

1 SIEVE: joint inference of single-nucleotide variants and cell 2 phylogeny from single-cell DNA sequencing data

3 Senbai Kang¹, Nico Borgsmüller^{2,3}, Monica Valecha^{4,5}, Jack Kuipers^{2,3}, Joao Alves^{4,5}, Sonia Prado-López^{4,5,6},
4 Débora Chantada⁷, Niko Beerenswinkel^{2,3}, David Posada^{4,5,8}, and Ewa Szczurek^{1,*}

5 ¹*Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland*

6 ²*Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland*

7 ³*SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland*

8 ⁴*CINBIO, Universidade de Vigo, 36310 Vigo, Spain*

9 ⁵*Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO*

10 ⁶*Institute of Solid State Electronics E362, Technische Universität Wien, Austria*

11 ⁷*Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain*

12 ⁸*Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain*

13 *Correspondence: szczurek@mimuw.edu.pl

14 Abstract

15 Single-cell DNA sequencing (scDNA-seq) has enabled the identification of single nucleotide so-
16 matic variants and the reconstruction of cell phylogenies. However, statistical phylogenetic mod-
17 els for cell phylogeny reconstruction from raw sequencing data are still in their infancy. Here
18 we present SIEVE (SIngle-cell EVolution Explorer), a statistical method for the joint inference
19 of somatic variants and cell phylogeny under the finite-sites assumption from scDNA-seq reads.
20 SIEVE leverages raw read counts for all nucleotides at candidate variant sites, and corrects the
21 acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods both
22 in phylogenetic accuracy and variant calling accuracy. We apply SIEVE to three scDNA-seq
23 datasets, for colorectal (CRC) and triple-negative breast cancer (TNBC), one of them generated
24 by us. On simulated data, SIEVE reliably infers homo- and heterozygous somatic variants. The
25 analysis of real data uncovers that double mutant genotypes are rare in CRC but unexpectedly
26 frequent in TNBC samples.

27 Introduction

28 Intra-tumour heterogeneity is a consequence of accumulated somatic mutations during tumour
29 evolution [1, 2] and the culprit of acquired resistance and relapse in clinical cancer therapy [3,
30 4]. Phylogenetic inference is a powerful tool to understand the development of intra-tumour
31 heterogeneity in time and space. Variant allele profiles derived from bulk sequencing data have
32 typically been used to reconstruct the tumour phylogeny at the level of clones [5–9]. More
33 recently, the development of scDNA-seq [10–12] has enabled single-nucleotide variant (SNV)
34 calling [13–18] and phylogeny reconstruction [15, 19–26] down to the single-cell level.

35 A statistical phylogenetic model is defined by an instantaneous transition rate matrix, a tree
36 topology and tree branch lengths. Such a model defines a Markov process for the evolution
37 of nucleotides or genotypes [27]. Studying the evolutionary process and estimating important
38 parameters such as the branch lengths using statistical phylogenetic models has a long tradition,
39 benefits from well established theory, and has many applications, such as interpreting temporal
40 cell dynamics [28].

41 However, compared to statistical phylogenetic models, most methods for phylogeny recon-
42 struction from scDNA-seq operate within a simpler modelling framework. First, although branch
43 lengths are a critical part of a phylogenetic tree and reflect the real evolutionary distances among
44 cells, they are often ignored. Those approaches that do infer branch lengths [22, 26] employ the
45 data from the variant sites and ignore information from *background sites* (that have a wildtype
46 genotype), which may lead to so-called acquisition bias and overestimated branch lengths [29,
47 30].

48 Moreover, variant calling and phylogenetic inference are commonly considered independent
49 tasks. Variant calling is typically performed first, and phylogenetic inference is performed on
50 the called variants. However, variant calling, particularly from scDNA-seq data, can be ham-
51 pered by missing data and low coverage, potentially resulting in wrong calls that could mislead
52 phylogenetic inference. A feasible strategy to alleviate this problem is to integrate tree recon-
53 struction with variant calling [12], where phylogenetic information on cell ancestry is used to
54 obtain more reliable variant calls. Recently developed methods for scDNA-seq data approach
55 this strategy from different perspectives [15, 31]. However, those methods do not operate within
56 the statistical phylogenetic framework, in particular do not infer branch lengths of the tree.
57 Moreover, either they fully follow the infinite-sites assumption (ISA), which is often violated in

58 real datasets [32, 33], or relax this assumption to only a limited extent. As a result, they may
59 miss important events in the evolution of tumours. Thus, methods have not yet been developed
60 which, employing statistical phylogenetic models under the finite-sites assumption (FSA), infer
61 cell phylogeny from raw scDNA-seq data and simultaneously call variants.

62 To address this, we propose SIEVE, a statistical method that exploits raw read counts for
63 all nucleotides from scDNA-seq to reconstruct the cell phylogeny and call variants based on
64 the inferred phylogenetic relations among cells. To our knowledge, SIEVE is the first approach
65 that employs a statistical phylogenetic model following FSA, where branch lengths, measured
66 by the expected number of somatic mutations per site, are corrected for the acquisition bias
67 using the data from the background sites, and simultaneously calls variants and allelic dropout
68 (ADO) states from raw read counts data. The model is able to detect twelve different types of
69 mutation events in evolutionary history. SIEVE is implemented and available as a package of
70 BEAST 2, which allows for benefitting from other packages in this framework. Using simulated
71 data, we assess the performance of our model in comparison to existing methods. To illustrate
72 the functionality of SIEVE, we apply it to datasets from two patients with CRC and one with
73 TNBC.

74 Results

75 **SIEVE is a statistical method for joint inference of SNVs and cell phylogeny from**
76 **scDNA-seq data.** SIEVE takes as input raw read count data at candidate SNV sites, ac-
77 counting for the read counts for three alternative nucleotides and the total depth at each site
78 (Fig. 1a) and combines a statistical phylogenetic model with a probabilistic graphical model
79 of the read counts, incorporating a Dirichlet Multinomial distribution of the nucleotide counts
80 (Fig. 1b; Methods). The statistical phylogenetic model allows for acquisition and loss of muta-
81 tions on both maternal and paternal alleles (Fig. 1c). It considers four possible genotypes, 0/0
82 (referred to as *wildtype*), 0/1 (*single mutant*), 1/1 (*double mutant*, where the two alternative
83 nucleotides are the same) and 1/1' (*double mutant*, where the two alternative nucleotides are
84 different). With these genotypes, SIEVE is able to discern twelve different types of mutation
85 events (Table 2; Methods). Based on the inferred tree (Fig. 1d), SIEVE calls the maximum
86 likelihood somatic mutations (Fig. 1e). The tree contains a trunk joining the root representing a
87 healthy cell with the most recent common ancestor (MRCA) of the modelled cells, representing
88 the acquisition of clonal mutations at the initial stage of tumour progression. SIEVE leverages

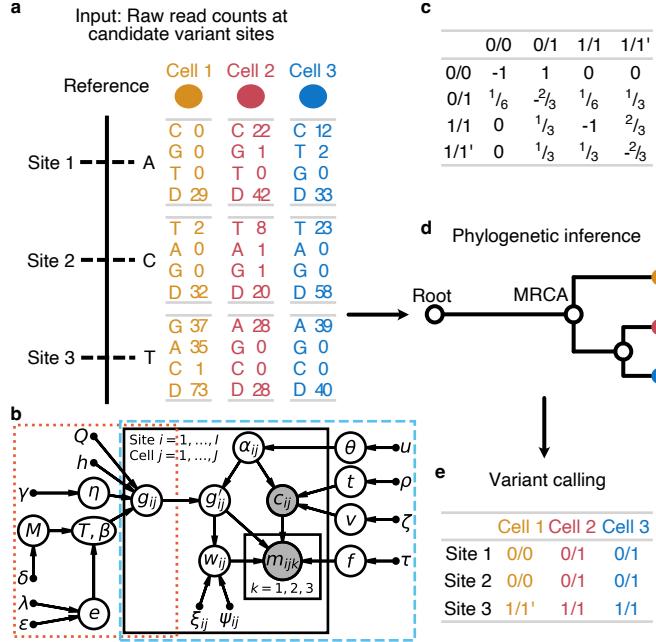


Fig. 1: Overview of the SIEVE model. **a**, Input data to SIEVE at candidate SNV sites. For a specific cell at an SNV site, fed to SIEVE are the read counts for all nucleotides: reads of the three alternative nucleotides with values in descending order and the total coverage (denoted by D in **a**). **b**, Graphical representation of the SIEVE model. Bridged by g_{ij} , the genotype for site i in cell j , the orange dotted frame encloses the statistical phylogenetic model, and the blue dashed frame highlights the model of raw read counts. Shaded circle nodes represent observed variables, while unshaded circle nodes represent hidden random variables. Small filled circles correspond to fixed hyper parameters. Arrows denote local conditional probability distributions of child nodes given parent nodes. The sequencing coverage c_{ij} follows a negative binomial distribution parameterised by the number of sequenced alleles α_{ij} , the mean of allelic coverage t and the variance of allelic coverage v . α_{ij} is a hidden categorical variable parameterised by ADO rate θ , which has a uniform prior with fixed hyper parameter u . t also has a uniform prior with fixed parameter ρ , while v has an exponential prior parameterised by ζ . The nucleotide read counts m_{ijk} given c_{ij} follow a Dirichlet-multinomial distribution parameterised by ADO-affected genotype g'_{ij} , which is a hidden random variable depending on α_{ij} and genotype g_{ij} , effective sequencing error rate f , which has an exponential prior with fixed hyper parameter τ , and overdispersion w_{ij} , which is a hidden categorical variable dependent on g'_{ij} parameterised by fixed parameters ξ_{ij} and ψ_{ij} for each category. g_{ij} is determined by the statistical phylogenetic model parameterised by fixed rate matrix Q , fixed number of categories h as well as shape parameter η with exponential prior for site-wise substitution rates, and tree topology \mathcal{T} along with branch lengths β . \mathcal{T} and β have a coalescent prior with an exponentially growing population parameterised by effective population size M , which has a multiplicative inverse prior, and growth rate e , which has a laplace prior parameterised by λ and ϵ . **c**, The transition rate matrix in the statistical phylogenetic model. During an infinitesimal time interval only one change is allowed to occur. **d**, The cell phylogeny inferred from the data with SIEVE. Not only is the tree topology crucial, but also the branch lengths. The root represents a normal cell, and the only direct child of the root is the most recent common ancestor (MRCA) of all cells. **e**, Variant calling given the inferred cell phylogeny. For further details see Methods.

89 the noisy raw read counts to integrate genotype uncertainty into cell phylogeny inference. Bene-
90 fitting from the inferred cell relationships, SIEVE is able to reliably infer the single-cell genotypes,

91 especially for sites where only few reads are available. SIEVE is implemented as a package of
92 BEAST 2, a flexible and mature framework for statistical phylogenetic modelling [34].

93 We investigated the performance of SIEVE using simulated data with different means and
94 variances of allelic coverage, reflecting different *coverage qualities* (Methods). Specifically, we
95 simulated data with low mean and high variance of allelic coverage (low quality), with high
96 mean and medium variance (medium quality), and with high mean and low variance (high
97 quality). Other important dataset characteristics were varied, including the number of cells and
98 mutation rate, which is measured by the number of accumulated somatic mutations per site per
99 generation.

100 **SIEVE accurately estimates tree topology and branch lengths.** We first evaluated
101 the accuracy of SIEVE in inferring the simulated cell phylogeny with branch lengths using the
102 rooted branch score (BS) distance [35] (Fig. 2a and Methods). We compared to CellPhy [26]
103 and SiFit [22], which were fed with the variant calls from Monovar [13]. Here, we gave SiFit an
104 advantage of setting the true positive error rate used in the simulation (Methods). Thanks to
105 the acquisition bias correction, SIEVE reports branch lengths as expected number of somatic
106 mutations per site, while CellPhy and SiFit per SNV site. SCIPhi [15] does not infer branch
107 lengths, hence its rooted BS distance could not be computed. SIEVE consistently outperformed
108 CellPhy and SiFit, regardless of the number of cells, mutation rate and coverage quality. This
109 may be because, in contrast to SIEVE, CellPhy and SiFit do not model raw reads and, im-
110 portantly for the rooted BS distance, do not correct the inferred branch lengths for acquisition
111 bias. We also found that the rooted BS distance of SIEVE had a negative nonlinear association
112 with the number of background sites (Extended Data Fig. 1), explaining the relatively greater
113 differences under higher mutation rates. These results proved the necessity for correcting the
114 acquisition bias with enough background sites to obtain accurate branch lengths.

115 As the rooted BS distance is dominated by the branch lengths, we further assessed SIEVE's
116 accuracy in inferring the tree structure using the normalised Robinson-Foulds (RF) distance [36].
117 Compared to CellPhy, SiFit and SCIPhi (Fig. 2b and Methods), SIEVE was the most robust
118 method to changes of mutation rate, number of cells and coverage quality. When the data hardly
119 contained mutations violating the ISA (mutation rate being 10^{-6} , with less than 0.1% double
120 mutant genotypes and at most 1% SNV sites with parallel mutations), all methods achieved a
121 similar median RF distance (around 0.15-0.3). Since in contrast to SCIPhi, SIEVE, CellPhy and

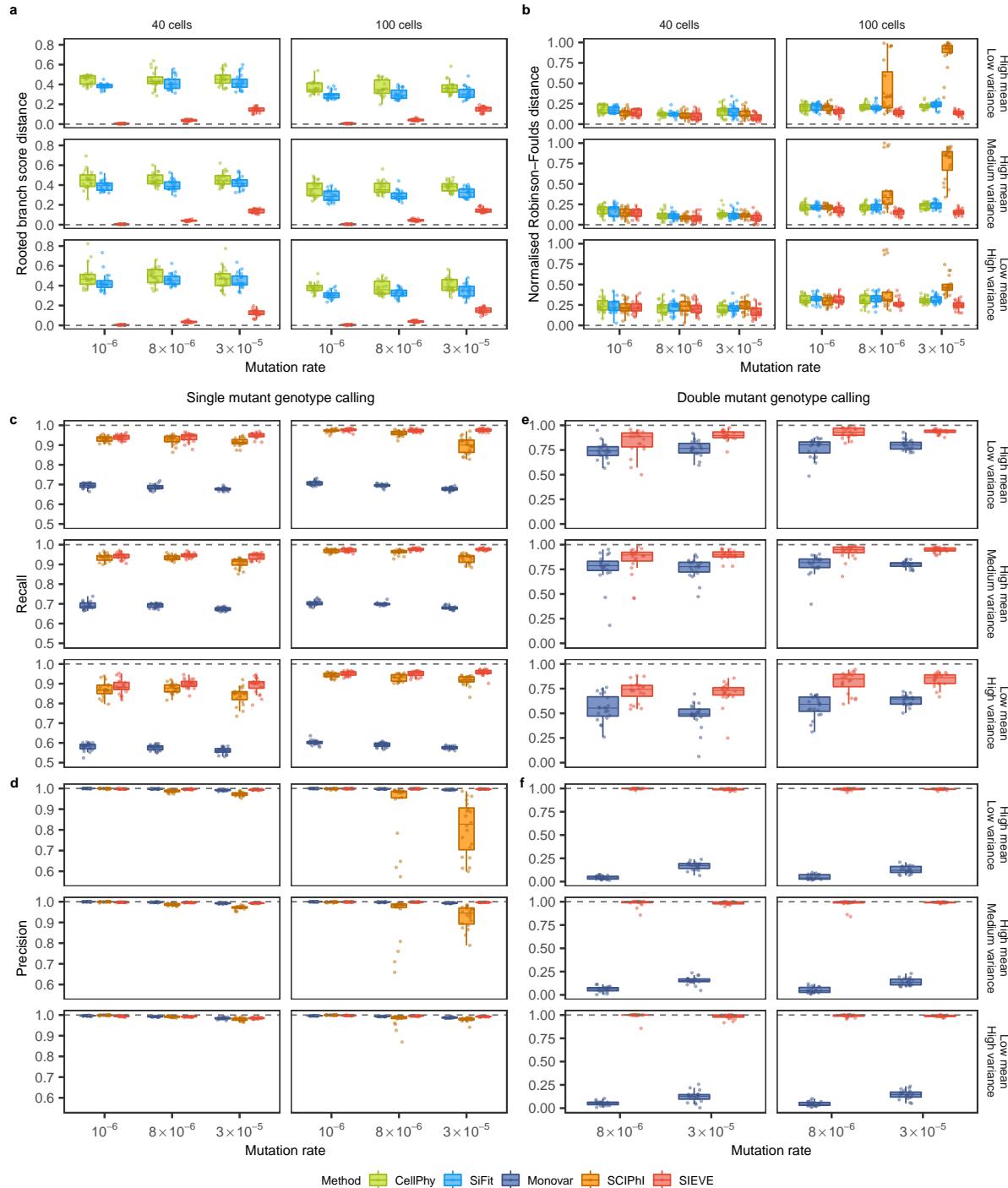


Fig. 2: Benchmarking result of the SIEVE model. Varying are the number of tumour cells, mutation rate and coverage quality. Each simulation is repeated $n = 20$ times with each repetition denoted by coloured dots. The grey dashed lines represent the optimal values of each metric. Box plots comprise medians, boxes covering the interquartile range (IQR), and whiskers extending to 1.5 times the IQR below and above the box. **a-b**, Box plots of the tree inference accuracy measured by the rooted BS distance where the branch lengths are taken into account (**a**) and the normalised RF distance where only tree topology is considered (**b**). **c-d**, Box plots of the single mutant genotype calling results measured by the fraction of true positives respectively in the ground truth positives, i.e., the sum of true positives and false negatives, (recall, **c**) as well as in the predicted positives, i.e., the sum of true positives and false positives, (precision, **d**). **e-f**, Box plots of the double mutant genotype calling results measured by recall (**e**) and precision (**f**), where the variant calling results when mutation rate is 10^{-6} are omitted as very few double mutant genotypes are generated (less than 0.1%).

