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ABSTRACT 1 
 2 

The rodent estrous cycle modulates a range of biological functions, from gene expression to 3 

behavior. The cycle is typically divided into four stages, each characterized by distinct hormone 4 

concentration profiles. Given the difficulty of repeatedly sampling plasma steroid hormones from 5 

rodents, the primary method for classifying estrous stage is by identifying vaginal epithelial cell 6 

types. However, manual classification of epithelial cell samples is time-intensive and variable, 7 

even amongst expert investigators. Here, we use a deep learning approach to achieve 8 

classification accuracy at expert levels in a matter of seconds. Due to the heterogeneity and 9 

breadth of our input dataset, our deep learning approach (“EstrousNet”) is highly generalizable 10 

across rodent species, stains, and subjects. The EstrousNet algorithm exploits the temporal 11 

dimension of the hormonal cycle by fitting classifications to an archetypal estrous cycle, 12 

highlighting possible misclassifications and flagging anestrus phases (e.g., pseudopregnancy). 13 

EstrousNet allows for rapid estrous cycle staging, improving the ability of investigators to 14 

consider endocrine state in their rodent studies.  15 

 16 

  17 

INTRODUCTION 18 

  19 

With the broad incorporation of female animals into previously all-male studies1,2 we are at a 20 

critical juncture for the interpretation of endocrine physiology. In naturally cycling humans, the 21 

menstrual cycle lasts 28 days and is characterized by defined peaks in steroid hormones such 22 

as estradiol and progesterone3–9. In female rats and mice, the analogous estrous cycle lasts 4-5 23 

days10, but exhibits steroid hormone fluctuations similar to the 28 day human menstrual cycle. 24 

The estrous cycle was first described over a century ago11, yet the criteria for tracking this cycle 25 

remain subjective and variable between experimenters12. Determining the stage of estrous is 26 

critical to evaluating the state of the hypothalamic-pituitary-ovarian axis, which has implications 27 

in a myriad of factors including gene expression13,14, neuronal structure and connectivity3,15, and 28 

pharmacological efficacy16. In addition, correct interpretation of estrous stage is useful for timed 29 

pregnancy in rodents and changes in cycle regularity can be used as a proxy for changes in 30 

other critical hormones such as corticosterone17,18.  31 

The estrous cycle can be divided into four stages: diestrus, proestrus, estrus, and 32 

metestrus19–23. While techniques such as vaginal opening evaluation, vaginal wall impedance, 33 

and urine biochemistry have all been used as methods for determining estrous stage20, 34 

epithelial cell cytology remains the most common and reliable strategy6,9,10,13. Classification 35 

using vaginal cytology is typically performed by manually counting or estimating the relative 36 

prevalence of epithelial cell types, including leukocytes, cornified epithelial, and nucleated 37 

epithelial cells, and using the proportionality of these subtypes to determine stage10,19.   38 

Despite the prevalence of this method, there are several limitations of epithelial cell 39 

cytology for estrous stage classification: 1) it is time consuming and requires extensive training. 40 

2) it lacks generalizability; even expert classifiers may have trouble generalizing across rodent 41 

species, stains, and subjects. 3) it is inconsistent between labs, as classification can vary widely 42 
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between human examiners12. Here, we address these challenges using a novel deep learning 43 

algorithm that can generate estrous stage classifications on the order of seconds. 44 

Convolutional neural networks (CNNs) have outperformed human experts in diagnosing 45 

retinal disease24, skin cancer25, syndromic genetic diseases26, and a host of other medical 46 

conditions27. These networks are broadly useful for their speed and reliability. Although CNNs 47 

are difficult to train from scratch, requiring massive training data sets for accurate classification, 48 

transfer learning can exploit the multilayered architectures of pretrained networks to classify 49 

complex biological images28,29.  50 

Here, we have compiled a large-scale multi-laboratory dataset of cytology images 51 

(“EstrousBank”). We then used EstrousBank to train a deep learning algorithm (“EstrousNet”) to 52 

effectively recognize structural markers of the estrous cycle in a manner generalizable across 53 

subjects, stains, and rodent species. The resulting classifications are not significantly different 54 

than expert human examiners in any stage surveyed. The predictions generated by EstrousNet 55 

can be enhanced by using sequentially collected data to fit cytological samples with an 56 

archetypal estrous cycle. Cycle fitting, along with training, classification, and output, are 57 

operated through an interactive graphical user interface (GUI). Taken together, these results 58 

show that our deep learning approach is capable of rapid and accurate classification of estrous 59 

stage. 60 

 61 

 62 

RESULTS 63 

 64 

EstrousBank: an open resource for analysis of vaginal cytology images  65 

A major barrier to the development of software to analyze the estrous cycle is a data-poor 66 

environment that requires experimenters to collect their own cytology images. In our efforts to 67 

make the EstrousNet algorithm generalizable across groups, we have compiled the largest 68 

known image bank of estrous cytology images. EstrousBank currently spans five labs, five 69 

stains, two magnifications, and multiple rodent species (Fig. 1A-C, Supplementary Table S1). 70 

The complete image bank comprises 12,719 vaginal cytology images and is freely available for 71 

analysis by outside laboratories. We will continue to add to the image bank as more samples 72 

become available. Cytological samples across labs were collected using a standard lavage or 73 

swabbing procedure (See Methods). Briefly, epithelial cells were exfoliated from the superficial 74 

vaginal cavity via sterile saline and transferred to a glass microscope slide. Samples were 75 

allowed to dry for up to 24 h before staining with one of several compounds, and images were 76 

collected using brightfield microscopy at a range of magnifications (Supplementary Table S1). 77 

