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Abstract

Protein side-chain packing (PSCP), the task of determining amino acid side-chain conformations, has important
applications to protein structure prediction, refinement, and design. Many methods have been proposed to resolve
this problem, but their accuracy is still unsatisfactory. To address this, we present AttnPacker, an end-to-end, SE(3)-
equivariant deep graph transformer architecture for the direct prediction of side-chain coordinates. Unlike existing
methods, AttnPacker directly incorporates backbone geometry to simultaneously compute all amino acid side-chain
atom coordinates without delegating to a rotamer library, or performing expensive conformational search or sampling
steps. Tested on the CASP13 and CASP14 native and non-native protein backbones, AttnPacker predicts side-
chain conformations with RMSD significantly lower than the best side-chain packing methods (SCWRL4, FASPR,
Rosetta Packer, and DLPacker), and achieves even greater improvements on surface residues. In addition to RMSD,
our method also achieves top performance in side-chain dihedral prediction across both data sets.

1 Introduction

Protein side-chain packing (PSCP) involves predicting the three dimensional coordinates of side-chain atoms given
backbone conformation (coordinates) and primary sequence. This problem has important applications to protein
structure prediction [11, 10, 6], design [23, 206, 8, 29], and protein-protein interactions [28, 14]. Traditional methods
for PSCP rely on minimizing some energy function over a set of rotamers from a fixed library [15, 34, 25,4, 1,9, 32, 5].
These methods tend to differ primarily in their choice of rotamer library, energy function, and energy minimization
procedure. Although many of these methods have shown success, the use of search heuristics coupled with a
discrete sampling procedure could ultimately limit their accuracy. Currently, the fastest methods (OSCAR-star[25],
FASPR|[15], SCWRLA4[9]) do not employ deep learning (DL), and are rotamer library-based.

Several machine learning (ML) methods have been proposed for the task of side-chain prediction [22, 21, 30, 31,

, 20, 32]. One of the earliest of these methods, SIDEPro [22], attempts to learn an additive energy function over
pairwise atomic distances for each side-chain rotamer. This is achieved by training a family of 156 feedforward
networks - one for each amino acid and contacting atom type. The rotamer with the lowest energy is then selected.
DLPacker[21] formulates packing as an image-to-image transformation problem and employs a deep U-net-style
neural network. The method iteratively predicts side-chain atom positions using a voxelized representation of
the residue’s local environment as input, and outputs densities for the respective side-chain’s atoms. The output
densities are then compared to a rotamer database and the closest matching rotamer is selected. The most recent
version of OPUS-Rota4[31] uses a pipeline of multiple deep networks to predict side-chain coordinates. The method
uses predicted side-chain dihedral angles to obtain an initial model, and then applies gradient descent on predicted
distance constraints to obtain a final structure. It is worth noting that OPUS-Rota4, to the best of our knowledge,
is the only ML-based PSCP method that directly utilizes MSA (multiple sequence alignment) as part of its input.

Here we present AttnPacker, a new deep architecture for PSCP. Our method is inspired by recent breakthroughs in
modelling three-dimensional data, and architectures for protein structure prediction - most notably AlphaFold2[18],
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Tensor Field Networks (TFN) [27], and SE(3)-Transformer[12]. By modifying and combining components of these
architectures, we are able to significantly outperform traditional PSCP methods as well as machine learning methods
in terms of speed, memory efficiency, and overall accuracy using only features derived directly from primary sequence
and backbone coordinates as input.

Specifically, we introduce deep graph transformer architectures for updating both residue and pairwise features based
on the input protein’s backbone conformation. Inspired by AlphaFold2, we propose locality-aware triangle updates
to refine our pairwise features using a graph-based framework for computing triangle attention and multiplication
updates. By doing this, we are able to significantly reduce the memory required for performing triangle updates
which enables us to build higher capacity models. In addition, we explore several SE(3)-equivariant attention
mechanisms and propose an SE(3)-equivariant transformer architecture for learning from 3D points.

Our method, AttnPacker, significantly outperforms traditional PSCP methods on CASP13 and CASP14 native
backbones with average reconstructed RMSD over 19% and 25% lower than the next best method on each test set.
AttnPacker also surpasses deep learning DLPacker, with 13% lower average RMSD on the each test set. In addition,
our method achieves top RMSD scores for CASP14 non-native backbone targets predicted by AlphaFold2. On top
of our method’s favorable performance in RMSD minimization, it also achieves the lowest x;_4 mean absolute error
(MAE) across all methods on the CASP13 and CASP14 targets.

2 Methods

2.1 Network Architecture

Our method draws on several recent breakthroughs in deep learning and protein structure prediction, namely the
two-stage architecture introduced by AlphaFold2, and a TFN-based equivariant transformer inspired by Fuchs et
al[12]. Moreover, our model directly predicts the 3D coordinates of all side-chain atoms for a given protein using
only backbone coordinates and primary sequence as input. A detailed overview of input features and the input
embedding procedure can be found in Supplementary Material, Table S3, and Figure S1.

The first component, outlined in Figure 1, is a deep graph transformer network which utilizes the geometry of the
input backbone to revise node and pair features. This component is similar to the AlphaFold2’s ’Evoformer’ module
for processing MSA and pair features, but we replace axial self-attention and global triangle updates with graph
based self-attention and triangle updates for our residue and pair features. In AlphaFold2, triangle updates are
performed by considering all triples of residues in the input protein, updating the corresponding pair representations
in a geometrically motivated manner. These procedures require O (L3d) time to compute, and (L3) space to store
attention logits where L is the number of residues and d is the hidden dimension of pair features. In our setting, we
are able to avoid this restrictive time and space complexity by incorporating locality information derived from the
protein’s backbone atom coordinates. To do this, we introduce locality aware triangle updates (Section 2.2) and
compare the performance of this approach against the update procedures used in AlphaFold2.
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Figure 1:  Architecture of Locality Aware Graph Transformer Block. Standard multi-headed graph attention
is used to update node features, while edges between adjacent nodes are updated with triangle multiplication
and attention. For each triangle update, edge adjacency information is used to select only those triangles having
maximum side-length less than a fixed threshold.

The second component of our architecture is an SE(3)-equivariant neural network which takes the output of the
first component, along with the protein’s backbone C\-coordinates, to simultaneously predict each residue’s side-
chain coordinates. Our equivariant architecture is derived from the SE(3)-Transformer introduced by Fuchs et al.
Similar to the SE(3)-Transformer, our attention blocks use TFNs to produce keys and values for scalar and point
features. But our implementation differs in a few key areas. First, our implementation uses shared attention with
dot-product based similarity (see Table 5). That is, we combine the attention logits of each feature type to produce
shared attention weights. Furthermore, in each attention block, we augment the input to the TFN radial kernel
with pairwise distance information, and make further use of the pair features to bias attention weights and update
scalar features (see Algorithm S2, Algorithm S3). The architecture is outlined in Figure 2, full implementation
details can be found in Section S6, and ablation studies guiding these decisions are given in, Table 6, and Table 7.
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Figure 2: Architecture of our TFN-based transformer block. Keys and values are computed using TFNs. The input
to each TFN radial kernel are pair features, along with distance information between points for the corresponding
pair. Pair features are also linearly projected to bias the similarity logits for adjacent pairs of residues.

2.2 Locality Aware Triangle Updates

We experimented with multiple approaches for improving the time and space requirements of triangle updates. We
ultimately settled on a hypergraph-based approach where a separate spatial graph is constructed for edge features.
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In this graph, there is a vertex v;; for residue pair ¢, j if the distance d (¢, j) between the corresponding C, atoms is
within a threshold §. We add hyperedges between v;; and vy, v, only if max{d (i,k),d (j, k)} < 6. Interpreting
this graph in the context of triangles, the vertices coincide with triangle edges of side length at most 6, and edges
correspond to triangles. The process is illustrated in Figure 3.
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Figure 3: Overview of pair graph generation for locality aware attention. Each pair of residues within a fixed
distance is included as a node in this graph. (A) We begin with the spatial graph for residues and focus on a specific
pair (4,7). (B) For each node z,we then compute the maximum distance between (i, ) and (j,z) and disregard
residues falling outside our distance threshold 6. (C) All triangles that include pair (i, ) in the remaining graph
will have maximum side-length at most 6. (D) The final graph has nodes for each edge in (C'), and edges for each
triangle.

