

Near telomere-to-telomere nuclear phased chromosomes of the dikaryotic wheat fungus

Rhizoctonia cerealis

Qingdong Zeng^{1,#}, Wenjin Cao^{2,#}, Wei Li^{3,#}, Jianhui Wu^{1,#}, Melania Figueroa⁴, Huiquan Liu¹, Guowei Qin⁵, Qinhu Wang¹, Liming Yang², Yan Zhou⁶, Yunxin Yu², Lin Huang², Shengjie Liu¹, Yuming Luo⁷, Zhiying Mu⁷, Xiang Li¹, Jiajie Liu¹, Xiaoting Wang¹, Changfa Wang¹, Fengping Yuan¹, Huaigu Chen^{2,*}, Haibin Xu^{2,*}, Peter N. Dodds^{4,*}, Dejun Han^{1,*}, Zhensheng Kang^{1,*}

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University/Yangling Seed Industry Innovation Center, Yangling, Shaanxi 712100, China
2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
3. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
4. Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra ACT 2601, Australia
5. Nanjing Hong-Yuan Biotechnology Company Limited, Nanjing, Jiangsu 210033, China
6. Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
7. Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture &

Environmental Protection, School of Life Sciences, Huaiyin Normal University,
Huai'an 223300, China

These authors contributed equally to this work*

For correspondence: Zhenheng Kang: kangzs@nwafu.edu.cn

Dejun Han: handj@nwafu.edu.cn

Peter N. Dodds: peter.dodds@csiro.au

Haibin Xu: xuhaibin@njfu.edu.cn

Huaigu Chen: huaigu@jaas.ac.cn

Abstract

1 *Rhizoctonia cerealis* (*Rce*), which causes sharp eyespot, is one of the most destructive
2 wheat pathogens. However, the genetic and molecular virulence mechanisms of *Rce* have
3 not been elucidated. As a dikaryotic organism, the haplotype phasing of this fungus has
4 not been completed so far. We applied a haplotype phasing algorithm to generate a high-
5 quality near telomere-to-telomere nuclear-phased genome sequence of *Rce* strain R0301.
6 Sixteen pairs of chromosomes were assigned to the A and B genomes with a total size of
7 83 Mb. Based on a dual-time course RNA-seq, 25308 genes were predicted. Genes for
8 steroid biosynthesis and starch and sucrose metabolism were significantly enriched,
9 together with many genes encoding carbohydrate-active enzymes (CAZymes) and
10 secreted effector proteins, which should be involved in infection of wheat plants.
11 Population genomic analysis of 31 isolates collected in China during the last forty years
12 suggests that this population has not undergone substantial differentiation over time.
13 **Importance** The finished genome reference is the basis of revealing pathogens' biology
14 base. Many efforts have been made to produce the chromosome-scale assembly of fungi.
15 However, the reference of many pathogenic fungi is highly fragmented, which prevents
16 the analysis of genome structure variation, evolution and import pathogenicity genes.
17 Here, we assembly the only chromosome-scale haplotype-phased reference of dikaryotic
18 fungus so far. This assembly achieves the gold standard based on many evaluation
19 software, which indicates that the pipeline developed in this study can be applied to
20 assemble references for other dikaryotic organisms. This work can also promote the
21 research on the globe's destructive wheat pathogens, sharp eyespot, caused by *R. cerealis*.
22 **Keywords:** telomere-to-telomere, assembly, haplotype-phased, dikaryotic, genome

23 Basidiomycota fungi with a long-lived dikaryon state play critical ecological roles
24 by degrading plant material and generating significant economic value in the mushroom
25 industry¹. However, as the dominant causal agents of plant diseases, many fungi of this
26 group also severely threaten agricultural production². As an essential facet of biological
27 research, whole-genome sequences could inspire to solve the most critical and urgent
28 issues on health and agriculture production³. Finished genome assemblies present the
29 opportunity to reveal the biology base of pathogens⁴. The genomes of many pathogenic
30 fungi have been reported, while most of these are highly fragmented, preventing the
31 systematic analysis of crucial effector or pathogenicity genes and revealing the
32 information about genome structure variation and evolution^{5,6}. To produce the
33 chromosome-scale assembly of fungi, many attempts have been made, briefly speaking,
34 based on long-read sequencing (Pacbio or Nanopore), combined with genetic mapping,
35 bacterial artificial chromosome or optical mapping⁵⁻⁹.
36 However, these chromosome-scale assembly genomes are mostly reported in
37 monokaryon fungi. For dikaryotic fungi (such as *Puccinia graminis*, *P. striiformis*, *P.*
38 *triticina* and *R. cerealis*), which include species that pose severe threats to global food
39 security, another obstacle to genome assembly has emerged due to the presence of two
40 distinct haploid nuclei in one cell. The collinearity between these divergent haplotypes
41 has often hampered the contiguity of assemblies which have mostly not been able to
42 capture the full sequence information of both haplotypes. A haplotype-phased genome
43 has been generated for only three rust fungi, although these still contain many scaffolding
44 gaps^{10, 11}. For *R. cerealis* (anastomosis AG-D group subgroup I (AG-DI)), no reference
45 genome sequence has been reported.

46 To solve this dilemma on dikaryotic fungi genome assembly, we applied the
47 LAMP assembler algorithm to generate a finished haplotype-phased *R. cerealis* genome
48 sequence based on a combination of Pacbio and nanopore long reads and Illumina short
49 reads. Compared with other available pipelines, our pipeline integrated the contiguity
50 benefit of long reads and the high accuracy of short reads and minimised the occurrence
51 of misassemblies to output a high-quality haplotype phased genome. The single gap in
52 our assembly results from the long tandem repeats (at least 110kbp) associated with a
53 cluster of ribosomal RNA genes, as are usually observed in eukaryotic genomes¹².
54 Recently, the development of PacBio's high-fidelity reads produced haplotype-resolved
55 de novo assembly of humans and plants¹³⁻¹⁵. However, due to the short average read
56 length (about 15–20 kb)¹³, this technology may still be hard to fill this gap¹⁶. On balance,
57 we assembled the only gapless and haplotype-phased reference of a dikaryotic fungus so
58 far, and the pipeline developed in this study can be applied to assemble references for
59 other dikaryotic organisms.

60 **Results**

61 **Morphological character.** *Rce* strain could be cultured on potato dextrose agar (PDA)
62 agar plate, with a white colour of mycelium (Figure 1a), and hyphal cells contained two
63 nuclei each (Figure 1b), confirming that *R. cerealis* is dikaryotic. After inoculation of
64 wheat seedling sheaths and stems, the colour of inoculation sites was converted from
65 white to brown and then black (Figure 1c). In the fields, symptoms on wheat sheaths and
66 stems present semicircular or oval sharp eyespot with grey-brown in the middle and
67 brown around (Figure 1d). The spike of infected wheat was dead and appeared to contain
68 premature ripening whiteheads (Figure 1e).

69 **Genome sequencing and assembly.** We generated sequence data from *Rce* genomic
70 DNA using a range of sequencing platform technologies (Supplementary Table 1 at
71 <https://figshare.com/s/89e72ddeda3c9e4d8451>). A haploid genome size of 40.4 megabase
72 pairs (Mb) of *Rce* was estimated by short reads based on *k*-mer frequency analysis (*k* =
73 31), thus the genome size of a diploid *Rce* strain was estimated to be nearly 81 Mb in
74 consideration of the heterozygous nature of dikaryotic fungi. The model converged
75 heterozygosity rate is simulated to be 1.19% with two peaks occurring with frequencies
76 of 65 \times and 132 \times , respectively (Figure 2a), further confirming the two haploid nuclei of
77 *Rce* differ significantly in genome sequences.

78 With the same strategy for the primary pool assembly of the short arm of the wheat
79 2D chromosome (2DS)¹⁷, we used the LAMP tool to assemble the *Rce* genome (Figure
80 2b). Briefly, a *de-Bruijn* graph was constructed from short reads (*k*-mer = 99), then all
81 fork points in the graph were broken down to produce the initial unitig set, named
82 NODE. Unitigs from heterozygous regions were identified based on *k*-mer occurrence
83 frequency, with 150-200 \times *k*-mer frequency (Supplementary Figure 1), with these regions
84 representing the two haplotypes assembled separately. On the contrary, unitigs from
85 homozygous regions that were collapsed into a single assembly for the two identical
86 haplotypes, were identified by showing a doubled *k*-mer frequency of 300-400 \times and
87 treated as repetitive (Supplementary Figure 1). Unitigs were next aligned to Pacbio long
88 reads, and a chain of unitigs was created for each long read. From these unitig chains,
89 non-repetitive unitigs, or sub-chains with non-repetitive unitigs included, were used as
90 the origin for step-by-step extension to produce haplotype phased genome sequences
91 (Figure 2b).

