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Abstract

Background: A genome-wide association study (GWAS) correlates variation in the genotype with
variation in the phenotype across a cohort, but the causal gene mediating that impact is often unclear.
When the phenotype is protein abundance, a reasonable hypothesis is that the gene encoding that
protein is the causal gene. However, as variants impacting protein levels can occur thousands or even
millions of base pairs from the gene encoding the protein, it is unclear at what distance this simple
hypothesis breaks down.

Results: By making the simple assumption that cis-pQTLs should be distance dependent while trans-
pQTLs are distance independent, we arrive at a simple and empirical distance cutoff separating cis- and
trans-pQTLs. Analyzing a recent large-scale pQTL study (Pietzner, 2021) we arrive at an estimated
distance cutoff of 944 kilobasepairs (kbp) (95% confidence interval: 767-1,161) separating the cis and
trans regimes.

Conclusions: We demonstrate that this simple model can be applied to other molecular GWAS traits.
Since much of biology is built on molecular traits like protein, transcript and metabolite abundance, we
posit that the mathematical models for cis and trans distance distributions derived here will also apply
to more complex phenotypes and traits.

Background

Genome-wide association studies (GWAS) have been highly successful at identifying reproducible and
robust genetic associations for a wide variety of human phenotypes. However, because GWAS identify
loci and not genes, the identity of the gene mediating the impact on the phenotype is not always clear.

When the phenotype being considered is the abundance of a particular protein a natural
hypothesis is that the gene encoding the protein (the cognate gene) is the causal gene, that is DNA
variants that correlate with interindividual differences in protein abundance are somehow influencing
the gene encoding the protein resulting in differences in levels of the protein. Such a DNA variant is
termed a protein quantitative trait locus, or pQTL.

Many GWAS of protein abundance have now been conducted generating tens of thousands of
published pQTLs. The genomic position of a pQTL for a specific protein is often located near the cognate
gene. As a practical matter, a pQTL near a cognate gene is called a “cis-pQTL” with the assumption that
that pQTL is acting through the cognate gene. When a pQTL is located far from the cognate gene (or on
a different chromosome), this is called a “trans-pQTL” with the assumption that that pQTL is acting
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through an intermediate gene, for example a transcription factor near the trans-pQTL which then drives
expression of the cognate gene. Various distance cut-offs have been employed to segregate cis-pQTLs
and intrachromomsomal trans-pQTLs, with a distance of 500,000 bp as a typical value.

In order to arrive at an empirical definition of cis- and (intrachromosomal) trans-pQTLs we took
a closer look at the distribution of variants to cognate gene from a recent large scale pQTL study [1]. We
start with the simple assumption that for cis-pQTLs there should be some (non-random) distance
dependence between the variant and the transcription start site (TSS) of the cognate gene, while for
trans-pQTLs, there should be a random distribution of distances. From these assumptions, we build a
simple model that fits the distribution of intrachromosomal variant-TSS distances across the full range of
observed distances.

Results

Pietzner et al identified 2,051 intrachromosomal pQTLs [1]. The variant-TSS distances for these pQTLs
fall into 33 log-based distance bins (width = 10%%°). The histogram of these log-transformed distances

shows two distinct peaks, the first with 251 pQTLs in the bin covering distances from 13,335 to 23,713
bp, and the second with 84 pQTLs in the bin covering distances from 74,989,421 from 133,352,143 bp
(Figure 1).

The second peak (longer distances) follows the expected distribution for two points selected at
random from the human genome within the same chromosome, which is to say there is no explicit
distance dependence on the variant-TSS distances aside from the physical requirement that the two
positions occur on the same chromosome. This distance-independent distribution requires no free
parameters. The first peak (shorter distances) is well fit by a two-parameter Weibull distribution, which
represents a specific model for the distance dependence on the distribution of variant-TSS distances.
The full model requires a third parameter which is the proportion of the observations falling in to the
first peak or the second peak. It should be noted that when plotted using the untransformed variant-TSS
distance the distribution resembles a rapidly decreasing exponential decay, with a maximum density
close to O (Figure 2).

