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ABSTRACT 

 

Response to survey questionnaires is vital for social and behavioral research, and most analyses 

assume full and accurate response by survey participants. However, nonresponse is common and 

impedes proper interpretation and generalizability of results. We examined item nonresponse 

behavior across 109 questionnaire items from the UK Biobank (UKB) (N=360,628). Phenotypic 

factor scores for two participant-selected nonresponse answers, <Prefer not to answer= (PNA) and 
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<I don9t know= (IDK), each predicted participant nonresponse in follow-up surveys, controlling 

for education and self-reported general health. We performed genome-wide association studies on 

these factors and identified 39 genome-wide significant loci, and further validated these effects 

with polygenic scores in an independent study (N=3,414), gaining information that we could not 

have had from phenotypic data alone. PNA and IDK were highly genetically correlated with one 

another and with education, health, and income, although unique genetic effects were also 

observed for both PNA and IDK. We discuss how these effects may bias studies of traits correlated 

with nonresponse and how genetic analyses can further enhance our understanding of nonresponse 

behaviors in survey research, for instance by helping to correct for nonresponse bias.  

 

INTRODUCTION 

 

Item nonresponse occurs when no substantive answer is recorded for a study participant on a given 

questionnaire item, such as when the participant doesn9t provide an answer or responds <I do not 

know=1. Nonresponse is interesting both as a behavioral choice by a survey participant and as a 

statistical concern due to missing data. Much social and behavioral research relies on surveys, and 

data analysis of survey data usually assumes full and accurate response by survey participants, or 

at least that any nonresponse is independent of the outcomes that a researcher is interested in. In 

reality, nonresponse is common and the independence assumption often unjustified, impeding 

proper interpretation and generalizability of results. Therefore understanding the causes of 

nonresponse has long been a concern for survey-based research2. The current study aims to 

evaluate item nonresponse patterns in a large prospective epidemiological cohort (the UK Biobank, 

or UKB) and clarify the contribution of genetics to differences in item nonresponse behaviors 

between individuals.  

 

As an observable behavior, nonresponse represents a complex interplay between survey design for 

questionnaires and a respondent's cognitive processes, i.e. in understanding a question and 

choosing a response1,3. Nonresponse at the item level may be thought of as an intermediate 

behavior on the spectrum between providing complete data and complete nonparticipation, i.e. unit 

nonresponse4, and nonresponse is predictive of future study dropout5. Further, nonresponse is 

unlikely to be captured by a single construct, since individuals may differ in their likelihood to 

select different nonresponse choices in a questionnaire, e.g. <I don9t know=, <I9m not sure=, or <I 

don9t want to answer=, both overall and when responding to questions in certain categories6.  

 

Nonresponse behavior is also related to many other heritable traits. For example, higher rates of 

item nonresponse are correlated with lower educational attainment and poorer health status739. 

Increased item nonresponse has also been observed for individuals with more depressive 

symptoms10 and lower self-confidence, among other psychological and personality traits11. 
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However, these individual differences in item nonresponse rates can be sensitive to the content of 

the questionnaire items7,12 and the characteristics of the study population9,13. Still, similar patterns 

are often observed for unit nonresponse and study attrition, e.g., participants with lower 

educational levels are more likely to drop out of a study14. Similarly, those with heavy alcohol 

consumption or higher levels of mental distress tend to be underrepresented in studies due to their 

higher attrition rates15317.  

 

Understanding item nonresponse may address concerns about the generalizability of statistical 

analyses of observed data by helping to understand bias due to missingness. Item nonresponse 

reduces the effective sample size and can introduce bias18. Broadly, data may be either missing 

completely at random (MCAR), missing randomly conditional on the remaining observed data 

(missing at random, or MAR), or missing dependent on unobserved data (missing not at random, 

or MNAR)6,19. Thus if there are unobserved individual differences influencing the likelihood of 

item nonresponse, then the resulting missingness is considered MNAR. Nonrandom missingness 

is of particular concern because common statistical methods like full information maximum 

likelihood estimation or multiple imputation are only sufficient to address MAR data. MNAR 

requires more direct modeling that includes assumptions about the type of missingness20322. 

Therefore, identifying a genetic component of item nonresponse behavior may assist with 

modeling MNAR mechanisms in genotyped samples23. 

