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ABSTRACT

The rodent estrous cycle modulates a range of biological functions, from gene expression to
behavior. The cycle is typically divided into four stages, each characterized by distinct hormone
concentration profiles. Given the difficulty of repeatedly sampling plasma steroid hormones from
rodents, the primary method for classifying estrous stage is by identifying vaginal epithelial cell
types. However, manual classification of epithelial cell samples is time-intensive and variable,
even amongst expert investigators. Here, we use a deep learning approach to achieve
classification accuracy at expert levels in a matter of seconds. Due to the heterogeneity and
breadth of our input dataset, our deep learning approach (“EstrousNet”) is highly generalizable
across rodent species, stains, and subjects. The EstrousNet algorithm exploits the temporal
dimension of the hormonal cycle by fitting classifications to an archetypal estrous cycle,
highlighting possible misclassifications and flagging anestrus phases (e.g., pseudopregnancy).
EstrousNet allows for rapid estrous cycle staging, improving the ability of investigators to
consider endocrine state in their rodent studies.

INTRODUCTION

With the broad incorporation of female animals into previously all-male studies**we are at a
critical juncture for the interpretation of endocrine physiology. In naturally cycling humans, the
menstrual cycle lasts 28 days and is characterized by defined peaks in steroid hormones such
as estradiol and progesterone®-°. In female rats and mice, the analogous estrous cycle lasts 4-5
days'®, but exhibits steroid hormone fluctuations similar to the 28 day human menstrual cycle.
The estrous cycle was first described over a century ago'?, yet the criteria for tracking this cycle
remain subjective and variable between experimenters!?. Determining the stage of estrous is
critical to evaluating the state of the hypothalamic-pituitary-ovarian axis, which has implications
in a myriad of factors including gene expression*>*4, neuronal structure and connectivity®*®, and
pharmacological efficacy'®. In addition, correct interpretation of estrous stage is useful for timed
pregnancy in rodents and changes in cycle regularity can be used as a proxy for changes in
other critical hormones such as corticosterone!” 8,

The estrous cycle can be divided into four stages: diestrus, proestrus, estrus, and
metestrus'®23, While techniques such as vaginal opening evaluation, vaginal wall impedance,
and urine biochemistry have all been used as methods for determining estrous stage?,
epithelial cell cytology remains the most common and reliable strategy®°1°%13, Classification
using vaginal cytology is typically performed by manually counting or estimating the relative
prevalence of epithelial cell types, including leukocytes, cornified epithelial, and nucleated
epithelial cells, and using the proportionality of these subtypes to determine stage!°.

Despite the prevalence of this method, there are several limitations of epithelial cell
cytology for estrous stage classification: 1) it is time consuming and requires extensive training.
2) it lacks generalizability; even expert classifiers may have trouble generalizing across rodent
species, stains, and subjects. 3) it is inconsistent between labs, as classification can vary widely
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between human examiners!?. Here, we address these challenges using a novel deep learning
algorithm that can generate estrous stage classifications on the order of seconds.

Convolutional neural networks (CNNs) have outperformed human experts in diagnosing
retinal disease?*, skin cancer?®, syndromic genetic diseases?®, and a host of other medical
conditions?’. These networks are broadly useful for their speed and reliability. Although CNNs
are difficult to train from scratch, requiring massive training data sets for accurate classification,
transfer learning can exploit the multilayered architectures of pretrained networks to classify
complex biological images?2°,

Here, we have compiled a large-scale multi-laboratory dataset of cytology images
(“EstrousBank”). We then used EstrousBank to train a deep learning algorithm (“EstrousNet”) to
effectively recognize structural markers of the estrous cycle in a manner generalizable across
subjects, stains, and rodent species. The resulting classifications are not significantly different
than expert human examiners in any stage surveyed. The predictions generated by EstrousNet
can be enhanced by using sequentially collected data to fit cytological samples with an
archetypal estrous cycle. Cycle fitting, along with training, classification, and output, are
operated through an interactive graphical user interface (GUI). Taken together, these results
show that our deep learning approach is capable of rapid and accurate classification of estrous
stage.

