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Abstract

With the rapid development of sequencing technology, the costs of individual geno-
typing have been reduced dramatically, leading to genomic prediction and genome-wide
association studies being widely promoted and used to predict the unknown phenotypes
and to locate causal or candidate genes for animal and plant economic traits and, in-
creasingly, for human diseases. Developing newly advanced statistical models to improve
accuracy in predicting and locating for the traits with various genetic architectures has
always been a hot topic in those two research domains. The Bayesian regression model
(BRM) has played a crucial role in the past decade, and it has been used widely in relevant
genetic analyses owing to its flexible model assumptions on the unknown genetic archi-
tecture of complex traits. To fully utilize the available data from either a self-designed
experimental population or a public database, statistical geneticists have constantly ex-
tended the fitting capacity of BRM, and a series of new methodologies have been proposed
for different application scenarios. Here we introduce hibayes, which is the only one tool
that can implement three types of Bayesian regression models. With the richest meth-
ods achieved thus far, it covers almost all the functions involved in genetic analyses for
genomic prediction and genome-wide association studies, potentially addressing a wide
range of research problems, while retaining an easy-to-use and transparent interface. We
believe that hibayes will facilitate the researches conducted by human geneticists, as well
as plant and animal breeders. The hibayes package is freely available from CRAN at
https://cran.r-project.org/package=hibayes.

Keywords: Genomic prediction, Genome-wide association studies, Bayesian regression, Single-
step model, Summary statistics, hibayes, R.
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1. Introduction

Before the theory of genetics was proposed, people selected outstanding plant and animal can-
didates based on their empirical experience of observing phenotypes. However, the phenotypes
of traits were the results of the combined influence of genetic and environmental factors, there-
fore, genetic progress in plant and animal breeding was extremely slow due to the unquantified
environmental contributions to phenotypic observations. In the mid-20th century, the BLUP
(best linear unbiased prediction) model (Henderson 1975), which estimated the breeding val-
ues of each individual using the information from phenotypic observations, environmental
records, and a relationship matrix derived from pedigree, was proposed and adopted in live-
stock breeding, and it has made great achievements in genetic improvements for agricultural
economic traits. Nevertheless, the elements used to measure the genetic distance among indi-
viduals in the pedigree-based relationship matrix are values in theoretical expectations, could
not capture the Mendelian sampling error fully, resulting in the same predictive performance
for the full sibling individuals. With the development of sequencing technology, high density
genetic markers across entire genome could be obtained, the genomic prediction, also known
as genomic selection, was proposed subsequently by Meuwissen, Hayes, and Goddard (2001).
Compared with traditional BLUP, the genetic markers could capture a greater proportion of
Mendelian sampling error, thus genomic prediction is far more powerful at predicting almost
all of the agricultural traits. However, how to model the enumerable phenotypic records with
tens of thousands of genetic markers effectively to get a higher prediction performance has
always been of prime concern in the domain of genomic prediction.

The most efficient strategy is to construct a relationship matrix using all the available markers,
then replace the pedigree-based relationship matrix in the BLUP model, known as genomic
BLUP (GBLUP), to obtain the genomic estimated breeding values (GEBVs), it is sample,
robust and has been achieved in numerous software, e.g., BLUPF90 (Misztal, Tsuruta, Stra-
bel, Auvray, Druet, Lee et al. 2002), DMU (Madsen, Sørensen, Su, Damgaard, Thomsen,
Labouriau et al. 2006). GBLUP model assumes that all markers have equal contributions
to the phenotype. Obviously, this rough assumption is not quite appropriate for some of
traits, especially for those that are controlled by several major genes, therefore the predic-
tion accuracy usually varies across traits with different genetic architectures. Another more
reasonable strategy is to fit Bayesian multiple regression model, known as individual level
Bayesian model, which fits all the markers jointly and can flexibly assign different markers
with various contributions that range from zero to infinity. Therefore the prior assumption
would be more consistent with the practical genetic architecture of traits, which leads a high
prediction performance compared with the GBLUP model. The big challenge with Bayesian
regression model is the prior assumption on the contributions to the phenotype for each of the
markers, because the prediction accuracy primarily depends on how close the prior assump-
tion and the practical genetic architecture of the trait are. Statistical genetics researchers
have constantly been devoted to optimizing the prior assumption, and a series of Bayesian
methods have been proposed, collectively being called “BayesianAlphabet”. However, none
of these methods consistently outperforms the others across different traits, because the ge-
netic architecture is far more complex than the fitting capacity of a model (Wray, Wijmenga,
Sullivan, Yang, and Visscher 2018). The package BGLR (Pérez and de los Campos 2014) is
the most widely used tool to fit an individual level Bayesian model, but even so, the achieved
methods in BGLR are limited, and it needs to be introduced with more advanced methods
proposed lately.
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In practice, it is always difficult to genotype all phenotypic individuals for a very large popula-
tion, the individuals with effective phenotype observations, but without genotype information,
are useless for genomic evaluation. Fernando, Dekkers, and Garrick (2014) proposed an ad-
vanced strategy for the first time, known as the single-step Bayesian regression model, which
could utilize pedigree, genotype, and phenotype data simultaneously in a Bayesian linear
model. The core idea of the single-step Bayesian regression model is to impute the genotype
of the non-genotyped individuals in pedigree on the condition of the genotyped individuals
by using the pedigree-based additive relationship matrix. As more phenotypic observations
are used to fit the model, the prediction accuracy for genotyped individuals is higher than
individual level Bayesian model, and for non-genotyped individuals, the prediction accuracy
increases greatly compared with the pedigree-based BLUP model owing to the inclusion of the
imputed genotype. Nevertheless, the problem is that there are only a few tools available to fit
single-step Bayesian model, the package JWAS developed by Cheng, Fernando, and Garrick
(2018), written in Julia, is the only one choice currently. However, the number of users and
developers worldwide who use Julia is not comparable with the number who work in R.

To fit Bayesian regression model, the individual level data, including genome-wide genotype
and one or several phenotypes measured on the same individuals, are required to be provided
necessarily. However, the individual level data are sometimes not accessible to public due
to some reasons of protection of personal privacy and legal or non-legal policies, especially
in the area of human-related researches. Therefore, there are now continuously increasing
GWAS summary statistical data publicly available on hundreds of complex traits, each of
which consists of estimated effect sizes and sampling variance at millions of markers. The
restricted access to individual level data has motivated statistical geneticists to develop new
methodological frameworks that only require publicly available summary level data. At the
last several years, Zhu and Stephens (2016) firstly introduced Bayesian regression into sum-
mary statistical analyses, and then Lloyd-Jones, Zeng, Sidorenko, Yengo, Moser, Kemper,
Wang, Zheng, Magi, Esko, Metspalu, Wray, Goddard, Yang, and Visscher (2019) proposed a
new advanced method, named as “SBayesR”, the results showed that SBayesR outperformed
any of other existing non-Bayesian models in terms of prediction accuracy and with less cost
for computing time. The summary data-based Bayesian model successfully transforms the
determinant of computational complexity from the number of individuals into the number of
markers, making it very promising for handing the data with large number of individuals that
are genotyped by very few markers, for example, using chip arrays to genotype animals in the
livestock breeding. As the summary level Bayesian model is still fresh to the public, the only
one tool to fit summary level Bayesian model is GCTB, written in C++ by Zeng, de Vlam-
ing, Wu, Robinson, Lloyd-Jones, Yengo, Yap, Xue, Sidorenko, McRae, Powell, Montgomery,
Metspalu, Esko, Gibson, Wray, Visscher, and Yang (2018).

In addition to genomic prediction, Bayesian regression models can also be applied to genome-
wide association studies (GWAS). Since it was firstly published in 2002 (Ozaki, Ohnishi, Iida,
Sekine, Yamada, Tsunoda, Sato, Sato, Hori, Nakamura, and Tanaka 2002), GWAS has made
great success in locating causal or candidate genes for human disease, as well as plant and
animal agricultural economic traits, bringing new insights into understanding of the genetic
architecture of various complex traits. Meantime, a series of advanced model have been
developed for GWAS to overcome the population confounding problem that can cause the
false positive associations. Some of these models include the general linear model in Plink

(Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender, Maller, Sklar, de Bakker, Daly, and
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Sham 2007), the mixed linear model in GCTA (Yang, Lee, Goddard, and Visscher 2011) and
GEMMA (Zhou and Stephens 2012), the multiple locus model “FarmCPU” in rMVP (Yin,
Zhang, Tang, Xu, Yin, Zhang, Yuan, Zhu, Zhao, Li, and Liu 2021b). Although the statistical
power to detect the true associations has increased consistently, all the models above are
based on testing one marker, or only a small parts of markers jointly at a time, the significant
associations explain only a small fraction of the genetic variance of quantitative traits, in
addition, as the number of tests for those models can be very large, controlling the GWER
(genome-wise error rate) results in very low power. In contrast, Bayesian regression models
simultaneously fit all markers jointly as random effects, are able to account for most of the
genetic variance, an advantage of this approach is that the power of detecting associations is
not inversely related to the number of markers tested (Fernando, Toosi, Wolc, Garrick, and
Dekkers 2017), thus, Bayesian regression models is an alternative option for GWAS analysis,
but the developed tools are still not readily available.

