bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

An end-to-end deep learning method for rotamer-free protein
side-chain packing

Matt McPartlon Jinbo Xu

mmcpartlon@uchicago.edu jinboxu@gmail.com

March 11, 2022

Abstract

Protein side-chain packing (PSCP), the task of determining amino acid side-chain conformations, has important
applications to protein structure prediction, refinement, and design. Many methods have been proposed to resolve
this problem, but their accuracy is still unsatisfactory. To address this, we present AttnPacker, an end-to-end, SE(3)-
equivariant deep graph transformer architecture for the direct prediction of side-chain coordinates. Unlike existing
methods, AttnPacker directly incorporates backbone geometry to simultaneously compute all amino acid side-chain
atom coordinates without delegating to a rotamer library, or performing expensive conformational search or sampling
steps. Tested on the CASP13 and CASP14 native and non-native protein backbones, AttnPacker predicts side-
chain conformations with RMSD significantly lower than the best side-chain packing methods (SCWRL4, FASPR,
Rosetta Packer, and DLPacker), and achieves even greater improvements on surface residues. In addition to RMSD,
our method also achieves top performance in side-chain dihedral prediction across both data sets.

1 Introduction

Protein side-chain packing (PSCP) involves predicting the three dimensional coordinates of side-chain atoms given
backbone conformation (coordinates) and primary sequence. This problem has important applications to protein
structure prediction [11, 10, 6], design [23, 206, 8, 29], and protein-protein interactions [28, 14]. Traditional methods
for PSCP rely on minimizing some energy function over a set of rotamers from a fixed library [15, 34, 25,4, 1,9, 32, 5].
These methods tend to differ primarily in their choice of rotamer library, energy function, and energy minimization
procedure. Although many of these methods have shown success, the use of search heuristics coupled with a
discrete sampling procedure could ultimately limit their accuracy. Currently, the fastest methods (OSCAR-star[25],
FASPR|[15], SCWRLA4[9]) do not employ deep learning (DL), and are rotamer library-based.

Several machine learning (ML) methods have been proposed for the task of side-chain prediction [22, 21, 30, 31,

, 20, 32]. One of the earliest of these methods, SIDEPro [22], attempts to learn an additive energy function over
pairwise atomic distances for each side-chain rotamer. This is achieved by training a family of 156 feedforward
networks - one for each amino acid and contacting atom type. The rotamer with the lowest energy is then selected.
DLPacker[21] formulates packing as an image-to-image transformation problem and employs a deep U-net-style
neural network. The method iteratively predicts side-chain atom positions using a voxelized representation of
the residue’s local environment as input, and outputs densities for the respective side-chain’s atoms. The output
densities are then compared to a rotamer database and the closest matching rotamer is selected. The most recent
version of OPUS-Rota4[31] uses a pipeline of multiple deep networks to predict side-chain coordinates. The method
uses predicted side-chain dihedral angles to obtain an initial model, and then applies gradient descent on predicted
distance constraints to obtain a final structure. It is worth noting that OPUS-Rota4, to the best of our knowledge,
is the only ML-based PSCP method that directly utilizes MSA (multiple sequence alignment) as part of its input.

Here we present AttnPacker, a new deep architecture for PSCP. Our method is inspired by recent breakthroughs in
modelling three-dimensional data, and architectures for protein structure prediction - most notably AlphaFold2[18],

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Tensor Field Networks (TFN) [27], and SE(3)-Transformer[12]. By modifying and combining components of these
architectures, we are able to significantly outperform traditional PSCP methods as well as machine learning methods
in terms of speed, memory efficiency, and overall accuracy using only features derived directly from primary sequence
and backbone coordinates as input.

Specifically, we introduce deep graph transformer architectures for updating both residue and pairwise features based
on the input protein’s backbone conformation. Inspired by AlphaFold2, we propose locality-aware triangle updates
to refine our pairwise features using a graph-based framework for computing triangle attention and multiplication
updates. By doing this, we are able to significantly reduce the memory required for performing triangle updates
which enables us to build higher capacity models. In addition, we explore several SE(3)-equivariant attention
mechanisms and propose an SE(3)-equivariant transformer architecture for learning from 3D points.

Our method, AttnPacker, significantly outperforms traditional PSCP methods on CASP13 and CASP14 native
backbones with average reconstructed RMSD over 19% and 25% lower than the next best method on each test set.
AttnPacker also surpasses deep learning DLPacker, with 13% lower average RMSD on the each test set. In addition,
our method achieves top RMSD scores for CASP14 non-native backbone targets predicted by AlphaFold2. On top
of our method’s favorable performance in RMSD minimization, it also achieves the lowest x;_4 mean absolute error
(MAE) across all methods on the CASP13 and CASP14 targets.

2 Methods

2.1 Network Architecture

Our method draws on several recent breakthroughs in deep learning and protein structure prediction, namely the
two-stage architecture introduced by AlphaFold2, and a TFN-based equivariant transformer inspired by Fuchs et
al[12]. Moreover, our model directly predicts the 3D coordinates of all side-chain atoms for a given protein using
only backbone coordinates and primary sequence as input. A detailed overview of input features and the input
embedding procedure can be found in Supplementary Material, Table S3, and Figure S1.

The first component, outlined in Figure 1, is a deep graph transformer network which utilizes the geometry of the
input backbone to revise node and pair features. This component is similar to the AlphaFold2’s ’Evoformer’ module
for processing MSA and pair features, but we replace axial self-attention and global triangle updates with graph
based self-attention and triangle updates for our residue and pair features. In AlphaFold2, triangle updates are
performed by considering all triples of residues in the input protein, updating the corresponding pair representations
in a geometrically motivated manner. These procedures require O (L3d) time to compute, and (L3) space to store
attention logits where L is the number of residues and d is the hidden dimension of pair features. In our setting, we
are able to avoid this restrictive time and space complexity by incorporating locality information derived from the
protein’s backbone atom coordinates. To do this, we introduce locality aware triangle updates (Section 2.2) and
compare the performance of this approach against the update procedures used in AlphaFold2.

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

f Multi-Head I‘ Feed- l \ Residue

... > Features

Residue
Features Attention | ‘Forward N
Backbone (ErEpn

Node J
adj.
Locailty

Coords. Computation Edge —"

(JResidue

[D)Pair
[DShared

Outer
Product
Mean

S

[[JProcedure/Data

Pair Bias

meamable

i

== Not Learnable

adj.

Pair Features

1—.9
Triangle
Combine —» U“S'é'iie i e I P j Pair Features
Locality Aware Graph
Transformer Block (x12)

Figure 1: Architecture of Locality Aware Graph Transformer Block. Standard multi-headed graph attention
is used to update node features, while edges between adjacent nodes are updated with triangle multiplication
and attention. For each triangle update, edge adjacency information is used to select only those triangles having
maximum side-length less than a fixed threshold.

The second component of our architecture is an SE(3)-equivariant neural network which takes the output of the
first component, along with the protein’s backbone C\-coordinates, to simultaneously predict each residue’s side-
chain coordinates. Our equivariant architecture is derived from the SE(3)-Transformer introduced by Fuchs et al.
Similar to the SE(3)-Transformer, our attention blocks use TFNs to produce keys and values for scalar and point
features. But our implementation differs in a few key areas. First, our implementation uses shared attention with
dot-product based similarity (see Table 5). That is, we combine the attention logits of each feature type to produce
shared attention weights. Furthermore, in each attention block, we augment the input to the TFN radial kernel
with pairwise distance information, and make further use of the pair features to bias attention weights and update
scalar features (see Algorithm S2, Algorithm S3). The architecture is outlined in Figure 2, full implementation
details can be found in Section S6, and ablation studies guiding these decisions are given in, Table 6, and Table 7.

e, Oinput
. P— [Dinvariant
Neighbor Pair Bias c .
Pair Feats| |) Linear duivaran
™| eamable
—_— == Not Learnable
Combine N
Node |+ queries
Adjs. (7| Augment SE(3)-Linear Scalar
Par Multi-head mutihead | |5 | oo SE()- Feats.
- - — a £
— SE(3) & SE(3) g Linear Feed.

keys Similarity Attention

—»
Basis TFN Feats.

~

values

0\
Scalar TFN
Feats.
J
TFN-Transformer
Feats. (8 Blocks)

~—

Figure 2: Architecture of our TFN-based transformer block. Keys and values are computed using TFNs. The input
to each TFN radial kernel are pair features, along with distance information between points for the corresponding
pair. Pair features are also linearly projected to bias the similarity logits for adjacent pairs of residues.

2.2 Locality Aware Triangle Updates

We experimented with multiple approaches for improving the time and space requirements of triangle updates. We
ultimately settled on a hypergraph-based approach where a separate spatial graph is constructed for edge features.

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In this graph, there is a vertex v;; for residue pair ¢, j if the distance d (¢, j) between the corresponding C, atoms is
within a threshold §. We add hyperedges between v;; and vy, v, only if max{d (i,k),d (j, k)} < 6. Interpreting
this graph in the context of triangles, the vertices coincide with triangle edges of side length at most 6, and edges
correspond to triangles. The process is illustrated in Figure 3.

@ (7N @ @) e 0
7N =
: f ' O

>0
For each k, compute keep edge of maximum keep triangle ijk resulting adjacencies
d(i, k) and d(j, k) distance if distance < 6 for (3, 5)

Figure 3: Overview of pair graph generation for locality aware attention. Each pair of residues within a fixed
distance is included as a node in this graph. (A) We begin with the spatial graph for residues and focus on a specific
pair (4,7). (B) For each node z,we then compute the maximum distance between (i,) and (j,z) and disregard
residues falling outside our distance threshold 6. (C) All triangles that include pair (i,) in the remaining graph
will have maximum side-length at most 6. (D) The final graph has nodes for each edge in (C'), and edges for each
triangle.

In order to efficiently compute triangle updates, we select the 2N, nearest neighbors of each vertex v;; using
max {d (i, k),d (j,k)} as our distance function. This results in a 3-uniform, N,-regular hypergraph containing as
many nodes as there are underlying residues with C, distance less than the threshold §. We denote the latter
quantity by N,. Triangle multiplication and attention updates are straight forward to apply since the neighbors
of each node v;; span strictly over residues k for which the corresponding triangle is well-defined. The update
operations require time and space proportional to O (N, - N.) in total. If the distance threshold 6 is chosen so that
the number of resulting pairs is linear in the number of atoms, then choosing constant N, results in N, - N, = o (n2)
space complexity, and time complexity O (N, - N, - d). Computing the hypergraph still requires O (Lg) time, but
this can be performed on a CPU as a pre-processing step.

3 Results

We compare side-chain reconstruction accuracy for three of our models against several popular methods: DLPacker,
RosettaPacker, SCWRI4, and FASPR. To understand the impact of different architectural components, we list
results of our TFN-Transformer without triangle updates (TFN), with standard triangle updates (+7ri), and
with locality aware triangle updates (+Tri+Local), respectively. We use the same hyperparameters for the TFN-
Transformer component, and use a distance cutoff of 15A with 30 nearest neighbors for local triangle updates. All
other hyperparameters are held constant unless otherwise specified. A full summary of model hyperparameters,
training data, and training procedure can be found in Table S1, and Section S3.

To evaluate the performance of each method, we consider residue-level RMSD and dihedral angle deviations between
the predicted and native side-chains. RMSD between predicted and native side-chain atoms is computed separately
for each residue, and averaged over all residues in the corresponding data set(s). Dihedral angle mean absolute
error (MAE) is computed analogously. Dihedral accuracy is defined as the fraction of dihedral angles with absolute
difference less than 20° from the corresponding native angle. We further divide our results based on residue
centrality. Core residues are defined as those amino acids with at least 20 Cs atoms within a 10A radius of the
target residue’s Cg atom. surface residues are defined as those amino acids with as most 15 Cjz atoms within the
same region of interest. All Comparisons are made on native structures from CASP13, and CASP14 (see Table S11
for a list of targets in each test set).

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RMSD (A)
CASP13 CASP14

Method All Core Surface All Core Surface
SCWRL 0.771 0.471 0.983 0.910 0.556 1.125
FASPR 0.751 0.481 0.960 0.899 0.564 1.112
RosettaPacker 0.713 0.395 0.948 0.864 0.473 1.087
DLPacker 0.633 0.408 0.815 0.797 0.499 0.994
TFEFN-Transformer 0.608 0.440 0.746 0.758 0.535 0.905

+Tri 0.550 0.347 0.707 0.697 0.432 0.874

~+Tri+Local 0.557 0.354 0.715 0.701 0.438 0.875
Residue Count 18139 6443 7520 13399 4021 6107

Table 1: Average RMSD (A) on the CASP13 and CASP14 targets. Results are divided by residue centrality (All,
Core, and Surface).

We begin by comparing the average RMSD over CASP13 and CASP14 test sets (see Table S6 for results on CASP13-
FM and CASP14-FM test sets). Table 1 shows that variants of our methods consistently achieve the lowest RMSD
in each centrality category across all data sets. The inclusion of triangle updates yields a significant improvement
over the TFN-Transformer alone. Compared to the other deep learning method DLPacker, our method obtains
much lower RMSD in all categories, and observes the largest improvement on surface residues. Interestingly, the
impact of triangle updates is less substantial on protein surface residues suggesting that triangle updates play a
larger role in determining conformations protein core residues. We explore this further in Figure 5.

In terms of residue-level RMSD, the most significant improvements are achieved for Arg and His, each of which have
large positively charged side-chains, as well as bulky hydrophobic amino acids Phe, Trp, and Tyr. A full overview
of residue-level RMSD on the CASP13 and CASP14 data sets can be found in Supplementary Tables S8, and S9.

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Average RMSD

Arg His Phe Trp

1.07 0.97 155 Tyr

241

1.18

221} {1 097 {1 087} 1 14+ {1 1.03f 1

201} I— {1 087 I. {1 077} I. 4 125} III 4 0.88| I- R
[. |

181} 4 077} 4 0.67 | 1 L1} 4 073} R

1.61 0.67 0.57 0.95 0.58

Average RMSD (Surface)

2.77 Arg 1.62 His 1.64 Phe 2.86 Trp 173 yr
257} 1 147} 1 14al 1 246} 1 153}]
PR74L | | [Y I _II 1 124} .I 1 206} I om-m| 133} .I]
217} 1 117f 1 104} 1 166} 1 113f]
1.97 1.02 0.84 1.26 0.93

|- SCWRL Il FASPR Il RosettaPacker [DLPacker I TFN 3 TFN+Tri | TFN+Tri+LocaI|

Figure 4: Average RMSD (A) (y-axis) of each method (x-axis) on Arg, His, Phe, Trp, and Tyr. The RMSD values
are averaged over the entire CASP14 data set for each residue type. Average RMSDs for instances of each residue
type appearing on the protein’s surface are shown in the bottom plot.

As shown in Figure 4, adding triangle updates before the TFN-Transformer improves the overall average RMSD of
Arg, His, Phe, Tyr, and Trp by 11%, 16%, 20%, 28%, and 26% respectively. For surface residues, the performance
difference between the TFN-Transformer and TFN+Tri is significantly smaller. On the other hand, the performance
gap between our method and others increases for surface residues. We outperform the next best method by 16%,
17%, 25%, 20%, and 28% respectively.

We further investigated the role of centrality in side-chain reconstruction accuracy by measuring average RMSD
and average x1_4 MAE with respect to the number of C'3 atoms in a residue’s microenvironment. Not surprisingly,
RMSD and chi angle prediction error decrease rapidly as centrality increases. In Figure 5, we verify that the
marginal improvement of triangle updates increases with centrality. For both RMSD and MAE, the performance
gap between TFN and TFN+Tri, increases with centrality, suggesting that triangle updates are important for
accurately determining side-chain conformations in protein cores. The opposite is true when comparing TFN+Tri
with DLPacker, where the gap decreases as centrality increases.This is not surprising, as DLPacker iteratively
constructs each residue’s side-chain using only atoms the residue’s immediate microenvironment as input. This
choice of input features implies that features for protein surface residues are more sparse than those for core
residues.