 EstrousBank contains images from all four stages of the estrous cycle, which were 78 

classified by experts according to classical cytology parameters, which are as follows20–23: 79 

mouse diestrus is characterized by an abundance of small leukocytes, a sharp decrease in 80 

proportions of keratinized anucleated epithelial cells, and lower numbers of both small and large 81 

nucleated epithelial cells (Fig. 1A-C). Mucosal secretions appear thick and stringy when 82 

present. Proestrus is a more transient stage characterized by a uniform spread of small rounded 83 

basophilic nucleated epithelial cells, and low proportions of anucleated cornified epithelial cells 84 
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(Fig. 1A-C). Estrus is typically identified by the high proportion of large anucleated cornified 85 

epithelial cells, which often form clumps or sheets that become more prominent in late estrus 86 

(Fig. 1A-C). Metestrus is a short stage identified by the presence of both nucleated epithelial 87 

and cornified epithelial cells, with leukocytes clustered around them, and an elevated level of 88 

mucosal secretions (Fig. 1A-C). While others have broken down diestrus into 2-3 substages, 89 

here we consider metestrus to be its own distinct stage preceding diestrus. These 90 

characterizations are largely consistent between mice and rats, but the following differences 91 

have been observed: rats exhibit a higher proportion of large ovular nucleated epithelial cells in 92 

late estrus, shorter periods of proestrus/metestrus, and lower proportions of anucleated 93 

cornified epithelial cells in metestrus21. Given these similarities, we trained EstrousNet on 94 

cytology images from several strains of mice and rats to improve generalization across model 95 

systems; with 34.1% of the image set from mice and 65.9% from rats. 96 

Although previous studies have used computational methods to analyze vaginal 97 

cytology12,30, the input datasets for these networks have historically been restricted to a single 98 

stain. To further enhance generalizability, the training and validation image sets for EstrousNet 99 

include samples stained with H&E, Shorr, Giemsa, cresyl violet, and crystal violet stains, at 100 

magnifications of 10x and 20x (Fig. 1A-C, Supplementary Table S1). The resulting pretrained 101 

CNN is highly generalizable and effective in classifying low resolution images and those 102 

containing debris from vaginal swab. 103 

 104 

A ResNet50-based CNN architecture maximizes EstrousNet performance 105 

To classify estrous stage from vaginal cytology images, we developed a classification pipeline 106 

using a convolutional deep learning network to detect cell boundaries and recognize endocrine 107 

biomarkers within cytological samples. For training and validation, we used consensus 108 

classifications (see Methods) to attach an estrous stage label to each image. EstrousNet is 109 

trained on subsets of EstrousBank images that are augmented for a greater volume of training 110 

data. Input images are first segmented into quadrants (Fig. 1D.i, ii), then reflected, rotated, 111 

scaled, and translated within the Net (Fig. 1D.iii). The augmented images undergo luminance 112 

normalization, then are converted to 3-channel grayscale arrays for more efficient feature 113 

extraction (Supplementary Fig. S1). Next, these augmented images are compiled into a large 114 

datastore and fed into the ResNet50 architecture, which consists of four convolutional stages of 115 

increasing dimension (Fig. 1E). The convolutional layers of the network converge on a SoftMax 116 

classification layer, which outputs probabilistic classification of estrous cycle stage (Fig. 1E, F). 117 

This classification is optionally supplemented by fitting the test images to a curve describing the 118 

length and phase of the estrous cycle (Fig. 1F). For images in which the cyclicity prediction and 119 

net prediction disagree, the interactive GUI will ask the user to select which classification to use. 120 

The composite classifications of the EstrousNet and cyclicity predictions provide the 121 

experimenter with an informed estrous stage classification. 122 

Previous studies investigating the efficacy of transfer learning in biological tissue 123 

classification have used several CNN architectures12,28,29. Here, we evaluated four different 124 

pretrained networks: VGG-19, Inception v3, MobileNet V2, and ResNet-50 (Fig. 2A)31–34. Each 125 

base architecture was originally trained on more than one million images from the ImageNet 126 
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database and retrained on an augmented dataset made up of 80% of EstrousBank images, with 127 

10% of images reserved for validation and 10% reserved for testing (Fig. 2B, C). All base 128 

architectures have previously been used for supervised learning in biological classification tasks 129 

and achieved accuracy comparable to or exceeding that of human coders24–27. The mean 130 

validation accuracies averaged over 3 iterations for each architecture are as follows: VGG-19 = 131 

79.7%, Inception v3 = 77.5%, MobileNetV2 = 65.5% and ResNet-50 = 88.9% (Fig. 2A). These 132 

accuracies are calculated based on ground truth data defined by benchmark classifications 133 

between 3 expert human examiners. Based on these results, we concluded that ResNet-50 was 134 

the most effective architecture. 135 

 136 

EstrousNet outperforms human coders in both speed and accuracy 137 

The cytology images in our training set were originally sorted into stages by expert human 138 

classifiers. These classifications were made using subjective assessments according to 139 

established approaches10,20,21 (see Methods). Unfortunately, human classification is limited by 140 

inter-experimenter variability and differences in experience with particular species, strains, and 141 

histological stains. In addition, the CNN may be capable of identifying subtle morphological 142 

features that are difficult for humans to identify, such as increased cell clumping in estrus and 143 

higher mucus content in metestrus and diestrus. 144 

  To quantify differences between EstrousNet and human coders, we compared 145 

classification performance on a test set of 400 randomly selected images (100 from each stage) 146 

between EstrousNet and three expert human coders. Across the test image set, EstrousNet 147 

classified stages significantly more accurately than human examiners (odds ratio = 0.68, 95% 148 