In order to efficiently compute triangle updates, we select the 2N, nearest neighbors of each vertex v;; using
max {d (i, k),d (j,k)} as our distance function. This results in a 3-uniform, N,-regular hypergraph containing as
many nodes as there are underlying residues with C, distance less than the threshold §. We denote the latter
quantity by N,. Triangle multiplication and attention updates are straight forward to apply since the neighbors
of each node v;; span strictly over residues k for which the corresponding triangle is well-defined. The update
operations require time and space proportional to O (N, - N.) in total. If the distance threshold 6 is chosen so that
the number of resulting pairs is linear in the number of atoms, then choosing constant N, results in N, - N, = o (n2)
space complexity, and time complexity O (N, - N, - d). Computing the hypergraph still requires O (Lg) time, but
this can be performed on a CPU as a pre-processing step.

3 Results

We compare side-chain reconstruction accuracy for three of our models against several popular methods: DLPacker,
RosettaPacker, SCWRI4, and FASPR. To understand the impact of different architectural components, we list
results of our TFN-Transformer without triangle updates (TFN), with standard triangle updates (+7ri), and
with locality aware triangle updates (+Tri+Local), respectively. We use the same hyperparameters for the TFN-
Transformer component, and use a distance cutoff of 15A with 30 nearest neighbors for local triangle updates. All
other hyperparameters are held constant unless otherwise specified. A full summary of model hyperparameters,
training data, and training procedure can be found in Table S1, and Section S3.

To evaluate the performance of each method, we consider residue-level RMSD and dihedral angle deviations between
the predicted and native side-chains. RMSD between predicted and native side-chain atoms is computed separately
for each residue, and averaged over all residues in the corresponding data set(s). Dihedral angle mean absolute
error (MAE) is computed analogously. Dihedral accuracy is defined as the fraction of dihedral angles with absolute
difference less than 20° from the corresponding native angle. We further divide our results based on residue
centrality. Core residues are defined as those amino acids with at least 20 Cs atoms within a 10A radius of the
target residue’s Cg atom. surface residues are defined as those amino acids with as most 15 Cjz atoms within the
same region of interest. All Comparisons are made on native structures from CASP13, and CASP14 (see Table S11
for a list of targets in each test set).
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RMSD (A)
CASP13 CASP14

Method All Core Surface All Core Surface
SCWRL 0.771 0.471 0.983 0.910 0.556 1.125
FASPR 0.751 0.481 0.960 0.899 0.564 1.112
RosettaPacker 0.713 0.395 0.948 0.864 0.473 1.087
DLPacker 0.633 0.408 0.815 0.797 0.499 0.994
TFEFN-Transformer 0.608 0.440 0.746 0.758 0.535 0.905

+Tri 0.550 0.347 0.707 0.697 0.432 0.874

~+Tri+Local 0.557 0.354 0.715 0.701 0.438 0.875
Residue Count 18139 6443 7520 13399 4021 6107

Table 1: Average RMSD (A) on the CASP13 and CASP14 targets. Results are divided by residue centrality (All,
Core, and Surface).

We begin by comparing the average RMSD over CASP13 and CASP14 test sets (see Table S6 for results on CASP13-
FM and CASP14-FM test sets). Table 1 shows that variants of our methods consistently achieve the lowest RMSD
in each centrality category across all data sets. The inclusion of triangle updates yields a significant improvement
over the TFN-Transformer alone. Compared to the other deep learning method DLPacker, our method obtains
much lower RMSD in all categories, and observes the largest improvement on surface residues. Interestingly, the
impact of triangle updates is less substantial on protein surface residues suggesting that triangle updates play a
larger role in determining conformations protein core residues. We explore this further in Figure 5.

In terms of residue-level RMSD, the most significant improvements are achieved for Arg and His, each of which have
large positively charged side-chains, as well as bulky hydrophobic amino acids Phe, Trp, and Tyr. A full overview
of residue-level RMSD on the CASP13 and CASP14 data sets can be found in Supplementary Tables S8, and S9.
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Figure 4: Average RMSD (A) (y-axis) of each method (x-axis) on Arg, His, Phe, Trp, and Tyr. The RMSD values
are averaged over the entire CASP14 data set for each residue type. Average RMSDs for instances of each residue
type appearing on the protein’s surface are shown in the bottom plot.

As shown in Figure 4, adding triangle updates before the TFN-Transformer improves the overall average RMSD of
Arg, His, Phe, Tyr, and Trp by 11%, 16%, 20%, 28%, and 26% respectively. For surface residues, the performance
difference between the TFN-Transformer and TFN+Tri is significantly smaller. On the other hand, the performance
gap between our method and others increases for surface residues. We outperform the next best method by 16%,
17%, 25%, 20%, and 28% respectively.

We further investigated the role of centrality in side-chain reconstruction accuracy by measuring average RMSD
and average x1_4 MAE with respect to the number of C'3 atoms in a residue’s microenvironment. Not surprisingly,
RMSD and chi angle prediction error decrease rapidly as centrality increases. In Figure 5, we verify that the
marginal improvement of triangle updates increases with centrality. For both RMSD and MAE, the performance
gap between TFN and TFN+Tri, increases with centrality, suggesting that triangle updates are important for
accurately determining side-chain conformations in protein cores. The opposite is true when comparing TFN+Tri
with DLPacker, where the gap decreases as centrality increases.This is not surprising, as DLPacker iteratively
constructs each residue’s side-chain using only atoms the residue’s immediate microenvironment as input. This
choice of input features implies that features for protein surface residues are more sparse than those for core
residues.
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Figure 5: Plots of average RMSD and y;_4-MAE® against centrality for methods DLPacker, TFN-Transformer
(TFN), and TEN-Transformer with Triangle Updates (TFN+Tri). Values are computed using all targets in both
CASP13 and CASP14 data sets. Values were disregarded if the number of residues with the corresponding centrality
was less than 30.

In addition to achieving top performance in reconstructed side-chain RMSD, our method is also significantly faster
than all other methods except for FASPR. Table 2 shows the cumulative and relative time spent by each method
for reconstructing side-chains of all targets in the CASP13 dataset.

Method Ours DLPack Ros. Pack FASPR SCWRIL4
Cumulative Time (s) 68.3  8499.6 10368.2 32.5 1001.9
Relative Time 1.0 124.4 151.7 0.5 14.7

Table 2: Time comparison of PSCP methods. Relative times for reconstructing the side-chain atoms of all 83
targets in the CASP13 dataset. Run on a single RTXA6000 GPU, our method with local triangle updates is able
to reconstruct all side-chain atoms in 68 seconds.

We now turn our attention to dihedral angle prediction accuracy. As pointed out by Zhang et al.[15], the prediction
accuracy of side chain dihedrals is much sharper when all chi dihedrals are considered, and a 20° cutoff is used when
comparing to the native structure. We opt to use this criteria for all reported accuracy. In addition, we assess the
quality of each method in terms of x;_4 MAE with the native structure.

We analyzed side-chain dihedral accuracy on the CASP13 and CASP14 data sets and show the results in Table 3. In
terms of x1_4 MAE, the TFN transformer with triangle updates achieves top-1 or top-2 performance in each data set.
The performance carries over into prediction accuracy, where the method also achieves top 1 or top 2 performance
on each data set regardless of residue centrality. Local triangle updates achieve competitive performance, with top-2
MAE scores for all but one category.

