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Abstract14

Single-cell DNA sequencing (scDNA-seq) has enabled the identification of single nucleotide so-15

matic variants and the reconstruction of cell phylogenies. However, statistical phylogenetic mod-16

els for cell phylogeny reconstruction from raw sequencing data are still in their infancy. Here17

we present SIEVE (SIngle-cell EVolution Explorer), a statistical method for the joint inference18

of somatic variants and cell phylogeny under the finite-sites assumption from scDNA-seq reads.19

SIEVE leverages raw read counts for all nucleotides at candidate variant sites, and corrects the20

acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods both21

in phylogenetic accuracy and variant calling accuracy. We apply SIEVE to three scDNA-seq22

datasets, for colorectal (CRC) and triple-negative breast cancer (TNBC), one of them generated23

by us. On simulated data, SIEVE reliably infers homo- and heterozygous somatic variants. The24

analysis of real data uncovers that double mutant genotypes are rare in CRC but unexpectedly25

frequent in TNBC samples.26
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Introduction27

Intra-tumour heterogeneity is a consequence of accumulated somatic mutations during tumour28

evolution [1, 2] and the culprit of acquired resistance and relapse in clinical cancer therapy [3,29

4]. Phylogenetic inference is a powerful tool to understand the development of intra-tumour30

heterogeneity in time and space. Variant allele profiles derived from bulk sequencing data have31

typically been used to reconstruct the tumour phylogeny at the level of clones [5–9]. More32

recently, the development of scDNA-seq [10–12] has enabled single-nucleotide variant (SNV)33

calling [13–18] and phylogeny reconstruction [15, 19–26] down to the single-cell level.34

A statistical phylogenetic model is defined by an instantaneous transition rate matrix, a tree35

topology and tree branch lengths. Such a model defines a Markov process for the evolution36

of nucleotides or genotypes [27]. Studying the evolutionary process and estimating important37

parameters such as the branch lengths using statistical phylogenetic models has a long tradition,38

benefits from well established theory, and has many applications, such as interpreting temporal39

cell dynamics [28].40

However, compared to statistical phylogenetic models, most methods for phylogeny recon-41

struction from scDNA-seq operate within a simpler modelling framework. First, although branch42

lengths are a critical part of a phylogenetic tree and reflect the real evolutionary distances among43

cells, they are often ignored. Those approaches that do infer branch lengths [22, 26] employ the44

data from the variant sites and ignore information from background sites (that have a wildtype45

genotype), which may lead to so-called acquisition bias and overestimated branch lengths [29,46

30].47

Moreover, variant calling and phylogenetic inference are commonly considered independent48

tasks. Variant calling is typically performed first, and phylogenetic inference is performed on49

the called variants. However, variant calling, particularly from scDNA-seq data, can be ham-50

pered by missing data and low coverage, potentially resulting in wrong calls that could mislead51

phylogenetic inference. A feasible strategy to alleviate this problem is to integrate tree recon-52

struction with variant calling [12], where phylogenetic information on cell ancestry is used to53

obtain more reliable variant calls. Recently developed methods for scDNA-seq data approach54

this strategy from different perspectives [15, 31]. However, those methods do not operate within55

the statistical phylogenetic framework, in particular do not infer branch lengths of the tree.56

Moreover, either they fully follow the infinite-sites assumption (ISA), which is often violated in57
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real datasets [32, 33], or relax this assumption to only a limited extent. As a result, they may58

miss important events in the evolution of tumours. Thus, methods have not yet been developed59

which, employing statistical phylogenetic models under the finite-sites assumption (FSA), infer60

cell phylogeny from raw scDNA-seq data and simultaneously call variants.61

To address this, we propose SIEVE, a statistical method that exploits raw read counts for62

all nucleotides from scDNA-seq to reconstruct the cell phylogeny and call variants based on63

the inferred phylogenetic relations among cells. To our knowledge, SIEVE is the first approach64

that employs a statistical phylogenetic model following FSA, where branch lengths, measured65

by the expected number of somatic mutations per site, are corrected for the acquisition bias66

using the data from the background sites, and simultaneously calls variants and allelic dropout67

(ADO) states from raw read counts data. The model is able to detect twelve different types of68

mutation events in evolutionary history. SIEVE is implemented and available as a package of69

BEAST 2, which allows for benefitting from other packages in this framework. Using simulated70

data, we assess the performance of our model in comparison to existing methods. To illustrate71

the functionality of SIEVE, we apply it to datasets from two patients with CRC and one with72

TNBC.73

Results74

SIEVE is a statistical method for joint inference of SNVs and cell phylogeny from75

scDNA-seq data. SIEVE takes as input raw read count data at candidate SNV sites, ac-76

counting for the read counts for three alternative nucleotides and the total depth at each site77

(Fig. 1a) and combines a statistical phylogenetic model with a probabilistic graphical model78

of the read counts, incorporating a Dirichlet Multinomial distribution of the nucleotide counts79

(Fig. 1b; Methods). The statistical phylogenetic model allows for acquisition and loss of muta-80

tions on both maternal and paternal alleles (Fig. 1c). It considers four possible genotypes, 0/081

(referred to as wildtype), 0/1 (single mutant), 1/1 (double mutant, where the two alternative82

nucleotides are the same) and 1/1′ (double mutant, where the two alternative nucleotides are83

different). With these genotypes, SIEVE is able to discern twelve different types of mutation84

events (Table 2; Methods). Based on the inferred tree (Fig. 1d), SIEVE calls the maximum85

likelihood somatic mutations (Fig. 1e). The tree contains a trunk joining the root representing a86

healthy cell with the most recent common ancestor (MRCA) of the modelled cells, representing87

the acquisition of clonal mutations at the initial stage of tumour progression. SIEVE leverages88

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2022. ; https://doi.org/10.1101/2022.03.24.485657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Root MRCA

Phylogenetic inferenced

c

1/1
1/1'

0/1
0/0

-1

0
1/1

1/6

1/3

1/1'
0
1/3
2/3
-2/3

0/1
1

1/3
1/3

-2/3

0/0

0
0

-1
1/6

Input: Raw read counts at
candidate variant sites

40

0
39

0
D
C
G
A

58
0
0
23

D
G
A
T

2
0
33

12

D
G
T
C

Cell 3

28

0
28

0
D
C
G
A

20
1
1
8

D
G
A
T

42
0
1
22

D
T
G
C

Cell 2

73

35
37

1
D
C
A
G

32
0
0
2

D
G
A
T

29
0
0
0

D
T
G
C

Cell 1

TSite 3

CSite 2

ASite 1

Reference

a

Variant calling

1/1
0/1
0/1

Cell 3

1/1
0/1
0/1

Cell 2

1/1'
0/0
0/0
Cell 1

Site 3
Site 2
Site 1

e

k = 1, 2, 3

Site i = 1, , I
Cell j = 1, , J

cij

mijk

ij

t

v

fwij

gij g′ij
T,M

e

h
Q u

ij ij

b

Fig. 1: Overview of the SIEVE model. a, Input data to SIEVE at candidate SNV sites.
For a specific cell at an SNV site, fed to SIEVE are the read counts for all nucleotides: reads of
the three alternative nucleotides with values in descending order and the total coverage (denoted
by D in a). b, Graphical representation of the SIEVE model. Bridged by gij , the genotype for
site i in cell j, the orange dotted frame encloses the statistical phylogenetic model, and the blue
dashed frame highlights the model of raw read counts. Shaded circle nodes represent observed
variables, while unshaded circle nodes represent hidden random variables. Small filled circles
correspond to fixed hyper parameters. Arrows denote local conditional probability distributions
of child nodes given parent nodes. The sequencing coverage cij follows a negative binomial
distribution parameterised by the number of sequenced alleles αij , the mean of allelic coverage
t and the variance of allelic coverage v. αij is a hidden categorical variable parameterised by
ADO rate θ, which has a uniform prior with fixed hyper parameter u. t also has a uniform prior
with fixed parameter ρ, while v has an exponential prior parameterised by ζ. The nucleotide
read counts mij given cij follow a Dirichlet-multinomial distribution parameterised by ADO-
affected genotype g′ij , which is a hidden random variable depending on αij and genotype gij ,
effective sequencing error rate f , which has en exponential prior with fixed hyper parameter τ ,
and overdispersion wij , which is a hidden categorical variable dependent on g′ij parameterised by
fixed parameters ξij and ψij for each category. gij is determined by the statistical phylogenetic
model parameterised by fixed rate matrix Q, fixed number of categories h as well as shape
parameter η with exponential prior for site-wise substitution rates, and tree topology T along
with branch lengths β. T and β have a coalescent prior with an exponentially growing population
parameterised by effective population size M , which has a multiplicative inverse prior, and
growth rate e, which has a laplace prior parameterised by λ and ϵ. c, The transition rate matrix
in the statistical phylogenetic model. During an infinitesimal time interval only one change is
allowed to occur. d, The cell phylogeny inferred from the data with SIEVE. Not only is the
tree topology crucial, but also the branch lengths. The root represents a normal cell, and the
only direct child of the root is the most recent common ancestor (MRCA) of all cells. e, Variant
calling given the inferred cell phylogeny. For further details see Methods.