The full distribution is well fit by our combined model. The three parameters (and the standard
errors) for the full model are x (Weibull shape parameter) = 6.78 (0.211), A (Weibull scale parameter) =
4.48 (0.024), and Weibull fraction = 0.799. The one-sample Kolmogorov-Smirnov test for this fit yields a
p-value of p=0.36, consistent with this simple model being a reasonable explanation for the observed
distribution. By contrast, using instead a two parameter (mean and sd) Gaussian to fit the left-most peak
in a similar three parameter model yielded an analogous Kolmogorov-Smirnov test p-value of p = 0.005,
indicating a significantly poorer fit.

Using these parameters from the best-fit Weibull-based model, we calculated where the
regimes cross-over, that is, the distance at which the Weibull and the random model are equally likely.
For this data set, with ~80% Weibull fraction, that cross-over occurs at a distance of 944 kilobasepairs
(kbp) with a 95% confidence interval of [767 — 1,161] kbp. If we assume a model where the two regimes
are a priori equally likely, that cross over would occur at 653 kbp, with a 95% confidence interval of [556
—767] kbp.


https://doi.org/10.1101/2022.03.07.483314
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.07.483314; this version posted March 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A separate large-scale pQTL study using the same platform but applied to a different population
was recently published [2]. Ferkingstad et al identified 18,084 associations across 4,907 Somascan
aptamers in their study of 36,000 Icelandic subjects. Filtering to the strongest intrachromosomal pQTL
per aptamer we derived 2,315 variant-gene distances ranging from 1 bp to 224,221,289 bp. For this data
set, the full combined model of yielded values of k=6.19 (0.315), A = 4.47 (0.043), and Weibull fraction
=0.665. The one-sample Kolmogorov-Smirnov test for this fit yielded a p-value of p=0.022, consistent
with this simple model being a reasonable explanation for the observed distribution. Again, the
analogous fit using a Gaussian instead of a Weibull for the left-hand peak yielded a poorer fit, with
p=0.004 for the Kolmogorov Smirnov test. For this data set, the regime cross-over point occurs at 966
kbp, with a 95% confidence interval of [700 — 1,303] kbp.

Another genetic trait where the cognate gene is a reasonable hypothesis for the causal gene is
mRNA abundance, in which case the genetic variant represents an expression quantitative trait locus
(eQTL). The eqtlgen [3] study represents a very large, well powered eQTL GWAS. To reduce the
computation involved this study only calculated association statistics for variants within 1 Mb of the
midpoint of the cognate gene, limiting our ability to use this study to analyze long-range
intrachromosomal eQTLs. Despite this truncation, the distances under 1 Mb have a reasonable fit to the
Weibull distribution, with shape and scale parameters similar to those observed in the two pQTL studies
(of K=6.19 (0.315), A = 4.47 (0.043))

When the genetic trait is metabolite abundance (metabolite quantitative trait locus, or
metabolite QTL) the known biochemistry can point to a likely causal gene [4]. Using all available
metabolite QTLs in the GWAS catalog paired with a large set of curated metabolite interacting proteins
[5] we identified 250 intrachromosomal variant-gene pairs, of which 53 have a variant-TSS distance of
less than 1 Mb. These variant-TSS distance can also be fit with our combined model, with Weibull shape
and scale parameters of k= 4.262(1.881) and A = 5.544 (0.708), respectively. For this analysis the
Weibull fraction is only 35%, probably indicating that the limited number of curated metabolite
interacting proteins is missing many of the true causal genes.

Discussion

The GWAS catalog now contains over 300,000 genetic associations, but for the majority of these
the underlying causal gene, the gene mediating the phenotypic impact of the genetic variation, is
unknown. While the genes close to the genetic variation often represent plausible candidate genes, a
precise definition of “close” has been difficult to define.