In line with the results reported by Misiura et al.[21], when compared to traditional methods, deep learning methods
recover Y dihedral angles considerably closer to those of the native structure. For our methods, this improvement
carries over to Yo angle prediction, where triangle updates obtain an 8% and 10% improvement over the next best
method DLPacker on the CASP13 and CASP14 targets.
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MAE®° Accuracy
X1 X2 X3 X4 All Core Surface
CASP13
SCWRL 25.89 26.18 46.55 53.79 67.6% 59.3% 81.3%
FASPR 25.22 25.36 47.25 52.93 68.1% 59.9% 80.3%
RosettaPacker 24.15 24.49 44.84 52.19 69.4% 60.6% 83.7%
DLPacker 20.63 23.39 46.48 66.10 69.0% 61.1% 81.3%
TFN-Transformer 19.87 23.03 46.71 54.42 68.6% 62.0% 78.7%
+Tri 18.00 21.15 43.58 52.03 71.2% 63.3% 82.9%
+Tri+Local 18.69 20.95 45.07 51.63 70.4% 62.5% 82.3%
CASP14
SCWRL 30.92 29.63 49.07 51.24 61.3% 74.9% 54.4%
FASPR 30.95 28.88 47.91 52.54 62.0% 74.0% 55.8%
RosettaPacker 29.33 28.94 47.19 52.09 62.7% 77.7% 55.5%
DLPacker 26.65 27.49 51.58 68.13 61.8% 74.9% 54.2%
TFN-Transformer 25.95 27.00 48.53 51.96 61.9% 72.6% 56.0%
+Tri 24.06 24.81 45.42 50.79 65.1% 77.4% 57.8%
+Tri+Local 24.44 25.42 46.29 50.84 63.4% 76.4% 55.9%

Table 3: Side-chain dihedral prediction results on the CASP13 and CASP14 targets. Accuracy results shown for
all, core, and surface residues.

To better understand the instances where our method loses its advantage to traditional PSCP algorithms, we
consider the performance on four amino acids with high side-chain dihedral degrees of freedom. Following DLPacker,
we consider dihedral prediction for charged and polar amino acids Lys, Arg, Glu, and Gln in Table 4. For these
amino acids, variants of our methods are still competitive with traditional PSCP algorithms, comparing favorably
in x1—2 MAE but losing their edge at higher orders. Comparing accuracy scores tells a different story. Although
we are able to obtain comparable or lower MAE values for each degree of freedom, we only obtain top-1 or top-2
accuracy for Gln and Glu. On the other hand, physics-based RosettaPacker obtains top-1 or top-2 performance for
each amino acid along with top-1 x4 scores. As the authors of DLPacker also point out, new training methods or
loss functions which improve on higher order dihedral accuracy is an important area for future research.
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MAE® MAE®°

X1 X2 X3 X4 acc. X1 X2 X3 acc.

ARG GLN
SCWRL 314 253 60.1 55.7 0.550 33.8 452 353 0.559
FASPR 341 259 632 575 0.537 334 425 36.1 0.558
RosettaPacker 31.1 243 60.6 51.4 0.564 293 366 355 0.591
DLPacker 256 262 579 61.1 0.516 31.2 393 347 0.576
TFEFN-Transformer 25.0 249 620 583 0475 277 335 358 0.558
+Tri 21.8 22.1 56.9 528 0.522 25.2 293 340 0.587
+Tri+Local 225 243 588 525 0491 277  28.4 329 0.580

LYS GLU
SCWRL 286 319 403 489 0.617 38.1 366 36.1 0.540
FASPR 28.0 30.1 428 495 0.629 358 383 36.6 0.542
RosettaPacker 270 317 40.2 48.5 0.623 36.1 373 357 0.547
DLPacker 22.7 304 478 710 0.522 30.5 375 346 0.532
TFEFN-Transformer 21.7 321 423 505 0.577 285 3541 323 0.546
+Tri 18.6 303 404 505 0.594 25.9 329 31.0 0.583
+Tri+Local 19.8 30.1 403 50.0 0.595 26.7 341 356 0.547

Table 4: Dihedral MAE on the CASP13 targets for charged and polar Amino Acids with high degrees of freedom.

3.1 Ablation and Architecture Assessment

We consider several variants of SE(k)-equivariant self attention. Each variant can be categorized by the operation
used to compute the similarity between keys and queries of different features types (i.e. 1D-scalar and 3D-point
features) and the operation used to compute the final attention weights. We focus on the well-known dot product
similarity, used in the SE(3)-Transformer and negative distance similarity which was first presented in the Invariant
Point Attention module of AlphaFold2. Aside from calculating similarity between points, these architectures also
differ in their calculation of attention scores - AlphaFold2 uses the same shared attention weights for scalar and
point features, whereas the SE(3)-Transformer computes attention weights for each type. This is outlined more
formally in Table 5. Following the conventions of ([27, 12]), we use a superscript £ to denote type-¢ features of
dimension 2¢ + 1.

Similarity Attention
T
Dot Ufj = (Qf) kfj + bfj Per-Type fgut,i = ZjeN(i) w‘}afjvij
Product

o T ké /=0 ;o
Distance o}, = {(ql) i B Shared  ff,, = cnvi (Z cwt ae) vl
ij ¢ ¢ out,i eN (i) ¢ ij i

1T (af) — Tij (k)| ¢>0 ’

Table 5: Description of similarity and attention types. Here, we use a superscript ¢ to denote type-¢ features of
dimension 2¢ + 1 (i.e. £ = 0 for scalar features and ¢ = 1 for point features). For distance similarity, we use Ty,
to denote some transformation mapping points into so-called “local frames” of the respective node used to ensure
equivariance of the operation.

We trained four TFN-Transformer models differing only by attention and similarity type. FEach model used a
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hidden dimension of 24 for point features and 180 for scalar features. Ten attention heads were used in each of
eight attention blocks. A head dimension of 20 was used for scalar features and 4 was used for point features. A
maximum of 14 nearest neighbors were considered and a radius of 16A was used as a cutoff. The average RMSD
and dihedral accuracy results of the four attention variants are shown in Table 6.

CASP13 CASP14
RMSD x-Acc. RMSD x-Acc.
Similarity Attention All Core Ste. All All Core Core All

) per-type 0.702  0.539  0.834 63.8% 0.878  0.657  1.015 55.9%
Distance

shared 0.675  0.482  0.821 65.6% 0.804  0.567  0.955 59.8%

per-type 0.642  0.474  0.774 66.6% 0.782  0.579 0.915 60.1%

Dot-prod - -

shared 0.629 0.471 0.759 67.5% 0.775 0.559 0.923 61.2%

Table 6: Comparison of attention and similarity operations on performance. Performance is measured using
average residue RMSD (A) and x;_4 prediction accuracy.

The results in Table 6 show that shared attention weights produce better results for both similarity types. Overall,
dot-product-based similarity outperforms distance based similarity, even when per-type attention is used. As pointed
out by Fuchs et al[12], this may be due to the fact that each basis kernel in a TEFN is completely constrained in the
angular direction. By using dot-product based similarity, the angular profile of the basis kernels are modulated by
the attention weights.

We also experimented with different architectural variants. First, we used a linear projection, rather than a TFN to
compute keys at each attention head. Next, we augmented the input to the TFN radial kernel by concatenating the
pairwise distances between hidden coordinates. Third, we tried removing the attention calculation between points
and instead used weights derived from scalar features for pointwise attention. With each variant, shared attention
and dot product attention was used. As shown in Table 7, using a linear projection for attention keys has the largest
impact on RMSD score - surprisingly more than removing point-based attention all together. This suggests that
TFN neighbor convolutions are an important component of the transformer architecture. The results also show
that RMSD scores are improved when pairwise distances between hidden coordinate features are concatenated to
the input of the TFN radial kernel.