the noisy raw read counts to integrate genotype uncertainty into cell phylogeny inference. Bene-89

fiting from the inferred cell relationships, SIEVE is able to reliably infer the single-cell genotypes,90
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especially for sites where only few reads are available. SIEVE is implemented as a package of91

BEAST 2, a flexible and mature framework for statistical phylogenetic modelling [34].92

We investigated the performance of SIEVE using simulated data with different means and93

variances of allelic coverage, reflecting different coverage qualities (Methods). Specifically, we94

simulated data with low mean and high variance of allelic coverage (low quality), with high95

mean and medium variance (medium quality), and with high mean and low variance (high96

quality). Other important dataset characteristics were varied, including the number of cells and97

mutation rate, which is measured by the number of accumulated somatic mutations per site per98

generation.99

SIEVE accurately estimates tree topology and branch lengths. We first evaluated100

the accuracy of SIEVE in inferring the simulated cell phylogeny with branch lengths using the101

rooted branch score (BS) distance [35] (Fig. 2a and Methods). We compared to CellPhy [26]102

and SiFit [22], which were fed with the variant calls from Monovar [13]. Here, we gave SiFit an103

advantage of setting the true positive error rate used in the simulation (Methods). Thanks to104

the acquisition bias correction, SIEVE reports branch lengths as expected number of somatic105

mutations per site, while CellPhy and SiFit per SNV site. SCIPhI [15] does not infer branch106

lengths, hence its rooted BS distance could not be computed. SIEVE consistently outperformed107

CellPhy and SiFit, regardless of the number of cells, mutation rate and coverage quality. This108

may be because, in contrast to SIEVE, CellPhy and SiFit do not model raw reads and, im-109

portantly for the rooted BS distance, do not correct the inferred branch lengths for acquisition110

bias. We also found that the rooted BS distance of SIEVE had a negative nonlinear association111

with the number of background sites (Extended Data Fig. 1), explaining the relatively greater112

differences under higher mutation rates. These results proved the necessity for correcting the113

acquisition bias with enough background sites to obtain accurate branch lengths.114

As the rooted BS distance is dominated by the branch lengths, we further assessed SIEVE’s115

accuracy in inferring the tree structure using the normalised Robinson-Foulds (RF) distance [36].116

Compared to CellPhy, SiFit and SCIPhI (Fig. 2b and Methods), SIEVE was the most robust117

method to changes of mutation rate, number of cells and coverage quality. When the data hardly118

contained mutations violating the ISA (mutation rate being 10−6, with less than 0.1% double119

mutant genotypes and at most 1% SNV sites with parallel mutations), all methods achieved a120

similar median RF distance (around 0.15-0.3). Since in contrast to SCIPhI, SIEVE, CellPhy and121
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Fig. 2: Benchmarking result of the SIEVE model. Varying are the number of tumour
cells, mutation rate and coverage quality. Each simulation is repeated n = 20 times with each
repetition denoted by coloured dots. The grey dashed lines represent the optimal values of each
metric. Box plots comprise medians, boxes covering the interquartile range (IQR), and whiskers
extending to 1.5 times the IQR below and above the box. a-b, Box plots of the tree inference
accuracy measured by the rooted BS distance where the branch lengths are taken into account
(a) and the normalised RF distance where only tree topology is considered (b). c-d, Box plots of
the single mutant genotype calling results measured by the fraction of true positives respectively
in the ground truth positives, i.e., the sum of true positives and false negatives, (recall, c) as
well as in the predicted positives, i.e., the sum of true positives and false positives, (precision,
d). e-f, Box plots of the double mutant genotype calling results measured by recall (e) and
precision (f), where the variant calling results when mutation rate is 10−6 are omitted as very
few double mutant genotypes are generated (less than 0.1%).
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SiFit employ statistical phylogenetic models following FSA, this indicates that models following122

FSA are also applicable to data evolving under the ISA. SIEVE outperformed CellPhy and SiFit123

when the number of cells and the mutation rate increased. When the data clearly violated the124

ISA (mutation rates being 8×10−6 and 3×10−5, with 0.02%-0.3% and 0.1%-1% double mutant125

genotypes, as well as 2%-8% and 10%-27% SNV sites with parallel mutations indicative of FSA,126

respectively), SCIPhI inferred reasonable tree topologies from datasets with a small number of127

cells (40). However, its performance dramatically dropped with 100 cells, especially when the128

data was of medium or high coverage quality. The behaviour of SCIPhI might be related to its129

estimation of ADO rate and single mutant genotype calling in these scenarios.130

SIEVE accurately infers parameters in the model of raw read counts. We next in-131

vestigated the accuracy of parameter estimates, including effective sequencing error rate, ADO132

rate, and wildtype and alternative overdispersion (Extended Data Fig. 2 and Methods). Here,133

the effective sequencing error rate (Extended Data Fig. 2a) takes into account both amplifi-134

cation and sequencing error rates in scDNA-seq. Wildtype and alternative overdispersion are135

parameters in the distribution of nucleotide read counts related to different genotypes. The136

former corresponds to genotype 0/0 and 1/1, while the latter to genotype 0/1 and 1/1′. SIEVE137

accurately inferred most parameters in all simulated scenarios regardless of the number of cells,138

mutation rate and coverage quality. Although SIEVE’s accuracy of estimating ADO rate slightly139

decreased with the coverage quality, it still was the best among the competing methods. For140

data with medium and high coverage quality, 100 cells and higher mutation rates (8× 10−6 and141

3 × 10−5), SCIPhI tended to overestimate ADO rates.142

SIEVE accurately calls single and double mutations. Next, we assessed SIEVE’s per-143

formance in calling the single mutant genotype (Fig. 2c,d, Extended Data Fig. 3a,b, Extended144

Data Fig. 4, and Methods). As opposed to Monovar, recall for SIEVE and SCIPhI increased145

with the number of cells but was less sensitive to the coverage quality (Fig. 2c). The recall146

of SIEVE was higher than that of SCIPhI by 0.16%-18.55% and that of Monovar by 28.89%-147

71.74%. Unlike Monovar, both SIEVE and SCIPhI benefit from the information provided by148

cell phylogenies. We speculate that the advantage of SIEVE over SCIPhI stems from the use of149

raw read counts for all nucleotides, while SCIPhI only employs the sequencing coverage and the150

read count of the most prevalent alternative nucleotide.151

Moreover, SIEVE and Monovar achieved comparable precision (Fig. 2d) and false positive152
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rates (Extended Data Fig. 3a) regardless of the number of cells, mutation rate and coverage153

quality. However, this did not hold for SCIPhI. By analysing the types of false positives among154

the predicted single mutant genotypes (Extended Data Fig. 4 and Methods), we found that155

SCIPhI tended to miscall wildtype genotypes as single mutant genotype (i.e., 0/0 are called as156

0/1) (Extended Data Fig. 4a). This occurred with high mutation rates (8× 10−6 and 3× 10−5),157

especially in scenarios where SCIPhI inferred inaccurate trees (Fig. 2b) and overestimated ADO158

rates (Extended Data Fig. 2b). The reason is twofold. First, the ISA upon which SCIPhI builds159

naturally limits its application to data following FSA. Second, under these scenarios, SCIPhI160

tends to mistake sites with no variant support for ADO events, and hence its high ADO rate.161

SIEVE avoids such mistakes by leveraging a model of sequencing coverage (Methods), thereby162

accounting for the related overdispersion and correctly estimating the ADO rate. We also noticed163

that when data clearly violated ISA, both Monovar and SCIPhI miscalled more double mutant164

genotypes as the single mutant genotype than SIEVE (Extended Data Fig. 4b).165

We then focused on the results of double mutant genotype calling (Fig. 2e,f, Extended Data166

Fig. 3c,d and Methods), where SCIPhI was excluded as it is unable to call such mutations. The167

recall of double mutant genotypes for SIEVE and Monovar increased with the number of cells168

and the coverage quality (Fig. 2e), while SIEVE showed higher recall for such genotypes than169

Monovar. Moreover, SIEVE outperformed Monovar with high precision (almost 1, Fig. 2f) and170

low false positive rate (almost 0, Extended Data Fig. 3c).171

SIEVE accurately calls ADOs for data of adequate coverage quality. We further172

assessed SIEVE’s performance in ADO calling (Extended Data Fig. 5), where there are no173

published methods for us to compare with. When calling ADOs, SIEVE’s performance was174

independent of the number of cells or mutation rate, but highly dependent on the coverage175

quality. The reason is that SIEVE calls ADOs by inferring the number of sequenced alleles,176

assuming it is proportional to the observed sequencing coverage (see Methods). Consequently,177

for data with medium and high coverage quality the average F1 score of ADO calling was high178

(0.86 and 0.93, respectively), whereas for data with low coverage quality, which is typical for179

current scDNA-seq data, the ADO calling performance deteriorated, with average F1 score being180

only 0.10. Since the coverage quality of real data is low, we do not report ADO calling results181

for all real datasets analysed below (Extended Data Table 1).182
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Fig. 3: Results of phylogenetic inference and variant calling for CRC28 dataset.
Shown is SIEVE’s maximum clade credibility tree. The exceptionally long trunk has been
folded (marked by slashes). Cells are coloured according to the corresponding biopsies. The
numbers at each node represent posterior probabilities (threshold p > 0.5). At each branch,
genes with non-synonymous mutations are depicted in blue. a-b, Variant calling heatmap for
SIEVE (a) and Monovar (b). Listed in the legend are the categories of predicted genotypes by
each method. Cells in the row are in the same order as that of leaves in the phylogenetic tree.

