identities were
assigned based on average positive Z-scores of >=0.025 within each cluster.
Perturbation assignments are as follows: Cluster 1: CALN1, CLCN3, NAGA,
INO8OE, PLCL1, TMEM219, ZNF804A; Cluster2: INOSOE, PLCL1, UBE2Q2L,
ZNF804A; Cluster3: CLCN3, NEK4, PLCL1, SF3B1, ZNF804A, ZNF823; Cluster4:
FES, NAGA, NEK4, ZNF823; Cluster5: FES, SF3B1, UBE2AZ2L; Cluster6: NEK3,
UBE2Q2L; Cluster7: CALN1, CLCN3, FES, NAGA, NEK4, PLCL1, SF3B1,
TMEM219, ZNF823; Cluster8: CLCN3, FES, NAGA, NEK4, INO8OE, SF3BI1,
TMEMZ29, ZNF823. We then assigned our single-cell data to clusters based on the
overlap of perturbations and performed network reconstruction to replicate our
convergent analysis using groups based on CMC post-mortem data. We retained
clusters that resolved networks with at least 20% duplication rate and calculated
the variance of expression in the CMC DLPFC for the corresponding network node
genes and performed a Shapiro-Wilk test for normality. Gene variances were not
normally distributed. To assess the specificity of convergence of the node genes
of a given cluster, we performed a nonparametric Kolmogorov—Smirnov tests to
determine if the central distribution frequency of the gene variance was less than
that in all other clusters. We performed a Pearson’s chi-squared test to determine
whether there was a significant difference between the expected frequencies and
the observed frequencies in diagnosis of Affective Disorders (AFF), Bipolar
Disorder (BP), and Schizophrenia (SCZ) within the clusters.
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Table 1. EpiXcan prioritization of PGC3 SCZ-GWAS genes. Genes annotated as epigenetic/regulatory (blue) and signaling (red) for pathway studies.

y 4

ATACseq

H3K27ac

H3K4me3

H3K27ac annotation

GENE Annotated Function Rank score annotation annotation annotation (neuron) gRNAs
NEK4 serine/threonine protein kinase 1 8.64 NA Promoter NA Promoter 10
PLCL1 inositol phospholipid signaling 2 7.20 NA Distal Intergenic Promoter Intron 10
UBE2Q2L pseudogene 3 6.89 NA Promoter Promoter Promoter 10
NAGA lysosomal enzyme 4 6.67 NA Promoter Promoter NA 10
FES tyrosine-protein kinase 5 6.63 NA Promoter Promoter NA 10
CALN1 calcium signaling 6 6.57 NA Intron Promoter Intron 10
ZNF804A transcription factor 7 6.27 NA Promoter Intron NA 10
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Table 2. SCZ-GWAS loci with strong evidence for eQTL mechanisms. PGC3 SCZ-GWAS genes prioritized as epigenetic/regulatory (blue) and signalling (red) for pathway

