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Abstract

Single-cell DNA sequencing (scDNA-seq) has enabled the identification of single nucleotide so-
matic variants and the reconstruction of cell phylogenies. However, statistical phylogenetic mod-
els for cell phylogeny reconstruction from raw sequencing data are still in their infancy. Here
we present SIEVE (SIngle-cell EVolution Explorer), a statistical method for the joint inference
of somatic variants and cell phylogeny under the finite-sites assumption from scDNA-seq reads.
SIEVE leverages raw read counts for all nucleotides at candidate variant sites, and corrects the
acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods both
in phylogenetic accuracy and variant calling accuracy. We apply SIEVE to three scDNA-seq
datasets, for colorectal (CRC) and triple-negative breast cancer (TNBC), one of them generated
by us. On simulated data, SIEVE reliably infers homo- and heterozygous somatic variants. The
analysis of real data uncovers that double mutant genotypes are rare in CRC but unexpectedly

frequent in TNBC samples.
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»» Introduction

28 Intra-tumour heterogeneity is a consequence of accumulated somatic mutations during tumour
20 evolution [1, 2] and the culprit of acquired resistance and relapse in clinical cancer therapy [3,
50 4]. Phylogenetic inference is a powerful tool to understand the development of intra-tumour
31 heterogeneity in time and space. Variant allele profiles derived from bulk sequencing data have
32 typically been used to reconstruct the tumour phylogeny at the level of clones [5-9]. More
33 recently, the development of scDNA-seq [10-12] has enabled single-nucleotide variant (SNV)
s calling [13-18] and phylogeny reconstruction [15, 19-26] down to the single-cell level.

35 A statistical phylogenetic model is defined by an instantaneous transition rate matrix, a tree
36 topology and tree branch lengths. Such a model defines a Markov process for the evolution
57 of nucleotides or genotypes [27]. Studying the evolutionary process and estimating important
s parameters such as the branch lengths using statistical phylogenetic models has a long tradition,
39 benefits from well established theory, and has many applications, such as interpreting temporal
a0 cell dynamics [28].

a However, compared to statistical phylogenetic models, most methods for phylogeny recon-
22 struction from scDNA-seq operate within a simpler modelling framework. First, although branch
43 lengths are a critical part of a phylogenetic tree and reflect the real evolutionary distances among
s cells, they are often ignored. Those approaches that do infer branch lengths [22, 26] employ the
55 data from the variant sites and ignore information from background sites (that have a wildtype
s genotype), which may lead to so-called acquisition bias and overestimated branch lengths [29,
sz 30].

48 Moreover, variant calling and phylogenetic inference are commonly considered independent
a0 tasks. Variant calling is typically performed first, and phylogenetic inference is performed on
so the called variants. However, variant calling, particularly from scDNA-seq data, can be ham-
51 pered by missing data and low coverage, potentially resulting in wrong calls that could mislead
52 phylogenetic inference. A feasible strategy to alleviate this problem is to integrate tree recon-
53 struction with variant calling [12], where phylogenetic information on cell ancestry is used to
s« obtain more reliable variant calls. Recently developed methods for scDNA-seq data approach
s this strategy from different perspectives [15, 31]. However, those methods do not operate within
s6 the statistical phylogenetic framework, in particular do not infer branch lengths of the tree.

s7 Moreover, either they fully follow the infinite-sites assumption (ISA), which is often violated in
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ss real datasets [32, 33], or relax this assumption to only a limited extent. As a result, they may
50 miss important events in the evolution of tumours. Thus, methods have not yet been developed
e which, employing statistical phylogenetic models under the finite-sites assumption (FSA), infer
61 cell phylogeny from raw scDNA-seq data and simultaneously call variants.

62 To address this, we propose SIEVE, a statistical method that exploits raw read counts for
63 all nucleotides from scDNA-seq to reconstruct the cell phylogeny and call variants based on
64 the inferred phylogenetic relations among cells. To our knowledge, SIEVE is the first approach
65 that employs a statistical phylogenetic model following FSA, where branch lengths, measured
66 by the expected number of somatic mutations per site, are corrected for the acquisition bias
67 using the data from the background sites, and simultaneously calls variants and allelic dropout
¢ (ADO) states from raw read counts data. The model is able to detect twelve different types of
60 Mmutation events in evolutionary history. SIEVE is implemented and available as a package of
70 BEAST 2, which allows for benefitting from other packages in this framework. Using simulated
71 data, we assess the performance of our model in comparison to existing methods. To illustrate
72 the functionality of SIEVE, we apply it to datasets from two patients with CRC and one with
73 TNBC.

# Results

s SIEVE is a statistical method for joint inference of SNVs and cell phylogeny from
s scDINA-seq data. SIEVE takes as input raw read count data at candidate SNV sites, ac-
77 counting for the read counts for three alternative nucleotides and the total depth at each site
7z  (Fig. la) and combines a statistical phylogenetic model with a probabilistic graphical model
79 of the read counts, incorporating a Dirichlet Multinomial distribution of the nucleotide counts
so  (Fig. 1b; Methods). The statistical phylogenetic model allows for acquisition and loss of muta-
&1 tions on both maternal and paternal alleles (Fig. 1c). It considers four possible genotypes, 0/0
&2 (referred to as wildtype), 0/1 (single mutant), 1/1 (double mutant, where the two alternative
s nucleotides are the same) and 1/1 (double mutant, where the two alternative nucleotides are
sa different). With these genotypes, SIEVE is able to discern twelve different types of mutation
ss events (Table 2; Methods). Based on the inferred tree (Fig. 1d), SIEVE calls the maximum
ss likelihood somatic mutations (Fig. le). The tree contains a trunk joining the root representing a
&7 healthy cell with the most recent common ancestor (MRCA) of the modelled cells, representing

s the acquisition of clonal mutations at the initial stage of tumour progression. SIEVE leverages
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Fig. 1: Overview of the SIEVE model. a, Input data to SIEVE at candidate SNV sites.
For a specific cell at an SNV site, fed to SIEVE are the read counts for all nucleotides: reads of
the three alternative nucleotides with values in descending order and the total coverage (denoted
by D in a). b, Graphical representation of the SIEVE model. Bridged by g;;, the genotype for
site 7 in cell j, the orange dotted frame encloses the statistical phylogenetic model, and the blue
dashed frame highlights the model of raw read counts. Shaded circle nodes represent observed
variables, while unshaded circle nodes represent hidden random variables. Small filled circles
correspond to fixed hyper parameters. Arrows denote local conditional probability distributions
of child nodes given parent nodes. The sequencing coverage c¢;; follows a negative binomial
distribution parameterised by the number of sequenced alleles o, the mean of allelic coverage
t and the variance of allelic coverage v. «;; is a hidden categorical variable parameterised by
ADO rate 6, which has a uniform prior with fixed hyper parameter u. t also has a uniform prior
with fixed parameter p, while v has an exponential prior parameterised by (. The nucleotide
read counts m;; given c¢;; follow a Dirichlet-multinomial distribution parameterised by ADO-
affected genotype ggj, which is a hidden random variable depending on «;; and genotype g;;,
effective sequencing error rate f, which has en exponential prior with fixed hyper parameter 7,
and overdispersion w;j, which is a hidden categorical variable dependent on g, ; parameterised by
fixed parameters §;; and ;; for each category. g;; is determined by the statistical phylogenetic
model parameterised by fixed rate matrix ), fixed number of categories h as well as shape
parameter 1 with exponential prior for site-wise substitution rates, and tree topology 7 along
with branch lengths 3. T and 8 have a coalescent prior with an exponentially growing population
parameterised by effective population size M, which has a multiplicative inverse prior, and
growth rate e, which has a laplace prior parameterised by A and €. ¢, The transition rate matrix
in the statistical phylogenetic model. During an infinitesimal time interval only one change is
allowed to occur. d, The cell phylogeny inferred from the data with SIEVE. Not only is the
tree topology crucial, but also the branch lengths. The root represents a normal cell, and the
only direct child of the root is the most recent common ancestor (MRCA) of all cells. e, Variant
calling given the inferred cell phylogeny. For further details see Methods.

80 the noisy raw read counts to integrate genotype uncertainty into cell phylogeny inference. Bene-

o fiting from the inferred cell relationships, SIEVE is able to reliably infer the single-cell genotypes,
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o1 especially for sites where only few reads are available. SIEVE is implemented as a package of
o2 BEAST 2, a flexible and mature framework for statistical phylogenetic modelling [34].