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Average RMSD vs. Centrality Average Chi MAE vs. Centrality

I~
[l

11

= DLPacker
= TFN-Transformer ||
== TFN+Tri

B
=)

a Fi
0 0 350
= o
o [
o Z 30
w
-
25+
2 =
[}
20+
Dl |
15 L L L L L
5 10 15 20 25 30
Centrality Centrality

Figure 5: Plots of average RMSD and y;_4-MAE® against centrality for methods DLPacker, TFN-Transformer
(TFN), and TEN-Transformer with Triangle Updates (TFN+Tri). Values are computed using all targets in both
CASP13 and CASP14 data sets. Values were disregarded if the number of residues with the corresponding centrality
was less than 30.

In addition to achieving top performance in reconstructed side-chain RMSD, our method is also significantly faster
than all other methods except for FASPR. Table 2 shows the cumulative and relative time spent by each method
for reconstructing side-chains of all targets in the CASP13 dataset.

Method Ours DLPack Ros. Pack FASPR SCWRIL4
Cumulative Time (s) 68.3 8499.6 10368.2 32.5 1001.9
Relative Time 1.0 124.4 151.7 0.5 14.7

Table 2: Time comparison of PSCP methods. Relative times for reconstructing the side-chain atoms of all 83
targets in the CASP13 dataset. Run on a single RTXA6000 GPU, our method with local triangle updates is able
to reconstruct all side-chain atoms in 68 seconds.

We now turn our attention to dihedral angle prediction accuracy. As pointed out by Zhang et al.[15], the prediction
accuracy of side chain dihedrals is much sharper when all chi dihedrals are considered, and a 20° cutoff is used when
comparing to the native structure. We opt to use this criteria for all reported accuracy. In addition, we assess the
quality of each method in terms of x;_4 MAE with the native structure.

We analyzed side-chain dihedral accuracy on the CASP13 and CASP14 data sets and show the results in Table 3. In
terms of x1_4 MAE, the TFN transformer with triangle updates achieves top-1 or top-2 performance in each data set.
The performance carries over into prediction accuracy, where the method also achieves top 1 or top 2 performance
on each data set regardless of residue centrality. Local triangle updates achieve competitive performance, with top-2
MAE scores for all but one category.

In line with the results reported by Misiura et al.[21], when compared to traditional methods, deep learning methods
recover Y dihedral angles considerably closer to those of the native structure. For our methods, this improvement
carries over to Yo angle prediction, where triangle updates obtain an 8% and 10% improvement over the next best
method DLPacker on the CASP13 and CASP14 targets.

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

MAE®° Accuracy
X1 X2 X3 X4 All Core Surface
CASP13
SCWRL 25.89 26.18 46.55 53.79 67.6% 59.3% 81.3%
FASPR 25.22 25.36 47.25 52.93 68.1% 59.9% 80.3%
RosettaPacker 24.15 24.49 44.84 52.19 69.4% 60.6% 83.7%
DLPacker 20.63 23.39 46.48 66.10 69.0% 61.1% 81.3%
TFN-Transformer 19.87 23.03 46.71 54.42 68.6% 62.0% 78.7%
+Tri 18.00 21.15 43.58 52.03 71.2% 63.3% 82.9%
+Tri+Local 18.69 20.95 45.07 51.63 70.4% 62.5% 82.3%
CASP14
SCWRL 30.92 29.63 49.07 51.24 61.3% 74.9% 54.4%
FASPR 30.95 28.88 47.91 52.54 62.0% 74.0% 55.8%
RosettaPacker 29.33 28.94 47.19 52.09 62.7% 77.7% 55.5%
DLPacker 26.65 27.49 51.58 68.13 61.8% 74.9% 54.2%
TFN-Transformer 25.95 27.00 48.53 51.96 61.9% 72.6% 56.0%
+Tri 24.06 24.81 45.42 50.79 65.1% 77.4% 57.8%
+Tri+Local 24.44 25.42 46.29 50.84 63.4% 76.4% 55.9%

Table 3: Side-chain dihedral prediction results on the CASP13 and CASP14 targets. Accuracy results shown for
all, core, and surface residues.

To better understand the instances where our method loses its advantage to traditional PSCP algorithms, we
consider the performance on four amino acids with high side-chain dihedral degrees of freedom. Following DLPacker,
we consider dihedral prediction for charged and polar amino acids Lys, Arg, Glu, and Gln in Table 4. For these
amino acids, variants of our methods are still competitive with traditional PSCP algorithms, comparing favorably
in x1—2 MAE but losing their edge at higher orders. Comparing accuracy scores tells a different story. Although
we are able to obtain comparable or lower MAE values for each degree of freedom, we only obtain top-1 or top-2
accuracy for Gln and Glu. On the other hand, physics-based RosettaPacker obtains top-1 or top-2 performance for
each amino acid along with top-1 x4 scores. As the authors of DLPacker also point out, new training methods or
loss functions which improve on higher order dihedral accuracy is an important area for future research.

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

MAE® MAE®°

X1 X2 X3 X4 acc. X1 X2 X3 acc.

ARG GLN
SCWRL 314 253 60.1 55.7 0.550 33.8 452 353 0.559
FASPR 341 259 632 575 0.537 334 425 36.1 0.558
RosettaPacker 31.1 243 60.6 51.4 0.564 293 366 355 0.591
DLPacker 256 262 579 61.1 0.516 31.2 393 347 0.576
TFEFN-Transformer 25.0 249 620 583 0475 277 335 358 0.558
+Tri 21.8 22.1 56.9 528 0.522 25.2 293 340 0.587
+Tri+Local 225 243 588 525 0491 277 28.4 329 0.580

LYS GLU
SCWRL 286 319 403 489 0.617 38.1 366 36.1 0.540
FASPR 28.0 30.1 428 495 0.629 358 383 36.6 0.542
RosettaPacker 270 317 40.2 48.5 0.623 36.1 373 357 0.547
DLPacker 22.7 304 478 710 0.522 30.5 375 346 0.532
TFEFN-Transformer 21.7 321 423 505 0.577 285 3541 323 0.546
+Tri 18.6 303 404 505 0.594 25.9 329 31.0 0.583
+Tri+Local 19.8 30.1 403 50.0 0.595 26.7 341 356 0.547

Table 4: Dihedral MAE on the CASP13 targets for charged and polar Amino Acids with high degrees of freedom.

3.1 Ablation and Architecture Assessment

We consider several variants of SE(k)-equivariant self attention. Each variant can be categorized by the operation
used to compute the similarity between keys and queries of different features types (i.e. 1D-scalar and 3D-point
features) and the operation used to compute the final attention weights. We focus on the well-known dot product
similarity, used in the SE(3)-Transformer and negative distance similarity which was first presented in the Invariant
Point Attention module of AlphaFold2. Aside from calculating similarity between points, these architectures also
differ in their calculation of attention scores - AlphaFold2 uses the same shared attention weights for scalar and
point features, whereas the SE(3)-Transformer computes attention weights for each type. This is outlined more
formally in Table 5. Following the conventions of ([27, 12]), we use a superscript £ to denote type-¢ features of
dimension 2¢ + 1.

Similarity Attention
T
Dot Ufj = (Qf) kfj + bfj Per-Type fgut,i = ZjeN(i) w‘}afjvij
Product

o T ké /=0 ;o
Distance o}, = {(ql) i B Shared ff,, = cnvi (Z cwt ae) vl
ij ¢ ¢ out,i eN (i) ¢ ij i

1T (af) — Tij (k)| ¢>0 ’

Table 5: Description of similarity and attention types. Here, we use a superscript ¢ to denote type-¢ features of
dimension 2¢ + 1 (i.e. £ = 0 for scalar features and ¢ = 1 for point features). For distance similarity, we use Ty,
to denote some transformation mapping points into so-called “local frames” of the respective node used to ensure
equivariance of the operation.

We trained four TFN-Transformer models differing only by attention and similarity type. FEach model used a

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

hidden dimension of 24 for point features and 180 for scalar features. Ten attention heads were used in each of
eight attention blocks. A head dimension of 20 was used for scalar features and 4 was used for point features. A
maximum of 14 nearest neighbors were considered and a radius of 16A was used as a cutoff. The average RMSD
and dihedral accuracy results of the four attention variants are shown in Table 6.

CASP13 CASP14
RMSD x-Acc. RMSD x-Acc.
Similarity Attention All Core Ste. All All Core Core All

) per-type 0.702 0.539 0.834 63.8% 0.878 0.657 1.015 55.9%
Distance

shared 0.675 0.482 0.821 65.6% 0.804 0.567 0.955 59.8%

per-type 0.642 0.474 0.774 66.6% 0.782 0.579 0.915 60.1%

Dot-prod - -

shared 0.629 0.471 0.759 67.5% 0.775 0.559 0.923 61.2%

Table 6: Comparison of attention and similarity operations on performance. Performance is measured using
average residue RMSD (A) and x;_4 prediction accuracy.

The results in Table 6 show that shared attention weights produce better results for both similarity types. Overall,
dot-product-based similarity outperforms distance based similarity, even when per-type attention is used. As pointed
out by Fuchs et al[12], this may be due to the fact that each basis kernel in a TEFN is completely constrained in the
angular direction. By using dot-product based similarity, the angular profile of the basis kernels are modulated by
the attention weights.

We also experimented with different architectural variants. First, we used a linear projection, rather than a TFN to
compute keys at each attention head. Next, we augmented the input to the TFN radial kernel by concatenating the
pairwise distances between hidden coordinates. Third, we tried removing the attention calculation between points
and instead used weights derived from scalar features for pointwise attention. With each variant, shared attention
and dot product attention was used. As shown in Table 7, using a linear projection for attention keys has the largest
impact on RMSD score - surprisingly more than removing point-based attention all together. This suggests that
TFN neighbor convolutions are an important component of the transformer architecture. The results also show
that RMSD scores are improved when pairwise distances between hidden coordinate features are concatenated to
the input of the TFN radial kernel.

(a) RMSD (A) (b) RMSD (A)
TFN-Transformer All Core Sfe. TFN-+Local All Core Sfe.
Baseline 0.629 0471 0.759 =28 0.597 0.432 0.733

+ pairwise dists 0.608 0.440 0.746 =12 0.569 0.378 0.721
-+ No coord. attn. 0.686 0.515 0.818 0 =16 0.557 0.354 0.715
+ Linear keys 0.709 0.538 0.839 0 =00 0.550 0.347 0.707

Table 7: The tables show average side-chain RMSD on the CASP13 targets. Table (a) shows the effect of TFN
architectural features. Baseline denotes our TFN-Transformer with shared dot-product attention and pair bias.
The other three rows show results after changing some component. Table (b) shows the effect of neighbor distance
threshold on RMSD with 8 = 8, 12, 16 and co. Each model in (b) uses our locality aware graph transformer
with distance cutoff # and TFN-Transformer with shared dot-product similarity, pair bias, and pairwise distance
features. All other hyperparameters were held constant.

We also considered the effect of the neighbor distance threshold on performance. This threshold is used as the
maximum valid edge length for triangle updates, and to determine residue adjacency in the locality aware graph
transformer. It is also used to define the neighborhood of scalar and point features in the TFN-Transformer. We
tried three distance thresholds, 8A, 12A, and 16A The results are shown in Table 7.

10

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Average RMSD clearly decreases with increasing neighbor distance. The marginal improvement diminishes with
increasing radius, and the bulk of the improvement comes from residues in the protein core.

4 Concluding Discussion

In this work, we developed AttnPacker, an SE(3)-equivariant model for direct prediction of side-chain coordinates
based on backbone geometry. AttnPacker uses spatial information derived from protein backbone coordinates to
efficiently model residue and pairwise neighborhoods. This, coupled with an SE(3)-equivariant architecture, allows
for the simultaneous prediction of all amino acid side-chain coordinates without the use of rotamer libraries or
conformational sampling.

Components of our model were inspired by AlphaFold2 and the SE(3)-Transformer. By generalizing and carefully
evaluating ideas from these architectures we were able to achieve better efficiency or better than the original
implementations. Specifically, we generalized the Evoformer module of AlphaFold2 to spatial graphs specific to
protein backbones. We also modified the attention heads of the SE(3)-Transformer to incorporate pair-bias, distance
information between hidden points, and shared dot-product similarity.

Our TFN-Transformer outperforms all other methods in terms of average RMSD on the CASP13 and CASP14
targets, even without triangle updates for pair-features. On the other hand, the baseline SE(3)-Transformer with
per-type attention falls short of DLPacker for the CASP13 targets. Part of this improvement is achieved by
augmenting edge features with pairwise distance information between hidden points. We hypothesize that this
information is especially important for deeper TFN-based architectures. TFNs require a basis of spherical harmonics
which is typically computed once on the relative positions of input points and then shared across all proceeding
layers. As aresult of using spherical basis functions, information about relative distances between hidden coordinates
is lost. To account for this, distances between pairs of initial point features are typically concatenated to the input
of the TFN radial kernel. Traditionally, this input is the same across all layers - the pairwise distance d;; between
initial points ¢ and j, and (optionally) a fixed vector of pair feature e;;. In theory, distance information between
hidden point features could be captured by TFNs convolution operation, but we believed that incorporating this
information at the input level could be beneficial. Since separate radial kernels are learned for each TFN, we chose
to augment our input with distance information between hidden coordinate features at each layer, resulting in a
modest improvement over the baseline implementation.

The difference in performance between our model trained using full triangle updates and our model trained with
local triangle updates is very small, especially considering the fact that that all other hyperparameters were the
same for each model. Restricting residue and pairwise attention updates to at most 30 nearest neighbors did not
considerably degrade performance. On the other hand, this drastically reduces the memory required to train the
model. In the future, it would be interesting to see if a larger or deeper model could improve performance further.

On top of outperforming other popular methods, our model presents several other advantages. First, it is extremely
fast. We are able to predict all side-chain conformations for a 500-residue protein in less than a second using a
single nvidia RTXA6000 GPU. On the other hand, DLPacker must be run iteratively for each amino acid side-chain
causing a large dependence on protein length. OPUS-Rota4 also requires several pre- and post-processing steps in
the form of derived constraints and gradient descent. Since our method directly predicts side-chain coordinates,
the output is fully differentiable which benefits downstream prediction tasks such as refinement or protein-protein
interaction. This also circumvents the use of engineered energy functions and rotamer libraries and places the
emphasis on architectural innovations and better loss functions.

Our model is also very simple to use - it requires only a pdb file to run. In contrast, OPUS-Rotad requires voxel
representations of atomic environments derived from DLPacker, logits from trRosettalO0, secondary structure, and
constraint files derived from the output of OPUS-CM. Obtaining the requisite input data made it too difficult for
us to compare results with this method.

In addition to our method’s speed and simplicity, it further succeeds in efficiently modeling residue-level local
environments by using locality-based graph attention during feature and structure generation stages. On the
other hand, DLPacker and OPUS-Rota4 use 3D-voxelized representations of each amino-acid’s microenvironment -
requiring space O (v3cd) , where v is the voxelized width (40 in the case of DLPacker and OPUS), ¢ is the number
of channels, and d is the channel dimension. Although this choice of representation has helped facilitate good

11

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

performance for each method, the memory requirements prevent simultaneous modeling of all amino acid side-
chains which could ultimately hinder reconstruction accuracy. We hypothesize that simultaneously modeling all
side-chains helps contribute to our method’s RMSD improvements for surface residues.

Although AttnPacker yields significant improvements in residue-level RMSD, we remark that traditional PSCP
methods SCWRL, FASPR, and RosettaPacker still perform comparably in terms of x3 and x4 angle prediction.
We suspect that incorporating dihedral information into our model - either directly or through an appropriate loss
function - could help improve performance.