92 The *Rce* genome sequence version 0.1 (Rce_V0.1) was produced from Illumina short
93 reads and Pacbio long reads and contained 95 contigs (Supplementary Figure 2). The circular
94 mitochondrial genome was 156,349 bp in length. During the assembly process, extension
95 of contigs was broken off when homozygous regions were encountered with lengths
96 exceeding the available Pacbio long reads from that region (Figure 2b). In the Rce V0.1
97 assembly, 59 ends from 53 contigs carried a homozygous region with a length of 20 Kb
98 or more (Supplementary Table 2 at <https://figshare.com/s/89e72ddeda3c9e4d8451>) ,
99 representing such regions where extension had been halted. This problem was solved by
100 appending Nanopore ultra-long read data in the LAMP pipeline, which reduced the count
101 of contigs to 34, including one derived from the mitochondrion. A total of 54 telomeres
102 with the TTAGG/CCTAA tandem repeat were identified at contig ends (Supplementary
103 Table 3 at <https://figshare.com/s/89e72ddeda3c9e4d8451>). Nine additional telomeres
104 were identified based on the Pacbio and Nanopore reads aligned to the end of telomere
105 free contigs (Supplemental Note, Supplementary Figure 3). However, due to the low
106 depth of the nine additional telomere sequences supported by Pacbio and Nanopore reads,
107 these telomere sequences were not added to the assembly.

108 Of the 33 genome contigs, 30 represent entire chromosomes from telomere to telomere
109 (Supplementary Table 3 at <https://figshare.com/s/89e72ddeda3c9e4d8451>). The three
110 remaining contigs (S9, S18 and S40) contained a telomere at one end but terminated at
111 the other end in long tandem repeats of at least 110kbp (Supplementary Figure 4). These
112 repeats were composed of a cluster of ribosomal RNA genes, as are usually observed in
113 eukaryotic genomes¹². According to the direction of tandem repeats, S18 was compatible
114 with S40, so these two contigs were joined with a 100bp N linker (Supplemental Note).

115 No other contig corresponding to the end of S9 was detected, probably because the
116 distance to the telomere is also very short. Thus, our final assembly contained 33 contigs
117 covering 83,241,008 bp (Table 1), representing 16 pairs of homologous chromosomes
118 ranging from 1.5 to 4.0 Mbp and the mitochondrial genome. When the Hi-C read pairs
119 were assessed, the 32 chromosome sequences could be separated into A and B haplotype
120 genomes containing 16 chromosomes each (named Chr01A – Chr16A and Chr01B –
121 Chr16B; Supplementary Figure 5). Chromosome sequences showed a higher proportion
122 of Hi-C read pair links within each haplotype (94.8 - 95.9%) than between haplotypes
123 (4.1 - 5.2%) (Figure 2c,d), consistent with their physical separation in two nuclei. This
124 was further confirmed by the collinearity of the two haploid genomes and whole-genome
125 Hi-C contact map (Figure 2e,f, Supplementary Figure 5). The number of trans read-pair
126 links between contigs S18 and S40 was 39, while only 2 read-pairs connected S18 and S9,
127 which confirmed that S18 and S40 were correctly scaffolded into the same chromosome.
128 This nuclear phased chromosome assembly version was named Rce_V1 and used as the
129 reference of *R. cerealis* strain R0301. For comparison to the LAMP assembly pipeline,
130 we also generated assemblies using several popular algorithms. These all output a very
131 similar genome size from 77.4 to 82.2 Mb (Supplementary Table 4 at
132 <https://figshare.com/s/89e72ddeda3c9e4d8451>), but with greater fragmentation (higher
133 contig numbers) and containing a number of misjoins and phase swaps between the two
134 nuclear haplotypes (Supplementary Figure 6a to 8a).

135 **The assembly of Rce_V1 achieves the gold standard.** Four approaches besides the Hi-
136 C contact maps mentioned above were used to evaluate the quality of the Rce_V1
137 assembly. Firstly, we identified 1,716 (97.3%) complete BUSCOs¹⁸ (1,701 complete and

138 single-copy BUSCOs) with only 41 missing BUSCOs in the A genome. For the B
139 genome, 1718 (97.4%) complete BUSCOs (1,705 complete and single-copy BUSCOs)
140 and 41 missing BUSCOs were identified (Supplementary Table 4 at
141 <https://figshare.com/s/89e72ddeda3c9e4d8451>). As non-model fungi, 97% indicates an
142 excellent genome representation. Secondly, all the sequencing reads (Novaseq, PacBio
143 and Nanopore) were mapped against the Rce_V1 assembly, and showed an even read
144 depth across the assembly (Supplementary Figure 9). For novaseq reads, the total
145 mapping rate is 99.41% (properly paired: 98.54%). Thirdly, the correct assembly of long-
146 terminal repeat (LTR) elements was assessed using LTR_retriever¹⁹, which returned an
147 LTR assembly index (LAI)²⁰ value of 23.54, which is classified as the gold quality.
148 Fourthly, based on the spectra copy number plots, the first peak at x=95 and the
149 homozygous content in the second peak at x=190. For nucl A and B (Supplementary
150 Figure 10a, b at https://figshare.com/articles/figure/supplement_figures/19375679), only
151 one haplotype is used, the bubbles in the graph are collapsed, and each heterozygous
152 region is represented once in the assembly. The lost content (the black peak) represents
153 half of the heterozygous content that is lost when bubbles are collapsed. When the whole
154 genome is used, haplotypes are separated by duplicating all the homozygous regions and
155 fully capturing the heterozygous content. According to the KAT²¹ walkthrough, these
156 plots indicated a perfect assembly. At last, based on the k-mers with Merqury²², the
157 quality value (QV) score was estimated as 46.0 and 45.2 for haploid A and B genome
158 assembly and and 45.6 for the combined version (Table 1). The K-mer completeness of
159 A, B genome and combined assembly are 80.39, 80.42 and 97.60 (Table 1). The high QV

160 and completeness indicated the assembly of Rce_V1 was excellent performance on
161 quality and completeness.

162 **Gene prediction and functional annotation.** The funannotate pipeline predicted 25,308
163 genes (26,030 isoforms) (Supplementary Table 5 at
164 <https://figshare.com/s/89e72ddeda3c9e4d8451>). Among these genes, 1,595 (6.30%) were
165 annotated as carbohydrate activity enzymes (CAZymes) and 2,853 (2,812 representative)
166 candidate secretory effector proteins (CSEP) (Figure 3, Supplementary Table 6 at
167 <https://figshare.com/s/89e72ddeda3c9e4d8451>). Twenty-four genomic regions were
168 identified as secondary metabolite regions located on 16 chromosomes. Fourteen of these
169 were classified as NRPS/PKS clusters and ten were annotated as terpene-type clusters
170 (Supplementary Figure 11 at

171 https://figshare.com/articles/figure/supplement_figures/19375679, Supplementary Table
172 7 at <https://figshare.com/s/89e72ddeda3c9e4d8451>).

173 **Haplotype composition and diversity.** Repeat sequences make up 25.22% and 24.06%
174 of the A and B genomes respectively. The repeat region distribution is similar between
175 the corresponding A and B chromosomes, but is different among different chromosomes
176 (Figure 3d). The repeat density is higher at the end of most chromosomes, which may
177 cause the incorrect connection among different chromosomes observed for the CANU,
178 FALCON_Unzip and NextDenovo assemblies (Supplementary Figure 6b to 8b).

179 Comparison of the A and B genome haplotypes revealed a total of 718 structural variants
180 affecting about 1.66 Mbp, and 229,003 SNPs, representing 2.75 SNPs/Kb between
181 haplotypes. Compared to *Pgt*, which showed 11–18/Kb SNPs between different
182 haplotypes¹⁰, the similarity between the A and B haplotypes of *Rce* is much higher. This

183 lower divergence between haplotypes presents a significant for correct phasing and may
184 explain why other assemblers sometimes collapsed two haplotypes into one contig
185 (Supplementary Figure 6c to 8c). Besides the cluster of ribosomal RNA genes (Chr04),
186 we detected 14 other long segment repeats with k -mer coverage far above the background
187 genome. These repeats all occurred in subtelomeric regions, with one end of each repeat
188 adjacent to the telomere. Interestingly, all of the 11 such regions in the A genome
189 consisted of an identical 71 Kb sequences, while two regions on Chr01B and Chr11B
190 contained identical 31 Kb sequences and the last region on Chr16B was 14 Kb
191 (Supplementary Table 8 at <https://figshare.com/s/89e72ddeda3c9e4d8451>,
192 Supplementary Figure 12 at
193 https://figshare.com/articles/figure/supplement_figures/19375679). Since these regions
194 were masked by RepeatMasker and RepeatModeler, the gene was predicted with unmask
195 genome and an additional 277 genes were obtained in these regions (Supplementary
196 Table 9 at <https://figshare.com/s/89e72ddeda3c9e4d8451>). Twenty-two homolog genes
197 of *Saccharomyces cerevisiae* HST3 are only located on the 11 full-length repeat regions
198 on the A genome. The HST3 gene was reported involved in preventing genome
199 instability^{23, 24}, and may be involved in maintaining the stability of the dikaryon system.
200 The total gene density of both the A and B genomes was 0.3 genes/Kb
201 (Supplementary Table 3 at <https://figshare.com/s/89e72ddeda3c9e4d8451>). A total of 303
202 and 347 genes were specific to either the A and B genomes respectively, based on having
203 no hits (-value 1e-5) in a reciprocal blastp between A and B genome (Supplementary
204 Table 10 at <https://figshare.com/s/89e72ddeda3c9e4d8451>). Only a few of these genes
205 are annotated with GO terms, but these were enriched in the biological processes of DNA

206 integration, GPI anchor biosynthetic process, translation, dolichol-linked oligosaccharide
207 (DLO) biosynthetic process and cellular protein modification process. The completely-
208 assembled DLO is the normal N-glycosylation which was reported essential for the
209 activity of *Magnaporthe oryzae*²⁵. The function of most haplotype-specific genes was
210 unknown, which may provide clues to reveal the formation and maintenance of the
211 binucleus.