studies.
GWAS coLocC PrediXcan hiPSC-neuron expression
Chr SNP P LD range Gene Annotated PP4 z P iGLU iGABA iDOPA
Function (RPKM) (FPKM) (FPKM)
19 rs72986630 3.07E-10 10832225...12839819 ZNF823 epigenetic 0.999253 6.350252 2.15E-10 4.0 2.2 54
6 rs113113059  2.29E-11 42150013...44192158 CUL9 ubiquitination 0.953677 5.754229  8.70E-09 4.0 9.5 23.2
7 rs2944821 1.90E-09 70244499...72912040 CALNT1 calcium signaling 0.913966 5.547481 2.90E-08 0.9 3.1 0.9
16 rs3814883 8.82E-15 29007489...31016970 INOSOE epigenetic 0.894347 7.639276 2.18E-14 6.2 55.0 41.0
6 rs2022265 3.74E-10 83262613...85419243 SNAP91 synapse 0.893265 5.185282 2.16E-07 12.1 82.9 62.9
2 rs2914983 1.10E-14 197256700...199299078 SF3B1 epigenetic 0.888092 7.256793 3.96E-13 33.8 123.1 130.4
16 rs3814883 8.82E-15 28952638...30984212 TMEM219 signaling 0.846736 6.291546 3.14E-10 13.5 62.0 60.4
16 rs3814883 8.82E-15 30016830...30034591 DOC2A synapse 0.521296 6.088335 1.14E-09 2.7 20.9 9.3
4 rs61405217 5.39E-11 170533784...170644824 CLCN3 synapse 0.718835 5.771783 7.84E-09 18.6 33.7 33.4
2 rs1451488 6.72E-17 198669426...199437305 PLCL1 synapse 0.035058 4.910285 9.09E-07 4.4 35 6.2
Table 3: Two-sample Kolmogorov-Smirnov test of Variance between CMC Cluster Node Genes
ClusterV1 Clusterv2 ClusterVv3 ClusterV4 ClusterV5 ClusterV6 ClusterV7 ClusterVvs
Cluster 1 | statistic 0.067 0.000 0.067 0.067 0.067 0.000 0.133
p.value 0.936 1.000 0.936 0.936 0.936 1.000 0.766
Cluster 3 | statistic 0.204 0.184 0.082 0.224 0.133 0.173 0.224
p.value 0.017 0.037 0.520 0.007 0.178 0.052 0.007
Cluster 4 | statistic 0.288 0.188 0.025 0.138 0.100 0.075 0.125
p.value 0.001 0.060 0.951 0.220 0.449 0.638 0.287
Cluster 7 | statistic 0.216 0.140 0.002 0.002 0.108 0.039 0.099
p.value 4.37E-10 0.000 0.998 0.998 0.005 0.497 0.010
Cluster8 | statistic 0.154 0.089 0.006 0.000 0.071 0.006 0.006
p.value 0.018 0.264 0.994 1.000 0.427 0.994 0.994

Alternative hypothesis: the Central Distribution Frequency of x lies below that of y
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Figure 1. ECCITE-seq (Expanded CRISPR-compatible Cellular Indexing  of Transcriptomes
and Epitopes by sequencing) allows us to perturb multiple genes in parallel and examine the
transcriptional impact of each. (a) Workflow for prioritization of SCZ eGenes from PGC3-GWAS by
transcriptomic imputation, colocalization, and epigenome-wide associations. (b) Design of SCZ-GWAS
gene CRISPRa gRNA library. First, designed oligos are anneals, pooled, and cloned into a plasmid
backbone (1,2). Following cloning, plasmids are digested and ~ 378bp fragment contain gRNA is
sequenced to determine the distribution of gRNAs in the pool (Supplementary Figure 1c-d). (3) The
final library is packaged into a lenti-viral vector allowing for integration into cultured glutamatergic
neurons. (1°, 2’) hiPSCs are first clonalized with a dox-inducible NGN2 transgene and the puromycin
resistant CRISPR dCas9-VPR system. (3’) Application of doxycycline induces glutamatergic neuronal
development and antibody selection results in relatively pure populations of dCas9-expressing
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glutamatergic neurons ready for the gRNA library. Created with BioRender.com. Partial eQTL image
modified from Barbeira et. al 2018
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Figure 2. Target-convergent networks identified by Bayesian Bi-clustering across 12, 7, and 5 SCZ risk
gene perturbations show unique and shared pathway enrichments. (a-c) Bayesian Bi-clustering across
all samples identified biologically relevant clusters and recovered target-convergent high-polygenicity
(12-Target; n=892), mid-polygenicity (7-Target; n=502), low-polygenicity (5-Target; n=390) networks.
The top 10 node genes (based on the total number of edges) are represented to the right side of each
chord diagram and their connections with all other node genes are represented as strings connecting
on color to another. (d) The high-polygenicity (12-Target; n=892) and mid-polygenicity (7-Target; n=502)
networks are significantly enriched for numerous brain and embryonic developmental traits, including
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neuron subtype differentiation, patterning and regionalization, and brain-region specific development.
Across all three networks, there are shared and unique enrichments in cellular component (e) and
signaling and receptor activity (f) related gene ontology terms. G.O terms are color-coded by similarity
in function, region, or structure and dot size represents -log10 of the adjusted p-value for each term.
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Figure 3. Functional grouping of targets uncovers pathway-specific convergent perturbation signatures.
Tissue-convergent networks reconstruction of two subsets of 6 targets sharing similar functional
annotations resolved unique convergence. The 6-target signaling network (n=385) genes are annotated
for synaptic and signaling functions (a) and are enriched for neurogenesis and differentiation (c) and
voltage-gated potassium channel activity (d). While the 6-target regulatory/epigenetic network (n=527)
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genes largely annotated RNA genes potentially involved in transcriptional regulation (miRNA, IncCRNA,
lincRNAs) (b) and were significantly enriched for pathways of secretions (e). Overall, grouping
perturbations by functional annotation had shared and unique gene membership and revealed greater

