

1 Metabolic reprogramming underlies cavefish muscular endurance despite loss of
2 muscle mass and contractility

3

4 Luke Olsen^{1,2}, Michaela Levy¹, J Kyle Medley¹, Huzaifa Hassan¹, Richard Alexander¹, Emma Wilcock⁶,
5 Kexi Yi¹, Laurence Florens¹, Sean McKinney¹, Robert Peuß³, Jenna Persons¹, Alexander Kenzior¹, Ernesto
6 Maldonado⁷, Andrew Gluesenkamp⁴, Edward Mager⁵, David Coughlin⁶, Nicolas Rohner^{1,2*}

7

8 ¹Stowers Institute for Medical Research, Kansas City, MO 64110, USA

9 ²Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City,
10 KS 66160, USA

11 ³Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany

12 ⁴Center for Conservation and Research, San Antonio Zoo, San Antonio, TX 78212 USA

13 ⁵Department of Biological Sciences, Advanced Environmental Research Institute, University of North
14 Texas, Denton, TX 76203 USA

15 ⁶Department of Biology, Widener University, Chester, PA 19013, USA

16 ⁷EvoDevo Research Group, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y
17 Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico

18

19 *Correspondence: Nicolas Rohner nro@stowers.org

20

21 Keywords: evolutionary physiology, skeletal muscle metabolism, physical activity

22

23 Classification: Biological Sciences - Evolution

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 **Abstract**

46 Physical inactivity – specifically the lack of moderate-to-vigorous activity – is a scourge to human
47 health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches
48 have relaxed investment into physical activity, providing unique evolutionary insight into adaptive
49 physical inactivity. The Mexican cavefish *Astyanax mexicanus* lost moderate-to-vigorous activity
50 following cave colonization, reaching basal swim speeds ~3-fold slower than their river-dwelling
51 counterpart. We found that this was accompanied by a marked shift in body composition,
52 decreasing muscle mass by 30% and increasing fat mass by 40%. This shift persisted at the single
53 muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar
54 volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated this shift
55 in investment is driven by increased expression of *ppary* – the master regulator of adipogenesis –
56 with a simultaneous decrease in fast myosin heavy chain expression. *Ex vivo* and *in vivo* analysis
57 confirmed these investment strategies come with a functional trade-off, decreasing cavefish
58 muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming
59 velocity. Despite this, cavefish displayed a striking degree of muscular endurance, reaching
60 maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omics analysis
61 indicated metabolic reprogramming, specifically increased phosphoglucomutase-1 abundance,
62 phosphorylation, and activity, as contributing mechanisms enhancing cavefish glycogen utilization
63 under metabolically strenuous conditions. Collectively, we reveal broad skeletal muscle
64 reprogramming following cave colonization, displaying an adaptive skeletal muscle phenotype
65 reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique
66 capacity for sustained muscle contraction under fatiguing conditions.

67

68 **Significance**

69 The evolutionary consequence of decreased physical activity upon skeletal muscle physiology
70 remains unexplored. Using the Mexican cavefish, we find loss of moderate-to-vigorous swimming
71 following cave colonization has resulted in broad shifts in skeletal muscle investment – away from
72 muscle mass and instead toward fat and sugar accumulation – ultimately decreasing muscle fiber
73 twitch kinetics. Surprisingly though, cavefish possessed marked muscular endurance, reaching
74 maximal swimming speeds rivaling their river-dwelling counterpart. Multi-omics analysis
75 revealed carbohydrate metabolic reprogramming as a contributing component, most notably

76 elevated abundance and phosphorylation of the glycogenolytic enzyme Phosphoglucomutase-1 –
77 a likely adaptation to cave-specific hypoxia. These findings emphasize the impact multiple
78 selective pressures have on skeletal muscle physiology, providing the first evolutionary insight
79 into skeletal muscle adaptation following decreased activity.

80

81 **Introduction**

82 Throughout evolution, movement and feeding have shaped skeletal muscle physiology – whether
83 by enhancing calcium transients to power “super-fast” contraction in the Toadfish swimbladder,
84 accumulating massive swaths of mitochondria to permit large-scale migration in the Atlantic
85 Bluefin Tuna, or restructuring joint anatomy to power explosive snapping in the Pistol Shrimp
86 (Rome et al. 1996; Dumesic et al. 2019; Kaji et al. 2018). Indeed, extreme environmental
87 conditions necessitate exaggerated skeletal muscle phenotypes, providing powerful insight into the
88 boundaries of skeletal muscle adaptation and performance. While insightful, research into these
89 “locomotor extremes” (Dickinson et al. 2000) have remained at a single end of the locomotory
90 spectrum. In fact, in contrast to the examples above, many species have drastically decreased
91 physical activity levels, at times remaining completely inactive for months and possibly even years
92 (Fröbert et al. 2020; Balázs et al. 2020; Hendrickson et al. 2001). Troglobites are prime examples
93 of such extreme changes to locomotion, with multiple cave-dwellers remaining either motionless,
94 or adapting a glide-and-rest swimming behavior, in stark contrast to their above-ground
95 counterparts (Hüppop et al. 2000). While adaptive, these extreme feats of ‘laziness’ beg the
96 question of how skeletal muscle responds to prolonged periods of inactivity and may ultimately
97 shed light on the evolutionary consequence of physical inactivity on skeletal muscle physiology –
98 a current scourge to human health (Booth et al. 2017). To this point, we established the Mexican
99 cavefish as a comparative model to provide an evolutionary perspective into skeletal muscle
100 physiology following dramatic changes in locomotion.

101

102 The tetra species *Astyanax mexicanus* is found throughout Mexico and South Texas and is
103 comprised of river-dwelling surface fish and cave-dwelling cavefish. Approximately 160,000
104 years ago, ancestral surface fish invaded surrounding caves, resulting in multiple independently
105 evolved cave populations (Gross, 2012; Herman et al. 2018). Many of these colonized caves are
106 completely devoid of light, resulting in diminished biodiversity and food availability.

107 Consequently, cavefish have adapted a suite of morphological, metabolic, and behavioral traits
108 permitting survival in their nutrient-depleted conditions. For example, cavefish have evolved
109 metabolic strategies such as hyperphagia, enhanced fat storage, insulin resistance, and
110 hyperglycemia (Xiong et al. 2018; Riddle et al. 2018; Aspiras et al. 2015). Additionally, because
111 these cave communities typically have only a single stygobitic vertebrate species (cavefish), they
112 no longer face predation by other species. As a result, cavefish have dramatically changed their
113 swimming behavior, abandoning energetically expensive burst-like swimming and instead relying
114 on slow, continuous movement (Elipot et al. 2013; Carlson et al. 2018). Thus, the Mexican cavefish
115 have adapted a suite of metabolic and behavioral traits similar to human metabolic disease,
116 providing unique evolutionary insight into the consequence of such phenotypes on skeletal muscle
117 physiology (Rohner, 2018). Importantly, cave and surface populations are conspecific and can be
118 raised under identical, controlled laboratory conditions, permitting comparative studies of
119 heritable physiological consequences to decreased strenuous movement following cave
120 colonization. As such, here we leverage the *Astyanax mexicanus* system to address the
121 consequence of, and adaptation to, distinct environmental conditions on skeletal muscle
122 physiology following cave colonization – most notably changes to physical activity – providing
123 unique evolutionary insights into the extremes of skeletal muscle adaptation.

124

125 **Results and Discussion**

126 **Shift in swimming speed and body composition following cave colonization**

127 Cavefish have repeatedly lost aggressive and territorial behavior comprised of burst-like
128 swimming, and instead rely on slow, continuous movement (Elipot et al. 2013; Carlson et al.
129 2018). While previous studies have investigated the average velocities between surface fish and
130 multiple cavefish populations (Carlson et al. 2018), quantitative analysis of maximal swimming
131 speeds during unperturbed tank swimming – an often-challenging task due to the aggressive
132 behavior of surface fish – have not been performed. To address this, recordings of laboratory-
133 reared surface fish (originating from the Rio Choy) and laboratory-reared cavefish (originating
134 from two independently colonized caves – Pachón cave and Tinaja cave) (Fig. 1A) were manually
135 cropped at times containing burst-like swimming (fastest swimming bouts in cavefish), and frame-
136 by-frame distances were analyzed (see methods, Movies S1A-C, and Data S1). This experimental
137 design revealed both Pachón and Tinaja cavefish swim markedly slower during their fastest

138 swimming bouts, reaching average burst velocities (acceleration-to-deceleration) ~3-fold slower
139 (Fig. 1B) and maximal velocities (greatest frame-to-frame distance covered) ~2-fold slower (Fig.
140 S1A) than surface fish. These findings are consistent with Paz et al. (2020), who found cavefish
141 have reduced angular velocity during a C-start (escape) response, differences observed as early as
142 6 days post fertilization. Providing support that these differences are not a consequence of
143 laboratory conditions, video recordings of wild cavefish (Pachón cave) and wild surface fish (Rio
144 Choy) swimming revealed surface fish incorporate sustained moderate swimming – a form of
145 rheotaxis required to remain stationary against the river current – interspersed by vigorous burst-
146 like swimming (Movie S2A). In stark contrast, cavefish displayed an uninterrupted glide-and-rest
147 swimming behavior (Movie S2B), confirming cave colonization resulted in a behavioral
148 phenotype lacking both moderate and vigorous swimming.

149


150 Skeletal muscle contraction is a key stimulus influencing muscle physiology (Franchi et al. 2017),
151 with multiple disuse models revealing increased fat accumulation and decreased skeletal muscle
152 mass, fiber size, and force production following physical inactivity (Rudrappa et al. 2016).
153 Because cavefish have markedly reduced their swimming speed following cave colonization (Fig.
154 1B and S1A), we hypothesized that their skeletal muscle would reflect an “inactive” phenotype,
155 and hence shift investment away from muscle mass and instead toward fat accumulation. To this
156 point, baseline *A. mexicanus* body composition was gathered using an echo magnetic resonance
157 imaging (echoMRI) system (Xiong et al. 2021). Supporting our hypothesis, we found both Pachón
158 and Tinaja cavefish have ~2.5-fold less lean mass (Fig. 1C) and ~4-fold more fat mass (Fig. 1D)
159 than surface fish. These findings were confirmed via histological analysis of full body cross-
160 sections (Fig. 1E), revealing a near identical shift away from cavefish muscle mass and instead
161 toward fat accumulation (for quantification see Fig. S1B and S1C). To our surprise, the decrease
162 in cavefish muscle mass occurred independent of a reduction in muscle fiber size – a predominant
163 factor contributing to muscle atrophy following physical inactivity (Bodine. 2013). In fact, we
164 found Pachón cavefish had ~22% larger muscle fiber cross-sectional area than surface fish (Fig.
165 1F and 1G). Curious whether laboratory conditions – specifically regular feeding and constrained
166 movement – drives this difference between surface fish and cavefish muscle fiber size, we
167 collected wild *A. mexicanus* from the Pachón cave (cavefish) and Rio Choy (surface fish) and
168 measured their muscle fiber cross-sectional area. Intriguingly, the opposite phenotype was

169 observed – specifically, wild cavefish had ~30% smaller muscle fibers than wild surface fish, and
170 ~66% smaller muscle fibers than laboratory cavefish (Fig. 1F and 1G). While muscle fibers in wild
171 surface fish tended to be smaller than laboratory surface fish, the degree of change was
172 dramatically smaller when compared to cavefish populations (23% vs. 66%, respectively). These
173 data indicate that, while cavefish have reduced investment into relative muscle mass (Fig. 1C and
174 1E), their muscle fibers possess a surprising degree of flexibility, most notably the capacity to
175 hypertrophy, dependent upon environmental conditions – surpassing the flexibility of surface fish.
176

177 We next sought to explore the underlying mechanism(s) contributing to this unique degree of
178 muscle fiber hypertrophy within cavefish. In brief, muscle fiber hypertrophy takes place through
179 two primary mechanisms: i) sarcoplasmic hypertrophy – the increase in muscle fiber size via
180 increasing the non-contractile sarcoplasmic volume (i.e. fats, sugars, and sarcoplasmic proteins)
181 and ii) myofibrillar hypertrophy – the increase in muscle fiber size via myofibrillar accretion (i.e.
182 sarcomeric proteins actin and myosin) (Roberts et al. 2020). Because cavefish can store
183 considerable energy reserves throughout their body (Xiong et al. 2021), we reasoned their muscle
184 fiber growth arises through sarcoplasmic hypertrophy at the expense of myofibrillar hypertrophy
185 – specifically via accumulation of sugars and fats. Supporting our hypothesis, we found cavefish
186 skeletal muscle had ~4-fold greater triglyceride levels (Fig. 1H) and ~7-fold greater glycogen
187 levels (Fig. 1I) than surface fish. Intriguingly, analysis of a recent lipidomic and metabolomic
188 dataset of *A. mexicanus* skeletal muscle revealed cavefish preferentially accumulate saturated fatty
189 acids, ceramides, and sphingoid bases, while simultaneously decreasing investment in free amino
190 acids, most notably the mTORC1-activating leucine – a lipid and amino acid profile linked to
191 muscle atrophy and diminished contractility (Rivas et al. 2019; Medley et al. 2020; Fig. S1D).
192 Reflecting this, fractionation experiments found that cavefish skeletal muscle have an ~25% and
193 ~17% ($p=0.1736$) decrease in the contractile protein's myosin and actin, respectively (Fig. 1J and
194 1K). Electron micrographs supported these findings (Fig. 1L), revealing cavefish muscle fibers
195 have significantly fewer myofibrils with a subsequent increase in sarcoplasmic space relative to
196 surface fish (Fig 1M).

197 Notably, we noticed that cavefish muscle fibers have distinct aggregates of glycogen granules both
198 within the intermyofibrillar space (between myofibrils) and intramyofibrillar space (between
199 contractile filaments), with very few granules identified within surface fish (Fig. 1L). These

201 findings are particularly interesting since teleost muscle glycogen stores are presumed to reflect
202 their activity levels – such as the highly active tuna possessing 8-fold more glycogen than the
203 sedentary carp (Sänger et al. 2001) – suggesting cavefish face alternative stimuli resulting in
204 muscle fiber glycogen accumulation (discussed in following sections). Intriguingly, we found the
205 unique cavefish body composition coincided with an elevated water buoyancy (i.e. weigh less in
206 water) relative to surface fish (Fig. 1N). We reason this is a consequence of their decreased
207 investment in dense tissue (myofibrils) and increased investment in buoyant tissue (fats). In fact,
208 while the cavefish dry weight was ~20% greater than surface fish (6.08g vs 4.84g, respectively),
209 their water weight was ~22% less than surface fish (0.38g vs. 0.49g, respectively), suggesting a
210 thrifty skeletal muscle remodeling strategy incorporated by cavefish to both increase energy
211 reserve capacity while simultaneously improve swimming economy via enhanced static lift.