By relying on molecular traits which minimize the assumptions involved in selecting causal genes
we have been able to identify two populations of variant-gene distances; one population where the
distribution of distances is a function of the distance of the gene from the variant, and a second
population where the distances are dictated by the mathematics of picking two points at random. The
first population follows a Weibull distribution and is substantially contained within the interval from 0 to
1 Mb. For the second distribution, because individual chromosomes are over 100 Mb long, two
randomly selected intrachromosomal points are almost always (99%) more than 1 Mb apart. Thus, these
two populations are well-separated and can be interpreted as the mathematical representations of the
biological processes of cis- and transQTLs.
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Previous analyses of molecular QTLs have similarly noted a rapid drop-off of observed
associations with increasing variant-TSS distance. For example, Roby Joehanes et al used a multi-
exponential decay with a median variant-TSS distance of 27 kb to model a large set of eQTLs measured
in whole blood samples from over 5000 participants in the Framingham Heart Study [6]. There is
however no theoretical model to rationalize an exponential decay for this distribution.

As noted by Lieberman-Aiden et al [7], the distribution of promoter-enhancer Hi-C distances can
be modeled using a power-law with an exponent of -1, consistent with a Fractal Globule model of a self-
avoiding compact polymer [8]. Plotted against variant-TSS distance, a power-law with p(distance)
proportional to 1/distance looks similar to an exponential decay, with p(distance) proportional to
e However, a simple 1/distance power-law distance dependence would not generate the curve
obtained in Figure 1, since power-law would place an equal numbers of observations in each bin, since

the bins increase in width with increasing distance at the same rate that p(distance) is decreasing.

The Weibull distribution used here was first described as a family of curves [9] which has found
applicability to describe the distribution of particle sizes following fragmentation or fractionation [10].
Brown & Wohletz provide a mechanistic derivation for the Weibull distribution which follows from
repeated fragmentation of a larger structure, with each step resulting in a fractal fragmentation pattern
(thus following a power law). Smaller fragments escape further fragmentation, resulting in a rapid drop-
off of larger particle sizes.

An entirely hypothetical conjecture would be that the pattern we observe in this data results
from a similar superposition of multiple processes. The Activity-by-Contact model of enhancer-promoter
regulation suggests that the activity of a particular enhancer-promoter pair is increased by the strength
(activity) of the enhancer and decreased by the distance between the enhancer and promoter[11, 12].
Since any given promoter can be influenced by multiple enhancers, the strongest genetic associations
are more likely to come from closer enhancers. The dense packing of the chromosome provides the
equivalent of the single fractionation event, imposing a fractal distance geometry on the genome. The
fact that there are far more enhancers than promoters in the genome provides the equivalent of
multiple fractionation events, potentially explaining the fit to the Weibull distribution for molecular
QTLs in the range of 0 to 1 million base pairs (Figure 4).

Trans-eQTLs and trans-pQTLs are generally understood to be acting on a gene proximal to the
variant which then influences the molecular trait of interest. The cis fraction in our combined model is
then likely to reflect the extent to which we have correctly selected the set of true causal genes for a
given study. Further, the model suggests that in general about 99.9% of GWAS variants should be
explainable through a gene with a TSS within 1 megabase of the lead variant. Thus, if a large fraction of
the variant-TSS distances fall into the long-range, distance-independent regime our model suggests it is
worth taking another look at the set of proposed or potential causal genes.

Assuming that most GWAS variants are likely impacting biology through their influence on
molecular traits such as transcript, protein or metabolite abundance we expect that the cis- and trans-
models and distributions observed here will apply to other, more complex or polygenic traits. It should
be noted however that the exact mechanism linking the GWAS variant to the causal gene is not
addressed in this model. It has been observed that a large fraction of pQTLs and metabolite QTLs are
linked to missense variants, and that may skew the exact distributions somewhat when looking at other
phenotypes or disease traits.
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An additional caveat is that this study focused on only the single strongest association per
molecular trait (per chromosome) and this will tend to bias the set of variants as well. This simplification
was applied here because while it is straight-forward to define the primary signal per locus there are still
multiple approaches to defining secondary or independent signals. As molecular QTL studies continue to
grow in size and power, it will be important to revisit this analysis with respect to secondary signals.

Conclusion

By leveraging recent large-scale molecular QTL genetic studies we demonstrate that variant-TSS
distances fall into one of two regimes, a short-range, distance-dependent one, or a long-range, distance-
independent one. These correspond to the biological notions of cis and trans genetic effects. By
providing mathematical models for these two regions we demonstrate a clear separation occurring at
about 944 kbp in the situation where 80% of observations are well explained by cis effects, or 650 kbp
when cis and trans effects are equally likely.