RESULTS

EstrousBank: an open resource for analysis of vaginal cytology images
A major barrier to the development of software to analyze the estrous cycle is a data-poor
environment that requires experimenters to collect their own cytology images. In our efforts to
make the EstrousNet algorithm generalizable across groups, we have compiled the largest
known image bank of estrous cytology images. EstrousBank currently spans five labs, five
stains, two magnifications, and multiple rodent species (Fig. 1A-C, Supplementary Table S1).
The complete image bank comprises 12,719 vaginal cytology images and is freely available for
analysis by outside laboratories. We will continue to add to the image bank as more samples
become available. Cytological samples across labs were collected using a standard lavage or
swabbing procedure (See Methods). Briefly, epithelial cells were exfoliated from the superficial
vaginal cavity via sterile saline and transferred to a glass microscope slide. Samples were
allowed to dry for up to 24 h before staining with one of several compounds, and images were
collected using brightfield microscopy at a range of magnifications (Supplementary Table S1).
EstrousBank contains images from all four stages of the estrous cycle, which were
classified by experts according to classical cytology parameters, which are as follows?*-23;
mouse diestrus is characterized by an abundance of small leukocytes, a sharp decrease in
proportions of keratinized anucleated epithelial cells, and lower numbers of both small and large
nucleated epithelial cells (Fig. 1A-C). Mucosal secretions appear thick and stringy when
present. Proestrus is a more transient stage characterized by a uniform spread of small rounded
basophilic nucleated epithelial cells, and low proportions of anucleated cornified epithelial cells
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85 (Fig. 1A-C). Estrus is typically identified by the high proportion of large anucleated cornified
86 epithelial cells, which often form clumps or sheets that become more prominent in late estrus
87 (Fig. 1A-C). Metestrus is a short stage identified by the presence of both nucleated epithelial
88 and cornified epithelial cells, with leukocytes clustered around them, and an elevated level of
89  mucosal secretions (Fig. 1A-C). While others have broken down diestrus into 2-3 substages,
90 here we consider metestrus to be its own distinct stage preceding diestrus. These
91 characterizations are largely consistent between mice and rats, but the following differences
92  have been observed: rats exhibit a higher proportion of large ovular nucleated epithelial cells in
93 late estrus, shorter periods of proestrus/metestrus, and lower proportions of anucleated
94  cornified epithelial cells in metestrus?:. Given these similarities, we trained EstrousNet on
95  cytology images from several strains of mice and rats to improve generalization across model
96  systems; with 34.1% of the image set from mice and 65.9% from rats.
97 Although previous studies have used computational methods to analyze vaginal
98  cytology*?°, the input datasets for these networks have historically been restricted to a single
99  stain. To further enhance generalizability, the training and validation image sets for EstrousNet
100 include samples stained with H&E, Shorr, Giemsa, cresyl violet, and crystal violet stains, at
101  magnifications of 10x and 20x (Fig. 1A-C, Supplementary Table S1). The resulting pretrained
102  CNN is highly generalizable and effective in classifying low resolution images and those
103  containing debris from vaginal swab.
104
105 A ResNet50-based CNN architecture maximizes EstrousNet performance
106  To classify estrous stage from vaginal cytology images, we developed a classification pipeline
107 using a convolutional deep learning network to detect cell boundaries and recognize endocrine
108  biomarkers within cytological samples. For training and validation, we used consensus
109 classifications (see Methods) to attach an estrous stage label to each image. EstrousNet is
110 trained on subsets of EstrousBank images that are augmented for a greater volume of training
111  data. Input images are first segmented into quadrants (Fig. 1D.i, ii), then reflected, rotated,
112  scaled, and translated within the Net (Fig. 1D.iii). The augmented images undergo luminance
113  normalization, then are converted to 3-channel grayscale arrays for more efficient feature
114  extraction (Supplementary Fig. S1). Next, these augmented images are compiled into a large
115  datastore and fed into the ResNet50 architecture, which consists of four convolutional stages of
116  increasing dimension (Fig. 1E). The convolutional layers of the network converge on a SoftMax
117  classification layer, which outputs probabilistic classification of estrous cycle stage (Fig. 1E, F).
118  This classification is optionally supplemented by fitting the test images to a curve describing the
119 length and phase of the estrous cycle (Fig. 1F). For images in which the cyclicity prediction and
120 net prediction disagree, the interactive GUI will ask the user to select which classification to use.
121  The composite classifications of the EstrousNet and cyclicity predictions provide the
122 experimenter with an informed estrous stage classification.
123 Previous studies investigating the efficacy of transfer learning in biological tissue
124  classification have used several CNN architectures'?282°, Here, we evaluated four different
125  pretrained networks: VGG-19, Inception v3, MobileNet V2, and ResNet-50 (Fig. 2A)3*1-24, Each
126  base architecture was originally trained on more than one million images from the ImageNet
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127  database and retrained on an augmented dataset made up of 80% of EstrousBank images, with
128  10% of images reserved for validation and 10% reserved for testing (Fig. 2B, C). All base

129  architectures have previously been used for supervised learning in biological classification tasks
130  and achieved accuracy comparable to or exceeding that of human coders?*?’. The mean

131  validation accuracies averaged over 3 iterations for each architecture are as follows: VGG-19 =
132 79.7%, Inception v3 = 77.5%, MobileNetV2 = 65.5% and ResNet-50 = 88.9% (Fig. 2A). These
133 accuracies are calculated based on ground truth data defined by benchmark classifications

134  between 3 expert human examiners. Based on these results, we concluded that ResNet-50 was
135  the most effective architecture.

136

137  EstrousNet outperforms human coders in both speed and accuracy

138  The cytology images in our training set were originally sorted into stages by expert human

139  classifiers. These classifications were made using subjective assessments according to

140  established approaches'®?921 (see Methods). Unfortunately, human classification is limited by
141  inter-experimenter variability and differences in experience with particular species, strains, and
142  histological stains. In addition, the CNN may be capable of identifying subtle morphological

143  features that are difficult for humans to identify, such as increased cell clumping in estrus and
144  higher mucus content in metestrus and diestrus.