specificity of convergence (f).
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Figure 4. Convergent networks have shared and unique enrichments regional & developmental Gene
Expression and common and rare variant target genes across multiple disorders. (a) FUMA Enrichment
Analysis across GTeX v8 Brain Region-specific Tissue expression revealed that genes shared across
the 12, 7 and 5-Target networks were most strongly up-regulated in cortex. (b) FUMA Enrichment
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Analysis across networks showed significant downregulation of genes in the 7-Target network during
the “Early-Prenatal Period” and significant upregulation of genes in the 12 and 7-Target networks during
“Adolescence” and “Young adulthood” based on BrainSpan average gene expression data across
developmental time-points. (¢) Over-representation analysis of convergent genes for a curated list of
rare and common variant target genes across Autism Spectrum Disorder (ASD), Bipolar Disorder (BP),
and Schizophrenia Spectrum Disorders (i.e schizoafffective/schizophrenia) from Schrode et al. 2019
reveal that high-polygenicity networks are enriched for SCZ, ASD, ID, and BIP common and rare variant
genes, while low-polygenicity and functional networks are only enriched for rare variant genes. (d)
Convergent networks have unique and shared DrugBank annotations for drugs targets.
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Figure 5. Target-convergent sub-networks identified by Bayesian bi-clustering include signaling
networks associated with neurological function with known drug targets including antipsychotics and
antidepressants. Across network membership, functional annotation identified 900 unique drugs and
compounds targeting 168 genes. (a) Over representation analysis for known drug targets from the
DrugBank dataset (y-axis) across convergent networks (x-axis) identified nominally significant
enrichments in multiple medications prescribed to treat psychiatric and neurological symptoms. (b)
Local anesthetics targeting potassium channels (KCN) share targets across the high- and mid-
polygenicity KCN sub-networks. Specific antipsychotic target SLC6A3, a shared node between the
high-/mid- polygenicity and regulatory networks (c), while others target BCHE, a shared node in the
mid-polygenicity and signaling networks (d).
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Figure 6: Replication of convergent signatures in the post-mortem dorsa-lateral pre-frontal cortex. In
vivo target network reconstruction matched to perturbation assignments of individuals in the Common
Mind Consortium (CMC; n=991) identified node genes with convergent patterns in post-mortem dorsa-
lateral pre-frontal cortex (DLPFC). (a) Heatmap of average Z-scored gene expression of the 12
ECCITE-seq target genes (columns) across 8 CMC clusters identified by K-means clustering (rows) [*
represents assigned perturbation identities in each cluster (Z-scores of >=0.025)]. (b) Variance of node
gene expression for CMC Clusters whose perturbation grouping resolved networks with at least 20%
duplication rate (rows) in the scRNA-seq data were compared to the variance of the same genes
expressed in all other clusters (columns). P-values resulting from Kolmogrov-Smirnov tests of variance
are present at each intersection and coded by color from most significant (blue) to least significant (red)
(* indicates p-values <= 0.05). (c) Pearson's chi-squared test revealed significant differences in
diagnosis status between clusters. The size (larger = more positive) and color (blue = negative,
red=positive) of circles in the matrix represent the chi-squared residuals for diagnoses of Affective
Disorders (AFF), Bipolar Disorder (BP), and Schizophrenia (SCZ) (rows) for each cluster (columns).
(d) Table of Chi-squared residuals plotted in c.
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