As discussed above, although plenty of tools have been developed for different types of
Bayesian regression models, they are written into various programming languages, the avail-
able models and methods are usually limited, and are not new enough for users or academic
researchers. Moreover, the input file format and output results are quite different, making
it expensive for comfortable usage in terms of effort and time expended. In this paper, we
present hibayes (Yin, Zhang, Li, Zhao, and Liu 2021a), a comprehensive and user-friendly
package developed on an open-source platform R (R Core Team 2013). The package con-
tains the richest methods achieved thus far, and it is the only tool that can simultaneously
fit three types of Bayesian models using individual level, summary level, and individual plus
pedigree level (single-step) data for both genomic prediction and genome-wide association
studies. It was designed to estimate joint effects and genetic parameters for a complex trait,
including: (1) fixed effects and coefficients of covariates; (2) environmental random effects,
and its corresponding variance; (3) genetic variance; (4) residual variance; (5) heritability;
(6) genomic estimated breeding values for both genotyped and non-genotyped individuals;
(7) marker effect size; (8) phenotype/genetic variance explained (PVE) by single or multiple
markers; (9) posterior probability of association of the genomic window (WPPA); and (10)
posterior inclusive probability (PIP). The functionalities are not limited, and we will keep on
going in enriching hibayes with more features. hibayes is free software, licensed under the
Apache License 2.0, openly available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=hibayes, and the latest version in development
could be installed from GitHub at https://github.com/YinLiLin/hibayes.

2. Models and methods descriptions

In Bayesian statistics, inferences of unknown parameters of a model are based on their pos-
terior distributions. Let θ denote all the unknown parameters in the model, then the full
conditional posterior can be expressed by invoking Bayes’ law as:

f(θi|θ−i,y) ∝ f(θi,θ−i,y)

the joint density for the equation above can be written as

f(θi,θ−i,y) = f(y|θ)f(θi)f(θ−i) (1)
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where f(y|θ) is the density function of the conditional distribution of y given the values of
the unknowns specified by θ. f(θi) and f(θ−i) are the densities of the prior distributions of
θi and θ−i. By using MCMC techniques, all the elements in θ can be inferred from several
number of iterations.

2.1. Individual level Bayesian model

Individual level Bayesian model is essentially a version of multiple linear regression model,
which describes the phenotypic observations as a function of hundreds of thousands of vari-
ables, including fixed effects, covariates, environmental random effects, and high dimension
of genetic markers. The model could be mathematically formulated as:

y = µ+Xβ +Rr +Mα+ e (2)

where y is vector of the phenotypic observations, X represents the designed model matrix
for fixed effects and covariates, R is the index matrix for the environmental random effects,
M is the genotype covariate matrix with a dimension of m ∗ n, where m and n are the
number of individuals and genetic markers, respectively, and e is the vector of residuals.
Let θ = (µ,β, r,α,π,σ2

r ,σ
2
α,σ

2
e) denote all the unknown hyper-parameters in the model of

Equation 2, including intercept, coefficients of fixed effects and covariates, the environmental
effects, the marker effects, the mixing proportions of the mixture of normal terms, the variance
of environmental effects, the variance of marker effects, and the residual variance. As shown
in the Equation 1, the posterior distribution of one parameter is on the condition of the other
parameters, thus we first need to assign all the unknown parameters with prior values at the
beginning to derive the full conditional distributions. Let

y∗ = y − µ0 −Xβ0 −Rr0 −Mα0 (3)

where µ0, β0, r0, α0 are the initialized start values for the unknown model parameters µ,
β, r, α, respectively. In package hibayes, the intercept µ0 is assigned to be the average of
dependent variable y, and β0, r0, and α0 are initialized in zeros at the start of the MCMC
iteration.

Fixed effects and covariates

For fixed effects, we can not fit it in the model directly, it should be converted into a designed
matrix in advance, then combined with covariates by column into the final model matrix to
fit model. In hibayes, each column of the model matrix is treated as an independent random
variable, and follows a normal distribution, the full conditional distribution can be formulated
on condition of other parameters as follows:

β
[i]
j ∼ N

(

X>
j y

∗ +X>
j Xjβ

[i−1]
j

X>
j Xj

,
σ2
e

X>
j Xj

)

(4)

where β
[i]
j is the sampled value of jth variable for the ith iteration, and β

[i−1]
j is for the

previous iteration. Xj represents the jth column of the model matrix X. The corresponding

residuals for β
[i]
j are

y∗ = y∗ +Xj(β
[i−1]
j − β

[i]
j ) (5)
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6 hibayes: Individual-Level, Summary-Level and Single-Step Bayesian Regression Models

repeat Equation 4 and 5 to update the posterior estimations of β for the current iteration.

Environmental random effects

When an environmental factor needs to be considered in the model, the levels of the records
for this factor can not cover all the possibilities of the entire population, then it is generally
treated as an random term in the model, which follows a normal distribution N(0, Iσ2

r). The
conditional solution based on the BLUP frame for the effects r of environmental random term
is

(

R>R+ I
σ2
e

σ2
r

)

r[i] = R>(y − µ[i] −Xβ[i] −Mα[i])

where the superscript [i] represents the ith iteration of the MCMC process. To obtain the
right side of the equation above is usually time-expensive for a large number of iterations,
however, it can be derived from the estimations of previous iteration as follows:

(

R>R+ I
σ2
e

σ2
r

)

r[i] = R>(y∗ +Rr[i−1]) (6)

where the superscript [i − 1] represents the estimations of previous iteration. To get the
posterior estimations r[i], two types of sampler algorithms can be taken into consideration, the
first is the single-site Gibbs sampler (Sorensen and Gianola 2002), which draws parameters
from each conditional distribution with density p(rk|r−k),k = 1, ...,nr, where nr is the
number of elements in the environmental random effect r. By simplifying the Equation 6 to
Cr[i] = B, then we can formulate single-site Gibbs sampler strategy as follows:

r
[i]
j ∼ N

(

r
[i−1]
j +

Bj −Cjr
[i]

Cjj
,
σ2
e

Cjj

)

(7)

where r
[i−1]
j represents the jth element of r at the MCMC iteration i − 1, Bj is the jth

element of B, and Cjj and Cj are the jth diagonal element and the column j of matrix
C, respectively. Obviously it can not be processed in parallel, but the big advantage is that
there is no need to compute the inverse of matrix C; the second algorithm is the block Gibbs
sampler (Garćıa-Cortés and Sorensen 1996; Lund and Jensen 1999), which draws unknown
parameters jointly from the a multivariate distribution, and it can be written as

r[i] ∼ N
(

C−1B,C−1σ2
e

)

(8)

this requires the inverse of matrix C, making it to be competent in handing sparse matrix.
For the Equation 6, the number of levels for the environmental random effect is usually small,
and the left-hand side of the equation is very sparse, therefore, both single-site Gibbs sampler
and block Gibbs sampler are applicable. After the environmental random effects are sampled
successfully, then the corresponding residuals of model could be updated by

y∗ = y∗ +R(r[i−1] − r[i])

The variance of environmental random effects σ2
r is assumed to follow a scaled-inverse chi-

square distribution expressed as follows:

σ2
r ∼ ν̃rS̃

2
rχ

−2
ν̃r

(9)
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where ν̃r and S̃
2
r are the degree of freedom and the scale factor of the inverse chi-square

distribution, respectively, which can be derived from

ν̃r = νr + nr

S̃
2
r =

r>r + S2
rνr

ν̃r

where νr = 4 by default, S2
r = E(σ2

r)(νr − 2)/νr, and E(σ2
r) is initialized to be the variance

(σ2
y) of dependent variable y.

Genetic marker effects

Similar to Equation 4, we can also draw the posterior effect size of genetic marker from a
normal distribution on condition of the sampled value of all other variables and the data,
but differently, the effect size of markers are allocated into different groups, each group takes
different categorical distribution, and the expected value of the marker is weighted by a com-
bination of its corresponding group variance and residual variance, it can be mathematically
formulated as follows:

α
[i]
j |(σ2

αk
,π) ∼







0 IP(σ2
α = 0) = π0

N

(

M>

j y∗+M>

j Mjα
[i−1]
j

M>

j Mj+σ2
e/σ

2
αk

, σ2
e

M>

j Mj+σ2
e/σ

2
αk

)

IP(σ2
αk

6= 0) = πk
(10)

where where α
[i]
j represents the jth element of the marker effect size α at ith MCMC iteration,

π0 and πk are the sub-elements of π, π0 is the probability of stepping into zero effect size for
jth marker (the proportion of markers in zero effect size), πk is the probability of stepping
into the kth categorical distribution, of which the variance is σ2

αk
, M j represents the coded

genotype vector for jth markers (column j of matrix M), and IP is the probability. The
variance σ2

αk
reflects the contribution of jth marker to the dependent variable y, thus the

assumption of the distribution of σ2
αk

for all markers is related closely to the complexity of the
genetic architecture of a trait. How to give a more appropriate assumption of the distribution
of σ2

αk
has long been a hot and difficult topic in the domain of genomic prediction during

recent decades, therefore, a series of Bayesian methods has been proposed aimed at improving
the prediction accuracy, collectively being called the “BayesianAlphabet”. However, more and
more evidences has shown that none of any method can always outperform the others across
different traits (Yin, Zhang, Zhou, Yuan, Zhao, Li, and Liu 2020). Here in hibayes, we
have achieved some typical methods, including BayesRR, BayesA, BayesB(pi), BayesC(pi),
BayesLASSO, and some advanced methods used most frequently, including BSLMM and
BayesR. The rough descriptions for the assumption on the distribution of σ2

αk
for the methods

mentioned above are in Table 1 and as follows:

• BayesRR: Bayesian Ridge Regression, all markers have non-zero effects and share the
same variance, equal to RRBLUP (ridge regression BLUP) or GBLUP (genomic BLUP).