SIEVE inferred a phylogenetic tree and called variants for CRC cells. We applied183

SIEVE to a new single-cell whole genome sequencing (scWGS) dataset, where 28 tumour cells184

were isolated from three primary tumour biopsies of a patient with CRC (CRC28; see Meth-185

ods). We identified 8,470 candidate SNV sites and 1,163,335,103 background sites. To take186

into account branch-wise substitution rate variation, we employed a relaxed molecular clock187

model [37] (same for the following datasets; see Methods). In the inferred maximum clade188

credibility (MCC) tree (Fig. 3; see Extended Data Fig. 6 for the branch lengths), tumour cells189

grouped into three highly supported clades corresponding to the three biopsies. The estimated190

effective sequencing error and ADO rates were 7.6 × 10−4 and 0.20, respectively.191

We mapped non-synonymous mutations to the internal branches (Methods), where only192

single mutations were found, indicating that the evolution of these mutational process likely193

followed the ISA. Many mutations resided on the trunk (clonal mutations), including established194

CRC driver genes [38, 39], such as APC.195

SIEVE identified 8,029 SNV sites among the candidate SNV sites (Fig. 3a), where most196
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of the genotypes were single mutant and few were double mutant, including 1/1′. The variant197

calling results of SIEVE and Monovar (Fig. 3b) were overall similar. However, the calls from198

Monovar were clearly more noisy, with many missing entries and more double mutant genotypes,199

some of which might be false positives according to the simulation results. The proportion of200

genotypes called by SIEVE and Monovar were summarised in Supplementary Table 1 (same for201

the following datasets).202

SIEVE inferred a phylogenetic tree and called variants for TNBC cells. We then203

applied SIEVE to a single-cell whole exome sequencing (scWES) dataset [40], containing 16204

tumour cells collected from a patient with TNBC (TNBC16; see Methods). We identified 5,912205

candidate SNV sites and 152,027,822 background sites. The estimated tree was supported by206

high posterior probabilities (Fig. 4) with a relatively long trunk and short terminal branches207

(Extended Data Fig. 7). We estimated that the effective sequencing error rate was 8.2 × 10−4
208

and the ADO rate was 0.05.209

By mapping non-synonymous mutations to the internal branches, we identified different types210

of mutation events (Methods), including several violations of the ISA, such as back mutations211

and parallel mutations. As expected, most of the mutations, including single and double mutant212

genotypes, resided on the trunk, and some of them occurred in genes which were also reported213

by the original study [40], such as TBX3, NOTCH2, NOTCH3 and SETBP1. Although SIEVE214

clustered cells differently from the original study, the high posterior probabilities (Fig. 4) indicate215

that the tree inferred by SIEVE is more plausible.216

SIEVE identified 5,895 SNV sites (Fig. 4a). In contrast to Monovar, SIEVE calls genotypes217

for all analysed sites, including sites with missing data (Fig. 4b).218

SIEVE inferred a phylogenetic tree and called variants for CRC samples mixed with219

normal cells. Finally, we applied SIEVE to another scWES dataset [41], which consisted of 48220

tumour and normal cells from a patient with CRC (CRC0827 in [41]; referred to as CRC48 below;221

see Methods). We identified 707 candidate SNV sites as well as 119,486,190 background sites.222

From the inferred phylogenetic tree (Extended Data Fig. 8 and 9), we inferred two tumour clades223

matching their anatomical locations (cancer tissue 1 and 2) and one clade for normal cells. Nine224

cells collected from tumour biopsies were clustered outside the tumour clades, suggesting that225

these were normal cells within the tumour biopsies. We estimated that the effective sequencing226

error rate was 8.3 × 10−4 and the ADO rate was 0.10.227
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Fig. 4: Results of phylogenetic inference and variant calling for TNBC16 [40]
dataset. Shown is SIEVE’s maximum clade credibility tree. Two exceptionally long branches
are folded with the number of slashes proportional to the branch lengths. Tumour cell names are
annotated to the leaves of the tree. The numbers at each node represent the posterior probabili-
ties (threshold p > 0.5). At each branch, genes with non-synonymous mutations are depicted in
different colours, representing various types of evolutionary events. a-b, variant calling heatmap
for SIEVE (a) and Monovar (b). Listed in the legend are the categories of predicted genotypes
by each method. Cells in the row are in the same order as that of leaves in the phylogenetic
tree.
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From the non-synonymous mutations mapped to the branches, we observed unique subclonal228

mutations, including an established CRC driver mutation, SYNE1 [39]. We located two parallel229

single mutations (CHD3 and PLD2 ), which evolved independently in adenomatous polyps and230

in tumour cells.231

The variant calling results of SIEVE shared a similar but less noisy structure to those of232

Monovar (Extended Data Fig. 8a,b). We identified 678 SNV sites in total.233

Discussion234

Here we present a statistical approach for cell phylogeny inference and variant calling from235

scDNA-seq data. SIEVE leverages raw read counts to directly reconstruct cell phylogenies and236

then to reliably call single-cell variants. SIEVE tackles a considerably challenging problem,237

i.e., the propagation of errors in variant calling to the inference of cell phylogeny, by sharing238

information between these two tasks. Important characteristics of SIEVE include following the239

FSA and correction for acquisition bias for tree branch lengths, which prevents from overfitting240

the phylogenetic model.241

Inferring mutation status accurately from highly noisy scDNA-seq data remains a demand-242

ing problem. A pivotal strength of SIEVE is its characteristic of using genotypes as a bridge243

between tree inference and variant calling so that these tasks are united. SIEVE is able to244

reliably differentiate wildtype, single and double mutant genotypes. The benchmarking shows245

that SIEVE, regarding variant calling, outperforms methods which employ no cell relationships246

(Monovar) and which, despite accounting for such information, do not include an instantaneous247

transition rate matrix and branch lengths (SCIPhI). Regarding tree reconstruction, SIEVE is248

more robust than SCIPhI, which infers phylogenies following ISA from raw scDNA-seq data. It249

also outperforms methods that rely on variants called by other approaches as a pre-processing250

step, thereby likely being misled by wrongly inferred variants (Cellphy and SiFit). The high251

performance of SIEVE can also be attributed to the fact that it is the only model that performs252

acquisition bias correction, allowing for more accurate branch lengths, and models the distribu-253

tion of sequencing coverage and accounting for its overdispersion. Finally, SIEVE is also able to254

reliably call ADOs given data of adequate coverage quality.255

Currently, SIEVE only considers SNVs and assumes a diploid genome. Further improvement256

could embrace small indels and copy number alterations to improve phylogenetic inference and257

variant calling, yet care must be taken to differentiate deletions during evolution from ADOs.258
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Additionally, SIEVE only allows at most one ADO for each site and cell. Further extension259

could expand to locus dropout, which directly results in missing data.260

We apply SIEVE to real scDNA-seq datasets harnessed from CRC and TNBC. SIEVE calls261

far fewer double mutant genotypes and gives more reliable mutation assignment than Monovar262

does, in line with the simulation results. We also notice that SIEVE identifies double mutant263

genotypes, which is rare in CRC but frequent in TNBC, indicating the noteworthy role such264

genotypes play in the evolution of different types of cancer. Future studies could be based on265

the phylogenetic tree and variants inferred by SIEVE to identify somatic mutations potentially266

related to the resistance and relapse in the clinical therapy of cancer.267

In the real data analysis we utilise the relaxed molecular clock model implemented in268