03 We investigated the performance of SIEVE using simulated data with different means and
oa variances of allelic coverage, reflecting different coverage qualities (Methods). Specifically, we
os simulated data with low mean and high variance of allelic coverage (low quality), with high
o6 mean and medium variance (medium quality), and with high mean and low variance (high
o7 quality). Other important dataset characteristics were varied, including the number of cells and
98 mutation rate, which is measured by the number of accumulated somatic mutations per site per

99 generation.

10 SIEVE accurately estimates tree topology and branch lengths. We first evaluated
101 the accuracy of SIEVE in inferring the simulated cell phylogeny with branch lengths using the
102 rooted branch score (BS) distance [35] (Fig. 2a and Methods). We compared to CellPhy [26]
103 and SiFit [22], which were fed with the variant calls from Monovar [13]. Here, we gave SiFit an
14 advantage of setting the true positive error rate used in the simulation (Methods). Thanks to
105 the acquisition bias correction, SIEVE reports branch lengths as expected number of somatic
106 mutations per site, while CellPhy and SiFit per SNV site. SCIPhI [15] does not infer branch
107 lengths, hence its rooted BS distance could not be computed. SIEVE consistently outperformed
18 CellPhy and SiFit, regardless of the number of cells, mutation rate and coverage quality. This
100 may be because, in contrast to SIEVE, CellPhy and SiFit do not model raw reads and, im-
1o portantly for the rooted BS distance, do not correct the inferred branch lengths for acquisition
1 bias. We also found that the rooted BS distance of SIEVE had a negative nonlinear association
12 with the number of background sites (Extended Data Fig. 1), explaining the relatively greater
us  differences under higher mutation rates. These results proved the necessity for correcting the
114 acquisition bias with enough background sites to obtain accurate branch lengths.

115 As the rooted BS distance is dominated by the branch lengths, we further assessed SIEVE’s
ue accuracy in inferring the tree structure using the normalised Robinson-Foulds (RF) distance [36].
u7  Compared to CellPhy, SiFit and SCIPhI (Fig. 2b and Methods), SIEVE was the most robust
us  method to changes of mutation rate, number of cells and coverage quality. When the data hardly
1o contained mutations violating the ISA (mutation rate being 10~¢, with less than 0.1% double
120 mutant genotypes and at most 1% SNV sites with parallel mutations), all methods achieved a

121 similar median RF distance (around 0.15-0.3). Since in contrast to SCIPhI, SIEVE, CellPhy and
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Fig. 2: Benchmarking result of the SIEVE model. Varying are the number of tumour
cells, mutation rate and coverage quality. Each simulation is repeated n = 20 times with each
repetition denoted by coloured dots. The grey dashed lines represent the optimal values of each
metric. Box plots comprise medians, boxes covering the interquartile range (IQR), and whiskers
extending to 1.5 times the IQR below and above the box. a-b, Box plots of the tree inference
accuracy measured by the rooted BS distance where the branch lengths are taken into account
(a) and the normalised RF distance where only tree topology is considered (b). c-d, Box plots of
the single mutant genotype calling results measured by the fraction of true positives respectively
in the ground truth positives, i.e., the sum of true positives and false negatives, (recall, c) as
well as in the predicted positives, i.e., the sum of true positives and false positives, (precision,

d).

e-f, Box plots of the double mutant genotype calling results measured by recall (e) and

precision (f), where the variant calling results when mutation rate is 1075 are omitted as very
few double mutant genotypes are generated (less than 0.1%).
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122 SiFit employ statistical phylogenetic models following FSA, this indicates that models following
123 FSA are also applicable to data evolving under the ISA. SIEVE outperformed CellPhy and SiFit
124 when the number of cells and the mutation rate increased. When the data clearly violated the
15 ISA (mutation rates being 8 x 1076 and 3 x 1075, with 0.02%-0.3% and 0.1%-1% double mutant
126 genotypes, as well as 2%-8% and 10%-27% SNV sites with parallel mutations indicative of FSA,
127 respectively), SCIPhI inferred reasonable tree topologies from datasets with a small number of
s cells (40). However, its performance dramatically dropped with 100 cells, especially when the
120 data was of medium or high coverage quality. The behaviour of SCIPhI might be related to its

130 estimation of ADO rate and single mutant genotype calling in these scenarios.

131 SIEVE accurately infers parameters in the model of raw read counts. We next in-
132 vestigated the accuracy of parameter estimates, including effective sequencing error rate, ADO
133 rate, and wildtype and alternative overdispersion (Extended Data Fig. 2 and Methods). Here,
134 the effective sequencing error rate (Extended Data Fig. 2a) takes into account both amplifi-
135 cation and sequencing error rates in scDNA-seq. Wildtype and alternative overdispersion are
136 parameters in the distribution of nucleotide read counts related to different genotypes. The
137 former corresponds to genotype 0/0 and 1/1, while the latter to genotype 0/1 and 1/1. SIEVE
138 accurately inferred most parameters in all simulated scenarios regardless of the number of cells,
130 mutation rate and coverage quality. Although SIEVE’s accuracy of estimating ADO rate slightly
140 decreased with the coverage quality, it still was the best among the competing methods. For
11 data with medium and high coverage quality, 100 cells and higher mutation rates (8 x 1075 and

12 3 x 107°), SCIPhI tended to overestimate ADO rates.

13 SIEVE accurately calls single and double mutations. Next, we assessed SIEVE’s per-
s formance in calling the single mutant genotype (Fig. 2¢,d, Extended Data Fig. 3a,b, Extended
us  Data Fig. 4, and Methods). As opposed to Monovar, recall for SIEVE and SCIPhI increased
us with the number of cells but was less sensitive to the coverage quality (Fig. 2¢). The recall
17 of SIEVE was higher than that of SCIPhI by 0.16%-18.55% and that of Monovar by 28.89%-
us  71.74%. Unlike Monovar, both SIEVE and SCIPhI benefit from the information provided by
1o cell phylogenies. We speculate that the advantage of SIEVE over SCIPhI stems from the use of
150 raw read counts for all nucleotides, while SCIPhI only employs the sequencing coverage and the
151 read count of the most prevalent alternative nucleotide.

152 Moreover, SIEVE and Monovar achieved comparable precision (Fig. 2d) and false positive
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153 rates (Extended Data Fig. 3a) regardless of the number of cells, mutation rate and coverage
154 quality. However, this did not hold for SCIPhI. By analysing the types of false positives among
155 the predicted single mutant genotypes (Extended Data Fig. 4 and Methods), we found that
156 SCIPhI tended to miscall wildtype genotypes as single mutant genotype (i.e., 0/0 are called as
157 0/1) (Extended Data Fig. 4a). This occurred with high mutation rates (8 x 1075 and 3 x 1079),
18 especially in scenarios where SCIPhI inferred inaccurate trees (Fig. 2b) and overestimated ADO
19 rates (Extended Data Fig. 2b). The reason is twofold. First, the ISA upon which SCIPhI builds
160 naturally limits its application to data following FSA. Second, under these scenarios, SCIPhI
161 tends to mistake sites with no variant support for ADO events, and hence its high ADO rate.
12 SIEVE avoids such mistakes by leveraging a model of sequencing coverage (Methods), thereby
163 accounting for the related overdispersion and correctly estimating the ADO rate. We also noticed
16« that when data clearly violated ISA, both Monovar and SCIPhI miscalled more double mutant
165 genotypes as the single mutant genotype than SIEVE (Extended Data Fig. 4b).

166 We then focused on the results of double mutant genotype calling (Fig. 2e,f, Extended Data
17 Fig. 3c,d and Methods), where SCIPhI was excluded as it is unable to call such mutations. The
168 recall of double mutant genotypes for SIEVE and Monovar increased with the number of cells
10 and the coverage quality (Fig. 2e), while SIEVE showed higher recall for such genotypes than
170 Monovar. Moreover, SIEVE outperformed Monovar with high precision (almost 1, Fig. 2f) and

i1 low false positive rate (almost 0, Extended Data Fig. 3c).