5

Conflict of interest

The authors declare that they have no conflict of interest.

6

Acknowledgements

M.M. would like to thank Phil Wang for some support code and discussions on SE(3)-equivariant architectures.

7

Author contributions

J.X. conceived and supervised the project and built the in-house training data. M.M. developed, implemented and
tested the algorithm. M.M. and J.X. analyzed the results and wrote the manuscript.

References

[1]

2]
3]

4]

[5]

16]

7]

18]

19]

Rebecca F. Alford, Andrew Leaver-Fay, Jeliazko R. Jeliazkov, Matthew J. oMeara, Frank Dimaio, Hahnbeom
Park, Maxim V. Shapovalov, Paul D. Renfrew, Vikram Khipple Mulligan, Kalli Kappel, Jason W. Labonte,
Michael S. Pacella, Richard Bonneau, Philip Bradley, Roland L. Dunbrack, Rhiju Das, David Baker, Brian
Kuhlman, Tanja Kortemme, and Jeffrey J. Gray. The rosetta all-atom energy function for macromolecular
modeling and design. Journal of chemical theory and computation, 13 6:3031-3048, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W. Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth, 2020.

Aleksandra Badaczewska-Dawid, Andrzej Kolinski, and Sebastian Kmiecik. Computational reconstruction of
atomistic protein structures from coarse-grained models. Computational and structural biotechnology journal,
18:162-176, 2020.

Yang Cao, Lin Song, Zhichao Miao, Yun Hu, Liqing Tian, and Taijiao Jiang. Improved side-chain modeling
by coupling clash-detection guided iterative search with rotamer relaxation. Bioinformatics, 27(6):785-790, 01
2010.

G. Chinea, G. Padron, R W. Hooft, C Sander, and G. Vriend. The use of position-specific rotamers in model
building by homology. Proteins, 23(3):415-421, 1995.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J. Guibas.
Vector neurons: A general framework for so(3)-equivariant networks. ArXiv, abs/2104.12229, 2021.

John R. Desjarlais and Tracy M. Handel. Side-chain and backbone flexibility in protein core design. Journal
of molecular biology, 290 1:305-18, 1999.

R Dunbrack, M Shapovalov, and G Krivov. Improved prediction of protein side-chain conformations with
scwrld. Proteins, 77(4):778-795, 12 2009.

12

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

20]

21]

22]

23]

24]

[25]

[26]

available under aCC-BY 4.0 International license.

S. Farokhirad, R.P. Bradley, A. Sarkar, A. Shih, S. Telesco, Y. Liu, R. Venkatramani, D.M. Eckmann, P.S.
Ayyaswamy, and R. Radhakrishnan. 3.13 computational methods related to molecular structure and reaction
chemistry of biomaterials. In Paul Ducheyne, editor, Comprehensive Biomaterials II, pages 245-267. Elsevier,
Oxford, 2017.

G Faure, A Bornot, and AG de Brevern. Protein contacts, inter-residue interactions and side-chain modelling.
Erratum in: Biochimie, 90 4:626-39, 2007.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-translation
equivariant attention networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 1970-1981. Curran Associates, Inc.,
2020.

Naozumi Hiranuma, Hahnbeom Park, Minkyung Baek, Ivan Anishchanka, Justas Dauparas, and David Baker.
Improved protein structure refinement guided by deep learning based accuracy estimation. bioRxiv, 2020.

Herve Hogues, Francis Gaudreault, Christopher R. Corbeil, Christophe Deprez, Traian Sulea, and Enrico O.
Purisima. Propose: Direct exhaustive protein-protein docking with side chain flexibility. Journal of Chemical
Theory and Computation, 14(9):4938-4947, 2018. PMID: 30107730.

Xiaogiang Huang, Robin Pearce, and Yang Zhang. Faspr: an open-source tool for fast and accurate protein
side-chain packing. Bioinformatics, 36(12):3758-3765, 04 2020.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael J. L. Townshend, and Ron Dror. Learning from
protein structure with geometric vector perceptrons, 2021.

X Jing and J Xu. Fast and effective protein model refinement using deep graph neural networks. Nat. Comput
Sci, 1:462-469, 2021.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W.
Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583-589, Aug 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Ke Liu, Xiangyan Sun, Jun Ma, Zhenyu Zhou, Qilin Dong, Shengwen Peng, Junqiu Wu, Suocheng Tan,
GAEnter Blobel, and Jie Fan. Prediction of amino acid side chain conformation using a deep neural network,
2017.

Mikita Misiura, Raghav Shroff, Ross Thyer, and Anatoly B. Kolomeisky. Dlpacker: Deep learning for prediction
of amino acid side chain conformations in proteins. bioRziv, 2021.

K Nagata, A Randall, and P Baldi. Sidepro: a novel machine learning approach for the fast and accurate
prediction of side-chain conformations. Proteins, 80(1):142-153, 2012.

Noah Ollikainen, René M. de Jong, and Tanja Kortemme. Coupling protein side-chain and backbone flexibility
improves the re-design of protein-ligand specificity. PLoS Computational Biology, 11, 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks.
In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume
28, ICML’13, pages I11-1310-111-1318. JMLR.org, 2013.

Liang S, Zheng D, Zhang C, and Standley DM. Fast and accurate prediction of protein side-chain conformations.
Bioinformatics, 20, 2011.

David Simoncini, Kam Y. J. Zhang, T. Schiex, and Sophie Barbe. A structural homology approach for
computational protein design with flexible backbone. Bioinformatics, 2019.

13

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

27]

(28]

29]

(30]

31]

32]

33]

[34]

[35]

available under aCC-BY 4.0 International license.

Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point clouds. CoRR,
abs/1802.08219, 2018.

Andrew M. Watkins, Richard Bonneau, and Paramjit S. Arora. Side-chain conformational preferences govern
protein-protein interactions. Journal of the American Chemical Society, 138 33:10386-9, 2016.

Andrew M. Watkins, Timothy W. Craven, Paul D. Renfrew, Paramjit S. Arora, and Richard Bonneau. Rotamer
libraries for the high-resolution design of S-amino acid foldamers. bioRziv, 2016.

Gang Xu, Qinghua Wang, and Jianpeng Ma. Opus-rota3: Improving protein side-chain modeling by deep
neural networks and ensemble methods. Journal of Chemical Information and Modeling, 60 12:6691-6697,
2020.

Gang Xu, Qinghua Wang, and Jianpeng Ma. Opus-rotad: A gradient-based protein side-chain modeling
framework assisted by deep learning-based predictors. bioRxiv, 2021.

Jinbo Xu and Bonnie Berger. Fast and accurate algorithms for protein side-chain packing. J. ACM, 53(4):533—
557, jul 2006.

Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and David Baker. Im-
proved protein structure prediction using predicted interresidue orientations. Proceedings of the National
Academy of Sciences, 117(3):1496-1503, 2020.

Chen Yanover, Ora Schueler-Furman, and Yair Weiss. Minimizing and learning energy functions for side-chain
prediction. In RECOMB, 2007.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform bad for graph representation? CoRR, abs/2106.05234, 2021.

14

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Material

S1 Data Collection

SCWRLA4(ver 4.02), and FASPR were run with default configurations. Rosetta’s fixbb application was run with non-
flexible backbone coordinates and the maximum number of rotamers by passing -EX1, -EX2, -EX3 and -EX/ flags.
We also included flags -packing:repack only to disable design, -no_his_his_pairE, and -multi cool annealer 10
to set the number of annealing iterations - these settings are recommended in the rosetta tutorial. We ran Rosetta
Packer 5 times for each target protein using Rosetta’s ref2015 energy function and selected the conformation
with lowest energy. DLPacker was run using the pre-trained release from the author’s github, downloaded Sept.
17th, 2021. Side-chains were reconstructed in non-increasing order of the number of the number of atoms in the
corresponding amino acid’s microenvironment.

We ran each method on each of the targets listed in Table S11. All of the methods were run using the native
backbone coordinates as input. For our models, we considered only the first 800 amino acids and corresponding
coordinates in each target’s PDB file. The output of FASPR, SCWRL, Rosetta Packer, and DLPacker was cropped
to the same length where applicable.

S2 Overview of Hyperparameters

We tried to maintain consistent hyperparameters for all models. We mainly tuned parameters for model depth,
number of nearest neighbors, number of attention heads, head dimension, and the distance at which residues or
pair features should be considered neighbors. We settled upon the hyperparameter values listed in Table S1. In
choosing the parameters, we aimed to balance memory usage with model capacity in each submodule. The final
settings required “32GB of GPU memory during training when full triangle updates are used (this is based on a
maximum sequence length of 300 residues). The actual memory usage is lower when local triangle updates are used.

Graph Graph TFN-Transformer
Transformer Transformer (scalar, point)
Full Tri. Updates Local Tri. Updates
(residue, pair) (residue, pair)
Depth 12 12 8
Hidden Dim. 180, 128 180, 128 128, 24
Num. Attention 10, 4 10,4 10, 10
Heads
Head Dim. 20, 32 20, 32 20, 4
Neighbor Distance N/A 15, 15 15
Cutoft
Max. Nearest N/A 30, 30 14
Neighbors

Table S1: Hyperparameters used for each model (unless otherwise specified). A description of input feature
dimensions can be found in Section S4.

S3 Training Details

We trained and validated all models using the BC40 training data set (SOURCE) and validated on BC40 validation
set. The data set contains ~36k proteins which are selected from PDB database by 40% sequence identity cutoff.
We first train our models for 10 epochs with a sequence crop size of 300, and an initial learning rate of 1073, The
learning rate is decreased by a factor of two every three epochs, and we do not use any warm-up. After the first
stage completes, the models are trained for an additional 2 epochs with a learning rate of 10™* and a sequence crop
size of 500. No other parameters are modified between the two training stages.

15

https://github.com/nekitmm/DLPacker
https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To optimize our models, we use Adam|[19] with parameters #; = 0.9, 32 = 0.999, and € = 108, and use a minibatch
size of 32. To stabilize training and avoid using learning rate warm-up schedules, we use ReZero|[3], for every residual
connection in our transformer blocks. We also apply gradient clipping by global norm[24] to clip the gradients of
each example in a minibatch to have /> norm at most 1.

We apply gradient checkpointing on the triangle attention logits and TFN kernel outputs. This yields a massive
decrease in memory consumption during training, at a cost of a & 50% decrease in speed. Details are provided in
Section S8. Overall, each model was trained for roughly six days on a single nvidia RTX A6000 gpu (75 days for
the first stage, and ~1 day for stage 2).

S3.1 Loss Function

Our loss function consists of two equally-weighted terms. The first is an auxiliary loss over predicted distances of
distal side-chain atoms (see ’tip-atom’ defined in [13]). This term is applied to the pair output of the locality aware
graph transformer. The pair output is first symmetrized, and then logits are obtained by linearly projecting into
46 bins covering 2A — 20A. Two bins are also added for predicted distance less than 2A and greater than 20A. If
locality aware attention is used, the loss is only computed for pair 75 if the corresponding residues are adjacent.
Pairwise distograms are obtained by taking a softmax of the logits, and an averaged cross entropy loss is then
applied.

The second loss term is applied to the predicted coordinates. Let C’}i) denote the j** side-chain atom coordinate
for residue ¢ in the native structure. Define C’Z(;) analogously for the predicted structure. The loss is computed as

L® = mean; (huber (C’J(-i), CA’j(-i)7 8= 0.25)) (1)

Where huber(z, y, 3) is the Huber loss between x and y with smoothing parameter 5. The final loss is computed as
mean; (L(i)).

Some care must be taken in computing Equation (1), since some residues have symmetric sidechains. For these
residues, we consider all possible symmetries by swapping the coordinates of symmetric atoms and take the lesser
of the swapped and not-swapped loss for the respective residue. A list of residues with symmetric sidechains and
pairs of atoms for which we swap coordinates can be found in Table S2.

Arg Asn Asp Gln Glu Leu
NH1,NH2 OD1,ND2 OD1,0D2 OEl,NE2 OEl, OE2 CD1, CD2

His Leu Phe Tyr Val
ND1, CDh2 (CD1,CD2 CD1,CD2 CD1,CD2 CGl1, CG2
NE2, CE1 - CE1,CE2 CEl, CE2 -

Table S2: Amino acids with sidechain symmetries and the atom pairs which constitue these symmetries.

S4 Model Input
S4.1 Input Features

Our model uses only input features derived directly from primary sequence and backbone coordinates. An overview
of input feature types and the corresponding shape can be found in Table Table S3.

16

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Features Name & Description

Shape

res_type A number in the range 0..21 representing the

[L] corresponding amino acid type

bb_dihedral Backbone phi, psi, and omega dihedral angles.

[L,3]

seq_ pos The sequence index of the respective residue, from 1..L
L]

centrality The number of C,, atoms within 16A of residue of the
[L] respective residue’s C,, atom.

atom__distance One-hot encoded binned distance between C,, — C,,
[L, L, 3 Cy — N, and N — O atoms in each residue. Each bin

represents a distances from 2A-20A with two separate
bins used for distances falling outside of this range.

tr_orientations Dihedral and planar angles defined by Yang et al[33].
[L, L, 3]

Table S3: Input features used by AttnPacker. The shape of the corresponding type for a protein with L residues
is shown below each feature.

We use standard residue level features and encodings for our input. These include a representation of amino acid
type, binned relative sequence position, and embeddings/encodings of backbone dihedral angles. Less standard is
the inclusion of residue centrality. The use of centrality based encodings was studied in [35], where the authors
found that transformers significantly benefit from the addition of centrality encodings with graph-like data. We
choose to incorporate this information at the input level, rather than in each attention block (as is proposed in
[35]). Originally, we included SS3 secondary structure as part of our input, but found that this feature gave the
same (if not slightly worse) results in terms of average residue RMSD scores.

For our pair embedding, we follow a scheme similar to [17], but also incorporate residue pair information following
the approach of AlphaFold2. Rather than embed each residue pair separately, the authors propose using two
separate embeddings for residue types. Denote the embeddings as F4 and Epg, then the pair feature for residues i
and j of type r; and r; (resp.) is given by the outer-sum of E4 (r;) and Eg (r;) . The authors further augment this
information by add an embedding of the relative sequence separation between the two residues and we follow the
same approach here.

17

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Residue Feature
Embedding

| centrality — (L) l—b[bin_centrality — (L)]—D-[one-hot — (L, deen) } ~

flatten, dim=1
(L,6)

encode_angle — (L, 3,2) } >

flatten, dim=1
(L'%af) concat = SO
pOc 0y

| bb_dihedral — (L. 3) bin_angle — (L, 3, 36)]—b[E:mbed(xS) — [L,3,dA)l—P

seq pos (L) " bin rel pos — (L) one-hot — (L, 10)

res type (L) one-hot — (L,dp,.) /

Pair Feature
Embedding

[CIResidue Features bin_rel sep —+ (L, L)

Embed — (L, dg,

[CIPair Features
|Shared Features

DLeamable

([JNot Learnable

Embed 21 — dp_
Embed 21 — dR

»f concat Ib

A

outer sum

—
flatten, dim=2
atom_dists — (L, L, 3) 45[bin_dist — (L, L,3,dp)]—b[one-hot — (L, L,3,dp)]—b (L an. Z;)J

| —

.y
flatten, dim=2

tr_orientations — (L, L, 3) Hbim,aﬂgle — (L, L,3,dy)]—b[Embed(xa) —+(L,L,3, dﬁ)]_> (L E3-dg) L/
| .

Figure S1: Overview of our input feature embedding. The feature shape is shown in parenthesis. Residue
and pairwise features are embedded separately. Only information derived from primary sequence and backbone
coordinates is considered. Full explanations of procedures referenced in this figure are given in Table S4. For
residue features in our final models, we use d.., = 7 for the one-hot encodings of centrality features, d4 = 6 for our
backbone torsion angle embedding dimension, and dr, = 32 for residue type embedding dimension. For pairwise
features, we use dp = 34 for each one-hot distance encodings, dr, = 48 for residue pair embeddings, and d4 = 6
for embeddings of trRosetta orientations.