212 **Transcriptome sequencing and DEG identification.** Illumina RNA sequencing
213 (Supplementary Table 11 at <https://figshare.com/s/89e72ddeda3c9e4d8451>) of *Rce* plants
214 at three time points (at 7,14 and 21 days) growing on PDA medium or in infected plants
215 was conducted. PCA analysis showed that the samples within biological repeats clustered
216 most closely, while the samples collected from infected wheat were also separated from
217 those from PDA, which suggested there may be many genes differentially expressed
218 during the interaction between wheat and *Rce* (Supplementary Figure 13 at
219 https://figshare.com/articles/figure/supplement_figures/19375679). With the GLM
220 (General Linear Models) approach, 10,520 genes were identified as differentially
221 expressed genes (DEG). Separating these genes by their expression trend, 4,457 genes
222 were up-regulated in infected plants versus PDA at the same time point, and 5,327 were
223 down-regulated (Supplementary Table 12 at
224 <https://figshare.com/s/89e72ddeda3c9e4d8451>). A total of 1,460 genes were commonly
225 up-regulated across all the time points and GO analysis suggested that these were
226 enriched in genes involved in carbohydrate metabolic process, transmembrane transport,
227 sterol biosynthetic process, oxidation-reduction process and cell wall modification. The
228 most enriched pathways were Steroid biosynthesis and Starch and sucrose metabolism

229 (Supplementary Table 13 at <https://figshare.com/s/89e72ddeda3c9e4d8451>,
230 Supplementary Figure 14 at
231 https://figshare.com/articles/figure/supplement_figures/19375679). Among these 1,460
232 genes, 298 were annotated as Cazymes, and 413 were annotated as CSEPs, with the
233 proportion of both CAZyme and CSEP significantly higher than in the whole genome
234 (Fisher's Exact Test, p-value < 0.001). On the other hand, the 1,925 genes down-
235 regulated in all three time points were enriched in protein phosphorylation, oxidation-
236 reduction process, transmembrane transport, methylation, regulation of transcription
237 (DNA-templated), mismatch repair (Supplementary Table 13 at
238 <https://figshare.com/s/89e72ddeda3c9e4d8451>, Supplementary Figure 14 at
239 https://figshare.com/articles/figure/supplement_figures/19375679). Among these 1,925
240 genes, there are 127 genes identified as CAZymes and 185 genes were identified as
241 CSEP, which is not significantly different from the proportion in the whole genome
242 (Fisher's Exact Test, p-value > 0.2). The biological process GO terms of carbohydrate
243 metabolic process and sterol biosynthetic process were significantly and specifically
244 enriched in the commonly up-regulated gene set.

245 **Population genetics in space and time.** Thirty-six isolates of *Rce* were collected from
246 1984 to 2015 from eight provinces (Supplementary Table 14 at
247 <https://figshare.com/s/89e72ddeda3c9e4d8451>). After identifying the ITS sequences, 31
248 isolates from seven provinces in China were sequenced with the Novaseq platform
249 (Supplementary Figure 15a, b at
250 https://figshare.com/articles/figure/supplement_figures/19375679). The A genome of
251 *Rce_V1* was used as the reference, and the mean mapping rate of these 31 isolates is

252 93.22% (Supplementary Table 14 at <https://figshare.com/s/89e72ddeda3c9e4d8451>).

253 With the best practices of the GATK pipeline, 808,864 SNP sites were identified. The
254 filtered VCF (--geno 0.05 --maf 0.05) with 464,887 SNP was used to construct a
255 phylogenetic tree. A reticulated, star-like network output by SplitsTree5 is consistent
256 with extensive recombination among these genotypes due to sexual reproduction
257 (Supplementary Figure 15c at
258 https://figshare.com/articles/figure/supplement_figures/19375679). The PCA analysis
259 divided the population into four groups with two, three, four, and twenty-two isolates
260 (Supplementary Figure 15d at
261 https://figshare.com/articles/figure/supplement_figures/19375679). Based on the tree and
262 PCA, four pairs of likely clonal isolates (very similar genotype) were detected, R1105
263 and R1404 (three years apart, 300 Km away), R1242 and R1424 (two years apart, 260
264 Km away), R1301 and R1328 (the same year, 480 Km away), R09130 and R1121 (two
265 years apart, 270 Km away). The clones that appeared between years and field sites
266 indicated that asexual reproduction might also play a significant role in the propagation
267 of *Rce* in the field condition. The linkage disequilibrium (LD) decay at 0.2 was about 3
268 Kb (Supplementary Figure 15e at
269 https://figshare.com/articles/figure/supplement_figures/19375679 which is consistent
270 with high levels of sexual recombination, although slightly higher than seen in
271 *Zymoseptoria tritici* (less than 1 Kb)²⁶, a fungal pathogen that has both asexual and
272 sexual lifestyles, again suggesting an important role for both sexual and asexual
273 reproduction in *Rce*.

274 ***Rce* specific and significant expansions in energy metabolism and pathogenicity-**
275 **related genes.** Orthofinder was used to identify orthologous gene families between the
276 genomes of *Rce* and *C. theobromae*, *R. solani* species with default parameters, and the
277 common (at least one gene for all of these seven species) and species-specific families
278 were identified (Figure 4a). There are 292 families (1086 genes) identified as specific to
279 *Rce* A genome. These genes are enriched in the KEGG pathway of ABC transporters,
280 Pentose and glucuronate interconversions, Ribosome biogenesis in eukaryotes, Fructose
281 and mannose metabolism and Pentose phosphate pathway, and Molecular Function GO
282 terms of methyltransferase activity, protein kinase activity, UDP-glycosyltransferase
283 activity, oxidoreductase activity, ATPase-coupled transmembrane transporter activity,
284 iron ion binding, pectate lyase activity, xenobiotic transmembrane transporter activity,
285 oxidoreductase activity, fructose 1,6-bisphosphate 1-phosphatase activity which involved
286 in pathogenicity (Figure 4b). The gene families where one or more species had ≥ 100
287 gene copies were filtered, and 9143 families were input to cafe (Version 4.2.1)²⁷ to
288 generate a species tree (Agabi and CocheC5 as root), which was transformed to the
289 ultrametric tree by r8s. The λ for the whole tree was estimated at 0.000135 to 0.000184.
290 In the *Rce* genome, 1354 families were expansions and 31 of these families were
291 significant, 2062 families were contractions and only one family was significant (Figure
292 4c). These genes were enriched in MAPK signalling pathway – yeast and Nicotinate and
293 nicotinamide metabolism pathway (Figure 4d). The enriched GO term includes mating-
294 type factor pheromone receptor activity, methyltransferase activity, protein dimerisation
295 activity, protein binding, NAD⁺ binding (Figure 4d). Overall, *Rce* evolved more
296 nutritional predatory and pathogenic genes to colonise wheat successfully.

297 **Rce sexual development.** Though asexual reproduction causes significant yield loss,
298 sexual reproduction plays an important role in recombination²⁸, and genetic diversity²⁹
299 and species identity³⁰. Sexual fusion between haploid fungal hyphae is controlled by
300 mating type genes³¹, with Basidiomycetes generally containing two mating type loci (*a*
301 and *b*) that encode either a pair of homeodomain transcription factors (HD genes; *b*
302 locus) or a lipopeptide pheromone and pheromone receptor (PR or P/R genes; *a* locus)³¹.
303 According to DNA binding motifs, the HD proteins were classified into HD1 and HD2
304 proteins³¹. Based on blast, HMMER and phylogenetic analysis, three allelic pairs of HD
305 genes (two HD1 and one HD2) were identified on Chr15 in a cluster which spans about
306 12 Kb (Supplementary Figure 16a, b, c at
307 https://figshare.com/articles/figure/supplement_figures/19375679). The protein sequence
308 identity between HD1-2 alleles is 99.80% (RhcerR0301Chr15A02930-T1(HD1-2A) and
309 RhcerR0301Chr15B02680-T1(HD1-2B)), between HD1-1 alleles is 88.19%
310 (RhcerR0301Chr15A02910-T1(HD1-1A) and RhcerR0301Chr15B02660-T1(HD1-1B))
311 and between HD2 alleles is 82.02% (RhcerR0301Chr15A02920-T1(HD2A) and
312 RhcerR0301Chr15B02670-T1(HD2B)). The protein sequence identity between HD1-1
313 and HD1-2 was about 66%. All of these genes are expressed with only HD2A, HD2B and
314 HD1-2B significant differentially expressed between cultured and infection samples
315 (Supplementary Table 19 at <https://figshare.com/s/89e72ddeda3c9e4d8451>). For the
316 pheromone receptor, 34 candidates were identified, 13 of which were removed because
317 less than seven transmembrane domains were identified, leaving 21 genes as the
318 candidant pheromone receptor (STE3). In *Coprinopsis cinerea*, the longest pheromone
319 precursors was 85aa and clustered with the pheromone receptor³¹. To identify pheromone

