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Abstract

With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing
technologies, spatial transcriptomics analysis is advancing rapidly. Spatial transcriptomics provides
spatial location and pattern information about cells in tissue sections at single cell resolution. Cell type
classification of spatially-resolved cells can also be inferred by matching the spatial transcriptomics data
to reference single cell RNA-sequencing (scRNA-seq) data with cell types determined by their gene
expression profiles. However, robust cell type matching of the spatial cells is challenging due to the
intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we
systematically evaluated six computational algorithms for cell type matching across four spatial
transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the
same mouse primary visual cortex (VISp) brain region. We find that while matching results of individual
algorithms vary to some degree, they also show agreement to some extent. We present two ensembl
meta-analysis strategies to combine the individual matching results and share the consensus matching
results in the Cytosplore Viewer (https://viewer.cytosplore.org) for interactive visualization and data
exploration. The consensus matching can also guide spot-based spatial data analysis using SSAM,
allowing segmentation-free cell type assignment.
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Introduction

Characterizing the spatial distributions of molecularly defined cell types is a shared goal of the Human
Cell Atlas, Brain Initiative Cell Census Network (BICCN), and related collaborative efforts. The core
elements in this task include transcriptional classification and spatial assignment of cell types, which
requires integration of single cell transcriptomics and spatially-resolved transcriptomics to define and
match cell type spatially through the analysis of combinatorial gene expression patterns in tissue
sections. Single cell RNA sequencing (scRNA-seq) has rapidly progressed into a high throughput
standardized methodology and has been used by many labs as a major workhorse for cell type
classification in many organs. In contrast, spatial transcriptomics methods are still evolving, varying
substantially in methodology, degree of multiplexing, cost, and throughput, lacking consensus data
standards and analysis methods.

Characterizing spatially-resolved cell types is essential in the brain in order to study the exceptional
cellular heterogeneity and functional significance of its spatial organization. SCRNA-seq has revealed an
unprecedented granularity of neuronal cell types in mouse and human brains [1-4], providing a
comprehensive landscape of cell type heterogeneity defined by their transcriptional profiles. Recently, a
number of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing methods [5-15]
have been reported for conducting spatial transcriptomics experiments at the cellular level. Each
method is optimized for marker gene panel design, tissue processing, transcript sequencing, and
imaging steps of the pipeline, requiring different strategies for data processing, quality control, and
downstream analysis. The SpaceTx Consortium, an organized effort consisting of both experimental and
computational working groups, took the lead to evaluate the performance of currently available
spatially-resolved transcriptomics methods in high quality cortical samples, with the goal of building
consensus maps of cortical cell type distributions based on combined analysis of single cell and spatially-
resolved transcriptomics. The overarching effort of the SpaceTx Consortium is summarized in [16].

One aim of the SpaceTx Consortium was to make probabilistic assignments of cell types and map their
spatial distributions. Here we describe the quantitative meta-analysis of spatial transcriptomics data
with a focus on assigning spatial cell types using the reference cell types from scRNA-seq. This is the
first-time spatial transcriptomics data has been analyzed and compared across spatial and
computational methods for cell type determination on the same tissue. Here we present the results of
these analysis efforts along with strategies for visualization of spatial transcriptomics data. Four available
datasets from the SpaceTx Consortium and up to six computational methods are systematically evaluated in
the following sections. Available datasets and reproducible work covered in this manuscript are publicly
available at the SpaceTx website (https://spacetx-website.github.io/index.html).

Results
Analysis overview

We explored multiple approaches to assign the spatial data with reference scRNA-seq cell types, and
developed meta-analysis strategies to combine the cell type assignment results from multiple methods
to reach consensus assignments (Figure 1). We evaluated datasets from four image-based spatial
methods (MERFISH [17, 18], smFISH [5, 19], BaristaSeq [20, 21], and ExSeq [15, 22]) in the mouse
primary visual cortex brain region (VISp) [1]. All image data (spot-by-gene matrices) were segmented
using the same segmentation procedure — Baysor [23], which also included consistent quality control
approaches for doublets and low-quality cell removal. The segmentation step produced the cell-by-gene
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matrices that were used to assign the spatially-resolved cell types to scRNA-seq reference cell types
using cell type matching algorithms. Teams of the SpaceTx Consortium explored six computational
algorithms (ATLAS [24, 25], FR-Match [26, 27], map.cells* [1], mfishtools [28], pciSeq [29], and Tangram
[30]), which produced individual cell type assignments with various probabilistic assighment scores. To
arrive at consensus cell type assignments, two meta-analysis strategies were developed to combine the
individual assignments more quantitatively (Geometric Mean Combining Strategy, hereinafter GMCS), or
more qualitatively (Negative Weighting Combining Strategy, hereinafter NWCS) (Methods). In parallel,
spot-based cell type assignment was performed by SSAM [31] using a guided mode, which partially
borrows information from the combined assignment results. All spatial data and cell type assignment
results were loaded into the Cytosplore Viewer (https://viewer.cytosplore.org) for interactive
visualization and data exploration, where an integrated tSNE [32] map for all annotated cells in all
spatial methods are presented together with single method viewers for comparative analysis.