212

213 **Figure 1. Shift in cavefish swimming speed and body composition.** (A) Images of surface fish and two
 214 independently evolved cavefish populations: Pachón and Tinaja. (B) Average burst velocity of surface fish, Pachón,
 215 and Tinaja cavefish (n=20, 20, and 18, measurements per population, respectively). Percent (C) lean mass and (D) fat
 216 mass of *A. mexicanus* using an echoMRI (n=8 for Pachón and surface, n=3 for Tinaja). (E) Representative full body
 217 transverse cross-sections of *A. mexicanus* used for the echoMRI measurements showing skeletal muscle (pink) and
 218 subcutaneous fat (white) (scale bar = 500 μ m). (F) Muscle fiber cross-sections from laboratory-reared (left) and wild-
 219 caught (right) surface fish and cavefish (Pachón). Muscle fibers are demarcated via wheat germ agglutin (green) (scale
 220 bar = 50 μ m). (G) Muscle fiber cross-sectional area (CSA) of laboratory-reared and wild-caught surface fish and
 221 cavefish (Pachón). Light grey circles represent individual muscle fibers. Colored circles represent mean muscle fiber
 222 cross-sectional area for each sample (n=5 for lab Pachón, lab surface, and wild Pachón, n=6 for wild surface). (H)

223 Triglyceride content (nmol/μl) (n=3 and 6 for Pachón and surface, respectively). (I) Glycogen content (μg/μl) (n=5
224 and 6 for Pachón and surface, respectively). (J) Myosin content in pixel intensity (P.I.) (n=5 per population). (K) Actin
225 content in pixel intensity (P.I.) (n=5 per population). (L) Transverse and sagittal electron micrographs of surface fish
226 and cavefish (Pachón) skeletal muscle (n=2 per population, scale bar = 500nm). (M) Quantification of myofibril area.
227 Each point indicates the relative area of myofibrils within a single EM image. ~150 images were quantified per sample.
228 See methods for further detail. (N) Percent water weight of surface fish and cavefish (Pachón). The higher the percent
229 denotes greater weight in water. Significance for Fig. 1B-D were calculated with a one-way ANOVA with Bonferroni
230 FDR correction. For all other analysis, significance was calculated with unpaired student's t-test. Data is presented as
231 ±SEM, *p<0.05, **p<0.001. ***p<0.0001.

232

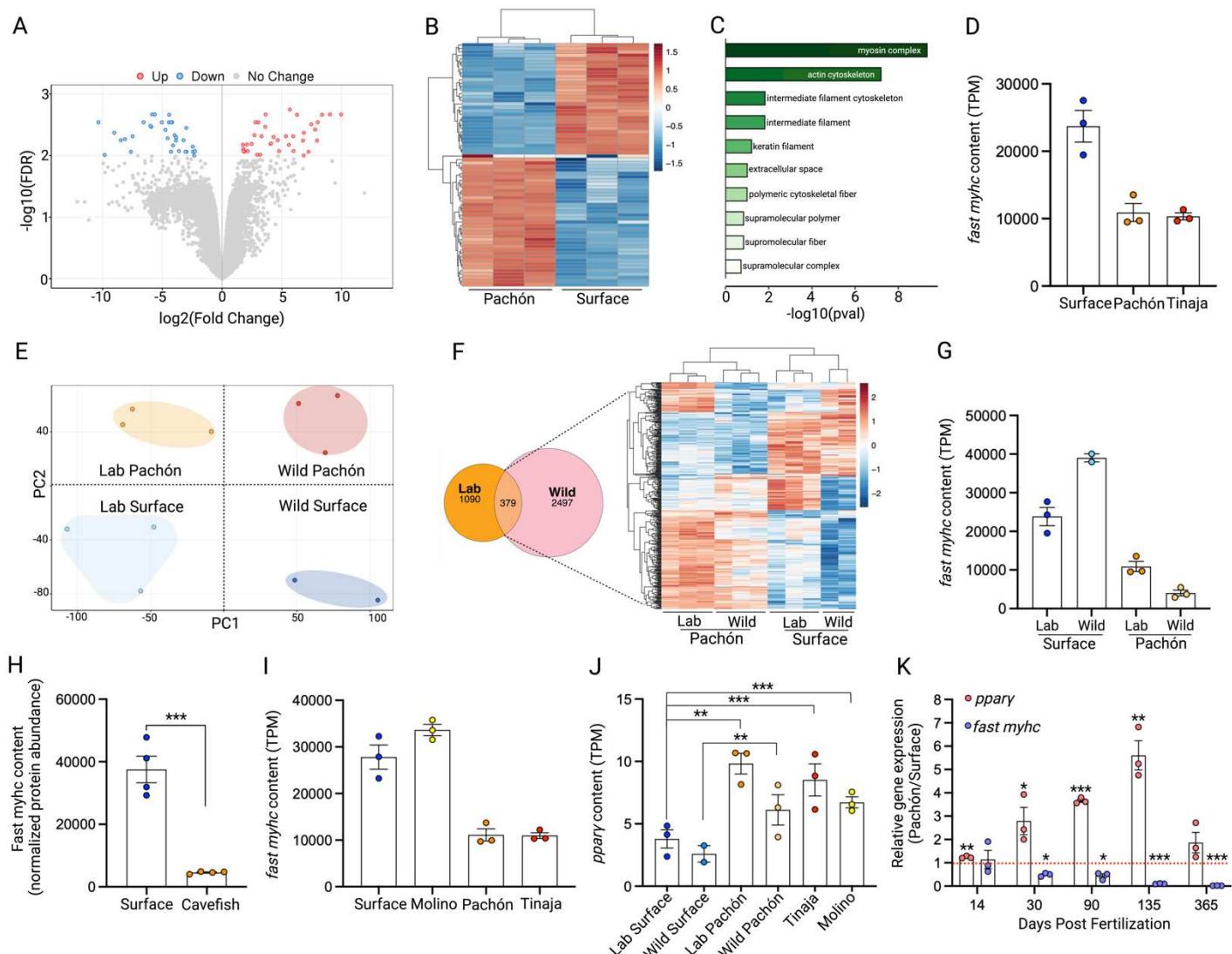
233 **Change in cavefish body composition is reflected at the level of gene expression**

234 Having established a clear shift in cavefish skeletal muscle composition following cave
235 colonization, we next sought to determine whether this change was reflected at the level of gene
236 expression. To this end, we conducted RNA-sequencing of surface fish and cavefish skeletal
237 muscle (FDR<0.01) followed by Gene Ontology (GO) enrichment analysis of the differentially
238 expressed genes (DEG's) (Fig. 2A-C and Data S2). This revealed several overexpressed pathways
239 related to muscle contractility and structural integrity – specifically “myosin complex” and “actin
240 cytoskeleton” (Fig. 2C). Interestingly, most genes within these pathways were downregulated
241 within cavefish, most notably genes encoding fast myosin heavy chain proteins – a class of myosin
242 heavy chains with the capacity for rapid sarcomere cross-bridge cycling (Schiaffino et al. 2011).
243 In fact, of the DEG's within the “myosin complex” pathway, ~70% were downregulated within
244 cavefish, decreasing between 6-to-50 fold – all of which were fast myosin heavy chain genes (Fig.
245 S2A, Data S3). In addition, DEG's contributing to muscle atrophy (*gadd45ga* – Fontes-Oliveira et
246 al. 2013) and swimming speed via dopamine inhibition (*mblac1* – Hardaway et al. 2015) were
247 increased and decreased, respectively, within cavefish (Fig. S2B and S2C). Confirming this
248 transcriptome signature is a cave-specific phenomenon, we sequenced the skeletal muscle from an
249 additional, independently evolved cavefish population (Tinaja cavefish), and found a similar
250 decrease in fast myosin heavy chain expression (Fig. 2D and Data S4), along with increased and
251 decreased *gadd45ga* and *mblac1* expression, respectively (Fig. S2B and S2C), indicating a
252 conserved decrease in expression of genes necessary for rapid muscle contraction following cave
253 colonization

254

255 To determine whether the above findings are a consequence of domestication, specifically
256 constrained movement due to laboratory housing, we collected additional wild *A. mexicanus* from
257 the Pachón cave and wild surface fish from the San Antonio River and conducted RNA-sequencing
258 of their skeletal muscle. Principal component analysis (PC) revealed a clear discrimination
259 between both environmental conditions (wild/laboratory – PC1) and fish ecotypes (Pachón/surface
260 fish – PC2) (Fig. 2E), consistent with previous comparative transcriptome datasets (Krishnan et
261 al. 2020). Using a relaxed FDR threshold of <5% to broadly detect changes in gene expression,
262 we compared the DEG's of the wild samples (2876 DEG's) against the DEG's of the laboratory
263 samples (1469 DEG's), revealing 379 overlapping DEG's between populations (Fig. 2F and Data
264 S5) – the majority differentially expressed in the same direction. GO-term analysis of these 379
265 genes again revealed “actin cytoskeleton” and “myosin complex” as the top ranked differentially
266 regulated pathways (Fig. S2D). Similar to our laboratory transcriptome dataset, 80% of the genes
267 within the “myosin complex” pathway were downregulated within wild cavefish – decreasing from
268 2.6-to-85 fold – all of which were fast myosin heavy chain genes (Fig. 2G and Data S5). Validating
269 our RNA-seq data, global proteomic analysis of whole muscle lysate from cavefish and surface
270 fish found an ~8-fold decrease in fast myosin heavy chain protein abundance in cavefish compared
271 to surface fish (Fig. 2H), denoting a conserved reduction at both the transcript and protein level.
272

273 The above findings are crucial to account for the impact environmental factors have on skeletal
274 muscle gene expression and confirm that the skeletal muscle phenotypes observed within
275 laboratory cavefish are largely representative of cavefish in the field. However, we questioned
276 whether these phenotypes might reflect phenotypic plasticity and not genetic inheritance.
277 Specifically, might the decreased swimming speed of cavefish in both laboratory and wild
278 conditions be the sole contributor to their reduced “contractile” skeletal muscle phenotype – a
279 possible reflection of the “use it or lose it” phenomenon (Wisdom et al. 2015). To address this, we
280 conducted RNA-sequencing of a phylogenetically younger cavefish population originating from
281 the Molino cave (termed Molino cavefish). Molino cavefish are considered a “new” *A. mexicanus*
282 cavefish lineage – having colonized their cave ~110,000 years ago – and genetically cluster more
283 closely to surface fish than to Pachón or Tinaja cavefish (Herman et al. 2018). Importantly though,
284 Molino cavefish have converged on similar swimming behaviors to Pachón and Tinaja cavefish,
285 lacking territorial and aggressive behavior and thus lacking vigorous swimming (Eliot et al.


286 2013). With this unique mix of genetic and behavioral traits, we reasoned that if the decrease in
287 fast myosin heavy chain expression is solely a result of phenotypic plasticity (i.e. slow swimming),
288 fast myosin heavy chain expression within Molino cavefish should decrease regardless of their
289 genetic background. Intriguingly, in contrast to the phenotypic plasticity hypothesis, Molino
290 cavefish possessed ~3-fold greater fast myosin heavy chain levels than both Pachón and Tinaja
291 cavefish – levels similar to surface fish (Fig. 2I). These findings indicate that the decreased fast
292 myosin heavy chain expression in Pachón and Tinaja is likely not a result of phenotypic plasticity
293 but instead is driven by genetic inheritance. However, it should be noted that a subset of lowly
294 expressed fast myosin heavy chain isoforms were shifted in a cave-like direction within Molino
295 (i.e. shifted in a similar direction to Pachón and Tinaja), reflecting minimal, but not absent, myosin
296 heavy chain divergence following Molino cave colonization (Data S6).

297

298 **Cavefish show increased expression of genes involved in skeletal muscle lipid metabolism**

299 In contrast to decreased fast myosin heavy chain expression, cavefish skeletal muscle showed a
300 consistent, and significant, 2.3- to 3.2-fold increase of the master regulator of adipogenesis *ppary*.
301 This was observed in both wild and laboratory cavefish – including Pachón, Tinaja, and Molino –
302 relative to wild and laboratory surface fish (Fig. 2J). In fact, a timecourse qPCR analysis found
303 cavefish gradually increase skeletal muscle *ppary* expression as early as 14 days post fertilization
304 which continued to adulthood, in contrast to the temporal dynamics of fast myosin heavy chain
305 expression which declined early in development and persisted to adulthood (Fig. 2K). These
306 findings support our recent discovery of Tinaja, Pachón, and Molino cavefish encoding a truncated
307 variant of Period 2 – affecting its inhibitory *ppary*-binding domain – a variant we validated is
308 present in cavefish skeletal muscle (Xiong et al. 2021). Congruently, cavefish muscle had elevated
309 expression of the lipid metabolism genes adiponectin b (*adipoqb*), ceramide synthase 4-b (*cers4b*),
310 adiponutrin (*pnpla3*), and leptin receptor (*lepr*) (Fig. S2E-H). Many of these genes are adipocyte-
311 specific, indicating cavefish skeletal muscle possess elevated intramuscular adipocytes, a
312 phenomenon associated with muscle fiber atrophy and muscle weakness (Biltz et al. 2020).
313 Collectively, these data support a cavefish skeletal muscle profile indicative of a shift away from
314 skeletal muscle mass/contractility and instead toward fat accumulation, findings which strongly
315 reflect their body composition in Figure 1.

316

317

318 **Figure 2. The cavefish skeletal muscle transcriptome reflects their body composition.** (A) Volcano plot of the
 319 differentially expressed genes (DEG's) between laboratory-reared surface fish and cavefish (Pachón) (up- and down-
 320 regulated in Pachón fish relative to surface fish). (B) Heatmap of the differentially expressed genes showing individual
 321 replicate data. (C) Gene Ontology enrichment analysis of the DEG's from Fig. 2A and Fig. 2B. (D) Cumulative
 322 abundance of shared differentially expressed fast myosin heavy chain genes in Tinaja and Pachón relative to surface
 323 fish (TPM: transcripts per million). (E) Principal component analysis of the laboratory-reared and wild-caught Pachón
 324 and surface fish transcriptome. (F) Venn diagram of all DEG's between laboratory-reared and wild-caught fish.
 325 Specific emphasis is placed on the 379 overlapping genes with their expression shown in the adjacent heatmap. (G)
 326 Cumulative abundance of the shared differentially expressed fast myosin heavy chain genes between laboratory-reared
 327 and wild-caught Pachón and surface fish. (H) Cumulative abundance of the differentially expressed fast myosin heavy
 328 chain proteins between cavefish (Pachón) and surface fish (n=4 per population). (I) Cumulative abundance of fast
 329 myosin heavy chain genes of those identified as significantly different between laboratory-reared Pachón vs

330 laboratory-reared surface fish. These genes (Data S6) were then used to determine cumulative fast myosin heavy chain
331 abundance in Molino and Tinaja. (J) *ppary* expression between all fish populations. (K) *ppary* and fast myosin heavy
332 chain (*fast-myhc*) expression across developmental timepoints. Expression is taken relative to surface fish (indicated
333 by the red line). Statistical analysis for RNA-sequencing is described in the methods. For Fig. 2K, data was analyzed
334 via unpaired students t-test for each timepoint. Data is presented as \pm SEM. * p <0.05, ** p < 0.01, *** p <0.001.

335

336 **Functional analysis of *A. mexicanus* skeletal muscle**

337 The skeletal muscle phenotype described above has repeatedly shown to result in muscle fiber
338 functional decline – most notably diminished muscle fiber contraction – in both rodents and
339 humans (Biltz et al. 2020; Choi et al. 2016). While this phenotype is likely beneficial within the
340 starvation-prone cavefish, intramyocellular fat accumulation is poised to result in a functional
341 decline in muscle fiber twitch kinetics. Seeking to address whether a similar physiological
342 consequence occurs within cavefish, we conducted *ex vivo* muscle bundle contractility
343 experiments. In brief, hypaxial myotomal muscle was dissected between the pectoral and pelvic
344 girdle, and immediately placed in physiological saline. Isolated live muscle bundles
345 (approximately 20 muscle fibers) were tied into a muscle mechanics chamber with a servomotor
346 at one end and force transducer at the other, and platinum electrodes along each side of the chamber
347 (Fig. 3A and Movie S3). This *ex vivo* approach is essential to exclude external confounding factors
348 such as differences in neural innervation. Cavefish indeed demonstrated a trade-off in muscle
349 contractility, having an ~18% reduction in muscle bundle shortening velocity (Fig. 3B), taking
350 ~15% longer to reach maximal force (time from stimulus until maximum isometric force – Fig.
351 3C), and taking ~25% longer to relax following muscle contraction (time from maximum force to
352 50% relaxation – Fig. 3D) relative to surface fish.