320 precursors, all of the proteins which length less than 100aa were retrieved and identified
321 the conserved C-terminal motifs CaaX pheromone processing sites. Seven gene
322 RhcerR0301Chr03B10880, RhcerR0301Chr06B06350, RhcerR0301Chr02A05630,
323 RhcerR0301Chr02B05800, RhcerR0301Chr12A06490, RhcerR0301Chr12A06490,
324 RhcerR0301Chr03A10910 were identified as the candidate pheromone precursors.
325 Unfortunately, no identified pheromone receptor and precursors clustered together.
326 An interesting phenomenon is that no clamp connection was observed in the hypha of
327 *Rce*. Based on a previous study, the clamp formation was controlled by the *clp1* gene was
328 induced by the HD protein heterodimer³²⁻³⁵. To find some clues about why clampless in
329 *Rce*, the *clp1* homologs were identified. However, based on reported *clp1* proteins, no
330 conserved regions or motifs were shared³⁴. In *Rce*, three gene pairs were identified as
331 *clp1* homologs: RhcerR0301Chr03B08840-T1, RhcerR0301Chr03A08870-T1,
332 RhcerR0301Chr03B01250-T1, RhcerR0301Chr03A01330-T1,
333 RhcerR0301Chr03B01300-T1 and RhcerR0301Chr03A01380-T1 (Supplementary Figure
334 16d at https://figshare.com/articles/figure/supplement_figures/19375679). Based on
335 transcripts Per Million (TPM) data, all of these genes are significantly differentially
336 expressed with and without wheat induced (Supplementary Table 19 at
337 <https://figshare.com/s/89e72ddeda3c9e4d8451>).

338 **Discussion**

339 So far, chromosome-level genome assembly has been available in many haploid and
340 inbred species⁵⁻⁹, while phasing of non-inbred or rearranged heterozygous genomes has
341 posed great challenges³⁶. Here we report a chromosome-scale haplotype phased *Rce*
342 genome based on nearly all sequencing platforms except bionano and sanger, which were

343 high-cost input. Our assembly has an essential improvement compared to the published
344 eight *R. solani* and one *Ceratobasidium theobromae* genome (Supplementary Table 16 at
345 <https://figshare.com/s/89e72ddeda3c9e4d8451>). The high collinearity between the two
346 haplotypes of the dikaryon and the high repeat density in the chromosome impeded the
347 correct assembly with widely used assemblers. In contrast, the LAMP assembler
348 integrated the benefit of long read length of Pacbio and Nanopore data and the high
349 accuracy of Illumina short reads and minimised the occurrence of mis-assemblies by
350 manual auxiliary judgement in real-time and output a high-quality haplotype phased
351 genome. We also provide the first report of long segment repeats that show nucleus-
352 specific distribution in this genome. On the one hand, this work provides the high-quality
353 reference of *Rce* and the clue of the dikaryon system stability, which will promote the
354 research on genomics, functioning, evolution, and disease control for this organism. On
355 the other hand, this study provides a new method and strategy for complex dikaryon
356 fungi genome assembly.

357 The nuclear phased chromosome-scale reference also provides the blueprint to
358 assess variation between the two karyons. The SNP density between the A and B genome
359 was much smaller than the SNP variation among isolates (229,003 vs 808,864), which
360 indicated that free recombination occurred. Although no sexual stage has been found in
361 the field or the laboratory³⁷, it is hard to explain without sexual reproduction why existed
362 high genetic and genotypic diversity in the field both emerged in this and previous
363 studies^{38, 39}. Paired clones collected in a different year and from distant fields indicated
364 that asexual reproduction likely occurs and might play an important role in the disease.
365 Based on the whole genome resequencing data, this study found that 31 isolates collected

366 in China spanning nearly 40 years from seven provinces had no evident clustering. The
367 evolutionary tree is not separated by year or province. These results suggest there is
368 significant gene flow among different provinces, which may result from the infected seed
369 or harvester spread³⁸. No regular clustering according to space and time also indicated the
370 population as a whole has not undergone substantial differentiation over time. This may
371 be due to limited selection imposed by host resistance and lack of introgression of new
372 *Rce* isolates from other global populations. There are two possible reasons, firstly, the
373 lack of resistant cultivars in wheat production with only chemical control used over this
374 period may mean there has been little selection to adapt to host resistance genes^{37, 38}.
375 Secondly, the 40-year time span may be too short to detect selection. Overall, the *Rce*
376 may have asexual predominates and sexual mixed reproduction strategies to maintain the
377 genetic diversity and the selective pressure was too low to promote the formation of
378 isolate clusters in specific time and space.

379 The vascular plant cell wall is the first barrier against fungal pathogens and is
380 composed of polysaccharides (cellulose, hemicellulose, and lignin), phenolic compounds
381 and proteins^{1, 40}. Many research works reported that the composition and structures of the
382 cell wall contributes to resist pathogen invasion⁴¹⁻⁴⁴. To colonise successfully,
383 necrotrophic fungi produce different CAZymes like polygalacturonases, hemicellulases,
384 cellulases, acetylerases and pectin methylesterases⁴². These enzymes degrade cell wall
385 polymers to facilitate infection and supply nutrition for fungal growth⁴⁵. Genes
386 significantly Up-regulated in all the interaction samples compared to the samples
387 collected from PDA were enriched in carbohydrate metabolic process, transmembrane
388 transport, sterol biosynthetic process, oxidation-reduction process and cell wall

389 modification biological process. The genes involved in nutritional predatory and
390 pathogenicity enriched in *Rce* specific and significate expansions gene set. These results
391 indicate *Rce* probable produce CAZymes to degrade wheat cell wall for colonisation, and
392 at the same time, the generative saccharides could be transported into fungus and used as
393 a carbon source. This result provides the theoretical basis for manipulating host sugar
394 metabolism and transport to control this disease.

395

396 **Materials and Methods**

397 Please see the online version.

398 **References**

399 1. Morin, E. et al. Genome sequence of the button mushroom *Agaricus bisporus*
400 reveals mechanisms governing adaptation to a humic-rich ecological niche.
401 *Proceedings of the National Academy of Sciences of the United States of America*
402 **109**, 17501-17506 (2012).

403 2. Sperschneider, J. et al. Advances and challenges in computational prediction of
404 effectors from plant pathogenic fungi. *PLoS Pathog* **11**, e1004806 (2015).

405 3. Sharma, K.K. Fungal genome sequencing: basic biology to biotechnology. *Crit.*
406 *Rev. Biotechnol.* **36**, 743-U227 (2016).

407 4. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-
408 mer weighting and repeat separation. *Genome Res.* **27**, 722-736 (2017).

409 5. Muller, M.C. et al. A chromosome-scale genome assembly reveals a highly
410 dynamic effector repertoire of wheat powdery mildew. *New Phytol.* **221**, 2176-
411 2189 (2019).

412 6. Faino, L. et al. Single-Molecule Real-Time Sequencing Combined with Optical
413 Mapping Yields Completely Finished Fungal Genome. *MBio* **6** (2015).

414 7. Nierman, W.C. et al. Genomic sequence of the pathogenic and allergenic
415 filamentous fungus *Aspergillus fumigatus*. *Nature* **438**, 1151-1156 (2005).

416 8. Torriani, S.F., Goodwin, S.B., Kema, G.H., Pangilinan, J.L. & McDonald, B.A.
417 Intraspecific comparison and annotation of two complete mitochondrial genome
418 sequences from the plant pathogenic fungus *Mycosphaerella graminicola*. *Fungal*
419 *Genet. Biol.* **45**, 628-637 (2008).

420 9. Goodwin, S.B. et al. Finished Genome of the Fungal Wheat Pathogen
421 *Mycosphaerella graminicola* Reveals Dispensome Structure, Chromosome
422 Plasticity, and Stealth Pathogenesis. *PLoS Genet.* **7** (2011).

423 10. Li, F. et al. Emergence of the Ug99 lineage of the wheat stem rust pathogen
424 through somatic hybridisation. *Nature Communications* **10** (2019).

425 11. Duan, H. et al. Identification and correction of phase switches with Hi-C data in
426 the Nanopore and HiFi chromosome-scale assemblies of the dikaryotic leaf rust
427 fungus *Puccinia triticina*. *bioRxiv*, 2021.2004.2028.441890 (2021).

428 12. Rabanal, F.A. et al. Epistatic and allelic interactions control expression of
429 ribosomal RNA gene clusters in *Arabidopsis thaliana*. *Genome Biol* **18**, 75
430 (2017).

431 13. Wenger, A.M. et al. Accurate circular consensus long-read sequencing improves
432 variant detection and assembly of a human genome. *Nat. Biotechnol.* **37**, 1155-
433 1162 (2019).

434 14. Cheng, H., Concepcion, G.T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved
435 de novo assembly using phased assembly graphs with hifiasm. *Nat. Methods*
436 (2021).

437 15. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites,
438 and allelic variants from high-fidelity long reads. *Genome Res.* **30**, 1291-1305
439 (2020).

440 16. Garg, S. Computational methods for chromosome-scale haplotype reconstruction.
441 *Genome Biol* **22**, 101 (2021).