confidence interval = 0.55-0.83, p = 2.1 x 10-4; Fisher’s Exact Test). Breaking down performance 149 

by stage, EstrousNet achieved significantly greater accuracy than expert human examiners for 150 

diestrus (odds ratio = 0.6791, 95% confidence interval = 0.55-0.83, p = 1.2 x 10-5), whereas 151 

accuracy was higher, but not significantly different than expert examiners, for proestrus (odds 152 

ratio = 0.68, 95% confidence interval = 0.55-0.83, p = 0.075), estrus (odds ratio = 0.6791, 95% 153 

confidence interval = 0.55-0.83, p = 0.84) and metestrus (odds ratio = 0.68, 95% confidence 154 

interval = 0.55-0.83, p = 0.60; Fisher’s Exact Test for all comparisons; Fig. 2D-F). EstrousNet 155 

classifications also achieved impressive speed, with an average rate of 0.10 +/-  0.005 s (mean 156 

+/- SE) per image. 157 

Expert human staging showed a large degree of variance, with only 275 image 158 

classifications, or 68.75% of the total test set, shared between all three coders (Fig. 2G). A 159 

notable number of classifications, 15.9%, were unique to one human coder (Fig. 2G). 160 

Therefore, even amongst expert human classifiers, classifications can vary widely across a 161 

generalizable dataset of cytology images. 162 

 163 

EstrousNet is generalizable across species, stains, and subjects 164 

To further quantify EstrousNet performance for each estrous stage, we measured the area 165 

under the receiver operating characteristic (auROC) for each stage independently. EstrousNet 166 

demonstrated auROC values greater than 0.79 for all four estrous stages, with estrus achieving 167 

the highest auROC at 0.98 (Fig. 3A). Despite this high performance, there are areas in which 168 
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EstrousNet shows tendencies towards misclassification. Sensitivity and specificity curves show 169 

that EstrousNet is stronger in eliminating false negative results than false positive results, 170 

indicating a higher degree of sensitivity than specificity (Fig. 3B). For example, if EstrousNet is 171 

given an image of an unknown stage and asked if the sample is from an animal in diestrus, 172 

EstrousNet is more likely to classify the sample as diestrus when it is not (false positive), than to 173 

classify it as not diestrus when it is (false negative). Therefore, most misclassifications are 174 

specificity errors, which could potentially be reduced with further optimization. 175 

In out-of-sample trials in which the CNN was tested on different categories of unseen 176 

data, EstrousNet did not show significant differences in test accuracy between any of the given 177 

stains it was tested on, including H&E, Shorr, Giemsa, cresyl violet, or crystal violet (Fig. 3C). 178 

Additionally, despite cytological differences, images from mice and rats did not show significant 179 

differences in testing accuracy (Fig. 3D). Finally, cross-validation across 6 evenly split groups of 180 

subjects, including rats and mice of different strains, did not reveal any out-of-sample 181 

differences in test accuracy between animals (Fig. 3E). 182 

  183 

Using cycle fitting for predictive stage classification 184 

When an experimenter classifies estrous stage from epithelial cytology, they not only consider 185 

cell morphology and relative prevalence, but also how images might correspond to a typical 186 

estrous cycle. Helpfully, some common confusion errors occur between stages that are 187 

temporally distinct. For instance, true metestrus is classified as proestrus at a rate of 24.0% 188 

despite being non-adjacent stages of the cycle (Fig. 3D). As a result, we can exploit the natural 189 

sequence of the estrous cycle to identify these errors when test images are taken consecutively. 190 

To this end, EstrousNet uses a predictive algorithm that fits an archetypal estrous cycle to the 191 

labels generated by the net and identifies outliers (Fig. 4A, B).  192 

A custom cycle waveform was created based on the duration of estrous stages reported 193 

from thirteen groups10,18,20–23,30,35–38. If more than 4 days of test images are selected (i.e., n > 4*x 194 

where x is the sampling frequency per day), the algorithm can fit an archetypal cycle to the data 195 

to determine the relative phase that best fits the classification labels. The phase of this periodic 196 

waveform was shifted by increments of 0.1 cycles to find the best fit for the input data (Fig. 4B). 197 

We developed a MATLAB-based graphical user interface (GUI) that allows experimenters to 198 

select which stage to accept in cases where the net prediction and cyclicity predictions do not 199 

match (Supplementary Fig. S2).  200 

Fitting stages to an archetypal cycle also allows us to identify disruptions in the estrous 201 

cycle, such as those observed when the rodent enters pseudopregnancy, a condition 202 

occasionally induced by vaginal swab or lavage21,22. Observations of anestrous stages are also 203 

useful for those inducing timed pseudopregnancy for reproductive management and embryo 204 

transfer10,39. To address this, EstrousNet will alert the user with a pseudopregnancy warning flag 205 

if the animal stays in diestrus for > 50% longer than in previous cycles (Fig. 4C). Manual cell 206 

counts from an example cycle in which a mouse was lavaged once a day for 8 consecutive days 207 

shows a significant increase in the proportion of leukocytes observed once the animal enters 208 

pseudopregnancy (Fig. 4D, F(1,6) = 7.44, p = 0.034). Such persistent diestrus following a 209 
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cornified swab is consistent with previous observations of chemically or mechanically induced 210 

pseudopregnancy, and can be seen in a series of cytological images (Fig. 4E)22.  211 

Additionally, cycle fitting may help to identify stages that do not fall into a traditional 212 

category. While here we refer to estrous as consisting of 4 substages, as many as 13 substages 213 

have been identified, each corresponding to physiologically distinct steroid hormone 214 

concentrations41,42. For the intermediate period(s) between each stage, manual cell counting of 215 

sequential samples revealed cell proportionalities distinct to these transition stages (Fig. 5). 216 