353

354 **Cavefish maintain the capacity to increase swimming speeds under stimulated conditions**

355 To test if the decreased *ex vivo* muscle contractility in cavefish results in decreased swimming
356 velocities *in vivo*, we implemented an incremental swim test wherein cavefish and surface fish
357 gradually (5 cm/s every 5 minutes) increase swimming speeds until volitional fatigue (Fig. 3E;
358 Movies S4A and S4B). We found that cavefish reach maximal swimming velocities ~15% slower
359 than surface fish (cavefish: 45.76 cm/s, surface fish: 53.41 cm/s – Fig. 3F). Surprisingly though,
360 while slower than surface fish, cavefish showed an impressive ~3.5-fold capacity to increase their
361 swimming speed between their incremental swim test (45.76 cm/s – Fig. 3F) and their average

362 burst speed during tank swimming (12.84 cm/s – Fig. 1B), whereas surface fish remained largely
363 unchanged between their incremental swim test (53.41 cm/s – Fig. 3F) and their average burst
364 speed during tank swimming (48.86 cm/s – Fig. 1B). Differences can be seen in supplemental
365 Figure 3A. Indeed, conducting the incremental swim test with an additional cavefish population
366 (Tinaja cavefish) revealed a similar ~3.9-fold increase in maximal swimming velocity relative to
367 baseline swimming speeds. In fact, Tinaja cavefish reached maximal swim speeds similar to
368 surface fish (Tinaja cavefish: 53.11 cm/s), with no significant difference between populations (Fig.
369 3F, Fig. S3A, and Movie S4C). These data indicate cavefish have a marked ability to not only
370 increase their swim speed under stimulated conditions but also maintain elevated swim speeds for
371 extended periods of time (each swim test lasted ~40 minutes), a particularly striking display of
372 muscular endurance for an animal irregularly exposed to such stimuli (discussed in more detail in
373 the discussion).

374

375 **Cavefish have greater glycogen utilization during exercise**

376 We next sought to characterize the molecular mechanisms underpinning cavefish muscular
377 endurance. Because the incremental swim test served as an anaerobic stimulus, and since muscular
378 endurance is a function of glycogen levels (Hermansen et al. 1967), we reasoned that the elevated
379 glycogen stores within cavefish skeletal muscle (Fig. 1I) provide the needed metabolic substrate
380 for sustained ATP production and muscle contraction, and hence render cavefish fatigue-resistant
381 despite reduced muscle mass and contractility. To address this, we collected skeletal muscle from
382 cavefish and surface fish before, immediately following (acute-post), and 1-hour following (1hrp)
383 the incremental swim test (Fig. 3E). This experimental design confirmed cavefish have greater
384 glycogen levels in the rested state, however, these levels significantly decreased (denoting
385 utilization) both immediately following and 1-hour following exercise with no change in surface
386 fish (Fig. 3G and 3H) – findings consistent with Salin et al. (2010) who found elevated cavefish
387 glycogen utilization following metabolic perturbations relative to surface fish. To test if the
388 incremental swim test served as a sufficient metabolic stimulus in both fish populations, we
389 analyzed blood glucose levels at all timepoints and found both surface fish and cavefish
390 significantly increased blood glucose at the acute and 1hrp timepoints (Fig. 3I). Additionally, we
391 observed a similar, albeit insignificant, increase in phosphorylated AMPK-Thr¹⁷² – a common
392 proxy of cellular energetic stress – in both surface fish and cavefish (Fig. 3J). Collectively, these

393 data confirm cavefish utilized their elevated glycogen pool during the incremental swim test and,
394 importantly, that this phenomenon is not a consequence of greater systemic metabolic perturbation
395 in one fish population over the other. These findings thus suggest cavefish skeletal muscle has
396 heightened intrinsic factors regulating both glycogen synthesis and degradation under divergent
397 metabolic conditions.

398

399

400

401

402

403

404

405

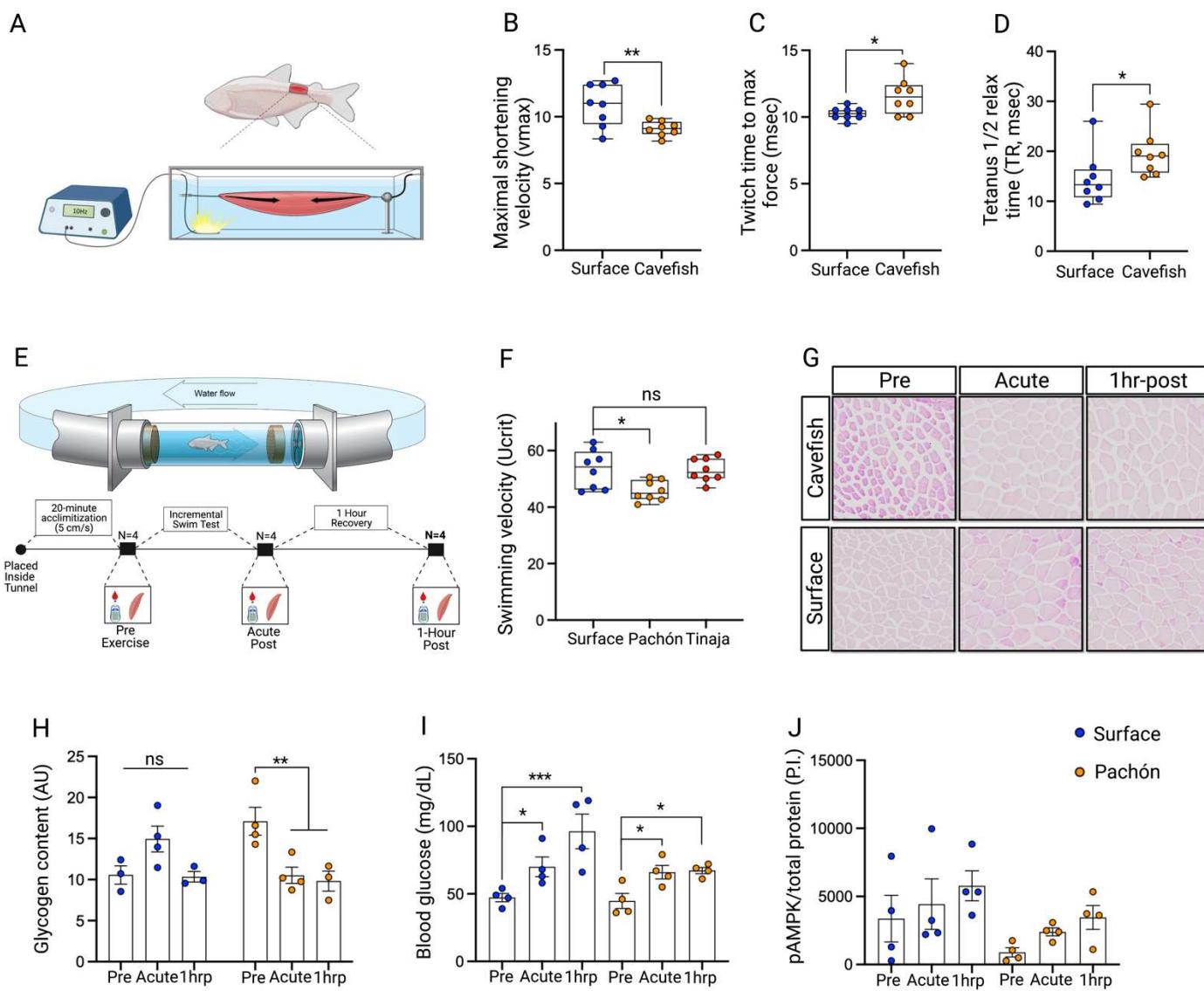
406

407

408

409

410


411

412

413

414

415

416

417 **Figure 3. Cavefish maintain the capacity to increase swim speeds despite reduced muscle contractility.** (A)
418 Schematic of the muscle mechanics chamber showing site of skeletal muscle dissection, attachment, and stimulation.
419 Arrows denote muscle shortening. (B) Maximal shortening velocity (vmax). (C) Twitch time to maximal force (msec).
420 (D) Tetanus $\frac{1}{2}$ relax time (TR, msec) (n=8 per population for each experiment. (E) Schematic of the swim tunnel with
421 the experimental timeline of the incremental swim test and tissue/blood collection. (F) Maximal swimming velocity
422 reached during the incremental swim test (Ucrit in cm/s) in surface fish and cavefish (Pachón and Tinaja) (n=8 per
423 population). (G) Histological images of muscle fiber glycogen via Periodic acid-Schiff stain at the pre, acute-post,
424 and 1-hour post timepoint of surface fish and cavefish (Pachón). (H) Quantification of glycogen content shown in Fig.
425 3G (n=3-4 per timepoint). (I) Blood glucose levels of exercised and non-exercised surface fish and cavefish (Pachón)
426 (n=4 per timepoint). (J) Quantification of phosphorylated AMPK-Thr¹⁷² in the exercised and non-exercised surface
427 fish and cavefish (Pachón) (n=4 per timepoint). Significance was determined with an unpaired students t-test (Fig.
428 3B-D), one-way ANOVA with Bonferroni FDR correction (Fig. 3F), and an ordinary, two-way ANOVA with

429 Benjamini and Hochberg FDR correction (Fig. 3H-J). Data is presented as \pm SEM, $*p \leq 0.05$, $**p \leq 0.01$, $***p \leq 0.001$,
430 ns = not significant).

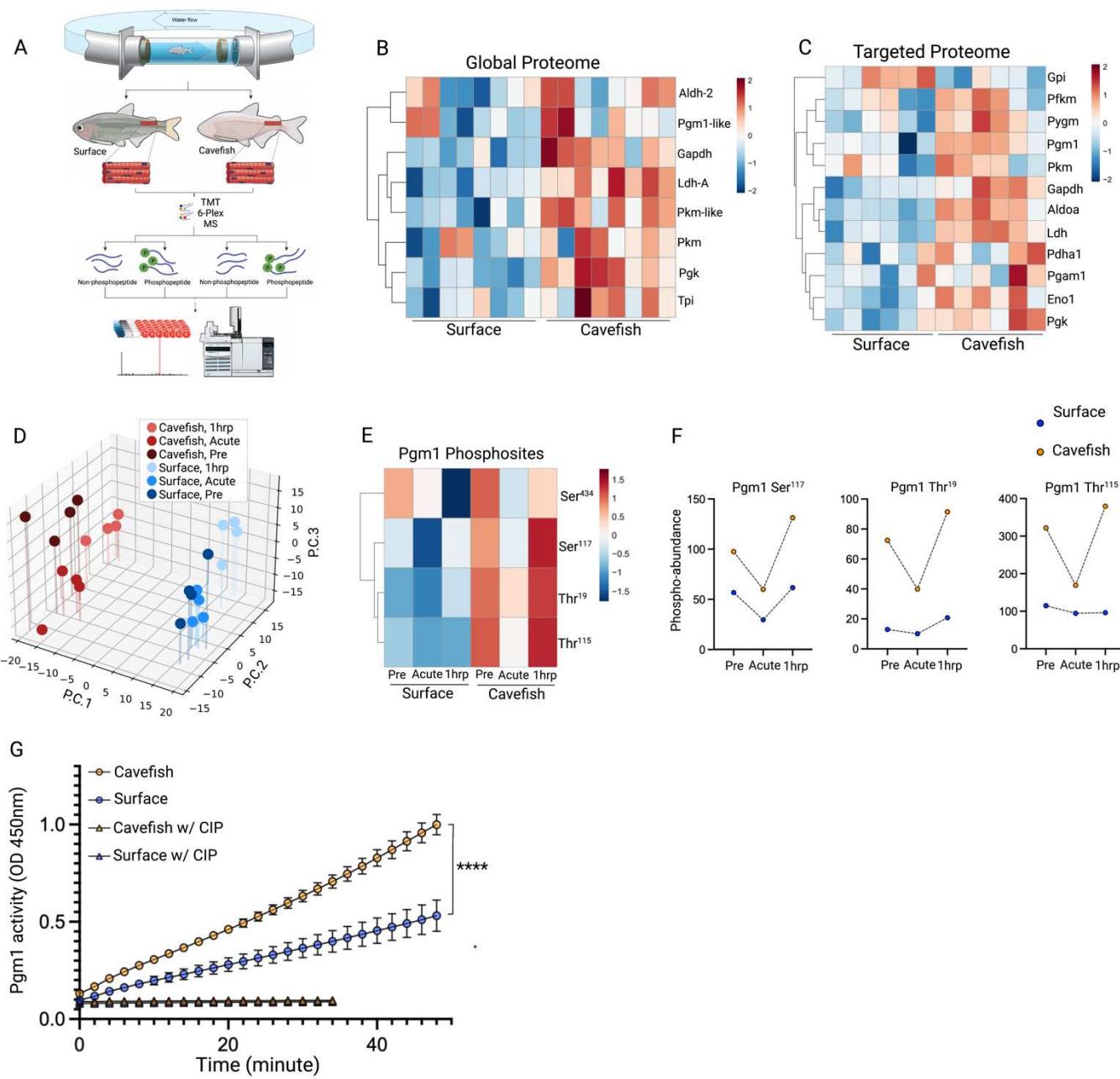
431

432 **Multi-omics analyses suggest increased cavefish glycogen metabolism**

433 To determine the cellular mechanisms underlying the enhanced cavefish glycogen metabolism, we
434 performed unbiased proteomics via liquid chromatography-tandem mass spectrometry
435 (LC/MSMS) on the exercised and non-exercised skeletal muscle samples described above (Fig.
436 4A and Data S7). Notably, conducting a KEGG pathway analysis of the top 50 ranked proteins
437 identified “glycolysis/gluconeogenesis” as the most differentially regulated pathway with all
438 proteins in this pathway increased in cavefish (Fig. 4B and Data S8). To confirm, and further
439 expand upon our findings, we conducted a targeted proteomic analysis of the same samples and
440 found half of the proteins within the glycolytic pathway (Aldoa, Eno1, Gapdh, Pfkm, Pgk1) were
441 significantly increased within cavefish, along with the glycogen handling enzymes
442 phosphoglucomutase 1 (Pgm1), glycogen phosphorylase (Pygm), and the enzyme lactate
443 dehydrogenase (Ldh) (Fig. 4C and Data S9A) – findings similarly reflected in the increased
444 expression of *pygm*, *pfkpb*, and *ldhba* in our transcriptomic dataset (Fig. S3B-D). Supporting these
445 findings, analysis of a publicly available metabolomics dataset from *A. mexicanus* skeletal muscle
446 (Medley et al. 2020) revealed a significant 1.7-fold increase of the glycolytic end-product pyruvate
447 within cavefish skeletal muscle relative to surface fish (Fig. S3E). Taken together, these datasets
448 confirm a cavefish skeletal muscle profile capable of elevated glycogen metabolism.