BEAST 2. This shows one of the advantages of SIEVE being a package of BEAST 2, and269

the potential of exploiting the functionality of other BEAST 2 packages in our model. On270

top of this, SIEVE benefits from the computational efficiency of BEAST 2 solutions, including271

multi-threaded MCMC.272

The SIEVE model successfully exploits raw read counts from scDNA-seq data and jointly273

infers phylogeny and variants. With the advancement of scDNA-seq technology, we expect the274

improvement of the coverage quality where the inference of ADO states is reliable. Although we275

mainly illustrate the application of SIEVE to scDNA-seq data from tumours, it is applicable to276

studying evolution also in other tissues.277

Methods278

Sample collection279

We obtained fresh frozen primary tumour and normal tissues from a single colorectal cancer280

patient stored at the Galicia Sur Health Research Institute (IISGS) Biobank, member of the281

Spanish National Biobank Network (Nº B.0000802). This study was approved by a local Ethical282

and Scientific Committee (CAEI Galicia 2014/015).283

Single-cell isolation, whole-genome amplification and sequencing284

We isolated EpCAM+ cells from on normal and three tumoural regions (TP: tumour proximal;285

TC: tumour central; TD: tumour distal) from the patient with a BD FACSAria III cytometer.286

We successfully amplified the genomes of 28 cells with Ampli1 (Silicon Biosystems) and built287
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whole-genome sequencing libraries using the KAPA (Kapa Biosystems) library kit. Each library288

was sequenced at ≈6x on an Illumina Novaseq 6000 at the Spanish National Center of Genomic289

Analysis (CNAG-CR; https://www.cnag.crg.eu/). We called this dataset CRC28.290

Data preprocessing291

For the public TNBC16 [40] and CRC48 [41] datasets, we downloaded the raw sequencing reads292

from the SRA database in FASTQ format. For the three datasets (CRC28, TNBC16 and CRC48)293

We trimmed the Illumina adapter sequences using cutadapt (version 1.18) and mapped reads to294

the 1000G Reference Genome hs37d5 using BWA MEM (version 0.7.17). After de-duplication295

with Picard (version 2.18.14), we used GATK (version 3.7.0) for local realignment based on296

indel calls from the 1000G Phase 1 and the Mills and 1000G gold standard. Subsequently,297

we recalibrated the base scores using GATK (version 4.0.10) with polymorphisms from dbSNP298

(build 138) and indels from the 1000G Phase 1. Exact commands used to run the tools are299

featured in Supplementary Note.300

SIEVE model301

SIEVE is a statistical approach which combines a statistical phylogenetic model with a proba-302

bilistic model of raw read counts. We implement SIEVE under BEAST 2 [34], a popular Bayesian303

phylogenetic framework that uses Markov Chain Monte Carlo (MCMC) for the estimation of304

phylogenetic trees and model parameters.305

Input data306

SIEVE takes as input raw read counts of all four nucleotides at candidate SNV sites (Fig. 1a).307

Specifically, for cell j ∈ {1, . . . , J} at candidate SNV site i ∈ {1, . . . , I}, the input data to SIEVE308

is in the form of D(1)
ij = (mij , cij), where mij = {mijk | k = 1, 2, 3} corresponds to the read309

counts of three alternative nucleotides with values in descending order and cij to the sequencing310

coverage for cell j and site i.311

Candidate SNV sites are defined as statistically significant SNVs. They are referred to as312

’candidate’ since this significance could sometimes be a false discovery due to technical errors313

in scDNA-seq. To identify the candidate SNV sites we developed a tool named DataFilter that314

employs a strategy similar to SCIPhI [15]. Specifically, a likelihood ratio test is conducted for315

SNV detection, but with a modification enabling to capture sites containing double mutant316
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genotypes.317

For scWGS and scWES datasets, raw read counts from I ′ background sites are denoted D(2).318

The number of background sites is used to correct acquisition bias (see Section SIEVE likeli-319

hood). For datasets lacking background information (for instance, from targeted sequencing),320

SIEVE accepts a user-specified number of background sites only for acquisition bias correction.321

Statistical phylogenetic model322

The statistical phylogenetic model behind SIEVE includes an instantaneous transition rate ma-323

trix, which is defined by a continuous-time homogeneous Markov chain. We consider four pos-324

sible genotypes G = {0/0, 0/1, 1/1, 1/1′}, where 0, 1, and 1′ are used to denote the reference325

nucleotide, an alternative nucleotide, and a second alternative nucleotide which is different from326

that denoted by 1, respectively. The fundamental evolutionary events we consider are single327

mutations and single back mutations. The former happen when 0 mutates to 1, or 1 and 1′328

mutate to each other, while the latter occur when 1 or 1′ mutates to 0. Hence, genotypes 0/0329

and 0/1 represent wildtype and single mutant genotypes, respectively, whereas genotype 1/1330

and 1/1′ represent double mutant genotypes. We intentionally use the non-standard nomencla-331

ture of single and double mutants to discern important evolutionary events. In contrast, calling332

both 0/1 and 1/1’ a heterozygous mutation genotype would be more standard and correct, but333

would not differentiate between the genotype that has only a single allele changed with respect334

to the reference (0/1) from the genotype that has two alleles changed (1/1’). We only consider335

unphased genotypes, so we do not differentiate between 0/1 and 1/0 or between 1/1′ and 1′/1.336

The joint conditional probability of all cells at SNV site i having genotype gij ∈ G, j =337

1, . . . , J is determined according to the statistical phylogenetic model by338

P
(
g
(L)
i

∣∣∣ T ,β, Q, h, η) =
∑

g
(A)
i \gi,2J

P
(
g
(L)
i , g

(A)
i \ gi,2J

∣∣∣ T ,β, Q, h, η) . (1)

In Eq. (1), β represents the branch lengths measured by the expected number of somatic muta-339

tions per site and Q is the instantaneous transition rate matrix of the Markov chain. T is the340

rooted binary tree topology, representing the genealogical relations among cells. We specifically341

require the root of T to have only one child, representing the most recent common ancestor342

(MRCA) of all cells. The branch between the root and the MRCA is the trunk of the cell phy-343

logeny. The trunk is one of novelties of our approach, introduced to represent the accumulation344

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2022. ; https://doi.org/10.1101/2022.03.24.485657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485657
http://creativecommons.org/licenses/by-nc-nd/4.0/


of clonal mutations (shared among all cells) in the initial phase of tumour progression. There-345

fore, with J existing cells, labelled by {1, . . . , J}, as leaves, T has J internal hidden ancestor346

nodes, labelled by {J + 1, . . . , 2J}, and 2J − 1 branches, whose lengths are kept in β. The347

trunk is essential for T to assure that the root, labelled by 2J , represents a normal ancestor348

cell even if the data only contains tumour cells. Hence the genotype of the root for SNV site349

i, denoted gi,2J , is fixed to 0/0. g
(L)
i represents the genotypes of J cells as leaves of T , while350

g
(A)
i is the genotypes of all ancestor cells as internal nodes of T . Note that we marginalise the351

genotypes of the ancestor nodes except for the root. We also consider among-site substitution352

rate variation following a discrete Gamma distribution with mean equal 1, parameterised by the353

number of rate categories h and shape η [42]. T ,β, η in Eq. (1) are hidden variables, estimated354

using MCMC (see Section Posterior and MCMC), whereas h is a hyperparameter that is fixed (4355

by default). Note that variant calling effectively corresponds to the determination of the values356

of the variables g
(L)
i .357

In the transition rate matrix Q (Fig. 1c), each entry denotes a rate from one genotype to358

another during an infinitesimal time interval ∆t. Note that at most one change is allowed to359

occur in ∆t. For instance, the transition of 0/0 moving to 1/1 during ∆t is impossible as360

two single somatic mutations are required; thus, the corresponding transition rate is 0. The361

transition rate from genotype 0/0 to 0/1 represents the somatic mutation rate and is set to 1.362

The back mutation rate is measured relatively to the somatic mutation rate and therefore is 1/3.363

With the genotype state space G defined, for a given branch length β, the underlying four-364

by-four transition probability matrix R(β) of the Markov chain is represented using matrix365

exponentiation of the product of Q and β as R(β) = exp(Qβ) [27].366

Model of raw read counts367

The probability of observing the input data Dij for cell j at site i is factorized as368

P (Dij) = P (mij | cij)P (cij), (2)

where the first component is the model of nucleotide read counts and the second the model of369

sequencing coverage.370

Model of sequencing coverage. After single-cell whole-genome amplification (scWGA)371

some genomic regions are more represented than others. After scDNA-seq, this results in an372
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uneven coverage along the genome, much more than in the case of bulk sequencing. Here, to373

model the sequencing coverage c in the presence of overdispersion, we employ a negative binomial374

distribution.375

P (c | p, r) =

(
c+ r − 1

r − 1

)
pr(1 − p)c, (3)

with parameters p and r. We reparameterise the distribution with p = µ/σ2 and r = µ2
/σ2−µ,376

where µ and σ2 are the mean and the variance of the distribution of the sequencing coverage c,377

respectively.378

Theoretically, each cell j at site i has its specific µij and σ2ij parameters, which, however, are379

impossible to be estimated freely. Hence, we make additional assumptions and pool the data for380

better estimates, adapting the approach of [43]. We assume that µij and σ2ij have the following381

forms, respectively:382

µij = αijtsj ,

σ2ij = µij + α2
ijvs

2
j .