(a) RMSD (A) (b) RMSD (A)
TFN-Transformer All Core Sfe. TFN-+Local All Core Sfe.
Baseline 0.629 0471  0.759 =28 0.597 0.432 0.733

+ pairwise dists 0.608 0.440 0.746 =12 0.569 0.378 0.721
-+ No coord. attn. 0.686 0.515 0.818 0 =16 0.557 0.354 0.715
+ Linear keys 0.709  0.538 0.839 0 =00 0.550 0.347 0.707

Table 7:  The tables show average side-chain RMSD on the CASP13 targets. Table (a) shows the effect of TFN
architectural features. Baseline denotes our TFN-Transformer with shared dot-product attention and pair bias.
The other three rows show results after changing some component. Table (b) shows the effect of neighbor distance
threshold on RMSD with 8 = 8, 12, 16 and co. Each model in (b) uses our locality aware graph transformer
with distance cutoff # and TFN-Transformer with shared dot-product similarity, pair bias, and pairwise distance
features. All other hyperparameters were held constant.

We also considered the effect of the neighbor distance threshold on performance. This threshold is used as the
maximum valid edge length for triangle updates, and to determine residue adjacency in the locality aware graph
transformer. It is also used to define the neighborhood of scalar and point features in the TFN-Transformer. We
tried three distance thresholds, 8A, 12A, and 16A The results are shown in Table 7.
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Average RMSD clearly decreases with increasing neighbor distance. The marginal improvement diminishes with
increasing radius, and the bulk of the improvement comes from residues in the protein core.

4 Concluding Discussion

In this work, we developed AttnPacker, an SE(3)-equivariant model for direct prediction of side-chain coordinates
based on backbone geometry. AttnPacker uses spatial information derived from protein backbone coordinates to
efficiently model residue and pairwise neighborhoods. This, coupled with an SE(3)-equivariant architecture, allows
for the simultaneous prediction of all amino acid side-chain coordinates without the use of rotamer libraries or
conformational sampling.

Components of our model were inspired by AlphaFold2 and the SE(3)-Transformer. By generalizing and carefully
evaluating ideas from these architectures we were able to achieve better efficiency or better than the original
implementations. Specifically, we generalized the Evoformer module of AlphaFold2 to spatial graphs specific to
protein backbones. We also modified the attention heads of the SE(3)-Transformer to incorporate pair-bias, distance
information between hidden points, and shared dot-product similarity.

Our TFN-Transformer outperforms all other methods in terms of average RMSD on the CASP13 and CASP14
targets, even without triangle updates for pair-features. On the other hand, the baseline SE(3)-Transformer with
per-type attention falls short of DLPacker for the CASP13 targets. Part of this improvement is achieved by
augmenting edge features with pairwise distance information between hidden points. We hypothesize that this
information is especially important for deeper TFN-based architectures. TFNs require a basis of spherical harmonics
which is typically computed once on the relative positions of input points and then shared across all proceeding
layers. As aresult of using spherical basis functions, information about relative distances between hidden coordinates
is lost. To account for this, distances between pairs of initial point features are typically concatenated to the input
of the TFN radial kernel. Traditionally, this input is the same across all layers - the pairwise distance d;; between
initial points ¢ and j, and (optionally) a fixed vector of pair feature e;;. In theory, distance information between
hidden point features could be captured by TFNs convolution operation, but we believed that incorporating this
information at the input level could be beneficial. Since separate radial kernels are learned for each TFN, we chose
to augment our input with distance information between hidden coordinate features at each layer, resulting in a
modest improvement over the baseline implementation.

The difference in performance between our model trained using full triangle updates and our model trained with
local triangle updates is very small, especially considering the fact that that all other hyperparameters were the
same for each model. Restricting residue and pairwise attention updates to at most 30 nearest neighbors did not
considerably degrade performance. On the other hand, this drastically reduces the memory required to train the
model. In the future, it would be interesting to see if a larger or deeper model could improve performance further.

On top of outperforming other popular methods, our model presents several other advantages. First, it is extremely
fast. We are able to predict all side-chain conformations for a 500-residue protein in less than a second using a
single nvidia RTXA6000 GPU. On the other hand, DLPacker must be run iteratively for each amino acid side-chain
causing a large dependence on protein length. OPUS-Rota4 also requires several pre- and post-processing steps in
the form of derived constraints and gradient descent. Since our method directly predicts side-chain coordinates,
the output is fully differentiable which benefits downstream prediction tasks such as refinement or protein-protein
interaction. This also circumvents the use of engineered energy functions and rotamer libraries and places the
emphasis on architectural innovations and better loss functions.

Our model is also very simple to use - it requires only a pdb file to run. In contrast, OPUS-Rotad requires voxel
representations of atomic environments derived from DLPacker, logits from trRosettalO0, secondary structure, and
constraint files derived from the output of OPUS-CM. Obtaining the requisite input data made it too difficult for
us to compare results with this method.

In addition to our method’s speed and simplicity, it further succeeds in efficiently modeling residue-level local
environments by using locality-based graph attention during feature and structure generation stages. On the
other hand, DLPacker and OPUS-Rota4 use 3D-voxelized representations of each amino-acid’s microenvironment -
requiring space O (v3cd) , where v is the voxelized width (40 in the case of DLPacker and OPUS), ¢ is the number
of channels, and d is the channel dimension. Although this choice of representation has helped facilitate good
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performance for each method, the memory requirements prevent simultaneous modeling of all amino acid side-
chains which could ultimately hinder reconstruction accuracy. We hypothesize that simultaneously modeling all
side-chains helps contribute to our method’s RMSD improvements for surface residues.

Although AttnPacker yields significant improvements in residue-level RMSD, we remark that traditional PSCP
methods SCWRL, FASPR, and RosettaPacker still perform comparably in terms of x3 and x4 angle prediction.
We suspect that incorporating dihedral information into our model - either directly or through an appropriate loss
function - could help improve performance.
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Supplementary Material

S1 Data Collection

SCWRLA4(ver 4.02), and FASPR were run with default configurations. Rosetta’s fixbb application was run with non-
flexible backbone coordinates and the maximum number of rotamers by passing -EX1, -EX2, -EX3 and -EX/ flags.
We also included flags -packing:repack only to disable design, -no_his_his_pairE, and -multi cool annealer 10
to set the number of annealing iterations - these settings are recommended in the rosetta tutorial. We ran Rosetta
Packer 5 times for each target protein using Rosetta’s ref2015 energy function and selected the conformation
with lowest energy. DLPacker was run using the pre-trained release from the author’s github, downloaded Sept.
17th, 2021. Side-chains were reconstructed in non-increasing order of the number of the number of atoms in the
corresponding amino acid’s microenvironment.

We ran each method on each of the targets listed in Table S11. All of the methods were run using the native
backbone coordinates as input. For our models, we considered only the first 800 amino acids and corresponding
coordinates in each target’s PDB file. The output of FASPR, SCWRL, Rosetta Packer, and DLPacker was cropped
to the same length where applicable.

S2 Overview of Hyperparameters

We tried to maintain consistent hyperparameters for all models. We mainly tuned parameters for model depth,
number of nearest neighbors, number of attention heads, head dimension, and the distance at which residues or
pair features should be considered neighbors. We settled upon the hyperparameter values listed in Table S1. In
choosing the parameters, we aimed to balance memory usage with model capacity in each submodule. The final
settings required “32GB of GPU memory during training when full triangle updates are used (this is based on a
maximum sequence length of 300 residues). The actual memory usage is lower when local triangle updates are used.

Graph Graph TFN-Transformer
Transformer Transformer (scalar, point)
Full Tri. Updates Local Tri. Updates
(residue, pair) (residue, pair)
Depth 12 12 8
Hidden Dim. 180, 128 180, 128 128, 24
Num. Attention 10, 4 10,4 10, 10
Heads
Head Dim. 20, 32 20, 32 20, 4
Neighbor Distance N/A 15, 15 15
Cutoft
Max. Nearest N/A 30, 30 14
Neighbors

Table S1:  Hyperparameters used for each model (unless otherwise specified). A description of input feature
dimensions can be found in Section S4.