449

450 **Cavefish skeletal muscle has increased Pgm1 phosphorylation and activity**


451 While intriguing, we were hesitant to use static protein and metabolite levels as proxies for
452 dynamic metabolic activity. Phosphorylation is a key regulator of metabolism and has been
453 demonstrated to regulate carbohydrate metabolic dynamics (Chen et al. 2019), leading us to reason
454 differential phosphorylation could more accurately reflect enzymatic flux, serving as an indirect
455 proxy for glycogenolytic and glycolytic activity. To this point, a subset of the digested proteins
456 used for proteomics were enriched for phosphorylated peptides via Sequential enrichment from
457 Metal Oxide Affinity Chromatography (SMOAC) (Jae Choi et al. 2017) followed by LC/MSMS.
458 This pipeline identified 430 phosphorylated peptides on 124 proteins in ≥ 2 biological replicates
459 (Data S10). Three-dimensional principal component analysis (PC) of all phosphorylated peptides

460 revealed a clear separation by population (PC1) and a less dramatic separation by timepoint (PC2; 461 PC3) (Fig. 4D) – findings similarly reflected in human acute exercise omic datasets (Contrepois 462 et al. 2020). With a particular interest in the elevated capacity for glycogen storage and utilization 463 within cavefish, we focused on enzymes directly regulating glycogen metabolism. We considered 464 Pgm1 a promising candidate since it i) acts in a bi-directional manner, capable of reversibly 465 synthesizing or degrading glycogen dependent upon the energetic stimulus and ii) was identified 466 as one of the most highly phosphorylated proteins at the pre timepoint in cavefish muscle relative 467 to surface fish (Data S11). In fact, our phosphoproteomic data revealed that, of the four detected 468 Pgm1 phosphorylated sites (Fig. 4E), three (Pgm1-Ser¹¹⁷, Pgm1-Thr¹¹⁵, Pgm1-Thr¹⁹) were 469 increased at the pre timepoint 1.7-, 3-, and 5.5-fold, respectively. Phosphorylation levels on these 470 sites were then uniformly decreased immediately following exercise (similar to recent findings in 471 exercised rodents – Maier et al. 2021), followed by a sharp increase at the 1hrp timepoint – all of 472 which were greater in the cavefish (Fig 4E and 4F). These findings indicate that in both basal and 473 recovery states, cavefish have hyperphosphorylation of Pgm1 relative to surface fish – suggesting 474 phosphorylation of Pgm1 is a crucial node in cavefish glycogen metabolism.

475

476 Previous work identified the above phosphorylation sites are essential for Pgm1 activity, with the 477 phospho-serine Pgm1-Ser¹¹⁷ required for the inter-conversion between glucose-1-phosphate to 478 glucose-6-phosphate (or vice-versa), thus serving as a pre-requisite for Pgm1 enzymatic activity 479 (Lee et al. 2014). Notably, missense mutations (threonine-to-alanine) of Pgm1-Thr¹¹⁵ and Pgm1- 480 Thr¹⁹ have been found in humans, resulting in exercise intolerance due to glycogenosis (Tegtmeyer 481 et al. 2014; Stojkovic et al. 2009). As such, with elevated phosphorylation of all three phospho- 482 sites in cavefish skeletal muscle, we reasoned they would in turn have increased Pgm1 activity. To 483 test this, we measured Pgm1 activity of biopsied *A. mexicanus* skeletal muscle and found that 484 cavefish have significantly greater Pgm1 activity relative to surface fish (Fig. 4G). Importantly, 485 the enhanced cavefish Pgm1 activity was abolished following dephosphorylation via incubation 486 with Calf Alkaline Intestinal Phosphatase (CIP) (Fig. 4G and S3F). In fact, we found the cavefish 487 Pgm1 was more sensitive to dephosphorylation, with its activity reduced below surface fish levels 488 following CIP incubation. These data strongly suggest phosphorylation is a crucial component 489 driving the enhanced Pgm1 activity within cavefish skeletal muscle. Collectively, increases in both 490 Pgm1 abundance (Fig. 4C) and phosphorylation levels (Fig. 4E and 4F) renders Pgm1 a likely

491 candidate driving both increased cavefish glycogen content (Fig. 1I) and utilization (Fig. 3G and
 492 3H) dependent upon the environmental conditions. Importantly, having elevated glycogen stores
 493 throughout the skeletal muscle – including within sarcomeres (Fig. 1L) – cavefish are poised to
 494 rapidly mobilize glycogen as a means to re-synthesize ATP and hence fuel prolonged muscle
 495 contraction under metabolically strenuous conditions.

496
 497 **Figure 4. Multi-omics indicates increased abundance and activity of cavefish carbohydrate enzymes.** (A) Tissue
 498 processing pipeline for both the proteomic and phosphoproteomic analysis for the surface fish and cavefish (Pachón)

499 (n=12). (B) Heatmap from the global proteomic dataset of the proteins within the glycolysis/glucconeogenesis KEGG
500 pathway (n=8 per population). (C) Heatmap of protein abundance levels from the targeted proteome analysis of
501 proteins regulating carbohydrate metabolism. (D) Three-dimensional principal component analysis (P.C.) of all
502 quantified phosphorylated peptides. (E) Heatmap of the mean peak intensity of Pgm1 phosphorylated sites at the pre,
503 acute, and 1hrp timepoints. (F) Mean peak intensity of phosphorylation at each timepoint of surface fish and cavefish
504 (Pachón) for Pgm1-Ser¹¹⁷, Pgm1-Thr¹⁹, and Pgm1-Thr¹¹⁵. (G) Pgm1 activity assay showing change in fluorescence
505 over time in treated (with CIP) and untreated (without CIP) skeletal muscle samples from surface fish and cavefish
506 (Pachón) (n=6 per population). Significance was determined using a repeated measures two-way ANOVA with
507 Benjamini and Hochberg FDR correction (Fig. 4G). For proteomic data, analysis can be found in the methods. Data
508 is presented as \pm SEM, *** $p \leq 0.0001$.

509

510 The above data agree with van der Weele (2022) and Medley (2020) who found elevated
511 carbohydrate transcripts and metabolites, respectively, within multiple cavefish tissues relative to
512 surface fish. In fact, we recently found primary cavefish liver-derived cells have increased
513 glycolytic capacity relative to surface fish liver-derived cells (Krishnan et al. 2022). We propose
514 this is an adaptation to their hypoxic cave environment. Field studies from our lab have shown *A.*
515 *mexicanus* caves have water oxygen saturation levels of 59% compared to 80% in surface fish
516 waters (Rohner et al. 2013). Hypoxia is a strong selective pressure (Boggs et al. 2021; van der
517 Weele et al. 2022), suggesting that this environmental stimulus has necessitated cavefish rely on
518 anaerobic metabolism to supply the needed ATP for survival and, more specifically, increase
519 investment in carbohydrate enzyme abundance and phosphorylation to meet their energetic
520 demands. While further work is required to definitively address the effect differential
521 phosphorylation has on *in vivo* glycolysis and ATP production, our proteomic and
522 phosphoproteomic data strongly suggest a cavefish skeletal muscle profile well-adapted for
523 carbohydrate metabolism – equipping cavefish with a surprising degree of muscular endurance
524 under stimulated maximal swimming conditions despite loss of muscle mass and contractility –
525 highlighting the diverse skeletal muscle adaptations following cave colonization.

526

527 Conclusion

528 Our results highlight the remarkable breadths of skeletal muscle adaptation within the *Astyanax*
529 *mexicanus*. Caves pose many challenges to survival – diminished food, decreased oxygen, and
530 complete darkness – resulting in extreme behavioral, morphological, and physiological
531 adaptations. Using surface and cave populations of *A. mexicanus*, we provide convincing evidence

532 that a particularly important site of structural and metabolic reprogramming following cave
533 colonization is the skeletal muscle. Cavefish have made large-scale shifts in their muscle
534 investment, resembling disuse and high-fat conditions commonly seen within mammalian models
535 (Booth et al. 2017). Indeed, with the loss of predators, water flow, and territorial behavior, cavefish
536 have relaxed investment into skeletal muscle mass and contractility and instead shifted investment
537 toward fat and sugar accumulation. Despite this, cavefish have adapted their metabolism to both
538 increase and maintain elevated swimming speeds under stimulated conditions – findings we
539 hypothesized result from elevated muscle glycogen levels and utilization during stimulated
540 exercise. Follow-up proteomic and phosphoproteomic analyses of exercised cavefish skeletal
541 muscle supported this hypothesis, revealing both protein and phosphorylation levels of key
542 glycogenolytic and glycolytic enzymes increased within cavefish – a phenomenon we reasoned
543 results from their hypoxic cave environment. In fact, we found hyperphosphorylation of the
544 glycogenolytic/synthetic enzyme Pgm1 results in increased Pgm1 activity within cavefish skeletal
545 muscle. This finding is particularly interesting since the degree of Pgm1 expression and
546 phosphorylation strongly tracks with various metabolic diseases, most notably cancer and type 2
547 diabetes (Batista et al. 2020; Li et al. 2020). It is thus likely that chronic hyperphosphorylation of
548 Pgm1 can be both physiological and pathological dependent upon the environmental conditions.
549 Considering the hypoxic conditions under which cavefish evolved, Pgm1 hyperphosphorylation is
550 likely adaptive, serving as a crucial node in cavefish skeletal muscle metabolism due to Pgm1 bi-
551 directional properties – permitting both increased glycogen synthesis and breakdown dependent
552 upon environmental conditions – providing a surprising degree of muscular endurance despite loss
553 of skeletal muscle mass and contractility. However, in addition to hypoxia, periodic cave flooding,
554 and thus elevated water flow, cannot be ruled out as a potential stimulus influencing cavefish
555 skeletal muscle metabolism. In fact, occasional flooding within the Pachón and Tinaja cave can,
556 at times, lead to swift water flow exiting the mouth of the cave. As such, adapting the ability to
557 withstand periodic water flow to mitigate being swept away may serve as a crucial survival
558 strategy.

559

560 **Acknowledgments**

561 We would like to thank the cavefish facility at the Stowers Institute for cavefish husbandry support,
562 specifically Zachary Zakibe, Molly Miller, Elizabeth Fritz, David Jewell, Franchesca Hutton-Lau,

563 Andrew Ingalls, Diana Baumann, and Adam Petrie. We would like to thank Sylvie Rétaux and
564 Mathilda Mommersteeg for providing wild *A. mexicanus* videos. We thank Mark Miller for
565 assistance with illustrations. We thank all core support provided by the Stowers Institute;
566 specifically, Seth Maloney, Dai Tsuchiya, and Nancy Thomas of Histology, Cindy Maddera of
567 Microscopy, and Rhonda Egidy and Amanda Lawlor of Molecular Biology. We would like to
568 especially thank all members of the Rohner Lab for the critical review of our manuscript along
569 with Dr. Gustavo Blanco, Dr. Matt Morris, and Dr. Chad Slawson for their critical comments
570 throughout the planning and experimental process. NR is supported by institutional funding, NIH
571 Grant 1DP2OD028806-01, NIH Grant R01 GM127872, NSF IOS-1933428 and NSF EDGE award
572 1923372.

573

574 **Methods**

575 *Laboratory fish husbandry*

576 *Astyanax* husbandry and care was conducted identical to Xiong et al. (2021) and was approved by
577 the Institutional Animal Care and Use Committee (IACUC) of the Stowers Institute for Medical
578 Research on protocol 2021-122. All methods described here are approved on protocol 2021-129.
579 Housing conditions meet federal regulations and are accredited by AAALAC International.

580

581 *Video tracking and tank burst swimming*

582 Video tracking took place in the Pentair AES ZHAB fish rack Enclosure #LC60-C-A. 3-liter
583 Pentair Aquatic Ecosystems #PCT3 tanks were modified to have internal acetal panels on front,
584 bottom, and rear for improved video tracking. Current-USA TrueLumen Pro LED Aquarium Light
585 Model 3031 was used for lighting. Videos were taken with a Logitech C920 webcam and exported
586 to Open Broadcaster Software on a connected laptop. Three fish (either Pachón, Tinaja, or surface)
587 were placed in a 3-liter water tank with continuous water circulation. Fish were placed inside the
588 recording enclosure for 2 weeks prior to recording to acclimate to the surroundings. Fish were then
589 recorded for 2 hours. Each video was marked at specific times containing fastest fish movements.
590 For surface fish, this consisted of true bursts – aggressive behavior between two fish. For Pachón
591 and Tinaja fish, the fastest swimming bouts often consisted of accelerations following a turn. Each
592 swim clip began at the beginning of acceleration and concluded at the beginning of deceleration.
593 ffmpeg was used to cut the videos into 4-second clips (2 seconds before and after the specified

594 time for a total of 120 frames). Videos were then converted to flat image files (.tiff) and ROI's
595 were placed at the front edge of the fish of interest using FIJI/ImageJ. ROI files were calculated
596 using Python analyzing the instantaneous velocity in each frame of the image. The scripts for
597 breaking the MP4 videos into clips, and calculating the velocity from ROI.zip files can be found
598 here: <https://gist.github.com/richard-alexander/e3bded51a9e23dfccc1afc2c16fa58a2>. Average
599 burst velocity was measured at the beginning of an acceleratory burst and concluded at the onset
600 of deceleration. Maximal burst velocity was the greatest distance covered between two frames.

601

602 *Wild sample collection and tissue processing*

603 Wild fish collection in Mexico were collected as previously described (Krishnan et al. 2020) and
604 conducted under permit No. SGPA/DGVS/03634/19 granted by the Secretaría de Medio Ambiente
605 y Recursos Naturales to Ernesto Maldonado. Samples of wild surface fish were collected from the
606 San Antonio River at the San Antonio Zoo, Texas. For RNA-sequencing, skeletal muscle was
607 dissected immediately posterior to the dorsal fin and submerged in RNAlater until further analysis
608 (1-2 weeks from initial collection). Immediately upon arrival to the final destination, skeletal
609 muscle was gently blotted to remove RNAlater and placed in 1mL of Trizol (Ambion). Subsequent
610 processing for RNA extraction and sequencing is identical to that described below (*Lab fish RNA-*
611 *sequencing*). For histological analysis, skeletal muscle was dissected from the same region as that
612 used for RNA-seq (separate fish) and immediately submerged in 100% ethanol. Tissue remained
613 in ethanol until further processing (~2 weeks). Muscle fiber processing for cross-sectional area
614 measurements was then conducted identical to that described below (*Lab fish muscle fiber size*).

615

616 *EchoMRI™*

617 ~1 year old fish were used to measure body composition using the EchoMRI™ analyzer. For
618 female fish, eggs were removed prior to the assay. Technical replicates were measured and
619 averaged as the readout for each sample. Total lean mass and total fat mass was normalized to total
620 body weight and indicated as percent lean mass and percent fat mass.

621

622 *Histology processing for EchoMRI™ samples*

623 Following processing with the EchoMRI™, fish were measured for length/weight and muscle was
624 dissected across the entire truck – approximately 0.5cm from the base of the tail – and placed in

625 4% paraformaldehyde (PFA) at 4°C for 5 days. The tissue was subsequently washed in 1xPBS (pH
626 7.4) for 2x15 minutes at room temperature and then placed in 15% sucrose-1xPBS overnight. The
627 samples were then moved to 30% sucrose-1xPBS at 4°C followed by hematoxylin & eosin
628 staining. Samples were imaged with a VS120 virtual slide microscope (Olympus) and analyzed
629 with ImageJ. To quantify muscle mass, the muscle area was taken relative to the total body area
630 within each section. Care was taken to only use high quality sections avoiding any tissue damage.
631 Two technical replicates were used for each biological replicate.