Despite these advancements, more sequential data will be needed for EstrousNet to reliably 217 

classify transition stages. 218 

 219 

  220 

DISCUSSION 221 

 222 

Here, we created a deep learning network for automated classification of estrous stage. The 223 

12,719 images that constitute EstrousBank allow us to classify the four stages of estrous in a 224 

manner generalizable to stain, subject, and rodent species. EstrousBank is a valuable tool for 225 

future developers in the rapidly advancing machine learning field, and the benchmark 226 

classifications within the bank provide a guide for those learning to identify estrous stage. Our 227 

EstrousNet GUI additionally makes the CNN easily accessible to untrained users.  228 

We trained EstrousNet on a random 80% subset of EstrousBank using a ResNet-50-229 

based transfer learning algorithm, yielding test accuracy significantly greater than expert human 230 

examiners (Fig 2,3). Our software incorporates a preloaded trained network for easy adoption, 231 

while allowing more advanced users to train their own networks with custom parameters 232 

(Supplementary Fig. S2). To further improve estrous stage classification, EstrousNet 233 

incorporates a cycle fitting algorithm that flags outlier cases in which the deep learning 234 

classifications do not line up with an archetypal estrous cycle (Fig. 4). In these cases, the GUI 235 

gives the user the option to select which classification to accept and incorporates this choice 236 

into the net output (Supplementary Fig. S2). 237 

 Despite our progress in estrous stage classification with EstrousNet and EstrousBank, 238 

some limitations remain. Because of the heterogeneity of the training image set, we sacrifice 239 

some accuracy for the sake of generalizability. Other CNNs trained on 3 stages from a single 240 

dataset therefore exhibit higher validation accuracy in some stages12,30. Additionally, the fourth 241 

and most transient stage of the estrous cycle, metestrus, yields the lowest test accuracy, as is 242 

consistent with previously developed machine learning approaches12. Since the presence of 243 

both cornified and nucleated epithelial cells in metestrus causes confusion with proestrus, more 244 

data will be useful for training CNNs to differentiate between these two stages.  245 

Despite these limitations, misclassifications by EstrousNet remain significantly lower 246 

than human experts in diestrus, and similar to expert human coders in proestrus, estrus, and 247 

metestrus (Fig. 2F). The significantly higher accuracy of diestrus classifications will be useful in 248 

flagging the diestrus-proestrus transition, during which estradiol levels spike up to 100-fold 41,42. 249 

The combination of the easy-to-use software and our highly generalizable algorithm makes 250 

EstrousNet an excellent resource for inexperienced classifiers. Our results indicate that human 251 
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variability remains high even amongst expert coders, highlighting the need for increased inter-252 

lab consistency (Fig. 2G). With many experimenters making the transition to using both sexes in 253 

rodent studies, generalizable and automated pipelines for tracking estrous stage will be useful 254 

for a range of laboratories. 255 

 Although 68.3% of EstrousBank images consist of uniform or semi-uniform stains such 256 

as crystal violet and H&E, stains designed specifically for hormonal cytodiagnosis offer an 257 

opportunity to identify more nuanced biomarkers of the estrous cycle. For instance, Shorr stain 258 

makes it possible to distinguish acidophilic and basophilic epithelial cell subtypes, either of 259 

which may be more prevalent in the early or late phase of a given estrous stage40. Identifying 260 

such graded changes in cell type proportionality will be useful for classifying transition stages of 261 

the estrous cycle (Fig. 5). Characterization of substages will be a step forward in reframing our 262 

understanding of the estrous cycle as continuum, instead of a series of discrete stages. 263 

It should be noted that currently there is no ground truth data for cytological stage in 264 

vivo, as the low concentrations of hormones such as estradiol and progesterone in the 265 

bloodstream make daily collection of endocrine data generally intractable in rodents. Although 266 

larger rats may have sufficient blood volume for repeated sampling, existing radioimmunoassay 267 

techniques are invasive, expensive, and time consuming43. At present, most ground truth data 268 

from the estrous cycle is derived from terminal experiments in which animals are sacrificed at 269 

staggered timepoints and large volumes of blood are used to determine hormone 270 

concentration18,22,41.  271 

However, advances in biosensors for steroid hormone analysis, including aptamer44,45, 272 

bioaffinity46, and magnetic nanoparticle sensors47, offer exciting opportunities for repeated 273 

estradiol and progesterone measurements. Additionally, physiological characteristics such as 274 

temperature48, heart rate49, uterine impedance20, and blood oxygen content50 could be 275 

incorporated into estrous stage identification as a proxy for steroid hormone concentrations. As 276 

new biomarkers become available, we hope to update EstrousNet to integrate these inputs and 277 

further improve the classification accuracy.   278 

Ultimately, it is our goal that accessible technologies for cytological classification will 279 

help reduce the exclusion of female animals from scientific studies, a disparity that is especially 280 

prevalent in fields such as neuroscience and pharmacology, in which significant sex differences 281 

have been described1,2. We hope that by continuing to add new cytology images and metadata 282 

into our EstrousBank dataset over time, we will be able to bolster our network to identify 283 

biological processes that are modulated by steroid hormones.  284 

 285 

METHODS 286 

 287 

Animals 288 

The images in EstrousBank were collected from 5 different labs. Cytology images from the 289 

Goard lab were taken from female Thy1-GFP-M transgenic mice and Slc17a7-IRES2-Cre x 290 