• BayesA: all markers have non-zero effects, and take different variances which follow an
inverse chi-square distribution.

• BayesB: most of the markers have zero effects (π0, π0 = 0.95 by default), only a small
proportion of markers (1−π0) have non-zero effects, and take different variances which
follow an inverse chi-square distribution.
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• BayesBpi: the same as BayesB, but π0 is not fixed, will be estimated in the iterative
process.

• BayesC: most of the markers have zero effects (π0, π0 = 0.95 by default), only a small
proportion of markers (1− π0) have non-zero effects, and share the same variance.

• BayesCpi: the same as BayesC, but π0 is not fixed, will be estimated in the iterative
process.

• BayesL: BayesLASSO, all markers have non-zero effects, and take different variances
which follow an exponential distribution.

• BSLMM: all markers have non-zero effects, and take the same variance, which can be
captured by GBLUP model, but a small proportion of markers has an additional shared
variance.

• BayesR: only a small proportion of markers have non-zero effects, and the markers are
allocated into different groups of normal distributions, and the relative variance for each
normal distribution is fixed.

Table 1: Assumption of effect size distribution of markers for the methods in hibayes.

Model Formula Joint distribution Reference

BayesRR αj ∼ N(0,σ2
α) normal

de los Campos,
Hickey, Pong-Wong,

Daetwyler, and
Calus (2013)

BayesA
αj ∼ N(0,σ2

αj
)

σ2
αj

∼ χ−2(ν,S)
t

Meuwissen et al.

(2001)

BayesB
αj ∼ 0.05 N(0,σ2

αj
) + 0.95δ0

σ2
αj

∼ χ−2(ν,S)
point-t

Meuwissen et al.

(2001)

BayesBpi
αj ∼ (1− π) N(0,σ2

αj
) + πδ0

σ2
αj

∼ χ−2(ν,S)
point-t

Meuwissen et al.

(2001)

BayesC αj ∼ 0.05 N(0,σ2
α) + 0.95δ0 t mixture

Habier, Fernando,
Kizilkaya, and
Garrick (2011)

BayesCpi αj ∼ (1− π) N(0,σ2
α) + πδ0 t mixture Habier et al. (2011)

BayesL
αj ∼ N(0,σ2

αj
)

σ2
αj

∼ Expon(λ2/2)
double exponential Yi and Xu (2008)

BSLMM αj ∼ (1− π) N(0,σ2
α1

) + π N(0,σ2
α1

+ σ2
α2

) normal mixture
Zhou, Carbonetto,
and Stephens (2013)

BayesR
αj ∼ π1 N(0, 10−2σ2

α) + π2 N(0, 10−3σ2
α)+

π3 N(0, 10−4σ2
α) + (1− π1 − π2 − π3)δ0

point-normal mixture
Moser, Lee, Hayes,
Goddard, Wray, and

Visscher (2015)

Note: δ0 represents the effect size equals to zero, ν and S are the degree freedom and scale parameter for
inverse chi-square distribution, t represents student’s t-distribution.

Before sampling the posterior effect size for the jth genetic marker by Equation 10, it must
be known to which categorical distribution should the jth genetic marker belongs. Thus, we
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first need to calculate all likelihoods assuming the considered genetic marker j being in 1
of the nπ (the number of elements of π) normal distributions at a time with the respective
probability π. The likelihood that the jth genetic marker is in distribution k is

Lπk
= −

1

2

[

log

(

M>
j M jσ

2
αk

σ2
e

+ 1

)

−

(

M>
j y

∗ +M>
j M jαj

)2

(M>
j M j + σ2

e/σ
2
αk
)σ2

e

]

+ log(πk) (11)

where πk is the probability for kth categorical distribution (or the kth value in the vector
of π). The detailed derivation for Lπk

can be found in the paper published by Lloyd-Jones
et al. (2019).

Then, as described by Erbe, Hayes, Matukumalli, Goswami, Bowman, Reich, Mason, and
Goddard (2012), the probability that marker j is in distribution k is

IP(πk) =
1

nπ
∑

i=1

exp(Lπi
−Lπk

)

(12)

Based on these probabilities, we can select the normal distribution to draw the marker effect
from using a uniform random variate U(0, 1), using the probabilities of the marker being in
each of the categorical distributions. Once the distribution for marker j has been confirmed,
the effect size can be sampled by Equation 10. Then update the residuals as follows:

y∗ = y∗ +M j(α
[i−1]
j −α

[i]
j ) (13)

By repeating the Equation 11 → 12 → 10 → 13, the effect size for all markers can be
updated, and we can record the number of markers allocated into different categorical distri-
butions for the current iteration:

η = c(m1,m2, ...,mk, ...,mnπ)

where m1 + m2 + ... + mk + ... + mnπ = m, and m is the total number of markers. If π
needs to be estimated, the posterior π can be sampled from a Beta distribution, taking 2
categorical distributions for an example, let η = c(mπ0 ,m − mπ0), mπ0 is the number of
genetic markers in zero effect size, then we have

π0 ∼ Beta(η1 + 1,η2 + 1) (14)

Or it can also be sampled from a Dirichlet distribution

π ∼ Dirichlet(2,η + 1) (15)

It should be noted that if the number of categorical distributions is bigger than 2 (nπ > 2),
only the Dirichlet distribution can be used for sampling, for example, BayesR.

The variances of effect size of all markers are assumed to follow an inverse chi-square distri-
bution as the Equation 9, which can be sampled on condition of the updated marker effect
α.

For the methods that each marker has unique variance, e.g. BayesA, BayesB(pi), BayesLASSO,
the sampling procedure for variance should be implemented independently following sampling
marker effect, and the equation is

σ2
αj
|αj ∼ x−2

(

να + 1,
(αj)

2 + ναS
2
α

να + 1

)

(16)
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10 hibayes: Individual-Level, Summary-Level and Single-Step Bayesian Regression Models

where the degree of freedom να = 4, and the scale parameter S2
α is

S2
α =

να − 2

να
·

σ2
y

(1 − π0)
m
∑

j=1

2pj

(

1 − pj

)

· h2

where h2 is the initialized heritability of the trait, which is set to be 0.5 in hibayes, pk is the
frequency of allele at jth genetic marker.

The sample strategies for different methods are slightly different. For the methods that
markers are allocated into different categorical distributions, e.g., BayesRR, BayesC(pi), the
sampling procedure for variance is implemented at the end of sampling effect of the last
genetic marker, and it is not necessary to implement sampling for every single marker, but
for different groups of categories, except for the group in zero effect size, the distribution can
be referred as

σ2
αk
|αj ∼ x−2











να + ηk,

ηk
∑

j=1

(αj)
2 + ναS

2
α

να + ηk











(17)

where ηk is the number of markers allocated into the kth categorical distribution.

It should be pointed out that, for BayesR method, the variances for the categorical distribu-
tions are assigned on the scale of σ2

αγ
, the scale γ = c(0.0001, 0.001, 0.01), thus we do not

need to draw the variance for different categorical distributions, but only sample the variance
σ2
αγ

once as follows:

σ2
αγ
|αj ∼ x−2











να +mγ ,

mγ
∑

j=1

(αj)
2

γj
+ ναS

2
α

να +mγ











(18)

where mγ = m −mπ0 , and γj is the scaled value of the categorical distribution for the jth
genetic marker. In the Equation 10 and 11, σ2

αk
should be replaced as σ2

αk
= γk · σ2

αγ
for

BayesR method.

For BSLMM method, as described by Zhou et al. (2013), the linear model equation has an
additional term compared with Equation 2:

y = µ+Xβ +Rr +Zg +Mα+ e

where Z is the designed matrix, g is a vector of random effects, also known as GEBV (ge-
nomic estimated breeding value), referring to standard terminology from GBLUP model, it is
assumed to follow a normal distribution N(0,Kσ2

k), K is the additive genomic relationship
matrix (GRM) that is derived from genotype information of all individuals, α is the vector
of additional genetic effects that can not be captured by g for a small proportion of genetic
markers, which come from one normal distribution as the same with BayesCpi. As described
by VanRaden (2008), the GRM could be constructed using the following equation:

K =
MM>

m
∑

j=1

2pj

(

1 − pj

)
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Lilin Yin, Haohao Zhang, Xinyun Li, Shuhong Zhao, Xiaolei Liu 11

where m is the number of genetic markers, pk is the frequency of allele A1 at jth genetic
marker, M is the additive marker covariate matrix with elements of 2 − 2pj , 1 − 2pj , and
−2pj for A1A1, A1A2, and A2A2, respectively. In hibayes package, we do not strictly
follow the sampling strategy proposed by Zhou et al. (2013), we implement a procedure on
the combination of single-site Gibbs sampler (Equation 7) and BayesCpi sampler to achieve
the model assumption of BSLMM, this means that the BSLMM method is an extension of
BayesCpi with an additional multivariate normal random term g. Similar to the Equation 6,
the solution to g is

(

Z>Z +K−1σ
2
e

σ2
k

)

g[i] = Z>(y∗ +Zg[i−1])

to construct the equation above, we need to compute the inverse of K matrix. However, K is
not always invertible for some reasons (e.g., not positive defined), so we have achieved three
types of algorithms to address this problem in package hibayes: Cholesky decomposition,
lower–upper (LU) decomposition, and ridge regression. As K−1 is no longer sparse, the block
Gibbs sampler (Garćıa-Cortés and Sorensen 1996; Lund and Jensen 1999), which requires the
inverse of the left-hand side of the equation for every single iteration, would be time-consuming
within the MCMC process, therefore we use the single-site Gibbs sampler (Sorensen and
Gianola 2002) to obtain the solution of g in package hibayes. σ2

k follows a scaled inverse
chi-square distribution as Equation 9, with degree of freedom and scale parameter:

ν̃k = νk + nk

S̃
2
k =

g>K−1g + S2
kνk

ν̃k

where nk is the number of elements in g, νk = 4, and

S2
k =

νk − 2

νk
· σ2

y · h
2

different with BayesCpi, the final marker effect size of BSLMM method includes two parts:

α∗ =
M>K−1g

m
∑

j=1

2pj

(

1 − pj

)

+α

the first part transforms the GEBVs into marker effects following the paper published by
Aliloo, Pryce, González-Recio, Cocks, Goddard, and Hayes (2017). The operation of multi-
plication for two big matrices in the equation above is extremely time-consuming, however,
this step is implemented only once at the end of the MCMC iteration and, therefore, would
not be a big problem.