 

While other studies have focused on the genetic underpinnings of sex-differential participation or 

participation in optional study components17,24326, the genetics of item nonresponse remain largely 

unknown. We first explore the phenotypic structure of the nonresponse options provided by the 

UK Biobank in the initial cohort assessment, and we estimate latent factors for a person9s general 

propensity to respond to questionnaires with <Prefer not to answer= (PNA) or <I don9t know= 

(IDK). We then perform GWAS of these two factors, identifying significantly associated loci and 

modeling genetic correlations with other heritable traits. We validate these genetic findings 

through out-of-sample polygenic prediction of nonresponse behavior. Throughout this 

investigation we avoid any analysis that would violate any participant9s stated desire to avoid 

answering a question (Box 1). We anticipate that these findings will provide insight into genetic 

influences on the cognitive processes involved in item nonresponse and also provide a basis for 

evaluating the impact of nonresponse bias on GWAS of other traits and disorders. 

 

RESULTS 

 

Distribution of item nonresponse across questions 
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To investigate item nonresponse bias we considered two possible answer choices across 109 

questions from the UK Biobank touchscreen questionnaire: <Prefer not to answer= and <I don9t 

know= (PNA and IDK, respectively). The final study population included 360,628 unrelated 

participants of European genetic ancestry with available genetic data. The PNA option was 

available for all questions, while only 83 questions allowed the IDK option. Participants selected 

PNA less frequently (8.82% at least once) than IDK (67.02% at least once) (Tab. 1, Suppl. Fig. 

1). For each question, on average, 0.16% of participants chose PNA and 2.17% chose IDK (Suppl. 

Tab. 1, Suppl. Tab. 2). Importantly, individuals could only select one nonresponse answer per 

question, so a response of IDK necessarily precluded a response of PNA, and vice versa. Females 

answered PNA more often than males (57.15% females vs. 42.85% males, P<5x10-5), while 

females were only slightly more likely to answer IDK than males (52.90% females vs. 47.10% 

males, P<5x10-5) (Tab. 1). Nonresponders had markedly lower educational attainment (18.73% of 

nonresponders had college or university degrees vs. 33.45% for responders for PNA; 29.41% of 

nonresponders had college or university degrees vs. 37.75% for responders for IDK). (Tab. 1). 

PNA was the more common response among questions capturing potential illegal behavior or 

social stigma (e.g., <How often do you drive faster than the speed limit on the motorway?= or 

<Does your partner or a close relative or friend complain about your snoring?=) (Suppl. Fig. 2, 

panel a). Unsurprisingly, participants selected IDK more frequently in questions about their distant 

past such as <Were you breastfed when you were a baby?= or <During your childhood, how many 

times did you suffer painful sunburn?= (Suppl. Fig. 2, panel b). We hypothesized that the 

frequency of PNA or IDK answers might increase as a function of the order in which the questions 

were asked because of fatigue experienced by the participant as time spent taking a survey 

increases. We fit a negative binomial regression to explore this hypothesis and found no evidence 

of a positive trend for IDK or PNA. 

 

Correlation patterns of item nonresponse and factor analyses 

 

We used phenotypic (tetrachoric) correlations to measure the degree to which item nonresponse 

behavior is shared across survey questions (Fig. 1). PNA answers showed an overall higher 

correlation than IDK (mean r2=0.66 [interquartile range, or IQR=0.17] for PNA and mean r2=0.28 

[IQR=0.13] for IDK), indicating that individuals who responded to questions with PNA tended to 

do so more consistently across questions that individuals who responded to questions with IDK. 

Indeed, we identified a small number of individuals who responded to all survey questions with 

PNA (N=11). 

 

Item nonresponse behavior was also more similar among survey questions from similar phenotype 

domains. In other words, item nonresponse behavior was not independent of answering patterns 

across questions. For example, the average correlation of PNA answers among questions within 
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the food intake and the mental health domains (mean r2=0.85 [IQR=0.08], and mean r2=0.76 

[IQR=0.12], respectively) was higher than the correlations between food intake and mental health 

questions (mean r2=0.14 [IQR=0.05]).  

 

Based on the observed structure across survey domains, we next estimated latent (unmeasured) 

factors for overall IDK and PNA item nonresponse behavior, respectively, conditional on the 

correlated substructure. To do so, for each response type we first assessed the survey substructure 

by performing factor analysis (FA) with the full set of questions and examining cluster analyses 

of the residual correlations from a single factor model (Suppl. Fig. 3, Suppl. Fig. 4, respectively). 