TITL2-GC6s-ICL-TTA2 double transgenic mice, neither of which showed strain-specific 291 

disruptions to the estrous cycle. Animals were housed in cages of up to 5 animals, and singly 292 

housed after being surgically implanted with a headplate and cranial window for corresponding 293 
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imaging experiments. Animals were given food and water ad libitum and kept on a 12 h 294 

light/dark cycle. Samples were taken at 16-40 weeks, with a median age of 30 weeks, using 295 

vaginal lavage. All animal procedures were approved by the Institutional Animal Care and Use 296 

Committee at University of California, Santa Barbara. 297 

Cytology from the Galea Lab was taken from wild-type female Sprague-Dawley rats. Animals 298 

were housed in cages of 2-3, given food and water ad libitum, and kept on a 12 h light/dark 299 

cycle. Samples were taken at 8-17 weeks of age using vaginal lavage. Older animals were 300 

concomitantly involved in behavioral experiments that may have resulted in elevated stress. All 301 

experimental procedures were approved by the University of British Columbia Animal Care 302 

Committee and were completed in accordance with the Canadian Council on Animal Care 303 

guidelines.   304 

Cytology from the Ostroff lab was taken from wild-type female Sprague-Dawley rats. Animals 305 

were housed in cages of 2, given food and water ad libitum, and kept on either a 12h or 14:10 306 

light/dark cycle. Cages were filled with autoclaved standard Sani-Chip bedding (Teklad Global, 307 

Envigo) and one enrichment device. Samples were taken at 4-14 weeks of age using vaginal 308 

swab. All animal protocols were approved by the Institutional Animal Care and Use Committee 309 

at the University of Connecticut. 310 

Cytology from the Shansky Lab was taken from wild-type female Long Evans rats. Animals were 311 

housed in cages of 2, given food and water ad libitum, and kept on a 12 h light/dark cycle. 312 

Samples were taken at average 12-16 weeks using vaginal swab. All animal procedures were 313 

approved by the Institutional Animal Care and Use Committee at Northeastern University. 314 

Cytology from the Sutoh lab was taken from wild-type female C57BL/6J mice. Animals were 315 

provided food and water ad libitum and kept on a 12 h light/dark cycle. Samples were taken at 316 

5-14 weeks using vaginal swab. All animal-use procedures were in accord with the Guidelines 317 

for Animal Experimentation of Showa Pharmaceutical University. 318 

 319 

Vaginal cytology 320 

EstrousBank samples were collected using saline lavage (9.2%) or vaginal swab (90.8%). 321 

Vaginal lavage samples were collected using a P200 micropipette. 50 µl sterile saline was 322 

pipetted into the vaginal opening and aspirated several times to obtain a sufficient cell count. 323 

The sample was pipetted onto a gel subbed microscope slide and allowed to dry 24 h before 324 

staining. For vaginal swabs, cotton-tipped swabs were soaked in sterile saline and briefly rolled 325 

against the superficial vaginal wall. The epithelial cells on the swab were then transferred to a 326 

dry gel subbed glass slide.  327 

 328 

Gel subbing was performed in-house using standard IHC protocol to coat glass slides in 329 

gelatin/CrK(SO4)2 solution19. Staining procedures, including crystal violet, Giemsa, H&E, and 330 

Shorr stain, are as described elsewhere20,40,41,50. 331 

 332 

 333 
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EstrousBank curation 334 

The 12,719 images in EstrousBank were contributed from the Goard lab, Ostroff lab, Shansky 335 

lab, Galea lab, and Sutoh lab. These labs provided cytology images from a diverse set of 336 

histological stains, magnifications, species, and strains (Supplementary Table S1). Initial 337 

classifications were made based on traditional cell type proportionality, as determined by the 338 

source lab. For cross-group consistency, benchmark classifications were made between the 339 

experimenters who provided the cytology images and those compiling EstrousBank. Images 340 

were classified into a given stage when 2 or more expert coders agreed on a stage 341 

classification, including those from transition stages (Fig. 5). Images containing excessive 342 

debris, n<10 cells, or <300 pixels were excluded (4.6%).  343 

 344 

Image preprocessing 345 

Input images were normalized by aligning maximum peaks of the luminance histograms. 346 

Images were then converted to greyscale to allow EstrousNet to generalize onto different stains. 347 

After normalization, images in both cohorts were randomly divided into 80% training, 10% 348 

validation, and 10% test sets. These images were then split into four quadrants within the same 349 

directory. Greyscale images were concatenated into 3D arrays to meet input image size 350 

requirements. Images were then stored in an augmented datastore where each image was 351 

resized to 224 x 224 x 3.  352 

EstrousNet augmented the quadrupled dataset with X and Y translation, rotation, 353 

reflection, and scaling, according to user parameters in EstrousNetTrainNewNet.mlapp, the 354 

network training GUI. EstrousNet users can choose to train their own net using custom 355 

augmentation parameters in the EstrousNet GUI or load one of our open-source pretrained 356 

networks.   357 

  358 

Implementation and training of CNN architectures 359 

The pretrained EstrousNet is based on the ResNet-50 architecture, which yields the highest 360 

validation and test accuracy on the EstrousBank images. However, users can choose to train 361 

EstrousNet using VGG-19, MobileNet v2, or Inception v3 architectures, the connected layers of 362 

which have been prespecified in our code31–34. VGG-19 is a network characterized by highly 363 

connected convolutional and fully connected layers which enable efficient feature extraction and 364 

use Maxpooling for downsampling, unlike the average pooling layers of ResNet5033. Compared 365 

to ResNet and VGG networks, Inception v3 uses auxiliary classifiers, asymmetric convolutions, 366 

and fewer overall parameters for high computational efficiency and low error rates31. Finally, 367 