(4)

In Eq. (4), t is the mean of allelic coverage (the expected coverage per allele) and v is the383

variance of allelic coverage. We estimate t and v with MCMC (see Section Posterior and MCMC).384

αij ∈ {1, 2} is a hidden random variable denoting the number of sequenced alleles for cell j at site385

i. According to the statistical phylogenetic model, both alleles are expected to be sequenced.386

However, due to the frequent occurrence of allelic dropout (ADO) during scWGA, there are387

cases where only one allele is amplified and therefore αij is 1. Eq. (4) reflects the fact that the388

expected sequencing coverage and its raw variance are proportional to the number of sequenced389

alleles. Note that inferring the hidden variable αij corresponds to identifying occurrences of390

ADO events, and hence the ability of SIEVE to perform ADO calling. We denote the prior391

distribution of αij392 
P (αij = 1 | θ) = θ, if ADO occurs,

P (αij = 2 | θ) = 1 − θ, otherwise,

(5)

where θ is a parameter corresponding to the the probability of ADO occurs, i.e., the ADO rate,393

which is estimated using MCMC.394

In Eq. (4), sj is the size factor of cell j which makes sequencing coverage from different cells395
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comparable and is estimated directly from the sequencing coverage using396

ŝj = median
i:cij ̸=0

cij(∏J ′
j′=1
cij′ ̸=0

cij′

) 1
J′
, (6)

where J ′ is the number of cells with non-zero coverage at a site. By taking into account only397

the non-zero values, the estimate ŝj is not affected by the missing data, which is prevalent in398

scDNA-seq.399

Model of nucleotide read counts. We denote the genotype affected by ADO g′ij ∈ G
⋃

400

{0/-, 1/-}, where 0/- and 1/- are the results of ADO occurring to gij . For instance, 0/- is caused401

either by 0 dropped out from 0/0 or by 1 dropped out from 0/1. Then the probability of g′ij is402

denoted by403

P
(
g′ij
∣∣ gij , αij

)
, (7)

which is defined at length in Table 1.404

g′ij gij αij P (g′ij | gij , αij)

0/0 0/0 2 1
0/- 0/0 1 1
0/1 0/1 2 1
1/1 1/1 2 1
1/- 1/1 1 1
1/1′ 1/1′ 2 1
1/- 1/1′ 1 1
0/- 0/1 1 1/2
1/- 0/1 1 1/2

Others 0

Table 1: Definition of the distribution of g′ij conditional on gij and αij .

We model the read counts of three alternative nucleotides mij given the sequencing coverage405

cij with a Dirichlet-multinomial distribution as406

P (mij | cij ,aij) =
F (cij , aij0)∏3

k=1:mijk>0 F (mijk, aijk)F (cij −
∑3

k=1mijk, aij4)
, (8)
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with parameters aij = {aijk | k = 1, . . . , 4} and aij0 =
∑4

k=1 aijk. F is a function in the form of407

F (x, y) =


xB(y, x), if x > 0,

1, otherwise,

(9)

where B is the beta function. Note that cij −
∑3

k=1mijk is the read count of the reference408

nucleotide.409

To improve the interpretation of Eq. (8), we reparameterise it with aij = wijfij , where410

fij = {fijk | k = 1, . . . , 4},
∑4

k=1 fijk = 1 is a vector of expected frequencies of each nucleotide411

and wij represents overdispersion. fij are categorical hidden variables dependent on g′ij :412

fij =



f1 =
(
1
3f,

1
3f,

1
3f, 1 − f

)
, if g′ij = 0/0 or 0/-,

f2 =
(
1
2 − 1

3f,
1
3f,

1
3f,

1
2 − 1

3f
)
, if g′ij = 0/1,

f3 =
(
1 − f, 13f,

1
3f,

1
3f
)
, if g′ij = 1/1 or 1/-,

f4 =
(
1
2 − 1

3f,
1
2 − 1

3f,
1
3f,

1
3f
)
, if g′ij = 1/1′,

(10)

where f is the expected frequency of nucleotides whose existence is solely due to technical errors413

during sequencing. To be specific, f is defined as the effective sequencing error rate including414

amplification (where a nucleotide is wrongly amplified into another one during scWGA) and415

sequencing errors.416

wij is also a categorical hidden variable dependent on g′ij :417

wij =


w1, if g′ij = 0/0, 0/-, 1/1, or 1/-,

w2, if g′ij = 0/1 or 1/1′,

(11)

where w1 is wild type overdispersion and w2 is alternative overdispersion.418
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By plugging in Eqs. (10) and (11), Eq. (8) is equivalently represented with419

P (mij |cij , g′ij , f, wij) =



P0/0 = P
(
mij

∣∣∣ cij , g′ij = 0/0,f1, w1

)
,

P0/- = P
(
mij

∣∣∣ cij , g′ij = 0/-,f1, w1

)
,

P0/1 = P
(
mij

∣∣∣ cij , g′ij = 0/1,f2, w2

)
,

P1/1 = P
(
mij

∣∣∣ cij , g′ij = 1/1,f3, w1

)
,

P1/- = P
(
mij

∣∣∣ cij , g′ij = 1/-,f3, w1

)
,

P1/1′ = P
(
mij

∣∣∣ cij , g′ij = 1/1′,f4, w2

)
.

(12)

Note that P0/0 and P0/- share the same f and w1, showing that the model of nucleotide read420

counts is not enough to discriminate 0/0 from 0/-, and so do P1/1 and P1/-. In such cases,421

incorporating the model of sequencing coverage helps resolve the entanglement.422

To understand Eq. (12), first take P0/0 as an example. Theoretically, no alternative nu-423

cleotides are supposed to exist if no technical errors occur. Thus, any observations of any424

alternative nucleotides can only result from technical errors, and the expected frequency of the425

reference nucleotide is accordingly adjusted to 1−f . For another example P0/1, say the reference426

nucleotide is A and the alternative nucleotide is C, and both their read count frequencies are427

supposed to be 1/2 if no technical errors occur. For the other two alternative nucleotides, G and428

T, their observations could only result from technical errors, and both their frequencies are f/3.429

Moreover, either A or C may be sequenced as a different nucleotide (each with probability 1/2).430

In the former case, the frequency of A decreases by f/2. In the latter case, if C is sequenced as431

A (with probability f/3) the frequency of A increases by 1/2 × f/3. Overall, the frequency of A432

decreases by f/3, resulting in 1/2 −f/3.433

f , w1 and w2 in Eq. (12) are estimated with MCMC.434

SIEVE likelihood435

We denote the conditional variables in Eq. (1) as Θ = {T ,β, Q, h, η} and those in the model of436

raw read counts as Φ = {t, v, θ, f, w1, w2}. Given the input data D(1) and D(2), the log-likelihood437

of the SIEVE model is438

logL(Θ,Φ) = logL(1)(Θ,Φ) + logL(2)(f, w1), (13)
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where L(1) is the tree likelihood corrected for acquisition bias computed from candidate SNV439

sites in D(1), while L(2) is the likelihood computed from background sites in D(2), referred to as440

the background likelihood. Eq. (13) does not contain gij , g
′
ij , αij since they are marginalised out441

(see below).442

Since we only use data from SNV sites to compute the tree likelihood, the tree branch lengths443

β are prone to be overestimated [29, 30]. The overestimation of β due to only using data from444

SNV sites is called acquisition bias, which is corrected in SIEVE according to [44]:445

logL(1) = logP
(
D(1)

∣∣∣Θ,Φ)+ I ′ log

(
1

I

I∑
i=1

Ci

)
, (14)

where the first component is the uncorrected tree log-likelihood for SNV sites, and Ci in the446

second component is the likelihood of SNV site i being invariant (see below). The regularisation447

term I ′ log
(
1
I

∑I
i=1Ci

)
renders SIEVE in favor of trees with short branch lengths where L(1) is448

large due to the increasing averaged C.449

To compute the uncorrected tree log-likelihood, we marginalise out αij and g′ij :450

P (mij , cij |gij ,Φ) = P (mij , cij |gij , f, wij , t, v, θ)

=
∑

αij ,g′ij

P
(
mij , cij , αij , g

′
ij

∣∣ gij , f, wij , t, v, θ
)

=
∑

αij ,g′ij

P
(
mij

∣∣ cij , g′ij , f, wij

)
P
(
g′ij
∣∣ gij , αij

)
× P (cij |αij , t, v)P (αij | θ)