S3 Training Details

We trained and validated all models using the BC40 training data set (SOURCE) and validated on BC40 validation
set. The data set contains ~36k proteins which are selected from PDB database by 40% sequence identity cutoff.
We first train our models for 10 epochs with a sequence crop size of 300, and an initial learning rate of 1073, The
learning rate is decreased by a factor of two every three epochs, and we do not use any warm-up. After the first
stage completes, the models are trained for an additional 2 epochs with a learning rate of 10™* and a sequence crop
size of 500. No other parameters are modified between the two training stages.
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To optimize our models, we use Adam|[19] with parameters #; = 0.9, 32 = 0.999, and € = 108, and use a minibatch
size of 32. To stabilize training and avoid using learning rate warm-up schedules, we use ReZero|[3], for every residual
connection in our transformer blocks. We also apply gradient clipping by global norm[24] to clip the gradients of
each example in a minibatch to have /> norm at most 1.

We apply gradient checkpointing on the triangle attention logits and TFN kernel outputs. This yields a massive
decrease in memory consumption during training, at a cost of a & 50% decrease in speed. Details are provided in
Section S8. Overall, each model was trained for roughly six days on a single nvidia RTX A6000 gpu (75 days for
the first stage, and ~1 day for stage 2).

S3.1 Loss Function

Our loss function consists of two equally-weighted terms. The first is an auxiliary loss over predicted distances of
distal side-chain atoms (see ’tip-atom’ defined in [13]). This term is applied to the pair output of the locality aware
graph transformer. The pair output is first symmetrized, and then logits are obtained by linearly projecting into
46 bins covering 2A — 20A. Two bins are also added for predicted distance less than 2A and greater than 20A. If
locality aware attention is used, the loss is only computed for pair 75 if the corresponding residues are adjacent.
Pairwise distograms are obtained by taking a softmax of the logits, and an averaged cross entropy loss is then
applied.

The second loss term is applied to the predicted coordinates. Let C’}i) denote the j** side-chain atom coordinate
for residue ¢ in the native structure. Define C’Z(;) analogously for the predicted structure. The loss is computed as

L® = mean; (huber (C’J(-i), CA’j(-i)7 8= 0.25)) (1)

Where huber(z, y, 3) is the Huber loss between x and y with smoothing parameter 5. The final loss is computed as
mean; (L(i)).

Some care must be taken in computing Equation (1), since some residues have symmetric sidechains. For these
residues, we consider all possible symmetries by swapping the coordinates of symmetric atoms and take the lesser
of the swapped and not-swapped loss for the respective residue. A list of residues with symmetric sidechains and
pairs of atoms for which we swap coordinates can be found in Table S2.

Arg Asn Asp Gln Glu Leu
NH1,NH2 OD1,ND2 OD1,0D2 OEl,NE2 OEl, OE2 CD1, CD2

His Leu Phe Tyr Val
ND1, CDh2 (CD1,CD2 CD1,CD2 CD1,CD2 CGl1, CG2
NE2, CE1 - CE1,CE2 CEl, CE2 -

Table S2:  Amino acids with sidechain symmetries and the atom pairs which constitue these symmetries.

S4 Model Input
S4.1 Input Features

Our model uses only input features derived directly from primary sequence and backbone coordinates. An overview
of input feature types and the corresponding shape can be found in Table Table S3.
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Features Name & Description

Shape

res_type A number in the range 0..21 representing the

[L] corresponding amino acid type

bb_dihedral Backbone phi, psi, and omega dihedral angles.

[L,3]

seq_ pos The sequence index of the respective residue, from 1..L
L]

centrality The number of C,, atoms within 16A of residue of the
[L] respective residue’s C,, atom.

atom__distance One-hot encoded binned distance between C,, — C,,
[L, L, 3 Cy — N, and N — O atoms in each residue. Each bin

represents a distances from 2A-20A with two separate
bins used for distances falling outside of this range.

tr_orientations Dihedral and planar angles defined by Yang et al[33].
[L, L, 3]

Table S3: Input features used by AttnPacker. The shape of the corresponding type for a protein with L residues
is shown below each feature.

We use standard residue level features and encodings for our input. These include a representation of amino acid
type, binned relative sequence position, and embeddings/encodings of backbone dihedral angles. Less standard is
the inclusion of residue centrality. The use of centrality based encodings was studied in [35], where the authors
found that transformers significantly benefit from the addition of centrality encodings with graph-like data. We
choose to incorporate this information at the input level, rather than in each attention block (as is proposed in
[35]). Originally, we included SS3 secondary structure as part of our input, but found that this feature gave the
same (if not slightly worse) results in terms of average residue RMSD scores.

For our pair embedding, we follow a scheme similar to [17], but also incorporate residue pair information following
the approach of AlphaFold2. Rather than embed each residue pair separately, the authors propose using two
separate embeddings for residue types. Denote the embeddings as F4 and Epg, then the pair feature for residues i
and j of type r; and r; (resp.) is given by the outer-sum of E4 (r;) and Eg (r;) . The authors further augment this
information by add an embedding of the relative sequence separation between the two residues and we follow the
same approach here.
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Residue Feature
Embedding

| centrality — (L) l—b[ bin_centrality — (L) ]—D-[ one-hot — (L, deen) } ~

flatten, dim=1
(L,6)

encode_angle — (L, 3,2) } >

flatten, dim=1
(L'%af) concat = SO
pOc 0y
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Figure S1:  Overview of our input feature embedding. The feature shape is shown in parenthesis. Residue
and pairwise features are embedded separately. Only information derived from primary sequence and backbone
coordinates is considered. Full explanations of procedures referenced in this figure are given in Table S4. For
residue features in our final models, we use d.., = 7 for the one-hot encodings of centrality features, d4 = 6 for our
backbone torsion angle embedding dimension, and dr, = 32 for residue type embedding dimension. For pairwise
features, we use dp = 34 for each one-hot distance encodings, dr, = 48 for residue pair embeddings, and d4 = 6
for embeddings of trRosetta orientations.
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Procedure Description
bin_centrality(c) : Mapping given by ¢ — min (| £],6)
N — [0..6]
bin__angle(#) : Mapping given given by 6 — [36 - ‘);—W”J
(=m,m) = [0..35]
encode angle(d) : Mapping given by 6 — (cos 6, sin 0)
(=m,m) = [0,1)*
bin_rel pos(p) : Mapping given by p — [10 - %J
[1..L] [0..9]
bin_ rel sep(s): Maps the (signed) sequence separation s to the index of a
[0..L ] [0..48] predefined interval. We chose intervals
[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6), 6, 7), [7, 8), [, 10), [10,
12), [12, 15), [15, 20), [20, 30), [30,00)
plus the negation of each interval.
bin_dist(d) : Maps the pairwise distance d to one of 32 equal width bins in

)
R=0 — [0..33] the range 3A..20A. Distances less than 3A and distances greater
than 20A are placed into separate bins.

Table S4: Description of Input Embedding Procedures referenced in Figure S1. The name of the procedure (top)
along with the domain and range (bottom) are given in the first column. Here, we use L to denote the protein
length.

S5 Locality Aware Triangle Attention

Consider a set of points P = {p;}, C R% Define

1=1..n

A(P;0) :={(i, 5, k) : lpe — pyll < 0 Va,y € (3,5, k)}
the set of triangles in P with maximum side length at most 6.

We develop a hypergraph approach to performing triangle updates G (P;0) = (V, E,d), where

V=V (P;0) = A{vij:|pi —pjll2 <0, pip; € P}
d(vij,vje) = max({|lp. —pyll2: 2,y € (4,5, k)})

The edge set E is defined by the adjacency relation

NG (vig) = Ng ((i,7) , P; 0) = {{vir, v} : max (d (vig, vir)  d (vig, vir)) < 0}

Observe that there is a node for every pair of points within distance 6, and the distance between two nodes sharing
a common underlying point is the maximum edge length on the corresponding triangle.