145 To quantify differences between EstrousNet and human coders, we compared

146  classification performance on a test set of 400 randomly selected images (100 from each stage)
147  between EstrousNet and three expert human coders. Across the test image set, EstrousNet
148 classified stages significantly more accurately than human examiners (odds ratio = 0.68, 95%
149  confidence interval = 0.55-0.83, p = 2.1 x 10%; Fisher’s Exact Test). Breaking down performance
150 by stage, EstrousNet achieved significantly greater accuracy than expert human examiners for
151  diestrus (odds ratio = 0.6791, 95% confidence interval = 0.55-0.83, p = 1.2 x 10°), whereas

152  accuracy was higher, but not significantly different than expert examiners, for proestrus (odds
153  ratio = 0.68, 95% confidence interval = 0.55-0.83, p = 0.075), estrus (odds ratio = 0.6791, 95%
154  confidence interval = 0.55-0.83, p = 0.84) and metestrus (odds ratio = 0.68, 95% confidence
155 interval = 0.55-0.83, p = 0.60; Fisher’s Exact Test for all comparisons; Fig. 2D-F). EstrousNet
156  classifications also achieved impressive speed, with an average rate of 0.10 +/- 0.005 s (mean
157  +/- SE) per image.

158 Expert human staging showed a large degree of variance, with only 275 image

159 classifications, or 68.75% of the total test set, shared between all three coders (Fig. 2G). A

160  notable number of classifications, 15.9%, were unique to one human coder (Fig. 2G).

161  Therefore, even amongst expert human classifiers, classifications can vary widely across a

162  generalizable dataset of cytology images.

163

164  EstrousNet is generalizable across species, stains, and subjects

165  To further quantify EstrousNet performance for each estrous stage, we measured the area

166  under the receiver operating characteristic (auROC) for each stage independently. EstrousNet
167 demonstrated auROC values greater than 0.79 for all four estrous stages, with estrus achieving
168 the highest auROC at 0.98 (Fig. 3A). Despite this high performance, there are areas in which
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169  EstrousNet shows tendencies towards misclassification. Sensitivity and specificity curves show
170  that EstrousNet is stronger in eliminating false negative results than false positive results,

171 indicating a higher degree of sensitivity than specificity (Fig. 3B). For example, if EstrousNet is
172 given an image of an unknown stage and asked if the sample is from an animal in diestrus,

173  EstrousNet is more likely to classify the sample as diestrus when it is not (false positive), than to
174  classify it as not diestrus when it is (false negative). Therefore, most misclassifications are

175  specificity errors, which could potentially be reduced with further optimization.

176 In out-of-sample trials in which the CNN was tested on different categories of unseen
177  data, EstrousNet did not show significant differences in test accuracy between any of the given
178  stains it was tested on, including H&E, Shorr, Giemsa, cresyl violet, or crystal violet (Fig. 3C).
179  Additionally, despite cytological differences, images from mice and rats did not show significant
180  differences in testing accuracy (Fig. 3D). Finally, cross-validation across 6 evenly split groups of
181  subjects, including rats and mice of different strains, did not reveal any out-of-sample

182  differences in test accuracy between animals (Fig. 3E).

183

184  Using cycle fitting for predictive stage classification

185  When an experimenter classifies estrous stage from epithelial cytology, they not only consider
186  cell morphology and relative prevalence, but also how images might correspond to a typical

187  estrous cycle. Helpfully, some common confusion errors occur between stages that are

188  temporally distinct. For instance, true metestrus is classified as proestrus at a rate of 24.0%

189  despite being non-adjacent stages of the cycle (Fig. 3D). As a result, we can exploit the natural
190 sequence of the estrous cycle to identify these errors when test images are taken consecutively.
191  To this end, EstrousNet uses a predictive algorithm that fits an archetypal estrous cycle to the
192 labels generated by the net and identifies outliers (Fig. 4A, B).

193 A custom cycle waveform was created based on the duration of estrous stages reported
194  from thirteen groups!®18-20-2330.35-38 |f more than 4 days of test images are selected (i.e., n > 4*x
195  where x is the sampling frequency per day), the algorithm can fit an archetypal cycle to the data
196  to determine the relative phase that best fits the classification labels. The phase of this periodic
197  waveform was shifted by increments of 0.1 cycles to find the best fit for the input data (Fig. 4B).
198 We developed a MATLAB-based graphical user interface (GUI) that allows experimenters to
199  select which stage to accept in cases where the net prediction and cyclicity predictions do not
200 match (Supplementary Fig. S2).

201 Fitting stages to an archetypal cycle also allows us to identify disruptions in the estrous
202  cycle, such as those observed when the rodent enters pseudopregnancy, a condition

203  occasionally induced by vaginal swab or lavage?:?2. Observations of anestrous stages are also
204  useful for those inducing timed pseudopregnancy for reproductive management and embryo
205 transfer'®3® To address this, EstrousNet will alert the user with a pseudopregnancy warning flag
206 if the animal stays in diestrus for > 50% longer than in previous cycles (Fig. 4C). Manual cell
207  counts from an example cycle in which a mouse was lavaged once a day for 8 consecutive days
208  shows a significant increase in the proportion of leukocytes observed once the animal enters
209  pseudopregnancy (Fig. 4D, F(1,6) = 7.44, p = 0.034). Such persistent diestrus following a
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210  cornified swab is consistent with previous observations of chemically or mechanically induced
211  pseudopregnancy, and can be seen in a series of cytological images (Fig. 4E)?2.