632

633 *Lab fish muscle fiber size*

634 Skeletal muscle was collected from cavefish and surface fish similar in size. Muscle tissue was
635 fixed in 4% PFA for 72hrs at 4°C followed by 2x6 minute washes in 1xPBS at room temperature
636 and dehydrated by serial incubations in ethanol. Tissue samples were then embedded in paraffin
637 and sectioned at a thickness of 10µm. Sections were deparaffinized, rehydrated in 1xPBS, and
638 blocked in cold 4%BSA/PBS-1%Tween for 15 minutes. Sections were then incubated in 1%
639 Wheat Germ Agglutin Rhodamine (RL_1022) in 4%BSA/PBS/1%Tween for 40 minutes in the
640 dark at room temperature followed by additional 3x10 minute washes in PBS-1%Tween. Sections
641 were mounted with Vectashield Antifade Mounting Medium with DAPI (Vector laboratories
642 #93952-25). Images were gathered at 40x resolution with a Zeiss Axioplan 2e. 50-100 muscle
643 fibers were randomly selected and manually segmented for cross-sectional area. Mean cross-
644 sectional area from two technical replicates were used for statistical analysis.

645

646 *Myofibrillar extraction and electrophoresis*

647 The myosin and actin fractionation methods were conducted, with slight modifications, as
648 described in Roberts et al. (2020). In brief, 20mg of dorsal muscle tissue was dissected and
649 immediately submerged in 500µl of homogenization buffer (98% RIPA Lysis Extraction Buffer
650 (ThermoFisher #89900), 1% Halt Protease/Phosphatase Inhibitor Cocktail (Thermo Scientific
651 #78442), 1% EDTA). The tissue was then homogenized with triple pure M-Bio grade high impact
652 zirconium beads in a Beadbug 6 microtube homogenizer bead beater at 4900 RPM for 60 seconds
653 followed by gentle agitation at 4°C for 60 minutes. The sample was then centrifuged at 4°C at
654 3,000 x g for 30 minutes. The supernatant (cytosolic fraction) was removed and frozen at -80°C.
655 The pellet was resuspended with 500µl of homogenization buffer, centrifuged for 10 minutes at

656 3000 x g, and the supernatant was removed followed by two additional washes. The remaining
657 myofibrillar pellet was then immediately frozen and placed at -80°C until further processing. The
658 frozen myofibrillar pellet was resuspended in 125µl of homogenization buffer. 10µl of the
659 resuspended pellet was added to 65µl of ddH₂O and 25µl of 4x NuPage sample buffer, heated for
660 10 minutes at 70°C, and allowed to cool for 15 minutes at room temperature. Samples were loaded
661 at equal volumes on a 10% SDS gel and ran at a current of 300 volts for 40 minutes at room
662 temperature. Following electrophoresis, gels were washed in ddH₂O for 10 minutes, incubated in
663 Imperial Protein Stain (Thermo Scientific #24615) for 2 hours, and then washed in ddH₂O for 90
664 minutes. The gels were digitally imaged with a Cannon EOS Rebel T7i Rebel with a Commander
665 Optics Pro CPL 58mm Filter and pixel intensities of myosin and actin bands were quantified via
666 ImageJ. Mouse skeletal muscle was processed identical to that described above to serve as an
667 internal positive control for actin and myosin weight/band position.

668

669 *Muscle triglyceride quantification*

670 Overnight fasted surface fish and Pachón cavefish were euthanized via ms222 and skeletal muscle
671 immediately posterior to the dorsal fin was dissected. All muscle samples were immediately
672 processed as described in the commercial triglyceride assay kit (#65336 - Sigma) on a 200 Pro
673 Microplate Reader (TECAN). Due to extremely high triglyceride levels in all Pachón samples,
674 repeated dilutions were needed to remain within the working range. However, three Pachón
675 cavefish remained out of range (high triglyceride content) and were thus removed from triglyceride
676 quantification. This did not interfere with the final interpretation of triglyceride levels between
677 surface fish and Pachón cavefish.

678

679 *Muscle glycogen quantification*

680 Skeletal muscle from the same fish used for triglyceride quantification were used to measure
681 glycogen content following the protocol within the Glycogen Assay Kit (ab65620) on a 200 Pro
682 Microplate Reader (TECAN). Similar to triglyceride quantification, a Pachón cavefish remained
683 out of range following repeated dilutions resulting in this sample being discarded. This did not
684 interfere with final interpretation of glycogen levels between surface fish and Pachón cavefish.

685

686

687 *Fish buoyancy*

688 Fish buoyancy was conducted as described in Eastman (2020). In brief, adult fish were euthanized
689 in ms222 and patted dry. All fish had their swim bladder removed of air and female fish had their
690 eggs removed. Fish were then suspended from a hook that was attached to a weighing scale and
691 their dry weight was measured. Fish were then submerged in water with all air removed and their
692 weight was measured. The weight within the water was taken relative to their dry weight resulting
693 in their percent water weight.

694

695 *Lab fish RNA-sequencing*

696 All fish used were adult and housed at similar tank densities. Fish were fasted overnight and
697 collected at 09:00 the following morning. Fish were euthanized in 500mg/L of ms222. Skeletal
698 muscle was extracted immediately posterior to the dorsal fin and snap frozen in liquid nitrogen.
699 ~100mg of frozen tissue was homogenized in 1mL Trizol (Ambion) with triple pure M-Bio grade
700 high impact zirconium beads in a Beadbug 6 microtube bead beater. RNA was then extracted using
701 standard phenol/chloroform extraction. The subsequent RNA pellet was cleaned with the RNeasy
702 Mini Kit (Qiagen #74104) with on-column DNase digestion (Qiagen #79256). Libraries were
703 prepared according to the manufacturer's instructions using the TruSeq Stranded mRNA Prep Kit
704 (Illumina #20020594). The resulting libraries were quantified using a Bioanalyzer (Agilent
705 Technologies) and Qubit fluorometer (Life Technologies). Libraries were normalized, pooled,
706 multiplexed, and sequenced on an Illumina NextSeq 500 instrument as v2 Chemistry High Output
707 75bp single read runs. Following sequencing, raw reads were demultiplexed into Fastq format
708 allowing up to one mismatch using Illumina bcl2fastq2 v2.18. Reads were aligned to UCSC
709 genome astMex_2.0 with STAR aligner (version 2.7.3a) using Ensembl 102 gene models. TPM
710 values were generated using RSEM (version v1.3.0). Pairwise differential expression analysis was
711 performed using Bioconductor package edgeR (3.24.3 with R 3.5.2). Only protein coding genes
712 and long non-coding RNAs (lncRNAs) were considered from the Ens_102 annotation. Only genes
713 with counts per million expression ≥ 2 in at least 2 samples were kept for further analysis. Statistical
714 significance was determined by fold change cutoff of 2 and false discovery rate (FDR) cutoff of
715 0.01 or 0.05. Principal Component Analysis (PCA) was performed using R package 'stats' using
716 the prcomp function with the first two principal components shown. Gene Ontology (GO Term)
717 enrichment was completed using TERMS2GO, an in-house R Shiny app (versions R 4.1.0, shiny

718 1.7.1). Significant gene ontology terms were identified using clusterProfiler's enrichGO function
719 (version 4.0.0) with AnnotationHub's species database (version 3.0.0). GO Terms with adjusted
720 p-values less than 0.01 and 0.05 were considered significant. Figures were generated using ggplot2
721 (version 3.3.5) and plotly (4.10.0).

722
723 *RT-qPCR*
724 Following an overnight fast, skeletal muscle was extracted from *A. mexicanus* and immediately
725 snap frozen. ~100mg of frozen tissue was homogenized in 1mL Trizol (Ambion) with triple pure
726 M-Bio grade high impact zirconium beads in a Beadbug 6 microtube bead beater. RNA was then
727 extracted using standard phenol/chloroform extraction. The subsequent RNA pellet was cleaned
728 with the RNeasy Mini Kit (Qiagen #74104) with on-column DNase digestion (Qiagen #79256).
729 1µg of quality RNA was then converted to cDNA with the iScript cDNA synthesis kit (Bio-Rad
730 #1708890). 1-5ng of cDNA was used for qPCR utilizing SYBR green technology (Quantabio
731 PerfeCTa SYBR Green FastMix Low Rox #66188573) with a QuantStudio 5 Real-Time PCR
732 System. Specificity of each amplicon was confirmed via analysis of post-reaction dissociation
733 curves, validating a single amplicon for each set of primers. Analysis was conducted using the
734 Delta Delta C_t method. All samples were run in triplicate and normalized to the housekeeping gene
735 *rpl13a*. Primer sequences used are as follows:

736
737 *fast-myhc*; ENSAMXG00000038006:
738 FW: 5'- TTCTTCTTGCCTCCCTTGCC -3'
739 RV: 5'- AAGGCTGAAGCCCACTTCTT -3'
740 *rpl13a*; ENSAMXG00005024453:
741 FW 5'- 5'- GTTGGCATCAACGGATTGG -3'
742 RV: 5'- CCAGGTCAATGAAGGGTCA -3'
743 *ppary*; ENSAMXG00000043041:
744 FW: 5'- GTCACCGCGATTCTCTGAT-3'
745 RV: 5'-ATCCCATGGGCCAGGAAAAC-3'.
746
747
748

749 *Muscle ex vivo kinetics*

750 Muscle mechanics experiments were carried out at Widener University. For muscle mechanics
751 experiments, fish were sacrificed and hypaxial myotomal muscle was dissected from between the
752 pectoral and pelvic girdles. The extracted muscle was maintained in physiological saline
753 (Seebacher et al. 2012) at room temperature. Muscle bundles consisted of 2-3 myomeres with a
754 typical live muscle length of 4-5 mm and live muscle cross-sectional area of ~1 mm². Isolated live
755 bundles were tied with silk thread into a muscle mechanics chamber with a servomotor at one end
756 (Aurora Scientific 318B) and force transducer at the other (Aurora Scientific 404A). The
757 temperature-controlled chamber had platinum electrodes along each side. Experimental control
758 was carried out using the Dynamic Muscle Control and Analysis Software (Aurora Scientific
759 615A) at 25°C. Sample size for muscle mechanics was n = 8 for groups of fish. Up to two muscle
760 bundles could be examined per fish. Muscle length and stimulation conditions were optimized for
761 each bundle to produce maximum tetanic force. Muscle bundles generating low force (<10 mN
762 mm⁻²), indicating low tissue quality, were eliminated from the dataset. Isometric twitch and tetanic
763 contractions were recorded and analyzed for time to maximum force (time from stimulus until
764 maximum isometric force) and for ½ relax time (time from maximum force to 50% relaxation).
765 Isovoltage experiments were used to measure the force-velocity relationship to determine muscle
766 maximum shortening velocity (V_{max}). A series of isovoltage ramps of increasing velocity were
767 imposed on muscle bundles, and muscle tension was recorded during each ramp to plot the force-
768 velocity curve for each bundle. Correcting for passive tension, a V_{max} was calculated by fitting the
769 Hill muscle model (Seow, 2013) using Igor Pro (WaveMetrics). Following physiological
770 measurements, bundles were stained in Trypan Blue (for dead tissue) in saline for 30 minutes at
771 room temperature, embedded in gelatin (15% gelatin in saline) and frozen in dry-ice chilled
772 hexanes. Live muscle area was then determined as described previously (Coughlin, 2000).

773

774 *Incremental swimming test*

775 The incremental swim test was performed at the University of North Texas within a Blazka-style
776 1500mL Loligo Systems swim tunnel (#SW10040). Fish in each group were placed in the tunnel
777 for a 20 minute acclimatization period with the water flow set at 5cm/s. This did not cause any
778 strenuous movement or behavior from any of the fish. Fish within the “control” group were
779 immediately removed following the 20 minute acclimatization period and euthanized. All other

780 fish immediately followed the acclimatization period with the incremental swimming test
781 consisting of ramping the water flow 5cm/s every 5 minutes. If the entire 5 minutes at a given
782 water flow was completed, the flow would then increase in velocity an additional 5cm/s. The water
783 flow was immediately turned off when the fish reached fatigue. Fatigue was defined as the fish
784 remaining at the rear of the swim tunnel for 5 seconds, no longer swimming. Critical swimming
785 speed (Ucrit) was measured with the following equation: $[U_f + (T/t)dU]/cm$, where U_f (cm s⁻¹)
786 is the highest swim velocity maintained for a full interval, T (s) is the time spent at the final
787 velocity, t is the time interval (s), and dU is the increment in swim speed (cm s⁻¹). Acute post fish
788 were removed and immediately euthanized in ms222. 1-hour post fish were removed and placed
789 in a 3L water tank for 1 hour. Following the hour, fish were euthanized in ms222. The incremental
790 swim test protocol was approved by the UNT IACUC #19-011.

791

792 *Glucose measurements*

793 Exercised and non-exercised fish were euthanized via ms222 followed by the caudal fin being
794 removed and blood drawn directly to the AlphaTRAK Blood Glucose Monitoring System.

795

796 *Periodic acid-Schiff stain*

797 Exercised and non-exercised fish had their skeletal muscle dissected immediately anterior to that
798 obtained for the phosphoproteomic analysis and placed in 4% PFA at room temperature for 24
799 hours. Samples were washed 3x15 minutes in 1xPBS followed be serial dehydration in ethanol-
800 1xPBS and placed at 4°C for 96 hours. Tissue was paraffin embedded, sectioned, deparaffinized,
801 and dehydrated to ddH₂O. Slides were placed in 5% periodic acid for 10 minutes, rinsed in distilled
802 water for 5 minutes, and placed in Schiff Reagent for 15 minutes at room temperature. Slides were
803 then washed in warm water for 10 minutes. Sections were mounted in 50% glycerol/1xPBS and
804 imaged on a VS120 virtual slide microscope (Olympus). Areas for further analysis were randomly
805 chosen and vetted for their morphological integrity. Muscle fibers showing adequate morphology
806 were manually demarcated and pixel intensity was measured in ImageJ. Two technical replicates
807 were analyzed for the majority of biological samples unless tissue morphology was inadequate for
808 accurate fiber tracing. The mean pixel intensity of the two technical replicates was then used for
809 statistical analysis.