442 17. Zeng, Q. et al. A novel high-accuracy genome assembly method utilizing a high-
443 throughput workflow. *bioRxiv*, 2020.2011.2026.400507 (2020).

444 18. Waterhouse, R.M. et al. BUSCO applications from quality assessments to gene
445 prediction and phylogenomics. *Mol. Biol. Evol.* (2017).

446 19. Ou, S. & Jiang, N. LTR_retriever: A Highly Accurate and Sensitive Program for
447 Identification of Long Terminal Repeat Retrotransposons. *Plant Physiol.* **176**,
448 1410-1422 (2018).

449 20. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR
450 Assembly Index (LAI). *Nucleic Acids Res.* **46**, e126 (2018).

451 21. Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B.J.
452 KAT: a K-mer analysis toolkit to quality control NGS datasets and genome
453 assemblies. *Bioinformatics* **33**, 574-576 (2017).

454 22. Rhie, A., Walenz, B.P., Koren, S. & Phillippy, A.M. Merqury: reference-free
455 quality, completeness, and phasing assessment for genome assemblies. *Genome
456 Biol* **21**, 245 (2020).

457 23. Hachinohe, M., Hanaoka, F. & Masumoto, H. Hst3 and Hst4 histone deacetylases
458 regulate replicative lifespan by preventing genome instability in *Saccharomyces
459 cerevisiae*. *Genes Cells* **16**, 467-477 (2011).

460 24. Feldman, J.L. & Peterson, C.L. Yeast Sirtuin Family Members Maintain
461 Transcription Homeostasis to Ensure Genome Stability. *Cell Reports* **27**, 2978-
462 2989.e2975 (2019).

463 25. Chen, X.-L. et al. *N*-Glycosylation of Effector Proteins by an α -1,3-
464 Mannosyltransferase Is Required for the Rice Blast Fungus to Evasive Host Innate
465 Immunity. *The Plant Cell* **26**, 1360 (2014).

466 26. Singh, N.K., Karisto, P. & Croll, D. Population-level deep sequencing reveals the
467 interplay of clonal and sexual reproduction in the fungal wheat pathogen
468 *Zymoseptoria tritici*. *Microb. Genomics* **7** (2021).

469 27. Han, M.V., Thomas, G.W., Lugo-Martinez, J. & Hahn, M.W. Estimating gene
470 gain and loss rates in the presence of error in genome assembly and annotation
471 using CAFE 3. *Mol. Biol. Evol.* **30**, 1987-1997 (2013).

472 28. Rice, W.R. Experimental tests of the adaptive significance of sexual
473 recombination. *Nat. Rev. Genet.* **3**, 241-251 (2002).

474 29. Agrawal, A.F. Evolution of sex: Why do organisms shuffle their genotypes? *Curr.*
475 *Biol.* **16**, R696-R704 (2006).

476 30. Heng, H.H. Elimination of altered karyotypes by sexual reproduction preserves
477 species identity. *Genome* **50**, 517-524 (2007).

478 31. Kues, U. From two to many: Multiple mating types in Basidiomycetes. *Fungal*
479 *Biol Rev* **29**, 126-166 (2015).

480 32. Inada, K., Morimoto, Y., Arima, T., Murata, Y. & Kamada, T. The *clp1* gene of
481 the mushroom *Coprinus cinereus* is essential for A-regulated sexual development.
482 *Genetics* **157**, 133-140 (2001).

483 33. Kamada, T. Molecular genetics of sexual development in the mushroom *Coprinus*
484 *cinereus*. *Bioessays* **24**, 449-459 (2002).

485 34. Scherer, M., Heimel, K., Starke, V. & Kamper, J. The Clp1 protein is required for
486 clamp formation and pathogenic development of *Ustilago maydis*. *Plant Cell* **18**,
487 2388-2401 (2006).

488 35. Ekena, J.L., Stanton, B.C., Schiebe-Owens, J.A. & Hull, C.M. Sexual
489 development in *Cryptococcus neoformans* requires *CLP1*, a target of the
490 homeodomain transcription factors Sxi1alpha and Sxi2a. *Eukaryot. Cell* **7**, 49-57
491 (2008).

492 36. Chin, C.S. et al. Phased diploid genome assembly with single-molecule real-time
493 sequencing. *Nat. Methods* **13**, 1050-1054 (2016).

494 37. Hamada, M.S., Yin, Y., Chen, H. & Ma, Z. The escalating threat of *Rhizoctonia*
495 *cerealis*, the causal agent of sharp eyespot in wheat. *Pest Manag Sci* **67**, 1411-
496 1419 (2011).

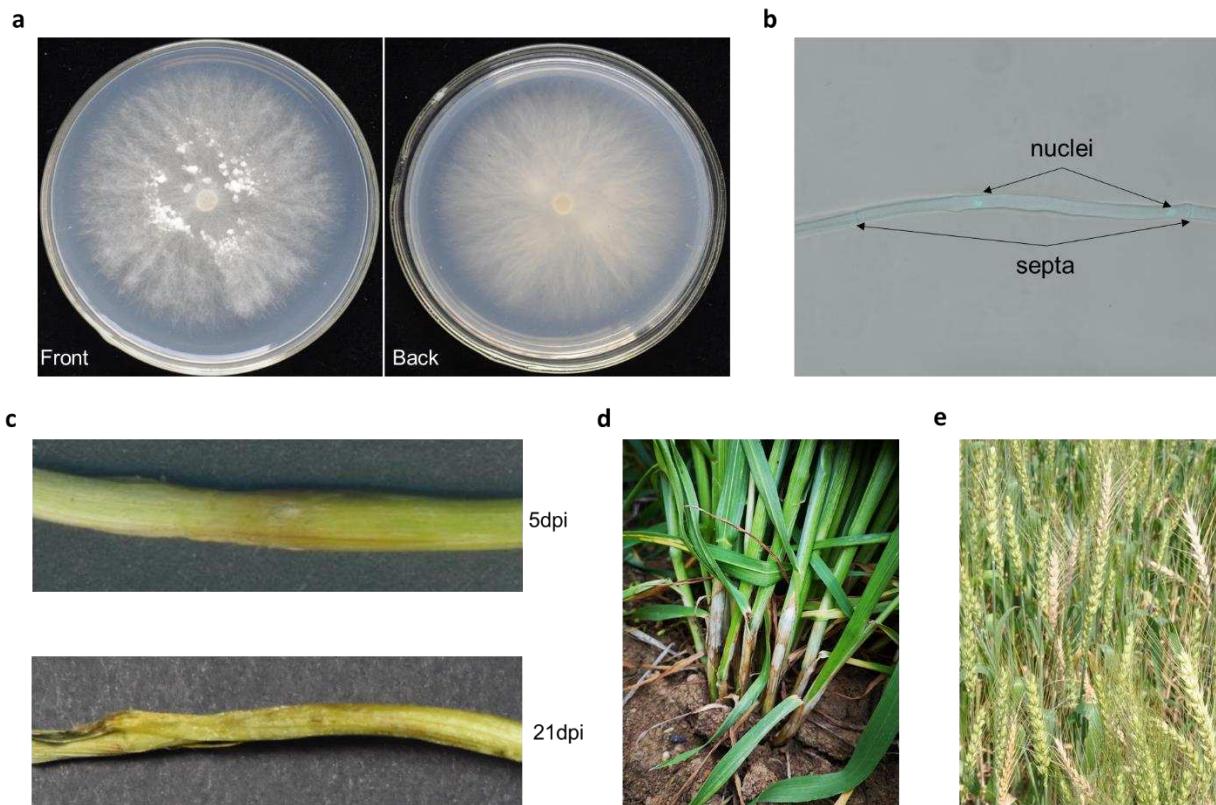
497 38. Li, W., Guo, Y.P., Zhang, A.X. & Chen, H.G. Genetic Structure, of Populations
498 of the Wheat Sharp Eyespot Pathogen *Rhizoctonia cerealis* Anastomosis Group D
499 Subgroup I in China. *Phytopathology* **107**, 224-230 (2017).

500 39. Liu, J. & Mundt, C.C. Genetic structure and population diversity in the wheat
501 sharp eyespot pathogen *Rhizoctonia cerealis* in the Willamette Valley, Oregon,
502 USA. *Plant Pathol.* **69**, 101-111 (2020).

503 40. Yokoyama, R. & Nishitani, K. Genomic basis for cell-wall diversity in plants. A
504 comparative approach to gene families in rice and *Arabidopsis*. *Plant Cell*
505 *Physiol.* **45**, 1111-1121 (2004).

506 41. Pogorelko, G., Lionetti, V., Bellincampi, D. & Zabotina, O. Cell wall integrity:
507 targeted post-synthetic modifications to reveal its role in plant growth and defense
508 against pathogens. *Plant Signal Behav* **8** (2013).