Methods

Pietzner et al reported 10,674 unique pQTLs across 3,892 distinct proteins. For this analysis we only
used the primary association reported for each locus. Further we eliminated all SNP-protein pairs where
the SNP and the cognate gene occur on the different chromosome in the latest build (Ensembl release
104). Variants were converted from the GRCh37 coordinates provided in the original data table by
reference to an rsid if provided and current, or via the NCBI Genome remapping service. Proteins were
mapped to HGNC gene symbols using the Ensembl gene IDs if provided and current. Otherwise HGNC
gene symbols were assigned manually from the provided protein names. As some proteins actually map
to multiple genes (either due to complexes or ambiguity), SNP-protein pairs were retained if exactly one
of the cognate genes was present on the same chromosome as the SNP. This resulted in a total of 2,051
intrachromosomal SNP-gene pairs, where the distance from the SNP to the TSS of the gene was
between 3 and 206,513,449 base pairs.

Given the eight orders of magnitude range for variant-TSS distances we log-transformed the
distances (specifically using 10 as the base and binning at 0.25 logs, units to generate 4 bins per order of
magnitude). For visualization and curve-fitting, we used the number of intra-chromosomal pQTLs falling
in each bin based on this log-transformed distance.

Our trans model is a mathematical model of the distribution of two random positions in the
genome that happen to fall on the same chromosome. To generate this trans model, we represented all
pairs of two randomly selected positions within a single chromosome as an NxN matrix, where N is the
length of the chromosome, and rows and columns representing the 1% and 2" position, respectively.
With the exception of a discontinuity at distance = 0 (also not handled by log-transformation, but highly
unlikely and not present in our data), the number of random pairs at a distance d > 0 bp is given by the
two diagonal segments shifted ‘d’ units from the central diagonal, and so totals 2*(N-d) out of N°
elements (where d < N). The probability of distance ‘d” within the chromosome is then prob=2*(N-d)/ N*
if d < N, otherwise prob=0. For any one chromosome then this probability is linear with respect to
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distance, with a maximum at a distance of 1 and a minimum at a distance corresponding to the length of
the chromosome.

Restricting to random pairs on the same chromosome, the relative likelihood of a pair being in
any chromosome ‘i’ is given by its relative number of elements to that of all intra-chromosomal pairs on
the genome, so that prob(Chr=i) = N’/ £ N/, where N;is the length of chromosome ‘. The final
probability of a random intrachromosomal pair having distance d > 0 bp is then given by the weighted
sum of the probability at each chromosome, with weights given by the relative likelihood of each
chromosome. Hence:

1) P(d>0) = X {2*(N-d) if d < N;, O otherwise}/ N/

where each sum is over 23 chromosomes N; being the length of each chromosome. Applied to the
observed pQTL data our trans model is only a reasonable fit in the range from 1 to 230 megabase pairs
(figure 3).

We found empirically that the remaining (shorter) distances could be fit with the two parameter
Weibull distribution. The Weibull distance distribution can be represented as:

2) P(Ix) = (k/A) * (Ix/A) <D * g tm"

where Ix is the log of distance from the pQTL to the TSS of the cognate gene, k is the shape function and
A is the scale parameter.

Combining the Weibull and the random distance models requires one additional parameter
defining the relative proportion of pQTLs in a study which fall under into the two regimes.

After establishing that this combined model is a good fit for the Pieztner et al pQTL study we
applied the same model to second pQTL study, a large eQTL study and a metabolite QTL study.

For a pQTL study by Ferkingstad et al [2] we used the variant-TSS distance reported in that
study’s Supplementary Table 2, column W (distTSS) filtered to the primary hit per chromosome, column
AD (Rank) and filtered to the strongest intrachromosomal pQTL per protein, column AC (unadjusted -
log10(P), where the TSS is for the cognate gene.