18

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Procedure Description
bin_centrality(c) : Mapping given by ¢ — min (| £],6)
N — [0..6]
bin__angle(#) : Mapping given given by 6 — [36 - ‘);—W”J
(=m,m) = [0..35]
encode angle(d) : Mapping given by 6 — (cos 6, sin 0)
(=m,m) = [0,1)*
bin_rel pos(p) : Mapping given by p — [10 - %J
[1..L] [0..9]
bin_ rel sep(s): Maps the (signed) sequence separation s to the index of a
[0..L] [0..48] predefined interval. We chose intervals
[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6), 6, 7), [7, 8), [, 10), [10,
12), [12, 15), [15, 20), [20, 30), [30,00)
plus the negation of each interval.
bin_dist(d) : Maps the pairwise distance d to one of 32 equal width bins in

)
R=0 — [0..33] the range 3A..20A. Distances less than 3A and distances greater
than 20A are placed into separate bins.

Table S4: Description of Input Embedding Procedures referenced in Figure S1. The name of the procedure (top)
along with the domain and range (bottom) are given in the first column. Here, we use L to denote the protein
length.

S5 Locality Aware Triangle Attention

Consider a set of points P = {p;}, C R% Define

1=1..n

A(P;0) :={(i, 5, k) : lpe — pyll < 0 Va,y € (3,5, k)}
the set of triangles in P with maximum side length at most 6.

We develop a hypergraph approach to performing triangle updates G (P;0) = (V, E,d), where

V=V (P;0) = A{vij:|pi —pjll2 <0, pip; € P}
d(vij,vje) = max({|lp. —pyll2: 2,y € (4,5, k)})

The edge set E is defined by the adjacency relation

NG (vig) = Ng ((i,7) , P; 0) = {{vir, v} : max (d (vig, vir) d (vig, vir)) < 0}

Observe that there is a node for every pair of points within distance 6, and the distance between two nodes sharing
a common underlying point is the maximum edge length on the corresponding triangle.

When the underlying point set consists of backbone atom coordinates for a protein, a reasonable choice of 6 results
in a relatively small set of triangles. Furthermore, in order to efficiently compute triangle updates for each node v;;,
we restrict Ng (v;;) to the N, nearest neighbors under d (-,-). This yields a 3-uniform, O (N.)- regular hypergraph
with as many nodes as there are underlying points within distance 8. We denote the latter quantity by N,.

In theory, the pairwise features selected for triangle attention can be further restricted to the (at most) N nearest
neighbors of each residue, as only the pair features for each residue’s IV nearest neighbors are used to bias residue
attention logits. In practice, we restrict pair features to the (at most) 2N nearest neighbors of each residue.
More formally, the vertices of our triangle hypergraph consist of pairs (i,j) such that j is among the top 2N
nearest neighbors of ¢. Triangle multiplication and attention updates then require time and space proportional to

19

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

O (N, - N.) =0 (n-N2) in total. These updates are identical to that of AlphaFold2, but restricted to this subset
of triangles.

Figure S2:

Pair Features

Updated Pair
Features

—P@ W By S ={ sigmoid

h
h
9,5 l

h
b; . \
\ N triangle attention
weights

similarity

Linear

triangle
mask

Figure S3: A simple implementation of local triangle attention updates. A mask of dimension L x L x L is used to
control which triangles (and respective edge features) are updated during attention calculations. Masked positions
are kept unchanged, and unmasked positions are filled with a large negative value (—10°) before softmax is applied
to compute attention weights.

As an alternative, we can easily implement local triangle updates by computing a global triangle mask for each
sample (see Figure S3). This approach does not yield the time and space savings previously discussed, but does
serve as a simple drop-in replacement for existing models.

S6 TFN-Transformer

Algorithm S1 SE(3)-Equivariant Normalization

Input
xt: type-f features in R¥*2¢+1
Output
%¢: normalized type-¢ features in R%*2¢+1

function SE3NoORM(x!, nonlin = GELU) :
normf = concaty=1..4, (fokH)
tf = nonlin (normf oot + ﬂz)

L
iy X & 0
X; = concaty—1..4, (normf . > t;
‘

%

return x

For normalization, we propose a method similar to Layer normalization with a norm-based non-linearity. Several
papers have proposed SE(3)-Equivariant Normalization schemes (e.g. [12, 7, 16]), most include some form of Layer
normalization [2], or restriction on the 5 norm of coordinate features. In our experiments, we found that applying
layer normalization to coordinate norms (and subsequently scaling by these values) sometimes caused instability in
the early stages of training. In light of this, In Algorithm S1, we simply learn a scale and bias o and 3¢ for each
feature type.

20

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Algorithm S2 Augment Edge Features

Input
z;;: pair features in R
pi;: hidden coordinate features in R >3 for each residue
rij: input relative coordinates in R!*3
Output
Z;;: augmented edge features in R=+2-dp

function AUGMENTPAIRFEATS(z;;,¢c;,755) :
dij = COHC&tkzlndp (||7"1-j + (Cjk — Cik)”g) > dij c de
z;; = concat (z;;, LayerNorm (d;;) , d;;)
return z;;

In augmenting the pair features with distance information, we choose to append both normalized and un-normalized
distances between the hidden points. The output of this function is passed directly to the TFN radial kernel, which
employs a 3-layer MLP with GELU nonlinearity to produce pairwise kernels for each pair of input feature types.

Algorithm S3 TFN-Transformer Attention Head

Input
xt: type-f features in R9ex2¢+1
z;;: pair features in R4
Bf}k: equivariant basis mapping type ¢ features to type k features
rij: input relative coordinates in R!*3
N;: List of neighbor indices for each residue 1..7
Output
ol attention head features for each input type £=0...

function TFNATTNETIONHEAD (X!, 7;, ijﬁkrij,/\/}) :
zij, X! + LayerNorm (z;;), SE3Norm(x)
Compute TEN keys and values
z;j < AUGMENTPAIRFEATS (z;;,x},7;;)

kfj, vfj = TFN(x!, Z;;, ij’-k,./\/i) > defined for 4, j such that j € N; \ i
q¢ = SE3Linear(x!) >kl g, vl e RM
b;j = LinearNoBias(z;;) > pair bias, b;; € R
z;; = LinearNoBias(z;;) o sigmoid (LinearNoBias(z;;)) > pair features, z;; € R**%/
wh = \/;W > head weights for each input type £ =0...

Compute pair similarity and self similarity
0 _ de 4 £
O = Py Qic: kzgggc
of, = SE3Linear(x})
Share Attention weights for each i and each type
— 4 4 ¥4
aj = softmax;en, (bij + >, w’-~v" - of ;)
‘ oyt
0; = Zje/\[i Qij - Vij
Opair,i = 2 5eN; Yij * Zij _ .
Scalar output augmented with attention-weighted edge information
(0) (0)
0; ' < concat (0; 7, Opqir,i
0

return o;

In Algorithm S3, we use d; to denote the input dimension, and h? to denote the hidden dimension (head dimension)
of input feature type £. Each attention head has a separate learnable weight v¢ for each input type ¢. This weight is
the softplus of a learnable scalar and is initialized so that +* = 1. For each input type, the output of each attention
head is concatenated and linearly projected so that the output dimension matches the original input dimension.
All linear projections (SE3Linear) follow the scheme proposed in [7].

21

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We give a full description of out TFN-Transformer in Algorithm S4. Our TFN-Transformer consists of three
components: (1) An equivariant mapping of scalar and coordinate input features to hidden feature types/dimensions
(2) multiple TFN-based attention layers and (3) An equivariant mapping from hidden feature types/dimensions to
output feature types/dimensions.

Algorithm S4 TFN-Transformer

Input
S;: scalar residue features in R5*1
¢ backbone coordinates for each residue in R¢*3
z;;: pair features in R
N;: List of neighbor indices for each residue 1..7
Limaz: number of hidden types 0..4,,44

Output

Sout,it updated scalar residue features in Rdscatar X1
Cout,i: Updated coordinate features € Reoord X3

function TFN-TRANSFORMER(S;, C;, 2i;,/N;) :
Tij = Cj0 — Ci 0 > relative coordinates € R'*3
Bf}k = COMPUTEEQUIVARIANTBASIS (75, {maz)
c; < concaty (¢, — Ci)
Equivariant Input Mapping
7 Map to hidden dimension and hidden feature types
0,k -
Xﬁid,i =TFN ((Sivci)a zi5, B;; 7M) b xt e REX2HL g =01 and Loyt = 0..4pmaz
Xﬁid’i <+ SE3Norm (an’d,z)
Attention Layers

for 1..Npqyers do
xt,, ;, = TFNAttention (an-dyi,zij,B@»k rij,/\fi)

(CER ij

¢ ¢ ¢
Xpia; < ReZero (xhid,ia Xres,i)

x! = SE3FeedForward (SESNorm (xfn d’i))

TES,i
Xéid{i < ReZero (an’d,i’ Xfes,i)
Equivariant Output Mapping
Normalize and map to output dimension/ output types via TFN
xf;idﬂ. < SE3Norm (and,i)

0,k
xyes = TEN (xfbid’i, 255, B, /\/) > in = 0.lmaz, Lout = 0,1
x!,1.i < SE3Lincar (SE3Norm (x/,,, ;, nonlin = Identity)) B X0y ; € RseatarX1 %0 - € Rdeoorax3

— <0 1
Sout,ia Cout,i - Xout,i’ Xout,i
return S, i, Cout,i

22

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

S7 Full Architecture

SR SR SR SR SR
8; > dipg R i = din.s R zf —dy . zf —dy . z? % fi‘?c.a.la;
Locality 2} = deoorg
Input Aware Equivariant TFN- Equivariant
Embedding Graph Input Transformer Output
Transformer Mapping (8-blocks) Mapping
zij = din » | (12 blocks) | zi; — dpiq . Zi5 = Apid » Zi5 = Apid »
Backbone > > > >
Coordinates

Basis

Figure S4: The full architecture of AttnPacker. we use s; to denote scalar (residue) features, and z;; to denote pair
features. Backbone coordinates are used to define residue and pair adjacencies, and included in the equivariant
input mapping (see Algorithm S4). The Equivariant input mapping returns type ¢ features ¢ for user-defined types
¢ > 0. In our model, scalar output features z? are discarded, and coordinate output x} has deora = 32, one channel
for each possible side-chain atom type.

Our full architecture is shown in Figure S4. It consists of an input embedding (Figure S1) to produce scalar features
for residues and pairs, and is followed by our locality-aware graph transformer and TFN-Transformer. Pair features
are only modified in the locality-aware graph transformer block. The TFN-Transformer still makes use of pair
features to produce radial kernels, bias attention logits, and augment the output of each attention head.

S8 Memory Consumption
S8.1 Triangle Attention

In Section 2.2, we determine that the number of pair features requiring triangle updates is bounded by 2N L, where
N is the maximum number of neighbors per point, and L is the protein length. Locality aware triangle attention
stores at most N attention logits per pairwise feature. It follows that the number of attention logits stored for an
attention layer with h heads is 2N2L - h. In practice, computing neighbor-wise attention can be costly. Depending
on the implementation, repeating or grouping of neighbor features may cause the gradients for attention logits to
require significantly more space. We experimented with several implementation, but ultimately decided to mask full
triangle attention logits (O (L?’) space) as a proof of concept. Masking attention logits effectively stops the gradient
flow for all pair pair features which are not part of the triangle graph. This resulted in a modest improvement in
memory, but more work will be needed to realize the full time and space benefits of this architecture.

bits for attention logits L =300 L =500
using 32-bit float
precision
Triangle Attention 32-L3-h-D 5.2 Gb 24.0 Gb
Locality Aware 32-2N2L-h-D 0.10 Gb 0.17 Gb

Triangle Attention

Table S5: A comparison of memory usage for storing pair attention logits. L is the length of the input sequence. The
third and fourth columns show the memory usage for an input sequence of length 300 and length 500 respectively.
Values are calculated by fixing the number of heads h = 4, the depth D = 12, the number of nearest neighbors
N = 30 per pair.

23

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

S8.2 TFN Transformer
S8.3 TFN Memory Analysis

One of the main drawbacks of the SE(3)-Transformer is high memory usage caused by computing equivariant
pairwise kernels in each attention block. To alleviate some of this overhead, we modify the TFN implementation used
in the original SE3-Transformer proposed by Fuchs et al.[12]. Given input feature tensors of size (din, 0in)s(dout; Oout)
respectively, the corresponding basis element mapping between these types has shape (0in, 0in - Oout). Let f =
min (04, 0put) denote the frequency of the mapping, then for each pair of features we require a radial kernel of
size (din, dout, f). To ensure equivariance, the kernel passes through the corresponding basis element, yielding an
intermediate tensor of shape

(dina douta fv Oin, Oin * OOut)

That is, the kernel is obtained from multiplying the radial weights for each pair through the corresponding basis
element. The input features are then multiplied through the respective kernel to yield the desired output, and the
process is repeated for each pair of input and output types.

As TFNs are used to produce key and value vectors in each attention block, the intermediate kernel mapping
between type-¢ features at each block requires memory proportional to

2.dl - htdb(20+1)"
where hf, d* are are the number of heads and head dimension for type ¢ features.

In our implementation, we are able to obtain a factor & 0;, - 0oyt reduction in memory by changing change the order
of matrix multiplication in the TFN kernel. Rather than multiply the radial weights through the basis, we first
multiplying the features through the basis, and then multiplying the result with the radial weights. The memory
required to store the intermediate tensors is reduced to

din : dout : f + dln * Oin * Oout

radial weights finBin—out

This greatly reduces the memory burden of TFNs and, together with gradient checkpointing, allows us to fit a much
deeper and larger model on a single GPU.

S9 Extended Results
S9.1 CASP-FM RMSD
To better understand AttnPacker’s ability to generalize to new folds, we evaluated each method on CASP13 and

CASP14 free modelling (FM) targets. These datasets consist of proteins with previously unseen folds and hard
analogous fold based models (see Table S11 for a complete list). The results are show in Table S6.

24

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RMSD (A)
CASP13-FM CASP14-FM

Method All Core Surface All Core Surface
SCWRL 0.741 0.441 0.919 1.008 0.681 1.206
FASPR 0.726 0.468 0.896 0.999 0.678 1.204
RosettaPacker 0.701 0.372 0.892 0.963 0.562 1.164
DLPacker 0.617 0.413 0.776 0.903 0.618 1.094
TFEFN-Transformer 0.591 0.431 0.705 0.850 0.629 0.987

+Tri 0.538 0.347 0.664 0.784 0.530 0.944

~+Tri+Local 0.542 0.349 0.671 0.779 0.531 0.943
Residue Count 5465 1672 2503 3934 915 2012

Table S6: Average RMSD (A) on the CASP13-FM and CASP14-FM targets. Results are divided by residue
centrality (All, Core, and Surface).

S9.2 Non-Native Backbone

RMSD (A) MAE®° X - Accuracy
All Core Sfe X1 X2 X3 X4 All Core Sfc
SCWRL 1.203 0919 1.360 41.51 34.46 48.02 46.59 52.4% 63.4% 47.3%
FASPR 1.194 0.896 1.359 41.54 33.93 49.12 47.67 51.8% 62.5% 46.3%
Ros. Pack 1.178 0.883 1.339 40.88 34.24 47.89 48.32 53.0% 63.0% 47.7%
DLPacker 1.138 0.857 1.299 40.51 34.74 52.46 66.49 49.3% 62.2% 41.9%
AlphaFold2 1.080 0.826 1.216 37.84 30.76 42.21 44.01 55.7% 65.8% 50.8%
TFN+Tri 1.102 0.874 1.226 39.75 30.20 47.86 50.92 52.5% 63.2% 46.7%

TFN+Tri(25) 1.046 0.817 1.170 38.99 30.35 48.10 48.58 53.9% 65.4% 46.2%
TFN+Tri(75) 1.059 0.813 1.184 39.59 30.46 48.65 49.12 53.8% 65.9% 46.2%

Table S7: Average RMSD and Dihedral results by method for CASP14-FM non-native backbone targets produced
by AlphaFold2. RMSD is shown for all, core, and surface (sfc) residues in angstroms. Overall y;_4 MAE is shown
for each methods in units of degrees. Last, overall accuracy for xi_4 angle predictions is shown for all, core, and
surface residues.