212 Additionally, cycle fitting may help to identify stages that do not fall into a traditional

213 category. While here we refer to estrous as consisting of 4 substages, as many as 13 substages
214  have been identified, each corresponding to physiologically distinct steroid hormone

215  concentrations**“2, For the intermediate period(s) between each stage, manual cell counting of
216  sequential samples revealed cell proportionalities distinct to these transition stages (Fig. 5).
217  Despite these advancements, more sequential data will be needed for EstrousNet to reliably
218  classify transition stages.

219

220

221  DISCUSSION

222

223  Here, we created a deep learning network for automated classification of estrous stage. The
224 12,719 images that constitute EstrousBank allow us to classify the four stages of estrous in a
225  manner generalizable to stain, subject, and rodent species. EstrousBank is a valuable tool for
226  future developers in the rapidly advancing machine learning field, and the benchmark

227  classifications within the bank provide a guide for those learning to identify estrous stage. Our
228  EstrousNet GUI additionally makes the CNN easily accessible to untrained users.

229 We trained EstrousNet on a random 80% subset of EstrousBank using a ResNet-50-
230 based transfer learning algorithm, yielding test accuracy significantly greater than expert human
231  examiners (Fig 2,3). Our software incorporates a preloaded trained network for easy adoption,
232 while allowing more advanced users to train their own networks with custom parameters

233  (Supplementary Fig. S2). To further improve estrous stage classification, EstrousNet

234  incorporates a cycle fitting algorithm that flags outlier cases in which the deep learning

235  classifications do not line up with an archetypal estrous cycle (Fig. 4). In these cases, the GUI
236  gives the user the option to select which classification to accept and incorporates this choice
237  into the net output (Supplementary Fig. S2).

238 Despite our progress in estrous stage classification with EstrousNet and EstrousBank,
239  some limitations remain. Because of the heterogeneity of the training image set, we sacrifice
240 some accuracy for the sake of generalizability. Other CNNs trained on 3 stages from a single
241  dataset therefore exhibit higher validation accuracy in some stages?%. Additionally, the fourth
242  and most transient stage of the estrous cycle, metestrus, yields the lowest test accuracy, as is
243 consistent with previously developed machine learning approaches?!?. Since the presence of
244 both cornified and nucleated epithelial cells in metestrus causes confusion with proestrus, more
245  data will be useful for training CNNSs to differentiate between these two stages.

246 Despite these limitations, misclassifications by EstrousNet remain significantly lower
247  than human experts in diestrus, and similar to expert human coders in proestrus, estrus, and
248  metestrus (Fig. 2F). The significantly higher accuracy of diestrus classifications will be useful in
249 flagging the diestrus-proestrus transition, during which estradiol levels spike up to 100-fold 4142,
250 The combination of the easy-to-use software and our highly generalizable algorithm makes
251  EstrousNet an excellent resource for inexperienced classifiers. Our results indicate that human
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252  variability remains high even amongst expert coders, highlighting the need for increased inter-
253  lab consistency (Fig. 2G). With many experimenters making the transition to using both sexes in
254  rodent studies, generalizable and automated pipelines for tracking estrous stage will be useful
255  for arange of laboratories.

256 Although 68.3% of EstrousBank images consist of uniform or semi-uniform stains such
257  as crystal violet and H&E, stains designed specifically for hormonal cytodiagnosis offer an

258  opportunity to identify more nuanced biomarkers of the estrous cycle. For instance, Shorr stain
259  makes it possible to distinguish acidophilic and basophilic epithelial cell subtypes, either of

260  which may be more prevalent in the early or late phase of a given estrous stage®. Identifying
261  such graded changes in cell type proportionality will be useful for classifying transition stages of
262  the estrous cycle (Fig. 5). Characterization of substages will be a step forward in reframing our
263  understanding of the estrous cycle as continuum, instead of a series of discrete stages.

264 It should be noted that currently there is no ground truth data for cytological stage in
265  vivo, as the low concentrations of hormones such as estradiol and progesterone in the

266  bloodstream make daily collection of endocrine data generally intractable in rodents. Although
267 larger rats may have sufficient blood volume for repeated sampling, existing radioimmunoassay
268 techniques are invasive, expensive, and time consuming*®. At present, most ground truth data
269  from the estrous cycle is derived from terminal experiments in which animals are sacrificed at
270  staggered timepoints and large volumes of blood are used to determine hormone

271  concentration82241,

272 However, advances in biosensors for steroid hormone analysis, including aptamer#445,
273 Dbioaffinity*®, and magnetic nanoparticle sensors*’, offer exciting opportunities for repeated

274  estradiol and progesterone measurements. Additionally, physiological characteristics such as
275  temperature®, heart rate*®, uterine impedance?®, and blood oxygen content® could be

276  incorporated into estrous stage identification as a proxy for steroid hormone concentrations. As
277  new biomarkers become available, we hope to update EstrousNet to integrate these inputs and
278  further improve the classification accuracy.

279 Ultimately, it is our goal that accessible technologies for cytological classification will
280  help reduce the exclusion of female animals from scientific studies, a disparity that is especially
281  prevalent in fields such as neuroscience and pharmacology, in which significant sex differences
282  have been described!2. We hope that by continuing to add new cytology images and metadata
283  into our EstrousBank dataset over time, we will be able to bolster our network to identify

284  biological processes that are modulated by steroid hormones.