122 SiFit employ statistical phylogenetic models following FSA, this indicates that models following
123 FSA are also applicable to data evolving under the ISA. SIEVE outperformed CellPhy and SiFit
124 when the number of cells and the mutation rate increased. When the data clearly violated the
125 ISA (mutation rates being 8×10^{-6} and 3×10^{-5} , with 0.02%-0.3% and 0.1%-1% double mutant
126 genotypes, as well as 2%-8% and 10%-27% SNV sites with parallel mutations indicative of FSA,
127 respectively), SCIPhi inferred reasonable tree topologies from datasets with a small number of
128 cells (40). However, its performance dramatically dropped with 100 cells, especially when the
129 data was of medium or high coverage quality. The behaviour of SCIPhi might be related to its
130 estimation of ADO rate and single mutant genotype calling in these scenarios.

131 **SIEVE accurately infers parameters in the model of raw read counts.** We next in-
132 vestigated the accuracy of parameter estimates, including *effective* sequencing error rate, ADO
133 rate, and wildtype and alternative overdispersion (Extended Data Fig. 2 and Methods). Here,
134 the effective sequencing error rate (Extended Data Fig. 2a) takes into account both amplifi-
135 cation and sequencing error rates in scDNA-seq. Wildtype and alternative overdispersion are
136 parameters in the distribution of nucleotide read counts related to different genotypes. The
137 former corresponds to genotype 0/0 and 1/1, while the latter to genotype 0/1 and 1/1'. SIEVE
138 accurately inferred most parameters in all simulated scenarios regardless of the number of cells,
139 mutation rate and coverage quality. Although SIEVE's accuracy of estimating ADO rate slightly
140 decreased with the coverage quality, it still was the best among the competing methods. For
141 data with medium and high coverage quality, 100 cells and higher mutation rates (8×10^{-6} and
142 3×10^{-5}), SCIPhi tended to overestimate ADO rates.

143 **SIEVE accurately calls single and double mutations.** Next, we assessed SIEVE's per-
144 formance in calling the single mutant genotype (Fig. 2c,d, Extended Data Fig. 3a,b, Extended
145 Data Fig. 4, and Methods). As opposed to Monovar, recall for SIEVE and SCIPhi increased
146 with the number of cells but was less sensitive to the coverage quality (Fig. 2c). The recall
147 of SIEVE was higher than that of SCIPhi by 0.16%-18.55% and that of Monovar by 28.89%–
148 71.74%. Unlike Monovar, both SIEVE and SCIPhi benefit from the information provided by
149 cell phylogenies. We speculate that the advantage of SIEVE over SCIPhi stems from the use of
150 raw read counts for all nucleotides, while SCIPhi only employs the sequencing coverage and the
151 read count of the most prevalent alternative nucleotide.

152 Moreover, SIEVE and Monovar achieved comparable precision (Fig. 2d) and false positive

153 rates (Extended Data Fig. 3a) regardless of the number of cells, mutation rate and coverage
154 quality. However, this did not hold for SCIPhi. By analysing the types of false positives among
155 the predicted single mutant genotypes (Extended Data Fig. 4 and Methods), we found that
156 SCIPhi tended to miscall wildtype genotypes as single mutant genotype (i.e., 0/0 are called as
157 0/1) (Extended Data Fig. 4a). This occurred with high mutation rates (8×10^{-6} and 3×10^{-5}),
158 especially in scenarios where SCIPhi inferred inaccurate trees (Fig. 2b) and overestimated ADO
159 rates (Extended Data Fig. 2b). The reason is twofold. First, the ISA upon which SCIPhi builds
160 naturally limits its application to data following FSA. Second, under these scenarios, SCIPhi
161 tends to mistake sites with no variant support for ADO events, and hence its high ADO rate.
162 SIEVE avoids such mistakes by leveraging a model of sequencing coverage (Methods), thereby
163 accounting for the related overdispersion and correctly estimating the ADO rate. We also noticed
164 that when data clearly violated ISA, both Monovar and SCIPhi miscalled more double mutant
165 genotypes as the single mutant genotype than SIEVE (Extended Data Fig. 4b).

166 We then focused on the results of double mutant genotype calling (Fig. 2e,f, Extended Data
167 Fig. 3c,d and Methods), where SCIPhi was excluded as it is unable to call such mutations. The
168 recall of double mutant genotypes for SIEVE and Monovar increased with the number of cells
169 and the coverage quality (Fig. 2e), while SIEVE showed higher recall for such genotypes than
170 Monovar. Moreover, SIEVE outperformed Monovar with high precision (almost 1, Fig. 2f) and
171 low false positive rate (almost 0, Extended Data Fig. 3c).

172 **SIEVE accurately calls ADOs for data of adequate coverage quality.** We further
173 assessed SIEVE's performance in ADO calling (Extended Data Fig. 5), where there are no
174 published methods for us to compare with. When calling ADOs, SIEVE's performance was
175 independent of the number of cells or mutation rate, but highly dependent on the coverage
176 quality. The reason is that SIEVE calls ADOs by inferring the number of sequenced alleles,
177 assuming it is proportional to the observed sequencing coverage (see Methods). Consequently,
178 for data with medium and high coverage quality the average F1 score of ADO calling was high
179 (0.86 and 0.93, respectively), whereas for data with low coverage quality, which is typical for
180 current scDNA-seq data, the ADO calling performance deteriorated, with average F1 score being
181 only 0.10. Since the coverage quality of real data is low, we do not report ADO calling results
182 for all real datasets analysed below (Extended Data Table 1).

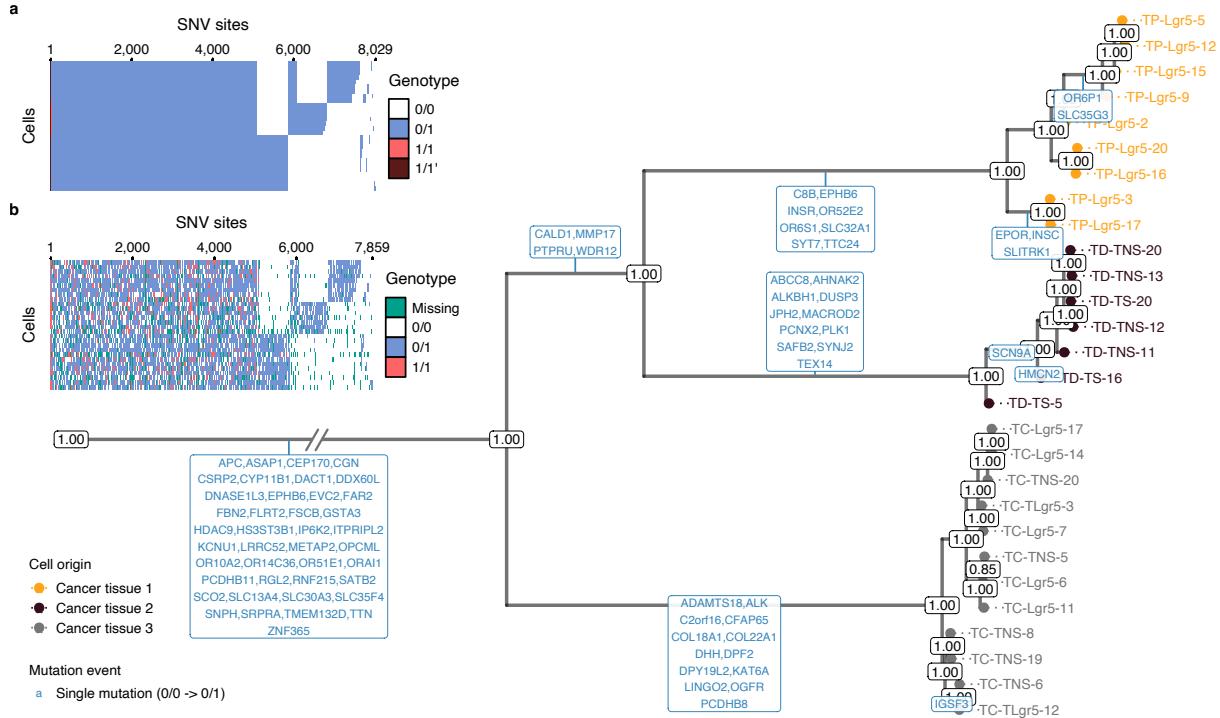


Fig. 3: Results of phylogenetic inference and variant calling for CRC28 dataset. Shown is SIEVE’s maximum clade credibility tree. The exceptionally long trunk has been folded (marked by slashes). Cells are coloured according to the corresponding biopsies. The numbers at each node represent posterior probabilities (threshold $p > 0.5$). At each branch, genes with non-synonymous mutations are depicted in blue. **a-b**, Variant calling heatmap for SIEVE **(a)** and Monovar **(b)**. Listed in the legend are the categories of predicted genotypes by each method. Cells in the row are in the same order as that of leaves in the phylogenetic tree.

183 **SIEVE inferred a phylogenetic tree and called variants for CRC cells.** We applied
 184 SIEVE to a new single-cell whole genome sequencing (scWGS) dataset, where 28 tumour cells
 185 were isolated from three primary tumour biopsies of a patient with CRC (CRC28; see Meth-
 186 ods). We identified 8,470 candidate SNV sites and 1,163,335,103 background sites. To take
 187 into account branch-wise substitution rate variation, we employed a relaxed molecular clock
 188 model [37] (same for the following datasets; see Methods). In the inferred maximum clade
 189 credibility (MCC) tree (Fig. 3; see [Extended Data Fig. 6](#) for the branch lengths), tumour cells
 190 grouped into three highly supported clades corresponding to the three biopsies. The estimated
 191 effective sequencing error and ADO rates were 7.6×10^{-4} and 0.20, respectively.

We mapped non-synonymous mutations to the internal branches (Methods), where only single mutations were found, indicating that the evolution of these mutational process likely followed the ISA. Many mutations resided on the trunk (clonal mutations), including established CRC driver genes [38, 39], such as *APC*.

SIEVE identified 8,029 SNV sites among the candidate SNV sites (Fig. 3a), where most

197 of the genotypes were single mutant and few were double mutant, including 1/1'. The variant
198 calling results of SIEVE and Monovar (Fig. 3b) were overall similar. However, the calls from
199 Monovar were clearly more noisy, with many missing entries and more double mutant genotypes,
200 some of which might be false positives according to the simulation results. The proportion of
201 genotypes called by SIEVE and Monovar were summarised in Supplementary Table 1 (same for
202 the following datasets).

203 **SIEVE inferred a phylogenetic tree and called variants for TNBC cells.** We then
204 applied SIEVE to a single-cell whole exome sequencing (scWES) dataset [40], containing 16
205 tumour cells collected from a patient with TNBC (TNBC16; see Methods). We identified 5,912
206 candidate SNV sites and 152,027,822 background sites. The estimated tree was supported by
207 high posterior probabilities (Fig. 4) with a relatively long trunk and short terminal branches
208 (Extended Data Fig. 7). We estimated that the effective sequencing error rate was 8.2×10^{-4}
209 and the ADO rate was 0.05.

210 By mapping non-synonymous mutations to the internal branches, we identified different types
211 of mutation events (Methods), including several violations of the ISA, such as back mutations
212 and parallel mutations. As expected, most of the mutations, including single and double mutant
213 genotypes, resided on the trunk, and some of them occurred in genes which were also reported
214 by the original study [40], such as *TBX3*, *NOTCH2*, *NOTCH3* and *SETBP1*. Although SIEVE
215 clustered cells differently from the original study, the high posterior probabilities (Fig. 4) indicate
216 that the tree inferred by SIEVE is more plausible.

217 SIEVE identified 5,895 SNV sites (Fig. 4a). In contrast to Monovar, SIEVE calls genotypes
218 for all analysed sites, including sites with missing data (Fig. 4b).

219 **SIEVE inferred a phylogenetic tree and called variants for CRC samples mixed with**
220 **normal cells.** Finally, we applied SIEVE to another scWES dataset [41], which consisted of 48
221 tumour and normal cells from a patient with CRC (CRC0827 in [41]; referred to as CRC48 below;
222 see Methods). We identified 707 candidate SNV sites as well as 119,486,190 background sites.
223 From the inferred phylogenetic tree (Extended Data Fig. 8 and 9), we inferred two tumour clades
224 matching their anatomical locations (cancer tissue 1 and 2) and one clade for normal cells. Nine
225 cells collected from tumour biopsies were clustered outside the tumour clades, suggesting that
226 these were normal cells within the tumour biopsies. We estimated that the effective sequencing
227 error rate was 8.3×10^{-4} and the ADO rate was 0.10.