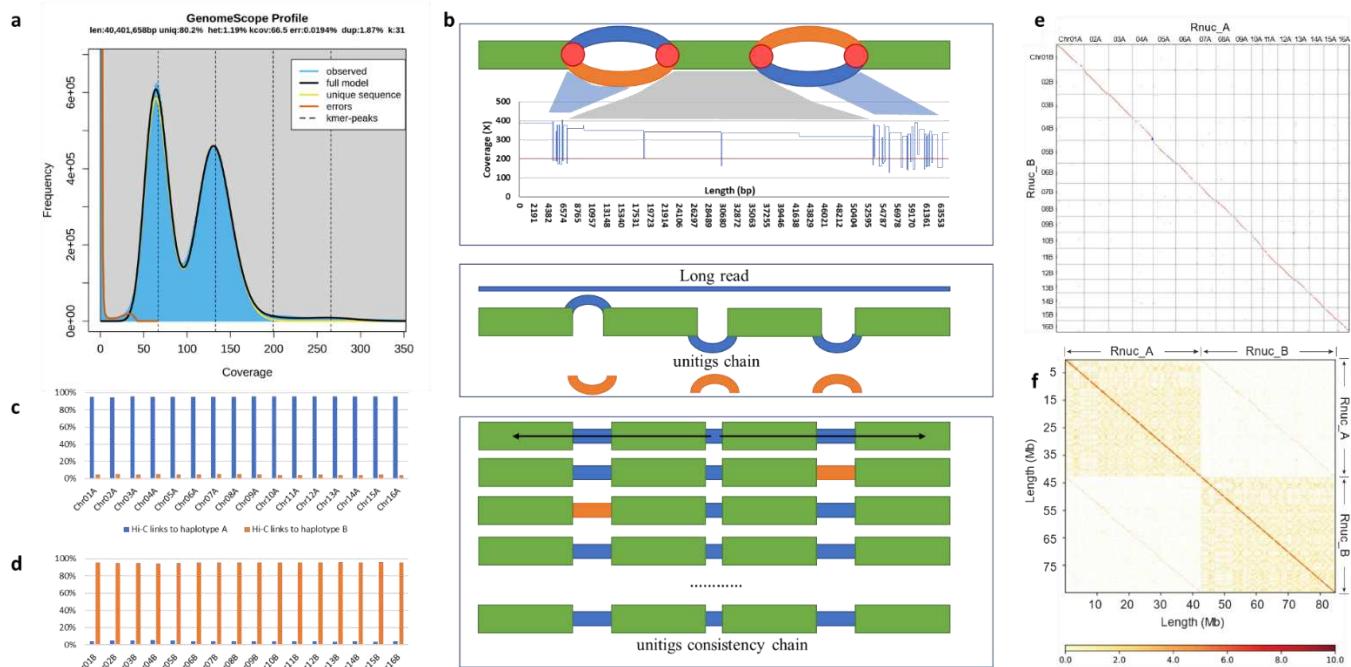
509 42. Bellincampi, D., Cervone, F. & Lionetti, V. Plant cell wall dynamics and wall-
510 related susceptibility in plant-pathogen interactions. *Front Plant Sci* **5**, 228
511 (2014).


512 43. Lionetti, V. & Metraux, J.P. Plant cell wall in pathogenesis, parasitism and
513 symbiosis. *Front Plant Sci* **5**, 612 (2014).

514 44. Basińska-Barczak, A., Błaszczyk, L. & Szentner, K. Plant Cell Wall Changes in
515 Common Wheat Roots as a Result of Their Interaction with Beneficial Fungi of
516 *Trichoderma*. *Cells* **9**, 2319 (2020).

517 45. Blanco-Ulate, B. et al. Genome-wide transcriptional profiling of *Botrytis cinerea*
518 genes targeting plant cell walls during infections of different hosts. *Front Plant
519 Sci* **5**, 435 (2014).

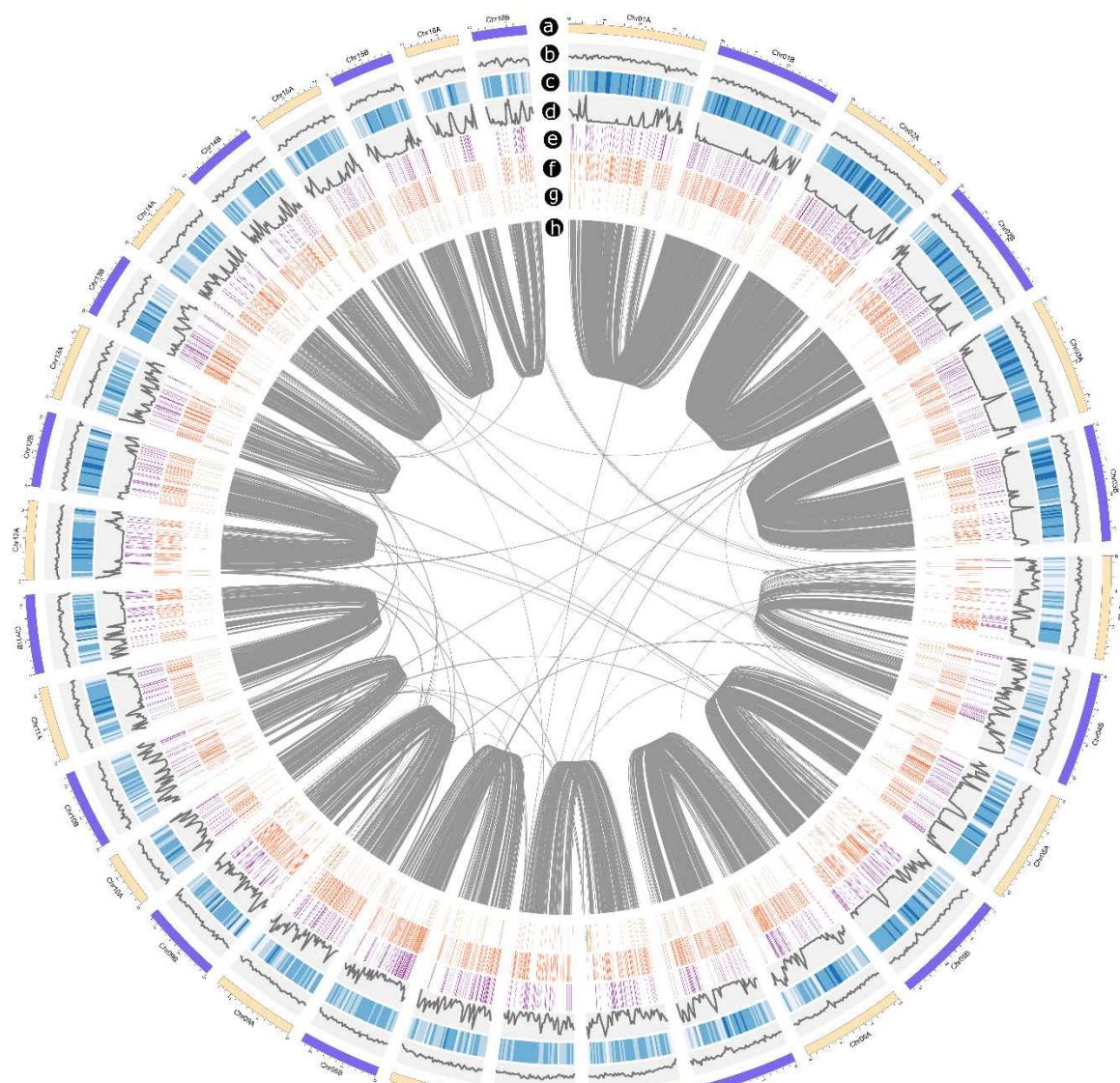
520


521 **Figures**

522

523 Figure 1 | a) The front and backside of *R. cerealis* hyphal on potato dextrose agar (PDA)
524 agar plat five days post inoculated. b) Fluorescence microscopy of *R. cerealis* hyphal
525 cells stained with 4',6-diamidino-2-phenylindole (DAPI) demonstrates two nuclei in each
526 cell. c) Symptoms on wheat seedling sheaths and stems at 5 and 21 dpi. d) Field
527 symptoms on wheat sheaths and stems. e) Field symptoms on the wheat spike.

528



529
530

531 Figure 2 | a) GenomeScope k-mer profile plot of the *R. cerealis* showing the fit of the
532 GenomeScope model (black) to the observed k-mer ($k = 31$) frequencies (blue). The
533 haploid genome of *R. cerealis* was estimated to be 40.4 Mb. Two peaks at 65 and 132
534 were identified. These results indicated that the two haploid nuclei of *Rce* are highly
535 heterozygous. b) The illustration of the LAMP pipeline. The green bar represents the
536 homozygous region, and the orange or blue bar represents the heterozygous region. The
537 red circle represents the fork point. c) Hi-C read pair links within A genome group. d) Hi-
538 C read pair links within the B genome group. e) Genomic dotplots after 1:1 synteny screen
539 between A and B genome. f) Chromosomal Hi-C contact map data analysis. Inter-chromosomal
540 Hi-C contact map. The intensity of each pixel represents the count of Hi-C links between 100kb
541 windows on chromosomes on a logarithmic scale. Darker red pixels indicate a higher contact
542 probability.

543


544

545
546

547 Figure 3 | Circos plot of genome features of *R. cerealis*. a) Karyotype of 32
548 chromosomes. b) GC content line plotted (0.4-0.6). c) Gene density of 50kb windows. d)
549 Repeat density of 50kb windows. e) Distribution of Cazyme genes. f) Distribution of
550 CSEP genes. g) Distribution of intranuclear specific genes. h) Orthologous gene pairs in
551 the whole genome.