285

286 METHODS

287

288  Animals

289  The images in EstrousBank were collected from 5 different labs. Cytology images from the

290  Goard lab were taken from female Thyl-GFP-M transgenic mice and Slc17a7-IRES2-Cre x
291  TITL2-GC6s-ICL-TTAZ2 double transgenic mice, neither of which showed strain-specific

292  disruptions to the estrous cycle. Animals were housed in cages of up to 5 animals, and singly
293  housed after being surgically implanted with a headplate and cranial window for corresponding
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294  imaging experiments. Animals were given food and water ad libitum and kept ona 12 h

295 light/dark cycle. Samples were taken at 16-40 weeks, with a median age of 30 weeks, using
296  vaginal lavage. All animal procedures were approved by the Institutional Animal Care and Use
297  Committee at University of California, Santa Barbara.

298  Cytology from the Galea Lab was taken from wild-type female Sprague-Dawley rats. Animals
299  were housed in cages of 2-3, given food and water ad libitum, and kept on a 12 h light/dark
300 cycle. Samples were taken at 8-17 weeks of age using vaginal lavage. Older animals were

301 concomitantly involved in behavioral experiments that may have resulted in elevated stress. All
302 experimental procedures were approved by the University of British Columbia Animal Care
303 Committee and were completed in accordance with the Canadian Council on Animal Care

304 guidelines.

305 Cytology from the Ostroff lab was taken from wild-type female Sprague-Dawley rats. Animals
306  were housed in cages of 2, given food and water ad libitum, and kept on either a 12h or 14:10
307 light/dark cycle. Cages were filled with autoclaved standard Sani-Chip bedding (Teklad Global,
308 Envigo) and one enrichment device. Samples were taken at 4-14 weeks of age using vaginal
309 swab. All animal protocols were approved by the Institutional Animal Care and Use Committee
310 at the University of Connecticut.

311  Cytology from the Shansky Lab was taken from wild-type female Long Evans rats. Animals were
312 housed in cages of 2, given food and water ad libitum, and kept on a 12 h light/dark cycle.

313  Samples were taken at average 12-16 weeks using vaginal swab. All animal procedures were
314  approved by the Institutional Animal Care and Use Committee at Northeastern University.

315  Cytology from the Sutoh lab was taken from wild-type female C57BL/6J mice. Animals were
316  provided food and water ad libitum and kept on a 12 h light/dark cycle. Samples were taken at
317  5-14 weeks using vaginal swab. All animal-use procedures were in accord with the Guidelines
318 for Animal Experimentation of Showa Pharmaceutical University.

319

320 Vaginal cytology

321  EstrousBank samples were collected using saline lavage (9.2%) or vaginal swab (90.8%).
322  Vaginal lavage samples were collected using a P200 micropipette. 50 pl sterile saline was
323  pipetted into the vaginal opening and aspirated several times to obtain a sufficient cell count.
324  The sample was pipetted onto a gel subbed microscope slide and allowed to dry 24 h before
325  staining. For vaginal swabs, cotton-tipped swabs were soaked in sterile saline and briefly rolled
326  against the superficial vaginal wall. The epithelial cells on the swab were then transferred to a
327  dry gel subbed glass slide.

328

329  Gel subbing was performed in-house using standard IHC protocol to coat glass slides in

330 gelatin/CrK(S0O.). solution®®. Staining procedures, including crystal violet, Giemsa, H&E, and
331  Shorr stain, are as described elsewherg?:49:41.50,

332

333
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334  EstrousBank curation

335 The 12,719 images in EstrousBank were contributed from the Goard lab, Ostroff lab, Shansky
336 lab, Galea lab, and Sutoh lab. These labs provided cytology images from a diverse set of

337 histological stains, magnifications, species, and strains (Supplementary Table S1). Initial

338 classifications were made based on traditional cell type proportionality, as determined by the
339  source lab. For cross-group consistency, benchmark classifications were made between the
340 experimenters who provided the cytology images and those compiling EstrousBank. Images
341  were classified into a given stage when 2 or more expert coders agreed on a stage

342  classification, including those from transition stages (Fig. 5). Images containing excessive

343  debris, n<10 cells, or <300 pixels were excluded (4.6%).

344

345 Image preprocessing

346  Input images were normalized by aligning maximum peaks of the luminance histograms.

347 Images were then converted to greyscale to allow EstrousNet to generalize onto different stains.
348  After normalization, images in both cohorts were randomly divided into 80% training, 10%

349  validation, and 10% test sets. These images were then split into four quadrants within the same
350 directory. Greyscale images were concatenated into 3D arrays to meet input image size

351 requirements. Images were then stored in an augmented datastore where each image was

352  resized to 224 x 224 x 3.

353 EstrousNet augmented the quadrupled dataset with X and Y translation, rotation,

354  reflection, and scaling, according to user parameters in EstrousNetTrainNewNet.mlapp, the
355  network training GUI. EstrousNet users can choose to train their own net using custom

356 augmentation parameters in the EstrousNet GUI or load one of our open-source pretrained

357  networks.