MobileNet v2 is a lighter deep neural net ideal that only uses a regular convolution on the first 368 

layer of an input image, designed for users with datasets that desire high accuracy with reduced 369 

parameters32.  370 

 371 

In the standard ResNet50 architecture, used here as the base architecture of EstrousNet, 372 

nonlinear skip connections and shortcuts are implemented to maintain high performance despite 373 

a deep architecture34. The residual block on ResNet-50 is defined as follows: 374 

 375 
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𝑦 = 𝑊𝑠𝑥 + 𝐹(𝑥, {𝑊𝑖}) 376 

 377 

Where 𝑥 is input layer; 𝑦 is output layer; the function 𝐹(𝑥, {𝑊𝑖}) represents the residual mapping 378 

to be learned; and 𝑊𝑠 is the linear projection performed to match the dimensions of 𝑥 and 𝐹. 379 

 380 

The architecture of ResNet-50 consists of 5 stages, each with a convolution and identity 381 

block made up of 3 convolution layers34,51. The two initial layers accomplish convolution of size 382 

7 × 7 and max-pooling of size 3 × 3 with a stride of 234,51. Input images are resized to 383 

224x224x3 before undergoing augmentation and training. Training hyperparameters were 384 

specified using a Bayesian optimizer, which yielded highest accuracy with an initial learning rate 385 

of 1e-5 and a mini batch size of 80. Several gradient descent optimization algorithms were 386 

tested, including RMSprop, adam, and sgdm, all designed to minimize the loss function of the 387 

network. RMSprop exceeded the other algorithms in terms of accuracy when combined with a 388 

squared gradient decay of 0.99. Due to the breadth of the input images only 3 epochs were 389 

necessary to maintain maximum accuracy, with shuffling occurring every epoch, as well as a 390 

piecewise learning rate drop factor of 0.1, the step decay algorithm of which is as follows: 391 

 392 

𝑙𝑟 = 𝑙𝑟0 ∗ 𝑑𝑟𝑜𝑝𝑓𝑙𝑜𝑜𝑟(
𝑒𝑝𝑜𝑐ℎ

𝑒𝑝𝑜𝑐ℎ𝑠_𝑑𝑟𝑜𝑝
) 393 

 394 

Where 𝑙𝑟 is learning rate; 𝑙𝑟0 is initial learning rate (here 1e-5); drop is the factor by which the 395 

learning rate is decreased (here 0.1); 𝑓𝑙𝑜𝑜𝑟 is the minimum learning rate; 𝑒𝑝𝑜𝑐ℎ is the current 396 

epoch, and 𝑒𝑝𝑜𝑐ℎ𝑠_𝑑𝑟𝑜𝑝 is the number of epochs after which the step decay will occur (here 397 

1)52. 398 

The EstrousNet GUI was developed in MATLAB 2020b (Mathworks, Inc.) using the App 399 

Designer platform. EstrousNet was trained using EstrousNetTrainNewNet.mlapp, classification 400 

input was given by EstrousNetGUI.mlapp, and classification output was plotted using 401 

EstrousNetPlotting.mlapp. The GUI is also used to tune augmentation parameters and number 402 

of stages desired for classification.  403 

 404 

Cycle fitting 405 

Here, a custom waveform describing the time course of the estrous cycle was generated using 406 

prior publications10,18,20–23,30,35–38. The resulting archetypical estrous cycle has a period of 4.87 407 

days (Fig. 4A). The stage classifications are ordered diestrus > metestrus in increments of 1.0 408 

starting from 0.5, where 0.0 and 4.0 were defined as the transition stage between metestrus and 409 

diestrus (Fig. 4A). We fit these points with a two-term polynomial, calculating the coefficients 410 

using the temporal midpoints of each stage of the estrous cycle. The periodic waveform is fit to 411 

the input data for EstrousNet by shifting the phase by 0.1 cycles and selecting the phase shift 412 

with the maximum Pearson’s correlation coefficient (Fig. 4B).  413 

 Cycle fitting also allowed us to detect anestrous stages (i.e., pseudopregnancy), which 414 

are occasionally induced by cytology sampling methods such as vaginal swab and lavage. In 415 

our algorithm, the user will receive a pseudopregnancy warning message if the animal has been 416 
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in diestrus 50% longer than in previous cycles, given that the user specifies sequential data 417 

sampling in the GUI (Fig. 4C-E). This characterization is consistent with our observation that 418 

more than 2 consecutive days of > 90% leukocytes is indicative of an anestrous state (Fig. 4D). 419 

 420 

Statistical information 421 

To compare the accuracy of EstrousNet vs trained human examiners, a test set of 400 images 422 

was created by randomly selecting 100 images from each of the 4 estrous stages (Fig. 2D, E). 423 

Human examiners were expert coders who had each individually classified upwards of 2000 424 

cytology images. EstrousNet was trained on the images in EstrousBank, as described 425 

previously, excluding the 400 images in the test set. Benchmark classifications were used as a 426 

proxy for ground truth, in the absence of intravenous hormone measurements, as described 427 

previously. Accuracy was determined by comparing these ground truth classifications to 428 

EstrousNet classifications. These comparisons are represented by a confusion matrix generated 429 

in MATLAB (Fig. 2D,E). 430 

 For statistical analysis, net accuracy and human accuracy vectors for each stage were 431 

concatenated and bootstrapped across 5000 iterations to create a normal distribution. Violin 432 

plots were made using an open-source MATLAB package55. We performed the Fisher’s Exact 433 