12 SIEVE accurately calls ADOs for data of adequate coverage quality. We further
73 assessed SIEVE’s performance in ADO calling (Extended Data Fig. 5), where there are no
172 published methods for us to compare with. When calling ADOs, SIEVE’s performance was
175 independent of the number of cells or mutation rate, but highly dependent on the coverage
176 quality. The reason is that SIEVE calls ADOs by inferring the number of sequenced alleles,
177 assuming it is proportional to the observed sequencing coverage (see Methods). Consequently,
173 for data with medium and high coverage quality the average F1 score of ADO calling was high
179 (0.86 and 0.93, respectively), whereas for data with low coverage quality, which is typical for
10 current scDNA-seq data, the ADO calling performance deteriorated, with average F1 score being
181 only 0.10. Since the coverage quality of real data is low, we do not report ADO calling results

12 for all real datasets analysed below (Extended Data Table 1).
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Fig. 3: Results of phylogenetic inference and variant calling for CRC28 dataset.
Shown is SIEVE’s maximum clade credibility tree. The exceptionally long trunk has been
folded (marked by slashes). Cells are coloured according to the corresponding biopsies. The
numbers at each node represent posterior probabilities (threshold p > 0.5). At each branch,
genes with non-synonymous mutations are depicted in blue. a-b, Variant calling heatmap for
SIEVE (a) and Monovar (b). Listed in the legend are the categories of predicted genotypes by
each method. Cells in the row are in the same order as that of leaves in the phylogenetic tree.

183 SIEVE inferred a phylogenetic tree and called variants for CRC cells. We applied
11« SIEVE to a new single-cell whole genome sequencing (scWGS) dataset, where 28 tumour cells
155 were isolated from three primary tumour biopsies of a patient with CRC (CRC28; see Meth-
16 ods). We identified 8,470 candidate SNV sites and 1,163,335,103 background sites. To take
187 into account branch-wise substitution rate variation, we employed a relaxed molecular clock
18s model [37] (same for the following datasets; see Methods). In the inferred maximum clade
189 credibility (MCC) tree (Fig. 3; see Extended Data Fig. 6 for the branch lengths), tumour cells
10 grouped into three highly supported clades corresponding to the three biopsies. The estimated
1 effective sequencing error and ADO rates were 7.6 x 10~* and 0.20, respectively.

192 We mapped non-synonymous mutations to the internal branches (Methods), where only
103 single mutations were found, indicating that the evolution of these mutational process likely
104 followed the ISA. Many mutations resided on the trunk (clonal mutations), including established
15 CRC driver genes [38, 39], such as APC.

196 SIEVE identified 8,029 SNV sites among the candidate SNV sites (Fig. 3a), where most
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17 of the genotypes were single mutant and few were double mutant, including 1/1'. The variant
s calling results of SIEVE and Monovar (Fig. 3b) were overall similar. However, the calls from
199 Monovar were clearly more noisy, with many missing entries and more double mutant genotypes,
200 some of which might be false positives according to the simulation results. The proportion of
201 genotypes called by SIEVE and Monovar were summarised in Supplementary Table 1 (same for

202 the following datasets).

203 SIEVE inferred a phylogenetic tree and called variants for TNBC cells. We then
200 applied SIEVE to a single-cell whole exome sequencing (scWES) dataset [40], containing 16
205 tumour cells collected from a patient with TNBC (TNBC16; see Methods). We identified 5,912
206 candidate SNV sites and 152,027,822 background sites. The estimated tree was supported by
207 high posterior probabilities (Fig. 4) with a relatively long trunk and short terminal branches
s (Extended Data Fig. 7). We estimated that the effective sequencing error rate was 8.2 x 1074
200 and the ADO rate was 0.05.

210 By mapping non-synonymous mutations to the internal branches, we identified different types
211 of mutation events (Methods), including several violations of the ISA, such as back mutations
212 and parallel mutations. As expected, most of the mutations, including single and double mutant
213 genotypes, resided on the trunk, and some of them occurred in genes which were also reported
214 by the original study [40], such as TBX3, NOTCH2, NOTCHS3 and SETBP1. Although SIEVE
215 clustered cells differently from the original study, the high posterior probabilities (Fig. 4) indicate
216 that the tree inferred by SIEVE is more plausible.

217 SIEVE identified 5,895 SNV sites (Fig. 4a). In contrast to Monovar, SIEVE calls genotypes

218 for all analysed sites, including sites with missing data (Fig. 4b).

210 SIEVE inferred a phylogenetic tree and called variants for CRC samples mixed with
20 mnormal cells. Finally, we applied SIEVE to another scWES dataset [41], which consisted of 48
221 tumour and normal cells from a patient with CRC (CRCO0827 in [41]; referred to as CRC48 below;
22 see Methods). We identified 707 candidate SNV sites as well as 119,486,190 background sites.
223 From the inferred phylogenetic tree (Extended Data Fig. 8 and 9), we inferred two tumour clades
22« matching their anatomical locations (cancer tissue 1 and 2) and one clade for normal cells. Nine
25 cells collected from tumour biopsies were clustered outside the tumour clades, suggesting that
26 these were normal cells within the tumour biopsies. We estimated that the effective sequencing

27 error rate was 8.3 x 1074 and the ADO rate was 0.10.

10
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Fig. 4: Results of phylogenetic inference and variant calling for TNBC16 [40]
dataset. Shown is SIEVE’s maximum clade credibility tree. Two exceptionally long branches
are folded with the number of slashes proportional to the branch lengths. Tumour cell names are
annotated to the leaves of the tree. The numbers at each node represent the posterior probabili-
ties (threshold p > 0.5). At each branch, genes with non-synonymous mutations are depicted in
different colours, representing various types of evolutionary events. a-b, variant calling heatmap
for SIEVE (a) and Monovar (b). Listed in the legend are the categories of predicted genotypes
by each method. Cells in the row are in the same order as that of leaves in the phylogenetic

tree.
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28 From the non-synonymous mutations mapped to the branches, we observed unique subclonal
220 mutations, including an established CRC driver mutation, SYNE! [39]. We located two parallel
230 single mutations (CHDS and PLD2), which evolved independently in adenomatous polyps and
231 in tumour cells.

232 The variant calling results of SIEVE shared a similar but less noisy structure to those of

253 Monovar (Extended Data Fig. 8a,b). We identified 678 SNV sites in total.

234 Discussion

235 Here we present a statistical approach for cell phylogeny inference and variant calling from
236 scDNA-seq data. SIEVE leverages raw read counts to directly reconstruct cell phylogenies and
237 then to reliably call single-cell variants. SIEVE tackles a considerably challenging problem,
238 i.e., the propagation of errors in variant calling to the inference of cell phylogeny, by sharing
230 information between these two tasks. Important characteristics of SIEVE include following the
20 FSA and correction for acquisition bias for tree branch lengths, which prevents from overfitting
241 the phylogenetic model.

242 Inferring mutation status accurately from highly noisy scDNA-seq data remains a demand-
23 ing problem. A pivotal strength of SIEVE is its characteristic of using genotypes as a bridge
24 between tree inference and variant calling so that these tasks are united. SIEVE is able to
s reliably differentiate wildtype, single and double mutant genotypes. The benchmarking shows
us that SIEVE, regarding variant calling, outperforms methods which employ no cell relationships
27 (Monovar) and which, despite accounting for such information, do not include an instantaneous
28 transition rate matrix and branch lengths (SCIPhI). Regarding tree reconstruction, SIEVE is
29 more robust than SCIPhI, which infers phylogenies following ISA from raw scDNA-seq data. It
20 also outperforms methods that rely on variants called by other approaches as a pre-processing
21 step, thereby likely being misled by wrongly inferred variants (Cellphy and SiFit). The high
22 performance of SIEVE can also be attributed to the fact that it is the only model that performs
253 acquisition bias correction, allowing for more accurate branch lengths, and models the distribu-
254 tion of sequencing coverage and accounting for its overdispersion. Finally, SIEVE is also able to
25 reliably call ADOs given data of adequate coverage quality.

256 Currently, SIEVE only considers SNVs and assumes a diploid genome. Further improvement
257 could embrace small indels and copy number alterations to improve phylogenetic inference and

28 variant calling, yet care must be taken to differentiate deletions during evolution from ADOs.
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20 Additionally, SIEVE only allows at most one ADO for each site and cell. Further extension
260 could expand to locus dropout, which directly results in missing data.

261 We apply SIEVE to real scDNA-seq datasets harnessed from CRC and TNBC. SIEVE calls
%62 far fewer double mutant genotypes and gives more reliable mutation assignment than Monovar
263 does, in line with the simulation results. We also notice that SIEVE identifies double mutant
264 genotypes, which is rare in CRC but frequent in TNBC, indicating the noteworthy role such
265 genotypes play in the evolution of different types of cancer. Future studies could be based on
266 the phylogenetic tree and variants inferred by SIEVE to identify somatic mutations potentially
267 related to the resistance and relapse in the clinical therapy of cancer.