552

553

554 Figure 4 | a) Venn diagram of shared and unique orthologue families (genes). b) KEGG
 555 and GO enrich the analysis of 1,086 Rhcer A genome-specific genes. c) Evolution of
 556 sequenced *Rhizoctonia* and *Ceratobasidium* genome. The number in brackets indicated
 557 the significant expansions or contraction orthologue family number. d) KEGG and GO
 558 enrich analysis of genes in 32 Rhcer A genome significant expansions orthologue family.

559 **Acknowledgements**

560 The authors thank Hua Zhao (NWAFU) for assisting on microscopy and Guoliang Pei
561 (NWAFU) for assisting on cluster management. This work was supported by grants from
562 the National Natural Science Foundation of China (31600444, 31620103913), by grants
563 from the Opening Foundation of the Jiangsu Key Laboratory for Eco-Agricultural
564 Biotechnology Around Hongze Lake (HZHLAB2001), by grants from the Opening
565 Foundation of the State Key Laboratory of Crop Stress Biology for Arid Areas
566 (CSBAAKF2018001), by grants from Hong-Yuan Biotech Co., Ltd (Nanjing, China), by
567 grants from BioCAM Biotech Co., Ltd (Nanjing, China), by grants from National '111
568 plan' (BP0719026).

569 **Author Contributions.**

570 The project was principally investigated by HX, DH, ZK, PND and HC. Sequences were
571 assembled by HX and QZ. Bioinformatics analyses were performed by QZ, PND, MF,
572 JW, WL and LY. Experiments for validation were performed by WC, SL, FY, YZ, YY,
573 LH, XL, JL, XW, CW, GQ, YL and ZM. The paper was written by QZ, HX, MF, PND
574 and was revised by DH, ZK, JW, HL and WL. HL guided sexual development analysis.
575 QW contributed the evolution analysis. All authors read and commented on the
576 manuscript.

577 **Competing Interests.** The authors declare no competing interests.

578 **Data availability**

579 All sequence data, assemblies generated in this study are available in NCBI under
580 BioProject PRJNA717151. Assemblies and other data have been deposited at figshare
581 (<https://figshare.com/>) with DOI numbers of 10.6084/m9.figshare.14256686 (*Rce* unitigs
582 *private link*: <https://figshare.com/s/0c06a42ebe1ec49b1aaf>),
583 10.6084/m9.figshare.14256674 (*Rce* Lamp assembly *private link*:
584 <https://figshare.com/s/d3533018091c33cb77f2>), 10.6084/m9.figshare.14256644 (*Rce* Canu
585 assembly *private link*: <https://figshare.com/s/8d6478a2aa52d69a1386>),
586 10.6084/m9.figshare.14256662 (*Rce* Falcon_unzip assembly *private link*:
587 <https://figshare.com/s/82e5530294e7d63289c3>), 10.6084/m9.figshare.14256656 (
588 Falcon_phase assembly *private link*: <https://figshare.com/s/3006d34e80e5ecb25e61>),
589 10.6084/m9.figshare.14256677 (*Rce* NextDenovo assembly *private link*:
590 <https://figshare.com/s/34b885730f704b289b10>), 10.6084/m9.figshare.14256680 (*Rce*
591 Supernova assembly *private link*: <https://figshare.com/s/478762f9d544bb228752>)

592 Figure Legends

593 Figure 1 | a) The front and backside of *R. cerealis* hyphal on potato dextrose agar (PDA) agar plat five days
594 post inoculated. b) Fluorescence microscopy of *R. cerealis* hyphal cells stained with 4',6-diamidino-2-
595 phenylindole (DAPI) demonstrates two nuclei in each cell. c) Symptoms on wheat seedling sheaths and
596 stems at 5 and 21 dpi. d) Field symptoms on wheat sheaths and stems. e) Field symptoms on the wheat
597 spike.

598 Figure 2 | a) GenomeScope k-mer profile plot of the *R. cerealis* showing the fit of the GenomeScope model
599 (black) to the observed k-mer ($k = 31$) frequencies (blue). The haploid genome of *R. cerealis* was estimated
600 to be 40.4 Mb. Two peaks at 65 and 132 were identified. These results indicated that the two haploid nuclei
601 of *Rce* are highly heterozygous. b) The illustration of the LAMP pipeline. The green bar represents the
602 homozygous region, and the orange or blue bar represents the heterozygous region. The red circle
603 represents the fork point. c) Hi-C read pair links within A genome group. d) Hi-C read pair links within the
604 B genome group. e) Genomic dotplots after 1:1 synteny screen between A and B genome. f)
605 Chromosomal Hi-C contact map data analysis. Inter-chromosomal Hi-C contact map. The
606 intensity of each pixel represents the count of Hi-C links between 100kb windows on
607 chromosomes on a logarithmic scale. Darker red pixels indicate a higher contact probability.

608 Figure 3 | Circos plot of genome features of *R. cerealis*. a) Karyotype of 32 chromosomes. b) GC content
609 line plotted (0.4-0.6). c) Gene density of 50kb windows. d) Repeat density of 50kb windows. e)
610 Distribution of Cazyme genes. f) Distribution of CSEP genes. g) Distribution of intranuclear specific genes.
611 h) Orthologous gene pairs in the whole genome.

612 Figure 4 | a) Venn diagram of shared and unique orthologue families (genes). b) KEGG and GO enrich the
613 analysis of 1,086 Rhcer A genome-specific genes. c) Evolution of sequenced *Rhizoctonia* and
614 *Ceratobasidium* genome. The number in brackets indicated the significant expansions or contraction
615 orthologue family number. d) KEGG and GO enrich analysis of genes in 32 Rhcer A genome significant
616 expansions orthologue family.

617 **Tables**

618 Table 1 Detail information of the assembly

Data	Rce_V0.1+nanopore+HiC+PCR			Pacbio+Illumina
	A_genome	B_genome	Rce_V1	Rce_V0.1
No. of contigs	16	16	33	95
No. of base	41,904,800	41,336,308	83,241,008	81,086,359
Max	3,974,316	3,646,437	3,974,316	2,909,882
N50	2,725,423	2,408,239	2,725,423	1,427,415
Median length	2,537,286	2,319,890	2,339,717	576,440
Average length	2,619,050	2,583,519	2,522,455	853,541
GC(%)	48.83	48.78	48.8	48.51
Mito length	-	-	156,349	156,349
TE coverage (%)	25.22%	24.06%	24.66%	22.01%
Quality (QV)	46.0	45.2	45.61	-
Completeness	80.39	80.42	97.60	-

619

620 **Supplementary Table**

621 Supplementary Table 1 Summary of genomic sequencing data of R0301. a) Summary of Novaseq genomic
622 sequencing data of R0301. b) Summary of Pacbio genomic sequencing data of R0301. c) Summary of Hi-C genomic
623 sequencing clean data of R0301. d) Summary of 10x genomics sequencing clean data of R0301. e) Summary of
624 Nanopore genomics sequencing clean data of R0301. Post at <https://figshare.com/s/89e72ddeda3c9e4d8451>
625 Supplementary Table 2 The length of homozygous regions of *Rce*_V0.1 contigs end which larger than 20 kb. Post at
626 <https://figshare.com/s/89e72ddeda3c9e4d8451>
627 Supplementary Table 3 The detailed information of each chromosome. Post at
628 <https://figshare.com/s/89e72ddeda3c9e4d8451>
629 Supplementary Table 4 The detailed assembly information of different pipeline. Post at
630 <https://figshare.com/s/89e72ddeda3c9e4d8451>
631 Supplementary Table 5 Gene prediction and function annotation of *Rce* Post at
632 <https://figshare.com/s/89e72ddeda3c9e4d8451>
633 Supplementary Table 6 Candidate secretory effector proteins of *Rce*. Post at
634 <https://figshare.com/s/89e72ddeda3c9e4d8451>
635 Supplementary Table 7 Identified secondary metabolite regions and the core biosynthetic genes. Post at
636 <https://figshare.com/s/89e72ddeda3c9e4d8451>
637 Supplementary Table 8 The information of 14 long segment repeats. Post at
638 <https://figshare.com/s/89e72ddeda3c9e4d8451>
639 Supplementary Table 9 Gene and function annotation in the long repeat regions. Post at
640 <https://figshare.com/s/89e72ddeda3c9e4d8451>
641 Supplementary Table 10 Haplotype specific genes and annotation. Post at
642 <https://figshare.com/s/89e72ddeda3c9e4d8451>
643 Supplementary Table 11 Wheat and *R. cerealis* interaction dual Illumina RNA seq and Pacbio iso seq. Post at
644 <https://figshare.com/s/89e72ddeda3c9e4d8451>
645 Supplementary Table 12 Differentially expressed gene identified between wheat and *Rce* interaction. Post at
646 <https://figshare.com/s/89e72ddeda3c9e4d8451>

647 Supplementary Table 13 GO and KEGG enrich analysis result of DEG between wheat and *Rce* interaction. Post at
648 <https://figshare.com/s/89e72ddeda3c9e4d8451>

649 Supplementary Table 14 Summary of resequencing data of 31 isolates. Post at
650 <https://figshare.com/s/89e72ddeda3c9e4d8451>

651 Supplementary Table 15 The genome information of *Rhizoctonia solani*. Post at
652 <https://figshare.com/s/89e72ddeda3c9e4d8451>