Reference cell types
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Figure 1: Overview of the SpaceTx analysis workflow. The reference scRNA-seq cell types of the
primary visual cortex (VISp) of mouse brain are from Tasic et al. (2018). Spatial transcriptomics data
were generated by four image-based experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq).
Segmentation and quality control were performed using a common procedure (Baysor). Six
computational algorithms (ATLAS, FR-Match, map.cells*, mfishtools, pciSeq, and Tangram) for cell type
matching were applied. Two meta-analysis strategies were used to combine the individual matching
results. Spot-based cell type assignment was conducted using SSAM. All data and matching results can
be viewed in Cytosplore Viewer (https://viewer.cytosplore.org).
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The goal of this study is to produce an initial cell type matching of the spatially-resolved transcriptomics
data to open access reference scRNA-seq cell type datasets (a.k.a. scRNA-seg-reference-based cell type
assignment of spatial transcriptomics data). The reference mouse visual cortex (VISp) scRNA-seq data
were reported in [1], consisting of 14,249 cells with initial 116 cell types defined for VISp. With a focus
on spatial gradients, the SpaceTx Consortium re-clustered the data to arrive at a reference cell type
taxonomy that contains 191 consensus higher-resolution cell types at the most granular level and 24 cell
type subclasses at the intermediate level [16]. With fewer cells per study and fewer reads per cell, the
granularity of spatial data collected in this project is not comparable to these most granular scRNA-seq
cell types. Therefore, in this study we assigned the spatial data to the cell type subclasses in the
reference cell type taxonomy, which distinguishes major GABAergic, glutamatergic, and glial cell types
with layer-specific laminar patterning (full list of reference cell type subclasses in Figure 1).

Experimental protocols

As part of the SpaceTx Consortium, tissue sections were successfully collected from mouse VISp and
evaluated using MERFISH [17, 18], smFISH [5, 19], BaristaSeq [20, 21], and ExSeq [15, 22] imaging-based
experimental protocols. In general, the imaging-based protocols use multi-well plates to stain cells in
parallel, and project transcript abundance on microscope images. The spatial methods employ the
fluorescent in situ hybridization (FISH) technique to localize the transcript sequences. Since each spatial
method has unique requirements for numbers of genes and expression levels, each experimental
protocol assembles different probe panels with specific gene sets in their design (Supplementary Table
S1). The primary output from the imaging-based protocols is a spot-by-gene matrix, quantifying the
gene expression intensities in the pixel arrangement of the image.

Segmentation and quality control

The segmentation step produces a cell-by-gene expression matrix from the image data (spot-by-gene
matrix) for downstream analysis. For this purpose, the Baysor algorithm was used because it has been
reported to outperform other segmentation tools in terms of yielding better segmentation accuracy,
increased number of detected cells, and improved molecular resolution by considering joint likelihood of
transcriptional composition and cell morphology [23]. Baysor was applied to perform cell segmentation
across all imaging-based protocols to achieve consistent quantification from different protocols. Low
quality cells were filtered based on the Baysor cell segmentation statistics, e.g., number of transcripts
per cell, elongation characteristics, cell area values, and average confidence scores of segmentation.
Cells not passing the quality control filter and cells located outside of VISp based on expert annotation
were excluded from further analysis. The final segmented and filtered data (Table 1) were used as the
input datasets for downstream cell type assignment analysis.

Protocol Quality control filter # cells (before / after # genes
filtering and annotation)

MERFISH n_transcripts >= 50, elongation <9, 2000 <= area< | 6130/ 2150 258
45000, avg_confidence > 0.8

smFISH n_transcripts >= 50, elongation < 8, 500 <= area < 4841 / 2360 22
40000, avg_confidence > 0.95

BaristaSeq n_transcripts >= 20, elongation < 8, 10 <= area < 14095 / 4432 79
300, avg_confidence > 0.95

ExSeq n_transcripts >= 20, elongation < 10, 5000 <= area< | 1504 / 1271 42
1500000, avg_confidence > 0.8
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Table 1: Summary of segmented and filtered data for each experimental protocol.
Comparison of gene properties across experimental protocols

The spatial methods use different reagents, tissue processing steps, barcoding approaches, and
amplification methods, resulting in a very different number of genes included in each experiment and
different requirements for which genes can be successfully probed (Table 1). With these constraints in
mind, gene sets were selected to overlap across experiments to the extent possible to allow comparison
between studies. We found that while smFISH and ExSeq had relatively fewer genes per experiment
(Table 1), the average number of transcript molecules detected per cell tended to be higher than for
MERFISH or BaristaSeq (Figure 2A), even when considering only common genes among experiments
(Figure 2B).

Glutamatergic (and to a lesser extent GABAergic) neurons show strong laminar patterning in mouse
VISp, and many genes have been well described as showing layer restriction [30], providing a useful
ground truth for assessing the accuracy of a subset of genes in each experiment. For all experimental
protocols, at least one gene marking L2/3 (Cux2, Lamp5, Cxcl14), L4 (Rorb, Rspo1l), L5 (Fezf2, Parm1),
and L6 (Sema3e, Foxp2, Syt6) in mouse VISp were assayed; in all cases these genes showed maximal
expression at the expected cortical depth (Figure 2C). Additional computationally-derived genes
included in the assays showed layer restriction in MERFISH, and to a lesser extent the other
experimental protocols (Figure 2D). Together, these results suggest that sufficient information exist
from the included gene panels to assign segmented cells to reference cell types at some level of
resolution.


https://doi.org/10.1101/2022.03.28.486139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.28.486139; this version posted May 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A BaristaSeq ExSeq MERFISH smFISH
e 1 Vi 51 m 1 ‘ l
Log 1 coant V.A | I g 10K ts) ’ 3 r
B
I o} W [ Lif_M=m- (i HU i |
Lo I (counts ) Log 1O counts Log 1O coutts ) . LOG YO(oounts
C \ ‘
]
D \ / | .