When the underlying point set consists of backbone atom coordinates for a protein, a reasonable choice of 6 results
in a relatively small set of triangles. Furthermore, in order to efficiently compute triangle updates for each node v;;,
we restrict Ng (v;;) to the N, nearest neighbors under d (-,-). This yields a 3-uniform, O (N.)- regular hypergraph
with as many nodes as there are underlying points within distance 8. We denote the latter quantity by N,.

In theory, the pairwise features selected for triangle attention can be further restricted to the (at most) N nearest
neighbors of each residue, as only the pair features for each residue’s IV nearest neighbors are used to bias residue
attention logits. In practice, we restrict pair features to the (at most) 2N nearest neighbors of each residue.
More formally, the vertices of our triangle hypergraph consist of pairs (i,j) such that j is among the top 2N
nearest neighbors of ¢. Triangle multiplication and attention updates then require time and space proportional to
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O (N, - N.) =0 (n-N2) in total. These updates are identical to that of AlphaFold2, but restricted to this subset
of triangles.

Figure S2:

Pair Features

Updated Pair
Features

—P@ W By S ={ sigmoid

h
h
9,5 l

h
b; . \
\ N triangle attention
weights

similarity

Linear

triangle
mask

Figure S3: A simple implementation of local triangle attention updates. A mask of dimension L x L x L is used to
control which triangles (and respective edge features) are updated during attention calculations. Masked positions
are kept unchanged, and unmasked positions are filled with a large negative value (—10°) before softmax is applied
to compute attention weights.

As an alternative, we can easily implement local triangle updates by computing a global triangle mask for each
sample (see Figure S3). This approach does not yield the time and space savings previously discussed, but does
serve as a simple drop-in replacement for existing models.

S6 TFN-Transformer

Algorithm S1 SE(3)-Equivariant Normalization

Input
xt: type-f features in R¥*2¢+1
Output
%¢: normalized type-¢ features in R%*2¢+1

function SE3NoORM(x!, nonlin = GELU) :
normf = concaty=1..4, (fokH)
tf = nonlin (normf oot + ﬂz)

L
iy X & 0
X; = concaty—1..4, (normf . > t;
‘

%

return x

For normalization, we propose a method similar to Layer normalization with a norm-based non-linearity. Several
papers have proposed SE(3)-Equivariant Normalization schemes (e.g. [12, 7, 16]), most include some form of Layer
normalization [2], or restriction on the 5 norm of coordinate features. In our experiments, we found that applying
layer normalization to coordinate norms (and subsequently scaling by these values) sometimes caused instability in
the early stages of training. In light of this, In Algorithm S1, we simply learn a scale and bias o and 3¢ for each
feature type.
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Algorithm S2 Augment Edge Features

Input
z;;:  pair features in R
pi;:  hidden coordinate features in R >3 for each residue
rij:  input relative coordinates in R!*3
Output
Z;;:  augmented edge features in R=+2-dp

function AUGMENTPAIRFEATS(z;;,¢c;,755) :
dij = COHC&tkzlndp (||7"1-j + (Cjk — Cik)”g) > dij c de
z;; = concat (z;;, LayerNorm (d;;) , d;;)
return z;;

In augmenting the pair features with distance information, we choose to append both normalized and un-normalized
distances between the hidden points. The output of this function is passed directly to the TFN radial kernel, which
employs a 3-layer MLP with GELU nonlinearity to produce pairwise kernels for each pair of input feature types.

Algorithm S3 TFN-Transformer Attention Head

Input
xt: type-f features in R9ex2¢+1
z;;:  pair features in R4
Bf}k: equivariant basis mapping type ¢ features to type k features
rij:  input relative coordinates in R!*3
N;:  List of neighbor indices for each residue 1..7
Output
ol attention head features for each input type £=0...

function TFNATTNETIONHEAD (X!, 7;, ijﬁkrij,/\/}) :
zij, X! + LayerNorm (z;;), SE3Norm(x)
# Compute TEN keys and values
z;j < AUGMENTPAIRFEATS (z;;,x},7;;)

kfj, vfj = TFN(x!, Z;;, ij’-k,./\/i) > defined for 4, j such that j € N; \ i
q¢ = SE3Linear(x!) >kl g, vl e RM
b;j = LinearNoBias(z;;) > pair bias, b;; € R
z;; = LinearNoBias(z;;) o sigmoid (LinearNoBias(z;;)) > pair features, z;; € R**%/
wh = \/;W > head weights for each input type £ =0...

# Compute pair similarity and self similarity
0 _ de 4 £
O = Py Qic: kzgggc
of, = SE3Linear(x})
# Share Attention weights for each i and each type
— 4 4 ¥4
aj = softmax;en, (bij + >, w’-~v" - of ;)
‘ oyt
0; = Zje/\[i Qij - Vij
Opair,i = 2 5eN; Yij * Zij _ .
# Scalar output augmented with attention-weighted edge information
(0) (0)
0; ' < concat (0; 7, Opqir,i
0

return o;

In Algorithm S3, we use d; to denote the input dimension, and h? to denote the hidden dimension (head dimension)
of input feature type £. Each attention head has a separate learnable weight v¢ for each input type ¢. This weight is
the softplus of a learnable scalar and is initialized so that +* = 1. For each input type, the output of each attention
head is concatenated and linearly projected so that the output dimension matches the original input dimension.
All linear projections (SE3Linear) follow the scheme proposed in [7].
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We give a full description of out TFN-Transformer in Algorithm S4. Our TFN-Transformer consists of three
components: (1) An equivariant mapping of scalar and coordinate input features to hidden feature types/dimensions
(2) multiple TFN-based attention layers and (3) An equivariant mapping from hidden feature types/dimensions to
output feature types/dimensions.

Algorithm S4 TFN-Transformer

Input
S;: scalar residue features in R5*1
¢ backbone coordinates for each residue in R¢*3
z;;:  pair features in R
N;:  List of neighbor indices for each residue 1..7
Limaz: number of hidden types 0..4,,44

Output

Sout,it updated scalar residue features in Rdscatar X1
Cout,i: Updated coordinate features € Reoord X3

function TFN-TRANSFORMER(S;, C;, 2i;,/N;) :
Tij = Cj0 — Ci 0 > relative coordinates € R'*3
Bf}k = COMPUTEEQUIVARIANTBASIS (75, {maz)
c; < concaty (¢, — Ci)
# Equivariant Input Mapping
7 Map to hidden dimension and hidden feature types
0,k -
Xﬁid,i =TFN ((Sivci)a zi5, B;; 7M) b xt e REX2HL g =01 and Loyt = 0..4pmaz
Xﬁid’i <+ SE3Norm (an’d,z)
# Attention Layers

for 1..Npqyers do
xt,, ;, = TFNAttention (an-dyi,zij,B@»k rij,/\fi)

(CER ij

¢ ¢ ¢
Xpia; < ReZero (xhid,ia Xres,i)

x! = SE3FeedForward (SESNorm (xfn d’i))

TES,i
Xéid{i < ReZero (an’d,i’ Xfes,i)
# Equivariant Output Mapping
# Normalize and map to output dimension/ output types via TFN
xf;idﬂ. < SE3Norm (and,i)

0,k
xyes = TEN (xfbid’i, 255, B, /\/) > in = 0.lmaz, Lout = 0,1
x!,1.i < SE3Lincar (SE3Norm (x/,,, ;, nonlin = Identity)) B X0y ; € RseatarX1 %0 - € Rdeoorax3

— <0 1
Sout,ia Cout,i - Xout,i’ Xout,i
return S, i, Cout,i
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S7 Full Architecture

SR SR SR SR SR
8; > dipg R i = din.s R zf —dy . zf —dy . z? % fi‘?c.a.la;
Locality 2} = deoorg
Input Aware Equivariant TFN- Equivariant
Embedding Graph Input Transformer Output
Transformer Mapping (8-blocks) Mapping
zij = din » | (12 blocks) | zi; — dpiq . Zi5 = Apid » Zi5 = Apid »
Backbone > > > >
Coordinates

Basis

Figure S4: The full architecture of AttnPacker. we use s; to denote scalar (residue) features, and z;; to denote pair
features. Backbone coordinates are used to define residue and pair adjacencies, and included in the equivariant
input mapping (see Algorithm S4). The Equivariant input mapping returns type ¢ features ¢ for user-defined types
¢ > 0. In our model, scalar output features z? are discarded, and coordinate output x} has deora = 32, one channel
for each possible side-chain atom type.