For non-native backbone comparison we trained two separate models TFN-+Tri(25) and TFN-+Tri(75). These
models were trained using the same list of targets as the original model, but with each target having backbone
coordinates predicted by AlphaFold2 in place of the native with probability 25% and 75% respectively.

To train these models, we calculated separate rotations and translations mapping the backbone atom coordinates
of each residue in the native structure to the corresponding coordinates of the decoy (non-native) structure. We
then applied these transformations to align both backbone and side-chain coordinates for each residue in the native
structure and treated the result as the ground-truth. After applying this transformation, we were able to use the
loss functions described in Section S3.1 without modification.

The average RMSD results shown in Section S9.2 were calculated by aligning the native and decoy residue coordi-
nates as described in the previous paragraph. Substituting non-native backbone coordinates with 25% probability
yields the best results in terms of Average RMSD, even better than that of AlphaFold2. Both models, trained

25

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

partially with non-native backbone data, outperform the baseline TFN+Tri model for side-chain RMSD minimiza-
tion. In terms of side-chain dihedral prediction accuracy, Alphafold2 achieves the best results, with our methods
achieving competitive scores in accuracy for all but surface residues. Similar to the results on native backbones,
our models are competitive in terms of dihedral MAE for x; and x2, but lose their edge for higher order x values.

S9.3 Per Residue RMSD

RMSD (A)

SCWRL4 FASPR Rosetta DLPack TFN TEFN+ TFN+ Res.
Packer Loc Tri count

ARG 2.119 2.086 1.938 1.802 1.762 1.572 1.535 1040
ASN 0.918 0.889 0.873 0.761 0.751 0.706 0.671 1070
ASP 0.882 0.903 0.875 0.723 0.693 0.616 0.645 1153
CYS 0.517 0.543 0.409 0.432 0.382 0.331 0.307 240
GLN 1.456 1.450 1.303 1.217 1.163 1.086 1.077 815
GLU 1.460 1.451 1.400 1.288 1.207 1.137 1.111 1192
HIS 0.989 0.865 0.855 0.702 0.686 0.679 0.605 446
ILE 0.575 0.576 0.548 0.524 0.514 0.470 0.457 1238
LEU 0.607 0.595 0.571 0.521 0.513 0.463 0.456 1993
LYS 1.619 1.592 1.521 1.400 1.315 1.210 1.219 1100
MET 1.334 1.228 1.172 1.122 1.166 0.976 0.952 481
PHE 0.816 0.715 0.730 0.545 0.586 0.457 0.459 921
PRO 0.253 0.239 0.233 0.190 0.208 0.190 0.201 943
SER 0.711 0.713 0.695 0.583 0.568 0.550 0.523 1480
THR 0.508 0.497 0.477 0.440 0.409 0.387 0.395 1317
TRP 1.312 1.128 0.981 0.830 0.995 0.700 0.695 374
TYR 1.046 0.967 1.000 0.672 0.747 0.626 0.601 860
VAL 0.316 0.315 0.307 0.283 0.285 0.265 0.261 1476

Table S8: Average Per-Residue RMSD for CASP13 Targets by method (column) and residue type (row). Here,
TFN-+Loc denotes the TFN transformer with local triangle updates. TFN-+Tri denotes the TFN Transformer with
global triangle updates.

26

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ARG
ASN
ASP
CYS
GLN
GLU
HIS
ILE
LEU
LYS
MET
PHE
PRO
SER
THR
TRP
TYR
VAL

RMSD (A)

SCWRL4 FASPR Rosetta

2.299
1.051
1.019
0.535
1.596
1.609
1.055
0.693
0.741
1.835
1.514
0.943
0.265
0.853
0.667
1.514
1.061
0.401

2.300
1.020
1.055
0.577
1.561
1.602
1.025
0.728
0.702
1.822
1.321
0.926
0.256
0.836
0.635
1.334
1.050
0.401

Packer
2.168
0.964
0.992
0.321
1.440
1.569
0.901
0.702
0.700
1.766
1.346
0.860
0.266
0.817
0.620
1.473
0.976
0.389

DLPack

2.019
0.922
0.939
0.462
1.338
1.535
0.859
0.682
0.662
1.659
1.327
0.754
0.228
0.735
0.606
1.163
0.832
0.365

TEFN

1.919
0.866
0.926
0.437
1.268
1.435
0.813
0.641
0.643
1.528
1.244
0.738
0.241
0.699
0.576
1.336
0.893
0.369

TEFN-+
Loc

1.669
0.832
0.852
0.390
1.182
1.370
0.744
0.598
0.581
1.420
1.100
0.592
0.226
0.662
0.542
0.989
0.688
0.345

TFN--
Tri

1.710
0.819
0.849
0.378
1.214
1.355
0.681
0.590
0.592
1.421
1.077
0.593
0.223
0.653
0.540
0.959
0.664
0.343

Res.
count

658
1002
879
161
546
963
300
1030
1401
991
310
705
615
1076
942
179
656
985

Table S9: Average Per-Residue RMSD for CASP14 Targets by method (column) and residue type (row). Here,
TFN+Loc denotes the TFN transformer with local triangle updates. TFN+Tri denotes the TFN Transformer with
global triangle updates.

27

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

MAE° MAE°
Method X1 X2 X3 X4 acc. X1 X2 X3 acc.
ARG GLN
SCWRL 38.97 33.5 67.92 5725 49.0% 36.81 48.3 39.1 47.8%
FASPR 38.85 33.87 68.97 65.05 48.5% 3493 46.16 37.45 50.8%
RosettaPacker 3742 3593 61.1 56.99 50.5% 32.38 4096 35.78 53.0%
DLPacker 31.17 35.04 7225 68.41 45.3% 29.69 37.11 38.41 52.3%
TFEFN-Transformer 35.71 3220 72.67 56.92 42.0% 31.75 39.03 36.94 51.1%
T 33.78 3258 614 56.03 47.8% 30.52 35.66 3648 54.0%
+Tri+Local 33.15 31.35 62.57 57.23 44.8% 30.47 36.32 36.35 52.1%
LYS GLU
SCWRL 37.85 3286 43.65 47.74 55.8% 42.05 42.02 39.35 46.8%
FASPR 3755 3176 4416 46.39 56.0% 39.47 4045 4117 48.0%
RosettaPacker 37.38 33.62 4445 4783 55.1% 40.24 4045 39.34 48.0%
DLPacker 3248 3394 50.34 6832 45.9% 39.37 4224 4043 45.1%
TFN-Transformer 29.59 33.61 44.60 48.83 50.8% 36.24 39.61 36.97 46.8%
+Tri 28.04 29.86 449 47.89 54.2% 34.37 37.25 35.86 50.5%
+Tri+Local 29.12 3091 4434 46.79 53.0% 36.71 3739 36.17 47.1%

Table S10: Dihedral MAE results on CASP14 targets for charged and polar Amino Acids with high degrees of
freedom.

28

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.11.483812; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

S10 PDB Lists

Data Set Targets

CASP13 T0949, T0950, T0951, T0953s1, T0953s2, T0954, T0955, T0957s1, T0957s2,
T0958, T0959, T0960, T0961, T0962, T0963, T0964, T0965, T0966, TOIET,
T0968s1, T0968s2, T0969, T0970, T0971, T0973, TO974s1, T0974s2, TOI75,
T0976, T0977, T0978, T0979, T0980s1, T0980s2, TO981, T0982, TO983,
T0984, T0985, T0986s1, T0986s2, T0987, T09I8S, T098Y, T0990, TO9I1,
T0992, T0993s1, T0993s2, T0994, T0995, T0996, T0997, T0998, T1000,
T1001, T1002, T1003, T1004, T1005, T1006, T1008, T1009, T1010, T1011,
T1013, T1014, T1015s1, T1015s2, T1016, T1016 A, T1017s1, T1017s2,
T1018, T1019s1, T1019s2, T1020, T1021s1, T1021s2, T1021s3, T1022s1,
T1022s2

CASP14 T1024, T1025, T1026, T1027, T1028, T1030, T1031, T1032, T1033, T1034,
T1035, T1036s1, T1037, T1038, T1039, T1040, T1042, T1043, T1045s1,
T1045s2, T1046s1, T1046s2, T1047s1, T1047s2, T1048, T1049, T1052, T1053,
T1054, T1055, T1056, T1057, T1058, T1060s2, T1060s3, T1062, T1064,
T1065s1, T1065s2, T1067, T1068, T1070, T1072s1, T1073, T1074, T1078,
T1079, T1080, T1082, T1083, T1084, T1087, T1088, T1089, T1090, T1091,
T1092, T1093, T1094, T1095, T1096, T1098, T1099, T1100

CASP13-FM T0950, T0953s1, T0953s2, T0957s1, T0957s2, T0960, T0963, T0968s1,
T0968s2, T0969, T0975, T0980s1, T0981, T0986s2, T0987, T0989, T0990,
T0991, T0998, T1000, T1001, T1010, T1015s1, T1017s2, T1021s3, T1022s1

CASP14-FM T1027, T1031, T1033, T1037, T1038, T1039, T1040, T1042, T1043, T1047s1,
T1049, T1064, T1070, T1074, T1090, T1093, T1094, T1096

Table S11: List of targets in each test data set.

29

https://doi.org/10.1101/2022.03.11.483812
http://creativecommons.org/licenses/by/4.0/