=



P0/0·P (cij |αij = 2, t, v) · (1 − θ)

+ P0/- · P (cij |αij = 1, t, v) · θ, if gij = 0/0,

P0/1·P (cij |αij = 2, t, v) · (1 − θ)

+
1

2
(P0/- + P1/-) · P (cij |αij = 1, t, v) · θ, if gij = 0/1,

P1/1·P (cij |αij = 2, t, v) · (1 − θ)

+ P1/- · P (cij |αij = 1, t, v) · θ, if gij = 1/1,

P1/1′ ·P (cij |αij = 2, t, v) · (1 − θ)

+ P1/- · P (cij |αij = 1, t, v) · θ, if gij = 1/1′,

(15)

where P0/0, P0/-, P0/1, P1/1, P1/-, P1/1′ are defined in Eq. (12) and P
(
g′ij

∣∣∣ gij , αij

)
is defined in451

Eq. (7). In the second line of Eq. (15), the probability is factorised out according to Fig. 1b.452
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To compute logP
(
D(1)

∣∣Θ,Φ) in Eq. (14), we assume that the SNV sites evolve indepen-453

dently and identically. By plugging Eqs. (1) and (15), logP
(
D(1)

∣∣Θ,Φ) is denoted by454

logP
(
D(1)

∣∣∣Θ,Φ) =
I∑

i=1

log
∑
g
(L)
i

P
(
D(1)

i

∣∣∣ g(L)i ,Φ
) ∑

g
(A)
i \gi,2J

P
(
g
(L)
i , g

(A)
i \ gi,2J

∣∣∣Θ)

=
I∑

i=1

log
∑
g
(L)
i

[
J∏

j=1

P (mij , cij | gij ,Φ)
∑

g
(A)
i \gi,2J

P
(
g
(L)
i , g

(A)
i \ gi,2J

∣∣∣Θ)]

=
I∑

i=1

J∑
j=1

log
∑

g
(L)
i ,g

(A)
i \gi,2J

[
P (mij , cij | gij ,Φ)

× P
(
g
(L)
i , g

(A)
i \ gi,2J

∣∣∣Θ)],

(16)

which is efficiently computed out by Felsenstein’s pruning algorithm [45], with the extension of455

the model of raw read counts applied on leaves. Specifically, the Fenselstein’s pruning algorithm456

is applied to an extended tree T , where additional leaf nodes corresponding to the data are457

attached at the bottom of T : for each node corresponding to genotype gij there is a leaf node458

added, corresponding to data (mij , cij), and the transition probability between the genotype459

node and the leaf is given by Eq. (15). For I candidate SNV sites, J cells and K genotype in G460

(for SIEVE K = 4), the time complexity of Felsenstein’s pruning algorithm is O(IJK2).461

Ci in Eq. (14) is determined similarly to Eq. (16) by computing the joint probability of462

observing the data D(1)
i and g

(L)
i = 0/0:463

Ci = P
(
D(1)

i , g
(L)
i = 0/0

∣∣∣Θ,Φ)
= P

(
D(1)

i

∣∣∣ g(L)i = 0/0,Φ
) ∑

g
(A)
i \gi,2J

P
(
g
(L)
i = 0/0, g

(A)
i \ gi,2J

∣∣∣Θ)

=
J∏

j=1

P (mij , cij | gij = 0/0,Φ)
∑

g
(A)
i \gi,2J

P
(
g
(L)
i = 0/0, g

(A)
i \ gi,2J

∣∣∣Θ) .
(17)

Formally, to compute the background likelihood, we should account for the fact that the464

background sites, similarly to the variant sites, also evolve under the phylogenetic model and465

involve similar computations as above. This, however, would result in a large additional com-466

putational burden due to the large number of background sites compared to the variant sites.467

Thus, to estimate the background log-likelihood efficiently, we make several simplifications and468

compute it only approximately. First, we assume that across I ′ background sites each cell has469
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the same genotype 0/0 and both alleles are covered. We further ignore the model of sequenc-470

ing coverage and the tree log-likelihood in the computations. As a result, by employing an471

alternative expression of Dirichlet-multinomial distribution logL(2) is efficiently obtained as472

logL(2)(f, w1) =
I′∑
i=1

J∑
j=1

logP0/0

=
I′∑
i=1

J∑
j=1

log

[
Γ(w1)Γ(cij + 1)

Γ(cij + w1)

3∏
k=1

Γ
(
mijk + 1

3fw1

)
Γ
(
1
3fw1

)
Γ(mijk + 1)

×
Γ
(
cij −

∑3
k=1mijk + (1 − f)w1

)
Γ((1 − f)w1)Γ

(
cij −

∑3
k=1mijk + 1

)]

= I ′J

[
log Γ(w1) − 3 log Γ

(
1

3
fw1

)
− log Γ((1 − f)w1)

]

+

max(cij)∑
c=1

Nc(log Γ(c+ 1) − log Γ(c+ w1))

+
3∑

k=1

max(mijk)∑
mk=1

Nmk

(
log Γ

(
mk +

1

3
fw1

)
− log Γ(mk + 1)

)

+

max(cij−
∑3

k=1 mijk)∑
c−

∑3
k=1 mk=1

Nc−
∑3

k=1 mk

(
log Γ

(
c−

3∑
k=1

mk + (1 − f)w1

)

− log Γ

(
c−

3∑
k=1

mk + 1

))
,

(18)

where P0/0 is defined in Eq. (12). Nc, Nmk
for k = 1, 2, 3, and Nc−

∑3
k=1 mk

represent, across473

I ′ background sites and J cells, the unique occurrences of sequencing coverage c, of alternative474

nucleotide read counts m1,m2,m3, and of reference nucleotide read counts c −
∑3

k=1mk, re-475

spectively. In Eq. (18), some items, namely log Γ(c + 1), − log Γ(mk + 1) for k = 1, 2, 3, and476

− log Γ
(
c −

∑3
k=1mk + 1

)
, only depends on the data, which remain constants during MCMC.477

Therefore, they are ignored in the computation of background likelihood. It is clear that the478

background likelihood helps estimate f and w1.479

The time complexity of Eq. (18) is O(c) with c being the number of unique values of se-480

quencing coverage across all cells and background sites. Since IJK2 is usually much larger than481

c, the overall time complexity of model likelihood is O(IJK2).482

Priors483

To define priors for model parameters and for the tree coalescent, we employ the prior distri-484

butions defined in BEAST 2. We impose on T and β in Eq. (1) a prior distribution following485
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the Kingman coalescent process with an exponentially growing population. The tree prior is486

parameterised by scaled population size M and exponential growth rate q, and is denoted by487

P (T ,β |M, e), (19)

whose analytical form is defined in [46]. M and e are hidden random variables and are estimated488

using MCMC. Note that, by default, M represents the number of time units, e.g., the number489

of years, and the mutation rate is measured by the number of mutations per time unit per site.490

Their product results in the unit of branch length, i.e., the number of mutations per site. Since491

scDNA-seq data usually does not contain temporal information as a result of collecting samples492

at the same time, it is impossible to differentiate M from the mutation rate. However, if the493

mutation rate is known, one could alternatively estimate a time-calibrated cell phylogeny.494

As prior distributions, we assign to M495

P (M | δ) =
1

δ
, (20)

where δ is the current proposed value of M . Note that this is supposed to be normalised to496

define a proper probability distribution, but this form is sufficient to define a proper posterior497

(see Section Posterior and MCMC).498

For e we choose499

e |λ, ϵ ∼ Laplace(λ, ϵ), (21)

where we choose mean λ = 10−3 and scale ϵ = 30.7 (default in the BEAST 2 software). We500

choose an exponential distribution as the prior for η in Eq. (1):501

η | γ ∼ exp(γ), (22)

where γ = 1.502

For the model of sequencing coverage described in Eqs. (3) and (4), we set the prior for t503

within a large range of values with504

t | ρ ∼ Uniform(0, ρ), (23)
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where ρ = 1000, and the prior for v with505

v | ζ ∼ exp(ζ), (24)

where ζ = 25. In terms of θ in Eq. (5), it also has a uniform prior:506

θ |u ∼ Uniform(0, u), (25)

where u = 1.507

For the model of nucleotide read counts described in Eqs. (10) to (12), we choose an expo-508

nential prior for f :509

f | τ ∼ exp(τ), (26)

where τ = 0.025, and a log normal prior for both w1 and w2:510

w1 | ξ1, ψ1 ∼ Log-Normal(ξ1, ψ1),

w2 | ξ2, ψ2 ∼ Log-Normal(ξ2, ψ2),

(27)

where we choose for w1 the mean ξ1 = 3.9 and the standard deviation ψ1 = 1.5, and for w2 the511

mean ξ2 = 0.9 and the standard deviation ψ2 = 1.7. These specific values reflect our belief that512

w1 is greater than w2, while both distributions cover a large range of possible values for w1 and513

w2.514

Posterior and MCMC515

With the model likelihood and priors defined, the posterior distribution of the unknown param-516

eters is517

P
(
T ,β,M, e, η, t, v, θ, f, w1, w2

∣∣∣D(1),D(2)
)