358

359 Implementation and training of CNN architectures

360 The pretrained EstrousNet is based on the ResNet-50 architecture, which yields the highest
361 validation and test accuracy on the EstrousBank images. However, users can choose to train
362 EstrousNet using VGG-19, MobileNet v2, or Inception v3 architectures, the connected layers of
363  which have been prespecified in our code® 24, VGG-19 is a network characterized by highly
364  connected convolutional and fully connected layers which enable efficient feature extraction and
365 use Maxpooling for downsampling, unlike the average pooling layers of ResNet50%*. Compared
366 to ResNet and VGG networks, Inception v3 uses auxiliary classifiers, asymmetric convolutions,
367 and fewer overall parameters for high computational efficiency and low error rates®!. Finally,
368 MobileNet v2 is a lighter deep neural net ideal that only uses a regular convolution on the first
369 layer of an input image, designed for users with datasets that desire high accuracy with reduced
370 parameters®?,

371

372  Inthe standard ResNet50 architecture, used here as the base architecture of EstrousNet,

373  nonlinear skip connections and shortcuts are implemented to maintain high performance despite
374  adeep architecture®4. The residual block on ResNet-50 is defined as follows:

375
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376 y = Wex + F(x, {W;})

377

378  Where x is input layer; y is output layer; the function F (x, {W;}) represents the residual mapping

379  to be learned; and W is the linear projection performed to match the dimensions of x and F.

380

381 The architecture of ResNet-50 consists of 5 stages, each with a convolution and identity

382  block made up of 3 convolution layers®*°!. The two initial layers accomplish convolution of size

383 7 x 7 and max-pooling of size 3 x 3 with a stride of 2345, Input images are resized to

384  224x224x3 before undergoing augmentation and training. Training hyperparameters were

385  specified using a Bayesian optimizer, which yielded highest accuracy with an initial learning rate

386 of 1e® and a mini batch size of 80. Several gradient descent optimization algorithms were

387 tested, including RMSprop, adam, and sgdm, all designed to minimize the loss function of the

388  network. RMSprop exceeded the other algorithms in terms of accuracy when combined with a

389  squared gradient decay of 0.99. Due to the breadth of the input images only 3 epochs were

390 necessary to maintain maximum accuracy, with shuffling occurring every epoch, as well as a

391 piecewise learning rate drop factor of 0.1, the step decay algorithm of which is as follows:

392

393 I, = 1,0 * dropfloor (—ep OZ);IZr op

394

395  Where [, is learning rate; [,.0 is initial learning rate (here 1e®); drop is the factor by which the

396 learning rate is decreased (here 0.1); floor is the minimum learning rate; epoch is the current

397 epoch, and epochs_drop is the number of epochs after which the step decay will occur (here

398 1)%2

399 The EstrousNet GUI was developed in MATLAB 2020b (Mathworks, Inc.) using the App

400 Designer platform. EstrousNet was trained using EstrousNetTrainNewNet.mlapp, classification

401 input was given by EstrousNetGUI.mlapp, and classification output was plotted using

402  EstrousNetPlotting.mlapp. The GUI is also used to tune augmentation parameters and number

403  of stages desired for classification.

404

405  Cycle fitting

406  Here, a custom waveform describing the time course of the estrous cycle was generated using

407  prior publications'?18:20-23.30.35-38 The resulting archetypical estrous cycle has a period of 4.87

408 days (Fig. 4A). The stage classifications are ordered diestrus > metestrus in increments of 1.0

409  starting from 0.5, where 0.0 and 4.0 were defined as the transition stage between metestrus and

410 diestrus (Fig. 4A). We fit these points with a two-term polynomial, calculating the coefficients

411  using the temporal midpoints of each stage of the estrous cycle. The periodic waveform is fit to

412  the input data for EstrousNet by shifting the phase by 0.1 cycles and selecting the phase shift

413  with the maximum Pearson’s correlation coefficient (Fig. 4B).

414 Cycle fitting also allowed us to detect anestrous stages (i.e., pseudopregnancy), which

415  are occasionally induced by cytology sampling methods such as vaginal swab and lavage. In

416  our algorithm, the user will receive a pseudopregnancy warning message if the animal has been
11
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417  in diestrus 50% longer than in previous cycles, given that the user specifies sequential data
418  sampling in the GUI (Fig. 4C-E). This characterization is consistent with our observation that
419  more than 2 consecutive days of > 90% leukocytes is indicative of an anestrous state (Fig. 4D).
420

421  Statistical information

422  To compare the accuracy of EstrousNet vs trained human examiners, a test set of 400 images
423  was created by randomly selecting 100 images from each of the 4 estrous stages (Fig. 2D, E).
424  Human examiners were expert coders who had each individually classified upwards of 2000
425  cytology images. EstrousNet was trained on the images in EstrousBank, as described

426  previously, excluding the 400 images in the test set. Benchmark classifications were used as a
427  proxy for ground truth, in the absence of intravenous hormone measurements, as described
428  previously. Accuracy was determined by comparing these ground truth classifications to

429  EstrousNet classifications. These comparisons are represented by a confusion matrix generated
430 in MATLAB (Fig. 2D,E).

431 For statistical analysis, net accuracy and human accuracy vectors for each stage were
432  concatenated and bootstrapped across 5000 iterations to create a normal distribution. Violin
433  plots were made using an open-source MATLAB package®. We performed the Fisher’'s Exact
434  Test within and across stages to test for significance (Fig. 2F).