For the eQTL study reported by Vosa et al [3] we used the eQTL with the largest absolute value
Zscore (column labeled “Zscore”) for each gene and calculated the variant-TSS distance as the absolute
value of the difference between the reported variant position (“SNPPos”) to the TSS associated with the
Ensembl gene ID in GRCh37 according to Ensembl for variants within 1 Mb of the TSS of the cognate
gene. We only retained associations where the absolute value of the Zscore was at least 5.4485,
corresponding to a p-value of less than 5x10°.

To apply the method to metabolite QTLs we first assigned an HMDB identifier [5] to all relevant
endpoints reported in the GWAS catalog [13]. We then extracted all “interacting genes” defined for each
metabolite as reported in the HMDB. For any metabolite with a single interacting gene on a particular
chromosome we identified the strongest reported association for that metabolite on that chromosome.
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If the reported p-value was less than 5x10® we calculated the distance from that strongest metabolite
QTL to the unique interacting gene.
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Histogram of the log,, variant-TSS distances for
intrachromosomal pQTLs from Pietzner, et al
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Figure 1: Histogram of log base 10 of the distance from lead SNP for GWAS of protein abundance to the
transcription start site (TSS) of the cognate gene for that protein, for 2051 unique proteins from the
study of Pietzner, et al. Four bins are used for each log unit. Solid red line represents the best fit Weibull
distribution curve fit to all data points below 10°"°. Solid blue line represents best fit random
distribution curve fit to all pQTLs with a distance beyond above 10° base pairs. Dashed purple line
represents best combined model starting from the parameters estimated for the initial Weibull curve
and adding a Weibull fraction parameter to add the Weibull curve and the trans model curve.
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Histogram of variant-TSS distances for
intrachromosomal pQTLs < 500kb from Pietzner, et al
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Figure 2: Histogram of distance from lead SNP for GWAS of protein abundance to the transcription start
site (TSS) of the cognate gene for that protein, for 1604 unique proteins where the distance is less than
500 kb (bin size = 10 kb), with the curve fit to our global model which includes a Weibull curve and our
trans model. The Weibull model dominates at distances less than 1,000,000 base pairs.
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Histogram of variant-TSS distances for
intrachromosomal pQTLs > 10 Mb from Pietzner, et al
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Figure 3: Histogram of distance from lead SNP for GWAS of protein abundance to the transcription start
site (TSS) of the cognate gene for that protein, for 349 unique proteins where the distance is greater
than 10 megabases (bin size = 10 megabases) , with the curve fit to our global model which includes a
Weibull curve and our trans model. The trans model dominates at distances past 1 megabase.
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Figure 4: A post-hoc rationale for the Weibull distribution. According to the ABC model [11] of gene
activation and the Fractal Globule [8] model of chromatin compaction, the chance that a particular
enhancer (E1-E4) is in contact with the promoter of a particular gene (“Gene”) is proportional to
1/distance (that is, distance to the power -1) from the enhancer to the promoter. In a scenario where all
enhancers are equally active, a particular gene will be most strongly influenced by the closest enhancer
(E2 in this figure). A Weibull model, as observed empirically in this analysis, can result from such a
“superposition” of power-law distributions [10].
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cutoff A value p-value parameter (SE) fraction
(cis < X) K P Kk (SE) (SE)
Pietzner 6.777 4.478 0.799
0QTL 5.75 6.4803 4.4428 0.1018 0.0000 0.7835 (0.211) (0.024) (0.013)
deCode 6.192 4.466 0.665
oy 6 5.6487 4.4515 0.0089 0.0000 0.6462 (0.315) (0.043) (0.017)
7.375 4.700
Eqtlgen NA NA NA 7.255E-07 <2.2e-16 1.0000 (0.054) (0.006) 1.0 (NA)
Metaboli 4,262 5.544 0.346
te QTLs 6.5 6.2855 5.2105 0.5689 0.4698 0.3095 (1.881) (0.708) (0.080)

Table 1: Curve fit parameters for histograms of logo(variant-TSS) distances from several studies. Initial

fits were from log10=0 to observed minimum in the histogram, as presented in the table. Final fit
included our trans model {(methods) and started from the values generated from the initial fits. In all
cases, the Kolmogorov-Smirnov test favored the Weibull distribution over the Gaussian distribution.
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