268 In the real data analysis we utilise the relaxed molecular clock model implemented in
260 BEAST 2. This shows one of the advantages of SIEVE being a package of BEAST 2, and
270 the potential of exploiting the functionality of other BEAST 2 packages in our model. On
on top of this, SIEVE benefits from the computational efficiency of BEAST 2 solutions, including
o2 multi-threaded MCMC.

273 The SIEVE model successfully exploits raw read counts from scDNA-seq data and jointly
a74  infers phylogeny and variants. With the advancement of scDNA-seq technology, we expect the
275 improvement of the coverage quality where the inference of ADO states is reliable. Although we
76 mainly illustrate the application of SIEVE to scDNA-seq data from tumours, it is applicable to

27 studying evolution also in other tissues.

ozs Methods

a9 Sample collection

280  We obtained fresh frozen primary tumour and normal tissues from a single colorectal cancer
281 patient stored at the Galicia Sur Health Research Institute (IISGS) Biobank, member of the
22 Spanish National Biobank Network (N© B.0000802). This study was approved by a local Ethical
23 and Scientific Committee (CAEI Galicia 2014/015).

2 Single-cell isolation, whole-genome amplification and sequencing

255 We isolated EpCAM+ cells from on normal and three tumoural regions (TP: tumour proximal;
25 TC: tumour central; TD: tumour distal) from the patient with a BD FACSAria III cytometer.

257 We successfully amplified the genomes of 28 cells with Amplil (Silicon Biosystems) and built
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28 whole-genome sequencing libraries using the KAPA (Kapa Biosystems) library kit. Each library
289 was sequenced at ~6x on an Illumina Novaseq 6000 at the Spanish National Center of Genomic

200 Analysis (CNAG-CR; https://www.cnag.crg.eu/). We called this dataset CRC28.

21 Data preprocessing

202 For the public TNBC16 [40] and CRC48 [41] datasets, we downloaded the raw sequencing reads
203 from the SRA database in FASTQ format. For the three datasets (CRC28, TNBC16 and CRC48)
204 We trimmed the Illumina adapter sequences using cutadapt (version 1.18) and mapped reads to
205 the 1000G Reference Genome hs37d5 using BWA MEM (version 0.7.17). After de-duplication
206 with Picard (version 2.18.14), we used GATK (version 3.7.0) for local realignment based on
207 indel calls from the 1000G Phase 1 and the Mills and 1000G gold standard. Subsequently,
28 we recalibrated the base scores using GATK (version 4.0.10) with polymorphisms from dbSNP
200 (build 138) and indels from the 1000G Phase 1. Exact commands used to run the tools are

s0 featured in Supplementary Note.

3010 SIEVE model

32 SIEVE is a statistical approach which combines a statistical phylogenetic model with a proba-
s03  bilistic model of raw read counts. We implement SIEVE under BEAST 2 [34], a popular Bayesian
ss  phylogenetic framework that uses Markov Chain Monte Carlo (MCMC) for the estimation of

35 phylogenetic trees and model parameters.

s Input data

so7 SIEVE takes as input raw read counts of all four nucleotides at candidate SNV sites (Fig. 1a).

ss  Specifically, for cell j € {1,...,J} at candidate SNV site i € {1,..., I}, the input data to SIEVE

300 is in the form of DS) = (myj,ci;), where my; = {my;, |k = 1,2,3} corresponds to the read
s10  counts of three alternative nucleotides with values in descending order and ¢;; to the sequencing
s coverage for cell 5 and site 4.

312 Candidate SNV sites are defined as statistically significant SNVs. They are referred to as
s13 'candidate’ since this significance could sometimes be a false discovery due to technical errors
314 in scDNA-seq. To identify the candidate SNV sites we developed a tool named DataFilter that
sis - employs a strategy similar to SCIPhI [15]. Specifically, a likelihood ratio test is conducted for

si6 SNV detection, but with a modification enabling to capture sites containing double mutant
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317 genotypes.

318 For scWGS and scWES datasets, raw read counts from I’ background sites are denoted D).
st9 The number of background sites is used to correct acquisition bias (see Section SIEVE likeli-
320 hood). For datasets lacking background information (for instance, from targeted sequencing),

1 SIEVE accepts a user-specified number of background sites only for acquisition bias correction.

32 Statistical phylogenetic model

323 The statistical phylogenetic model behind SIEVE includes an instantaneous transition rate ma-
324 trix, which is defined by a continuous-time homogeneous Markov chain. We consider four pos-
225 sible genotypes G = {0/0,0/1,1/1,1/1}, where 0, 1, and 1" are used to denote the reference
326 nucleotide, an alternative nucleotide, and a second alternative nucleotide which is different from
327 that denoted by 1, respectively. The fundamental evolutionary events we consider are single
18 mutations and single back mutations. The former happen when 0 mutates to 1, or 1 and 1
29 mutate to each other, while the latter occur when 1 or 1 mutates to 0. Hence, genotypes 0/0
30 and 0/1 represent wildtype and single mutant genotypes, respectively, whereas genotype 1/1
s and 1/1 represent double mutant genotypes. We intentionally use the non-standard nomencla-
32 ture of single and double mutants to discern important evolutionary events. In contrast, calling
333 both 0/1 and 1/1’ a heterozygous mutation genotype would be more standard and correct, but
33« would not differentiate between the genotype that has only a single allele changed with respect
335 to the reference (0/1) from the genotype that has two alleles changed (1/1%). We only consider
16 unphased genotypes, so we do not differentiate between 0/1 and 1/0 or between 1/1" and 1/1.

337 The joint conditional probability of all cells at SNV site ¢ having genotype g;; € G,j =

38 1,...,J is determined according to the statistical phylogenetic model by

0 L) (A
P(d|T.8.Qhn) = 3 P (006 \gi2s | T.8.Q.n) . 1)
A .
g; \gz,QJ
330 In Eq. (1), B represents the branch lengths measured by the expected number of somatic muta-
340 tions per site and () is the instantaneous transition rate matrix of the Markov chain. 7T is the
s rooted binary tree topology, representing the genealogical relations among cells. We specifically
a2 require the root of 7 to have only one child, representing the most recent common ancestor
a3 (MRCA) of all cells. The branch between the root and the MRCA is the trunk of the cell phy-

34 logeny. The trunk is one of novelties of our approach, introduced to represent the accumulation
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ss  of clonal mutations (shared among all cells) in the initial phase of tumour progression. There-
us fore, with J existing cells, labelled by {1,...,J}, as leaves, 7 has J internal hidden ancestor
sz nodes, labelled by {J + 1,...,2J}, and 2J — 1 branches, whose lengths are kept in 3. The
s trunk is essential for 7 to assure that the root, labelled by 2.J, represents a normal ancestor
30 cell even if the data only contains tumour cells. Hence the genotype of the root for SNV site

30 4, denoted g; 27, is fixed to 0/0. g(iL)

7

represents the genotypes of J cells as leaves of T, while
351 is the genotypes of all ancestor cells as internal nodes of 7. Note that we marginalise the
352 genotypes of the ancestor nodes except for the root. We also consider among-site substitution
353 rate variation following a discrete Gamma distribution with mean equal 1, parameterised by the
35« number of rate categories h and shape n [42]. T, 3,7 in Eq. (1) are hidden variables, estimated
355 using MCMC (see Section Posterior and MCMC), whereas h is a hyperparameter that is fixed (4
36 by default). Note that variant calling effectively corresponds to the determination of the values
357 of the variables g(iL).

358 In the transition rate matrix @ (Fig. lc), each entry denotes a rate from one genotype to
350 another during an infinitesimal time interval At. Note that at most one change is allowed to
0 occur in At. For instance, the transition of 0/0 moving to 1/1 during At is impossible as
61 two single somatic mutations are required; thus, the corresponding transition rate is 0. The
32 transition rate from genotype 0/0 to 0/1 represents the somatic mutation rate and is set to 1.
33 The back mutation rate is measured relatively to the somatic mutation rate and therefore is /3.
364 With the genotype state space G defined, for a given branch length 3, the underlying four-

35 by-four transition probability matrix R(f) of the Markov chain is represented using matrix

36 exponentiation of the product of @ and 8 as R(8) = exp(Qp) [27].