	㈰㈠〠潢樊㰼 呩瑬攨﻿㈰㌠〠潢樊㰼 呩瑬攨﻿㈰㐠〠潢樊㰼 呩瑬攨﻿㈰㔠〠潢樊㰼 呩瑬攨﻿㈰㘠〠潢樊㰼 呩瑬攨﻿㈰㜠〠潢樊㰼 呩瑬攨﻿㈰㠠〠潢樊㰼 呩瑬攨﻿㈰㤠〠潢樊㰼 呩瑬攨﻿㈱〠〠潢樊㰼 呩瑬攨﻿㈱ㄠ〠潢樊㰼 呩瑬攨﻿㈱㈠〠潢樊㰼 呩瑬攨﻿㈱㌠〠潢樊㰼 呩瑬攨﻿㈱㐠〠潢樊㰼 呩瑬攨﻿㈱㔠〠潢樊㰼 呩瑬攨﻿㈱㘠〠潢樊㰼 呩瑬攨﻿㈱㜠〠潢樊㰼 呩瑬攨﻿㈱㠠〠潢樊㰼 呩瑬攨﻿㈱㤠〠潢樊㰼 呩瑬攨﻿㈲〠〠潢樊㰼 呩瑬攨﻿㈲ㄠ〠潢樊㰼 呩瑬攨﻿㈲㈠〠潢樊㰼 呩瑬攨﻿㈲㌠〠潢樊㰼 呩瑬攨﻿㈲㐠〠潢樊㰼 呩瑬攨﻿㈲㔠〠潢樊㰼 呩瑬攨﻿㈲㘠〠潢樊㰼 呩瑬攨﻿㈲㜠〠潢樊㰼 呩瑬攨﻿㈲㠠〠潢樊㰼 呩瑬攨﻿㈲㤠〠潢樊㰼 呩瑬攨﻿㈳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㐷⸶㌹′㤳⸷〲‱㔹⸵㤲″〲⸰㠶崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‶㠳⸸㌲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㘳⸳㠴′㤳⸷〲‱㜵⸳㌶″〲⸰㠶崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‷㌵⸳〷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㜹⸱㈸′㤳⸷〲‱㠶⸱〱″〲⸰㠶崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠ㄸ〮〹㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈲㔮㘷㐠㈹㌮㜰㈠㈳㜮㘲㜠㌰㈮〸㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠ㄸ㜮㜶㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴ㄮ㐱㠠㈹㌮㜰㈠㈵㌮㌷ㄠ㌰㈮〸㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㠲⸳㜶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔷⸱㘳′㤳⸷〲′㘴⸱㌶″〲⸰㠶崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠ㄱ㌮㤲㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶㜮㤲㠠㈹㌮㜰㈠㈷㤮㠸″〲⸰㠶崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‶㘳⸶㌲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㌰⸴㌱′㤳⸷〲‴㐲⸳㠳″〲⸰㠶崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‶㤴⸹㔹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐶⸱㜵′㤳⸷〲‴㔸⸱㈸″〲⸰㠶崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‵㘵⸹㌲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔳⸴㔴′㠱⸷㐷‴㘵⸴〷′㤰⸱㍝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㔲㈮〹㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㠮㐹㔠㈸ㄮ㜴㜠㐸〮㐴㠠㈹〮ㄳ崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‴㜹⸷㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㠳⸵㌵′㠱⸷㐷‴㤵⸴㠸′㤰⸱㍝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠ㄱ㌮㜰㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐹㠮㔷㘠㈸ㄮ㜴㜠㔰㔮㔴㠠㈹〮ㄳ崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠㈶㔮㜵㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔰㠮㘳㘠㈸ㄮ㜴㜠㔱㔮㘰㤠㈹〮ㄳ崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠㌸㜮ㄲ㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔱㠮㘹㘠㈸ㄮ㜴㜠㔲㔮㘶㤠㈹〮ㄳ崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠㠲⸶㌲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㈸⸷㔷′㠱⸷㐷‵㐰⸷ㄠ㈹〮ㄳ崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‵㔶⸰㌵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㐳⸷㤷′㠱⸷㐷‵㔰⸷㜠㈹〮ㄳ崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠㈲ㄮ㤵㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔳㠮㠱㜠㈴㔮㠸ㄠ㔵〮㜷′㔴⸲㘵崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‱ㄳ⸷〶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬹〮㤷㈠㈳㌮㤲㘠㄰㈮㤲㔠㈴㈮㌱崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‵㈲⸰㤴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔴⸰㔴′㌳⸹㈶‱㘱⸰㈶′㐲⸳ㅝਯ䑥獴⁛㘠〠删⽘奚‵㘮㘹㌰‸㈮㘳㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐹ㄮ㜶㐠㈱㘮㔴㈠㔰㌮㜱㜠㈲㐮㤲㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㈱㤮㘵㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔰㠮㌷ㄠ㈱㘮㔴㈠㔲〮㌲㌠㈲㐮㤲㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㈵㈮㤱㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔲㐮㤷㜠㈱㘮㔴㈠㔳㘮㤳′㈴⸹㈶崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‶㌱⸷㔱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㐱⸵㠴′ㄶ⸵㐲‵㔳⸵㌷′㈴⸹㈶崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‵㠹⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㘹㜠㈰㐮㔸㜠㘷⸶㐹′ㄲ⸹㜱崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‴㜹⸷㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬷ㄮ㘷㈠㈰㐮㔸㜠㠳⸶㈵′ㄲ⸹㜱崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰′㤴⸲㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬸㜮㘴㠠㈰㐮㔸㜠㤹⸶〱′ㄲ⸹㜱崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‵㔶⸰㌵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳ㄵ⸹㘠㈰㐮㔸㜠㌲㜮㤱㌠㈱㈮㤷ㅝਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㈱㤮㘵㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰ㄮ㈳㜠ㄶ㠮㜲㈠ㄱ㌮ㄹ‱㜷⸱〵崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰′㔲⸹ㄸ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔹⸶㔷‱㈰⸹〱‱㜱⸶ㄠㄲ㤮㈸㕝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㔶⸶㤳〠㔸㤮㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔳㠮㠱㜠㔵⸶㤷‵㔰⸷㜠㘴⸰㡝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㐲㠮㘵㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㈶㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠′㘱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㘴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㘳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤲⸶㜴‷㈴⸳㐸′〴⸶㈷‷㌲⸷㌲崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‷㌵⸳〷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳ㄵ⸴㜲‷㈴⸳㐸″㈷⸴㈵‷㌲⸷㌲崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‶㔲⸵〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬶㘮㈱‴ㄶ⸰㠱‷㠮ㄶ㌠㐲㐮㐶㕝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㘵㈮㔰㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌶㈮㘳㜠㌹〮㈳㐠㌷㔮ㄴ㌠㐰ㄮ〲㕝ਯ䑥獴⁛㌴‰⁒ 塙娠㄰㈮ㄲ㔰‴㤵⸱㈱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㌰⸰㌴″㤰⸲㌴‴㐲⸵㐱‴〱⸰㈵崊⽄敳琠嬳㔠〠删⽘奚‱㄰⸴㠵〠㌸㔮ㄹ㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈳㈮㔶㠠㌷㈮㌰㈠㈳㤮㔴″㠳⸰㤲崊⽄敳琠嬲‰⁒ 塙娠㄰㐮㈶㌰‵㔷⸴ㄲ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵ㄷ⸷㠴′㜶⸱〷‵㌲⸵〳′㠸⸰㙝ਯ䑥獴⁛㈠〠删⽘奚‵㘮㘹㌰‱ㄹ⸵㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪ਲ㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㈷㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈷㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜶‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略ਯ䍓⽄敶楣敒䝂㸾敮摯扪ਲ㜷‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略㸾敮摯扪ਲ㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈲㠮㌴㜠㐱㐮㔰㐠㈳㔮㌲‴㈶⸴㔷崊⽄敳琠嬴‰⁒ 塙娠㤷⸳㔲〠ㄳ㌮〹㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄹ㈮㜹ㄠ㌷㠮㘳㤠㈰㔮㈹㠠㌹〮㔹ㅝਯ䑥獴⁛㐵‰⁒ 塙娠㔶⸶㤳〠㜳㔮㌰㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈵㤮㈴㜠㌷㠮㘳㤠㈷ㄮ㜵㌠㌹〮㔹ㅝਯ䑥獴⁛㐵‰⁒ 塙娠㔶⸶㤳〠㔱㈮㌹㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐵㘮〶㘠㌷㠮㘳㤠㐶㌮〳㠠㌹〮㔹ㅝਯ䑥獴⁛㈠〠删⽘奚‹㤮ㄸ㐰‱㜱⸳ㄸ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤳⸵㌵″㘷⸲㌷′〶⸰㐱″㜸⸰㈸崊⽄敳琠嬱〠〠删⽘奚‵㘮㘹㌰‴〲⸱㔴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㠸⸴㤵″㘷⸲㌷‴㤵⸴㘸″㜸⸰㈸崊⽄敳琠嬴㘠〠删⽘奚‱〰⸱ㄶ〠㔴㈮㔶㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔴㘮㌲″㘷⸲㌷‵㔳⸲㤳″㜸⸰㈸崊⽄敳琠嬴㘠〠删⽘奚‹㜮㐷㘰‱㤵⸷㠵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪ਲ㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㈸㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈸㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈸㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㠮㠹㔠㘸㘮㔴㘠㌲㔮㠶㠠㘹㜮㌳㝝ਯ䑥獴⁛㌠〠删⽘奚‱〲⸷㐴〠㔳㐮㐹㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌲〮㠶‱㤲⸹㈱″㌳⸳㘶′〳⸷ㄱ崊⽄敳琠嬷‰⁒ 塙娠㄰㔮㜷〰‱㤷⸷〸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㤱⸶㠸‱㤲⸹㈱‴〴⸱㤴′〳⸷ㄱ崊⽄敳琠嬷‰⁒ 塙娠㔶⸶㤳〠ㄶ〮〲〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔳㠮㠱㜠㤰⸷㐸‵㔶⸳〳‱〲⸷〱崊⽄敳琠嬱㔠〠删⽘奚′㔰⸸㠷〠㌹㈮㠴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㈹㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠′㤳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈹㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㤵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈹㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㐲⸸㐳‴㘹⸹㐠㐵㔮㌴㤠㐸ㄮ㠹㉝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㄰㔮〴㠰‵㈹⸷ㄴ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㈵⸹㐹‴㔷⸹㠵′㌲⸹㈲‴㘹⸹㌷崊⽄敳琠嬵㜠〠删⽘奚‹㘮〳㠰‵㈹⸷ㄴ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㜹⸶㤷″㤸⸷㘲‴㠶⸶㜠㐰㤮㔵㍝ਯ䑥獴⁛㘲‰⁒ 塙娠㄰ㄮ㤸㄰‵㠱⸳㐵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵〰⸸㘳″㔶⸹ㄹ‵ㄳ⸳㘹″㘷⸷ㅝਯ䑥獴⁛ㄴ‰⁒ 塙娠㄰㌮㌰〰′㘰⸳㐴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌶⸸㌠㌵㘮㤱㤠㔴㤮㌳㘠㌶㜮㜱崊⽄敳琠嬶㌠〠删⽘奚‱〳⸳〰〠㌵㜮㐲㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌰㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″〲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌰㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″〴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌰㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㐲⸹㤸′㘶⸶㐴‱㐹⸹㜠㈷㜮㐳㕝ਯ䑥獴⁛㘵‰⁒ 塙娠㤹⸸㘸〠㌳㜮㈶㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐶〮〴㈠ㄷ㘮㤸‴㘷⸰ㄴ‱㠷⸷㜱崊⽄敳琠嬶㈠〠删⽘奚‱〱⸹㠱〠㔸ㄮ㌴㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌰㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″〸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌱〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼ㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㄰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌱㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㜳⸶㌶‴㠸⸷㐸′㠰⸶〸‴㤹⸵㌹崊⽄敳琠嬶㈠〠删⽘奚‹㤮㘲㔰‴〳⸹㜹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜵⸴〴″㌷⸲㈹‴㠷⸳㔷″㐵⸶ㄳ崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‵㈲⸰㤴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌳⸲㌠㈸ㄮ㐹㐠㔴〮㈰㌠㈹㈮㈸㕝ਯ䑥獴⁛㜶‰⁒ 塙娠㤷⸶㔳〠㐰㔮㠵㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶㜮〳㜠㈱㜮㘷㜠㈷㠮㤸㤠㈲㘮〶ㅝਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㈵㈮㤱㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄶ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″ㄶ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌱㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼ㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″ㄸ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌲〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵〰⸰㌶″㈳⸲㜷‵〷⸰〸″㌴⸰㘸崊⽄敳琠嬴‰⁒ 