— \ ) ) -

[ e
Figure 2: Comparison of gene properties across experimental protocols. (A) Distribution of average
number of reads in all cells with at least one read for each gene in the experiment. (B) Distribution of
average number of reads in all cells with at least one read for the subset of genes in the experiment
found in at least two other experiments (up to 40 total). (C) Density plot of spots across the axis
perpendicular to cortical layers (y-axes) for sets of genes marking L2/3 (Cux2, Lamp5, Cxcl14), L4 (Rorb,
Rspol), L5 (Fezf2, Parm1), and L6 (Sema3e, Foxp2, Syt6) in mouse VISp. At least one gene from each
layer list was assayed in each experiment. Densities (x-axes) are shown in the same scale across all
panels in Cand D. (D) Density plot of up to the 15 genes with the highest maximum density and with
maximum density>=0.0025 (black triangle). Genes are color-coded as shown.

Cell-based cell type matching

Six cell type matching algorithms (ATLAS [24, 25], FR-Match [26, 27], map.cells* [1], mfishtools [28],
pciSeq [29], and Tangram [30]) were applied to assign reference scRNA-seq cell types to each segmented
cell with an associated confidence score (a.k.a. probabilistic assignment) based on the cell-by-gene
count matrix (Method). Applying the cell type matching algorithms produces a cell-by-type matching
matrix as a primary output, consisting of probabilistic assignment of each segmented cell to each of the
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reference cell types. For this study, reference cell type subclasses were matched due to the granularity
of spatial data limited by the number of marker genes evaluated.

These cell type matching methods each have different advantages and experimental biases, and often
produce different cell type assignments, especially in those cells with fewer total transcripts or less
confidence segmentation boundaries. To address this, we designed and implemented two meta-
analysis combining strategies, each producing a re-calculated confidence score matrix for determining
the consensus cell type assignment. The GMCS combined matching considers each individual matching
result as the vertex of a polygon whose geometric median, the point with minimum average Euclidean
distance from these vertices, serves as the combined result (Methods). The NWCS combined matching
is a weighted average of the confidence scores from each individual matching method using only the
highest score for each cell (Methods). For all matching results, deterministic cell type assignment is
defined as the cell type with the highest confidence score within a given cell.

Individual matchings

In the following two sections, we elaborate the challenges in cell type matching among individual
computational methods using the MERFISH data; similarly analysis can be applied to other spatial data
as well. A key challenge for the deterministic assignment of cell types was the extensive differences
observed among the individual matching results without the availability of a gold standard result to
compare against. Confidence scores, as the quantitative metric that reflects the computational
matching strength, are however defined differently in each matching method, which showed very
different distributional properties (Figure 3A). Even though all confidence scores are in the range of
[0,1], these scores are not directly comparable across individual matching results because they are very
different metrics, for example, correlation or bootstrap probability or p-value, with different
distributional properties between the different algorithms. As such, the ranks (i.e., ordered statistics) of
the scores are pragmatically more useful, with deterministic cell type assignment using the top-ranked
confidence score. The deterministic cell type assignment for the L2/3 IT subclass, for example, further
revealed the difference in the number of matched cells (Figure 3B) and the spatial distribution of the
cells matched to the same subclass in individual matching results (Figure 3C). The differences among
individual matching results were also reflected in the substantial amount of disagreements of cells
matched to the same subclass (Figure 3D).

The L2/3 IT subclass is a relatively abundant cell population consisting of intratelencephalic (IT) neurons
that are expected to appear in the upper cortical layers 2 to 3. Out of the 2150 MERFISH cells for cell
type matching, the number cells matched to the L2/3 IT subclass are 349 (ATLAS), 581 (FR-Match), 693
(map.cells*), 798 (mfishtools), 637 (pciSeq), and 176 (Tangram) in the individual matching results (Figure
3B). Though Tangram gives the smallest number of cells matched to the L2/3 IT subclass, most of its
matched cells are common cells found in all other matchings, which may suggest that the method for
Tangram has high precision (a.k.a. positive predictive value) for this subclass though its detection rate is
low (Figure 3D). Similarly, ATLAS has the second smallest number of cells matched with high precision.
The other four methods matched at least 397 common cells to this cell subclass, suggesting the high
precision methods may have a tradeoff of low sensitivity in this case. We may regard the non-common
cells specific to each individual method (Figure 3D) as the cells that have weaker signal and more noise
in their combinatorial marker gene expression pattern; these noisy cells appear to form the major
source of the observed spillover effect in the layer distributions (Figure 3C) for this specific cell subclass.
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That being said, we are not able to conclude that any specific method is better or worse than the others,
as all cells are assigned a subclass, among which the noisy cells might have been accidentally assigned to
other subclasses but not L2/3 IT subclass in this example. Spatial coordinate plots with confidence score
intensities for each individual matching are available in Supplementary Figures S1-S6. All methods were
able to recapitulate the laminar pattern of neuronal cells to some extent, but refinements are needed to
all of them.