37 Model of raw read counts

s 'The probability of observing the input data D;; for cell j at site i is factorized as
P(Dij) = P(myj | cij) P(cij), (2)

30 where the first component is the model of nucleotide read counts and the second the model of

370 sequencing coverage.

s Model of sequencing coverage. After single-cell whole-genome amplification (scWGA)

372 some genomic regions are more represented than others. After scDNA-seq, this results in an
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3713 uneven coverage along the genome, much more than in the case of bulk sequencing. Here, to
37+ model the sequencing coverage ¢ in the presence of overdispersion, we employ a negative binomial

35 distribution.
c+r—
r—1

Plelpr) = (T ra- 3)

srs with parameters p and r. We reparameterise the distribution with p =#/2 and r = “2/02,H,
57 where 1 and 02 are the mean and the variance of the distribution of the sequencing coverage c,
378 respectively.

379 Theoretically, each cell j at site ¢ has its specific j1;; and al-zj parameters, which, however, are
30 impossible to be estimated freely. Hence, we make additional assumptions and pool the data for
;81 better estimates, adapting the approach of [43]. We assume that y;; and 02-2]. have the following

32 forms, respectively:

Hij = aijtsg,
(4)

02-2]- = Wi + a?jvs?.
3 In Eq. (4), t is the mean of allelic coverage (the expected coverage per allele) and v is the
s« variance of allelic coverage. We estimate ¢ and v with MCMC (see Section Posterior and MCMC).
35 ;j € {1,2} is a hidden random variable denoting the number of sequenced alleles for cell j at site
6 4. According to the statistical phylogenetic model, both alleles are expected to be sequenced.
ss7 However, due to the frequent occurrence of allelic dropout (ADO) during scWGA, there are
88 cases where only one allele is amplified and therefore c; is 1. Eq. (4) reflects the fact that the
30 expected sequencing coverage and its raw variance are proportional to the number of sequenced
s00 alleles. Note that inferring the hidden variable c«;; corresponds to identifying occurrences of
1 ADO events, and hence the ability of SIEVE to perform ADO calling. We denote the prior

sz distribution of a;

P(oi; =116) =0, if ADO occurs,
()
P(ai; =216) =1— 0, otherwise,

303 where 6 is a parameter corresponding to the the probability of ADO occurs, i.e., the ADO rate,
304 which is estimated using MCMC.

305 In Eq. (4), s; is the size factor of cell j which makes sequencing coverage from different cells
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306 comparable and is estimated directly from the sequencing coverage using

i
§; = median 2 =, (6)

i:cij;éo g’
J/
H §'=1 Cij
cij/;éO

307 where J' is the number of cells with non-zero coverage at a site. By taking into account only

308 the non-zero values, the estimate §; is not affected by the missing data, which is prevalent in

300 scDNA-seq.

a0 Model of nucleotide read counts. We denote the genotype affected by ADO ggj eGy
s {0/-,1/-}, where 0/- and 1/- are the results of ADO occurring to g;;. For instance, 0/- is caused
a2 either by 0 dropped out from 0/0 or by 1 dropped out from 0/1. Then the probability of ggj is

a3 denoted by

P (g5 | 9ij> 2vij) » (7)

s04  which is defined at length in Table 1.

9 9 i Pgi;|gij, i)

0/0 0/0 2 1
0/- 0/0 1 1
0/1 0/1 2 1
/1 1/1 2 1
/- 1/1 1 1
/v 1/ 2 1
/- 11 1 1
0/~ 0/1 1 Yo
/- 0/1 1 Yy

Others 0

Table 1: Definition of the distribution of ggj conditional on g;; and «;.

405 We model the read counts of three alternative nucleotides m;; given the sequencing coverage

a6 ¢;; with a Dirichlet-multinomial distribution as

F(cij, aijo) (8)

P(myj|cij, aij) =
7 [Tz im0 F (Mg, aige) Feig = Y3y mijk, aija)’
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w7 with parameters a;; = {aijx |k =1,...,4} and a0 = Zi:l a;ji- F' is a function in the form of

xB(y,x), if > 0,
F(z,y) = 9)

1, otherwise,

we where B is the beta function. Note that ¢;; — Zizl myjk is the read count of the reference
a0 nucleotide.
410 To improve the interpretation of Eq. (8), we reparameterise it with a;; = w;jf;j, where

4

s

v fig = {fie |k =1,...,4}, Zi:l fijk = 1 is a vector of expected frequencies of each nucleotide

sz and w;; represents overdispersion. f;; are categorical hidden variables dependent on ggj:

% %f73fa f),ifgngO/OorO/-,

(57
f7 f7 f7 -3 71f 7/,:0/17
fij — (3—3f3f3f5-3f) ifgj (10)
(1-
(2 -

N[ —=

—_
\ —

3f73f33f) 1f9§j:1/1 or 1/'7

N[ +—
OJ\H
o=

a3 where f is the expected frequency of nucleotides whose existence is solely due to technical errors
a4 during sequencing. To be specific, f is defined as the effective sequencing error rate including
a5 amplification (where a nucleotide is wrongly amplified into another one during scWGA) and
416 Sequencing errors.

a7 wj; is also a categorical hidden variable dependent on ggj:

wy, if gj; =0/0,0/-,1/1, or 1/-,
wij = (11)

wy, if g;; =0/1 or 1/7,

a1 where wy is wild type overdispersion and ws is alternative overdispersion.
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By plugging in Eqs. (10) and (11), Eq. (8) is equivalently represented with

Pyjo =P (mij ¢ij» 9i; = 0/0, f1,w1> ;
PO/— =P <m’L] C’ljagz,] = 0/-7f1,’11)1) ’
Popp=P (mij Cij» Gij = 0/17f27w2> :

P(myjleij, gij, [rwij) =

Pl/l = <mz_7 Cljag;] = 1/]-7f3,w1) )

Cij» Gij = 1/-,f3,w1),

Cij» iy = 1/1/>f47w2) :

Py = (mij

Note that Fy/q and Py, share the same f and wi, showing that the model of nucleotide read
counts is not enough to discriminate 0/0 from 0/-, and so do P;;; and P;,.. In such cases,
incorporating the model of sequencing coverage helps resolve the entanglement.

To understand Eq. (12), first take Py as an example. Theoretically, no alternative nu-
cleotides are supposed to exist if no technical errors occur. Thus, any observations of any
alternative nucleotides can only result from technical errors, and the expected frequency of the
reference nucleotide is accordingly adjusted to 1— f. For another example Py, say the reference
nucleotide is A and the alternative nucleotide is C, and both their read count frequencies are
supposed to be /5 if no technical errors occur. For the other two alternative nucleotides, G and
T, their observations could only result from technical errors, and both their frequencies are f/3.
Moreover, either A or C may be sequenced as a different nucleotide (each with probability 1/2).
In the former case, the frequency of A decreases by 7/». In the latter case, if C is sequenced as
A (with probability //3) the frequency of A increases by '/» x /3. Overall, the frequency of A
decreases by 7/3, resulting in /o —7/3.

f, w1 and wy in Eq. (12) are estimated with MCMC.

SIEVE likelihood

We denote the conditional variables in Eq. (1) as © = {7, 3,Q, h,n} and those in the model of
raw read counts as ® = {¢,v,0, f,w;, ws}. Given the input data DWW and D@, the log-likelihood

of the SIEVE model is

log £(©,®) = log LM (O, ®) + log L (f,w1), (13)
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s where £(1) is the tree likelihood corrected for acquisition bias computed from candidate SNV
a0 sites in DO, while £2) is the likelihood computed from background sites in D) referred to as
a1 the background likelihood. Eq. (13) does not contain g;;, ggj, «; since they are marginalised out
w2 (see below).

443 Since we only use data from SNV sites to compute the tree likelihood, the tree branch lengths
ss 3 are prone to be overestimated [29, 30]. The overestimation of 3 due to only using data from

us SNV sites is called acquisition bias, which is corrected in SIEVE according to [44]:

I
log £ = log P (D(l) ‘ o, @) + I'log (} 3 c,) : (14)
=1

a6 where the first component is the uncorrected tree log-likelihood for SNV sites, and C; in the
a7 second component is the likelihood of SNV site i being invariant (see below). The regularisation
us  term I’ log (% Zle Ci) renders SIEVE in favor of trees with short branch lengths where £() is
a9 large due to the increasing averaged C.