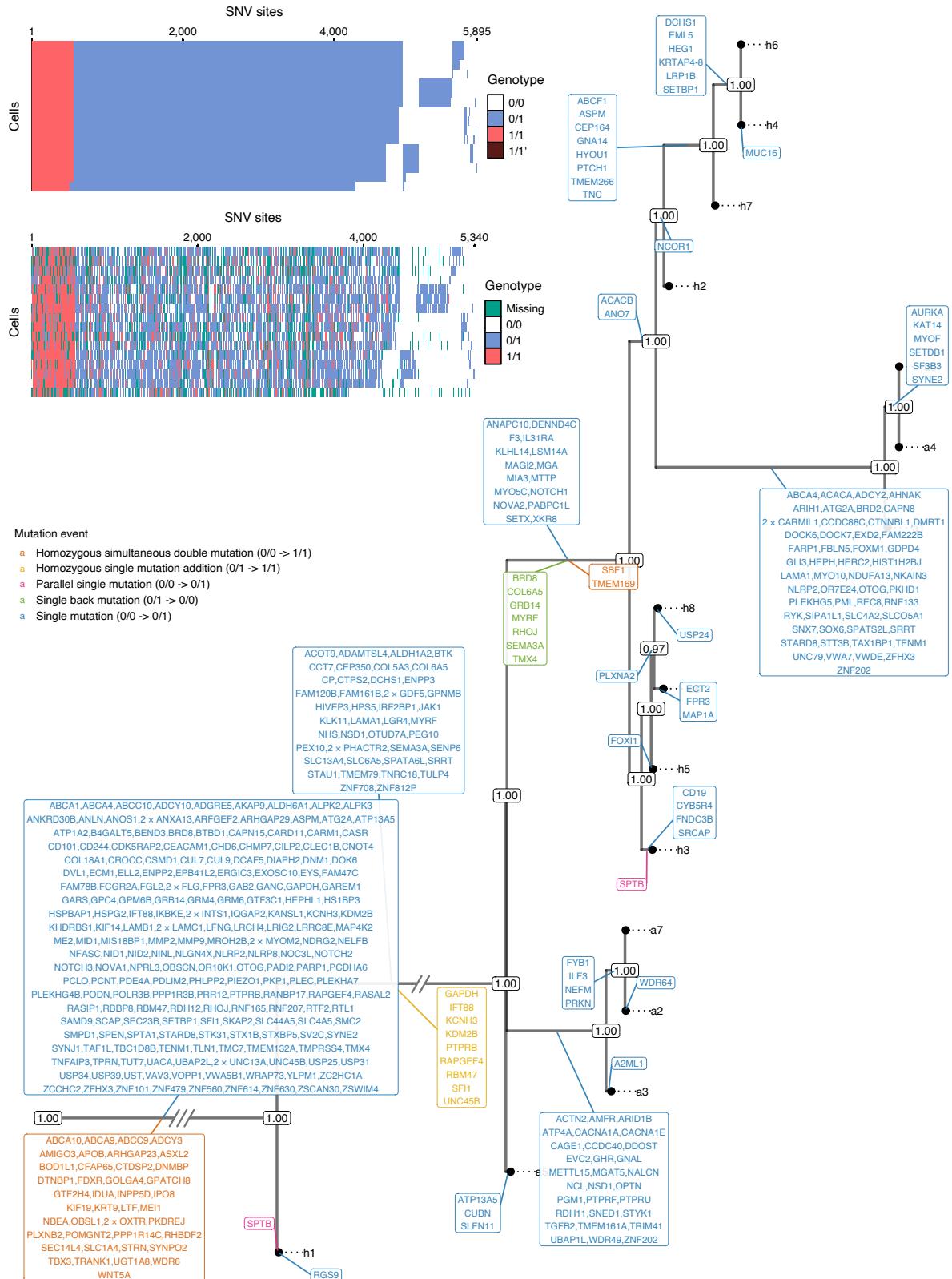


Fig. 4: Results of phylogenetic inference and variant calling for TNBC16 [40] dataset. Shown is SIEVE’s maximum clade credibility tree. Two exceptionally long branches are folded with the number of slashes proportional to the branch lengths. Tumour cell names are annotated to the leaves of the tree. The numbers at each node represent the posterior probabilities (threshold $p > 0.5$). At each branch, genes with non-synonymous mutations are depicted in different colours, representing various types of evolutionary events. **a-b**, variant calling heatmap for SIEVE (**a**) and Monovar (**b**). Listed in the legend are the categories of predicted genotypes by each method. Cells in the row are in the same order as that of leaves in the phylogenetic tree.

228 From the non-synonymous mutations mapped to the branches, we observed unique subclonal
229 mutations, including an established CRC driver mutation, *SYNE1* [39]. We located two parallel
230 single mutations (*CHD3* and *PLD2*), which evolved independently in adenomatous polyps and
231 in tumour cells.

232 The variant calling results of SIEVE shared a similar but less noisy structure to those of
233 Monovar ([Extended Data Fig. 8a,b](#)). We identified 678 SNV sites in total.

234 Discussion

235 Here we present a statistical approach for cell phylogeny inference and variant calling from
236 scDNA-seq data. SIEVE leverages raw read counts to directly reconstruct cell phylogenies and
237 then to reliably call single-cell variants. SIEVE tackles a considerably challenging problem,
238 i.e., the propagation of errors in variant calling to the inference of cell phylogeny, by sharing
239 information between these two tasks. Important characteristics of SIEVE include following the
240 FSA and correction for acquisition bias for tree branch lengths, which prevents from overfitting
241 the phylogenetic model.

242 Inferring mutation status accurately from highly noisy scDNA-seq data remains a demand-
243 ing problem. A pivotal strength of SIEVE is its characteristic of using genotypes as a bridge
244 between tree inference and variant calling so that these tasks are united. SIEVE is able to
245 reliably differentiate wildtype, single and double mutant genotypes. The benchmarking shows
246 that SIEVE, regarding variant calling, outperforms methods which employ no cell relationships
247 (Monovar) and which, despite accounting for such information, do not include an instantaneous
248 transition rate matrix and branch lengths (SCIPhi). Regarding tree reconstruction, SIEVE is
249 more robust than SCIPhi, which infers phylogenies following ISA from raw scDNA-seq data. It
250 also outperforms methods that rely on variants called by other approaches as a pre-processing
251 step, thereby likely being misled by wrongly inferred variants (Cellphy and SiFit). The high
252 performance of SIEVE can also be attributed to the fact that it is the only model that performs
253 acquisition bias correction, allowing for more accurate branch lengths, and models the distribu-
254 tion of sequencing coverage and accounting for its overdispersion. Finally, SIEVE is also able to
255 reliably call ADOs given data of adequate coverage quality.

256 Currently, SIEVE only considers SNVs and assumes a diploid genome. Further improvement
257 could embrace small indels and copy number alterations to improve phylogenetic inference and
258 variant calling, yet care must be taken to differentiate deletions during evolution from ADOs.

259 Additionally, SIEVE only allows at most one ADO for each site and cell. Further extension
260 could expand to locus dropout, which directly results in missing data.

261 We apply SIEVE to real scDNA-seq datasets harnessed from CRC and TNBC. SIEVE calls
262 far fewer double mutant genotypes and gives more reliable mutation assignment than Monovar
263 does, in line with the simulation results. We also notice that SIEVE identifies double mutant
264 genotypes, which is rare in CRC but frequent in TNBC, indicating the noteworthy role such
265 genotypes play in the evolution of different types of cancer. Future studies could be based on
266 the phylogenetic tree and variants inferred by SIEVE to identify somatic mutations potentially
267 related to the resistance and relapse in the clinical therapy of cancer.

268 In the real data analysis we utilise the relaxed molecular clock model implemented in
269 BEAST 2. This shows one of the advantages of SIEVE being a package of BEAST 2, and
270 the potential of exploiting the functionality of other BEAST 2 packages in our model. On
271 top of this, SIEVE benefits from the computational efficiency of BEAST 2 solutions, including
272 multi-threaded MCMC.

273 The SIEVE model successfully exploits raw read counts from scDNA-seq data and jointly
274 infers phylogeny and variants. With the advancement of scDNA-seq technology, we expect the
275 improvement of the coverage quality where the inference of ADO states is reliable. Although we
276 mainly illustrate the application of SIEVE to scDNA-seq data from tumours, it is applicable to
277 studying evolution also in other tissues.

278 Methods

279 Sample collection

280 We obtained fresh frozen primary tumour and normal tissues from a single colorectal cancer
281 patient stored at the Galicia Sur Health Research Institute (IISGS) Biobank, member of the
282 Spanish National Biobank Network (Nº B.00000802). This study was approved by a local Ethical
283 and Scientific Committee (CAEI Galicia 2014/015).

284 Single-cell isolation, whole-genome amplification and sequencing

285 We isolated EpCAM+ cells from on normal and three tumoural regions (TP: tumour proximal;
286 TC: tumour central; TD: tumour distal) from the patient with a BD FACSaria III cytometer.
287 We successfully amplified the genomes of 28 cells with Ampli1 (Silicon Biosystems) and built

288 whole-genome sequencing libraries using the KAPA (Kapa Biosystems) library kit. Each library
289 was sequenced at $\approx 6x$ on an Illumina Novaseq 6000 at the Spanish National Center of Genomic
290 Analysis (CNAG-CR; <https://www.cnag.crg.eu/>). We called this dataset CRC28.

291 **Data preprocessing**

292 For the public TNBC16 [40] and CRC48 [41] datasets, we downloaded the raw sequencing reads
293 from the SRA database in FASTQ format. For the three datasets (CRC28, TNBC16 and CRC48)
294 We trimmed the Illumina adapter sequences using cutadapt (version 1.18) and mapped reads to
295 the 1000G Reference Genome hs37d5 using BWA MEM (version 0.7.17). After de-duplication
296 with Picard (version 2.18.14), we used GATK (version 3.7.0) for local realignment based on
297 indel calls from the 1000G Phase 1 and the Mills and 1000G gold standard. Subsequently,
298 we recalibrated the base scores using GATK (version 4.0.10) with polymorphisms from dbSNP
299 (build 138) and indels from the 1000G Phase 1. Exact commands used to run the tools are
300 featured in Supplementary Note.

301 **SIEVE model**

302 SIEVE is a statistical approach which combines a statistical phylogenetic model with a proba-
303 bilistic model of raw read counts. We implement SIEVE under BEAST 2 [34], a popular Bayesian
304 phylogenetic framework that uses Markov Chain Monte Carlo (MCMC) for the estimation of
305 phylogenetic trees and model parameters.

306 **Input data**

307 SIEVE takes as input raw read counts of all four nucleotides at candidate SNV sites (Fig. 1a).
308 Specifically, for cell $j \in \{1, \dots, J\}$ at candidate SNV site $i \in \{1, \dots, I\}$, the input data to SIEVE
309 is in the form of $\mathcal{D}_{ij}^{(1)} = (\mathbf{m}_{ij}, c_{ij})$, where $\mathbf{m}_{ij} = \{m_{ijk} \mid k = 1, 2, 3\}$ corresponds to the read
310 counts of three alternative nucleotides with values in descending order and c_{ij} to the sequencing
311 coverage for cell j and site i .

312 Candidate SNV sites are defined as statistically significant SNVs. They are referred to as
313 'candidate' since this significance could sometimes be a false discovery due to technical errors
314 in scDNA-seq. To identify the candidate SNV sites we developed a tool named DataFilter that
315 employs a strategy similar to SCIPhi [15]. Specifically, a likelihood ratio test is conducted for
316 SNV detection, but with a modification enabling to capture sites containing double mutant

317 genotypes.

318 For scWGS and scWES datasets, raw read counts from I' background sites are denoted $\mathcal{D}^{(2)}$.
 319 The number of background sites is used to correct acquisition bias (see Section **SIEVE likelihood**). For datasets lacking background information (for instance, from targeted sequencing),
 320 SIEVE accepts a user-specified number of background sites only for acquisition bias correction.
 321

322 **Statistical phylogenetic model**

323 The statistical phylogenetic model behind SIEVE includes an instantaneous transition rate ma-
 324 trix, which is defined by a continuous-time homogeneous Markov chain. We consider four pos-
 325 sible genotypes $G = \{0/0, 0/1, 1/1, 1/1'\}$, where 0, 1, and $1'$ are used to denote the reference
 326 nucleotide, an alternative nucleotide, and a second alternative nucleotide which is different from
 327 that denoted by 1, respectively. The fundamental evolutionary events we consider are single
 328 mutations and single back mutations. The former happen when 0 mutates to 1, or 1 and $1'$
 329 mutate to each other, while the latter occur when 1 or $1'$ mutates to 0. Hence, genotypes 0/0
 330 and 0/1 represent wildtype and single mutant genotypes, respectively, whereas genotype 1/1
 331 and 1/ $1'$ represent double mutant genotypes. We intentionally use the non-standard nomencla-
 332 ture of single and double mutants to discern important evolutionary events. In contrast, calling
 333 both 0/1 and 1/ $1'$ a heterozygous mutation genotype would be more standard and correct, but
 334 would not differentiate between the genotype that has only a single allele changed with respect
 335 to the reference (0/1) from the genotype that has two alleles changed (1/ $1'$). We only consider
 336 unphased genotypes, so we do not differentiate between 0/1 and 1/0 or between 1/ $1'$ and $1'1$.

337 The joint conditional probability of all cells at SNV site i having genotype $g_{ij} \in G, j =$
 338 $1, \dots, J$ is determined according to the statistical phylogenetic model by

$$P\left(g_i^{(L)} \mid \mathcal{T}, \beta, Q, h, \eta\right) = \sum_{g_i^{(A)} \setminus g_{i,2J}} P\left(g_i^{(L)}, g_i^{(A)} \setminus g_{i,2J} \mid \mathcal{T}, \beta, Q, h, \eta\right). \quad (1)$$

339 In Eq. (1), β represents the branch lengths measured by the expected number of somatic muta-
 340 tions per site and Q is the instantaneous transition rate matrix of the Markov chain. \mathcal{T} is the
 341 rooted binary tree topology, representing the genealogical relations among cells. We specifically
 342 require the root of \mathcal{T} to have only one child, representing the most recent common ancestor
 343 (MRCA) of all cells. The branch between the root and the MRCA is the trunk of the cell phy-
 344 logeny. The trunk is one of novelties of our approach, introduced to represent the accumulation

345 of clonal mutations (shared among all cells) in the initial phase of tumour progression. There-
346 fore, with J existing cells, labelled by $\{1, \dots, J\}$, as leaves, \mathcal{T} has J internal hidden ancestor
347 nodes, labelled by $\{J + 1, \dots, 2J\}$, and $2J - 1$ branches, whose lengths are kept in β . The
348 trunk is essential for \mathcal{T} to assure that the root, labelled by $2J$, represents a normal ancestor
349 cell even if the data only contains tumour cells. Hence the genotype of the root for SNV site
350 i , denoted $g_{i,2J}$, is fixed to 0/0. $\mathbf{g}_i^{(L)}$ represents the genotypes of J cells as leaves of \mathcal{T} , while
351 $\mathbf{g}_i^{(A)}$ is the genotypes of all ancestor cells as internal nodes of \mathcal{T} . Note that we marginalise the
352 genotypes of the ancestor nodes except for the root. We also consider among-site substitution
353 rate variation following a discrete Gamma distribution with mean equal 1, parameterised by the
354 number of rate categories h and shape η [42]. \mathcal{T}, β, η in Eq. (1) are hidden variables, estimated
355 using MCMC (see Section [Posterior and MCMC](#)), whereas h is a hyperparameter that is fixed (4
356 by default). Note that variant calling effectively corresponds to the determination of the values
357 of the variables $\mathbf{g}_i^{(L)}$.

358 In the transition rate matrix Q ([Fig. 1c](#)), each entry denotes a rate from one genotype to
359 another during an infinitesimal time interval Δt . Note that at most one change is allowed to
360 occur in Δt . For instance, the transition of 0/0 moving to 1/1 during Δt is impossible as
361 two single somatic mutations are required; thus, the corresponding transition rate is 0. The
362 transition rate from genotype 0/0 to 0/1 represents the somatic mutation rate and is set to 1.
363 The back mutation rate is measured relatively to the somatic mutation rate and therefore is $1/3$.

364 With the genotype state space G defined, for a given branch length β , the underlying four-
365 by-four transition probability matrix $R(\beta)$ of the Markov chain is represented using matrix
366 exponentiation of the product of Q and β as $R(\beta) = \exp(Q\beta)$ [27].

367 Model of raw read counts

368 The probability of observing the input data \mathcal{D}_{ij} for cell j at site i is factorized as

$$P(\mathcal{D}_{ij}) = P(\mathbf{m}_{ij} | c_{ij})P(c_{ij}), \quad (2)$$

369 where the first component is the model of nucleotide read counts and the second the model of
370 sequencing coverage.