Combined matchings

Assuming that the majority of individual methods would produce some level of accurate cell type
matching/assignment, combining their results using an ensemble approach may provide the best
classification result. We used two different strategies to combine all individual matching results in the
ensemble meta-analysis - GMCS and NWCS. Using the L2/3 IT subclass as an example, the combined
matchings are more stable in the number of cells (798 for GMCS and 659 for NWCS) matched to the
subclass (Figure 3B) and more consistent in the spatial distribution of the matched cells (Figure 3C).
Between the two combined matchings, the vast majority of the cells matched to the same subclass
(Figure 3E), indicating strong agreement between the two combined matchings. The Combined
Matching #1 and #2 assigned 31% and 37% of all MERFISH cells to the L2/3 IT subclass, respectively,
though there is still some spillover of the matched cells in the layer distribution. Considering all cells,
the two combined matchings produced highly consistent cell type assignment overcoming the large
differences among individual matching results, which resulted in 83% (= number of cells assigned the
same subclass / total number of cells) of cells being assigned to the same subclass. The combined
confidence score intensity matching plots for all cells are available in Supplementary Figures S7-S8; and
distribution of all cells in cortical layers by each combined matching are in Supplementary Figure S9.
Though the distributions of matched cells in cortical layers are very similar for the abundant GABAergic
and glutamatergic subclasses between the two combined matchings (Supplementary Figure S9), they
differ in rare and non-neuronal subclasses (e.g., Meis2, Endothelial, and Macrophage), suggesting the
increased difficulty for detecting and matching rare cell types in spatial transcriptomics. Overall, these
results suggest that, while individual matching algorithms may have different strengths and biases
leading to somewhat different results, the ensemble methods via meta-analysis provide a more robust
cell type matching/assignment for the spatial cells.
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Figure 3: Cell type matching performance comparison on the L2/3 IT subclass of MERFISH data. Six
computational methods were applied to match/assign reference cell types to the spatial cells, each
resulting in a set of cell-to-type confidence scores ranging from [0,1]. (A) The confidence scores from
each individual method show very different distributional properties. The ensemble results, GMCS and
NWOCS, also show very different distributions. (B) Number of cells matched to the L2/3 IT subclass by
each individual method and ensemble methods. (C) Spatial distribution of the cells matched to the L2/3
IT subclass by each individual method and ensemble methods. X-axis is the spatial axis perpendicular to
cortical layers (left end: upper layer, right end: deeper layer). (D) Overlapping of cells matched to the
L2/3 IT subclass by each individual method. (E) Overlapping of cells matched to the L2/3 IT subclass by
the ensemble methods.

Spot-based cell type assignment

Working directly on the spot-by-gene matrices, the SSAM [31] framework was used to perform and
visualize segmentation-free spatial cell type assignments. Unlike the cell segmentation-based cell type
matching/assignment methods, SSAM performs pixel-wise cell assignment which does not require prior
cell segmentation, thus independent from the accuracy of cell segmentation. Here, SSAM guided-mode
was demonstrated to create cell type assignments, which were guided by the mean log-normalized gene
expression of the combined cell type matching results (GMCS and NWCS) (Supplementary Figures S10-
S17). In general, the resulting SSAM cell type assignments and the segmented cells with cell type
assignments from combined matching results showed visual similarity in both meta-analysis combining
strategies for all spatial experimental methods (Figure 4). One exception was the GMCS-based cell type
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assignment of BaristaSeq. This was due to the low quality of the consensus matching; both the
segmentation and the SSAM results did not match the previously known layer structure of the visual
cortex.

However, detailed comparison revealed that there are unique spot-based cell type assignments
determined by SSAM that were not found in the cell-based approach on the cell segments, e.g., the
VLMC subclass in the multiplexed smFISH dataset (olive colored cells in Supplementary Figure S18A).
The marker gene of the VLMC subclass Alcam showed a very similar gene expression pattern as SSAM
identified (Supplementary Figure S18B), which strongly assumes the existence of cells in the region. This
observation demonstrates that SSAM could be used as an alternative method to quickly visualize spatial
cell types which were possibly missed by prior cell segmentation. Indeed, these results could be used to
improve segmentation algorithms. Also, due to the lower density of mRNAs captured by BaristaSeq
compared to other FISH methods, the SSAM cell type assignment of BaristaSeq was noisy. Overall, the
SSAM analysis shows that a spot-based approach, such as SSAM, is equally capable of revealing good-
quality segmentation-free cell type assignment for spatial transcriptomics pixel data, especially using the
guided mode analysis when precise gene signatures are given.