810

811

812 *pAMPK quantification*

813 ~30mg of frozen skeletal muscle was submerged in ice cold RIPA Lysis Extraction Buffer
814 (ThermoFisher #89900) supplemented with 1% Halt Protease/Phosphatase Inhibitor Cocktail
815 (Thermo Scientific #78442) and homogenized with triple pure M-Bio grade high impact zirconium
816 beads in a Beadbug 6 microtube homogenizer. Muscle lysate was then gently agitated at 4°C for 2
817 hours and spun down at 16,000 x g for 20 minutes. The subsequent supernatant was transferred to
818 a new tube and snap frozen in liquid nitrogen. Protein quantification was determined with a Pierce
819 BCA Protein Assay Kit (Thermo #23227). Samples were combined with NuPage LDS sample
820 buffer 4x (#2083421) and 5% 2-Mercaptoethanol (Sigma Aldrich #M6250) and heated for 10
821 minutes at 70°C. Samples were then cooled for an additional 10 minutes and 60µg of protein was
822 loaded onto a 10% polyacrylamide gel and electrophoretically separated at 140 volts for 65
823 minutes at room temperature. The gel was then transferred to a PVDF membrane for 60 minutes
824 at 235 mAMPS at 4°C. The membrane was then blocked in LI-COR blocking buffer and incubated
825 in 1:500 mAb pAMPK (T172) (CST #40H9) antibody overnight at 4°C. Following overnight
826 incubation, the membrane was washed 1x10min/2x5min in TBS-1%Tween followed by
827 incubation in the dark with Goat anti-Rabbit IgG Secondary Antibody (1:5000) (LI-COR
828 #AB_2721181) for 1 hour at room temperature. The membrane was then washed 3 additional times
829 in TBS-1%Tween. The membrane was scanned with the Odyssey LI-COR Scanning system
830 (Odyssey CLx). For total protein quantification, the membrane was incubated in Imperial Protein
831 Stain (Thermo Scientific #24615) for 2 hours and washed in ddH2O for 1 hour followed by
832 imaging with a Cannon EOS Rebel T7i Rebel with a Commander Optics Pro CPL 58mm Filter.
833 Pixel intensity was gathered with ImageJ and analyzed for both pAMPK and total protein.
834 Statistical analysis was conducted against the normalized pAMPK to total protein concentration.
835

836 *Phosphoglucomutase activity assay and CIP incubation*

837 Skeletal muscle from overnight fasted fish was extracted posterior to the dorsal fin and
838 immediately flash frozen in liquid nitrogen. Frozen skeletal muscle was homogenized in the
839 provided buffer with the Phosphoglucomutase activity assay kit (ab155896 abcam) supplemented
840 with protease and phosphatase inhibitors (CIP treated samples contained only protease inhibitors).
841 Samples were then gently agitated at 4°C for 30 minutes, spun down, and protein measured using

842 the Pierce BCA Protein Assay Kit (product# 23227). For CIP incubation, 10 μ g of protein from
843 each sample was incubated in 100 μ l 1xCIP buffer and 2 μ l CIP (5,000 U/mL) (M0525S NEG) for
844 30 minutes at 37°C. Phosphoglucomutase activity of CIP-treated and non-treated samples were
845 then measured according to the manufacturer's instructions (ab155896 abcam) using a 200 Pro
846 Microplate Reader (TECAN).

847

848 *Transmission electronic microscopy (TEM)*

849 For TEM, surface and cavefish muscle tissues were dissected and fixed with 50 mM Sodium
850 Cacodylate (pH 7.4) containing 2.5% Paraformaldehyde and 2% Glutaraldehyde. The tissue blocks
851 were post fixed with 2% OsO₄ for 2 hours, and 1% Uranyl Acetate overnight. After dehydration
852 with a graded Ethanol series, samples were infiltrated and embedded into Epon resin (EMS, Fort
853 Washington, PA). Ultrathin (80 nm) sections were collected on copper grids, stained with 4%
854 Uranyl Acetate in 75% Ethanol and 2% Lead Citrate. Sections were imaged using a FEI
855 transmission electron microscope at 80kV. For image quantification, myofibrils were first
856 identified in TEM images using un-trained Cellpose (Stringer et al. 2021). A subset of the results
857 were hand corrected in Fiji using ROI tools, and these were used as training data for a standard
858 Unet using DeepFiji (Nuckolls et al. 2020). This Unet model then performed the final segmentation
859 of myofibril regions of ~125 images per sample. Data aggregation and plotting were done in
860 python.

861

862 **Global/Phosphorylated peptide extraction**

863 *Protein digestion*

864 Skeletal muscle tissue from each timepoint were immediately dissected following euthanization
865 via submersion in ms222 (500mg/L), frozen in liquid nitrogen, and stored at -80°C until further
866 processing. For tissue homogenization and protein extraction, 30mg of frozen skeletal muscle was
867 submerged in 1mL ice-cold lysis buffer containing 100mM triethylammonium bicarbonate
868 (TEAB) and 10% SDS with 1x protease/phosphatase inhibitor cocktail and homogenized with
869 triple pure M-Bio grade high impact zirconium beads in a Beadbug 6 microtube homogenizer. The
870 lysate was then centrifuged at 16,000 x g for 10 minutes at 4°C. The supernatant was transferred
871 to a new tube and measured for protein concentration with the Pierce BCA Protein Assay Kit
872 (Thermo #23227). Following the recommended protocol for sample preparation before tandem

873 mass tag (TMT, Thermo) labeling, 100 μ g of protein was transferred to a new tube and adjusted to
874 a final volume of 100 μ l with 100mM TEAB. 5 μ l of 200mM tris(2-carboxyethyl)phosphine
875 (TCEP) (Thermo Scientific #PI20490) was added and incubated at 55°C for 1 hour. 5 μ l of 500mM
876 2-chloroacetamide was then added to the sample and incubated for 30 minutes, protected from
877 light at room temperature. Proteins were then precipitated by methanol/chloroform extraction.
878 Protein pellets were resuspended in 40 μ l of 100mM TEAB and digested overnight at 37°C with
879 shaking by the addition of 2 μ l of 1 μ g/ μ l trypsin (Promega, V5111) and 1 μ l of 80mM CAM (2mM
880 final) (Sigma, C0267). Peptides were quantitated by the Pierce quantitative fluorometric peptide
881 assay and stored at -20°C until labeling.

882

883 *Tandem Mass Tag labeling*

884 Prior to TMT labeling, each sample was spiked with a digest of pig serum albumin as an internal
885 control. TMT 6-plex reagents were resuspended according to the protocol and 200 μ g was added
886 to each sample. Samples were labeled for 1 hour at room temperature. To check labeling efficiency,
887 2 μ l of each reaction was diluted to 25 μ l with buffer A (5% acetonitrile (ACN), 0.1% formic acid
888 (FA)) and injected via the autosampler of a Dionex Ultimate 3000 RSCL nano-HPLC onto a
889 trapping column (Acclaim PepMap 100, 5 μ m particle size, 0.3mm x 5mm) using the loading pump
890 flowing at 2.5 μ l /min. Trapped peptides were eluted onto an in-house pulled separating column
891 (1.9 μ m resin (ReproSil, Dr. Maisch), 20cm packed into 75 μ m I.D. x 360 μ m O.D. fused silica) at
892 42°C with a flow rate of 250nL/min directly interfaced with an Thermo Orbitrap Eclipse mass
893 spectrometer equipped with a FAIMS source at 2.5kV spray voltage. Peptides were loaded with
894 5% buffer B (80% ACN, 0.1%FA) and washed for 30 minutes before being eluted by a linear
895 gradient to 40% B over 1 hour gradient. To quench the TMT reaction, 1 μ l of 5% hydroxylamine
896 (Sigma) was added to each sample. The samples were combined to make four 6-plex technical
897 replicates. Approximately 5% of the reaction was reserved for global TMT analysis and the
898 remaining 95% was used for phospho-peptide enrichment. Phospho-peptides were enriched using
899 Sequential enrichment from Metal Oxide Affinity Chromatography (SMOAC) (Jae Choi et al.
900 2017) approach in which phospho-peptides are sequentially enriched by TiO2 (High-Select TiO2
901 Phospho-peptide Enrichment Kit, Thermo) followed by FeNTA (High-Select Fe-NTA Phospho-
902 peptide Enrichment Kit, Thermo). Peptides enriched for phospho-peptides were dried in a speed
903 vacuum concentrator and stored at -20°C until resuspension and analysis.

904 *Mass spectrometry analysis*

905 Dried peptide samples were resuspended in 10 μ l or 25 μ l buffer A for global and phospho-enriched
906 analyses, respectively. The unenriched global samples were further diluted 25x in buffer A before
907 analysis. Samples were analyzed by LC/MSMS on an Eclipse mass spectrometer (Thermo
908 Scientific) equipped with FAIMS and coupled to a Dionex Ultimate 3000 RSCL nano-HPLC. For
909 each analysis, 20 μ l of resuspended 6-plex sample was injected onto a trapping column (Acclaim
910 PepMap 100, 5 μ m particle size, 0.3mm x 5mm) using the loading pump flowing at 2.5 μ l/min.
911 Trapped peptides were eluted onto an in-house pulled separating column (1.9 μ m resin (ReproSil,
912 Dr. Maisch), 75 μ m I.D. x 20cm) at 42°C with a flow rate of 250nL/min directly interfaced with
913 the Eclipse mass spectrometer equipped with a FAIMS source at 2.5kV spray voltage. Peptides
914 were loaded with 5% buffer B (80% ACN, 0.1%FA) and washed for 30 minutes before a linear
915 gradient to 40% B over 3 hour or 4 hour for phospho-enriched or global samples, respectively. The
916 gradient was increased to 85% B over 10 minutes and held for an additional 5 minutes before re-
917 equilibration for 30 minutes at 5% buffer B for the next injection. Peptides were analyzed using
918 the TMT-SPS-MS3 with FAIMS method on the Eclipse. Briefly, peptides were scanned in the
919 Orbitrap at 120,000 resolving power before MS2 fragmentation by CID at 35% NCE and detection
920 in the ion trap set to rapid detection. Synchronous precursor scanning (SPS) selected the top 10
921 MS2 peptides for TMT reporter ion detection in the Orbitrap using HCD fragmentation at 65%
922 NCE at 50,000 resolving power. Top speed of 1s for each FAIMS compensation voltage (CV) at
923 -40V, -60V, and -80V was used. Dynamic exclusion was enabled for 45s to deepen the proteome
924 coverage.

925

926 *Database searching*

927 RAW files were directly uploaded to Proteome Discoverer v. 2.4. Samples were searched against
928 the *Astyanax mexicanus* database (downloaded from NCBI 04-25-2019) and a database containing
929 426 common contaminants with static peptide N-terminal TMT reporter ion modification
930 (+229.163 Da) and cysteine alkylation (+57.125 Da) and variable modification search for
931 methionine oxidation (+15.995 Da), serine, threonine, and tyrosine phosphorylation (+79.993 Da)
932 and lysine TMT modification (+229.163 Da). Peptides were normalized to total peptide amount
933 for the global analysis. In the phospho-peptide enriched samples, only peptides containing
934 phosphorylation were quantitated. False discovery rates for the global dataset were maintained at

935 0.5%, 1%, and 6.8% for peptide spectrum matches, peptides, and proteins, respectively. False
936 discovery rates for the phospho-enriched dataset were maintained at 0.3, 1%, and 4.1% for peptide
937 spectrum matches, peptides, and proteins, respectively. 640 proteins were identified in the global
938 dataset containing TMT reporter ions and identified in at least 2 replicates (Data S7). In the
939 phospho-enriched dataset, there were 124 proteins and 430 phosphorylated peptides identified that
940 were quantitated by TMT reporter ions in at least 2 replicates (Data S10). Mass spectrometry data
941 were processed with MaxQuant (v1.5.2.10) and searched with Andromeda against either the mouse
942 or rat UniProt database. KEGG Pathway Analysis was conducted in g.profiler (Raudvere et al.
943 2019) using the functional profiling g:GOSt pipeline against the *Astyanax mexicanus*_2.0
944 Ensemble genome.

945

946 *Targeted proteomics*

947 An additional 10% of the remaining global protein samples were used for targeted proteomics.
948 Samples were diluted 1 μ l to 25 μ l of Buffer A and was transferred to an autosampler vial. The
949 targeted proteomics samples were analyzed with a similar TMT-SPS-MS3 method to the global
950 analysis with the exceptions that the gradient was shortened to 3 hour and an inclusion list was
951 used with 2-3 peptides from each of the 22 targeted proteins (Data S9B). Dynamic exclusion was
952 not used. Data were analyzed with Proteome Discoverer 2.4 with SEQUEST-HT against the
953 *Astyanax mexicanus* protein database as used in the global analysis. Data was searched to include
954 static modifications of cysteine alkylation (+57.125 Da) and peptide N-terminal TMT tag
955 (+229.163Da) and dynamic modification of lysine TMT modification (+229.163 Da), methionine
956 oxidation (+15.995 Da), and serine, threonine, and tyrosine phosphorylation (+79.993 Da). Data
957 was normalized in PD to the highest total TMT reporter abundance. It was observed that all
958 samples in runs 1 through 3 clustered well within populations (i.e. cave and surface clustered
959 separately) whereas both cavefish and surface samples in run 4 clustering together, independent of
960 population. We reasoned this reflected poor running of the samples and as such samples in run 4
961 were removed and all subsequent analysis included only samples 1 through 3.

962

963 *Data normalization for Principal Component Analysis*

964 For each biological replicate, phospho-proteomic data was quantified as mean peak intensity of
965 each modified peptide. Peptide level quantities exhibited severe biases and dropouts, with the

966 strength of these effects depending on the biological replicate of the measurement. In order to
967 visualize biological variation, rather than batch-related effects, we attempted to correct for both
968 dropouts and biases. In order to correct for dropouts, we used hard imputation from the *filling* R
969 package with the default rank of $\text{min}(\text{dim}(A))-1$, which evaluates to 23 for phospho-peptide
970 datasets. Using this imputed data, we performed batch-normalization using the Removal of
971 Unwanted Variation (RUV) R package (Jacob et al. 2016). Briefly, we used the RUVIII function
972 with a k-factor of 10. RUV makes use of so-called “negative controls,” i.e. features that are not
973 expected to change across experiments. Due to the comparatively understudied nature of our *A.*
974 *mexicanus* model system, we chose to model all peptides as negative controls, a conservative
975 approach often used when candidate negative controls are not available. Finally, these imputed
976 and normalized values were used to compute a PCA decomposition based on standard routines in
977 the Python *scikit-learn* package.

978

979 *Statistical modeling and ranking*

980 In order to determine phosphorylation-related changes associated with the cave adaptation
981 phenotype, we sought to identify peptides with significant differences in either 1) differential
982 phosphorylation as a function of physiological state (pre vs acute swimming state or pre vs 1-hour
983 post-challenge state), or 2) baseline measurements for all three physiological timepoints. We
984 further sought to identify peptides with a large differential or baseline change in one population
985 (surface or cave) but not the other, thereby suggesting a potential fitness advantage of the peptide
986 in the cave or surface environment, but not both. In order to accomplish this, we did not use the
987 normalized data as described above, but rather used a linear mixed-effect model to estimate the
988 contribution due to batch effects. Briefly, we constructed a model incorporating peptide /
989 physiological timepoint interaction as a fixed effect and mean peak intensity per replicate as a
990 random effect (for measuring baseline differences between populations, we instead used
991 peptide/population interaction as the fixed effect). Fitting this model allowed us to compute
992 statistical metrics for the differential abundance of a given phospho-peptide without confounding
993 due to batch effects. We then ranked peptides from greatest to least differential abundance in
994 Pachón for each timepoint and least to greatest abundance in surface (i.e. the ranking criteria for
995 surface is reversed). We then merged these rankings using rank products according to (Breitling
996 et al. 2004) to yield a ranking of peptides with a large timepoint differential in one population

997 (Pachón) but not the other (surface). We repeated this process interchanging Pachón and surface
998 to generate complementary rankings. Finally, we used a similar rank product approach to rank
999 baseline-differences.

1000

1001 **Data availability**

1002 The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
1003 (Perez-Riverol et al. 2019; Deutsch et al. 2020) via the PRIDE partner repository with the dataset
1004 identifier [PXD024165](#) and may be accessed through the MassIVE partner repository via ftp with
1005 username [MSV000086857](#) and password “OlsenMuscle2021”. The RNA-seq datasets can be
1006 found at the GEO accession number GSE196531. Original data underlying this manuscript may
1007 be accessed after publication from the Stowers Original Data Repository
1008 at <http://www.stowers.org/research/publications/libpb-1679>.