371 **Model of sequencing coverage.** After single-cell whole-genome amplification (scWGA)
372 some genomic regions are more represented than others. After scDNA-seq, this results in an

373 uneven coverage along the genome, much more than in the case of bulk sequencing. Here, to
 374 model the sequencing coverage c in the presence of overdispersion, we employ a negative binomial
 375 distribution.

$$P(c|p,r) = \binom{c+r-1}{r-1} p^r (1-p)^c, \quad (3)$$

376 with parameters p and r . We reparameterise the distribution with $p = \mu/\sigma^2$ and $r = \mu^2/\sigma^2 - \mu$,
 377 where μ and σ^2 are the mean and the variance of the distribution of the sequencing coverage c ,
 378 respectively.

379 Theoretically, each cell j at site i has its specific μ_{ij} and σ_{ij}^2 parameters, which, however, are
 380 impossible to be estimated freely. Hence, we make additional assumptions and pool the data for
 381 better estimates, adapting the approach of [43]. We assume that μ_{ij} and σ_{ij}^2 have the following
 382 forms, respectively:

$$\begin{aligned} \mu_{ij} &= \alpha_{ij} t s_j, \\ \sigma_{ij}^2 &= \mu_{ij} + \alpha_{ij}^2 v s_j^2. \end{aligned} \quad (4)$$

383 In Eq. (4), t is the mean of allelic coverage (the expected coverage per allele) and v is the
 384 variance of allelic coverage. We estimate t and v with MCMC (see Section Posterior and MCMC).
 385 $\alpha_{ij} \in \{1, 2\}$ is a hidden random variable denoting the number of sequenced alleles for cell j at site
 386 i . According to the statistical phylogenetic model, both alleles are expected to be sequenced.
 387 However, due to the frequent occurrence of allelic dropout (ADO) during scWGA, there are
 388 cases where only one allele is amplified and therefore α_{ij} is 1. Eq. (4) reflects the fact that the
 389 expected sequencing coverage and its raw variance are proportional to the number of sequenced
 390 alleles. Note that inferring the hidden variable α_{ij} corresponds to identifying occurrences of
 391 ADO events, and hence the ability of SIEVE to perform ADO calling. We denote the prior
 392 distribution of α_{ij}

$$\begin{cases} P(\alpha_{ij} = 1 | \theta) = \theta, & \text{if ADO occurs,} \\ P(\alpha_{ij} = 2 | \theta) = 1 - \theta, & \text{otherwise,} \end{cases} \quad (5)$$

393 where θ is a parameter corresponding to the the probability of ADO occurs, i.e., the ADO rate,
 394 which is estimated using MCMC.

395 In Eq. (4), s_j is the size factor of cell j which makes sequencing coverage from different cells

396 comparable and is estimated directly from the sequencing coverage using

$$\hat{s}_j = \operatorname{median}_{i: c_{ij} \neq 0} \frac{c_{ij}}{\left(\prod_{\substack{j'=1 \\ c_{ij'} \neq 0}}^{J'} c_{ij'} \right)^{\frac{1}{J'}}}, \quad (6)$$

397 where J' is the number of cells with non-zero coverage at a site. By taking into account only
 398 the non-zero values, the estimate \hat{s}_j is not affected by the missing data, which is prevalent in
 399 scDNA-seq.

400 **Model of nucleotide read counts.** We denote the genotype affected by ADO $g'_{ij} \in G \cup \{0/-, 1/-\}$, where $0/-$ and $1/-$ are the results of ADO occurring to g_{ij} . For instance, $0/-$ is caused
 401 either by 0 dropped out from $0/0$ or by 1 dropped out from $0/1$. Then the probability of g'_{ij} is
 402 denoted by

$$P(g'_{ij} | g_{ij}, \alpha_{ij}), \quad (7)$$

404 which is defined at length in [Table 1](#).

g'_{ij}	g_{ij}	α_{ij}	$P(g'_{ij} g_{ij}, \alpha_{ij})$
0/0	0/0	2	1
0/-	0/0	1	1
0/1	0/1	2	1
1/1	1/1	2	1
1/-	1/1	1	1
1/1'	1/1'	2	1
1/-	1/1'	1	1
0/-	0/1	1	$\frac{1}{2}$
1/-	0/1	1	$\frac{1}{2}$
Others			0

Table 1: Definition of the distribution of g'_{ij} conditional on g_{ij} and α_{ij} .

405 We model the read counts of three alternative nucleotides \mathbf{m}_{ij} given the sequencing coverage
 406 c_{ij} with a Dirichlet-multinomial distribution as

$$P(\mathbf{m}_{ij} | c_{ij}, \mathbf{a}_{ij}) = \frac{F(c_{ij}, a_{ij0})}{\prod_{k=1: m_{ijk} > 0}^3 F(m_{ijk}, a_{ijk}) F(c_{ij} - \sum_{k=1}^3 m_{ijk}, a_{ij4})}, \quad (8)$$

407 with parameters $\mathbf{a}_{ij} = \{a_{ijk} \mid k = 1, \dots, 4\}$ and $a_{ij0} = \sum_{k=1}^4 a_{ijk}$. F is a function in the form of

$$F(x, y) = \begin{cases} xB(y, x), & \text{if } x > 0, \\ 1, & \text{otherwise,} \end{cases} \quad (9)$$

408 where B is the beta function. Note that $c_{ij} - \sum_{k=1}^3 m_{ijk}$ is the read count of the reference
409 nucleotide.

410 To improve the interpretation of Eq. (8), we reparameterise it with $\mathbf{a}_{ij} = w_{ij} \mathbf{f}_{ij}$, where
411 $\mathbf{f}_{ij} = \{f_{ijk} \mid k = 1, \dots, 4\}, \sum_{k=1}^4 f_{ijk} = 1$ is a vector of expected frequencies of each nucleotide
412 and w_{ij} represents overdispersion. \mathbf{f}_{ij} are categorical hidden variables dependent on g'_{ij} :

$$\mathbf{f}_{ij} = \begin{cases} \mathbf{f}_1 = \left(\frac{1}{3}f, \frac{1}{3}f, \frac{1}{3}f, 1-f\right), & \text{if } g'_{ij} = 0/0 \text{ or } 0/-, \\ \mathbf{f}_2 = \left(\frac{1}{2} - \frac{1}{3}f, \frac{1}{3}f, \frac{1}{3}f, \frac{1}{2} - \frac{1}{3}f\right), & \text{if } g'_{ij} = 0/1, \\ \mathbf{f}_3 = \left(1-f, \frac{1}{3}f, \frac{1}{3}f, \frac{1}{3}f\right), & \text{if } g'_{ij} = 1/1 \text{ or } 1/-, \\ \mathbf{f}_4 = \left(\frac{1}{2} - \frac{1}{3}f, \frac{1}{2} - \frac{1}{3}f, \frac{1}{3}f, \frac{1}{3}f\right), & \text{if } g'_{ij} = 1/1', \end{cases} \quad (10)$$

413 where f is the expected frequency of nucleotides whose existence is solely due to technical errors
414 during sequencing. To be specific, f is defined as the effective sequencing error rate including
415 amplification (where a nucleotide is wrongly amplified into another one during scWGA) and
416 sequencing errors.

417 w_{ij} is also a categorical hidden variable dependent on g'_{ij} :

$$w_{ij} = \begin{cases} w_1, & \text{if } g'_{ij} = 0/0, 0/-, 1/1, \text{ or } 1/-, \\ w_2, & \text{if } g'_{ij} = 0/1 \text{ or } 1/1', \end{cases} \quad (11)$$

418 where w_1 is wild type overdispersion and w_2 is alternative overdispersion.

419 By plugging in Eqs. (10) and (11), Eq. (8) is equivalently represented with

$$P(\mathbf{m}_{ij}|c_{ij}, g'_{ij}, f, w_{ij}) = \begin{cases} P_{0/0} = P\left(\mathbf{m}_{ij} \mid c_{ij}, g'_{ij} = 0/0, \mathbf{f}_1, w_1\right), \\ P_{0/-} = P\left(\mathbf{m}_{ij} \mid c_{ij}, g'_{ij} = 0/-, \mathbf{f}_1, w_1\right), \\ P_{0/1} = P\left(\mathbf{m}_{ij} \mid c_{ij}, g'_{ij} = 0/1, \mathbf{f}_2, w_2\right), \\ P_{1/1} = P\left(\mathbf{m}_{ij} \mid c_{ij}, g'_{ij} = 1/1, \mathbf{f}_3, w_1\right), \\ P_{1/-} = P\left(\mathbf{m}_{ij} \mid c_{ij}, g'_{ij} = 1/-, \mathbf{f}_3, w_1\right), \\ P_{1/1'} = P\left(\mathbf{m}_{ij} \mid c_{ij}, g'_{ij} = 1/1', \mathbf{f}_4, w_2\right). \end{cases} \quad (12)$$

420 Note that $P_{0/0}$ and $P_{0/-}$ share the same \mathbf{f} and w_1 , showing that the model of nucleotide read
 421 counts is not enough to discriminate 0/0 from 0/-, and so do $P_{1/1}$ and $P_{1/-}$. In such cases,
 422 incorporating the model of sequencing coverage helps resolve the entanglement.

423 To understand Eq. (12), first take $P_{0/0}$ as an example. Theoretically, no alternative nu-
 424 cleotides are supposed to exist if no technical errors occur. Thus, any observations of any
 425 alternative nucleotides can only result from technical errors, and the expected frequency of the
 426 reference nucleotide is accordingly adjusted to $1 - f$. For another example $P_{0/1}$, say the reference
 427 nucleotide is A and the alternative nucleotide is C, and both their read count frequencies are
 428 supposed to be $1/2$ if no technical errors occur. For the other two alternative nucleotides, G and
 429 T, their observations could only result from technical errors, and both their frequencies are $f/3$.
 430 Moreover, either A or C may be sequenced as a different nucleotide (each with probability $1/2$).
 431 In the former case, the frequency of A decreases by $f/2$. In the latter case, if C is sequenced as
 432 A (with probability $f/3$) the frequency of A increases by $1/2 \times f/3$. Overall, the frequency of A
 433 decreases by $f/3$, resulting in $1/2 - f/3$.

434 f , w_1 and w_2 in Eq. (12) are estimated with MCMC.

435 SIEVE likelihood

436 We denote the conditional variables in Eq. (1) as $\Theta = \{\mathcal{T}, \beta, Q, h, \eta\}$ and those in the model of
 437 raw read counts as $\Phi = \{t, v, \theta, f, w_1, w_2\}$. Given the input data $\mathcal{D}^{(1)}$ and $\mathcal{D}^{(2)}$, the log-likelihood
 438 of the SIEVE model is

$$\log \mathcal{L}(\Theta, \Phi) = \log \mathcal{L}^{(1)}(\Theta, \Phi) + \log \mathcal{L}^{(2)}(f, w_1), \quad (13)$$

439 where $\mathcal{L}^{(1)}$ is the tree likelihood corrected for acquisition bias computed from candidate SNV
 440 sites in $\mathcal{D}^{(1)}$, while $\mathcal{L}^{(2)}$ is the likelihood computed from background sites in $\mathcal{D}^{(2)}$, referred to as
 441 the background likelihood. Eq. (13) does not contain $g_{ij}, g'_{ij}, \alpha_{ij}$ since they are marginalised out
 442 (see below).

443 Since we only use data from SNV sites to compute the tree likelihood, the tree branch lengths
 444 β are prone to be overestimated [29, 30]. The overestimation of β due to only using data from
 445 SNV sites is called acquisition bias, which is corrected in SIEVE according to [44]:

$$\log \mathcal{L}^{(1)} = \log P(\mathcal{D}^{(1)} | \Theta, \Phi) + I' \log \left(\frac{1}{I} \sum_{i=1}^I C_i \right), \quad (14)$$

446 where the first component is the uncorrected tree log-likelihood for SNV sites, and C_i in the
 447 second component is the likelihood of SNV site i being invariant (see below). The regularisation
 448 term $I' \log \left(\frac{1}{I} \sum_{i=1}^I C_i \right)$ renders SIEVE in favor of trees with short branch lengths where $\mathcal{L}^{(1)}$ is
 449 large due to the increasing averaged C .

450 To compute the uncorrected tree log-likelihood, we marginalise out α_{ij} and g'_{ij} :

$$\begin{aligned} P(\mathbf{m}_{ij}, c_{ij} | g_{ij}, \Phi) &= P(\mathbf{m}_{ij}, c_{ij} | g_{ij}, f, w_{ij}, t, v, \theta) \\ &= \sum_{\alpha_{ij}, g'_{ij}} P(\mathbf{m}_{ij}, c_{ij}, \alpha_{ij}, g'_{ij} | g_{ij}, f, w_{ij}, t, v, \theta) \\ &= \sum_{\alpha_{ij}, g'_{ij}} P(\mathbf{m}_{ij} | c_{ij}, g'_{ij}, f, w_{ij}) P(g'_{ij} | g_{ij}, \alpha_{ij}) \\ &\quad \times P(c_{ij} | \alpha_{ij}, t, v) P(\alpha_{ij} | \theta) \\ &= \begin{cases} P_{0/0} \cdot P(c_{ij} | \alpha_{ij} = 2, t, v) \cdot (1 - \theta) \\ \quad + P_{0/-} \cdot P(c_{ij} | \alpha_{ij} = 1, t, v) \cdot \theta, & \text{if } g_{ij} = 0/0, \\ P_{0/1} \cdot P(c_{ij} | \alpha_{ij} = 2, t, v) \cdot (1 - \theta) \\ \quad + \frac{1}{2} (P_{0/-} + P_{1/-}) \cdot P(c_{ij} | \alpha_{ij} = 1, t, v) \cdot \theta, & \text{if } g_{ij} = 0/1, \\ P_{1/1} \cdot P(c_{ij} | \alpha_{ij} = 2, t, v) \cdot (1 - \theta) \\ \quad + P_{1/-} \cdot P(c_{ij} | \alpha_{ij} = 1, t, v) \cdot \theta, & \text{if } g_{ij} = 1/1, \\ P_{1/1'} \cdot P(c_{ij} | \alpha_{ij} = 2, t, v) \cdot (1 - \theta) \\ \quad + P_{1/-} \cdot P(c_{ij} | \alpha_{ij} = 1, t, v) \cdot \theta, & \text{if } g_{ij} = 1/1', \end{cases} \quad (15) \end{aligned}$$

451 where $P_{0/0}, P_{0/-}, P_{0/1}, P_{1/1}, P_{1/-}, P_{1/1'}$ are defined in Eq. (12) and $P(g'_{ij} | g_{ij}, \alpha_{ij})$ is defined in
 452 Eq. (7). In the second line of Eq. (15), the probability is factorised out according to Fig. 1b.