653 Supplementary Table 16 Compare to eight published *R. solani* and one *Ceratobasidium theobromae* genome. Post at
654 <https://figshare.com/s/89e72ddeda3c9e4d8451>

655 Supplementary Table 17 Different local alternative splicing event types generated by SUPPA based on Iso-seq data.
656 Post at <https://figshare.com/s/89e72ddeda3c9e4d8451>

657 Supplementary Table 18 The detailed information about the genes involved in sexual development. Post at
658 <https://figshare.com/s/89e72ddeda3c9e4d8451>

659 Supplementary Table 19 The expression of the genes involved in sexual development in *Rce*. Post at
660 <https://figshare.com/s/89e72ddeda3c9e4d8451>

661 **Supplementary Figure**

662 Supplementary Figure 1 Flowchart of the workflow used to estimate k -mer coverages for heterozygous and
663 homozygous genomic regions in the diploid *R. cerealis* genome. Each Illumina short read was end-trimmed to 125
664 bp in length, then disassembled to produce 27 99-bp k -mers. A total of 16 billion k -mers were produced from 593
665 million reads. For the 81 Mb diploid *R. cerealis* genome, one-fold k -mer coverage would be approximately 81
666 million k -mers. Thus, the disassembled k -mers would correspond to about 198 \times average coverage depth for the *R.*
667 *cerealis* genome. Adjusting this estimate to account for sources of contamination, including from mitochondrion,
668 endophytic microorganisms, etc., coverage is an estimated 150-200 \times for heterozygous genomic regions and 300-
669 400 \times for homozygous genomic regions.

670 Supplementary Figure 2 Flowchart of the process used to assemble genome sequences of the dikaryotic *R. cerealis*
671 strain R0301 by utilising the Lamp algorithm based on the WGS data.

672 Supplementary Figure 3 The Nanopore and Pacbio reads failed assembled telomere in the nine chromosome ends.

673 Supplementary Figure 4 The tandem repeats at the end of S18 and S40 contigs. a) The dotplot of S40 vs S40 contig.
674 b) The dotplot of Nanopore reads 7438396d-f174-43a6-8bf4-1876afbb1abc which is local at the distal telomere end
675 of S40. c) The dotplot of S18 vs S18 contig. d) The dotplot of nanopore reads 3d603e88-7e3a-45ca-9ae8-
676 2a1a6014c347 which local at the distal telomere end of S18.

677 Supplementary Figure 5 Intra-chromosomal contact maps of each chromosome. The intensity of each pixel
678 represents the count of Hi-C links between 20kb windows on each chromosome on a logarithmic scale. Darker red
679 pixels indicate a greater contact probability.

680 Supplementary Figure 6 Illustration of mis-assemblies in the Canu assembly of the *R. cerealis* genome: a) Global
681 comparison of the Canu assembly to our chromosome assembly (Rce_v1), ordered by chromosome. The grey and
682 coloured rectangles mark alignments corresponding to each chromosome pair. The Canu assembly consists of 520
683 contigs with a total length of 81.0 Mb. Canu assembly contigs corresponding to each chromosome pair can be seen
684 on y-axis labels and generally consist of a few long contigs and many short contigs for each chromosome pair.
685 Alignments marked with orange or green rectangles were chosen as the examples to enlarge as follows to inspect
686 mis-assemblies in the Canu assembly further. Contigs less than 100 Kb in the Canu assembly was removed. b)

687 Portions of chromosomes 03A and 08B were erroneously joined to produce the tig00001353 contig in the Canu
688 assembly (left graph). Blue rectangles indicate the junction position of this mis-assembly in dot plots and a bold red
689 line in the genome browser view. The erroneous nature of this mis-assembly is supported by the contact break
690 shown in the Hi-C contact map for this contig (middle graph) and by the drop in coverage for Illumina PE reads,
691 PacBio CLR reads and Nanopore ultra-long reads (right graph). c) Haplotypes were collapsed in portions of the
692 Canu assembly corresponding to chromosome pair No. 01, leading to three gaps with lengths over 200 kb in the
693 alignment to chromosomes 01A and 01B (Chr01A:2,627-2,829 kb, Chr01B:914-1,236 kb and Chr01B:1,495-1,712
694 kb). Primary alignments showing the highest identity were concentrated in the region unmarked by grey triangles.
695 Blue rectangles mark the position of the three gaps in the Rce_v1 assembly.

696 Supplementary Figure 7 Illustration of mis-assemblies in the Falcon_unzip assembly of the *R. cerealis* genome with
697 colour schemes identical to those in Supplementary Figure 6: a) Global comparison of the Falcon_unzip assembly to
698 our chromosome assembly (Rce_v1). The Falcon_unzip assembly consists of 280 contigs with a total length of 82.2
699 Mb. Similar to the Canu assembly, contig groups corresponding to each chromosome pair generally consist of a few
700 long contigs and many shorter contigs. Contigs less than 100 Kb in the Falcon_unzip assembly was removed. b) The
701 chromosomes 03B and 01A were erroneously joined to produce the 000012F|arrow contig in the Falcon_unzip
702 assembly (left graph). The erroneous nature of this mis-assembly is supported both by the contact break shown in
703 the Hi-C contact map for this contig (middle graph) and by the drop in PacBio CLR read coverage at the junction
704 (right graph). c) Portions of haplotypes were collapsed or misplaced in chromosome pair No. 01 in the Falcon_unzip
705 assembly, leading to three gaps of over 100 kb (Chr01A:3,649-3,784 kb, Chr01B:747-1,282 kb and Chr01B:1,354-
706 1,487 kb). The only gap that overlaps with the Canu assembly gap presented in Figure s21c is the gap in the middle
707 position.

708 Supplementary Figure 8 Illustration of mis-assemblies in the NextDenovo assembly of *R. cerealis* genome with
709 colour schemes identical to those shown in Supplementary Figure 6: a) Global comparison of the NextDenovo
710 assembly to our chromosome assembly (Rce_v1). The NextDenovo assembly consists of 61 contigs, with a total
711 length of 77.4 Mb, notably smaller than Rce_v1 (83.2 Mb). The mitochondrial genome was absent from the
712 NextDenovo assembly. The red arrow marks a mis-assembly in the ctg000037_np512 contig, which features an
713 errant joining of chromosomes 09A and 09B in an end-to-end manner. b) The chromosomes 04B and 08A were

714 erroneously joined to produce the ctg000001_np512 contig in the NextDenovo assembly (left graph). The erroneous
715 nature of this mis-assembly is supported both by the contact break shown in the Hi-C contact map for this contig
716 (middle graph) and by the drop in coverage at the junction position with Illumina PE reads, PacBio CLR reads and
717 Nanopore ultra-long reads (right graph). c) Internal portions of haplotypes were collapsed in chromosome pair No.
718 01, leading to the ctg000018_np512 contig representing two internal portions on chromosomes 01A and 01B, with
719 the length of 2.0 Mb for each.

720 Supplementary Figure 9 The visualisation of mapped depth all the used reads against the Rce_V1 assembly with 1
721 Kb window. a) A genome used as the reference. b) B genome used as the reference. Top, Illumina Novaseq PE
722 reads. Middle, Nanopore ultra-long reads. Bottom, PacBio CLR reads.

723 Supplementary Figure 10 K-mer spectra copy number plot of Rce_V1 assembly based on the Illumina Novaseq PE
724 reads. The first peak represents the heterozygous content at x=90 and the homozygous content at the second peak at
725 x=180. The lost content (the black peak) represents half of the heterozygous content lost when bubbles collapse. a)
726 Only the nucl A genome haplotype was used. b) Only the nucl B genome haplotype was used. (c) The whole
727 genome was used as the reference. Post at https://figshare.com/articles/figure/supplement_figures/19375679

728 Supplementary Figure 11 Genome-wide secondary metabolite regions identified in *Rce*. Post at
729 https://figshare.com/articles/figure/supplement_figures/19375679Supplementary Figure 12 The alignment of the 14
730 long repeat regions. Post at https://figshare.com/articles/figure/supplement_figures/19375679

731 Supplementary Figure 13 MDS plot of 18 samples based on logFC with BCV method. a) Wheat is grown with and
732 without *Rce* infected. b) MDS plot of all samples. Post at
733 https://figshare.com/articles/figure/supplement_figures/19375679

734 Supplementary Figure 14 Veen and enrich the analysis of DEG between wheat and *Rce* interaction. a) up-grade
735 genes and annotation. b) down-grade genes and annotation. Post at
736 https://figshare.com/articles/figure/supplement_figures/19375679

737 Supplementary Figure 15 31 sequenced isolates information. a) The sample location of 31 isolates from China. b)
738 The phylogenetic tree is based on the ITS sequences. c) The reticulated, star-like network based on the genome-wide
739 SNP data. d) The PCA analysis of the population. e) The linkage disequilibrium (LD) decay. Post at
740 https://figshare.com/articles/figure/supplement_figures/19375679

741 Supplementary Figure 16 Homeodomain genes identified. a) The phylogenetic tree of HD1 genes. b) The
742 phylogenetic tree of HD2 genes. c) The location and structure of HD genes. d) The phylogenetic tree of *clp1* genes.
743 Post at https://figshare.com/articles/figure/supplement_figures/19375679