These residuals provided us with the magnitude of the correlation not explained by a single general 

factor model, allowing us to identify bi-factor FA model as an appropriate model for the survey 

substructure. The chosen bi-factor FA models the observed correlation matrix for item 

nonresponse as a function of one general factor affecting nonresponse for all items and possibly 

two or more additional domain-specific factors affecting subsets of items identified by the model. 

Since this model may not fully address nested substructure within groups of items we also 

evaluated fitting the bi-factor FA model on a reduced set of survey questions pruned for high 

pairwise correlations observed in the residual cluster analysis of the single factor model. From 

exploratory factor analysis we selected a 5 factor solution for the pruned PNA responses and a 4 

factor solution for the pruned IDK responses - both with oblique (<biquartimin=) rotations 3 as our 

final models based on standard fit metrics (Suppl. Tab. 3).  

 

We find that the common general latent factor, representing the underlying general item 

nonresponse behavior across questions, explained 51.26% and 25.61% of the total variance for 

PNA and IDK, respectively, based on the selected models. Our approach also identified substantial 

variance in item nonresponse behavior (11.63% and 11.20% for PNA and IDK, respectively) that 

was accounted for by additional domain-specific factors rather than a general factor (Fig. 2, for 

EFA: Suppl. Fig. 6 and Suppl. Fig. 7 for PNA and IDK, respectively). Two of these factors 

(influencing items we might think of as affecting <Health= and <Psychiatric= domains) partially 

overlap between PNA and IDK. The domain-specific factor with items related to <Ethnicity= was 

specific to PNA and was present when respondents did not answer question about ethnic 

background and skin color, with loadings of 0.69 and 0.51, respectively.  

 

We then estimated each individual9s latent factor scores these general latent factors for PNA and 

IDK, respectively, in order to evaluate their relationship with other phenotypic and genetic 

measures. The density plots of the factor scores from the confirmatory factor analysis for both 

PNA and IDK can be seen in Suppl. Fig. 5. 
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PNA and IDK factors predict response to follow-up questionnaires 

 

We hypothesized that the common latent factors for PNA and IDK might capture a broader 

nonparticipation tendency beyond simply not answering specific survey questions. Therefore, we 

evaluated if the PNA and IDK latent factors were able to predict whether participants did or did 

not complete the online follow-up dietary questionnaires distributed by UK Biobank. We 

considered separately the completion of the follow-up online questionnaire only in the first wave 

of the invitation (N=69,735 and N=146,712 for PNA and IDK analyses, respectively) or in all the 

4 waves of the invitation (N=19,097 and N=99,151 for PNA and IDK analyses, respectively). We 

quantified the improved prediction after controlling for age, sex, the top 20 principal components 

of the variance-covariance matrix of the genetic data, as well as education and self-rated health 

status since these have been shown to be proxies for survey nonresponse behaviors14,24. PNA and 

IDK factors slightly improved prediction of participation for all four waves of survey invitation, 

on top of education and self-rated health status, both when each factor was considered 

independently (incremental psuedo-R2=0.0027, P<2x10-16 and incremental pseudo-R2=0.0012, 

P=3x10-11, respectively for PNA and IDK), and when the two factors were combined (incremental 

pseudo-R2=0.0034, P<2x10-16). Combing PNA and IDK resulted in a better prediction of not 

responding to all four waves of follow-up survey invitations compared to predicting just one wave 

(incremental pseudo-R2=0.0012, P<2x10-16) (Suppl. Tab. 4). In summary, the general factors for 

item nonresponse are associated with whether participants will continue to engage in future, 

follow-up research, and our estimated scores for those factors are able to provide prediction beyond 

established proxies for nonresponse like education and self-rated health status. 

 

Genome-wide association study (GWAS) of item nonresponse  

 

To assess potential genetic components of item nonresponse behavior we conducted a GWAS on 

the estimated factor scores for the general PNA and IDK behavior across survey questions. We 

identified 4 genome-wide significant (P<5x10-8) loci for PNA and 35 loci for IDK. (Fig. 3 panel 

a and b, respectively). 