453 To compute $\log P(\mathcal{D}^{(1)} | \Theta, \Phi)$ in Eq. (14), we assume that the SNV sites evolve indepen-
 454 dently and identically. By plugging Eqs. (1) and (15), $\log P(\mathcal{D}^{(1)} | \Theta, \Phi)$ is denoted by

$$\begin{aligned} \log P(\mathcal{D}^{(1)} | \Theta, \Phi) &= \sum_{i=1}^I \log \sum_{\mathbf{g}_i^{(L)}} P(\mathcal{D}_i^{(1)} | \mathbf{g}_i^{(L)}, \Phi) \sum_{\mathbf{g}_i^{(A)} \setminus g_{i,2J}} P(\mathbf{g}_i^{(L)}, \mathbf{g}_i^{(A)} \setminus g_{i,2J} | \Theta) \\ &= \sum_{i=1}^I \log \sum_{\mathbf{g}_i^{(L)}} \left[\prod_{j=1}^J P(\mathbf{m}_{ij}, c_{ij} | g_{ij}, \Phi) \sum_{\mathbf{g}_i^{(A)} \setminus g_{i,2J}} P(\mathbf{g}_i^{(L)}, \mathbf{g}_i^{(A)} \setminus g_{i,2J} | \Theta) \right] \quad (16) \\ &= \sum_{i=1}^I \sum_{j=1}^J \log \sum_{\mathbf{g}_i^{(L)}, \mathbf{g}_i^{(A)} \setminus g_{i,2J}} \left[P(\mathbf{m}_{ij}, c_{ij} | g_{ij}, \Phi) \right. \\ &\quad \left. \times P(\mathbf{g}_i^{(L)}, \mathbf{g}_i^{(A)} \setminus g_{i,2J} | \Theta) \right], \end{aligned}$$

455 which is efficiently computed out by Felsenstein's pruning algorithm [45], with the extension of
 456 the model of raw read counts applied on leaves. Specifically, the Felsenstein's pruning algorithm
 457 is applied to an extended tree \mathcal{T} , where additional leaf nodes corresponding to the data are
 458 attached at the bottom of \mathcal{T} : for each node corresponding to genotype g_{ij} there is a leaf node
 459 added, corresponding to data $(\mathbf{m}_{ij}, c_{ij})$, and the transition probability between the genotype
 460 node and the leaf is given by Eq. (15). For I candidate SNV sites, J cells and K genotype in G
 461 (for SIEVE $K = 4$), the time complexity of Felsenstein's pruning algorithm is $\mathcal{O}(IJK^2)$.

462 C_i in Eq. (14) is determined similarly to Eq. (16) by computing the joint probability of
 463 observing the data $\mathcal{D}_i^{(1)}$ and $\mathbf{g}_i^{(L)} = 0/0$:

$$\begin{aligned} C_i &= P(\mathcal{D}_i^{(1)}, \mathbf{g}_i^{(L)} = 0/0 | \Theta, \Phi) \\ &= P(\mathcal{D}_i^{(1)} | \mathbf{g}_i^{(L)} = 0/0, \Phi) \sum_{\mathbf{g}_i^{(A)} \setminus g_{i,2J}} P(\mathbf{g}_i^{(L)} = 0/0, \mathbf{g}_i^{(A)} \setminus g_{i,2J} | \Theta) \quad (17) \\ &= \prod_{j=1}^J P(\mathbf{m}_{ij}, c_{ij} | g_{ij} = 0/0, \Phi) \sum_{\mathbf{g}_i^{(A)} \setminus g_{i,2J}} P(\mathbf{g}_i^{(L)} = 0/0, \mathbf{g}_i^{(A)} \setminus g_{i,2J} | \Theta). \end{aligned}$$

464 Formally, to compute the background likelihood, we should account for the fact that the
 465 background sites, similarly to the variant sites, also evolve under the phylogenetic model and
 466 involve similar computations as above. This, however, would result in a large additional com-
 467 putational burden due to the large number of background sites compared to the variant sites.
 468 Thus, to estimate the background log-likelihood efficiently, we make several simplifications and
 469 compute it only approximately. First, we assume that across I' background sites each cell has

470 the same genotype 0/0 and both alleles are covered. We further ignore the model of sequencing
 471 coverage and the tree log-likelihood in the computations. As a result, by employing an
 472 alternative expression of Dirichlet-multinomial distribution $\log \mathcal{L}^{(2)}$ is efficiently obtained as

$$\begin{aligned}
 \log \mathcal{L}^{(2)}(f, w_1) &= \sum_{i=1}^{I'} \sum_{j=1}^J \log P_{0/0} \\
 &= \sum_{i=1}^{I'} \sum_{j=1}^J \log \left[\frac{\Gamma(w_1) \Gamma(c_{ij} + 1)}{\Gamma(c_{ij} + w_1)} \prod_{k=1}^3 \frac{\Gamma(m_{ijk} + \frac{1}{3}fw_1)}{\Gamma(\frac{1}{3}fw_1) \Gamma(m_{ijk} + 1)} \right. \\
 &\quad \times \left. \frac{\Gamma(c_{ij} - \sum_{k=1}^3 m_{ijk} + (1-f)w_1)}{\Gamma((1-f)w_1) \Gamma(c_{ij} - \sum_{k=1}^3 m_{ijk} + 1)} \right] \\
 &= I' J \left[\log \Gamma(w_1) - 3 \log \Gamma\left(\frac{1}{3}fw_1\right) - \log \Gamma((1-f)w_1) \right] \\
 &\quad + \sum_{c=1}^{\max(c_{ij})} N_c (\log \Gamma(c+1) - \log \Gamma(c+w_1)) \\
 &\quad + \sum_{k=1}^3 \sum_{m_k=1}^{\max(m_{ijk})} N_{m_k} \left(\log \Gamma\left(m_k + \frac{1}{3}fw_1\right) - \log \Gamma(m_k + 1) \right) \\
 &\quad + \sum_{c-\sum_{k=1}^3 m_k=1}^{\max(c_{ij} - \sum_{k=1}^3 m_{ijk})} N_{c-\sum_{k=1}^3 m_k} \left(\log \Gamma\left(c - \sum_{k=1}^3 m_k + (1-f)w_1\right) \right. \\
 &\quad \left. - \log \Gamma\left(c - \sum_{k=1}^3 m_k + 1\right) \right), \tag{18}
 \end{aligned}$$

473 where $P_{0/0}$ is defined in [Eq. \(12\)](#). N_c , N_{m_k} for $k = 1, 2, 3$, and $N_{c-\sum_{k=1}^3 m_k}$ represent, across
 474 I' background sites and J cells, the unique occurrences of sequencing coverage c , of alternative
 475 nucleotide read counts m_1, m_2, m_3 , and of reference nucleotide read counts $c - \sum_{k=1}^3 m_k$, re-
 476 spectively. In [Eq. \(18\)](#), some items, namely $\log \Gamma(c+1)$, $-\log \Gamma(m_k+1)$ for $k = 1, 2, 3$, and
 477 $-\log \Gamma(c - \sum_{k=1}^3 m_k + 1)$, only depends on the data, which remain constants during MCMC.
 478 Therefore, they are ignored in the computation of background likelihood. It is clear that the
 479 background likelihood helps estimate f and w_1 .

480 The time complexity of [Eq. \(18\)](#) is $\mathcal{O}(c)$ with c being the number of unique values of se-
 481 quencing coverage across all cells and background sites. Since IJK^2 is usually much larger than
 482 c , the overall time complexity of model likelihood is $\mathcal{O}(IJK^2)$.

483 Priors

484 To define priors for model parameters and for the tree coalescent, we employ the prior distri-
 485 butions defined in BEAST 2. We impose on \mathcal{T} and β in [Eq. \(1\)](#) a prior distribution following

486 the Kingman coalescent process with an exponentially growing population. The tree prior is
487 parameterised by scaled population size M and exponential growth rate q , and is denoted by

$$P(\mathcal{T}, \beta | M, e), \quad (19)$$

488 whose analytical form is defined in [46]. M and e are hidden random variables and are estimated
489 using MCMC. Note that, by default, M represents the number of time units, e.g., the number
490 of years, and the mutation rate is measured by the number of mutations per time unit per site.
491 Their product results in the unit of branch length, i.e., the number of mutations per site. Since
492 scDNA-seq data usually does not contain temporal information as a result of collecting samples
493 at the same time, it is impossible to differentiate M from the mutation rate. However, if the
494 mutation rate is known, one could alternatively estimate a time-calibrated cell phylogeny.

495 As prior distributions, we assign to M

$$P(M | \delta) = \frac{1}{\delta}, \quad (20)$$

496 where δ is the current proposed value of M . Note that this is supposed to be normalised to
497 define a proper probability distribution, but this form is sufficient to define a proper posterior
498 (see Section [Posterior and MCMC](#)).

499 For e we choose

$$e | \lambda, \epsilon \sim \text{Laplace}(\lambda, \epsilon), \quad (21)$$

500 where we choose mean $\lambda = 10^{-3}$ and scale $\epsilon = 30.7$ (default in the BEAST 2 software). We
501 choose an exponential distribution as the prior for η in [Eq. \(1\)](#):

$$\eta | \gamma \sim \exp(\gamma), \quad (22)$$

502 where $\gamma = 1$.

503 For the model of sequencing coverage described in [Eqs. \(3\)](#) and [\(4\)](#), we set the prior for t
504 within a large range of values with

$$t | \rho \sim \text{Uniform}(0, \rho), \quad (23)$$

505 where $\rho = 1000$, and the prior for v with

$$v | \zeta \sim \exp(\zeta), \quad (24)$$

506 where $\zeta = 25$. In terms of θ in Eq. (5), it also has a uniform prior:

$$\theta | u \sim \text{Uniform}(0, u), \quad (25)$$

507 where $u = 1$.

508 For the model of nucleotide read counts described in Eqs. (10) to (12), we choose an expo-
509 nential prior for f :

$$f | \tau \sim \exp(\tau), \quad (26)$$

510 where $\tau = 0.025$, and a log normal prior for both w_1 and w_2 :

$$\begin{aligned} w_1 | \xi_1, \psi_1 &\sim \text{Log-Normal}(\xi_1, \psi_1), \\ w_2 | \xi_2, \psi_2 &\sim \text{Log-Normal}(\xi_2, \psi_2), \end{aligned} \quad (27)$$

511 where we choose for w_1 the mean $\xi_1 = 3.9$ and the standard deviation $\psi_1 = 1.5$, and for w_2 the
512 mean $\xi_2 = 0.9$ and the standard deviation $\psi_2 = 1.7$. These specific values reflect our belief that
513 w_1 is greater than w_2 , while both distributions cover a large range of possible values for w_1 and
514 w_2 .

515 Posterior and MCMC

516 With the model likelihood and priors defined, the posterior distribution of the unknown param-
517 eters is

$$\begin{aligned} P \left(\mathcal{T}, \boldsymbol{\beta}, M, e, \eta, t, v, \theta, f, w_1, w_2 \mid \mathcal{D}^{(1)}, \mathcal{D}^{(2)} \right) &= \frac{1}{Z} P \left(\mathcal{D}^{(1)}, \mathcal{D}^{(2)} \mid \mathcal{T}, \boldsymbol{\beta}, \eta, t, v, \theta, f, w_1, w_2 \right) \\ &\quad \times P(\mathcal{T}, \boldsymbol{\beta} \mid M, e) P(M \mid \delta) P(e \mid \lambda, \epsilon) P(\eta \mid \gamma) \\ &\quad \times P(t \mid \rho) P(v \mid \zeta) P(\theta \mid u) P(f \mid \tau) \\ &\quad \times P(w_1 \mid \xi_1, \psi_1) P(w_2 \mid \xi_2, \psi_2), \end{aligned} \quad (28)$$

518 where Z is a normalisation constant, representing the probability of the observed data.

519 Since the posterior distribution does not have a closed-form analytical formula, we employ

520 the MCMC algorithm with Metropolis-Hastings kernel to sample from the posterior distribution
521 in Eq. (28). Given the current state of the parameters q , we propose a new state q^* according to
522 proposal distributions $P(q^*|q)$ that assure the reversibility and ergodicity of the Markov chain.
523 With one parameter changed a time, q^* is accepted with probability

$$\min \left\{ 1, \frac{P(\mathcal{T}^*, \boldsymbol{\beta}^*, M^*, e^*, \eta^*, t^*, v^*, \theta^*, f^*, w_1^*, w_2^* \mid \mathcal{D}^{(1)}, \mathcal{D}^{(2)}) P(q \mid q^*)}{P(\mathcal{T}, \boldsymbol{\beta}, M, e, \eta, t, v, \theta, f, w_1, w_2 \mid \mathcal{D}^{(1)}, \mathcal{D}^{(2)}) P(q^* \mid q)} \right\}, \quad (29)$$

524 where the normalisation constant Z cancels out after plugging in Eq. (28).

525 For sampling the structure of the cell phylogeny, we take advantage of proposal distributions
526 implemented in the BEAST 2 software [46] and modify them to make sure they are compatible
527 with our tree topology, so that the sampled trees are binary and contain a trunk. Specifically,
528 the tree branch lengths are changed by scaling the heights of the internal nodes. For tree topo-
529 logical exploration, we use the Wilson-Balding move to perform subtree pruning and regrafting.
530 Specifically, a random node and half of its subtree is pruned and reattached to a random branch
531 not belonging to the moved subtree. A subtree-slide move is also used, where a random node
532 and half of its subtree slides either upwards or downwards along branches and cross at least one
533 node. Both those two moves include changes to the lengths of some branches. The final type of
534 move swaps two randomly selected subtrees.

535 For sampling unknown parameters, we perform either scaling operations or random Gaussian
536 walks.

537 SIEVE runs with a two-stage sampling strategy. In the first stage the acquisition bias cor-
538 rection is switched off and all parameters are explored, while in the second stage the acquisition
539 bias correction is turned on and parameters not affecting branch lengths are fixed with their
540 estimates from the previous stage. This two-stage strategy proved to yield more accurate pa-
541 rameter and tree estimates than a strategy where both parameters and tree would be explored
542 at once, with the acquisition bias correction enabled. Additionally, the initial tree in the second
543 stage is set to the tree summarised from the first stage.

544 **Variant calling, ADO calling and maximum likelihood gene annotation**

545 During the sampling process $\mathbf{g}_i^{(L)}$, $\mathbf{g}_i^{(A)}$, g'_{ij} and α_{ij} (Eqs. (1), (15) and (16)) are hidden variables
546 that are marginalised out. Therefore, to obtain estimates of these hidden variables, we infer
547 their maximum likelihood configuration with the max-sum algorithm [47], using the maximum

Genotype transition	Mutation event
$0/0 \rightarrow 0/1$	Single mutation
$0/0 \rightarrow 1/1$	Homozygous simultaneous double mutation
$0/0 \rightarrow 1/1'$	Heterozygous simultaneous double mutation
$0/1 \rightarrow 0/0$	Single back mutation
$1/1 \rightarrow 0/1$	Single back mutation
$1/1' \rightarrow 0/1$	Single back mutation
$0/1 \rightarrow 1/1$	Homozygous single mutation addition
$0/1 \rightarrow 1/1'$	Heterozygous single mutation addition
$1/1 \rightarrow 0/0$	Double back mutation
$1/1' \rightarrow 0/0$	Double back mutation
$1/1' \rightarrow 1/1$	Homozygous substitute single mutation
$1/1 \rightarrow 1/1'$	Heterozygous substitute single mutation

Table 2: Twelve types of mutation categories that SIEVE is able to identify.

548 clade credibility tree [48] and parameters estimated from the MCMC posterior samples.

549 To be specific, by determining the maximum likelihood genotypes of the leaves ($\mathbf{g}_i^{(L)}$), we
550 are able to call variants. By inferring the maximum likelihood g'_{ij} and α_{ij} , the ADO state is
551 determined. Moreover, by computing the maximum likelihood genotypes of the internal nodes
552 ($\mathbf{g}_i^{(A)}$), SIEVE maps mutations to specific tree branches. Mutation events are classified into
553 different categories (see Table 2).

554 **scDNA-seq data simulator**

555 In order to benchmark the performance of SIEVE against those of other published methods,
556 we simulated scDNA-seq data by modifying CellCoal [49] (commit 594e063). In contrast to
557 CellCoal, the sequencing coverage is generated according to Eqs. (3) to (6). Given the sequencing
558 coverage, read counts are simulated with a Multinomial distribution including errors. Input
559 configuration follows the one described for CellCoal [49].