Another interesting difference between the segmentation and segmentation-free approach is that, in
the smFISH results, SSAM introduced a spatial pattern of a thin layer of spots in deep layer 4 (bright
green cells in Supplementary Figure S18C) guided by one segmented cell that was not assigned as L4 in
the spatial neighborhood. The segmented cell was assigned to the CR subclass (Supplementary Figure
S18A, right panel), a rare and transient class of neurons found in mammalian cortex. Without knowing
the ground truth, the assignment of the CR cell could not be validated using the limited number of probe
genes in the smFISH panel (22 genes). However, the subtle difference between this cell and the L4 cells
were captured from the meta-analysis of the cell type matching results, based on which, SSAM further
captured a series of spots show this similar yet distinct expression profile (Supplementary Figure
S18D,E). The series of cell spots inferred might be a cell state split from the L4 cells as suggested in [31].
All these observations suggest that segmentation-free approach can provide alternative insights based
on the spot data directly.
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Figure 4: Side-by-side comparison between the segmentation and the SSAM results. The side-by-side
comparison between the segmentation and SSAM results show laminar pattern visual similarity in
general, which demonstrates SSAM can be used to quickly visualize the spatial cell type distribution
without a segmentation step. The colors of each cell type can be found in Figure 1. The scale bars
represent 100 um in all panels.

Cytosplore Viewer for comparative visualization of spatial protocols
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ScRNA-seq based gene imputation for data visualization

To compare the different spatial transcriptomics protocols, a combined embedding was generated. A
major challenge is that each protocol measures a different set of genes, and the number of shared genes
is very small. The four protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) share only six common
genes, while the number of genes measured per dataset varies from 22 to 253 genes, where the union
of these measured genes contains a set of 314 union genes (Supplementary Table S1). To solve this, we
applied SpaGE [33] to impute the expression of the missing genes in each dataset separately and obtain
a total of 314 genes per dataset. For each spatial dataset, SpaGE integrates the spatial data with a
reference scRNA-seq data measured from the same tissue, and provides prediction for the expression of
the missing genes. For example, the MERFISH dataset has 253 measured genes, SpaGE was applied to
impute the expression of the 61 remaining genes. Additionally, to reduce batch effects in the joint
multi-protocol embedding, we used SpaGE to re-impute the expression of the measured genes in each
spatial dataset separately, using a leave-one-gene-out scheme. Taking the MERFISH dataset as an
example, SpaGE uses 252 genes for integration with the reference scRNA-seq dataset and provides
predicted expression, for the left-out gene, imputed from the scRNA-seq data. This process is applied
for all measured genes in each spatial datasets to ensure that all spatial datasets are aligned to the
reference scRNA-seq data, and that the expression of all genes is obtained from the same (scRNA-seq)
domain. Finally, we generated a combined tSNE embedding for all four spatial datasets using the
imputed expression matrix of all 314 genes.

Comparative visualization between protocols

For comparative visualization of the different spatial protocols, Cytosplore Viewer
(https://viewer.cytosplore.org) was extended with functionality for side-by-side visualization of multiple
spatial data sets, in combination with the consensus clustering described above. A comparative view
was developed that enables interactive selection from the consensus clustering hierarchy (Figure 5A), or
from the joint tSNE embedding combining cells from all spatial protocols. Also, either the measured and
imputed expression values can be painted on the spatial and tSNE maps enabling comparison of spatial
expression patterns across spatial protocols. Finally, functionality for differential expression (DE)
analysis between two manual selections (drawn either in the spatial maps or the tSNE maps) was
implemented, enabling quick retrieval of differentially expressed genes between regions or cell types.
Comparing cell selections within one protocol returns DE of the measured genes for that protocol.
Manual selection of cells in the combined tSNE map returns DE of the imputed gene sets.

Single protocol and SSAM visualization

Apart from the comparative visualization, functionality for visualizing individual protocols was
developed, consisting of a linked spatial and tSNE map (Figure 5B). The tSNE maps were computed on
the measured cell-by-gene expression matrices of the individual spatial datasets. Since SSAM omits the
step of direct cell segmentation, estimating local correlation between SSAM Kernel Density Estimate
profiles and the cluster prototypes, direct comparison between cell-segmented and estimated local
correlation maxima was not possible. As such, the individual SSAM local maxima-by-gene matrices were
included in the single protocol visualizations.
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Figure 5: Cytosplore Viewer enables comparative visualization of the SpaceTx data and methods,
enabling cell selection from cluster taxonomies (cluster panel), tSNE of single cells based on
expression profiles (tSNE panel) and spatial coordinates of cells / local maxima (spatial panels). (A)
Cross-protocol comparison view: an integrated tSNE map of all cells enables side-by-side comparison of
spatial patterning of both consensus matchings on smFish (i), MERFISH (ii), BaristaSeq (iii) and ExSeq (iv),
as well as differential expression analysis of cell selections (DE gene panel). (B) Single protocol
comparison view enables comparing the consensus matchings in the segmentation-based methods (v)
and segmentation-free SSAM results (vi) for the individual spatial protocols. Viewing panels are
highlighted on the top; data and method selection panel is highlighted to the right of the figure. The
NWOCS results are shown in both A and B; MERFISH data and results are shown in B. Data and methods
can be selected in the data and method selection panel.