Residual effects

The residuals of the linear model will be updated subsequently once any of model parameter
(µ,β, r,α) is sampled from its corresponding full conditional distribution. The variance of
residuals σ2

e follows the same distribution as Equation 9, the degree of freedom and scale
parameter are as follows:

ν̃e = νe + n

S̃
2
e =

y∗>y∗ + S2
eνe

ν̃e

(19)
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12 hibayes: Individual-Level, Summary-Level and Single-Step Bayesian Regression Models

where νe = −2, and S2
e = 0 by default in hibayes.

2.2. Summary level Bayesian model

To fit individual level model, the individual level data, including genome-wide genotype and
one or multiple phenotypes measured on the same individuals, should be provided. However,
the individual level data are sometimes not accessible to public due to personal privacy, legal
or non-legal policies, especially when related to research on humans. In addition to individual
level data, there are now continuously increasing GWAS summary statistics available on
hundreds of complex traits, each consisting of estimated effect sizes and sampling variance at
millions of markers. Restricted access to individual level data has motivated methodological
frameworks that only require publicly available summary level data, one of which is the
Bayesian multiple regression summary statistics proposed in recent years (Zhu and Stephens
2016; Lloyd-Jones et al. 2019). The summary level Bayesian model is inferred from individual
level model, so let

y = Mα+ e (20)

different with Equation 2, here y is the prior adjusted phenotype by the fixed effects, covari-
ates, environmental random effects, rather than the original phenotype, the reason for the
adjustment is that the public summary data only includes summary information for genetic
markers, and we can not directly access the recorded environmental factors, thus the unknown
parameters of summary level Bayesian model θ = (α,π,σ2

α,σ
2
e).

Let D = diag
(

M>
1 M1, ...,M

>
mMm

)

, by multiplying Equation 20 by D−1M> to arrive at

D−1M>y = D−1M>Mα+D−1M>e (21)

noting that the variance-covariance matrix (V ) of all genetic markers could be written as

V =
M>M

n

V could be calculated from the publicly available reference genotype panel. Then we can
rewrite the Equation 21 as

b = D−1M>y = nD−1V α+D−1M>e (22)

where b is vector of the marginal effects (also known as regression coefficients), which can be
obtained from summary data directly. Therefore, we can successfully transform the individual
level Bayesian model into the summary level Bayesian model. Noting that if the V matrix
is derived from the same genotype panel with summary data, then the estimated results of
unknown parameters of summary level Bayesian model will be the same as individual level
Bayesian model in theory.

As described in Section 2.1, to sample the marker effect size αj , we need to know to which
categorical distribution it belongs, thus the first step is to calculate likelihoods for all cat-
egorical distributions for marker j. Referring to Equation 11, it requires the components:
M>

j M j , and the prior values of σ2
αk
, σ2

e, and M>
j y

∗. M>
j M j is the diagonal element of

M>M , and it can be calculated as

Dj = njV jj
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where V jj is the jth diagonal element of V , nj is the effective number of individuals for
marker j, which can be obtained directly from summary data, and as we know that if the
marker is in Hardy-Weinberg equilibrium, then we can also derive Dj as follows:

Dj = 2njpj(1− pj)

where pj is the allele frequency for marker j, and can be calculated from the reference genotype
panel.

The prior values of σ2
αk
, σ2

e can be obtained from scaling the phenotype variance σ2
y, and σ2

y

can be derived from summary data as follows:

(σ2
y)j =

(y>y)j
nj

= σ2
bj
Dj(nj − 2) + b2jDj (23)

where σ2
bj

is the square of the standard error of bj , and it can also be obtained directly from

summary data, then taking the median over the set of (σ2
y)j can get reliable estimation of

σ2
y (Yang, , Ferreira, Morris, Medland, Madden, Heath, Martin, Montgomery, Weedon, Loos,

Frayling, McCarthy, Hirschhorn, Goddard, and and 2012). The main challenge for summary
level Bayesian model is to get M>

j y
∗, where y∗ is the vector of residuals on condition of other

model parameters, however, the phenotype observations y is not available in summary data,
thus y∗ can not be accessed and updated in MCMC iterations, let

φ = M>y∗

then M>
j y

∗ is the jth element of φ, which is φj . At the beginning of the MCMC iteration,
α is initialized in a vector of zeros, y∗ = y, then the start values for φ can be expressed as

φ = M>y = Db

now we can calculate the likelihoods, and compute the probabilities for all categorical distri-
butions following the Equation 12, then follow the steps described in Section 2.1 to draw the
posterior marker effect size αj .

Once αj is updated, the next step is to update the residuals y∗ following the Equation 13, as
y∗ can not be accessed, we multiply Equation 13 by M>:

M>y∗ = M>y∗ +M>M j(α
[i−1]
j −α

[i]
j )

which can be rewritten as
φ = φ+ njV j(α

[i−1]
j −α

[i]
j ) (24)

where V j is a vector of the jth column of V . By the transformation above, we just repeatedly
compute φ for each update of the marker effect size to keep the MCMC iteration going
correctly, and those processes successfully cut off the dependency on y∗.

The sampler strategies for π and σ2
α are the same with individual level Bayesian model

referring to Equation 14, 15 and Equation 16, 17, 18. The other two parameters of
importance are σ2

g and σ2
e, these values are used to estimate heritability h2. σ2

g is the genetic
variance, which is defined as the variance of GEBVs, then we have

σ2
g =

α>M>Mα

n
= α>V α (25)
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14 hibayes: Individual-Level, Summary-Level and Single-Step Bayesian Regression Models

the operation of multiplication for a large matrix is expensive within the MCMC process.
From Equation 20, we have Mα = y − y∗, multiplied by M>, then

M>Mα = M>y −M>y∗

= Db− φ

we can rewrite

σ2
g =

α>(Db− φ)

n

now it becomes the multiplication of two vectors, which will be much more efficient than
Equation 25.

For the residual variance σ2
e, similarly, we have

σ2
e =

y∗>y∗

n
=

(y −Mα)>(y −Mα)

n

=
y>y − y>Mα−α>M>y +α>M>Mα

n

=
y>y − y>Mα−α>φ

n
=

y>y −α>(M>y + φ)

n

=
y>y −α>(Db+ φ)

n

= σ2
y −

α>(Db+ φ)

n

where σ2
y can be computed by Equation 23. The final global σ2

g and σ2
e can be sampled from

the scaled-inverse chi-square distribution by integrating equations above into Equation 9.

The available methods for summary level Bayesian model are nearly the same as for individual
level Bayesian model, except for BSLMM, because the individual genotype is inaccessible to
construct GRM. Additionally, we have implemented a conjugate gradient (CG) algorithm in
hibayes to solve the Equation 22 to obtain the marker effect size directly without running
MCMC process, it equals to SBLUP (summary level BLUP) in theory (Robinson, Kleinman,
Graff, Vinkhuyzen, Couper, Miller, Peyrot, Abdellaoui, Zietsch, Nolte et al. 2017). The CG
algorithm requires a ridge regression value λ, which should be provided as λ = m∗(1/h2−1),
where h2 is the heritability of the trait and can be estimated by LD score regression using
LDSC software (Bulik-Sullivan, Loh, Finucane, Ripke, Yang, Patterson, Daly, Price, and
Neale 2015).

Looking back at the relative theoretics of summary level Bayesian model, it is easy to find
that how to fast compute and to store the variance-covariance matrix V is a big problem, the
dimension of square matrix V equals to the number of genetic markers in analysis, although
it is narrowly acceptable for chip array data at a level of several tens of thousands of markers,
the high density markers from sequencing would be a big challenge and a bottleneck faced for
summary level Bayesian model. However, typically this problem can be addressed by using a
fixed 1–10Mb window approach, as in SBLUP (Robinson et al. 2017) or LDpred (Vilhjálmsson,
Yang, Finucane, Gusev, Lindström, Ripke, Genovese, Loh, Bhatia, Do et al. 2015), which sets
LD correlation values outside this window to zero, or using a shrunk LD matrix proposed by
Zhu and Stephens (2017). In hibayes package, we use a chi-square threshold x̂2 to make V

matrix to be sparse, if the condition (r)2/n < x̂2 (r is the Pearson correlation coefficient of two
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markers) is met, then the covariance for those two markers will be set to zero. Additionally,
we have added an option in hibayes to let users choose whether to compute the covariance
among chromosomes. Therefore, hibayes can compute totally 4 types of variance-covariance
matrix: genome-wide full dense matrix, genome-wide sparse matrix, chromosome-wide full
dense matrix, or chromosome-wide sparse matrix.