560 The simulator mimics both the biological evolution and the sequencing process. We first
561 generated a binary genealogical cell lineage tree following the coalescent process assuming a
562 strict molecular clock and created a reference genome where each site was initialised by the
563 reference genotype with one of the four nucleotides. With a specific mutation rate, each site
564 was evolved independently along the tree according to a rate matrix which contains ten diploid
565 genotypes encoded with nucleotide pairs (Supplementary Table 2). The rate matrix allows
566 mutations and back mutations, where the probability of the latter is $1/3$ of the former. All
567 simulated sites for which at least one cell has a non-reference genotype are considered as true
568 SNV sites. Next, we added at most one ADO to cell j at site i according to the ADO rate. If

569 ADO happens, the number of sequenced alleles α_{ij} drops from two to one. We recorded the true
570 ADO states across cells for the SNV sites. Size factors for cells in [Eq. \(4\)](#) were sampled from
571 a normal distribution (mean = 1.2, variance = 0.2). Using the negative binomial distribution,
572 we simulated the sequencing coverage with given t and v . Based on the ADO-affected genotype
573 and sequencing coverage, the read count for each nucleotide was simulated using a Multinomial
574 distribution with a given amplification error rate and sequencing error rate.

575 **Simulation design**

576 We designed simulations to compare multiple methods in different aspects. We assumed that
577 the tumour cell samples belonged to an exponentially growing population (growth rate = 10^{-4})
578 with an effective population size of 10^4 . The number of tumour cells was chosen to be either 40
579 or 100. We selected three mutation rates: 10^{-6} , 8×10^{-6} , and 3×10^{-5} . For different mutation
580 rates, different total number of sites were chosen to result in around 1000 SNV sites for 100 cells
581 (1.3×10^5 sites for 10^{-6} , 2×10^4 sites for 8×10^{-6} , and 6.5×10^3 sites for 3×10^{-5}), as well as
582 between 250 to 1000 SNV sites for 40 cells (8×10^4 sites for 10^{-6} , 2×10^4 sites for 8×10^{-6} ,
583 and 5×10^3 sites for 3×10^{-5}). Additionally, we varied t and v in [Eqs. \(3\)](#) and [\(4\)](#) to simulate
584 different coverage qualities. For high quality data, we chose high mean ($t = 20$) and low variance
585 ($v = 2$) of allelic coverage. For medium quality data, we chose high mean ($t = 20$) and medium
586 variance ($v = 10$). For low quality data, we chose low mean ($t = 5$) and high variance ($v = 20$),
587 which was specifically created to mimic the CRC28 dataset.

588 Other important parameters in the simulation were fixed as follows: in [Eq. \(5\)](#) $\theta = 0.163$,
589 in [Eq. \(12\)](#) $w_1 = 100$ and $w_2 = 2.5$, and both amplification error rate and sequencing error rate
590 were 10^{-3} , which resulted in the effective sequencing error rate $f \approx 2 \times 10^{-3}$ in [Eq. \(12\)](#).

591 We designed in total 18 simulation scenarios, each repeated 20 times. The benchmarking
592 framework was built using Snakemake [\[50\]](#).

593 **Measurement of cell phylogeny accuracy and quality of variant calling**

594 To assess the accuracy of the cell phylogeny reconstruction considering branch lengths, we com-
595 puted the rooted BS distance from the inferred tree to the true tree [\[35\]](#). For any two trees,
596 this difference is computed as:

$$d_{BS} = \sqrt{\sum_i \left(l_{1i}^{(s)} - l_{2i}^{(s)} \right)^2 + \sum_i \left(l_{1i}^{(u)} \right)^2 + \sum_i \left(l_{2i}^{(u)} \right)^2}. \quad (30)$$

597 where $l_{ji}^{(s)}$ represents the length of a branch shared by both trees, and $l_{ji}^{(u)}$ represents the length
598 of a branch i that is unique for tree j .

599 To assess the accuracy of the cell phylogeny reconstruction ignoring branch lengths we used
600 the normalised RF distance [36]:

$$d_{RF} = \frac{n_1^{(u)} + n_2^{(u)}}{n_1 + n_2}, \quad (31)$$

601 where n_j denotes the total number of branches in tree j , while $n_j^{(u)}$ represents the number
602 branches exclusive of tree j .

603 Thus, rooted BS distance and normalised RF distance values equal to 0 indicate a perfect
604 tree reconstruction. For SIEVE and SiFit, we compute both normalised RF distance and rooted
605 BS distance in the rooted tree mode. For CellPhy, we compute these metrics in the unrooted
606 tree mode as it infers an unrooted tree from data only containing tumour cells. Since SCIPhiI
607 reports a rooted tree without branch lengths, we can only compute the normalised RF distance.
608 Rooted BS distance and normalised RF distance values were computed using the R package
609 phangorn [51].

610 To evaluate the variant calling and ADO calling results, we computed precision, recall, F1
611 score and false positive rate (FPR). For variant calling, we separately compared the perfor-
612 mance in calling the single mutant genotype and double mutant genotypes. In particular, when
613 we evaluated the accuracy of single mutant genotype calling, any identification of double mu-
614 tant genotypes whose true genotype is single mutant genotype was counted as a false negative.
615 Moreover, we analysed two different types of false positives in single mutant genotype calling.
616 The first type corresponds to single mutation calls for sites where the true genotype is a wildtype
617 genotype. The second type are single mutant calls for sites where the true genotype is a double
618 mutant.

619 For SIEVE and Monovar, we computed the recall, precision, F1 score, and FPR for single
620 mutant genotype calling and double mutant genotype calling. For SCIPhiI, we only computed
621 metrics for single mutant genotype calling as it does not call double mutant genotypes. Moreover,
622 we evaluated the accuracy of calling ADO states only for SIEVE, as it is the only method that
623 is able to call them.

624 Configurations of methods

625 For Monovar (commit 68fbb68), we used the true values of θ and f as priors for false negative
626 rate and false positive rate and default values for other options.

627 For SCIPhi (commit 34975f7), we ran it with default options and 5×10^5 iterations.

628 To run CellPhy (commit 832f6c2) and SiFit (commit 9dc3774), we fed the required data with
629 variants called by Monovar. For CellPhy, we piped the data in VCF format and initialised the
630 tree search with three parsimonious trees. We instructed the tool to use a built-in rate matrix
631 with ten genotypes (GT10), a stationary nucleotide frequency distribution learned from the data
632 (FO), an error model applied to the leaves (E), and the Gamma model of site-wise substitution
633 rate variation (G). For SiFit, we fed the input data as a ternary matrix and used the true values
634 of θ and f as the prior for false negative rate and the estimated false positive rate, respectively.

635 We ran it with 2×10^5 iterations.

636 On the simulated data, we ran SIEVE with a strict molecular clock model for 2×10^6 and
637 1.5×10^6 iterations for the first and the second sampling stage, respectively. On the real datasets,
638 we used a log-normal relaxed molecular clock model to take into consideration branch-wise
639 substitution rate variation. To achieve better mixed Markov chains, we employed a optimised
640 relaxed clock model in [37] instead of the default one in BEAST 2.

641 Since more parameters are added when using the relaxed molecular clock model, we ran
642 the analysis with 3×10^6 iterations for the first stage and 2.5×10^6 iterations for the second,
643 respectively. Note that the parameters introduced by the relaxed molecular clock model are also
644 explored in the second sampling stage. The SNVs were then annotated using Annovar (version
645 2020 Jun. 08) [52]. In the main text, the tree was plotted using ggtree [53] and the genotype
646 heatmap was plotted using ComplexHeatmap [54].

647 Data availability

648 Raw single-cell whole-genome sequencing data from CRC28 have been deposited in the Sequence
649 Read Archive (SRA, <https://www.ncbi.nlm.nih.gov/sra>) database under the accession code
650 XXXXX. We have additionally analysed two published single-cell datasets ([40, 41]). Raw
651 sequencing data for these datasets are available from the SRA database under accession codes
652 SRA053195 (TNBC16) and SRP067815 (CRC48).

653 **Code availability**

654 SIEVE is implemented in Java and is accessible at <https://github.com/szczurek-lab/SIEVE>.
655 DataFilter for selecting candidate variant sites is available at <https://github.com/szczurek-lab/DataFilter>. The simulator is hosted at https://github.com/szczurek-lab/SIEVE_simulator, and the reproducible benchmarking framework is available at https://github.com/szczurek-lab/SIEVE_benchmark_pipeline. The scripts for generating all figures in this
656 paper are hosted at https://github.com/szczurek-lab/SIEVE_analysis. All aforementioned
657 code are freely accessible under a GNU General Public License v3.0 license.
658

661 **References**

- 662 1. Greaves, M. Evolutionary Determinants of Cancer. *Cancer Discovery* **5**, 806–820. <https://doi.org/10.1158/2159-8290.CD-15-0439> (Aug. 2015).
- 663 2. Dentro, S. C. *et al.* Characterizing genetic intra-tumor heterogeneity across 2,658 human
664 cancer genomes. *Cell* **184**, 2239–2254.e39. <https://www.sciencedirect.com/science/article/pii/S0092867421002944> (2021).
- 665 3. McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present,
666 and the Future. *Cell* **168**, 613–628. <https://www.sciencedirect.com/science/article/pii/S0092867417300661> (2017).
- 667 4. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor Heterogeneity: The Rosetta Stone
668 of Therapy Resistance. *Cancer Cell* **37**, 471–484. <https://www.sciencedirect.com/science/article/pii/S1535610820301471> (2020).
- 669 5. Gerstung, M. *et al.* Reliable detection of subclonal single-nucleotide variants in tumour cell
670 populations. *Nature communications* **3**, 1–8 (2012).
- 671 6. Shah, S. P. *et al.* The clonal and mutational evolution spectrum of primary triple-negative
672 breast cancers. *Nature* **486**, 395–399 (2012).
- 673 7. Roth, A. *et al.* PyClone: statistical inference of clonal population structure in cancer. *Nature
674 methods* **11**, 396–398 (2014).
- 675 8. Ha, G. *et al.* TITAN: inference of copy number architectures in clonal cell populations from
676 tumor whole-genome sequence data. *Genome research* **24**, 1881–1893 (2014).

681 9. Deshwar, A. G. *et al.* PhyloWGS: reconstructing subclonal composition and evolution from
682 whole-genome sequencing of tumors. *Genome biology* **16**, 1–20 (2015).

683 10. Navin, N. *et al.* Tumour evolution inferred by single-cell sequencing. *Nature* **472**, 90–94
684 (2011).

685 11. Navin, N. E. The first five years of single-cell cancer genomics and beyond. *Genome research*
686 **25**, 1499–1507 (2015).

687 12. Lähnemann, D. *et al.* Eleven grand challenges in single-cell data science. *Genome biology*
688 **21**, 1–35 (2020).

689 13. Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar: single-nucleotide variant
690 detection in single cells. *Nature methods* **13**, 505–507 (2016).

691 14. Dong, X. *et al.* Accurate identification of single-nucleotide variants in whole-genome-amplified
692 single cells. *Nature methods* **14**, 491–493 (2017).

693 15. Singer, J., Kuipers, J., Jahn, K. & Beerenwinkel, N. Single-cell mutation identification via
694 phylogenetic inference. *Nature Communications* **9**, 5144. <https://doi.org/10.1038/s41467-018-07627-7> (Dec. 2018).

695 16. Luquette, L. J., Bohrson, C. L., Sherman, M. A. & Park, P. J. Identification of somatic
696 mutations in single cell DNA-seq using a spatial model of allelic imbalance. *Nature communications*
697 **10**, 1–14 (2019).

698 17. Bohrson, C. L. *et al.* Linked-read analysis identifies mutations in single-cell DNA-sequencing
699 data. *Nature genetics* **51**, 749–754 (2019).

700 18. Lähnemann, D. *et al.* Accurate and scalable variant calling from single cell DNA sequencing
701 data with ProSolo. *Nature communications* **12**, 1–11 (2021).

702 19. Yuan, K., Sakoparnig, T., Markowetz, F. & Beerenwinkel, N. BitPhylogeny: a probabilistic
703 framework for reconstructing intra-tumor phylogenies. *Genome biology* **16**, 1–16 (2015).

704 20. Ross, E. M. & Markowetz, F. OncoNEM: inferring tumor evolution from single-cell se-
705 quencing data. *Genome biology* **17**, 1–14 (2016).

706 21. Jahn, K., Kuipers, J. & Beerenwinkel, N. Tree inference for single-cell data. *Genome biology*
707 **17**, 1–17 (2016).

708 22. Zafar, H., Tzen, A., Navin, N., Chen, K. & Nakhleh, L. SiFit: inferring tumor trees from
709 single-cell sequencing data under finite-sites models. *Genome biology* **18**, 1–20 (2017).

711 23. Malikic, S., Jahn, K., Kuipers, J., Sahinalp, S. C. & Beerenwinkel, N. Integrative inference
712 of subclonal tumour evolution from single-cell and bulk sequencing data. *Nature communications* **10**, 1–12 (2019).

713

714 24. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scal-
715 able and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics*
716 **35**, 4453–4455 (2019).

717

718 25. Zafar, H., Navin, N., Chen, K. & Nakhleh, L. SiCloneFit: Bayesian inference of population
719 structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing
720 data. *Genome research* **29**, 1847–1859 (2019).

721

722 26. Kozlov, A., Alves, J. M., Stamatakis, A. & Posada, D. CellPhy: accurate and fast proba-
723 bilistic inference of single-cell phylogenies from scDNA-seq data. *Genome Biology* **23**, 1–30
724 (2022).

725

726 27. Felsenstein, J. *Inferring phylogenies* (Sinauer associates Sunderland, MA, 2004).

727

728 28. Stadler, T., Pybus, O. G. & Stumpf, M. P. Phylodynamics for cell biologists. *Science* **371**,
729 eaah6266 (2021).

730

731 29. Lewis, P. O. A Likelihood Approach to Estimating Phylogeny from Discrete Morpholog-
732 ical Character Data. *Systematic Biology* **50**, 913–925. <https://doi.org/10.1080/106351501753462876> (Nov. 2001).

733

734 30. Leaché, A. D., Banbury, B. L., Felsenstein, J., de Oca, A. n.-M. & Stamatakis, A. Short
735 Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring
736 SNP Phylogenies. *Systematic Biology* **64**, 1032–1047. <https://doi.org/10.1093/sysbio/syv053> (July 2015).

737

738 31. Kuipers, J., Singer, J. & Beerenwinkel, N. Single-cell mutation calling and phylogenetic
739 tree reconstruction with loss and recurrence. *bioRxiv* (2022).

740

741 32. Kuipers, J., Jahn, K., Raphael, B. J. & Beerenwinkel, N. Single-cell sequencing data reveal
742 widespread recurrence and loss of mutational hits in the life histories of tumors. *Genome*
743 *research* **27**, 1885–1894 (2017).

744

745 33. Demeulemeester, J., Dentro, S. C., Gerstung, M. & Van Loo, P. Biallelic mutations in
746 cancer genomes reveal local mutational determinants. *Nature genetics*, 1–6 (2022).

740 34. Bouckaert, R. *et al.* BEAST 2.5: An advanced software platform for Bayesian evolutionary
741 analysis. *PLOS Computational Biology* **15**, 1–28. <https://doi.org/10.1371/journal.pcbi.1006650> (Apr. 2019).

742

743 35. Kuhner, M. K. & Felsenstein, J. A simulation comparison of phylogeny algorithms un-
744 der equal and unequal evolutionary rates. *Molecular Biology and Evolution* **11**, 459–468.
745 <https://doi.org/10.1093/oxfordjournals.molbev.a040126> (May 1994).

746 36. Robinson, D. & Foulds, L. Comparison of phylogenetic trees. *Mathematical Biosciences* **53**,
747 131–147. <https://www.sciencedirect.com/science/article/pii/0025556481900432>
748 (1981).

749 37. Douglas, J., Zhang, R. & Bouckaert, R. Adaptive dating and fast proposals: Revisiting
750 the phylogenetic relaxed clock model. *PLOS Computational Biology* **17**, 1–30. <https://doi.org/10.1371/journal.pcbi.1008322> (Feb. 2021).