Discussion

This manuscript focused on the meta-analysis of cell type matching between spatial transcriptomics
data and scRNA-seq reference cell types. The spatial transcriptomics methods are fast evolving, which
requires up-to-speed development of data analysis pipelines. Significant emphasis has been devoted to


https://doi.org/10.1101/2022.03.28.486139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.28.486139; this version posted May 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

computational algorithms focused on the segmentation step of the imaging-based spatial
transcriptomics analysis pipeline [9, 19, 23, 34, 35]; however, limited focus has been on investigating the
performance of spatial cell type matching in downstream analyses. This work is the first-time evaluation
of scRNA-seq-reference-based cell type matching performance across spatial transcriptomics
experimental methods and cell type matching computational methods on the same tissue section.

We first compared gene detection sensitivity and gene expression patterning across spatial
experimental methods, which revealed high variability and very different dynamic range in the in situ
hybridization data across different experimental protocols. We also presented a systematic evaluation
of the individual cell type matching algorithms and the combined matching strategies using the MERFISH
dataset as an example. The cell-based cell type matching algorithms were applied following the same
segmentation step on the image data. Individual matching results varied largely in their metrics of
matching confidence as well as their deterministic cell type assignments, among which no overall
“winner” could be claimed. Given the variable performance of individual matching results, we used
ensemble meta-analysis approaches to combine these individual matchings to form consensus results.
The meta-analysis approaches largely improved the agreement between the consensus matchings,
where the majority of the cells have the same cell type assignment by the two combined matching
strategies. Using the spot-based cell type matching algorithm, similar results as the consensus results
could be efficiently obtained without explicit segmentation, given precise gene signatures are available.

A Cytosplore Viewer compilation allows all spatial cells from all evaluated experimental protocols to be
viewed in an integrated tSNE map based on the SpaGE-imputed expression scores from scRNA-seq
reference data. This enables interactive selection of cells (either through free-form selection or per cell
type subclasses), confirming the consistency of the layer patterns across spatial protocols. Differential
analysis between free-form cell selections proved particularly useful for identifying gene expression
gradients across cortical layers and confirming them across protocols. A side-by-side comparison
between the segmentation-based workflow and SSAM revealed a larger density of local maxima
detected by SSAM compared to the segmentation-based analysis, however the spatial patterning of cell
type subclasses was highly conserved between both methods. Finally, a direct comparison between
both combining strategies revealed similar cell type matching results for smFISH, MERFISH and ExSegq.
For BaristaSeq, the combined matching by GMCS resulted in inconclusive results, whereas the NWCS
matching still performed reasonably well.

The spatial transcriptomics community is growing rapidly with advancements in both experimental and
computational methods. For downstream cell type analysis, challenges and opportunities co-exist as
well-benchmarked analysis pipelines are lacking. A major goal of the future work would be to promote
standardization in data formats and computational methods, including methods for marker selection,
probe design, cell segmentation, cell nuclei and boundary delineation, cell type matching, spatial pattern
recognition, etc. It will need the community to provide public access to large, high-quality, uniformly
collected datasets from all current spatial transcriptomics methods, in common standard file formats, to
accelerate innovation in the computational analysis of such data.

Methods
Cell-based cell type matching algorithms

We evaluated six computational cell type matching algorithms, namely ATLAS [24, 25], FR-Match [26,
27], map.cells* [1], mfishtools [28], pciSeq [29], and Tangram [30].
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ATLAS (A Tool for Learning from Atlas-scale Single-cell multi-omic measurements(ATLAS)) uses a neural
network classifier that applies a central moment discrepancy (CMD) [24, 25] term as a domain
regularizer to map cell types discover in the scRNA-seq data onto the spatial data. The input to ATLAS is
the scRNAseq measurements and the corresponding cell type labels in addition to the spatial
transcriptomic measurements at single cell resolution. Using these inputs, ATLAS maps the cell types
discovered from the scRNAseq data onto each cell in the spatial transcriptomics data.

The FR-Match algorithm [26, 27] (https://github.com/JCVenterlnstitute/FRmatch) requires an initial de
novo clustering of the spatial transcriptomics data, which provides a supervised mode for the algorithm.
Both the candidate spatial cell clusters and the scRNA-seq reference cell types were input to the
algorithm, and the best-matched reference cell types for each spatial cell were obtained using the cell-
to-cluster function (FRmatch cell2cluster)implemented in the “FR-Match” R package.

The map.cells* algorithm uses a derivative from the map.cells function in “scratch.hicat” R package [1]
(https://github.com/Alleninstitute/scrattch.hicat) that was altered to make it more suitable for smaller
gene panels. It is a bootstrap-based method that uses Pearson correlation to assess the similarities
between cells and cell type clusters.

The mfishtools algorithm [28] (https://github.com/Alleninstitute/mfishtools) also uses Pearson
correlation to match cells from spatial transcriptomics method to cell type cluster medians in a scRNA-
seq reference dataset. This algorithm first applies filtering and scaling strategies to the mFISH and
scRNA-seq datasets, and then uses correlation-based assessment to find the best fitting cell type cluster.
There are several parameters allowing flexibility in filtering and analysis. Probabilities for cell type
assignment were approximated using the following:
scaledCorrelation = pmax (y- (max(y)/2),0)"2

probability = scaledCorrelation/sum(scaledCorrelation)
where v is the vector of correlations between a given spatial transcriptomics cell and the median
expression of each scRNA-seq cell type cluster. Finally, several functions for visualization of matching
results and assessment of matching accuracy are included in the mfishtools R package and were applied
in this study. A vignette for application of this method is available as part of the “mfishtools” R library.