450 To compute the uncorrected tree log-likelihood, we marginalise out «;; and ggj:

P(myj, cijlgij, ®) = P(myj, cij|gij, [, wij, t,v,0)

= Z P (myj, cij, aij, g1 | 95, frwig, t,0,0)

@ij9i;
= Z P (mij | cij, gij, frwig) P (g5 | 9ig» uig)
" Pless iyt v) Plas | )
Pojo-P(cij | aij = 2,t,0) - (1 —0)
+ Py, - P(cij|aij = 1,t,0) - 0, if g;; = 0/0, (15)
Poj1-Pleij | aij = 2,t,0) - (1 —0)
+ %(PO/_ + Pyy) - P(cijloiy = 1,t,0) - 0, if g;j = 0/1,
Pyji-P(cij| iy = 2,t,0) - (1 —0)
+ Py P(cij oy =1,t,0) -0, if gi; = 1/1,
Pyjy-Pleij | aij = 2,t,0) - (1 - 0)

+ Py - Pleij|aij = 1,t,0) - 0, if g5 = 1/7,

w1 where Py, Py, Poj1, Prjis Prye, Py are defined in Eq. (12) and P (ggj

gij, Oéz'j> is defined in

sz Eq. (7). In the second line of Eq. (15), the probability is factorised out according to Fig. 1b.
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453 To compute log P (D(l) | O, <I>) in Eq. (14), we assume that the SNV sites evolve indepen-

s dently and identically. By plugging Eqs. (1) and (15), log P (D(l) |©,®) is denoted by

log P (D] ©,@) = Zlog > p(0"dP.2) > PP\ gi2s|0)
i=1 (L) ( )\gZ 0
I 7 .
ZZIOgZ Hp(mijacij‘gijaq)) Z (g(,),gz)\gzzJ‘@>
=1 g(iL) J=1 Q(f)\gz‘,w (16)
g
= Z Z log Z [P(mip cij | 9ij, @)
=11 o

((f)?g )\922J’@)]

45 which is efficiently computed out by Felsenstein’s pruning algorithm [45], with the extension of
ss6  the model of raw read counts applied on leaves. Specifically, the Fenselstein’s pruning algorithm
a7 is applied to an extended tree T, where additional leaf nodes corresponding to the data are
ss  attached at the bottom of 7 for each node corresponding to genotype g;; there is a leaf node
40 added, corresponding to data (mj;j,c;;), and the transition probability between the genotype
w0 mnode and the leaf is given by Eq. (15). For I candidate SNV sites, J cells and K genotype in G
w1 (for SIEVE K = 4), the time complexity of Felsenstein’s pruning algorithm is O(IJK?).

462 C; in Eq. (14) is determined similarly to Eq. (16) by computing the joint probability of
163 Observing the data D( ) and g’ = 0/0:

C; :P(D( ). gP _0/0(@,<1>)

_P(D§1)‘g§):0/o,q>) 3 P((L)—O/O )\91,2J‘@)

9(;4)\9i,2J (17)
! L)
=[] P (mij,cij i =0/0,@) > P(Q(i) 0/0,g )\912J)@>
=1 9(24)\91,”
a64 Formally, to compute the background likelihood, we should account for the fact that the

a5 background sites, similarly to the variant sites, also evolve under the phylogenetic model and
s66 involve similar computations as above. This, however, would result in a large additional com-
a7 putational burden due to the large number of background sites compared to the variant sites.
a8 Thus, to estimate the background log-likelihood efficiently, we make several simplifications and

w0 compute it only approximately. First, we assume that across I’ background sites each cell has
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the same genotype 0/0 and both alleles are covered. We further ignore the model of sequenc-
ing coverage and the tree log-likelihood in the computations. As a result, by employing an

alternative expression of Dirichlet-multinomial distribution log £ is efficiently obtained as

log E(Q) (f,wr) Z Z log Py /o

=1 j=1
_ IZ/ ZJ: log I'(wi)T (e + 1) ﬁ T (mijr, + 5 fwr)
p I(cij +wr) F(lfwl)r(mijk +1)

T (cij — Sy migk + (1= flun)
D((1 = fHuwn)T (e — Yy maji + 1)

=TI'J |logT'(w;) — 3logT (;fuq) —log'((1 — f)wl)}

max c” (18)
+ Z Nc(logT'(c+1) —logT'(c 4+ wn))
c=1

3 max(mljk)

+ Z Z Non, <logF (mk + fw1> —log I'(my, + 1))

k=1 mg=1

max(ci;—> 51 Mijk) 3
+ E Nc—Zizl my <logr (C - Z Mk + (1 B f)’LU1>

=38 mp=1 k=1

3
—logl (c—ka—i-l) ),
k=1

where Py is defined in Eq. (12). N, Np, for k = 1,2,3, and Nc—Zizlmk represent, across
I’ background sites and .J cells, the unique occurrences of sequencing coverage c, of alternative
nucleotide read counts mq,mo, m3, and of reference nucleotide read counts ¢ — Zizl mp, re-
spectively. In Eq. (18), some items, namely logT'(¢ 4+ 1), —log'(my + 1) for &k = 1,2,3, and
— logF(c — Zzzl my + 1), only depends on the data, which remain constants during MCMC.
Therefore, they are ignored in the computation of background likelihood. It is clear that the
background likelihood helps estimate f and w;.

The time complexity of Eq. (18) is O(c) with ¢ being the number of unique values of se-
quencing coverage across all cells and background sites. Since I.JK? is usually much larger than

¢, the overall time complexity of model likelihood is O(IJK?).

Priors

To define priors for model parameters and for the tree coalescent, we employ the prior distri-

butions defined in BEAST 2. We impose on 7 and B in Eq. (1) a prior distribution following
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a6 the Kingman coalescent process with an exponentially growing population. The tree prior is

a7 parameterised by scaled population size M and exponential growth rate ¢, and is denoted by
P(T,B|M,e), (19)

s whose analytical form is defined in [46]. M and e are hidden random variables and are estimated
a9 using MCMC. Note that, by default, M represents the number of time units, e.g., the number
a0 of years, and the mutation rate is measured by the number of mutations per time unit per site.
a1 Their product results in the unit of branch length, i.e., the number of mutations per site. Since
a2 scDNA-seq data usually does not contain temporal information as a result of collecting samples
a3 at the same time, it is impossible to differentiate M from the mutation rate. However, if the
a0« mutation rate is known, one could alternatively estimate a time-calibrated cell phylogeny.

495 As prior distributions, we assign to M

1
POM8) = 5, (20)
a6 where ¢ is the current proposed value of M. Note that this is supposed to be normalised to
a7 define a proper probability distribution, but this form is sufficient to define a proper posterior
a8 (see Section Posterior and MCMC).

499 For e we choose

e| A, e ~ Laplace(\, ), (21)

so0 where we choose mean A = 1073 and scale ¢ = 30.7 (default in the BEAST 2 software). We

s choose an exponential distribution as the prior for 7 in Eq. (1):

nly ~ exp(v), (22)
s02 where v = 1.
503 For the model of sequencing coverage described in Eqs. (3) and (4), we set the prior for ¢
s« within a large range of values with
t|p ~ Uniform(0, p), (23)
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ss where p = 1000, and the prior for v with

v | C ~ exp((), (24)

so6  where ¢ = 25. In terms of 6 in Eq. (5), it also has a uniform prior:

0 |u ~ Uniform(0,u), (25)
so7  where u = 1.
508 For the model of nucleotide read counts described in Eqs. (10) to (12), we choose an expo-
s00 nential prior for f:
fl7 ~ exp(r), (26)

s.0 where 7 = 0.025, and a log normal prior for both w; and ws:

wy | €1,91 ~ Log-Normal(&;,v1),

wa | €2,12 ~ Log-Normal(&2,v2),

(27)

s where we choose for wy the mean & = 3.9 and the standard deviation 1, = 1.5, and for ws the
s2. mean & = 0.9 and the standard deviation ¢y = 1.7. These specific values reflect our belief that
513w 1s greater than wo, while both distributions cover a large range of possible values for w; and

514 W2.

5155 Posterior and MCMC

516 With the model likelihood and priors defined, the posterior distribution of the unknown param-

517 eters is

P <7',,8,M,e,77,t,v,0,f,w1,w2 ’ D(l),D(2)> :%P (D(l),D(2) ‘T,,B,n,t,v,&,f,wl,wg)

x P(T, B M,e)P(M[5)P(e| X, e)P(n]7)

(28)
x P(t]p)P(v| Q)P0 [u)P(f|7)
x P(wr | &1, ¢1) P(wa | &2, 92),
518 where Z is a normalisation constant, representing the probability of the observed data.
519 Since the posterior distribution does not have a closed-form analytical formula, we employ
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s20 the MCMC algorithm with Metropolis-Hastings kernel to sample from the posterior distribution
sa1 in Eq. (28). Given the current state of the parameters ¢, we propose a new state ¢* according to
s22 proposal distributions P(q*|q) that assure the reversibility and ergodicity of the Markov chain.