Test within and across stages to test for significance (Fig. 2F).  434 

 For out-of-sample testing, three dimensions of sampling were used: stain, species, and 435 

subject. For stains and species, each respective category was removed from the training set 436 

and set aside for testing. EstrousNet was trained separately for each category on the revised 437 

datasets (Figure 3C-E). It should be noted that multiple dimensions were nested in our 438 

framework, i.e., because each lab group used a different stain for their cytology images, 439 

removing any species also removed a set of stains. Accuracy was measured by taking the 440 

proportion of EstrousNet classifications that were consistent with benchmark classifications, run 441 

across 1000 iterations sampled without replacement to generate standard error. For out-of-442 

sample subject testing 36 individual animals were identified, including 20 WT Sprague Dawley 443 

rats and 16 Slc7a7-cre x TITL GCaMP6s B6 mice. k = 6 groups were used for k-fold out of 444 

sample cross-validation testing, with 6 subjects in each group. The resulting confusion matrix is 445 

an average of the k-fold accuracy results. 446 

 ROC curves were generated using the perfcurve MATLAB function to generate a logistic 447 

regression, then the integral of each curve was taken to calculate the auROC for each stage 448 

(Fig. 3A). For these curves, true positive was defined as an instance where a given positive 449 

stage was correctly classified, whereas false positive was defined as the number of negative 450 

stages falsely categorized into a given positive stage. 451 

 The sensitivity curve was generated by finding the rate of images in a positive class, i.e., 452 

images belonging to a given stage, that were correctly classified as being in that stage (Fig. 453 

3B). The specificity curve was generated by finding the rate of images in a negative class, i.e., 454 

not part of a given stage, that were correctly classified as not belonging to that stage (Fig. 3B). 455 

The probability cutoff of 0.26 was defined as the intersection between these two curves (Fig. 456 

3B). Pseudopregnancy cell count significance was determined by a two-way ANOVA (Fig. 4D).  457 

 458 
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DATA AVAILABILITY  459 

 460 

All code necessary to run EstrousNet is available at http://github.com/ucsb-goard-461 

lab/EstrousNet. EstrousBank is available in full at [IDR number to be determined]. 462 
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FIGURES 
 

 
 
 
Figure 1. General schematic of the EstrousNet pipeline and representative cytological 
images. 

A. Hematoxylin and eosin (H&E)-stained vaginal cytology from a wild-type Sprague Dawley rat 
(Ostroff lab). Scale bar = 10 μm. 

B. Shorr-stained vaginal cytology from a Slc7a7-cre x TIT2L-GCaMP6s Bl6 mouse (Goard lab). 
Scale bar = 10 μm. 

C. Cresyl violet-stained vaginal cytology from a wild-type Long-Evans rat (Galea lab). Scale bar 
= 10 μm. 

D. Image augmentation schematic: images are first quadrisected, then reflected, scaled, 
rotated, and translated in our preprocessing pipeline.  

E. The base architecture of ResNet50 that is used for the transfer learning 
algorithm.  Processed input images are transferred to a max pooling layer. Then, the images 
are processed through four convolutional units, which converge onto custom pooling and 
SoftMax classification output layers. 

F. Schematic of the EstrousNet GUI output. Estrous stage classifications are generated from 
the deep learning network, and the cycle tracking algorithm flags potential outliers.  
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Figure 2. EstrousNet accuracy is comparable to human experts.  

A. Validation accuracy curves for EstrousNet trained using four different base architectures: 
ResNet50, Inception v3, VGG-19, and MobileNet v2. All networks were trained on 
EstrousBank images. Mean validation accuracy across 3 testing iterations. 

B. Schematic of the EstrousBank split for training, validation, and test sets. By percentage, this 
split is 80%, 10%, and 10%, respectively.  

C. Breakdown of EstrousBank by stain and stage. Stains from left to right are hematoxylin and 
eosin (HE), Shorr stain (SH), Giemsa stain (GE), crystal violet (CryV), and cresyl violet 
(CreV). The complete bank consists of n = 12,719 cytology images.  
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D. Confusion matrix of EstrousNet classifications, represented here as a heatmap, with 
consensus from benchmark classification acting as our ground truth. Numbers represent the 
number of images classified for each stage, from a test set made up of 400 images (100 
images from diestrus, proestrus, estrus, and metestrus). 

E. Confusion matrix of human classification, represented as a heatmap, with ground truth 
stages as described previously. 

F. Average test accuracy distributions in each estrous stage for EstrousNet vs human 
classifications. EstrousNet distributions are identified by a continuous line while human 
classifications are identified by a dotted line. Distributions were created by bootstrapping 
data over 50000 iterations, sampling without replacement. Error bars are 25th (75th) 
percentiles minus (plus) the interquartile range (75th percentile minus 25th percentile). 
Asterisks indicate significance as determined by Fisher’s Exact Test; diestrus: odds ratio = 
0.68, 95% confidence interval = 0.55-0.83, p = 1.2 x 10-5, proestrus: odds ratio = 0.68, 95% 
confidence interval = 0.55-0.83, p = 0.075, estrus: p = odds ratio = 0.68, 95% confidence 
interval = 0.55-0.83, p = 0.84, metestrus: odds ratio = 0.68, 95% confidence interval = 0.55-
0.83, p = 0.60. Across all stages accuracy was significantly different, with odds ratio = 0.68, 
95% confidence interval = 0.55-0.83, p = 2.1 x 10-4, Fisher’s Exact Test. 

G. Venn diagram of the overlap between human expert coders, with a total of 400 
classifications for each coder. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.09.483678doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483678
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

 
 
Figure 3. EstrousNet performs similarly across groups. 