It should be noted that, if using a sparse matrix to fit summary level Bayesian model, some
of elements of φ in Equation 24 are not updated, then the mean of posterior distribution in
Equation 10 for the markers relevant to those elements would be biased, which may sometimes
cause the MCMC process to “blow up” in certain situations, we recommend adjusting the chi-
square threshold x̂2 to address this problem.

2.3. Single-step Bayesian model

It is always difficult to genotype all individuals of a large population in practice, meaning
that the individuals with effective phenotype observations but without genotype information
are useless for genomic evaluation. Therefore, in 2010, a single-step BLUP model (SSBLUP),
which can simultaneously integrate pedigree, genotype, and phenotype data, was proposed to
maximize the utilization of available information, making it possible to connect all phenotypic
observations for both genotyped and non-genotyped individuals (Christensen and Lund 2010;
Aguilar, Misztal, Johnson, Legarra, Tsuruta, and Lawlor 2010). However, on the one hand,
SSBLUPmodel requires GRM and its inverse of all genotype individuals, which is an inefficient
process, because GRM is very dense and it grows in size as more individuals are genotyped. On
the other hand, SSBLUP model assumes that all genetic markers have the equal contributions
to the phenotype, which is inconsistent with the real genetic architecture of traits, especially
for a trait controlled by several major genes. Subsequently, single-step Bayesian regression
(SSBR) model was proposed by Fernando et al. (2014); Fernando, Cheng, Golden, and Garrick
(2016), SSBR is an extension of individual level Bayesian model, and can simultaneously fit
pedigree, genotype, and phenotype data in a Bayesian linear model for the first time, the
mathematical formula for SSBR model is

y =





y1

y2



 = µ+





X,A12A
−1
22 J2

X,J2



β +Rr +





Z1 0

0 Z2









A12A
−1
22 M2α+ ε

M2α



+ e (26)

the unknown parameters θ = (µ,β, r, ε,α,π,σ2
r ,σ

2
ε ,σ

2
α,σ

2
e), where y1 and y2 are the pheno-

typic records for non-genotyped and genotyped individuals, respectively, J2 = −1, A12 is the
pedigree based additive relationship matrix between non-genotyped and genotyped individu-
als, A−1

22 is the inverse of the pedigree based additive relationship matrix between genotyped
individuals, M2 is the genotype covariate matrix for genotyped individuals, ε is the vector
of imputation residuals for non-genotyped individuals, and other symbols are the same as
Equation 2.

The core idea of the SSBR model is to impute the genotype of the non-genotyped individuals
in pedigree on condition of the genotyped individuals by using the pedigree based additive
relationship matrix (A). However, to construct A12 and to compute the inverse of A22 in
Equation 26 are not such efficient with the increasing size of pedigree. Fortunately, Fernando
et al. (2014) proved that the imputed markers can be obtained efficiently, using partitioned
inverse results, by solving the easily formed very sparse system:

A12A
−1
22 = (A11)−1(−A12)
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where A11 is the partition of A−1 for non-genotyped individuals, A12 is the partition of A−1

between non-genotyped and genotyped individuals. As A11 is very sparse, it will be quite
fast to get the solution on left hand side by solving the sparse linear system on the right side,
thus A is no longer required, only A−1. In 1976, Henderson presented a simple procedure to
derive A−1 from pedigree directly without inverting A matrix (Henderson 1976). The inverse
of A matrix can be written as:

A = TFT−1

A−1 = (T−1)>F−1T−1

where T is a lower triangular matrix and F is a diagonal matrix. T−1 is a lower triangular
matrix with ones in the diagonal, and the only non-zero elements to the left of the diagonal
in the row for the individuals are -0.5 for columns corresponding to the known parents.
Regardless of the level of inbreeding, the diagonal elements of F−1 are either 2 or 4/3 or 1,
if both or one or no parents are known, respectively. The A−1 matrix can be derived from
pedigree using the following R codes:

R> Ainverse <- function(s, d) {

+ n <- length(s)

+ AI <- matrix(0, n, n)

+ for (x in 1:n) {

+ if (s[x] == 0 & d[x] == 0)

+ AI[x, x] <- 1

+ if (s[x] > 0 & d[x] > 0) {

+ AI[x, x] <- AI[x, x] + 2

+ AI[x, s[x]] <- (AI[x, s[x]] - 1) -> AI[s[x], x]

+ AI[d[x], x] <- (AI[d[x], x] - 1) -> AI[x, d[x]]

+ AI[s[x], s[x]] <- AI[s[x], s[x]] + 0.5

+ AI[s[x], d[x]] <- (AI[s[x], d[x]] + 0.5) -> AI[d[x], s[x]]

+ AI[d[x], d[x]] <- AI[d[x], d[x]] + 0.5

+ }

+ if (s[x] > 0 & d[x] == 0) {

+ AI[x, x] <- AI[x, x] + (4 / 3)

+ AI[x, s[x]] <- (AI[x, s[x]] + (-2 / 3)) -> AI[s[x], x]

+ AI[s[x], s[x]] <- AI[s[x], s[x]] + (1 / 3)

+ }

+ if (s[x] == 0 & d[x] > 0) {

+ AI[x, x] <- AI[x, x] + (4 / 3)

+ AI[x, d[x]] <- (AI[x, d[x]] + (-2 / 3)) -> AI[d[x], x]

+ AI[d[x], d[x]] <- AI[d[x], d[x]] + (1 / 3)

+ }

+ }

+ return(AI)

+ }

Once the genotype imputation is done successfully, it is easy to fit single-step Bayesian model,
which is almost the same as individual level Bayesian model, except for the imputation resid-
uals ε, which is assumed to follow a multivariate normal distribution. Similar to Equation 6,
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the conditional distribution of ε on the sampled value of all other variables is given by the
solution of the following system:

(

Z>
1 Z1 +A11σ

2
e

σ2
ε

)

ε[i] = Z>
1 (y

∗
1 +Z1ε

[i−1])

where y∗
1 is the sub-vector of y∗ (residuals of the model) for non-genotyped individuals. As

discussed in Equation 6, we can draw ε[i] by two types of algorithms, here A11 is pretty sparse,
it will be efficient to obtain the inverse of the left hand side of the equation above, thus block
sampler is more appropriate for this situation. σ2

ε is the variance of imputation residuals ε,
the full-conditional posterior for σ2

ε is a scaled inverse chi-square distribution as Equation 9,
with degree of freedom and scale parameter:

ν̃ε = νε + nε

S̃
2
ε =

ε>A11ε+ S2
ενε

ν̃ε

where nε is the number of elements in ε, νε = 4, and S2
ε = σ2

y · h
2 · (νε − 2)/νε.

Once all the values in vector of ε are sampled, then update the residuals (y∗
1) for non-genotyped

individuals as follows:
y∗
1 = y∗

1 +Z1(ε
[i−1] − ε[i])

and keep the residuals (y∗
2) of genotyped individuals unchanged. The sampler strategy for

other unknown parameters in θ is the same with individual level Bayesian model, and can be
referred in Section 2.1.

The available methods for single-step Bayesian model in hibayes is nearly the same with in-
dividual level Bayesian model as described in Table 1, except for BSLMM, as the BSLMM
method requires the GRM of all individuals, however, the imputed genotype for non-genotyped
individuals can not be used directly to construct GRM, and to compute the marker effect size,
because there are no specific imputation residuals for markers, but for individuals, thus the
estimated GRM and marker effect size would be biased merely using the imputed genotype.

It should be pointed out that for SSBR model, the number of predicted individuals depends
on the number of unique individuals in pedigree, if all the individuals with phenotypic records
have been genotyped, then the imputation residuals can not be estimated, although the non-
genotyped individuals in pedigree still could be predicted in hibayes, the prediction accuracy
should be validated further with real data.

2.4. Genomic prediction and Genome-wide association studies

Genomic prediction

For genomic selection, the main purpose is to obtain the individual’s GEBV, which reflects
the difference of a individual on genetic performance over the average level of the whole
population. As discussed in the section above, Bayesian regression models only estimate the
effect size of markers across the entire genome, in order to obtain the GEBVs, we need the
individual level genotype. If we have the genotype in hand, then generally it’s easy to derive
GEBVs from the following equation:

g = Mα
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this can be accomplished by the function“--score”of PLINK using the prepared genotype file
in binary format and marker effect size file in text format. However, for single-step Bayesian
model, as described by Fernando et al. (2014), the GEBVs includes three parts as follows:

g =





A12A
−1
22 J2

J2



βJ +





A12A
−1
22 M2

M2



α+





Z1

0



 ε (27)

where the symbols can be referred to Equation 26, the first part comes from the estimated
coefficient, the second part is derived from genotype, and the third part includes the impu-
tation residuals for non-genotyped individuals. There is no software or pipeline that can be
used directly to accomplish the above calculation, and general speaking, it is not that easy for
users to implement this manually. Therefore, in hibayes, we have reported GEBVs directly
for all individuals in the final returned list. For individual level Bayesian model, both pheno-
typic individuals or non-phenotypic (marked as ‘NA’) individuals that have genotype will be
predicted. For single-step Bayesian model, all individuals in pedigree, including genotyped or
non-genotyped individuals, will be predicted in the final step. But for summary level Bayesian
model, as the individual level genotype is not compulsorily required as an input, so it should
be accomplished manually by users.