523 With one parameter changed a time, ¢* is accepted with probability

. P (7-*7 /6*7 M*7 6*7 77*7 t*7 U*a 0*7 f*7 'U)T, w; ‘ D(1)7D(2)) P(q | q*)
min ¢ 1, , (29)
P(T,B,M,e,n,t,v,0, fw,wy | DD, DR) P(q*| q)
seo  where the normalisation constant Z cancels out after plugging in Eq. (28).
525 For sampling the structure of the cell phylogeny, we take advantage of proposal distributions

s26  implemented in the BEAST 2 software [46] and modify them to make sure they are compatible
57 with our tree topology, so that the sampled trees are binary and contain a trunk. Specifically,
s the tree branch lengths are changed by scaling the heights of the internal nodes. For tree topo-
s20 logical exploration, we use the Wilson-Balding move to perform subtree pruning and regrafting.
530 Specifically, a random node and half of its subtree is pruned and reattached to a random branch
531 not belonging to the moved subtree. A subtree-slide move is also used, where a random node
s and half of its subtree slides either upwards or downwards along branches and cross at least one
533 node. Both those two moves include changes to the lengths of some branches. The final type of

53 move swaps two randomly selected subtrees.

535 For sampling unknown parameters, we perform either scaling operations or random Gaussian
53 walks.
537 SIEVE runs with a two-stage sampling strategy. In the first stage the acquisition bias cor-

s rection is switched off and all parameters are explored, while in the second stage the acquisition
539 bias correction is turned on and parameters not affecting branch lengths are fixed with their
540  estimates from the previous stage. This two-stage strategy proved to yield more accurate pa-
sa1 rameter and tree estimates than a strategy where both parameters and tree would be explored
522 at once, with the acquisition bias correction enabled. Additionally, the initial tree in the second

53 stage is set to the tree summarised from the first stage.

542 Variant calling, ADO calling and maximum likelihood gene annotation

sss During the sampling process g(iL), g(;4), g9;; and a;j (Egs. (1), (15) and (16)) are hidden variables

546 that are marginalised out. Therefore, to obtain estimates of these hidden variables, we infer

sa7 - their maximum likelihood configuration with the max-sum algorithm [47], using the maximum
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Genotype transition Mutation event
0/0—0/1 Single mutation
0/0—1/1 Homozygous simultaneous double mutation
0/0 - 1/7 Heterozygous simultaneous double mutation
0/1—0/0 Single back mutation
1/1—0/1 Single back mutation
1/7 - 0/1 Single back mutation
0/1—=1/1 Homozygous single mutation addition
0/1—1/17 Heterozygous single mutation addition
1/1—-0/0 Double back mutation
1/ - 0/0 Double back mutation
1/7 - 1/1 Homozygous substitute single mutation
1/1—=1/7 Heterozygous substitute single mutation

Table 2: Twelve types of mutation categories that SIEVE is able to identify.

clade credibility tree [48] and parameters estimated from the MCMC posterior samples.

To be specific, by determining the maximum likelihood genotypes of the leaves (g(iL)), we
are able to call variants. By inferring the maximum likelihood ggj and «;j, the ADO state is
determined. Moreover, by computing the maximum likelihood genotypes of the internal nodes
(g(f)), SIEVE maps mutations to specific tree branches. Mutation events are classified into

different categories (see Table 2).

scDNA-seq data simulator

In order to benchmark the performance of SIEVE against those of other published methods,
we simulated scDNA-seq data by modifying CellCoal [49] (commit 594e063). In contrast to
CellCoal, the sequencing coverage is generated according to Eqs. (3) to (6). Given the sequencing
coverage, read counts are simulated with a Multinomial distribution including errors. Input
configuration follows the one described for CellCoal [49].

The simulator mimics both the biological evolution and the sequencing process. We first
generated a binary genealogical cell lineage tree following the coalescent process assuming a
strict molecular clock and created a reference genome where each site was initialised by the
reference genotype with one of the four nucleotides. With a specific mutation rate, each site
was evolved independently along the tree according to a rate matrix which contains ten diploid
genotypes encoded with nucleotide pairs (Supplementary Table 2). The rate matrix allows
mutations and back mutations, where the probability of the latter is !/3 of the former. All
simulated sites for which at least one cell has a non-reference genotype are considered as true

SNV sites. Next, we added at most one ADO to cell j at site ¢ according to the ADO rate. If

27


https://doi.org/10.1101/2022.03.24.485657
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485657; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

ss0  ADO happens, the number of sequenced alleles o;; drops from two to one. We recorded the true
so - ADO states across cells for the SNV sites. Size factors for cells in Eq. (4) were sampled from
s71 a normal distribution (mean = 1.2, variance = 0.2). Using the negative binomial distribution,
s we simulated the sequencing coverage with given ¢ and v. Based on the ADO-affected genotype
573 and sequencing coverage, the read count for each nucleotide was simulated using a Multinomial

s74  distribution with a given amplification error rate and sequencing error rate.

s Simulation design

576 We designed simulations to compare multiple methods in different aspects. We assumed that
57 the tumour cell samples belonged to an exponentially growing population (growth rate = 1074)
s, with an effective population size of 10*. The number of tumour cells was chosen to be either 40
579 or 100. We selected three mutation rates: 1076, 8 x 1076, and 3 x 10~°. For different mutation
sso  rates, different total number of sites were chosen to result in around 1000 SNV sites for 100 cells
se1 (1.3 x 107 sites for 1076, 2 x 10% sites for 8 x 1076, and 6.5 x 103 sites for 3 x 1079), as well as
sz between 250 to 1000 SNV sites for 40 cells (8 x 10* sites for 1076, 2 x 10* sites for 8 x 1076,
3 and 5 x 103 sites for 3 x 107°). Additionally, we varied ¢ and v in Eqs. (3) and (4) to simulate
ssa  different coverage qualities. For high quality data, we chose high mean (¢ = 20) and low variance
sss (v = 2) of allelic coverage. For medium quality data, we chose high mean (¢ = 20) and medium
sss  variance (v = 10). For low quality data, we chose low mean (¢ = 5) and high variance (v = 20),
sz which was specifically created to mimic the CRC28 dataset.

588 Other important parameters in the simulation were fixed as follows: in Eq. (5) 8 = 0.163,
se0  in Eq. (12) wy; = 100 and wy = 2.5, and both amplification error rate and sequencing error rate
so0 were 1073, which resulted in the effective sequencing error rate f ~ 2 x 1072 in Eq. (12).

501 We designed in total 18 simulation scenarios, each repeated 20 times. The benchmarking

sz framework was built using Snakemake [50].

ss Measurement of cell phylogeny accuracy and quality of variant calling

so4  'To assess the accuracy of the cell phylogeny reconstruction considering branch lengths, we com-
sos  puted the rooted BS distance from the inferred tree to the true tree [35]. For any two trees,

s06  this difference is computed as:

dBS:\/Z (1Y —zs>) +Z( ) +Z(z§§‘))2. (30)

i
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(s)

4 (u)
] (3

so7 - where [.” represents the length of a branch shared by both trees, and [ ;i represents the length
s08  of a branch ¢ that is unique for tree j.
509 To assess the accuracy of the cell phylogeny reconstruction ignoring branch lengths we used

s00 the normalised RF distance [36]:
n 4
1 2

) 31
ni + no ( )

drr =

s01  where n; denotes the total number of branches in tree j, while n(;“»t)

represents the number
602 branches exclusive of tree j.

603 Thus, rooted BS distance and normalised RF distance values equal to 0 indicate a perfect
604 tree reconstruction. For SIEVE and SiFit, we compute both normalised RF distance and rooted
e0s BS distance in the rooted tree mode. For CellPhy, we compute these metrics in the unrooted
66 tree mode as it infers an unrooted tree from data only containing tumour cells. Since SCIPhI
607 reports a rooted tree without branch lengths, we can only compute the normalised RF distance.
e0s Rooted BS distance and normalised RF distance values were computed using the R package
s0o  phangorn [51].