Our full architecture is shown in Figure S4. It consists of an input embedding (Figure S1) to produce scalar features
for residues and pairs, and is followed by our locality-aware graph transformer and TFN-Transformer. Pair features
are only modified in the locality-aware graph transformer block. The TFN-Transformer still makes use of pair
features to produce radial kernels, bias attention logits, and augment the output of each attention head.

S8 Memory Consumption
S8.1 Triangle Attention

In Section 2.2, we determine that the number of pair features requiring triangle updates is bounded by 2N L, where
N is the maximum number of neighbors per point, and L is the protein length. Locality aware triangle attention
stores at most N attention logits per pairwise feature. It follows that the number of attention logits stored for an
attention layer with h heads is 2N2L - h. In practice, computing neighbor-wise attention can be costly. Depending
on the implementation, repeating or grouping of neighbor features may cause the gradients for attention logits to
require significantly more space. We experimented with several implementation, but ultimately decided to mask full
triangle attention logits (O (L?’) space) as a proof of concept. Masking attention logits effectively stops the gradient
flow for all pair pair features which are not part of the triangle graph. This resulted in a modest improvement in
memory, but more work will be needed to realize the full time and space benefits of this architecture.

bits for attention logits L =300 L =500
using 32-bit float
precision
Triangle Attention 32-L3-h-D 5.2 Gb 24.0 Gb
Locality Aware 32-2N2L-h-D 0.10 Gb 0.17 Gb

Triangle Attention

Table S5: A comparison of memory usage for storing pair attention logits. L is the length of the input sequence. The
third and fourth columns show the memory usage for an input sequence of length 300 and length 500 respectively.
Values are calculated by fixing the number of heads h = 4, the depth D = 12, the number of nearest neighbors
N = 30 per pair.
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S8.2 TFN Transformer
S8.3 TFN Memory Analysis

One of the main drawbacks of the SE(3)-Transformer is high memory usage caused by computing equivariant
pairwise kernels in each attention block. To alleviate some of this overhead, we modify the TFN implementation used
in the original SE3-Transformer proposed by Fuchs et al.[12]. Given input feature tensors of size (din, 0in)s(dout; Oout)
respectively, the corresponding basis element mapping between these types has shape (0in, 0in - Oout). Let f =
min (04, 0put) denote the frequency of the mapping, then for each pair of features we require a radial kernel of
size (din, dout, f). To ensure equivariance, the kernel passes through the corresponding basis element, yielding an
intermediate tensor of shape

(dina douta fv Oin, Oin * OOut)

That is, the kernel is obtained from multiplying the radial weights for each pair through the corresponding basis
element. The input features are then multiplied through the respective kernel to yield the desired output, and the
process is repeated for each pair of input and output types.

As TFNs are used to produce key and value vectors in each attention block, the intermediate kernel mapping
between type-¢ features at each block requires memory proportional to

2.dl - htdb(20+1)"
where hf, d* are are the number of heads and head dimension for type ¢ features.

In our implementation, we are able to obtain a factor & 0;, - 0oyt reduction in memory by changing change the order
of matrix multiplication in the TFN kernel. Rather than multiply the radial weights through the basis, we first
multiplying the features through the basis, and then multiplying the result with the radial weights. The memory
required to store the intermediate tensors is reduced to

din : dout : f + dln * Oin * Oout

radial weights finBin—out

This greatly reduces the memory burden of TFNs and, together with gradient checkpointing, allows us to fit a much
deeper and larger model on a single GPU.

S9 Extended Results
S9.1 CASP-FM RMSD
To better understand AttnPacker’s ability to generalize to new folds, we evaluated each method on CASP13 and

CASP14 free modelling (FM) targets. These datasets consist of proteins with previously unseen folds and hard
analogous fold based models (see Table S11 for a complete list). The results are show in Table S6.
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RMSD (A)
CASP13-FM CASP14-FM

Method All Core Surface All Core Surface
SCWRL 0.741 0.441 0.919 1.008 0.681 1.206
FASPR 0.726 0.468 0.896 0.999 0.678 1.204
RosettaPacker 0.701 0.372 0.892 0.963 0.562 1.164
DLPacker 0.617 0.413 0.776 0.903 0.618 1.094
TFEFN-Transformer 0.591 0.431 0.705 0.850 0.629 0.987

+Tri 0.538 0.347 0.664 0.784 0.530 0.944

~+Tri+Local 0.542 0.349 0.671 0.779 0.531 0.943
Residue Count 5465 1672 2503 3934 915 2012

Table S6:  Average RMSD (A) on the CASP13-FM and CASP14-FM targets. Results are divided by residue
centrality (All, Core, and Surface).

S9.2 Non-Native Backbone

RMSD (A) MAE®° X - Accuracy
All Core Sfe X1 X2 X3 X4 All Core Sfc
SCWRL 1.203 0919 1.360 41.51 34.46 48.02 46.59 52.4% 63.4% 47.3%
FASPR 1.194 0.896 1.359 41.54 33.93 49.12 47.67 51.8% 62.5% 46.3%
Ros. Pack 1.178  0.883  1.339 40.88 34.24 47.89 48.32 53.0% 63.0% 47.7%
DLPacker 1.138  0.857  1.299 40.51 34.74 52.46 66.49 49.3% 62.2% 41.9%
AlphaFold2 1.080 0.826 1.216 37.84 30.76 42.21 44.01 55.7% 65.8% 50.8%
TFN+Tri 1.102  0.874 1.226 39.75 30.20 47.86 50.92 52.5% 63.2% 46.7%

TFN+Tri(25) 1.046 0.817 1.170 38.99 30.35 48.10 48.58 53.9% 65.4% 46.2%
TFN+Tri(75) 1.059 0.813 1.184 39.59 30.46 48.65 49.12 53.8% 65.9% 46.2%

Table S7:  Average RMSD and Dihedral results by method for CASP14-FM non-native backbone targets produced
by AlphaFold2. RMSD is shown for all, core, and surface (sfc) residues in angstroms. Overall y;_4 MAE is shown
for each methods in units of degrees. Last, overall accuracy for xi_4 angle predictions is shown for all, core, and
surface residues.

For non-native backbone comparison we trained two separate models TFN-+Tri(25) and TFN-+Tri(75). These
models were trained using the same list of targets as the original model, but with each target having backbone
coordinates predicted by AlphaFold2 in place of the native with probability 25% and 75% respectively.

To train these models, we calculated separate rotations and translations mapping the backbone atom coordinates
of each residue in the native structure to the corresponding coordinates of the decoy (non-native) structure. We
then applied these transformations to align both backbone and side-chain coordinates for each residue in the native
structure and treated the result as the ground-truth. After applying this transformation, we were able to use the
loss functions described in Section S3.1 without modification.

The average RMSD results shown in Section S9.2 were calculated by aligning the native and decoy residue coordi-
nates as described in the previous paragraph. Substituting non-native backbone coordinates with 25% probability
yields the best results in terms of Average RMSD, even better than that of AlphaFold2. Both models, trained
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partially with non-native backbone data, outperform the baseline TFN+Tri model for side-chain RMSD minimiza-
tion. In terms of side-chain dihedral prediction accuracy, Alphafold2 achieves the best results, with our methods
achieving competitive scores in accuracy for all but surface residues. Similar to the results on native backbones,
our models are competitive in terms of dihedral MAE for x; and x2, but lose their edge for higher order x values.