Genome-wide association studies

Bayesian regression model can not only be used for genomic prediction, but also could be
applied to genome-wide association studies to locate candidate genes of a trait (Yi, George,
and Allison 2003; Fan, Onteru, Du, Garrick, Stalder, and Rothschild 2011). Given such
a model where π is close to one, the posterior probability that αj is nonzero for at least
one marker j in a window or segment can be used to make inferences on the presence of
QTL (quantitative trait locus) in that segment. We refer to this probability as the window
posterior probability of association (WPPA). The underlying assumption here is that if a
genomic window contains a QTL, one or more markers in that window will have nonzero αj .
Thus, WPPA, which is estimated by counting the number of MCMC samples in which αj is
nonzero for at least one marker j in the window, can be used as a proxy for the posterior
probability that the genomic window contains a QTL. WPPA can be formulated as

WPPA =
N c

N t −N b

where N t is the total number of iteration of MCMC process, N b is the number of discarded
iteration at front of MCMC process, andN c is the counted number of times that αj is nonzero
for at least one marker αj in the window after the discarded iterations.

Also, hibayes provides the posterior probability that αj is nonzero for each individual markers,
which is known as posterior inclusive probability (PIP), it is the same with WPPA when the
window size equals to 1, and can be used as a complementary result for more detailed location
of causal markers.

3. The R package hibayes

As R has become the one of the most widely used languages for statistical computing and
graphics, with a large number of users worldwide, we developed hibayes on the R platform.
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However, as it is described about the details of Bayesian regression model in the above section,
there are huge number of iterations for parameter estimation, obviously it is not a good
decision to write Bayesian regression model into pure R language. Therefore, we accomplished
the core parts which take over the most of computation time of Bayesian regression model
into C++ language by the aid of the packages Rcpp (Eddelbuettel and François 2011) and
RcppArmadillo (Eddelbuettel and Sanderson 2014), all parallelizable parts were sped up by
OpenMP (Dagum and Menon 1998), some basic vector operations were enhanced by calling
corresponding functions in LAPACK (Anderson, Bai, Bischof, Blackford, Demmel, Dongarra,
Du Croz, Greenbaum, Hammarling, McKenney et al. 1999), all of above can be sped up
automatically by Intel MKL (math kernel library) if it was linked with R by users, fast
operations for dense and sparse matrix were implemented with the help of package Matrix

(Douglas, Martin, Timothy, Jens, Jason, and R Core Team 2021), and only the main functions
used for data and parameter input were written into pure R language, ensuring hibayes with
a pretty higher computing efficiency.

For genotype loading, it is expensive to code it into numeric covariate matrix and read it into
memory for each time of analysis, we provided an additional function to convert the genotype
into numeric memory-mapping file by using the package bigmemory (Michael, John, Peter,
and Charles 2019; Kane, Emerson, and Weston 2013), this only needs to be done at the
first time, and no matter how big the number of individuals or markers in the genotype is,
the memory-mapping file could be attached into memory on-the-fly within several minutes,
making hibayes very promising in handing big data.

The package hibayes is available from CRAN at https://cran.r-project.org/package=

hibayes. The latest version in development can be installed from GitHub at https://

github.com/YinLiLin/hibayes. This article refers to version 1.0.1. The main available
functions provided by hibayes are as following Table 2:

Table 2: Main functions provided by hibayes.

Function name Descriptions

read_plink
Converts genotype file in PLINK binary format into memory-mapping
file format.

ldmat
Constructs variance-covariance matrix (V ) of markers across the whole
genome to fit summary level Bayesian model.

bayes Fits individual level Bayesian model.

sbayes Fits summary level Bayesian model.

ssbayes Fits single-step Bayesian model.

The detailed arguments for the functions in above table can be seen by typing the correspond-
ing function name with a header of symbol “?” in R, for example, ?bayes.

4. Quick start with simple examples

In the following, we display some examples to run different Bayesian regression models using
the tutorial data attached in hibayes, including the input file format, settings of main param-
eters, returned lists of results, as well as relevant visualizations of some important genetic
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parameters. We start by installing and loading hibayes:

R> install.packages("hibayes")

R> library("hibayes")

Loading required package: bigmemory

Loading required package: Matrix

Full description, Bug report, Suggestion and the latest codes:

https://github.com/YinLiLin/hibayes

4.1. Examples for individual level Bayesian model

To fit individual level Bayesian model, at least the phenotypic records (n elements, missing
should be marked as ‘NA’), numeric genotype (n * m, n is the number of individuals, m
is the number of genetic markers) should be provided. Users can load the phenotype and
genotype data that coded by other software by the R function read.table to fit model, note
that ‘NA’ is not allowed in genotype data,

R> # load phenotype

R> pheno <- read.table("your_pheno.txt")

R> # load genotype

R> geno <- read.table("your_geno.txt")

genotype should be coded in digits, either in c(0, 1, 2) or c(-1, 0, 1) is acceptable. Before
fitting the model, it should be noted that the order of individuals should be exactly the same
between phenotype and genotype, users should adjust it in prior, for example:

R> geno.id <- read.table("your_genoid.txt")

R> # supposing the first column is the individual id

R> pheno <- pheno[match(geno.id[, 1], pheno[, 1]), ]

Additionally, we purposely provide a function read_plink in hibayes to load PLINK binary
files into memory, and simultaneously construct memory-mapping file on local disk. For
example, load the attached tutorial data in hibayes:

R> bfile_path <- system.file("extdata", "example", package = "hibayes")

R> data <- read_plink(bfile = bfile_path, mode = "A", threads = 4)

the argument bfile is the prefix of binary files, mode can be set to “A” or “D” for additive
and dominant genetic effect, respectively. In this function, missing genotype will be replaced
by the major genotype of each allele. hibayes will code the genotype A1A1 as 2, A1A2 as
1, and A2A2 as 0, where A1 is the first allele of each marker in *.bim file, therefore, the
estimated effect size is on A1 allele, users should pay attention to it when a process involves
marker effect. This data conversion only needs to be done at the first time, and no matter
how big the number of individuals or markers in the genotype is, the memory-mapping file
could be attached into memory on-the-fly within several minutes:
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R> geno <- attach.big.matrix("./example.desc")

R> map <- read.table("./example.map", header=TRUE)

By default, the memory-mapped files are directed into the work directory, users could redirect
to a new path by the argument out as follows:

R> data <- read_plink(bfile = bfile_path, out="./test")

then pick up the phenotype and genotype from the returned list, a quick view of the example
data:

R> pheno <- data[["fam"]]

R> nrow(pheno) # number of individuals

[1] 4798

R> geno <- data[["geno"]]

R> dim(geno) # number of individuals and markers

[1] 4798 7385

R> geno[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 1

[2,] 0 0 0 0 0

[3,] 0 0 0 0 1

[4,] 1 1 0 1 0

[5,] 1 0 1 1 0

R> map <- data[["map"]]

R> head(map)

SNP Chr Pos A1 A2

1 snp1 1 1198554 T C

2 snp2 1 1720354 A G

3 snp3 1 1825948 A C

4 snp4 1 3428453 G A

5 snp5 1 4195032 T C

6 snp6 1 4412357 T C

for the situation that the phenotype and genotype are loaded from binary files, we need not
adjust the order of individuals additionally. Now, we can fit individual level Bayesian model
as follows:

R> fit <- bayes(y = pheno[, 6], M = geno, model = "BayesCpi", niter = 20000,

+ Pi = c(0.95, 0.05), nburn = 12000, outfreq = 5000, seed = 666666,

+ map = map, windsize = 1e6)
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Prior parameters:

Model fitted at [BayesCpi]

Number of observations 4798

Number of covariates 0

Number of envir-random effects 0

Number of markers 7385

pi for markers in zero effect size 0.95

pi for markers in non-zero effect size 0.05

Total number of iteration 20000

Total number of burn-in 12000

Phenotypic var 28.8527

Genetic var 7.2132

Inv-Chisq gpar 4.0000 3.6066

Residual var 14.4263

Inv-Chisq epar -2.0000 0.0000

Marker var 0.0601

Inv-Chisq alpar 4.0000 0.0301

Number of windows 1894

MCMC started:

Iter NumNZSnp pi1 pi2 Vg Ve h2 Timeleft

5000 20 0.9966 0.0034 4.5746 24.5256 0.1572 00h10m54s

10000 19 0.9975 0.0025 3.1362 24.6910 0.1127 00h07m15s

15000 30 0.9950 0.0050 4.8301 24.4573 0.1649 00h03m34s

20000 20 0.9975 0.0025 3.9579 23.9414 0.1419 00h00m00s

Posterior parameters:

Mu 0.4070±0.4677

pi for markers in zero effect size 0.9975±0.0112

pi for markers in non-zero effect size 0.0024±0.0009

Genetic var 3.9558±0.3283

Residual var 24.8694±0.5935

Estimated h2 0.1372±0.0105

Finished within total run time: 00h14m02s

users can choose one of the methods in Table 1 by the argument model, change the total
number of iterations and discarded number of iterations by the arguments niter and nburn,
respectively. The printed log message recorded the descriptive information for input data and
parameters, the convergence details of estimated parameters during the MCMC process, the
time that remains for running, and summary statistics for some of main genetic parameters.
Also, user can choose to turn off the LOG message by setting the argument verbose = FALSE.