751

752 38. Huang, D. *et al.* Mutations of key driver genes in colorectal cancer progression and metas-
753 tasis. *Cancer and Metastasis Reviews* **37**, 173–187 (2018).

754 39. Raskov, H., Søby, J. H., Troelsen, J., Bojesen, R. D. & Gögenur, I. Driver gene mutations
755 and epigenetics in colorectal cancer. *Annals of Surgery* **271**, 75–85 (2020).

756 40. Wang, Y. *et al.* Clonal evolution in breast cancer revealed by single nucleus genome se-
757 quencing. *Nature* **512**, 155–160. <https://doi.org/10.1038/nature13600> (Aug. 2014).

758 41. Wu, H. *et al.* Evolution and heterogeneity of non-hereditary colorectal cancer revealed by
759 single-cell exome sequencing. *Oncogene* **36**, 2857–2867 (2017).

760 42. Yang, Z. Among-site rate variation and its impact on phylogenetic analyses. *Trends in
761 Ecology & Evolution* **11**, 367–372. <https://www.sciencedirect.com/science/article/pii/0169534796100410> (1996).

762

763 43. Anders, S. & Huber, W. Differential expression analysis for sequence count data. *Genome
764 Biology* **11**, R106. <https://doi.org/10.1186/gb-2010-11-10-r106> (Oct. 2010).

765 44. Felsenstein, J. Phylogenies from restriction sites: a maximum-likelihood approach. *Evolu-
766 tion* **46**, 159–173 (1992).

767 45. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach.
768 *Journal of Molecular Evolution* **17**, 368–376. <https://doi.org/10.1007/BF01734359>
769 (Nov. 1981).

770 46. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W. Estimating Mutation
771 Parameters, Population History and Genealogy Simultaneously From Temporally Spaced
772 Sequence Data. *Genetics* **161**, 1307–1320. <https://www.genetics.org/content/161/3/1307> (2002).

774 47. Bishop, C. M. & Nasrabadi, N. M. *Pattern recognition and machine learning* **4** (Springer,
775 2006).

776 48. O'Reilly, J. E. & Donoghue, P. C. The efficacy of consensus tree methods for summarizing
777 phylogenetic relationships from a posterior sample of trees estimated from morphological
778 data. *Systematic biology* **67**, 354–362 (2018).

779 49. Posada, D. CellCoal: Coalescent Simulation of Single-Cell Sequencing Samples. *Molecular
780 Biology and Evolution* **37**, 1535–1542. <https://doi.org/10.1093/molbev/msaa025> (Feb.
781 2020).

782 50. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. *Bioinformatics*
783 **28**, 2520–2522. <https://doi.org/10.1093/bioinformatics/bts480> (Aug.
784 2012).

785 51. Schliep, K., Potts, A. J., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees
786 and networks. *Methods in Ecology and Evolution* **8**, 1212–1220. <https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12760> (2017).

788 52. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants
789 from high-throughput sequencing data. *Nucleic Acids Research* **38**, e164–e164. <https://doi.org/10.1093/nar/gkq603> (July 2010).

791 53. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r package for visualiza-
792 tion and annotation of phylogenetic trees with their covariates and other associated data.
793 *Methods in Ecology and Evolution* **8**, 28–36. <https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12628> (2017).

795 54. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in
796 multidimensional genomic data. *Bioinformatics* **32**, 2847–2849. <https://doi.org/10.1093/bioinformatics/btw313> (May 2016).

798 **Acknowledgments**

799 We thank Dr. Timothy Vaughan for valuable instructions on package development for BEAST 2.
800 This project has received funding from the European Union’s Horizon 2020 research and in-
801 novation programme under the Marie Skłodowska-Curie grant agreement No. 766030. E.S.
802 acknowledges the support from the Polish National Science Centre SONATA BIS grant No.
803 2020/38/E/NZ2/00305. D.P. was supported by the European Research Council (ERC-617457-
804 PHYLOCANCER), the Spanish Ministry of Science and Innovation (PID2019-106247GB-I00),
805 and Xunta de Galicia.

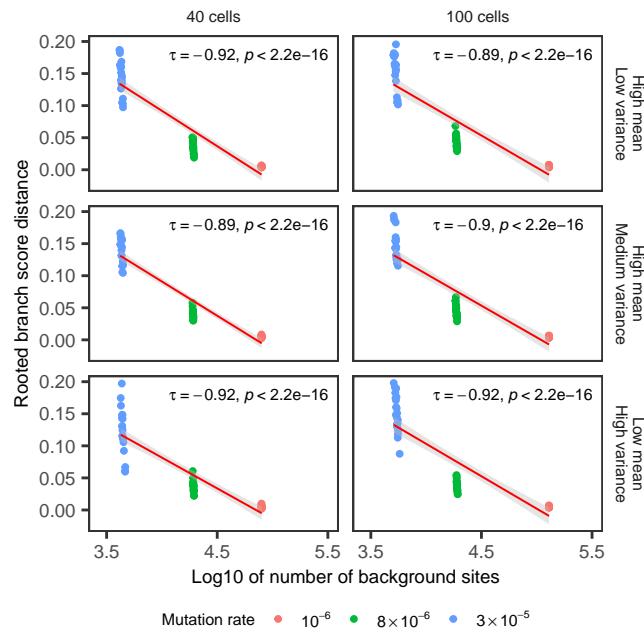
806 **Author contributions**

807 S.K. and E.S. conceived the SIEVE model - with input and feedback from J.K., N.BE. and
808 D.P. S.K. implemented the model, performed all model performance analysis and generated
809 all figures. S.PL., D.C. and D.P. performed the CRC28 scDNA-seq experiment. N.BO., M.V.
810 and J.A. processed the scDNA-seq datasets. S.K. and E.S. wrote the manuscript with critical
811 comments and input from all the co-authors. E.S. supervised the study.

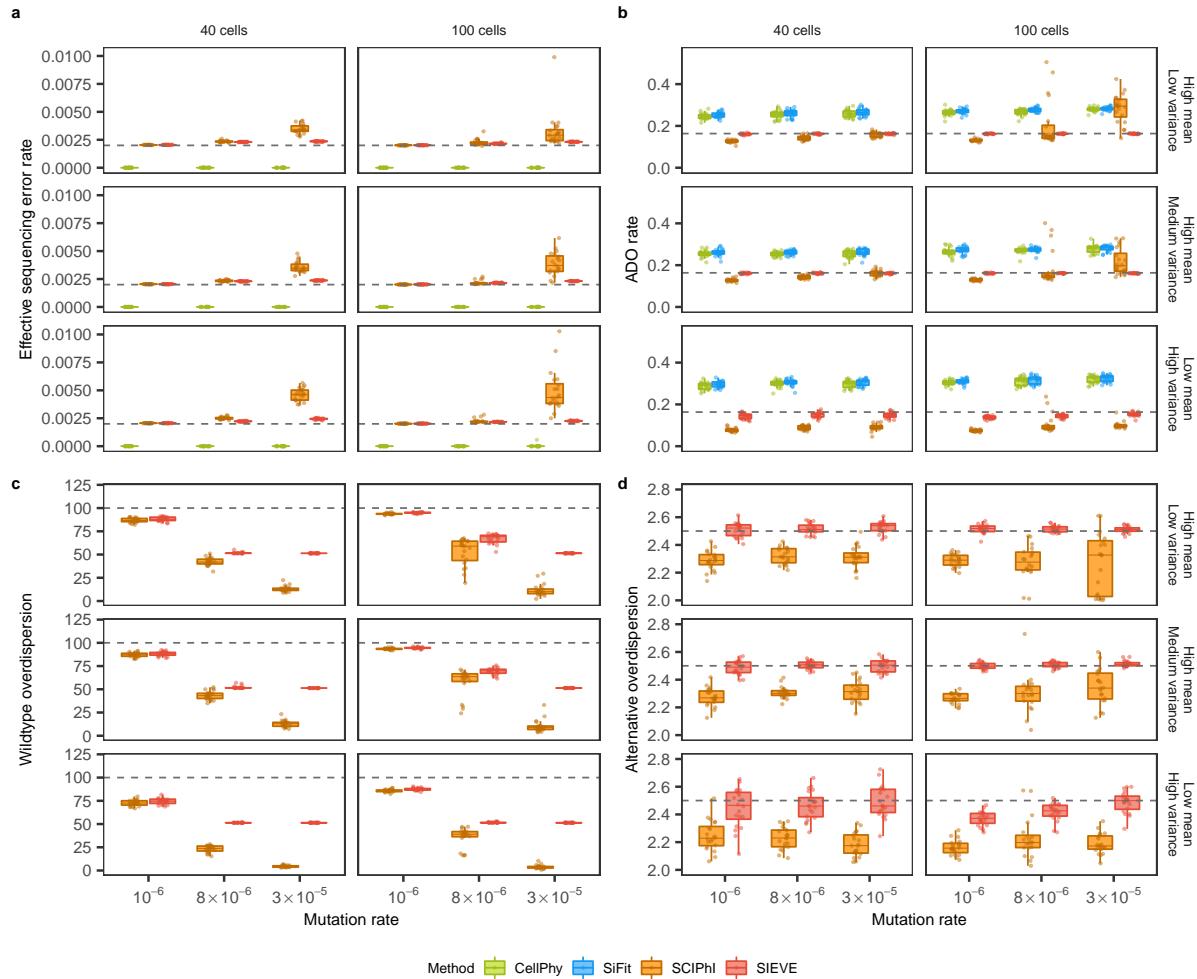
812 **Competing interests**

813 Other projects in the research lab of E.S. are co-funded by Merck Healthcare KGaA.

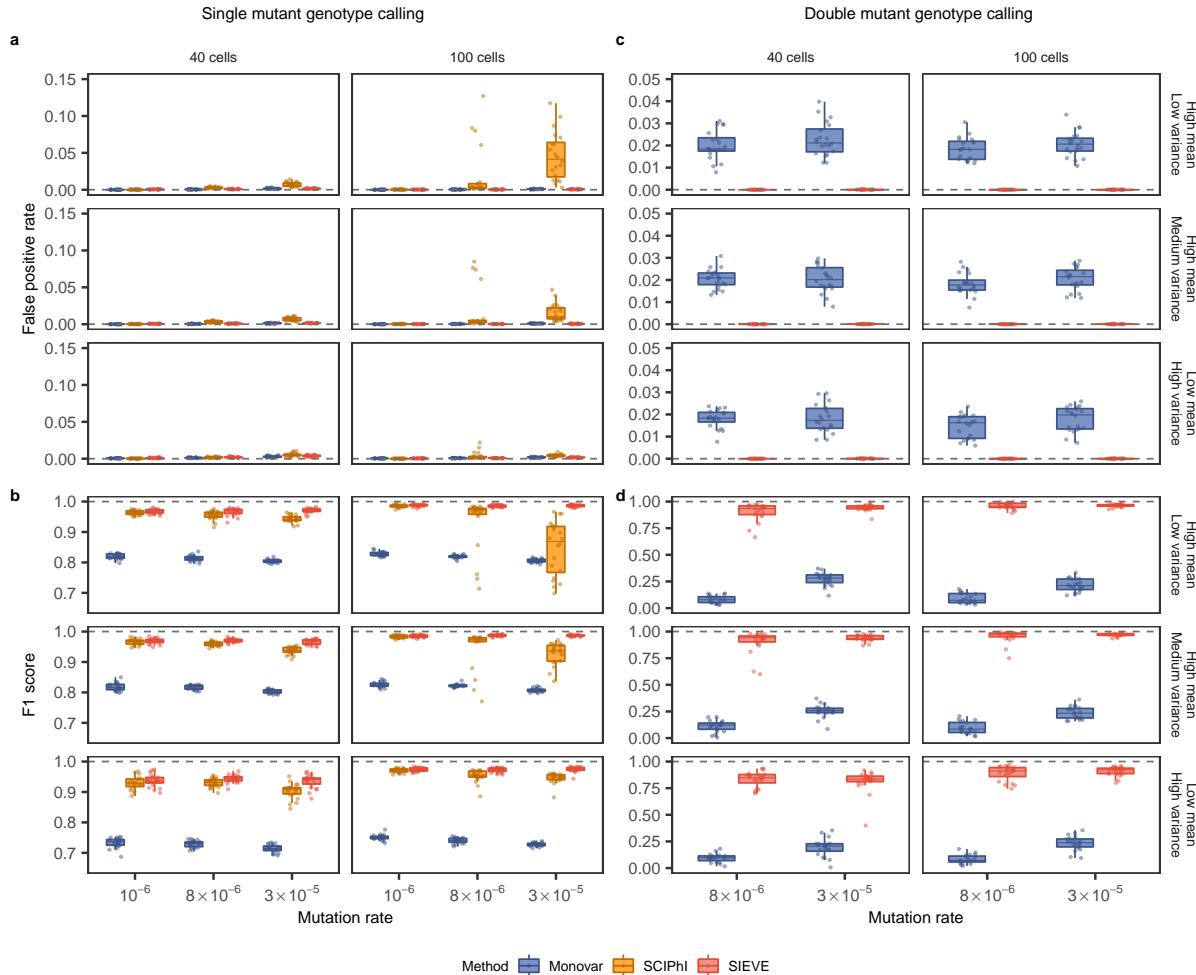
814 Extended data



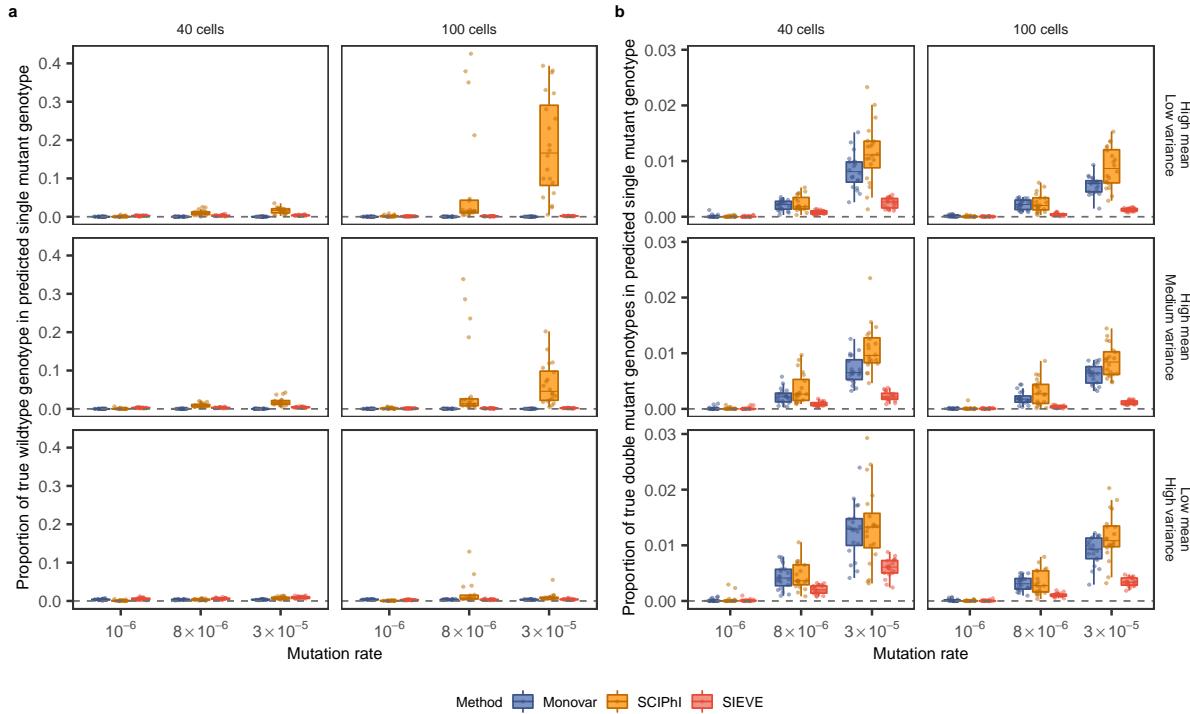
Extended Data Fig. 1: Correlation plot of the rooted BS distance against the number of background sites in log10 scale. Varying are the number of cells and the coverage quality. Rooted BS distance data points are coloured by the corresponding mutation rates. Kendall is the method for computing the correlation coefficient τ , which is invariant to the log transformation of the number of background sites. We choose 0.01 as the significance threshold.