S9.3 Per Residue RMSD

RMSD (A)

SCWRL4 FASPR Rosetta DLPack TFN TEFN+ TFN+ Res.
Packer Loc Tri count

ARG 2.119 2.086 1.938 1.802 1.762 1.572 1.535 1040
ASN 0.918 0.889 0.873 0.761 0.751 0.706 0.671 1070
ASP 0.882 0.903 0.875 0.723 0.693 0.616 0.645 1153
CYS 0.517 0.543 0.409 0.432 0.382 0.331 0.307 240
GLN 1.456 1.450 1.303 1.217 1.163 1.086 1.077 815
GLU 1.460 1.451 1.400 1.288 1.207 1.137 1.111 1192
HIS 0.989 0.865 0.855 0.702 0.686 0.679 0.605 446
ILE 0.575 0.576 0.548 0.524 0.514 0.470 0.457 1238
LEU 0.607 0.595 0.571 0.521 0.513 0.463 0.456 1993
LYS 1.619 1.592 1.521 1.400 1.315 1.210 1.219 1100
MET 1.334 1.228 1.172 1.122 1.166 0.976 0.952 481
PHE 0.816 0.715 0.730 0.545 0.586 0.457 0.459 921
PRO 0.253 0.239 0.233 0.190 0.208 0.190 0.201 943
SER 0.711 0.713 0.695 0.583 0.568 0.550 0.523 1480
THR 0.508 0.497 0.477 0.440 0.409 0.387 0.395 1317
TRP 1.312 1.128 0.981 0.830 0.995 0.700 0.695 374
TYR 1.046 0.967 1.000 0.672 0.747 0.626 0.601 860
VAL 0.316 0.315 0.307 0.283 0.285 0.265 0.261 1476

Table S8: Average Per-Residue RMSD for CASP13 Targets by method (column) and residue type (row). Here,
TFN-+Loc denotes the TFN transformer with local triangle updates. TFN-+Tri denotes the TFN Transformer with
global triangle updates.
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ARG
ASN
ASP
CYS
GLN
GLU
HIS
ILE
LEU
LYS
MET
PHE
PRO
SER
THR
TRP
TYR
VAL

RMSD (A)

SCWRL4 FASPR Rosetta

2.299
1.051
1.019
0.535
1.596
1.609
1.055
0.693
0.741
1.835
1.514
0.943
0.265
0.853
0.667
1.514
1.061
0.401

2.300
1.020
1.055
0.577
1.561
1.602
1.025
0.728
0.702
1.822
1.321
0.926
0.256
0.836
0.635
1.334
1.050
0.401

Packer
2.168
0.964
0.992
0.321
1.440
1.569
0.901
0.702
0.700
1.766
1.346
0.860
0.266
0.817
0.620
1.473
0.976
0.389

DLPack

2.019
0.922
0.939
0.462
1.338
1.535
0.859
0.682
0.662
1.659
1.327
0.754
0.228
0.735
0.606
1.163
0.832
0.365

TEFN

1.919
0.866
0.926
0.437
1.268
1.435
0.813
0.641
0.643
1.528
1.244
0.738
0.241
0.699
0.576
1.336
0.893
0.369

TEFN-+
Loc

1.669
0.832
0.852
0.390
1.182
1.370
0.744
0.598
0.581
1.420
1.100
0.592
0.226
0.662
0.542
0.989
0.688
0.345

TFN--
Tri

1.710
0.819
0.849
0.378
1.214
1.355
0.681
0.590
0.592
1.421
1.077
0.593
0.223
0.653
0.540
0.959
0.664
0.343

Res.
count

658
1002
879
161
546
963
300
1030
1401
991
310
705
615
1076
942
179
656
985

Table S9: Average Per-Residue RMSD for CASP14 Targets by method (column) and residue type (row). Here,
TFN+Loc denotes the TFN transformer with local triangle updates. TFN+Tri denotes the TFN Transformer with
global triangle updates.
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MAE° MAE°
Method X1 X2 X3 X4 acc. X1 X2 X3 acc.
ARG GLN
SCWRL 38.97 33.5 67.92 5725  49.0% 36.81 48.3 39.1 47.8%
FASPR 38.85 33.87 68.97 65.05 48.5% 3493 46.16 37.45  50.8%
RosettaPacker 3742 3593 61.1 56.99 50.5% 32.38 4096 35.78 53.0%
DLPacker 31.17 35.04 7225 68.41 45.3% 29.69 37.11 38.41 52.3%
TFEFN-Transformer 35.71 3220 72.67 56.92 42.0% 31.75 39.03 36.94 51.1%
T 33.78 3258 614 56.03 47.8% 30.52 35.66 3648 54.0%
+Tri+Local 33.15 31.35 62.57 57.23 44.8% 30.47 36.32 36.35 52.1%
LYS GLU
SCWRL 37.85 3286 43.65 47.74  55.8% 42.05 42.02 39.35 46.8%
FASPR 3755 3176 4416 46.39 56.0% 39.47 4045 4117  48.0%
RosettaPacker 37.38 33.62 4445 4783 55.1% 40.24 4045 39.34  48.0%
DLPacker 3248 3394 50.34 6832 45.9% 39.37 4224 4043  45.1%
TFN-Transformer 29.59 33.61 44.60 48.83  50.8% 36.24 39.61 36.97 46.8%
+Tri 28.04 29.86 449 47.89  54.2% 34.37 37.25 35.86 50.5%
+Tri+Local 29.12 3091 4434 46.79  53.0% 36.71 3739  36.17 47.1%

Table S10: Dihedral MAE results on CASP14 targets for charged and polar Amino Acids with high degrees of
freedom.
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S10 PDB Lists

Data Set Targets

CASP13  T0949, T0950, T0951, T0953s1, T0953s2, T0954, T0955, T0957s1, T0957s2,
T0958, T0959, T0960, T0961, T0962, T0963, T0964, T0965, T0966, TOIET,
T0968s1, T0968s2, T0969, T0970, T0971, T0973, TO974s1, T0974s2, TOI75,
T0976, T0977, T0978, T0979, T0980s1, T0980s2, TO981, T0982, TO983,
T0984, T0985, T0986s1, T0986s2, T0987, T09I8S, T098Y, T0990, TO9I1,
T0992, T0993s1, T0993s2, T0994, T0995, T0996, T0997, T0998, T1000,
T1001, T1002, T1003, T1004, T1005, T1006, T1008, T1009, T1010, T1011,
T1013, T1014, T1015s1, T1015s2, T1016, T1016 A, T1017s1, T1017s2,
T1018, T1019s1, T1019s2, T1020, T1021s1, T1021s2, T1021s3, T1022s1,
T1022s2

CASP14  T1024, T1025, T1026, T1027, T1028, T1030, T1031, T1032, T1033, T1034,
T1035, T1036s1, T1037, T1038, T1039, T1040, T1042, T1043, T1045s1,
T1045s2, T1046s1, T1046s2, T1047s1, T1047s2, T1048, T1049, T1052, T1053,
T1054, T1055, T1056, T1057, T1058, T1060s2, T1060s3, T1062, T1064,
T1065s1, T1065s2, T1067, T1068, T1070, T1072s1, T1073, T1074, T1078,
T1079, T1080, T1082, T1083, T1084, T1087, T1088, T1089, T1090, T1091,
T1092, T1093, T1094, T1095, T1096, T1098, T1099, T1100

CASP13-FM  T0950, T0953s1, T0953s2, T0957s1, T0957s2, T0960, T0963, T0968s1,
T0968s2, T0969, T0975, T0980s1, T0981, T0986s2, T0987, T0989, T0990,
T0991, T0998, T1000, T1001, T1010, T1015s1, T1017s2, T1021s3, T1022s1

CASP14-FM  T1027, T1031, T1033, T1037, T1038, T1039, T1040, T1042, T1043, T1047s1,
T1049, T1064, T1070, T1074, T1090, T1093, T1094, T1096

Table S11: List of targets in each test data set.
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