Probabilistic Cell typing by In situ Sequencing (pciSeq) [29] (https://github.com/acycliq/pciSeq) is a
Python package for probabilistic cell typing by in situ sequencing. It uses a Bayesian algorithm,
leveraging scRNA-seq data to first estimate the probability of each spot belonging to a cell and then
each cell to a scRNA-seq cluster. Spots dataframe, segmentation image labels, and scRNA-seq data are
required inputs to the algorithm.

Tangram [30] (https://github.com/broadinstitute/Tangram) is distributed as a Python package, based on
PyTorch and scanpy. Tangram requires as input a single-cell (or single-nucleus) gene expression dataset
and a spatial gene expression dataset. Tangram learns an alignment for the single-cell data onto space
by fitting gene expression on the shared genes. The output of the matching algorithm is a cell-by-spot
matrix, that gives the probability for cell i to be in spot j. Using this matching matrix, Tangram can
project any annotation (e.g., cell types) from single-cell data onto space. The standard pipeline (with
cell-level mapping) has been applied, using functions tg.map cells to space forlearningthe
matching and tg.project cell annotations for projecting cell types computed on scRNA-
seq data onto space.

Combining strategies for consensus matching
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Geometric Median Combining Strateqy (GMCS)

Given the above combining strategy weighing certain matchings over others, we also introduce an
independently-developed combining strategy using a geometric median approach that considers each
matching equally. Given m matchings, each matching c cells to a probability distribution over n
potential cell types, we create a m-gon (polygon with m vertices) with vertices in the n-dimensional
space (R™). For each of these polygons, we then find the geometric median, i.e., the point p € R™ at
which the sum of the L, norms from p to each vertex in the polygon is minimized. Intuitively, such a
point considers each of the individual matchings equally, as having a point p closer to one individual
matching's vertex than another would not minimize the sum of the L, norms. The confidence with
which this matching assigns cell types is consequently a function of how similar or disparate constituent
matchings are. Accordingly, certain data modalities for which the individual matching results largely
disagree with one another, e.g., BaristaSeq, resulted in not-as-well-classified cells, whereas data
modalities in which each cell's corresponding polygon is of relatively small area, e.g., MERFISH, yielded
very well-defined consensus matching (Results).

Negative Weighting Combining Strategy (NWCS)

A weighting approach was designed to combine the six individual cell type matching results. An
evaluation of the individual matching results revealed that: 1) The probabilistic assignments (a.k.a.
confidence scores) that reflect the confidence of matching for each spatial cell to each reference cell
type showed very different distributions from method to method; some were more binary as either 0 or
1 and others showed more plateau distributions (Results). 2) Despite the distributional difference, some
cells were assigned to the same cell type with the highest confidence score by all of the methods (i.e.,
well-matched cells), whereas other cells were only matched to a cell type with a high score by only one
method (i.e., poorly-matched cells). In order to avoid the bias introduced by the accidental assignment
of those poorly-matched cells, we designed a negative weighting scheme to borrow the best-matched
confidence score among all methods. NWCS performs the following steps to combine the individual
matching results: 1) Find the best-matched cell types of each cell by keeping the cell-wise highest
confidence score. 2) Assign a negative weight (-1) to all other cell types for each cell. 3) The combined
confidence score matrix is the sum of all negatively weighted confidence score matrices of each
individual method. 4) The NWCS cell type deterministic assignment is the cell type with the maximum
confidence score for each cell in the combined matrix.

Spot-based cell type analysis method

SSAM (Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation) [31] analysis
is a method that uses the guided mode to generate segmentation-free cell type assignments of the
GMCS and NWCS consensus cell types. For all datasets (MERFISH, smFISH, BaristaSeq, and ExSeq), the
kernel density estimation (KDE) was performed with the location of mRNAs of each gene with the
bandwidth 2.5um. For SSAM analysis, the resulting vector field was normalized by a library size of 10,
and then log-transformed. For GMCS and NWCS cell normalization, the mRNA count of each cell type
cluster was normalized to a library size of 10 per cell, and then log-transformed. The gene expression
signature of each consensus cell type was computed by taking the mean of all normalized cells in the
same cluster. The resulting signatures were then mapped to the vector field, by computing Pearson’s
correlations between each consensus signature to all pixels in the vector field. The resulting cell types
were filtered with the minimum correlation threshold 0.6.


https://doi.org/10.1101/2022.03.28.486139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.28.486139; this version posted May 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Tasic, B., et al., Shared and distinct transcriptomic cell types across neocortical areas.
Nature, 2018. 563(7729): p. 72-78.

Hodge, R.D., et al., Conserved cell types with divergent features in human versus mouse
cortex. Nature, 2019. 573(7772): p. 61-68.

Hodge, R.D., et al., Transcriptomic evidence that von Economo neurons are regionally
specialized extratelencephalic-projecting excitatory neurons. Nature communications,
2020. 11(1): p. 1-14.

Bakken, T.E., et al., Comparative cellular analysis of motor cortex in human, marmoset
and mouse. Nature, 2021. 598(7879): p. 111-119.

Chen, K.H., et al., Spatially resolved, highly multiplexed RNA profiling in single cells.
Science, 2015. 348(6233): p. aaa6090.