610 To evaluate the variant calling and ADO calling results, we computed precision, recall, F1
s score and false positive rate (FPR). For variant calling, we separately compared the perfor-
612 mance in calling the single mutant genotype and double mutant genotypes. In particular, when
613 we evaluated the accuracy of single mutant genotype calling, any identification of double mu-
614 tant genotypes whose true genotype is single mutant genotype was counted as a false negative.
615 Moreover, we analysed two different types of false positives in single mutant genotype calling.
616 The first type corresponds to single mutation calls for sites where the true genotype is a wildtype
617 genotype. The second type are single mutant calls for sites where the true genotype is a double
618 mutant.

619 For SIEVE and Monovar, we computed the recall, precision, F1 score, and FPR for single
620 mutant genotype calling and double mutant genotype calling. For SCIPhI, we only computed
621 metrics for single mutant genotype calling as it does not call double mutant genotypes. Moreover,
62 we evaluated the accuracy of calling ADO states only for SIEVE, as it is the only method that

623 1S able to call them.
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e« Configurations of methods

s For Monovar (commit 68fbb68), we used the true values of § and f as priors for false negative
626 rate and false positive rate and default values for other options.

627 For SCIPhI (commit 34975f7), we ran it with default options and 5 x 10° iterations.

628 To run CellPhy (commit 832f6¢2) and SiFit (commit 9dc3774), we fed the required data with
620 variants called by Monovar. For CellPhy, we piped the data in VCF format and initialised the
630 tree search with three parsimonious trees. We instructed the tool to use a built-in rate matrix
631 with ten genotypes (GT10), a stationary nucleotide frequency distribution learned from the data
62 (FO), an error model applied to the leaves (E), and the Gamma model of site-wise substitution
633 rate variation (G). For SiFit, we fed the input data as a ternary matrix and used the true values
63« of 8 and f as the prior for false negative rate and the estimated false positive rate, respectively.
635 We ran it with 2 x 10° iterations.

636 On the simulated data, we ran SIEVE with a strict molecular clock model for 2 x 10 and
e37  1.5x10% iterations for the first and the second sampling stage, respectively. On the real datasets,
633 we used a log-normal relaxed molecular clock model to take into consideration branch-wise
630 substitution rate variation. To achieve better mixed Markov chains, we employed a optimised
ss0 relaxed clock model in [37] instead of the default one in BEAST 2.

641 Since more parameters are added when using the relaxed molecular clock model, we ran
s the analysis with 3 x 10° iterations for the first stage and 2.5 x 10° iterations for the second,
643 respectively. Note that the parameters introduced by the relaxed molecular clock model are also
ssa  explored in the second sampling stage. The SNVs were then annotated using Annovar (version
a5 2020 Jun. 08) [52]. In the main text, the tree was plotted using ggtree [53] and the genotype

66 heatmap was plotted using ComplexHeatmap [54].

sz Data availability

e Raw single-cell whole-genome sequencing data from CRC28 have been deposited in the Sequence
s9 Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) database under the accession code
0 XXXXX. We have additionally analysed two published single-cell datasets (][40, 41]). Raw
651 sequencing data for these datasets are available from the SRA database under accession codes

o2 SRA053195 (TNBC16) and SRP067815 (CRC4S).

30


https://www.ncbi.nlm.nih.gov/sra
https://doi.org/10.1101/2022.03.24.485657
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.24.485657; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

3 Code availability

es¢« SIEVE is implemented in Java and is accessible at https://github.com/szczurek-lab/SIEVE.
ess  DataFilter for selecting candidate variant sites is available at https://github. com/szczurek-
656 lab/DataFilter. The simulator is hosted at https://github.com/szczurek-lab/SIEVE_
657 simulator, and the reproducible benchmarking framework is available at https://github.
ess com/szczurek-lab/SIEVE_benchmark_pipeline. The scripts for generating all figures in this
es0 paper are hosted at https://github.com/szczurek-1lab/SIEVE_analysis. All aforementioned

660 code are freely accessible under a GNU General Public License v3.0 license.
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Extended Data Fig. 1: Correlation plot of the rooted BS distance against the number of
background sites in logl0 scale. Varying are the number of cells and the coverage quality. Rooted
BS distance data points are coloured by the corresponding mutation rates. Kendall is the method for
computing the correlation coefficient 7, which is invariant to the log transformation of the number of
background sites. We choose 0.01 as the significance threshold.
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Extended Data Fig. 2: Additional benchmarking results of the SIEVE model regarding
parameter estimates. Each simulation is repeated n = 20 times with each repetition denoted by
coloured dots. The grey dashed lines represent the ground truth used to generate the simulated data.
a-d, Box plots of parameter estimation accuracy for four important parameters in the model of raw read
counts (Methods): effective sequencing error rate (a), ADO rate (b), wildtype overdispersion (¢) and
alternative overdispersion (d).
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Extended Data Fig. 3: Additional benchmarking results of the SIEVE model regarding
variant calling. Each simulation is repeated n = 20 times with each repetition denoted by coloured
dots. The grey dashed lines represent the optimal values of each metric. a-b, Box plots of the single
mutant genotype calling results measured further by the fraction of false positives in the ground truth
negatives, i.e., the sum of false positives and true negatives, (false positive rate, a) and the harmonic
mean of recall and precision (F1 score, b). c-d, Box plots of the double mutant genotype calling results
measured further by false positive rate (c¢) and F1 score (d), where the variant calling results when
mutation rate is 107¢ are omitted as very few double mutant genotypes are generated (less than 0.1%).
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Extended Data Fig. 4: Types of false positives in single mutant genotype calling. The
grey dashed lines represent the optimal proportions of each type. a-b, Box plots of the types of false
positives in single mutant genotype calling, including the proportion of true wildtype (a) and true double
mutant genotype (b). For single mutant genotype calling, the sum of the precision, the proportion of
true wildtype and the proportion of true double mutant genotype is 1.
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Extended Data Fig. 5: Benchmarking results of the SIEVE model regarding ADO calling.
Each simulation is repeated n = 20 times with each repetition denoted by coloured dots. The grey dashed

lines represent the optimal values of each metric. a-d, Box plots of the ADO calling results measured in
recall (a), precision (b), false positive rate (c) and F1 score (d).
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Cell origin

Cancer tissue 1
@ Cancer tissue 2
® Cancer tissue 3

Extended Data Fig. 6: Illustration of branch lengths of the phylogenetic tree inferred from
CRC28 by SIEVE. Shown is exactly the same tree as in Fig. 3, except that cell names, subclone poste-
rior probabilities and gene annotations are removed and no branches are folded. Red bars annotated to
internal nodes except the root are the 95% highest posterior density (HPD) intervals of the corresponding
branch lengths.
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*

Extended Data Fig. 7: Illustration of branch lengths of the phylogenetic tree inferred from
TNBC16 [40] by SIEVE. Shown is exactly the same tree as in Fig. 4, except that cell names, subclone
posterior probabilities and gene annotations are removed and no branches are folded. Red bars annotated
to internal nodes except the root are the 95% HPD intervals of the corresponding branch lengths.
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Extended Data Fig. 8: Results of phylogenetic inference and variant calling for CRC48 [41]
dataset. Shown is SIEVE’s maximum clade credibility tree. Three exceptionally long branches are folded
with the number of slashes proportional to the branch lengths. Cell names are annotated to the leaves
of the tree, coloured by the corresponding biopsies. The numbers at each node represent the posterior
probabilities (threshold p > 0.5). At each branch, non-synonymous mutations are depicted in different
colours including single mutations in blue and parallel single mutations in pink. a-b, Variant calling
heatmap for SIEVE (a) and Monovar (b). Listed in the legend are the categories of predicted genotypes
by each method. Cells in the row are in the same order as that of leaves in the phylogenetic tree.
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Adenomatous polyps
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® Cancer tissue 2

Extended Data Fig. 9: Illustration of branch lengths of the phylogenetic tree inferred from
CRC48 [41] by SIEVE. Shown is exactly the same tree as in Extended Data Fig. 8, except that cell
names, subclone posterior probabilities and gene annotations are removed and no branches are folded.
Red bars annotated to internal nodes except the root are the 95% HPD intervals of the corresponding

branch lengths.
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Mean of allelic coverage t Variance of allelic coverage v

CRC28 4.3 19.6
TNBC16 10.2 207.9
CRC48 19.4 635.6

Extended Data Table 1: Inferred mean and variance of allelic coverage for real datasets.
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