A. auROC curves for each estrous stage. True positives for each stage are determined by 
benchmark classifications.  

B. Specificity (SP) vs sensitivity (SN) curves for EstrousNet, with the probability cutoff at 0.26 
defined as the intersection between curves (dotted grey line). Standard error shown in 
orange and blue for sensitivity and specificity, respectively. 

C. Out of sample testing across 4 different stains: hematoxylin and eosin, Shorr stain, Giemsa 
stain, cresyl violet, and crystal violet. Test accuracy represented as a distribution across 
1000 testing iterations, with mean % SE shown. Accuracy differences between stains are 
not significant (F(4,198) = 3.14, p = 0.10, one-way ANOVA). 

D. Out of sample testing between mouse and rat species. Test accuracy represented as a 
distribution across 1000 testing iterations, with mean % SE shown. Accuracy differences 
between species are not significant (F(1,198) = 7.87, p = 0.73, one-way ANOVA). 

E. Out of sample (OOS) classification for each stage of the estrous cycle between different 
animals, represented as a heatmap. Benchmark classification was used as a proxy for 
ground truth. K-fold cross-validation was used to estimate accuracy across stages, with k = 
6 groups. Testing accuracy was averaged between each fold to generate the most unbiased 
estimate across all groups. Accuracy differences between subjects are not significant 
(F(5,198) = 6.98, p = 0.60, one-way ANOVA). 
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Figure 4. Sequential estrous classifications are fit to an archetypal cycle. 

A. Schematic of the custom waveform used for temporal cycle fitting. Color blocks indicate the 
length of each estrous stage as a percentile of average total cycle length, with a curve fitted 
to the midpoint of each stage (see Methods). Stage lengths are based on a consensus 
archetypal cycle from previous studies10,18,20–23,30,35–38.  

B. Pearson’s coefficient for each iterative fit of the custom waveform to an example 16-day 
cycle, at increments of 0.1 cycles. The best fit is determined by global maxima, marked by 
an ‘x’ for this example cycle.  

C. Example of a naturally cycling mouse tracked across 25 days, with the animal’s cycle shown 
as a solid orange line and the fitted cycle curve as a dotted teal line. The mouse  
initially exhibited regular cycles but entered pseudopregnancy on day 18 (shaded area), 
causing EstrousNet to give the user a pseudopregnancy warning message (grey line). 

D. Proportion of leukocytes in cytological cell counts before (blue) and after (pink) 
pseudopregnancy. Mean +/- SE, F(1,6) = 7.44, p = 0.034, as determined by two-way 
ANOVA. Asterisk indicates significance of p < 0.05. 

E. Cytology images from a normally cycling mouse entering pseudopregnancy, demonstrating 
prolonged diestrus, with an abnormally high proportion of leukocytes. Scale bars = 10 μm. 
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Figure 5. Characterization of cell types across the estrous cycle.  
A pie chart of the four estrous stages broken down by stage length across the 4–5-day cycle. 
Transition states between the four classical estrous stages are shown in gradient, and cytology 
collected from between the stages are included. Raw images and violin plots of cell counts from 
8 primary and transition stages are shown (four examiners). The violin plots indicate the 
proportions of leukocytes, cornified epithelial, and nucleated epithelial cells, respectively (mean 
+/- SE).   
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SUPPLEMENTARY MATERIAL 

 
  

 
 
Supplementary Figure S1. Image preprocessing pipeline. 

A. Intensity histogram of an unprocessed image (light blue), shifted to lower intensity (dark 
blue) during luminance normalization. 

B. Schematic of image resizing and conversion to grayscale, where 1D grayscale images are 
concatenated into a 3D array of size 224 x 224 x 3 to match the input requirements of the 
transfer learning network.  

C. Example unprocessed test images from one estrous cycle. 
D. Raw images with reduced intensity, normalized to the same maximum intensity peak. 
E. Luminance-normalized images converted to 3-channel grayscale. 
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Supplementary Figure S2. Illustration of the EstrousNet user interface (GUI). 

A. The EstrousNet classification GUI: the user selects a folder of test images which are 
automatically classified and plotted. The user also selects whether images were sampled 
sequentially, which will determine whether net classifications are fit to an archetypical cycle. 

B. The EstrousNet training GUI: if the user selects that they would like to train a new network, it 
will launch the training GUI. This GUI lets the user select folders with training and validation 
images, as well as custom augmentation parameters, and once training is finished will save 
the trained network and training data to the current directory.  

C. The EstrousNet plotting GUI: once the classification GUI is used to select test images, the 
plotting GUI will display the results of the net classifications. If images were taken in 
sequence, the plotting GUI will fit the images to an archetypal cycle, and for any images 
where the cyclicity and net classifications disagree, the user can choose to manually select 
the preferred classification. 
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Source 
Lab 

Magnification Stain Species Strain # 
images 

% of 
total 
images 

Galea 20X Cresyl 
Violet 

Rat Sprague Dawley WT 145 1.14 

Goard 10X H&E, 
Shorr 
Stain 

Mouse Thy1-GFP-M (Jax Stock 
#007788), Slc7a7-cre (Jax 
Stock #023527) x TITL-
GCaMP6s (Jax Stock 
#024104) C57BL/6J 

1024 8.05 

Ostroff 10X H&E, 
Shorr 
Stain 

Rat Sprague Dawley WT 6277 49.35 

Shansky 10X Crystal 
Violet 

Rat Long Evans WT 1954 15.36 

Sutoh  10X Giemsa Mouse C57BL/6J WT 3319 26.09 

 
Supplementary Table S1. Summary of EstrousBank images from multiple labs. 
Metrics for the images included in the open-source image repository EstrousBank, subdivided 
by the groups contributing the raw images.  
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