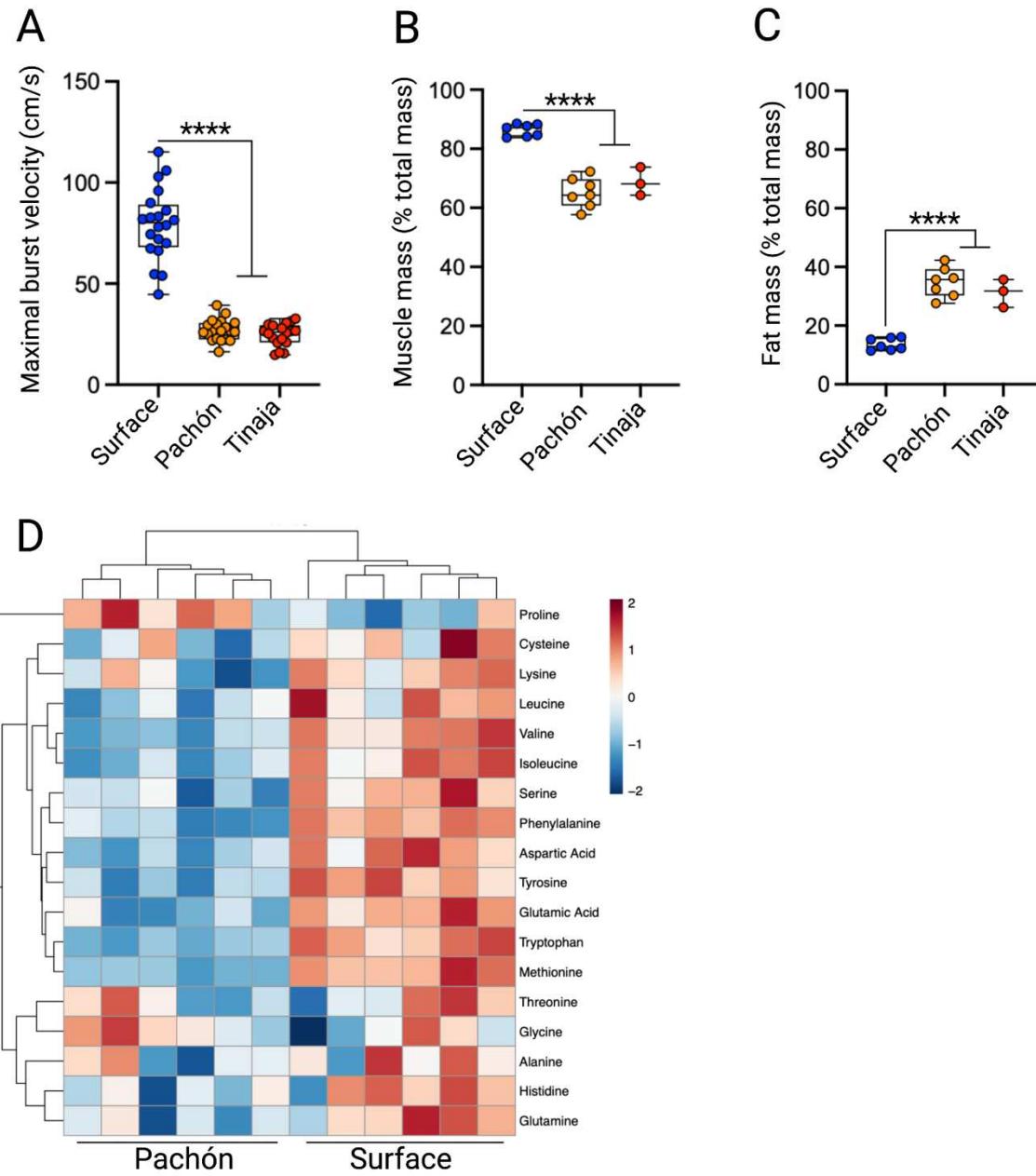
1009

1010

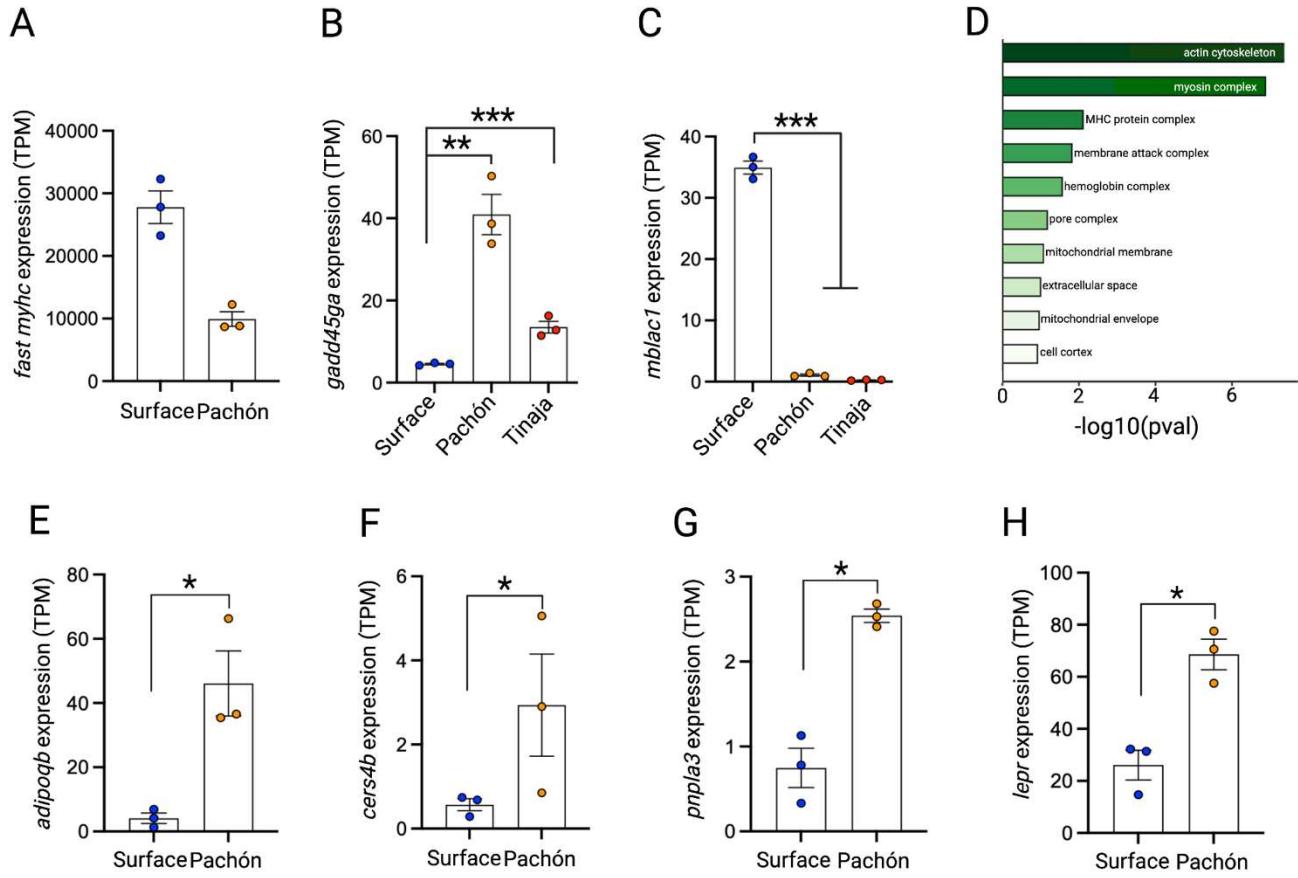
1011

1012

1013


1014

1015


1016

1017

1018

1019 **Figure S1. Maximal burst velocity and body composition of *A. mexicanus*.** (A) Maximal burst velocity of the
1020 surface fish (n=20) and two independently evolved cavefish populations: Pachón (n=20) and Tinaja (=18). Relative
1021 (B) muscle mass and (C) fat mass of histological sections from surface fish (n=7), Pachón (n=7), and Tinaja (n=3)
1022 cavefish following echoMRI analysis. (D) Heatmap of the identified amino acids (18 in total) within Pachón cavefish
1023 and surface fish. Arginine and Asparagine were not detected. Data was used from the following shiny app:
1024 <https://cavefin.shinyapps.io/shiny> (Medley et al. 2020). Significance was calculated with a one-way ANOVA with
1025 Bonferroni correction for Fig. S1A-C. Data is presented as \pm SEM, ****p<0.0001.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

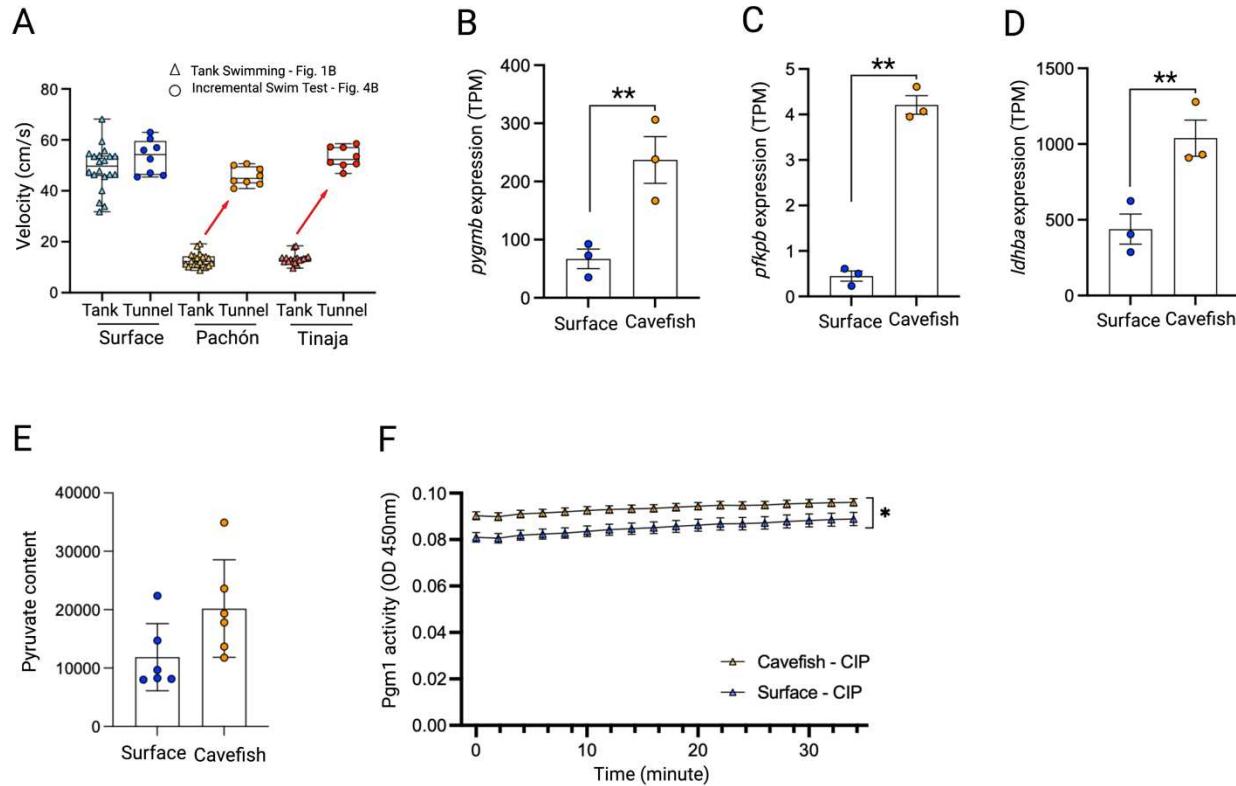
1036

1037

1038

1039

1040


1041

1042

1043

1044

Figure S2. Gene expression of the *A. mexicanus* muscle tissue. (A) Cumulative gene expression in transcripts per million (TPM) of all fast myosin heavy chain (*fast-myhc*) transcripts significantly different between surface fish and Pachón cavefish. Gene expression in TPM of (B) *gadd45ga* and (C) *mblac1* (n=3 per population). (D) GO-enrichment analysis of the DEG's conserved in both wild-caught and laboratory-reared *A. mexicanus*. Gene expression in TPM of (E) *adipoqb* (F) *cers4b*, (G) *pnpla3*, and (H) *lepr* (n=3 per population). Statistical analysis for RNA-seq can be found in the methods. Data is presented as \pm SEM, ***p<0.001.

1045
1046 **Figure S3. Swimming velocity and metabolic investment within the *A. mexicanus*.** (A) Comparison of the maximal
1047 swimming velocity reached during the incremental swim test (circles) and average burst velocity as shown in Figure
1048 1B (triangles). The red arrow highlight the change in swimming velocity within the cavefish (Pachón and Tinaja).
1049 Change in gene expression (TPM = transcript per million) of (B) *pygmb*, (C) *pfkpb*, and (D) *ldhba*. (E) Pyruvate
1050 content in the skeletal muscle of surface fish and cavefish (Pachón) (n=6 per population). (F) Pgm1 activity within
1051 surface fish and cavefish (Pachón) following CIP incubation (n=6 per population). While at baseline cavefish have
1052 increased Pgm1 fluorescence, their activity over time is less than that in surface fish. For Fig. S3H, significance was
1053 calculated with a two-way repeated measures ANOVA with Benjamini and Hochberg FDR correction. Statistical
1054 analysis for RNA-seq data can be found in the methods. Data is presented as \pm SEM, * p <0.05, ** p <0.01.
1055
1056
1057
1058
1059
1060
1061
1062
1063

1064 **References**

- 1065
- 1066 Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L., & Tabin, C. J. (2015). Melanocortin 4 receptor
1067 mutations contribute to the adaptation of cavefish to nutrient-poor conditions. *Proc Natl Acad Sci
1068 U S A*, 112(31), 9668-9673. doi:10.1073/pnas.1510802112
- 1069
- 1070 Balázs, G., Lewarne, B., & Herczeg, G. (2020). Extreme site fidelity of the olm (*Proteus anguinus*)
1071 revealed by a long-term capture–mark–recapture study. *Journal of Zoology*, 311(2), 99-105.
1072 doi.org/10.1111/jzo.12760
- 1073
- 1074 Batista, T. M., Jayavelu, A. K., Wewer Albrechtsen, N. J., Iovino, S., Lebastchi, J., Pan, H., . . . Kahn, C.
1075 R. (2020). A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies
1076 Muscle Insulin Resistance in Type 2 Diabetes. *Cell Metab*, 32(5), 844-859 e845.
1077 doi:10.1016/j.cmet.2020.08.007
- 1078
- 1079 Biltz, N. K., Collins, K. H., Shen, K. C., Schwartz, K., Harris, C. A., & Meyer, G. A. (2020). Infiltration
1080 of intramuscular adipose tissue impairs skeletal muscle contraction. *J Physiol*, 598(13), 2669-
1081 2683. doi:10.1113/jp279595
- 1082
- 1083 Bodine, S. C. (2013). Disuse-induced muscle wasting. *Int J Biochem Cell Biol*, 45(10), 2200-2208.
1084 doi:10.1016/j.biocel.2013.06.011
- 1085
- 1086 Boggs, T., & Gross, J. (2021). Reduced Oxygen as an Environmental Pressure in the Evolution of the
1087 Blind Mexican Cavefish. *Diversity*, 13(1), 26.
- 1088
- 1089 Booth, F. W., Roberts, C. K., Thyfault, J. P., Ruegsegger, G. N., & Toedebusch, R. G. (2017). Role of
1090 Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. *Physiol
1091 Rev*, 97(4), 1351-1402. doi:10.1152/physrev.00019.2016
- 1092
- 1093 Breitling, R., Armengaud, P., Amtmann, A., & Herzyk, P. (2004). Rank products: a simple, yet powerful,
1094 new method to detect differentially regulated genes in replicated microarray experiments. *FEBS
1095 Lett*, 573(1-3), 83-92. doi:10.1016/j.febslet.2004.07.055
- 1096
- 1097 Carlson, B. M., Klingler, I. B., Meyer, B. J., & Gross, J. B. (2018). Genetic analysis reveals candidate
1098 genes for activity QTL in the blind Mexican tetra, *Astyanax mexicanus*. *PeerJ*, 6, e5189.
1099 https://doi.org/10.7717/peerj.518
- 1100
- 1101 Chen, L., Bai, Y., Everaert, N., Li, X., Tian, G., Hou, C., & Zhang, D. (2019). Effects of protein
1102 phosphorylation on glycolysis through the regulation of enzyme activity in ovine muscle. *Food
1103 Chem*, 293, 537-544. doi:10.1016/j.foodchem.2019.05.011
- 1104
- 1105 Choi, S. J., Files, D. C., Zhang, T., Wang, Z. M., Messi, M. L., Gregory, H., . . . Delbono, O. (2016).
1106 Intramyocellular Lipid and Impaired Myofiber Contraction in Normal Weight and Obese Older
1107 Adults. *J Gerontol A Biol Sci Med Sci*, 71(4), 557-564. doi:10.1093/gerona/glv169
- 1108