=
1

Z
P
(
D(1),D(2)

∣∣∣ T ,β, η, t, v, θ, f, w1, w2

)
× P (T ,β |M, e)P (M | δ)P (e |λ, ϵ)P (η | γ)

× P (t | ρ)P (v | ζ)P (θ |u)P (f | τ)

× P (w1 | ξ1, ψ1)P (w2 | ξ2, ψ2),

(28)

where Z is a normalisation constant, representing the probability of the observed data.518

Since the posterior distribution does not have a closed-form analytical formula, we employ519

25

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2022. ; https://doi.org/10.1101/2022.03.24.485657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485657
http://creativecommons.org/licenses/by-nc-nd/4.0/


the MCMC algorithm with Metropolis-Hastings kernel to sample from the posterior distribution520

in Eq. (28). Given the current state of the parameters q, we propose a new state q∗ according to521

proposal distributions P (q∗|q) that assure the reversibility and ergodicity of the Markov chain.522

With one parameter changed a time, q∗ is accepted with probability523

min

{
1,
P
(
T ∗,β∗,M∗, e∗, η∗, t∗, v∗, θ∗, f∗, w∗

1, w
∗
2

∣∣D(1),D(2)
)
P (q | q∗)

P
(
T ,β,M, e, η, t, v, θ, f, w1, w2

∣∣D(1),D(2)
)
P (q∗ | q)

}
, (29)

where the normalisation constant Z cancels out after plugging in Eq. (28).524

For sampling the structure of the cell phylogeny, we take advantage of proposal distributions525

implemented in the BEAST 2 software [46] and modify them to make sure they are compatible526

with our tree topology, so that the sampled trees are binary and contain a trunk. Specifically,527

the tree branch lengths are changed by scaling the heights of the internal nodes. For tree topo-528

logical exploration, we use the Wilson-Balding move to perform subtree pruning and regrafting.529

Specifically, a random node and half of its subtree is pruned and reattached to a random branch530

not belonging to the moved subtree. A subtree-slide move is also used, where a random node531

and half of its subtree slides either upwards or downwards along branches and cross at least one532

node. Both those two moves include changes to the lengths of some branches. The final type of533

move swaps two randomly selected subtrees.534

For sampling unknown parameters, we perform either scaling operations or random Gaussian535

walks.536

SIEVE runs with a two-stage sampling strategy. In the first stage the acquisition bias cor-537

rection is switched off and all parameters are explored, while in the second stage the acquisition538

bias correction is turned on and parameters not affecting branch lengths are fixed with their539

estimates from the previous stage. This two-stage strategy proved to yield more accurate pa-540

rameter and tree estimates than a strategy where both parameters and tree would be explored541

at once, with the acquisition bias correction enabled. Additionally, the initial tree in the second542

stage is set to the tree summarised from the first stage.543

Variant calling, ADO calling and maximum likelihood gene annotation544

During the sampling process g
(L)
i , g

(A)
i , g′ij and αij (Eqs. (1), (15) and (16)) are hidden variables545

that are marginalised out. Therefore, to obtain estimates of these hidden variables, we infer546

their maximum likelihood configuration with the max-sum algorithm [47], using the maximum547
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Genotype transition Mutation event

0/0 → 0/1 Single mutation
0/0 → 1/1 Homozygous simultaneous double mutation
0/0 → 1/1′ Heterozygous simultaneous double mutation
0/1 → 0/0 Single back mutation
1/1 → 0/1 Single back mutation
1/1′ → 0/1 Single back mutation
0/1 → 1/1 Homozygous single mutation addition
0/1 → 1/1′ Heterozygous single mutation addition
1/1 → 0/0 Double back mutation
1/1′ → 0/0 Double back mutation
1/1′ → 1/1 Homozygous substitute single mutation
1/1 → 1/1′ Heterozygous substitute single mutation

Table 2: Twelve types of mutation categories that SIEVE is able to identify.

clade credibility tree [48] and parameters estimated from the MCMC posterior samples.548

To be specific, by determining the maximum likelihood genotypes of the leaves (g
(L)
i ), we549

are able to call variants. By inferring the maximum likelihood g′ij and αij , the ADO state is550

determined. Moreover, by computing the maximum likelihood genotypes of the internal nodes551

(g
(A)
i ), SIEVE maps mutations to specific tree branches. Mutation events are classified into552

different categories (see Table 2).553

scDNA-seq data simulator554

In order to benchmark the performance of SIEVE against those of other published methods,555

we simulated scDNA-seq data by modifying CellCoal [49] (commit 594e063). In contrast to556

CellCoal, the sequencing coverage is generated according to Eqs. (3) to (6). Given the sequencing557

coverage, read counts are simulated with a Multinomial distribution including errors. Input558

configuration follows the one described for CellCoal [49].559

The simulator mimics both the biological evolution and the sequencing process. We first560

generated a binary genealogical cell lineage tree following the coalescent process assuming a561

strict molecular clock and created a reference genome where each site was initialised by the562

reference genotype with one of the four nucleotides. With a specific mutation rate, each site563

was evolved independently along the tree according to a rate matrix which contains ten diploid564

genotypes encoded with nucleotide pairs (Supplementary Table 2). The rate matrix allows565

mutations and back mutations, where the probability of the latter is 1/3 of the former. All566

simulated sites for which at least one cell has a non-reference genotype are considered as true567

SNV sites. Next, we added at most one ADO to cell j at site i according to the ADO rate. If568
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ADO happens, the number of sequenced alleles αij drops from two to one. We recorded the true569

ADO states across cells for the SNV sites. Size factors for cells in Eq. (4) were sampled from570

a normal distribution (mean = 1.2, variance = 0.2). Using the negative binomial distribution,571

we simulated the sequencing coverage with given t and v. Based on the ADO-affected genotype572

and sequencing coverage, the read count for each nucleotide was simulated using a Multinomial573

distribution with a given amplification error rate and sequencing error rate.574

Simulation design575

We designed simulations to compare multiple methods in different aspects. We assumed that576

the tumour cell samples belonged to an exponentially growing population (growth rate = 10−4)577

with an effective population size of 104. The number of tumour cells was chosen to be either 40578

or 100. We selected three mutation rates: 10−6, 8 × 10−6, and 3 × 10−5. For different mutation579

rates, different total number of sites were chosen to result in around 1000 SNV sites for 100 cells580

(1.3 × 105 sites for 10−6, 2 × 104 sites for 8 × 10−6, and 6.5 × 103 sites for 3 × 10−5), as well as581

between 250 to 1000 SNV sites for 40 cells (8 × 104 sites for 10−6, 2 × 104 sites for 8 × 10−6,582

and 5 × 103 sites for 3 × 10−5). Additionally, we varied t and v in Eqs. (3) and (4) to simulate583

different coverage qualities. For high quality data, we chose high mean (t = 20) and low variance584

(v = 2) of allelic coverage. For medium quality data, we chose high mean (t = 20) and medium585

variance (v = 10). For low quality data, we chose low mean (t = 5) and high variance (v = 20),586

which was specifically created to mimic the CRC28 dataset.587

Other important parameters in the simulation were fixed as follows: in Eq. (5) θ = 0.163,588

in Eq. (12) w1 = 100 and w2 = 2.5, and both amplification error rate and sequencing error rate589

were 10−3, which resulted in the effective sequencing error rate f ≈ 2 × 10−3 in Eq. (12).590

We designed in total 18 simulation scenarios, each repeated 20 times. The benchmarking591

framework was built using Snakemake [50].592

Measurement of cell phylogeny accuracy and quality of variant calling593

To assess the accuracy of the cell phylogeny reconstruction considering branch lengths, we com-594

puted the rooted BS distance from the inferred tree to the true tree [35]. For any two trees,595

this difference is computed as:596

dBS =

√∑
i

(
l
(s)
1i − l

(s)
2i

)2
+
∑
i

(
l
(u)
1i

)2
+
∑
i

(
l
(u)
2i

)2
. (30)
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where l
(s)
ji represents the length of a branch shared by both trees, and l

(u)
ji represents the length597

of a branch i that is unique for tree j.598

To assess the accuracy of the cell phylogeny reconstruction ignoring branch lengths we used599

the normalised RF distance [36]:600

dRF =
n
(u)
1 + n

(u)
2

n1 + n2
, (31)

where nj denotes the total number of branches in tree j, while n
(u)
j represents the number601

branches exclusive of tree j.602

Thus, rooted BS distance and normalised RF distance values equal to 0 indicate a perfect603

tree reconstruction. For SIEVE and SiFit, we compute both normalised RF distance and rooted604