Jemt, A, et al., An automated approach to prepare tissue-derived spatially barcoded
RNA-sequencing libraries. Scientific reports, 2016. 6(1): p. 1-9.

Kebschull, J.M., et al., High-throughput mapping of single-neuron projections by
sequencing of barcoded RNA. Neuron, 2016. 91(5): p. 975-987.

La Manno, G., et al., Molecular diversity of midbrain development in mouse, human, and
stem cells. Cell, 2016. 167(2): p. 566-580. e19.

Moffitt, J.R., et al., Molecular, spatial, and functional single-cell profiling of the
hypothalamic preoptic region. Science, 2018. 362(6416): p. eaau5324.

Moffitt, J.R., et al., High-throughput single-cell gene-expression profiling with
multiplexed error-robust fluorescence in situ hybridization. Proceedings of the National
Academy of Sciences, 2016. 113(39): p. 11046-11051.

Moffitt, J.R. and X. Zhuang, RNA imaging with multiplexed error-robust fluorescence in
situ hybridization (MERFISH), in Methods in enzymology. 2016, Elsevier. p. 1-49.

Shah, S., et al., Single-molecule RNA detection at depth by hybridization chain reaction
and tissue hydrogel embedding and clearing. Development, 2016. 143(15): p. 2862-
2867.

Shah, S., et al., In situ transcription profiling of single cells reveals spatial organization of
cells in the mouse hippocampus. Neuron, 2016. 92(2): p. 342-357.

Stahl, P.L., et al., Visualization and analysis of gene expression in tissue sections by
spatial transcriptomics. Science, 2016. 353(6294): p. 78-82.

Chen, F., et al., Nanoscale imaging of RNA with expansion microscopy. Nature methods,
2016. 13(8): p. 679-684.

Consortium, S., SpaceTx: Spatial Transcriptomics Exploration of Cell Types in the Brain.
2022.

Xia, C., et al., Spatial transcriptome profiling by MERFISH reveals subcellular RNA
compartmentalization and cell cycle-dependent gene expression. Proceedings of the
National Academy of Sciences, 2019. 116(39): p. 19490-19499.

Zhang, M., et al., Spatially resolved cell atlas of the mouse primary motor cortex by
MERFISH. Nature, 2021. 598(7879): p. 137-143.

Eng, C.-H.L., et al., Transcriptome-scale super-resolved imaging in tissues by RNA
seqFISH+. Nature, 2019. 568(7751): p. 235-239.


https://doi.org/10.1101/2022.03.28.486139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.28.486139; this version posted May 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

available under aCC-BY-NC-ND 4.0 International license.

Chen, X., et al., High-throughput mapping of long-range neuronal projection using in situ
sequencing. Cell, 2019. 179(3): p. 772-786. e19.

Stringer, C., et al., Cellpose: a generalist algorithm for cellular segmentation. Nature
Methods, 2021. 18(1): p. 100-106.

Choi, H.M., et al., Third-generation in situ hybridization chain reaction: multiplexed,
quantitative, sensitive, versatile, robust. Development, 2018. 145(12): p. dev165753.
Petukhov, V., et al., Cell segmentation in imaging-based spatial transcriptomics. Nature
Biotechnology, 2021: p. 1-10.

Zellinger, W., et al., Central moment discrepancy (cmd) for domain-invariant
representation learning. arXiv preprint arXiv:1702.08811, 2017.

Zellinger, W., et al., Robust unsupervised domain adaptation for neural networks via
moment alignment. Information Sciences, 2019. 483: p. 174-191.

Zhang, Y., et al., Cell type matching in single-cell RNA-sequencing data using FR-Match.
bioRxiv, 2021.

Zhang, Y., et al., FR-Match: robust matching of cell type clusters from single cell RNA
sequencing data using the Friedman—Rafsky non-parametric test. Briefings in
Bioinformatics, 2020.

Nicovich, P.R., et al., Multimodal cell type correspondence by intersectional mFISH in
intact tissues. bioRxiv, 2019: p. 525451.

Qian, X., et al., Probabilistic cell typing enables fine mapping of closely related cell types
in situ. Nature methods, 2020. 17(1): p. 101-106.

Biancalani, T., et al., Deep learning and alignment of spatially resolved single-cell
transcriptomes with Tangram. Nature methods, 2021. 18(11): p. 1352-1362.

Park, J., et al., Cell segmentation-free inference of cell types from in situ transcriptomics
data. Nature communications, 2021. 12(1): p. 1-13.

Van der Maaten, L. and G. Hinton, Visualizing data using t-SNE. Journal of machine
learning research, 2008. 9(11).

Abdelaal, T., et al., SpaGE: spatial gene enhancement using scRNA-seq. Nucleic acids
research, 2020. 48(18): p. e107-e107.

Wang, X., et al., Three-dimensional intact-tissue sequencing of single-cell transcriptional
states. Science, 2018. 361(6400): p. eaat5691.

Palla, G., et al., Squidpy: a scalable framework for spatial omics analysis. Nature
methods, 2022. 19(2): p. 171-178.


https://doi.org/10.1101/2022.03.28.486139
http://creativecommons.org/licenses/by-nc-nd/4.0/