塙娠㤷⸱㐰〠㐰㔮㠵㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌲㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㈱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌲㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㈳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌲㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㌶⸴㔵′㔰⸵〵‱㐳⸴㈸′㘲⸴㔸崊⽄敳琠嬴‰⁒ 塙娠㤷⸳㔲〠ㄳ㌮〹㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㜮㠵㐠㈵㈮㤹㔠㈹㤮㠰㜠㈶ㄮ㌷㥝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㔶⸶㤳〠㜳㔮㌰㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌰㐮㜱㈠㈵㈮㤹㔠㌱㘮㘶㔠㈶ㄮ㌷㥝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㘵㈮㔰㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌲㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㈸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌳〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㌱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㌰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌳㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴〲⸴㜸‶㠶⸵㐶‴〹⸴㔱‶㤷⸳㌷崊⽄敳琠嬴㘠〠删⽘奚‱〰⸱ㄶ〠㔴㈮㔶㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄴ㔮㠸㌠㐸㌮㘷㈠ㄵ㈮㠵㘠㐹㐮㐶㍝ਯ䑥獴⁛㐶‰⁒ 塙娠㄰〮ㄱ㘰‵㐲⸵㘴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌳㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㌶⸵㜶‴㘱⸶㤹‱㐸⸵㈹‴㜰⸰㠲崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‶㔲⸵〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㤶⸵㐠㌷〮㈶㌠㌰㌮㔱㌠㌸ㄮ〵㑝ਯ䑥獴⁛㐶‰⁒ 塙娠㤷⸴㜶〠ㄹ㔮㜸㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐱㘮ㄲ㔠㔳⸷㔹‴㈳⸰㤸‶㘮㈲ㅝਯ䑥獴⁛㐶‰⁒ 塙娠㤷⸴㜶〠ㄹ㔮㜸㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㌷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌳㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㐰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㌹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌴ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪ਲ਼㐲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㌴ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㌴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㌴㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌴㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㐵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌴㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㐷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌴㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪ਲ਼㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㌴㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㌵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㌵ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌵㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㔳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌵㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㔵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌵㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㜶⸰㈸‶〹⸲㈱‴㜲⸲ㄱ‶㈰⸰ㄲ崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯湥歩瑭洯䑌偡捫敲⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㈴⸷㈶‵㘷⸷㐸″㐲⸲ㄲ‵㜸⸵㌸崊⽄敳琠嬱㔠〠删⽘奚′㔰⸸㠷〠㌹㈮㠴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔲㔮㘸㘠㐵〮㘴㈠㔳㠮ㄹ㈠㐶ㄮ㐳㍝ਯ䑥獴⁛㜠〠删⽘奚‱〵⸷㜰〠ㄹ㜮㜰㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈱㈮㤵㜠ㄷ㈮㠰㈠㈲㔮㐶㌠ㄸㄮ㘵㙝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‱㤲⸹㐸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪ਲ਼㘲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㌶ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㌶㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㌶㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈲㈮㘲㔠㜲㐮㌴㠠㈳㐮㔷㠠㜳㈮㜳㉝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㌳㘮㤹㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㜮㌰㐠㜱㈮㌹㌠㐷㐮㈷㘠㜲〮㜷㝝ਯ䑥獴⁛㘠〠删⽘奚‵㘮㘹㌰′㤷⸰㐱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㌷⸴㠱‷〰⸴㌸‴㐹⸴㌳‷〸⸸㈲崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‱㔶⸹㤱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬹〮㠳㌠㘴㐮ㄵ‱〳⸳㌹‶㔶⸱〲崊⽄敳琠嬱ㄠ〠删⽘奚‵㘮㘹㌰‴㐴⸶㘲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜱⸵ㄳ‵㘶⸴㤴′㠳⸴㘶‵㜴⸸㜷崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‵㤹⸱㤹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㠲⸳㘷″㠲⸷〲′㠹⸳㌹″㤴⸶㔵崊⽄敳琠嬸‰⁒ 塙娠㈱ㄮ㤰㄰‴㔴⸹㌱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㔵⸶㌷″㐷⸳㤠㌶㠮ㄴ㌠㌵㠮ㄸㅝਯ䑥獴⁛㠠〠删⽘奚‱㈱⸱㘹〠㈲〮㜷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐰㠮ㄵ‱〹⸴〴‴㈰⸶㔶‱㈰⸱㤵崊⽄敳琠嬳㐠〠删⽘奚‱〲⸱㈵〠㐹㔮ㄲ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌷㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㜳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌷㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㜵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌷㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐹⸹ㄲ‵ㄷ⸷㈳‴㘱⸸㘵‵㈶⸱〷崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‵㈴⸱㔵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔴⸴㈵‴ㄶ⸴ㄶ‴㘶⸳㜸‴㈴⸷㤹崊⽄敳琠嬱㜠〠删⽘奚‵㘮㘹㌰‴㐸⸴㌹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㠮㐶㌠㌸〮㔵‷〮㐱㘠㌸㠮㤳㑝ਯ䑥獴⁛ㄷ‰⁒ 塙娠㔶⸶㤳〠㐴㠮㐳㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㠰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㜮㜶㔠㌵〮㘶㈠㌰㤮㜱㠠㌵㤮〴㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㐵㤮㤸㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㠱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㠱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌸㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㠳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵ㄸ⸵㈠㌴㘮㌹㠠㔳ㄮ〲㘠㌵㜮ㄸ㡝ਯ䑥獴⁛㤠〠删⽘奚‱〲⸶㘳〠㐸ㄮ㔲㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㠶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㌸㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠″㠶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌸㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ਼㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠″㠸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌹〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㤰⸳㔱‴㘶⸰㠠㐰㈮㠵㜠㐷㠮〳㍝ਯ䑥獴⁛㌵‰⁒ 塙娠ㄱ〮㐸㔰″㠵⸱㤶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪ਲ਼㤲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㌹ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㌹㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㌹㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄴ㈮〸㈠㐲㘮㐹㜠ㄵ㐮㔸㠠㐳㠮㐵崊⽄敳琠嬱〠〠删⽘奚‱〵⸵㤹〠㔲ㄮ㔸㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌶㌮㈶㐠ㄵ㜮ㄶ″㜵⸲ㄷ‱㘵⸵㐴崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‶㔲⸵〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㜹⸱ㄳ‱㔷⸱㘠㌸㘮〸㘠ㄶ㔮㔴㑝ਯ䑥獴⁛㘠〠删⽘奚‵㘮㘹㌰‱㐵⸷㘳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㠹⸹㠲‱㔷⸱㘠㐰ㄮ㤳㔠ㄶ㔮㔴㑝ਯ䑥獴⁛ㄶ‰⁒ 塙娠㔶⸶㤳〠㐹〮㜶㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄲㄮ㐶‱㐵⸲〵‱㈸⸴㌳‱㔳⸵㠸崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠㌱㜮㐸㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴〰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱ㄮ㘳㜠ㄱ㤮㌵㜠㌲㐮ㄴ㌠ㄳㄮ㜴㕝ਯ䑥獴⁛㄰‰⁒ 塙娠㔶⸶㤳〠㌶㐮㜸㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴〱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㐰㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴〱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐰㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਴〴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‴〳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐰㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱ㄵ⸰㘠㄰ㄮ〲㜠ㄲ㜮㔶㘠ㄱ㌮㤶㡝ਯ䑥獴⁛㐵‰⁒ 塙娠㔶⸶㤳〠㔱㈮㌹㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌴㌮㤸㤠㔵⸶㤷″㔰⸹㘲‶㐮〸崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠ㄴ㔮㜶㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴〷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㐰㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴〷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐰㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਴㄰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‴〹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐱ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㔴⸴㠠㜲㈮㐱ㄠ㌶㘮㤸㜠㜳㌮㈰㉝ਯ䑥獴⁛ㄳ㤠〠删⽘奚‵㘮㘹㌰‶㜴⸰㌷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐱㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪਴ㄳ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐱㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄴ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㐱㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㐱㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄸ㠮㠰㈠㔴㠮㔴㜠㈰ㄮ㌰㠠㔶ㄮ㔹ㅝਯ䑥獴⁛ㄳ㤠〠删⽘奚‵㘮㘹㌰‶㜴⸰㌷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㈸⸰〴‴㤲⸹ㄶ′㐰⸵ㄠ㔰㐮㠶㡝ਯ䑥獴⁛ㄱ‰⁒ 塙娠㄰㔮㐲㄰‵㠸⸰〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐱㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㈶⸳㜶‴㤲⸹ㄶ‴㌸⸸㠲‵〴⸸㘸崊⽄敳琠嬳㔠〠删⽘奚‱㄰⸴㠵〠㌸㔮ㄹ㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴ㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㄰㈮㌰㔠㌷㔮〱‱ㄷ⸰㈵″㠵⸸〱崊⽄敳琠嬲‰⁒ 