435 For out-of-sample testing, three dimensions of sampling were used: stain, species, and
436  subject. For stains and species, each respective category was removed from the training set
437  and set aside for testing. EstrousNet was trained separately for each category on the revised
438  datasets (Figure 3C-E). It should be noted that multiple dimensions were nested in our

439  framework, i.e., because each lab group used a different stain for their cytology images,

440  removing any species also removed a set of stains. Accuracy was measured by taking the

441  proportion of EstrousNet classifications that were consistent with benchmark classifications, run
442  across 1000 iterations sampled without replacement to generate standard error. For out-of-

443  sample subject testing 36 individual animals were identified, including 20 WT Sprague Dawley
444  rats and 16 Slc7a7-cre x TITL GCaMP6s B6 mice. k = 6 groups were used for k-fold out of

445  sample cross-validation testing, with 6 subjects in each group. The resulting confusion matrix is
446  an average of the k-fold accuracy results.

447 ROC curves were generated using the perfcurve MATLAB function to generate a logistic
448  regression, then the integral of each curve was taken to calculate the auROC for each stage
449  (Fig. 3A). For these curves, true positive was defined as an instance where a given positive
450  stage was correctly classified, whereas false positive was defined as the number of negative
451  stages falsely categorized into a given positive stage.

452 The sensitivity curve was generated by finding the rate of images in a positive class, i.e.,
453  images belonging to a given stage, that were correctly classified as being in that stage (Fig.
454  3B). The specificity curve was generated by finding the rate of images in a negative class, i.e.,
455  not part of a given stage, that were correctly classified as not belonging to that stage (Fig. 3B).
456  The probability cutoff of 0.26 was defined as the intersection between these two curves (Fig.
457  3B). Pseudopregnancy cell count significance was determined by a two-way ANOVA (Fig. 4D).
458

12


https://doi.org/10.1101/2022.03.09.483678
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.09.483678; this version posted March 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

459  DATA AVAILABILITY

460

461  All code necessary to run EstrousNet is available at http://github.com/ucsb-goard-
462  |ab/EstrousNet. EstrousBank is available in full at [IDR number to be determined].
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Figure 1. General schematic of the EstrousNet pipeline and representative cytological

images.

A. Hematoxylin and eosin (H&E)-stained vaginal cytology from a wild-type Sprague Dawley rat

(Ostroff lab). Scale bar = 10 ym.

Shorr-stained vaginal cytology from a Slc7a7-cre x TIT2L-GCaMP6s BlI6 mouse (Goard lab).

Scale bar =10 ym.

Cresyl violet-stained vaginal cytology from a wild-type Long-Evans rat (Galea lab). Scale bar

=10 pm.

Image augmentation schematic: images are first quadrisected, then reflected, scaled,

rotated, and translated in our preprocessing pipeline.

The base architecture of ResNet50 that is used for the transfer learning

algorithm. Processed input images are transferred to a max pooling layer. Then, the images

are processed through four convolutional units, which converge onto custom pooling and

SoftMax classification output layers.

F. Schematic of the EstrousNet GUI output. Estrous stage classifications are generated from
the deep learning network, and the cycle tracking algorithm flags potential outliers.

m O O
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Figure 2. EstrousNet accuracy is comparable to human experts.

A. Validation accuracy curves for EstrousNet trained using four different base architectures:
ResNet50, Inception v3, VGG-19, and MobileNet v2. All networks were trained on
EstrousBank images. Mean validation accuracy across 3 testing iterations.

B. Schematic of the EstrousBank split for training, validation, and test sets. By percentage, this
split is 80%, 10%, and 10%, respectively.

C. Breakdown of EstrousBank by stain and stage. Stains from left to right are hematoxylin and
eosin (HE), Shorr stain (SH), Giemsa stain (GE), crystal violet (CryV), and cresyl violet
(CreV). The complete bank consists of n = 12,719 cytology images.
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D. Confusion matrix of EstrousNet classifications, represented here as a heatmap, with
consensus from benchmark classification acting as our ground truth. Numbers represent the
number of images classified for each stage, from a test set made up of 400 images (100
images from diestrus, proestrus, estrus, and metestrus).

E. Confusion matrix of human classification, represented as a heatmap, with ground truth
stages as described previously.

F. Average test accuracy distributions in each estrous stage for EstrousNet vs human
classifications. EstrousNet distributions are identified by a continuous line while human
classifications are identified by a dotted line. Distributions were created by bootstrapping
data over 50000 iterations, sampling without replacement. Error bars are 25th (75th)
percentiles minus (plus) the interquartile range (75th percentile minus 25th percentile).
Asterisks indicate significance as determined by Fisher’s Exact Test; diestrus: odds ratio =
0.68, 95% confidence interval = 0.55-0.83, p = 1.2 x 10, proestrus: odds ratio = 0.68, 95%
confidence interval = 0.55-0.83, p = 0.075, estrus: p = odds ratio = 0.68, 95% confidence
interval = 0.55-0.83, p = 0.84, metestrus: odds ratio = 0.68, 95% confidence interval = 0.55-
0.83, p = 0.60. Across all stages accuracy was significantly different, with odds ratio = 0.68,
95% confidence interval = 0.55-0.83, p = 2.1 x 10*, Fisher’s Exact Test.

G. Venn diagram of the overlap between human expert coders, with a total of 400
classifications for each coder.
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Figure 3. EstrousNet performs similarly across groups.