It should be noted that the arguments map and windsize are optional, and they are only valid
for GWAS analysis, and windsize is used to control the size of the windows, the number of
markers in a window is not fixed. Alternatively, users can also choose another argument
windnum (e.g., windnum = 10), which can be used to control the fixed number of markers in
a window, the size for the window is not fixed for this case. Attentively, every marker should
have clear physical position for the downstream genome cutting, however, if users are not
going to run GWAS, these two arguments can be ignored.
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The returned lists for the function bayes are

> str(fit)

List of 12

$ mu : num 0.407

$ pi : num [1:2, 1] 0.99749 0.00239

$ beta : num[0 , 1]

$ r :'data.frame': 0 obs. of 0 variables

$ vr : num[0 , 1]

$ vg : num 3.96

$ ve : num 24.9

$ alpha: num [1:7385, 1] -2.88e-05 -7.24e-05 8.66e-05 1.40e-05 -6.13e-05 ...

$ e : num [1:4798] 0.559 -2.696 1.484 -8.393 3.325 ...

$ pip : num [1:7385, 1] 0.000125 0.0005 0.000625 0.0005 0.000375 ...

$ gwas :'data.frame': 1894 obs. of 6 variables:

..$ Wind : chr [1:1894] "wind1" "wind2" "wind3" "wind4" ...

..$ Chr : chr [1:1894] "1" "1" "1" "1" ...

..$ N : int [1:1894] 3 1 8 7 3 7 1 2 1 5 ...

..$ Start: num [1:1894] 1198554 3428453 4195032 5109162 6705835 ...

..$ End : num [1:1894] 1825948 3428453 4916148 5881216 6952985 ...

..$ WPPA : num [1:1894] 0.00125 0.0005 0.01325 0.0075 0.00313 ...

$ g : num [1:4798] -3.01 -5.5 1.52 -2.38 -3.27 ...

all the returned parameters estimated above are fully consistent with the Equation 2. As no
fixed effects, covariates are specified for argument X, and also no environmental random effects
for argument R, thus the returned lists beta, r, vr, are empty. For more details of how to
model fixed effects, covariates, and environmental random effects, please refer to Section 4.3.1.
The list e is the vector of residuals of the model, with the equal length and same order with
the dependent variable y. The list gwas is only visible when the the arguments map and
windsize (or windnum) are specified by the users.

For genomic prediction, we can directly get the estimated effect size for all genetic markers,
and the GEBVs for all individuals from the returns:

R> SNPeffect <- fit[["alpha"]]

R> gebv <- fit[["g"]]

we can visualize the marker effect size using the CMplot package (Yin 2021), as shown in the
Manhattan plot (Figure 1):

R> library(CMplot)

R> CMplot(cbind(map[,1:3], SNPeffect), type = "h", plot.type = "m",

+ LOG10 = FALSE, ylab="SNP effect")
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Figure 1: Estimated effect size of the genetic markers across the entire genome.

we can also calculate and visualize the proportion of phenotypic variance explained (PVE)
for each of genetic markers, as shown in the Figure 2:

R> pve <- apply(as.matrix(geno), 2, var) * (fit[["alpha"]]^2) / var(pheno[, 6])

R> highlight <- map[pve > 0.001,1]

R> CMplot(cbind(map[, 1:3], 100 * pve), type = "h", plot.type = "m",

+ LOG10 = FALSE, ylab = "Phenotypic variance explained (%)",

+ highlight = highlight, highlight.text = highlight)

Figure 2: The proportion of explained phenotypic variance for each of markers.

For GWAS analysis, if the arguments map and windsize are detected in the input commands,
hibayes will return a list named “gwas” as shown in following format:

R> gwas <- fit[["gwas"]]

R> head(gwas)

Wind Chr N Start End WPPA

1 wind1 1 3 1198554 1825948 0.001250
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2 wind2 1 1 3428453 3428453 0.000500

3 wind3 1 8 4195032 4916148 0.013250

4 wind4 1 7 5109162 5881216 0.007500

5 wind5 1 3 6705835 6952985 0.003125

6 wind6 1 7 7075618 7863025 0.004375

the first column records the names of all windows, second column is a vector of chromosomes,
the third column reports the counted number of genetic markers in each of windows, the 4th
and 5th columns are the physical position for the first and last genetic marker in each of
windows respectively, and the last column lists the computed WPPA. To visualize WPPA as
general Manhattan plot, we need to transform it into p-values as follows:

R> highlight <- gwas[(1 - gwas[, "WPPA"]) < 0.01, 1]

R> CMplot(cbind(gwas[, c(1, 2, 4)], 1 - gwas[, "WPPA"]), type = "h",

+ plot.type = "m", LOG10 = TRUE, threshold = 0.01, ylim = c(0, 5),

+ ylab = expression(-log[10](1 - italic(WPPA))), highlight = highlight,

+ highlight.col = NULL, highlight.text = highlight)

following Figure 3 visualizes the association results for all windows, the red line represents a
significant level of 0.01, the windows that exceed this threshold are considered to be signifi-
cantly associated with the trait of interest.

Figure 3: The derived window posterior probability of association from MCMC process.

However, it is still difficult to know which genetic markers in those significant windows are the
causal variations, so we need to further explore the association significance for the markers.
In hibayes, we also reported the posterior inclusive probability for every single marker, which
could be used for an reference of importance to the trait, thus next step we can visualize PIP
for a specific chromosome or region of interest as following Figure 4:

R> data <- cbind(map[, 1:3], (1 - fit[["pip"]]))

R> chr5 <- data[data[, 2] == 5, ]

R> CMplot(chr5, plot.type = "m", width = 9, height = 5, threshold = 0.01,

+ ylab = expression(-log[10](1 - italic(PIP))), LOG10 = TRUE,

+ amplify = FALSE)
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Figure 4: The posterior inclusive possibility for each of markers across Chromosome 5.

4.2. Examples for summary level Bayesian model

To fit summary level data based Bayesian model, the variance-covariance matrix calculated
from the reference panel, and the summary data should be provided. The variance-covariance
matrix (V ) can be calculated by hibayes using either public reference genotype panel or
personal genotype in hand. Taking the tutorial data attached in hibayes for an example:

R> # load reference panel

R> bfile_path <- system.file("extdata", "geno", package = "hibayes")

R> data <- read_plink(bfile_path)

R> geno <- data[["geno"]]

R> map <- data[["map"]]

R> # construct genome wide full variance-covariance matrix

R> ldm1 <- ldmat(geno, threads = 4)

R> # construct genome wide sparse variance-covariance matrix

R> ldm2 <- ldmat(geno, chisq = 5, threads = 4)

R> # construct chromosome wide full variance-covariance matrix

R> ldm3 <- ldmat(geno, map, ldchr = FALSE, threads = 4)

R> # construct chromosome wide sparse variance-covariance matrix

R> ldm4 <- ldmat(geno, map, ldchr = FALSE, chisq = 5, threads = 4)

where the argument chisq is the chi-square threshold used for making sparse matrix, the
degree of sparseness increases from “ldm1” to “ldm4”.

Load the tutorial summary data:

R> sumstat_path <- system.file("extdata", "geno.ma", package = "hibayes")

R> sumstat <- read.table(sumstat_path, header=TRUE)

R> head(sumstat)

SNP A1 A2 MAF BETA SE P NMISS

1 snp1 G A 0.3000 0.1783 0.3215 0.5813 60

2 snp2 T G 0.3667 0.1451 0.2735 0.5978 60

3 snp3 A G 0.3167 0.3815 0.3363 0.2613 60
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4 snp4 C A 0.3417 0.3699 0.3286 0.2649 60

5 snp5 T G 0.3250 0.5380 0.3522 0.1321 60

6 snp6 T G 0.3000 -0.2677 0.3346 0.4270 60

The order of genetic markers should be fully consistent between variance-covariance matrix
and the summary data, thus prior adjustment on the order of genetic markers is required
before fitting the model:

R> sumstat <- sumstat[match(map[, 1], sumstat[, 1]), ]

Now we can fit summary level Bayesian model as follows:

R> fit <- sbayes(sumstat = sumstat, ldm = ldm1, model = "BayesCpi",

+ niter = 20000, Pi = c(0.95, 0.05), nburn = 12000, seed = 666666,

+ map = map, windsize=1e6)

As described in Section 2.2, the returned lists are less than individual level Bayesian model:

> str(fit)

List of 6

$ pi : num [1:2, 1] 0.9647 0.0352

$ vg : num 0.438

$ ve : num 2.13

$ alpha: num [1:1000, 1] 0.0034 -0.00127 0.00356 0.00251 0.00331 ...

$ pip : num [1:1000, 1] 0.0379 0.0331 0.0355 0.0348 0.0345 ...

$ gwas :'data.frame': 43 obs. of 6 variables:

..$ WIND : chr [1:43] "wind1" "wind2" "wind3" "wind4" ...

..$ CHR : chr [1:43] "1" "1" "1" "1" ...

..$ NUM : int [1:43] 12 17 25 30 26 13 30 23 24 31 ...

..$ START: num [1:43] 286933 1049272 2010349 3008501 4022389 ...

..$ END : num [1:43] 947141 1958514 2995480 3977158 4979417 ...

..$ WPPA : num [1:43] 0.332 0.416 0.482 0.553 0.502 ...