BS distance in the rooted tree mode. For CellPhy, we compute these metrics in the unrooted605

tree mode as it infers an unrooted tree from data only containing tumour cells. Since SCIPhI606

reports a rooted tree without branch lengths, we can only compute the normalised RF distance.607

Rooted BS distance and normalised RF distance values were computed using the R package608

phangorn [51].609

To evaluate the variant calling and ADO calling results, we computed precision, recall, F1610

score and false positive rate (FPR). For variant calling, we separately compared the perfor-611

mance in calling the single mutant genotype and double mutant genotypes. In particular, when612

we evaluated the accuracy of single mutant genotype calling, any identification of double mu-613

tant genotypes whose true genotype is single mutant genotype was counted as a false negative.614

Moreover, we analysed two different types of false positives in single mutant genotype calling.615

The first type corresponds to single mutation calls for sites where the true genotype is a wildtype616

genotype. The second type are single mutant calls for sites where the true genotype is a double617

mutant.618

For SIEVE and Monovar, we computed the recall, precision, F1 score, and FPR for single619

mutant genotype calling and double mutant genotype calling. For SCIPhI, we only computed620

metrics for single mutant genotype calling as it does not call double mutant genotypes. Moreover,621

we evaluated the accuracy of calling ADO states only for SIEVE, as it is the only method that622

is able to call them.623
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Configurations of methods624

For Monovar (commit 68fbb68), we used the true values of θ and f as priors for false negative625

rate and false positive rate and default values for other options.626

For SCIPhI (commit 34975f7), we ran it with default options and 5 × 105 iterations.627

To run CellPhy (commit 832f6c2) and SiFit (commit 9dc3774), we fed the required data with628

variants called by Monovar. For CellPhy, we piped the data in VCF format and initialised the629

tree search with three parsimonious trees. We instructed the tool to use a built-in rate matrix630

with ten genotypes (GT10), a stationary nucleotide frequency distribution learned from the data631

(FO), an error model applied to the leaves (E), and the Gamma model of site-wise substitution632

rate variation (G). For SiFit, we fed the input data as a ternary matrix and used the true values633

of θ and f as the prior for false negative rate and the estimated false positive rate, respectively.634

We ran it with 2 × 105 iterations.635

On the simulated data, we ran SIEVE with a strict molecular clock model for 2 × 106 and636

1.5×106 iterations for the first and the second sampling stage, respectively. On the real datasets,637

we used a log-normal relaxed molecular clock model to take into consideration branch-wise638

substitution rate variation. To achieve better mixed Markov chains, we employed a optimised639

relaxed clock model in [37] instead of the default one in BEAST 2.640

Since more parameters are added when using the relaxed molecular clock model, we ran641

the analysis with 3 × 106 iterations for the first stage and 2.5 × 106 iterations for the second,642

respectively. Note that the parameters introduced by the relaxed molecular clock model are also643

explored in the second sampling stage. The SNVs were then annotated using Annovar (version644

2020 Jun. 08) [52]. In the main text, the tree was plotted using ggtree [53] and the genotype645

heatmap was plotted using ComplexHeatmap [54].646

Data availability647

Raw single-cell whole-genome sequencing data from CRC28 have been deposited in the Sequence648

Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) database under the accession code649

XXXXX. We have additionally analysed two published single-cell datasets ([40, 41]). Raw650

sequencing data for these datasets are available from the SRA database under accession codes651

SRA053195 (TNBC16) and SRP067815 (CRC48).652
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Code availability653

SIEVE is implemented in Java and is accessible at https://github.com/szczurek-lab/SIEVE.654

DataFilter for selecting candidate variant sites is available at https://github.com/szczurek-655

lab/DataFilter. The simulator is hosted at https://github.com/szczurek-lab/SIEVE_656

simulator, and the reproducible benchmarking framework is available at https://github.657

com/szczurek-lab/SIEVE_benchmark_pipeline. The scripts for generating all figures in this658

paper are hosted at https://github.com/szczurek-lab/SIEVE_analysis. All aforementioned659

code are freely accessible under a GNU General Public License v3.0 license.660
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Extended Data Fig. 1: Correlation plot of the rooted BS distance against the number of
background sites in log10 scale. Varying are the number of cells and the coverage quality. Rooted
BS distance data points are coloured by the corresponding mutation rates. Kendall is the method for
computing the correlation coefficient τ , which is invariant to the log transformation of the number of
background sites. We choose 0.01 as the significance threshold.
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Extended Data Fig. 2: Additional benchmarking results of the SIEVE model regarding
parameter estimates. Each simulation is repeated n = 20 times with each repetition denoted by
coloured dots. The grey dashed lines represent the ground truth used to generate the simulated data.
a-d, Box plots of parameter estimation accuracy for four important parameters in the model of raw read
counts (Methods): effective sequencing error rate (a), ADO rate (b), wildtype overdispersion (c) and
alternative overdispersion (d).
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Extended Data Fig. 3: Additional benchmarking results of the SIEVE model regarding
variant calling. Each simulation is repeated n = 20 times with each repetition denoted by coloured
dots. The grey dashed lines represent the optimal values of each metric. a-b, Box plots of the single
mutant genotype calling results measured further by the fraction of false positives in the ground truth
negatives, i.e., the sum of false positives and true negatives, (false positive rate, a) and the harmonic
mean of recall and precision (F1 score, b). c-d, Box plots of the double mutant genotype calling results
measured further by false positive rate (c) and F1 score (d), where the variant calling results when
mutation rate is 10−6 are omitted as very few double mutant genotypes are generated (less than 0.1%).
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Extended Data Fig. 4: Types of false positives in single mutant genotype calling. The
grey dashed lines represent the optimal proportions of each type. a-b, Box plots of the types of false
positives in single mutant genotype calling, including the proportion of true wildtype (a) and true double
mutant genotype (b). For single mutant genotype calling, the sum of the precision, the proportion of
true wildtype and the proportion of true double mutant genotype is 1.
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Extended Data Fig. 5: Benchmarking results of the SIEVE model regarding ADO calling.
Each simulation is repeated n = 20 times with each repetition denoted by coloured dots. The grey dashed
lines represent the optimal values of each metric. a-d, Box plots of the ADO calling results measured in
recall (a), precision (b), false positive rate (c) and F1 score (d).
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Cell origin

Cancer tissue 1

Cancer tissue 2

Cancer tissue 3

Extended Data Fig. 6: Illustration of branch lengths of the phylogenetic tree inferred from
CRC28 by SIEVE. Shown is exactly the same tree as in Fig. 3, except that cell names, subclone poste-
rior probabilities and gene annotations are removed and no branches are folded. Red bars annotated to
internal nodes except the root are the 95% highest posterior density (HPD) intervals of the corresponding
branch lengths.
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Extended Data Fig. 7: Illustration of branch lengths of the phylogenetic tree inferred from
TNBC16 [40] by SIEVE. Shown is exactly the same tree as in Fig. 4, except that cell names, subclone
posterior probabilities and gene annotations are removed and no branches are folded. Red bars annotated
to internal nodes except the root are the 95% HPD intervals of the corresponding branch lengths.
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Extended Data Fig. 8: Results of phylogenetic inference and variant calling for CRC48 [41]
dataset. Shown is SIEVE’s maximum clade credibility tree. Three exceptionally long branches are folded
with the number of slashes proportional to the branch lengths. Cell names are annotated to the leaves
of the tree, coloured by the corresponding biopsies. The numbers at each node represent the posterior
probabilities (threshold p > 0.5). At each branch, non-synonymous mutations are depicted in different
colours including single mutations in blue and parallel single mutations in pink. a-b, Variant calling
heatmap for SIEVE (a) and Monovar (b). Listed in the legend are the categories of predicted genotypes
by each method. Cells in the row are in the same order as that of leaves in the phylogenetic tree.
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Extended Data Fig. 9: Illustration of branch lengths of the phylogenetic tree inferred from
CRC48 [41] by SIEVE. Shown is exactly the same tree as in Extended Data Fig. 8, except that cell
names, subclone posterior probabilities and gene annotations are removed and no branches are folded.
Red bars annotated to internal nodes except the root are the 95% HPD intervals of the corresponding
branch lengths.
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Mean of allelic coverage t Variance of allelic coverage v

CRC28 4.3 19.6
TNBC16 10.2 207.9
CRC48 19.4 635.6

Extended Data Table 1: Inferred mean and variance of allelic coverage for real datasets.

46

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2022. ; https://doi.org/10.1101/2022.03.24.485657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485657
http://creativecommons.org/licenses/by-nc-nd/4.0/