A. auROC curves for each estrous stage. True positives for each stage are determined by
benchmark classifications.

B. Specificity (SP) vs sensitivity (SN) curves for EstrousNet, with the probability cutoff at 0.26
defined as the intersection between curves (dotted grey line). Standard error shown in
orange and blue for sensitivity and specificity, respectively.

C. Out of sample testing across 4 different stains: hematoxylin and eosin, Shorr stain, Giemsa
stain, cresyl violet, and crystal violet. Test accuracy represented as a distribution across
1000 testing iterations, with mean % SE shown. Accuracy differences between stains are
not significant (F(4,198) = 3.14, p = 0.10, one-way ANOVA).

D. Out of sample testing between mouse and rat species. Test accuracy represented as a
distribution across 1000 testing iterations, with mean % SE shown. Accuracy differences
between species are not significant (F(1,198) = 7.87, p = 0.73, one-way ANOVA).

E. Out of sample (OOS) classification for each stage of the estrous cycle between different
animals, represented as a heatmap. Benchmark classification was used as a proxy for
ground truth. K-fold cross-validation was used to estimate accuracy across stages, with k =
6 groups. Testing accuracy was averaged between each fold to generate the most unbiased
estimate across all groups. Accuracy differences between subjects are not significant
(F(5,198) = 6.98, p = 0.60, one-way ANOVA).
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Figure 4. Sequential estrous classifications are fit to an archetypal cycle.

A. Schematic of the custom waveform used for temporal cycle fitting. Color blocks indicate the
length of each estrous stage as a percentile of average total cycle length, with a curve fitted
to the midpoint of each stage (see Methods). Stage lengths are based on a consensus
archetypal cycle from previous studigs'?18:20-2330,35-38

B. Pearson’s coefficient for each iterative fit of the custom waveform to an example 16-day
cycle, at increments of 0.1 cycles. The best fit is determined by global maxima, marked by
an ‘X’ for this example cycle.

C. Example of a naturally cycling mouse tracked across 25 days, with the animal’s cycle shown
as a solid orange line and the fitted cycle curve as a dotted teal line. The mouse
initially exhibited regular cycles but entered pseudopregnancy on day 18 (shaded area),
causing EstrousNet to give the user a pseudopregnancy warning message (grey line).

D. Proportion of leukocytes in cytological cell counts before (blue) and after (pink)
pseudopregnancy. Mean +/- SE, F(1,6) = 7.44, p = 0.034, as determined by two-way
ANOVA. Asterisk indicates significance of p < 0.05.

E. Cytology images from a normally cycling mouse entering pseudopregnancy, demonstrating
prolonged diestrus, with an abnormally high proportion of leukocytes. Scale bars = 10 ym.
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Figure 5. Characterization of cell types across the estrous cycle.

A pie chart of the four estrous stages broken down by stage length across the 4—5-day cycle.
Transition states between the four classical estrous stages are shown in gradient, and cytology
collected from between the stages are included. Raw images and violin plots of cell counts from
8 primary and transition stages are shown (four examiners). The violin plots indicate the
proportions of leukocytes, cornified epithelial, and nucleated epithelial cells, respectively (mean
+/- SE).
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Supplementary Figure S1. Image preprocessing pipeline.

A. Intensity histogram of an unprocessed image (light blue), shifted to lower intensity (dark
blue) during luminance normalization.

B. Schematic of image resizing and conversion to grayscale, where 1D grayscale images are

concatenated into a 3D array of size 224 x 224 x 3 to match the input requirements of the

transfer learning network.

Example unprocessed test images from one estrous cycle.

Raw images with reduced intensity, normalized to the same maximum intensity peak.

Luminance-normalized images converted to 3-channel grayscale.

mo o
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Supplementary Figure S2. lllustration of the EstrousNet user interface (GUI).

A. The EstrousNet classification GUI: the user selects a folder of test images which are
automatically classified and plotted. The user also selects whether images were sampled
sequentially, which will determine whether net classifications are fit to an archetypical cycle.

B. The EstrousNet training GUI: if the user selects that they would like to train a new network, it
will launch the training GUI. This GUI lets the user select folders with training and validation
images, as well as custom augmentation parameters, and once training is finished will save
the trained network and training data to the current directory.

C. The EstrousNet plotting GUI: once the classification GUI is used to select test images, the
plotting GUI will display the results of the net classifications. If images were taken in
sequence, the plotting GUI will fit the images to an archetypal cycle, and for any images
where the cyclicity and net classifications disagree, the user can choose to manually select
the preferred classification.
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Source  Magnification Stain Species Strain # % of
Lab images total
images
Galea 20X Cresyl Rat Sprague Dawley WT 145 1.14
Violet
Goard 10X H&E, Mouse  Thyl-GFP-M (Jax Stock 1024 8.05
Shorr #007788), Slc7a7-cre (Jax
Stain Stock #023527) x TITL-

GCaMP6s (Jax Stock
#024104) C57BL/6J

Ostroff 10X H&E, Rat Sprague Dawley WT 6277 49.35
Shorr
Stain

Shansky 10X Crystal Rat Long Evans WT 1954 15.36
Violet

Sutoh 10X Giemsa Mouse C57BL/6J WT 3319 26.09

Supplementary Table S1. Summary of EstrousBank images from multiple labs.
Metrics for the images included in the open-source image repository EstrousBank, subdivided
by the groups contributing the raw images.
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