Similarly, we can visualize any of the estimated parameters for genomic prediction or genome-
wide association studies as shown in Section 4.1

4.3. Examples for single-step Bayesian model

To fit single-step Bayesian model, at least the phenotype (n1, the number of individuals
with phenotypic records), numeric genotype matrix (n2 * m, where n2 is the number of
genotyped individuals, m is the number of markers), and pedigree information (n3 * 3,
the three columns are “id”, “sir”, “dam” orderly) should be provided, n1, n2, n3 can be
different, all the individuals in the pedigree will be predicted, including genotyped and non-
genotyped, therefore the total number of predicted individuals depends on the number of
unique individuals in pedigree. Taking the tutorial data attached in hibayes as an example:

loading and viewing the tutorial phenotype file,
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R> pheno_file_path <- system.file("extdata", "pheno.txt", package = "hibayes")

R> pheno <- read.table(pheno_file_path, header=TRUE)

R> nrow(pheno) # number of individuals

[1] 100

R> head(pheno)

id y scale group sex

1 ind1 -0.5796816 0.77 g1 m

2 ind2 -2.0224628 -1.02 g2 m

3 ind3 -1.4807132 0.52 g1 f

4 ind4 -3.0303065 -1.05 g4 m

5 ind5 2.1881874 2.06 g3 m

6 ind6 -3.2110719 -1.94 g4 m

loading and viewing the tutorial pedigree file,

R> pedigree_file_path <- system.file("extdata", "ped.txt", package = "hibayes")

R> ped <- read.table(pedigree_file_path, header=TRUE)

R> head(ped)

id sire dam

1 ind20 <NA> <NA>

2 ind21 ind17 ind12

3 ind22 ind3 ind20

4 ind23 ind4 ind16

5 ind24 ind1 ind14

6 ind25 ind5 ind13

missing values in pedigree should be marked as “NA”, the columns must exactly follow “id”,
“sir”, and “dam” in order.

converting and viewing the tutorial genotype data:

R> bfile_path <- system.file("extdata", "geno", package = "hibayes")

R> data <- read_plink(bfile=bfile_path, mode="A", threads=4)

R> fam <- data[["fam"]]

R> geno <- data[["geno"]]

R> map <- data[["map"]]

R> dim(geno) # number of genotyped individuals and markers

[1] 60 1000

different with individual Bayesian model, it does not require the order of individuals in all
data file to be consistent, hibayes can adjust the order automatically using the names provided
by users:
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R> geno.id <- fam[, 2]

R> pheno.id <- pheno[, 1]

Fixed effects, covariates and environmental random effects

For fixed effects, we can not fit it in the model directly for package hibayes, it should be
converted in formula of designed model matrix, which can be achieved by the base function
model.matrix.lm(..., na.action = "na.pass") in R, for example, model “sex” as fixed
effect, and “scale” as a covariate:

R> X <- model.matrix.lm( ~ as.factor(sex) + as.numeric(scale),

+ data = pheno, na.action = "na.pass")

R> X <- X[, -1] #remove the intercept

note that the attribute for fixed effects and covariates should be “factor” and “numeric” re-
spectively.

For environmental random effects, there are no additional format transformations required,
simply pick them out from the phenotype data, for example, model “group” as an environ-
mental random effect:

R> R <- pheno[, c("group")]

Now we can fit single-step Bayesian model using all the data above:

R> fit <- ssbayes(y = pheno[, 2], y.id = pheno.id, M = geno, M.id = geno.id,

+ P = ped, X = X, R = R, model = "BayesR", niter = 20000, nburn = 12000,

+ Pi = c(0.95, 0.02, 0.02, 0.01), fold = c(0, 0.0001, 0.001, 0.01),

+ outfreq = 500, seed = 666666, map = map, windsize = 1e6)

the arguments y, y.id, M, M.id, P must be provided, other arguments are optional, if users
want to implement GWAS analysis, the arguments map, windsize (or windnum) should be
provided and specified. Compared with individual level Bayesian model, single-step Bayesian
model returns two additional lists, J and epsilon, referring to Equation 26,

R> str(fit)

List of 14

$ J : num -0.132

$ epsilon:'data.frame': 40 obs. of 2 variables:

..$ id : chr [1:40] "ind20" "ind17" "ind12" "ind3" ...

..$ epsilon: num [1:40] -0.0431 0.3122 -0.188 -0.1689 -0.2635 ...

$ mu : num -0.97

$ pi : num [1:4, 1] 0.175 0.139 0.17 0.516

$ beta : num [1:2, 1] 0.0923 1.0915

$ r :'data.frame': 5 obs. of 2 variables:

..$ Levels : chr [1:5] "g1" "g2" "g3" "g4" ...

..$ Estimation: num [1:5] -0.244 -0.013 -0.306 -0.438 1.178
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$ vr : num [1, 1] 0.46

$ vg : num 0.506

$ ve : num 0.325

$ alpha : num [1:1000, 1] 0.002559 -0.007632 0.000296 -0.003394 0.001906 ...

$ e :'data.frame': 100 obs. of 2 variables:

..$ id: chr [1:100] "ind1" "ind2" "ind3" "ind4" ...

..$ e : num [1:100] -0.17 -0.0239 -0.0285 -0.3048 0.5324 ...

$ pip : num [1:1000, 1] 0.826 0.824 0.821 0.829 0.827 ...

$ gwas :'data.frame': 43 obs. of 6 variables:

..$ Wind : chr [1:43] "wind1" "wind2" "wind3" "wind4" ...

..$ Chr : chr [1:43] "1" "1" "1" "1" ...

..$ N : int [1:43] 12 17 25 30 26 13 30 23 24 31 ...

..$ Start: num [1:43] 286933 1049272 2010349 3008501 4022389 ...

..$ End : num [1:43] 947141 1958514 2995480 3977158 4979417 ...

..$ WPPA : num [1:43] 1 1 1 1 1 ...

$ g :'data.frame': 100 obs. of 2 variables:

..$ id: chr [1:100] "ind41" "ind42" "ind43" "ind44" ...

..$ gebv : num [1:100] -0.606 -0.373 -0.147 -0.214 0.39 ...

the returned list g is the vector of predicted GEBVs following the Equation 27 for all in-
dividuals in pedigree, the variance of imputation residuals and its standard deviation for
non-genotyped individuals are printed at the end of LOG message, as it is generally not used
for genetic evaluation, we do not attach it in the final returns.

5. Conclusion

The present paper is meant to provide a general overview on hibayes, the only one R pack-
age that can implement three types of Bayesian regression models with the richest methods
achieved thus far. It is designed not only for genomic prediction, but also for genome-wide
association studies. The package almost covers all the functions involved in genetic evalua-
tion, including estimation of fixed effects and coefficients of covariates, environmental random
effects and its corresponding variance, genetic and residual variance, heritability of traits,
and effect size for all markers; computation of genomic estimated breeding values for both
genotyped and non-genotyped individuals, phenotype/genetic variance explained for single or
multiple markers; and derivation of posterior probability of association of the genomic win-
dow and posterior inclusive probability of markers. We roughly compared the inputs, direct
returns, available methods and models, and relevant functionalities for the most widely used
tools in fitting Bayesian regression models, as shown in Table 3, hibayes is more comprehensive
over other tools for genomic analysis.

The arguments of main functions and the alias of returns in hibayes are highly consistent with
the equations listed in this paper, and the functional style and idiomatic implementation in
R make the package easy to use, flexible to extend, and transparent to validate. Although
only a small selection of the modeling options available in hibayes are discussed in detail, we
hope that this article can serve as a good starting point to further explore the capabilities of
the package.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.12.480230doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.12.480230
http://creativecommons.org/licenses/by-nc/4.0/


Lilin Yin, Haohao Zhang, Xinyun Li, Shuhong Zhao, Xiaolei Liu 31

Table 3: Comparisons of inputs, direct returns, and available models and methods for BGLR,
JWAS, GCTB, and hibayes.

Models

Functionalities BGLR JWAS GCTB hibayes

Language R, C++ Julia C++ R, C++

Version 1.0.9 1.0.0 2.0.2 1.0.1

Individual

level

Bayesian

model

Covariates
√ √ √ √

Fixed effects
√ √

×
√

Random effects ×
√

×
√

Environmental inter-
action

√ √
×

√

Variance components
√ √ √ √

PIP ×
√ √ √

WPPA ×
√

×
√

Marker effects
√ √ √ √

GEBVs ×
√

×
√

Residuals × × ×
√

Achieved methods
RR, A, B,

Cpi, L

RR, A, B, Bpi,

C, Cpi, L

RR, A, B,

Bpi, C, Cpi,

S, R

RR, A, B, Bpi,

C, Cpi, L,

BSLMM, R

Summary

level

Bayesian

model

Variance components × ×
√ √

PIP × ×
√ √

WPPA × × ×
√

Marker effects × ×
√ √

Achieved methods × × C, Cpi, R
CG, RR, A, B,

Bpi, C, Cpi, L, R

Single-step

Bayesian

model

Covariates ×
√

×
√

Fixed effects ×
√

×
√

Random effects ×
√

×
√

Environmental inter-
action

×
√

×
√

Variance components ×
√

×
√

PIP ×
√

×
√

WPPA ×
√

×
√

Marker effects ×
√

×
√

GEBVs ×
√

×
√

Residuals × × ×
√

Achieved methods × RR, A, B, Bpi,

C, Cpi, L
× RR, A, B, Bpi,

C, Cpi, L, R

For the future, we have several plans on how to improve the functionality of hibayes. We will
keep on updating hibayes with the latest advanced Bayesian models and methods of broadly
interest in the domain of genomic prediction or genome-wide association studies, making
hibayes always be fresh to the users or academic researchers. Also, we will next achieve
multiple traits Bayesian regression models in hibayes, which can be used to estimate genetic
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correlation among traits. Furthermore, the MCMC process requires tremendous amounts of
time to reach the convergence, how to partly speed up MCMC by parallel computing would
be our next focus of work on hibayes.
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