塙娠㔶⸶㤳〠ㄱ㤮㔷㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㈰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㐲ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㈰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐲㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਴㈳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‴㈲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐲㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㤹⸴〸‶㔱⸷〷″ㄱ⸳㘱‶㘰⸰㤱崊⽄敳琠嬱㘠〠删⽘奚‵㘮㘹㌰‶㔲⸵〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐲㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㈹⸹㐵′〶⸰㤵′㐷⸴㌱′ㄸ⸰㐸崊⽄敳琠嬱㔠〠删⽘奚′㔰⸸㠷〠㌹㈮㠴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㈶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐷ㄮ㈳ㄠ㈰㘮〹㔠㐸㌮㜳㜠㈱㠮〴㡝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㄰㔮〴㠰‵㈹⸷ㄴ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐲㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪਴㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐲㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㈹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㐳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㐲㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㌱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈰㠮ㄱ㔠㤷⸷〱′㈸⸳㘸‱〶⸵㔵崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㘱㤮㈵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਴㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈵㌮ㄷ㈠㜷⸸㌲′㜳⸴㈵‸㠮㘲㍝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㄰ㄮ㌳㄰′㘶⸰㜰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㐳㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪਴㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐳㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㌵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㐳㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㐳㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㌷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㐳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㌷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐳㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਴㐰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‴㌹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐴ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪਴㐲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐴ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㐳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㐴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㐴㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㐵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸱ㄮ㐸㌸ㄲ⤾㹥湤潢樊㐴㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌳⸱㈠㜷㠠㈸㔮㠹㘠㜸㡝ਯ䄠‴㐵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐴㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਴㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‴㐷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐴㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮ㄱ⸴㠳㠱㈩㸾敮摯扪਴㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㌮ㄲ‷㜸′㠵⸸㤶‷㠸崊⽁†㐴㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㔱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㐵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㐵ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪਴㔶‰⁯扪਼㰯呹灥⽍整慤慴愊⽓畢瑹灥⽘䵌⽌敮杴栠ㄵ㈶㸾獴牥慭਼㽸灡捫整⁢敧楮㴧뼧⁩搽❗㕍き灃敨楈穲敓穎呣穫挹搧㼾਼㽡摯扥⵸慰ⵦ楬瑥牳⁥獣㴢䍒䱆∿㸊㱸㩸浰浥瑡⁸浬湳㩸㴧慤潢攺湳㩭整愯✠砺硭灴欽❘䵐⁴潯汫楴′⸹⸱ⴱ㌬⁦牡浥睯牫‱⸶✾਼牤昺剄䘠硭汮猺牤昽❨瑴瀺⼯睷眮眳⹯牧⼱㤹㤯〲⼲㈭牤昭獹湴慸⵮猣✠硭汮猺楘㴧桴瑰㨯⽮献慤潢攮捯洯楘⼱⸰⼧㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺灤昽❨瑴瀺⼯湳⹡摯扥⹣潭⽰摦⼱⸳⼧㸼灤昺偲潤畣敲㹇偌⁇桯獴獣物灴‱〮〰⸰㰯灤昺偲潤畣敲㸊㱰摦㩋敹睯牤猾㰯灤昺䭥祷潲摳㸊㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸浰㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯✾㱸浰㩍潤楦祄慴放㈰㈳ⴱ〭㈶吰㘺㔸㨴㥚㰯硭瀺䵯摩晹䑡瑥㸊㱸浰㩃牥慴敄慴放㈰㈳ⴱ〭㈶吰㘺㔸㨴㥚㰯硭瀺䍲敡瑥䑡瑥㸊㱸浰㩃牥慴潲呯潬㹌慔敘⁷楴栠桹灥牲敦㰯硭瀺䍲敡瑯牔潯氾㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸慰䵍㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯浭⼧⁸慰䵍㩄潣畭敮瑉䐽❵畩携慡〳扥㝢ⵡ扥㤭ㄱ昹ⴰ〰〭㜰㑣戰攵㘷愷✯㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺摣㴧桴瑰㨯⽰畲氮潲术摣⽥汥浥湴猯ㄮㄯ✠摣㩦潲浡琽❡灰汩捡瑩潮⽰摦✾㱤挺瑩瑬放㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾䅮⁥湤⵴漭敮搠摥数⁬敡牮楮朠浥瑨潤⁦潲⁲潴慭敲ⵦ牥攠灲潴敩渠獩摥ⵣ桡楮⁰慣歩湧㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺瑩瑬放㱤挺捲敡瑯爾㱲摦㩓敱㸼牤昺汩㹍慴琠䵣偡牴汯測⁭浣灡牴汯湀畣桩捡杯⹥摵※⁊楮扯⁘甬⁪楮扯硵䁧浡楬⹣潭‼⽲摦㩬椾㰯牤昺卥焾㰯摣㩣牥慴潲㸼摣㩤敳捲楰瑩潮㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㸼⽲摦㩬椾㰯牤昺䅬琾㰯摣㩤敳捲楰瑩潮㸼⽲摦㩄敳捲楰瑩潮㸊㰯牤昺剄䘾਼⽸㩸浰浥瑡㸊††††††††††††††††††††††††††††††††††††ਠ††††††††††††††††††††††††††††††††††† 㰿硰慣步琠敮搽❷✿㸊敮摳瑲敡洊敮摯扪੸牥昊〠㐵㜊〰〰〰〰〰‶㔵㌵⁦ 〰〰〳㐴㤲‰〰〰⁮ 〰〰〳㤸㜷‰〰〰⁮ 〰〰㈹㌱㠵‰〰〰⁮ 〰〰㤰㘲〱‰〰〰⁮ 〰〰㤱㤰㜴‰〰〰⁮ 〰〰㤲㔹㜳‰〰〰⁮ 〰〰㤴〳ㄷ‰〰〰⁮ 〰〰㤴㔶㠱‰〰〰⁮ 〰〱〵㈵ㄱ‰〰〰⁮ 〰〱〵㤲㌴‰〰〰⁮ 〰〱ㄶ㤲㌴‰〰〰⁮ 〰〱㈹〴㤰‰〰〰⁮ 〰〱㈹㜷㌱‰〰〰⁮ 〰〱㌰㌰㌱‰〰〰⁮ 〰〱㌱ㄷ㔱‰〰〰⁮ 〰〰㤳〹㔱‰〰〰⁮ 〰〰㤳㜰㔸‰〰〰⁮ 〰〰〳㐷ㄷ‰〰〰⁮ 〰〰〳㤷ㄵ‰〰〰⁮ 〰〱㌱㌶ㄹ‰〰〰⁮ 〰〱㌱㐰㜷‰〰〰⁮ 〰〱㌱㐵㈵‰〰〰⁮ 〰〱㌱㔰〱‰〰〰⁮ 〰〱㌱㔳㘹‰〰〰⁮ 〰〱㌱㔵㠴‰〰〰⁮ 〰〱㌱㔸㘳‰〰〰⁮ 〰〱㌱㘲㘹‰〰〰⁮ 〰〱㌱㘵㘷‰〰〰⁮ 〰〱㌱㘹㠰‰〰〰⁮ 〰〱㌱㜳㔲‰〰〰⁮ 〰〱㌱㜷㜴‰〰〰⁮ 〰〱㌱㠱㠴‰〰〰⁮ 〰〱㌱㠶㐲‰〰〰⁮ 〰〰㤵ㄵ㈹‰〰〰⁮ 〰〰㤵㔸〰‰〰〰⁮ 〰〰〳㤷㌶‰〰〰⁮ 〰〰〴〱㐱‰〰〰⁮ 〰〰〴㌵㜷‰〰〰⁮ 〰〰〴㌵㤸‰〰〰⁮ 〰〰〴㜷㠱‰〰〰⁮ 〰〱㌱㤰㌵‰〰〰⁮ 〰〱㌱㤴㠳‰〰〰⁮ 〰〰㈱〶㠴‰〰〰⁮ 〰〰㈱㈷ㄵ‰〰〰⁮ 〰〱ㄵ㜲〲‰〰〰⁮ 〰〰㤱㈶〶‰〰〰⁮ 〰〰㈹㌰㌵‰〰〰⁮ 〰〰㈹㌱〴‰〰〰⁮ 〰〰㈹㌴㈵‰〰〰⁮ 〰〰㈹㤸㐰‰〰〰⁮ 〰〱㌱㤷㠵‰〰〰⁮ 〰〱㌲〲ㄳ‰〰〰⁮ 〰〰㈹㤸㘱‰〰〰⁮ 〰〰㌰㈸㠳‰〰〰⁮ 〰〰㔱ㄵㄱ‰〰〰⁮ 〰〰㔱ㄵ㔶‰〰〰⁮ 〰〰㔱ㄷ〹‰〰〰⁮ 〰〰㔱ㄹㄹ‰〰〰⁮ 〰〰㔱㔲㈱‰〰〰⁮ 〰〱㌲〶㈲‰〰〰⁮ 〰〱㌲㄰㔷‰〰〰⁮ 〰〰㠲㠱㘹‰〰〰⁮ 〰〱㌰㘲㘵‰〰〰⁮ 〰〰㔱㔲㐲‰〰〰⁮ 〰〰㔱㔳㈳‰〰〰⁮ 〰〰㔱㔵㐸‰〰〰⁮ 〰〰㔱㠴㌰‰〰〰⁮ 〰〰㔱㠴㔱‰〰〰⁮ 〰〰㔲㔸㌳‰〰〰⁮ 〰〰㠲㠰㌱‰〰〰⁮ 〰〰㠲㠰㜶‰〰〰⁮ 〰〰㠲㠴㄰‰〰〰⁮ 〰〰㠳㈳ㄳ‰〰〰⁮ 〰〰㠳㈳㌴‰〰〰⁮ 〰〰㠳㌸〳‰〰〰⁮ 〰〰㤰㈲㜳‰〰〰⁮ 〰〰㤰㈱㈳‰〰〰⁮ 〰〰㤰㈱㘸‰〰〰⁮ 〰〰㤰㈴㔱‰〰〰⁮ 〰〰㤰㘰㠷‰〰〰⁮ 〰〰㤰㘱〸‰〰〰⁮ 〰〰㤰㘳㤴‰〰〰⁮ 〰〰㤱㈴㈰‰〰〰⁮ 〰〱㌲ㄴ㘹‰〰〰⁮ 〰〱㌲ㄶ㘶‰〰〰⁮ 〰〰㤱㈴㐱‰〰〰⁮ 〰〰㤱㈸ㄶ‰〰〰⁮ 〰〰㤱㠹ㄲ‰〰〰⁮ 〰〰㤱㠹㌳‰〰〰⁮ 〰〰㤱㤲㐳‰〰〰⁮ 〰〰㤲㔸㐷‰〰〰⁮ 〰〰㤲㔸㘸‰〰〰⁮ 〰〰㤲㘱㐲‰〰〰⁮ 〰〰㤳〸㌷‰〰〰⁮ 〰〰㤳〸㔸‰〰〰⁮ 〰〰㤳ㄱ㈱‰〰〰⁮ 〰〰㤳㘹㠰‰〰〰⁮ 〰〰㤳㜰〱‰〰〰⁮ 〰〰㤳㜲㈹‰〰〰⁮ 〰〰㤴〲㈵‰〰〰⁮ 〰〰㤴〲㐷‰〰〰⁮ 〰〰㤴〵㈰‰〰〰⁮ 〰〰㤴㔵ㄷ‰〰〰⁮ 〰〰㤴㔵㌹‰〰〰⁮ 〰〰㤴㔹ㄶ‰〰〰⁮ 〰〰㤵ㄳ㔳‰〰〰⁮ 〰〰㤵ㄳ㜵‰〰〰⁮ 〰〰㤵ㄷ㌳‰〰〰⁮ 〰〰㤵㔶㜲‰〰〰⁮ 〰〰㤵㔶㤴‰〰〰⁮ 〰〰㤵㘰㈰‰〰〰⁮ 〰〰㤵㜷㔹‰〰〰⁮ 〰〰㤵㜷㠱‰〰〰⁮ 〰〰㤶〴㌲‰〰〰⁮ 〰〱㌲ㄸ㤲‰〰〰⁮ 〰〱㌲㈲ㄵ‰〰〰⁮ 〰〱〵㈳㘸‰〰〰⁮ 〰〱〵㈴ㄶ‰〰〰⁮ 〰〱〵㈶㤰‰〰〰⁮ 〰〱〵㤰㐵‰〰〰⁮ 〰〱㌲㈴㘸‰〰〰⁮ 〰〱㌲㈶㌵‰〰〰⁮ 〰〱〵㤰㘷‰〰〰⁮ 〰〱〵㤴㤴‰〰〰⁮ 〰〱〶㌷㠷‰〰〰⁮ 〰〱〶㌸〹‰〰〰⁮ 〰〱〶㜱㔷‰〰〰⁮ 〰〱㌲㈸㔳‰〰〰⁮ 〰〱㌲㌰㜵‰〰〰⁮ 〰〱㌲㌳㈰‰〰〰⁮ 〰〱㌲㌶㠰‰〰〰⁮ 〰〱ㄵ㘲㌰‰〰〰⁮ 〰〱ㄵ㘳㠸‰〰〰⁮ 〰〱ㄵ㘶ㄲ‰〰〰⁮ 〰〱ㄵ㘶㘰‰〰〰⁮ 〰〱ㄵ㜳㤰‰〰〰⁮ 〰〱ㄶ㌸㘳‰〰〰⁮ 〰〱ㄶ㌸㠵‰〰〰⁮ 〰〱ㄶ㐱〳‰〰〰⁮ 〰〱ㄶ㐲㠴‰〰〰⁮ 〰〱ㄶ㤰〶‰〰〰⁮ 〰〱ㄶ㤰㈸‰〰〰⁮ 〰〱ㄶ㤴㜸‰〰〰⁮ 〰〱ㄷ㐱㤸‰〰〰⁮ 〰〱ㄷ㐲㈰‰〰〰⁮ 〰〱ㄷ㜲㤰‰〰〰⁮ 〰〱㈹〳〰‰〰〰⁮ 〰〱㈹〳㐸‰〰〰⁮ 〰〱㈹〶㠶‰〰〰⁮ 〰〱㈹㔳㘸‰〰〰⁮ 〰〱㈹㔳㤰‰〰〰⁮ 〰〱㈹㔶ㄴ‰〰〰⁮ 〰〱㈹㔸㘴‰〰〰⁮ 〰〱㈹㜹ㄹ‰〰〰⁮ 〰〱㌰㈸㤱‰〰〰⁮ 〰〱㌰㈹ㄳ‰〰〰⁮ 〰〱㌰㌲〳‰〰〰⁮ 〰〱㌰㘱㘱‰〰〰⁮ 〰〱㌰㘱㠳‰〰〰⁮ 〰〱㌰㘴㌷‰〰〰⁮ 〰〱㌰㠶㤹‰〰〰⁮ 〰〱㌰㠷㈱‰〰〰⁮ 〰〱㌰㠷㜹‰〰〰⁮ 〰〱㌰㠹㔲‰〰〰⁮ 〰〱㌱ㄶ㌵‰〰〰⁮ 〰〱㌱ㄶ㔷‰〰〰⁮ 〰〱㌱ㄹ㈳‰〰〰⁮ 〰〱㌱㌵㌹‰〰〰⁮ 〰〱㌱㌵㘱‰〰〰⁮ 〰〱㌲㌹㜷‰〰〰⁮ 〰〱㌳〱㠱‰〰〰⁮ 〰〱㌳㈴㄰‰〰〰⁮ 〰〱㌳㈷㔴‰〰〰⁮ 〰〱㌳㐱㤴‰〰〰⁮ 〰〱㌳㔵〵‰〰〰⁮ 〰〱㌳㠸㐷‰〰〰⁮ 〰〱㌳㤴㔹‰〰〰⁮ 〰〱㌴㈹㠸‰〰〰⁮ 〰〱ㄵ㘸㜹‰〰〰⁮ 〰〱㌵㌳㤴‰〰〰⁮ 〰〱㌶〱㔹‰〰〰⁮ 〰〱㌶㔸㔹‰〰〰⁮ 〰〱㌶㜱㈵‰〰〰⁮ 〰〱㌶㤴㠸‰〰〰⁮ 〰〱㈹㘰㐴‰〰〰⁮ 〰〱㌷㌶㘱‰〰〰⁮ 〰〱㌷㐸㈱‰〰〰⁮ 〰〱㌷㔱㐸‰〰〰⁮ 〰〱㌷㔲㐷‰〰〰⁮ 〰〱㌷㔴㠸‰〰〰⁮ 〰〱㌷㔵㤰‰〰〰⁮ 〰〱㌷㔸㠲‰〰〰⁮ 〰〱㌷㘰ㄲ‰〰〰⁮ 〰〱㌷㘵㈶‰〰〰⁮ 〰〱㌷㘷ㄲ‰〰〰⁮ 〰〱㌷㜰㘷‰〰〰⁮ 〰〱㌷㜳㜴‰〰〰⁮ 〰〱㌷㜸〵‰〰〰⁮ 〰〱㌷㜹㐰‰〰〰⁮ 〰〱㌷㠲㌳‰〰〰⁮ 〰〱㌷㤰㠹‰〰〰⁮ 〰〱㌷㤱ㄱ‰〰〰⁮ 〰〱㌷㤱㌳‰〰〰⁮ 〰〱㌷㤱㔵‰〰〰⁮ 〰〱㌷㤱㜷‰〰〰⁮ 〰〱㌷㤱㤹‰〰〰⁮ 〰〱㌷㤲㈱‰〰〰⁮ 〰〱㌷㤲㐳‰〰〰⁮ 〰〱㌷㤲㘵‰〰〰⁮ 〰〱㌷㤲㠷‰〰〰⁮ 〰〱㌷㤳〹‰〰〰⁮ 〰〱㌷㤳㌱‰〰〰⁮ 〰〱㌷㤳㔳‰〰〰⁮ 〰〱㌷㤳㜵‰〰〰⁮ 〰〱㌷㤳㤷‰〰〰⁮ 〰〱㌷㤴ㄹ‰〰〰⁮ 〰〱㌷㤴㐱‰〰〰⁮ 〰〱㌷㤴㘳‰〰〰⁮ 〰〱㌷㤴㠵‰〰〰⁮ 〰〱㌷㤵〷‰〰〰⁮ 〰〱㌷㤵㈹‰〰〰⁮ 〰〱㌷㤵㔱‰〰〰⁮ 〰〱㌷㤵㜳‰〰〰⁮ 〰〱㌷㤵㤵‰〰〰⁮ 〰〱㌷㤶ㄷ‰〰〰⁮ 〰〱㌷㤶㌹‰〰〰⁮ 〰〱㌷㤶㘱‰〰〰⁮ 〰〱㌷㤶㠳‰〰〰⁮ 〰〱㌷㤷〵‰〰〰⁮ 〰〱㌷㤷㈷‰〰〰⁮ 〰〱㌷㤸㠷‰〰〰⁮ 〰〱㌸〰㐷‰〰〰⁮ 〰〱㌸〲〶‰〰〰⁮ 〰〱㌸〳㘶‰〰〰⁮ 〰〱㌸〵㈵‰〰〰⁮ 〰〱㌸〶㠴‰〰〰⁮ 〰〱㌸〸㐳‰〰〰⁮ 〰〱㌸㄰〳‰〰〰⁮ 〰〱㌸ㄱ㘳‰〰〰⁮ 〰〱㌸ㄳ㈲‰〰〰⁮ 〰〱㌸ㄴ㠱‰〰〰⁮ 〰〱㌸ㄶ㐰‰〰〰⁮ 〰〱㌸ㄷ㤸‰〰〰⁮ 〰〱㌸ㄹ㔶‰〰〰⁮ 〰〱㌸㈱ㄳ‰〰〰⁮ 〰〱㌸㈲㜱‰〰〰⁮ 〰〱㌸㈴㈸‰〰〰⁮ 〰〱㌸㈵㠷‰〰〰⁮ 〰〱㌸㈷㐵‰〰〰⁮ 〰〱㌸㈹〲‰〰〰⁮ 〰〱㌸㌰㘲‰〰〰⁮ 〰〱㌸㌲㈲‰〰〰⁮ 〰〱㌸㌳㠱‰〰〰⁮ 〰〱㌸㌵㐱‰〰〰⁮ 〰〱㌸㌶㤹‰〰〰⁮ 〰〱㌸㌸㔷‰〰〰⁮ 〰〱㌸㐰ㄵ‰〰〰⁮ 〰〱㌸㐱㜴‰〰〰⁮ 〰〱㌸㐳㌳‰〰〰⁮ 〰〱㌸㐴㤲‰〰〰⁮ 〰〱㌸㐶㐸‰〰〰⁮ 〰〱㌸㐷㈳‰〰〰⁮ 〰〱㌸㐸㈹‰〰〰⁮ 〰〱㌸㐹〶‰〰〰⁮ 〰〱㌸㔰ㄳ‰〰〰⁮ 〰〱㌸㔱㜳‰〰〰⁮ 〰〱㌸㔳㌳‰〰〰⁮ 〰〱㌸㔴㤰‰〰〰⁮ 〰〱㌸㔶㔱‰〰〰⁮ 〰〱㌸㔸ㄲ‰〰〰⁮ 〰〱㌸㔹㜱‰〰〰⁮ 〰〱㌸㘱㈹‰〰〰⁮ 〰〱㌸㘲〴‰〰〰⁮ 〰〱㌸㘳㄰‰〰〰⁮ 〰〱㌸㘳㠷‰〰〰⁮ 〰〱㌸㘴㤴‰〰〰⁮ 〰〱㌸㘵㘴‰〰〰⁮ 〰〱㌸㘶㈰‰〰〰⁮ 〰〱㌸㘷㜸‰〰〰⁮ 〰〱㌸㘹㌸‰〰〰⁮ 〰〱㌸㜰㤸‰〰〰⁮ 〰〱㌸㜲㔷‰〰〰⁮ 〰〱㌸㜴ㄷ‰〰〰⁮ 〰〱㌸㜵㜸‰〰〰⁮ 〰〱㌸㜷㌷‰〰〰⁮ 〰〱㌸㜸ㄲ‰〰〰⁮ 〰〱㌸㜹ㄸ‰〰〰⁮ 〰〱㌸㜹㤵‰〰〰⁮ 〰〱㌸㠱〲‰〰〰⁮ 〰〱㌸㠲㘲‰〰〰⁮ 〰〱㌸㠴㈱‰〰〰⁮ 〰〱㌸㠵㠰‰〰〰⁮ 〰〱㌸㠷㐰‰〰〰⁮ 〰〱㌸㠸ㄵ‰〰〰⁮ 〰〱㌸㠹㈱‰〰〰⁮ 〰〱㌸㠹㤸‰〰〰⁮ 〰〱㌸㤱〵‰〰〰⁮ 〰〱㌸㤲㘵‰〰〰⁮ 〰〱㌸㤴㈵‰〰〰⁮ 〰〱㌸㤵㠵‰〰〰⁮ 〰〱㌸㤷㐵‰〰〰⁮ 〰〱㌸㤹〴‰〰〰⁮ 〰〱㌸㤹㜹‰〰〰⁮ 〰〱㌹〰㠵‰〰〰⁮ 〰〱㌹〱㘲‰〰〰⁮ 〰〱㌹〲㘹‰〰〰⁮ 〰〱㌹〴㈸‰〰〰⁮ 〰〱㌹〵㠸‰〰〰⁮ 〰〱㌹〶㘳‰〰〰⁮ 〰〱㌹〷㘹‰〰〰⁮ 〰〱㌹〸㐶‰〰〰⁮ 〰〱㌹〹㔳‰〰〰⁮ 〰〱㌹ㄱㄳ‰〰〰⁮ 〰〱㌹ㄲ㜳‰〰〰⁮ 〰〱㌹ㄴ㌲‰〰〰⁮ 〰〱㌹ㄵ㤲‰〰〰⁮ 〰〱㌹ㄶ㘷‰〰〰⁮ 〰〱㌹ㄷ㜳‰〰〰⁮ 〰〱㌹ㄸ㔰‰〰〰⁮ 〰〱㌹ㄹ㔷‰〰〰⁮ 〰〱㌹㈱ㄶ‰〰〰⁮ 〰〱㌹㈱㤱‰〰〰⁮ 〰〱㌹㈲㤷‰〰〰⁮ 〰〱㌹㈳㜴‰〰〰⁮ 〰〱㌹㈴㠱‰〰〰⁮ 〰〱㌹㈶㐰‰〰〰⁮ 〰〱㌹㈸〰‰〰〰⁮ 〰〱㌹㈹㘰‰〰〰⁮ 〰〱㌹㌰㌵‰〰〰⁮ 〰〱㌹㌱㐱‰〰〰⁮ 〰〱㌹㌲ㄸ‰〰〰⁮ 〰〱㌹㌳㈵‰〰〰⁮ 〰〱㌹㌴㠶‰〰〰⁮ 〰〱㌹㌶㐷‰〰〰⁮ 〰〱㌹㌸〷‰〰〰⁮ 〰〱㌹㌹㘶‰〰〰⁮ 〰〱㌹㐱㈴‰〰〰⁮ 〰〱㌹㐱㤹‰〰〰⁮ 〰〱㌹㐳〵‰〰〰⁮ 〰〱㌹㐳㠲‰〰〰⁮ 〰〱㌹㐴㠹‰〰〰⁮ 〰〱㌹㐵㘴‰〰〰⁮ 〰〱㌹㐶㜰‰〰〰⁮ 〰〱㌹㐷㐷‰〰〰⁮ 〰〱㌹㐸㔴‰〰〰⁮ 〰〱㌹㐹㈹‰〰〰⁮ 〰〱㌹㔰㌵‰〰〰⁮ 〰〱㌹㔱ㄲ‰〰〰⁮ 〰〱㌹㔲ㄹ‰〰〰⁮ 〰〱㌹㔲㤴‰〰〰⁮ 〰〱㌹㔴〰‰〰〰⁮ 〰〱㌹㔴㜷‰〰〰⁮ 〰〱㌹㔵㠴‰〰〰⁮ 〰〱㌹㔶㔹‰〰〰⁮ 〰〱㌹㔷㘵‰〰〰⁮ 〰〱㌹㔸㐲‰〰〰⁮ 〰〱㌹㔹㐹‰〰〰⁮ 〰〱㌹㘱㌵‰〰〰⁮ 〰〱㌹㘲㤶‰〰〰⁮ 〰〱㌹㘴㔶‰〰〰⁮ 〰〱㌹㘶ㄵ‰〰〰⁮ 〰〱㌹㘶㤰‰〰〰⁮ 〰〱㌹㘷㤶‰〰〰⁮ 〰〱㌹㘸㜳‰〰〰⁮ 〰〱㌹㘹㠰‰〰〰⁮ 〰〱㌹㜱㐰‰〰〰⁮ 〰〱㌹㜲㤹‰〰〰⁮ 〰〱㌹㜴㔹‰〰〰⁮ 〰〱㌹㜶ㄷ‰〰〰⁮ 〰〱㌹㜷㜷‰〰〰⁮ 〰〱㌹㜹㌷‰〰〰⁮ 〰〱㌹㠰㤶‰〰〰⁮ 〰〱㌹㠲㔶‰〰〰⁮ 〰〱㌹㠳㌱‰〰〰⁮ 〰〱㌹㠴㌷‰〰〰⁮ 〰〱㌹㠵ㄴ‰〰〰⁮ 〰〱㌹㠶㈱‰〰〰⁮ 〰〱㌹㠷㠱‰〰〰⁮ 〰〱㌹㠹㐱‰〰〰⁮ 〰〱㌹㤰㤸‰〰〰⁮ 〰〱㌹㤲㔸‰〰〰⁮ 〰〱㌹㤳㌳‰〰〰⁮ 〰〱㌹㤴㌹‰〰〰⁮ 〰〱㌹㤵ㄶ‰〰〰⁮ 〰〱㌹㤶㈳‰〰〰⁮ 〰〱㌹㤷㠲‰〰〰⁮ 〰〱㌹㤸㔷‰〰〰⁮ 〰〱㌹㤹㘳‰〰〰⁮ 〰〱㐰〰㐰‰〰〰⁮ 〰〱㐰〱㐷‰〰〰⁮ 〰〱㐰〳〷‰〰〰⁮ 〰〱㐰〳㠲‰〰〰⁮ 〰〱㐰〴㠸‰〰〰⁮ 〰〱㐰〵㘵‰〰〰⁮ 〰〱㐰〶㜲‰〰〰⁮ 〰〱㐰〸㌲‰〰〰⁮ 〰〱㐰〹㤱‰〰〰⁮ 〰〱㐰ㄱ㐹‰〰〰⁮ 〰〱㐰ㄳ〸‰〰〰⁮ 〰〱㐰ㄴ㘶‰〰〰⁮ 〰〱㐰ㄶ㈶‰〰〰⁮ 〰〱㐰ㄷ〱‰〰〰⁮ 〰〱㐰ㄸ〷‰〰〰⁮ 〰〱㐰ㄸ㠴‰〰〰⁮ 〰〱㐰ㄹ㤱‰〰〰⁮ 〰〱㐰㈱㔰‰〰〰⁮ 〰〱㐰㈳〶‰〰〰⁮ 〰〱㐰㈳㠱‰〰〰⁮ 〰〱㐰㈴㠷‰〰〰⁮ 〰〱㐰㈵㘴‰〰〰⁮ 〰〱㐰㈶㜱‰〰〰⁮ 〰〱㐰㈸㌱‰〰〰⁮ 〰〱㐰㈹〶‰〰〰⁮ 〰〱㐰㌰ㄲ‰〰〰⁮ 〰〱㐰㌰㠹‰〰〰⁮ 〰〱㐰㌱㤶‰〰〰⁮ 〰〱㐰㌳㔷‰〰〰⁮ 〰〱㐰㌵ㄷ‰〰〰⁮ 〰〱㐰㌶㜸‰〰〰⁮ 〰〱㐰㌸㌶‰〰〰⁮ 〰〱㐰㌹ㄱ‰〰〰⁮ 〰〱㐰㐰ㄷ‰〰〰⁮ 〰〱㐰㐰㤴‰〰〰⁮ 〰〱㐰㐲〱‰〰〰⁮ 〰〱㐰㐳㘱‰〰〰⁮ 〰〱㐰㐵㈲‰〰〰⁮ 〰〱㐰㐶㠳‰〰〰⁮ 〰〱㐰㐷㔸‰〰〰⁮ 〰〱㐰㐸㘴‰〰〰⁮ 〰〱㐰㐹㐱‰〰〰⁮ 〰〱㐰㔰㐸‰〰〰⁮ 〰〱㐰㔲〶‰〰〰⁮ 〰〱㐰㔳㘵‰〰〰⁮ 〰〱㐰㔴㐰‰〰〰⁮ 〰〱㐰㔵㐶‰〰〰⁮ 〰〱㐰㔶㈳‰〰〰⁮ 〰〱㐰㔷㌰‰〰〰⁮ 〰〱㐰㔸〵‰〰〰⁮ 〰〱㐰㔹ㄱ‰〰〰⁮ 〰〱㐰㔹㠸‰〰〰⁮ 〰〱㐰㘰㤵‰〰〰⁮ 〰〱㐰㘱㜰‰〰〰⁮ 〰〱㐰㘲㜶‰〰〰⁮ 〰〱㐰㘳㔳‰〰〰⁮ 〰〱㐰㘴㘰‰〰〰⁮ 〰〱㐰㘵㌵‰〰〰⁮ 〰〱㐰㘶㐱‰〰〰⁮ 〰〱㐰㘷ㄸ‰〰〰⁮ 〰〱㐰㘸㈵‰〰〰⁮ 〰〱㐰㘹〰‰〰〰⁮ 〰〱㐰㜰〶‰〰〰⁮ 〰〱㐰㜰㠳‰〰〰⁮ 〰〱㌷㠴ㄱ‰〰〰⁮ 〰〱㌷㠷㔹‰〰〰⁮ 〰〱㌷㤰ㄲ‰〰〰⁮ 〰〱㐰㜱㤰‰〰〰⁮ 瑲慩汥爊㰼⽓楺攠㐵㜾㸊獴慲瑸牥昊㈲ㄊ┥䕏䘊