- 1109 Contrepois, K., Wu, S., Moneghetti, K. J., Hornburg, D., Ahadi, S., Tsai, M. S., . . . Snyder, M. P. (2020).
1110 Molecular Choreography of Acute Exercise. *Cell*, 181(5), 1112-1130 e1116.
1111 doi:10.1016/j.cell.2020.04.043
- 1112
- 1113 Coughlin, D. J. (2000). Power production during steady swimming in largemouth bass and rainbow trout.
1114 *J Exp Biol*, 203(Pt 3), 617-629. Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/10637190>
- 1115
- 1116 Deutsch, E. W., Bandeira, N., Sharma, V., Perez-Riverol, Y., Carver, J. J., Kundu, D. J., . . . Vizcaino, J.
1117 A. (2020). The ProteomeXchange consortium in 2020: enabling 'big data' approaches in
1118 proteomics. *Nucleic Acids Res*, 48(D1), D1145-D1152. doi:10.1093/nar/gkz984
- 1119
- 1120 Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A., Kram, R., & Lehman, S. (2000). How animals
1121 move: an integrative view. *Science*, 288(5463), 100-106. doi:10.1126/science.288.5463.100
- 1122
- 1123 Dumesic, P. A., Egan, D. F., Gut, P., Tran, M. T., Parisi, A., Chatterjee, N., . . . Spiegelman, B. M. (2019).
1124 An Evolutionarily Conserved uORF Regulates PGC1alpha and Oxidative Metabolism in Mice,
1125 Flies, and Bluefin Tuna. *Cell Metab*, 30(1), 190-200 e196. doi:10.1016/j.cmet.2019.04.013
- 1126
- 1127 Eastman, J. T. (2020). The buoyancy-based biotope axis of the evolutionary radiation of Antarctic
1128 cryonotothenioid fishes. *Polar Biology*, 43, 1217-1231.
- 1129
- 1130 Elipot, Y., Hinaux, H., Callebert, J., & Rétaux, S. (2013). Evolutionary shift from fighting to foraging in
1131 blind cavefish through changes in the serotonin network. *Curr Biol*, 23(1), 1-10.
1132 doi:10.1016/j.cub.2012.10.044
- 1133
- 1134 Fontes-Oliveira, C. C., Busquets, S., Fuster, G., Ametller, E., Figueras, M., Olivan, M., . . . Argilés, J. M.
1135 (2014). A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals
1136 dysregulation of excitation-contraction coupling together with additional muscle alterations.
1137 *Muscle Nerve*, 49(2), 233-248. doi:10.1002/mus.23893
- 1138
- 1139 Franchi, M. V., Reeves, N. D., & Narici, M. V. (2017). Skeletal Muscle Remodeling in Response to
1140 Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic
1141 Adaptations. *Frontiers in physiology*, 8, 447. <https://doi.org/10.3389/fphys.2017.00447>
- 1142
- 1143 Fröbert, O., Frøbert, A. M., Kindberg, J., Arnemo, J. M., & Overgaard, M. T. (2020). The brown bear as
1144 a translational model for sedentary lifestyle-related diseases. *J Intern Med*, 287(3), 263-270.
1145 doi:10.1111/joim.12983
- 1146
- 1147 Gross, J. B. (2012). The complex origin of *Astyanax* cavefish. *BMC Evol Biol*, 12, 105. doi:10.1186/1471-
1148 2148-12-105
- 1149
- 1150 Hardaway, J. A., Sturgeon, S. M., Snarrenberg, C. L., Li, Z., Xu, X. Z., Birmingham, D. P., . . . Blakely,
1151 R. D. (2015). Glial Expression of the *Caenorhabditis elegans* Gene *swip-10* Supports Glutamate
1152 Dependent Control of Extrasynaptic Dopamine Signaling. *J Neurosci*, 35(25), 9409-9423.
1153 doi:10.1523/jneurosci.0800-15.2015
- 1154

- 1155 Hendrickson, D., Krejca, J., & Martínez, J. (2001). Mexican Blindcats Genus *Prietella* (Siluriformes:
1156 Ictaluridae): an overview of Recent Explorations. *Environmental Biology of Fishes*, 62, 315-337.
1157 doi:10.1023/A:1011808805094
- 1158
- 1159 Herman, A., Brandvain, Y., Weagley, J., Jeffery, W. R., Keene, A. C., Kono, T. J. Y., . . . McGaugh, S.
1160 E. (2018). The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican
1161 tetra, *Astyanax mexicanus*. *Mol Ecol*, 27(22), 4397-4416. doi:10.1111/mec.14877
- 1162
- 1163 Hermansen, L., Hultman, E., & Saltin, B. (1967). Muscle glycogen during prolonged severe exercise. *Acta
1164 Physiol Scand*, 71(2), 129-139. doi:10.1111/j.1748-1716.1967.tb03719.x
- 1165
- 1166 Hüppop, K. (2000). How do cave animals cope with food scarcity in caves? Amsterdam: Elsevier Press.
- 1167
- 1168 Jacob, L., Gagnon-Bartsch, J. A., & Speed, T. P. (2016). Correcting gene expression data when neither
1169 the unwanted variation nor the factor of interest are observed. *Biostatistics*, 17(1), 16-28.
1170 doi:10.1093/biostatistics/kxv026
- 1171
- 1172 Jae Choi, S. I. S., Ryan Bomgarden, John C. Rogers. (2017). Sequential enrichment from Metal Oxide
1173 Affinity Chromatography (SMOAC), a phosphoproteomicsstrategy for the separation of multiply
1174 phosphorylated from monophosphorylatedpeptides. *ThermoFisher Scientific*.
- 1175
- 1176 Kaji, T., Anker, A., Wirkner, C. S., & Palmer, A. R. (2018). Parallel Saltational Evolution of Ultrafast
1177 Movements in Snapping Shrimp Claws. *Curr Biol*, 28(1), 106-113 e104.
1178 doi:10.1016/j.cub.2017.11.044
- 1179
- 1180 Krishnan, J., Seidel, C. W., Zhang, N., VanCampen, J., Peuß, R., Xiong, S., . . . Rohner, N. (2020).
1181 Genome-wide analysis of cis-regulatory changes in the metabolic adaptation of cavefish. *bioRxiv*,
1182 2020.2008.2027.270371. doi:10.1101/2020.08.27.270371
- 1183
- 1184 Krishnan, J., Wang, Y., Kenzior, O., Huzaifa, H., Olsen, L., Tsuchiya, D., . . . Rohner, N. (2022). Liver-
1185 derived cell lines from cavefish *Astyanax mexicanus* as an in vitro model for studying metabolic
1186 adaptation. *bioRxiv*, 2022.2001.2006.475101. doi:10.1101/2022.01.06.475101
- 1187
- 1188 Lee, Y., Stiers, K. M., Kain, B. N., & Beamer, L. J. (2014). Compromised catalysis and potential folding
1189 defects in in vitro studies of missense mutants associated with hereditary phosphoglucomutase 1
1190 deficiency. *J Biol Chem*, 289(46), 32010-32019. doi:10.1074/jbc.M114.597914
- 1191
- 1192 Li, Y., Liang, R., Sun, M., Li, Z., Sheng, H., Wang, J., . . . Shan, C. (2020). AMPK-dependent
1193 phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under
1194 glucose starvation. *Cancer Lett*, 478, 82-92. doi:10.1016/j.canlet.2020.03.007
- 1195
- 1196 Maier, G., Delezio, J., Westermark, P. O., Santos, G., Ritz, D., & Handschin, C. (2021). Transcriptomic,
1197 proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber
1198 activity of training in mouse muscle. *J Physiol*. doi:10.1113/jp281535

- 1199 Medley, J.K., Persons, J., Peuss, R., Olsen, L., Xiong, S., Rohner, N., Untargeted Metabolomics of
1200 the cavefish *Astyanax mexicanus* Reveals the Basis of Metabolic Strategies in Adaptation
1201 to Extreme Conditions. *Biorxiv*. 2020.10.27.358077
- 1202 Nuckolls, N. L., Mok, A. C., Lange, J. J., Yi, K., Kandola, T. S., Hunn, A. M., . . . Zanders, S. E. (2020).
1203 The wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death.
1204 *Elife*, 9. doi:10.7554/elife.55694
- 1205
- 1206 Paz, A., McDole, B., Kowalko, J. E., Duboue, E. R., & Keene, A. C. (2020). Evolution of the acoustic
1207 startle response of Mexican cavefish. *J Exp Zool B Mol Dev Evol*, 334(7-8), 474-485.
1208 doi:10.1002/jez.b.22988
- 1209
- 1210 Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., . . . Vizcaino,
1211 J. A. (2019). The PRIDE database and related tools and resources in 2019: improving support for
1212 quantification data. *Nucleic Acids Res*, 47(D1), D442-D450. doi:10.1093/nar/gky1106
- 1213
- 1214 Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). g:Profiler: a
1215 web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic
1216 Acids Res*, 47(W1), W191-W198. doi:10.1093/nar/gkz369
- 1217
- 1218 Riddle, M. R., Aspiras, A. C., Gaudenz, K., Peuss, R., Sung, J. Y., Martineau, B., . . . Rohner, N. (2018).
1219 Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. *Nature*,
1220 555(7698), 647-651. doi:10.1038/nature26136
- 1221
- 1222 Rivas, D. A., Rice, N. P., Ezzyat, Y., McDonald, D. J., Cooper, B. E., & Fielding, R. A. (2019).
1223 Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance
1224 to muscle contraction. *American Journal of Physiology-Cell Physiology*, 317(3), C502-C512.
1225 doi:10.1152/ajpcell.00455.2018
- 1226
- 1227 Roberts, M. D., Haun, C. T., Vann, C. G., Osburn, S. C., & Young, K. C. (2020). Sarcoplasmic
1228 Hypertrophy in Skeletal Muscle: A Scientific "Unicorn" or Resistance Training Adaptation? *Front
1229 Physiol*, 11, 816. doi:10.3389/fphys.2020.00816
- 1230
- 1231 Roberts, M. D., Young, K. C., Fox, C. D., Vann, C. G., Roberson, P. A., Osburn, S. C., . . . Kavazis, A.
1232 N. (2020). An optimized procedure for isolation of rodent and human skeletal muscle sarcoplasmic
1233 and myofibrillar proteins. *J Biol Methods*, 7(1), e127. doi:10.14440/jbm.2020.307
- 1234
- 1235 Rohner, N. (2018). Cavefish as an evolutionary mutant model system for human disease. *Dev Biol*, 441(2),
1236 355-357. doi:10.1016/j.ydbio.2018.04.013
- 1237
- 1238 Rohner, N., Jarosz, D. F., Kowalko, J. E., Yoshizawa, M., Jeffery, W. R., Borowsky, R. L., . . . Tabin, C.
1239 J. (2013). Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in
1240 cavefish. *Science*, 342(6164), 1372-1375. doi:10.1126/science.1240276
- 1241

- 1242 Rome, L. C., Syme, D. A., Hollingworth, S., Lindstedt, S. L., & Baylor, S. M. (1996). The whistle and the
1243 rattle: the design of sound producing muscles. *Proc Natl Acad Sci U S A*, 93(15), 8095-8100.
1244 doi:10.1073/pnas.93.15.8095
1245
- 1246 Rudrappa, S. S., Wilkinson, D. J., Greenhaff, P. L., Smith, K., Idris, I., & Atherton, P. J. (2016). Human
1247 Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin
1248 Resistance-A Qualitative Review. *Front Physiol*, 7, 361. doi:10.3389/fphys.2016.00361
1249
- 1250 Salin, K., Voituron, Y., Mourin, J., & Hervant, F. (2010). Cave colonization without fasting
1251 capacities: an example with the fish *Astyanax fasciatus mexicanus*. *Comparative
1252 biochemistry and physiology. Part A, Molecular & integrative physiology*, 156(4), 451–
1253 457. <https://doi.org/10.1016/j.cbpa.2010.03.030>
1254
- 1255 Sänger, A. M., Stoiber, W. (2001). Muscle fiber diversity and plasticity. *Fish Physiol.*, 18, 187-250.
1256
- 1257 Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. *Physiol Rev*, 91(4),
1258 1447-1531. doi:10.1152/physrev.00031.2010
1259
- 1260 Seebacher, F., Pollard, S. R., & James, R. S. (2012). How well do muscle biomechanics predict whole-
1261 animal locomotor performance? The role of Ca²⁺ handling. *J Exp Biol*, 215(Pt 11), 1847-1853.
1262 doi:10.1242/jeb.067918
1263
- 1264 Seow, C. Y. (2013). Hill's equation of muscle performance and its hidden insight on molecular
1265 mechanisms. *J Gen Physiol*, 142(6), 561-573. doi:10.1085/jgp.201311107
1266
- 1267 Stojkovic, T., Vissing, J., Petit, F., Piraud, M., Orngreen, M. C., Andersen, G., . . . Laforêt, P. (2009).
1268 Muscle glycogenosis due to phosphoglucomutase 1 deficiency. *N Engl J Med*, 361(4), 425-427.
1269 doi:10.1056/NEJMc0901158
1270
- 1271 Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: a generalist algorithm for
1272 cellular segmentation. *Nat Methods*, 18(1), 100-106. doi:10.1038/s41592-020-01018-x
1273
- 1274 Tegtmeyer, L. C., Rust, S., van Scherpenzeel, M., Ng, B. G., Losfeld, M. E., Timal, S., . . . Marquardt, T.
1275 (2014). Multiple phenotypes in phosphoglucomutase 1 deficiency. *N Engl J Med*, 370(6), 533-542.
1276 doi:10.1056/NEJMoa1206605
1277
- 1278 van der Weele, C. M., & Jeffery, W. R. (2022). Cavefish cope with environmental hypoxia by developing
1279 more erythrocytes and overexpression of hypoxia inducible genes. *eLife*, 11.
1280 doi:10.7554/eLife.69109
1281
- 1282 Wisdom, K. M., Delp, S. L., & Kuhl, E. (2015). Use it or lose it: multiscale skeletal muscle adaptation to
1283 mechanical stimuli. *Biomech Model Mechanobiol*, 14(2), 195-215. doi:10.1007/s10237-014-0607-
1284 3
1285

1286 Xiong, S., Wang, W., Kenzior, A., Olsen, L., Krishnan, J., Persons, J., . . . Rohner, N. (2021). Enhanced
1287 lipogenesis through Ppary helps cavefish adapt to food scarcity. *bioRxiv*, 2021.2004.2027.441667.
1288 doi:10.1101/2021.04.27.441667
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345