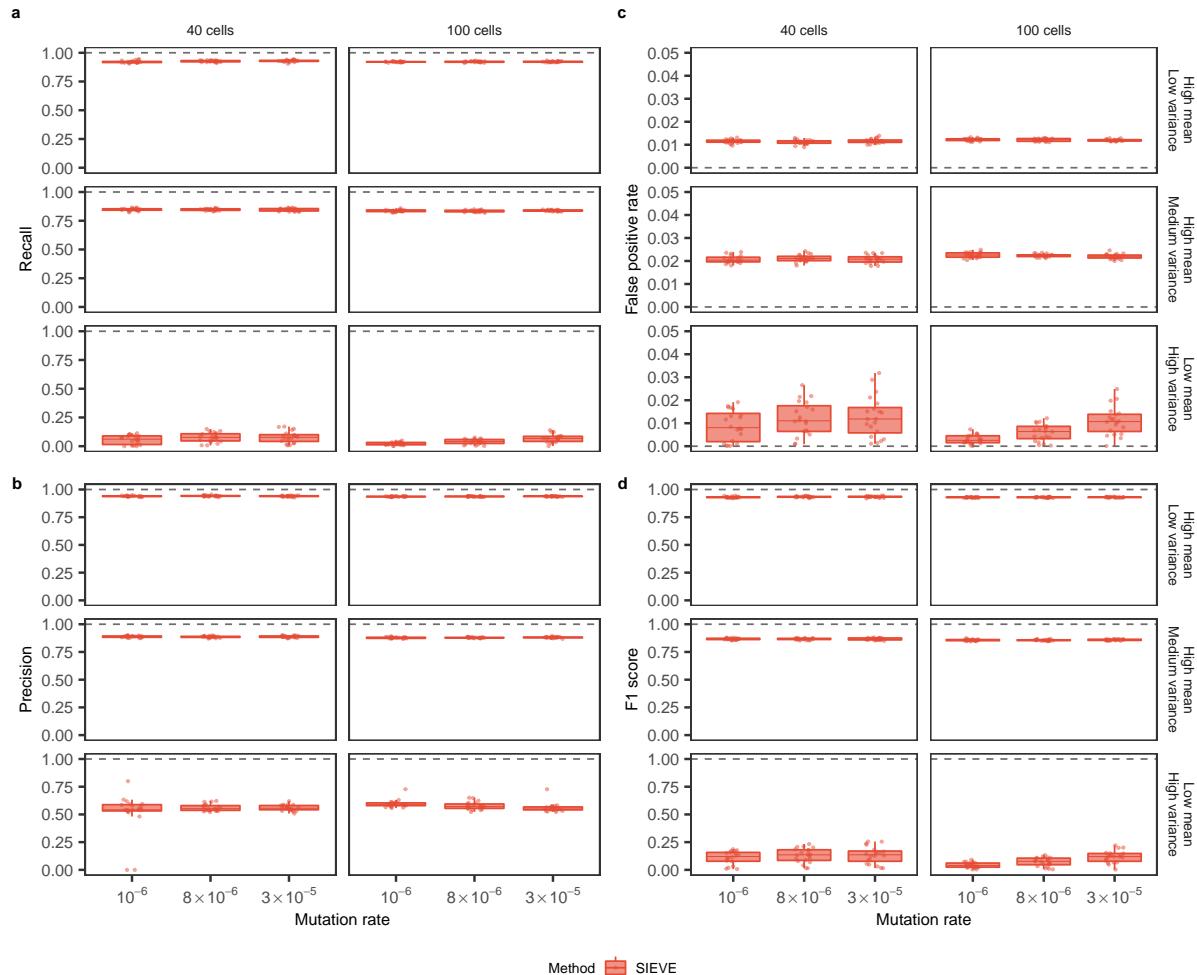
Extended Data Fig. 2: Additional benchmarking results of the SIEVE model regarding parameter estimates. Each simulation is repeated $n = 20$ times with each repetition denoted by coloured dots. The grey dashed lines represent the ground truth used to generate the simulated data. **a-d**, Box plots of parameter estimation accuracy for four important parameters in the model of raw read counts (Methods): effective sequencing error rate (**a**), ADO rate (**b**), wildtype overdispersion (**c**) and alternative overdispersion (**d**).



Extended Data Fig. 3: Additional benchmarking results of the SIEVE model regarding variant calling. Each simulation is repeated $n = 20$ times with each repetition denoted by coloured dots. The grey dashed lines represent the optimal values of each metric. **a-b**, Box plots of the single mutant genotype calling results measured further by the fraction of false positives in the ground truth negatives, i.e., the sum of false positives and true negatives, (false positive rate, **a**) and the harmonic mean of recall and precision (F1 score, **b**). **c-d**, Box plots of the double mutant genotype calling results measured further by false positive rate (**c**) and F1 score (**d**), where the variant calling results when mutation rate is 10^{-6} are omitted as very few double mutant genotypes are generated (less than 0.1%).



Extended Data Fig. 4: Types of false positives in single mutant genotype calling. The grey dashed lines represent the optimal proportions of each type. **a-b**, Box plots of the types of false positives in single mutant genotype calling, including the proportion of true wildtype (**a**) and true double mutant genotype (**b**). For single mutant genotype calling, the sum of the precision, the proportion of true wildtype and the proportion of true double mutant genotype is 1.

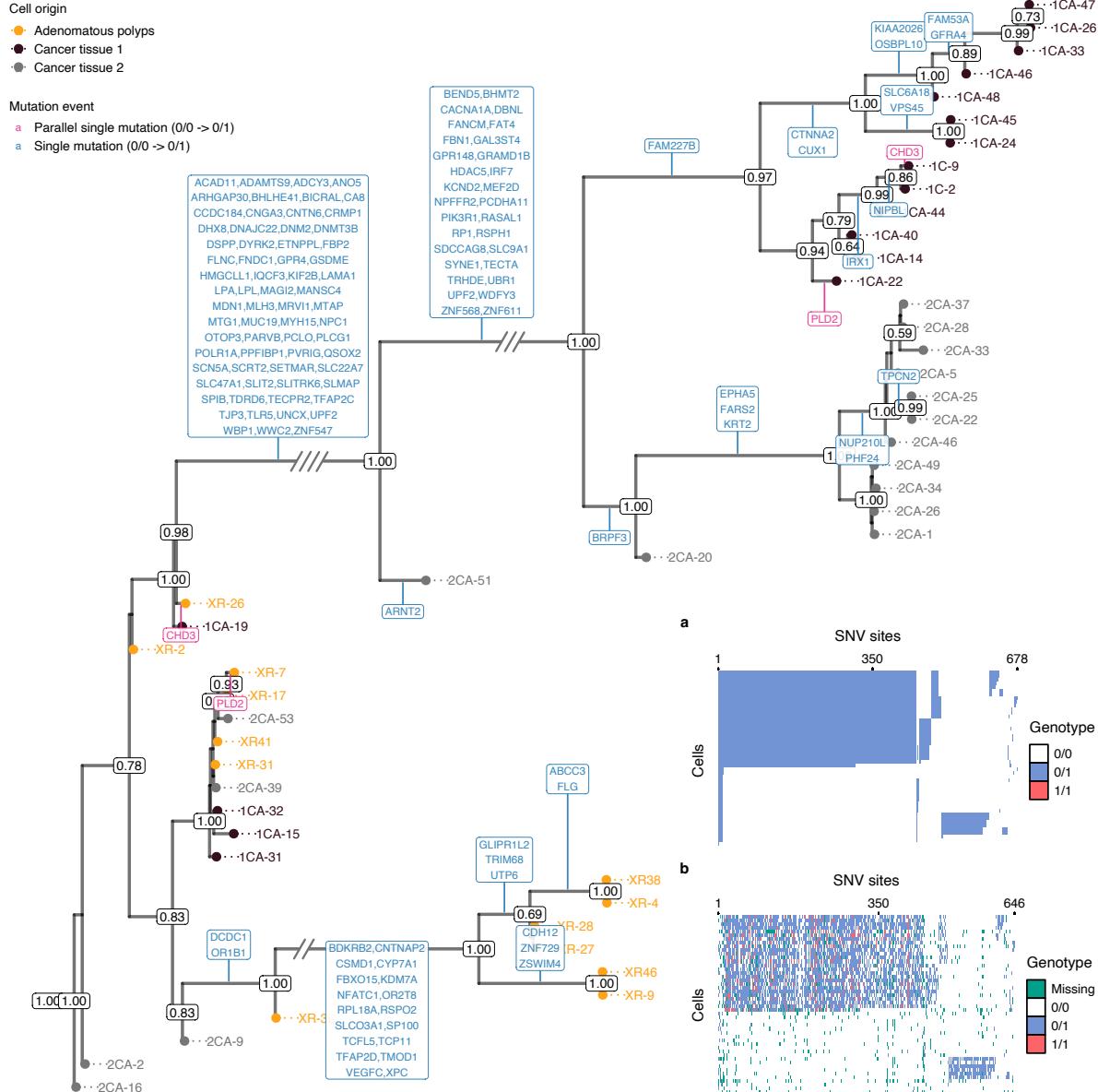


Extended Data Fig. 5: Benchmarking results of the SIEVE model regarding ADO calling. Each simulation is repeated $n = 20$ times with each repetition denoted by coloured dots. The grey dashed lines represent the optimal values of each metric. **a-d**, Box plots of the ADO calling results measured in recall (**a**), precision (**b**), false positive rate (**c**) and F1 score (**d**).

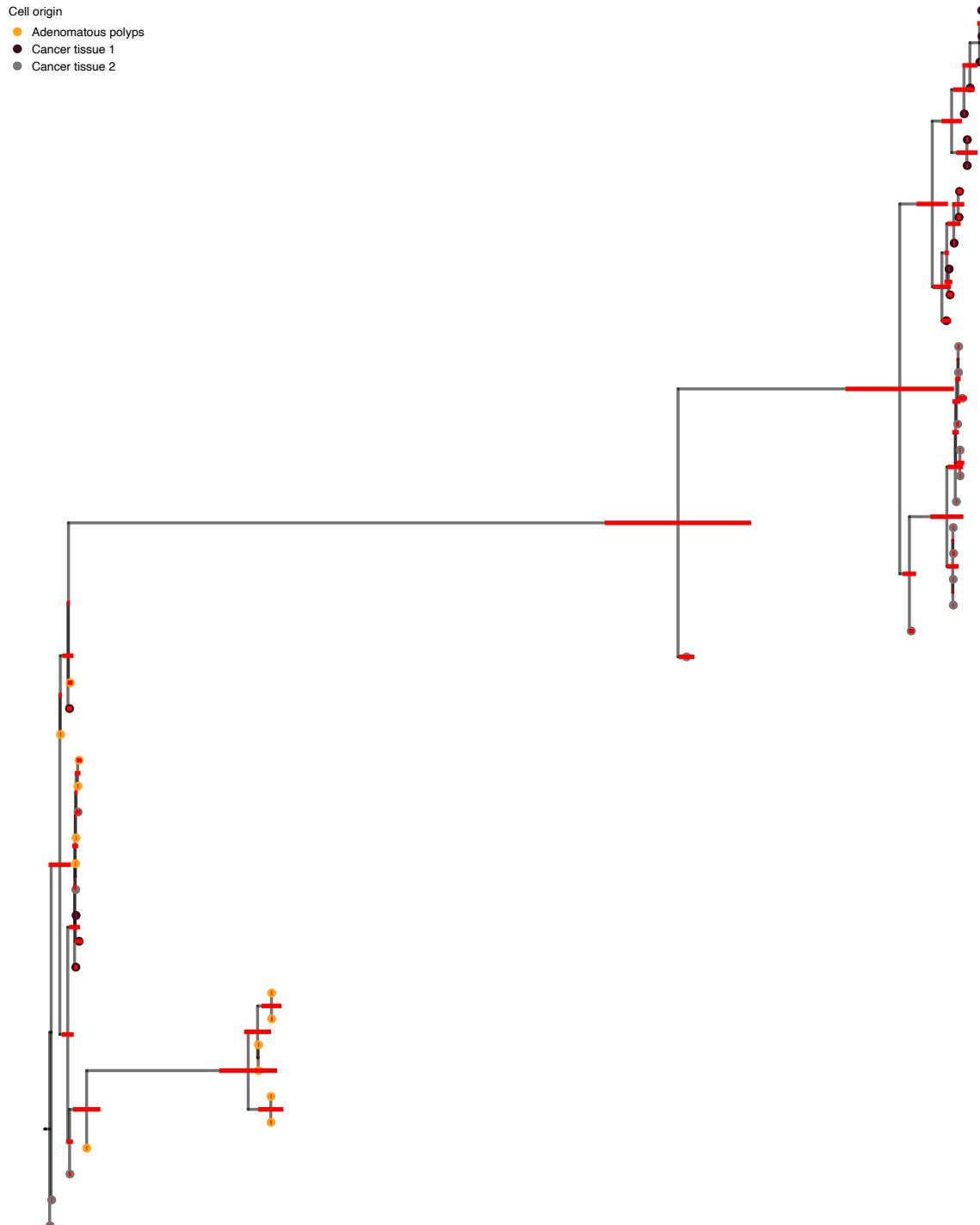
Extended Data Fig. 6: Illustration of branch lengths of the phylogenetic tree inferred from CRC28 by SIEVE. Shown is exactly the same tree as in Fig. 3, except that cell names, subclone posterior probabilities and gene annotations are removed and no branches are folded. Red bars annotated to internal nodes except the root are the 95% highest posterior density (HPD) intervals of the corresponding branch lengths.



Extended Data Fig. 7: Illustration of branch lengths of the phylogenetic tree inferred from TNBC16 [40] by SIEVE. Shown is exactly the same tree as in Fig. 4, except that cell names, subclone posterior probabilities and gene annotations are removed and no branches are folded. Red bars annotated to internal nodes except the root are the 95% HPD intervals of the corresponding branch lengths.



Extended Data Fig. 8: Results of phylogenetic inference and variant calling for CRC48 [41] dataset. Shown is SIEVE's maximum clade credibility tree. Three exceptionally long branches are folded with the number of slashes proportional to the branch lengths. Cell names are annotated to the leaves of the tree, coloured by the corresponding biopsies. The numbers at each node represent the posterior probabilities (threshold $p > 0.5$). At each branch, non-synonymous mutations are depicted in different colours including single mutations in blue and parallel single mutations in pink. **a-b**, Variant calling heatmap for SIEVE (a) and Monovar (b). Listed in the legend are the categories of predicted genotypes by each method. Cells in the row are in the same order as that of leaves in the phylogenetic tree.



Extended Data Fig. 9: Illustration of branch lengths of the phylogenetic tree inferred from CRC48 [41] by SIEVE. Shown is exactly the same tree as in [Extended Data Fig. 8](#), except that cell names, subclone posterior probabilities and gene annotations are removed and no branches are folded. Red bars annotated to internal nodes except the root are the 95% HPD intervals of the corresponding branch lengths.

	Mean of allelic coverage t	Variance of allelic coverage v
CRC28	4.3	19.6
TNBC16	10.2	207.9
CRC48	19.4	635.6

Extended Data Table 1: Inferred mean and variance of allelic coverage for real datasets.