 

Many of these genome-wide significant loci have been previously associated with traits related to 

poor health or lower socioeconomic status (SES). For example, allele T in rs79994730 is 

associated with an increased chance of answering PNA and IDK for survey questions, but also 

with lower educational attainment27 and intelligence28,29. Lead SNPs from 4 independent genomic 

loci overlapped with loci formerly associated with mental disorders30,31 and with gastrointestinal 

diseases32,33. For example, allele A in rs240764 is associated with more frequent neurotic 

behavior30,32,34. Similarly, allele A in rs13126505 is associated with an increased risk of developing 

Crohn's disease35 and Inflammatory Bowel Disease32.  
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The general factors for PNA and IDK were both significantly heritable, with higher estimated 

SNP-heritability for IDK (h2
g=.0675, P= 4x102112) than for PNA (h2

g=.0204, P=3x10-16). We also 

observed a significant heritability enrichment for brain tissue36 (Suppl. Tab. 5, Suppl. Tab. 6); 

the top two annotations were for Brain Cerebellum (P=3x1023 for both PNA and IDK) and 

cerebellar hemisphere (P=5x1023 and P=8x1023 for PNA and IDK, respectively). Importantly, the 

SNP heritability for the factor scores shows substantially stronger genetic signal than GWAS using 

a simple sum of the number of nonresponses over all survey items. As comparison, the SNP 

heritability of the simple sum score for PNA responses was 13 times lower and nonsignificant 

(h2
g=.0015, P=0.5). This is consistent with an expectation that the factor analysis provides 

improved power reducing measurement error across items and clarifying the signal in the context 

of correlated residual structure.  

 

Shared vs. question-specific item nonresponse behavior  

 

One concern in our analysis is that the GWAS results for the item nonresponse phenotypes may 

be driven by questions with the highest number of PNA and IDK responses (Suppl. Fig. 2), rather 

than capturing an underlying behavior shared across survey questions. This is a concern both 

because it affects the interpretation of the results and because it could expose undesired 

information about nonresponse to individual items (Box 1). To explore this concern, we performed 

a GWAS of not knowing the answer to the question with the largest number of IDK responses, 

which was <During your childhood, how many times did you suffer painful sunburn?= We 

observed only a modest genetic correlation with the IDK factor (rg=0.39 [0.33,0.46]), and we 

identified 4 genome-wide significant loci for this GWAS. None of these 4 loci were genome-wide 

significant in the GWAS of either the PNA or IDK factors. As an example, rs35407-G allele, a 3 

Prime UTR Variant in SLC45A2, is associated with a higher risk of not knowing how many times 

someone was sunburned as a child, and it also increases the risk for melanoma37 and cutaneous 

squamous cell carcinoma38. This result suggests that our factor score GWAS successfully 

highlights shared components affecting item nonresponse generally (rg > 0) while avoiding 

capturing more question-specific nonresponse behavior that is less related to overall nonresponse 

and therefore not the focus of our analyses. 

 

Genetic correlations with heritable traits 

 

To better understand which traits and behaviors share genetic overlap with item nonresponse 

behavior, we calculated genetic correlations between the PNA and IDK factors with 655 different 

heritable phenotypes using LD score regression (Fig. 4 and Fig. 5 for PNA and IDK, respectively 

and Suppl. Tab. 7 and Suppl. Tab. 8 for PNA and IDK, respectively).  
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Overall, we observed a positive genetic correlation between the PNA and IDK factors and 

psychiatric disorders, poorer general health, lower educational attainment, and lower total 

household income before tax. These results are consistent with work from Adams and colleagues14 

suggesting that nonresponse behaviors are strongly linked with socioeconomic status (SES). We 

highlight that only 109 out of 655 (16.64%) traits tested were included in the set of questions used 

to derive the item nonresponse phenotypes. For example, PNA and IDK factors had a high genetic 

correlation with opting to skip the sexual history section in the UKB survey (rg=0.58, [0.50,0.66], 

rg=0.50 [0.44,0.56] for PNA and IDK, respectively). This question was not used for deriving PNA 

and IDK factors, and it provides orthogonal evidence that the derived phenotypes are indeed 

capturing item nonresponse behavior in the UK Biobank.  

 

We evaluated the degree to which the overall pattern of genetic correlations was driven by SES, 

we using Genomic Structural Equation Modeling39,40 (Genomic SEM). First, we calculated 

residual heritability of PNA and IDK conditional on genetic effects for total household income 

and educational attainment, since these are major elements of SES41,42. We estimate that resulting 

genetic variance unique to PNA and IDK was 1.33% (P=2x10216) of the phenotypic variance in 

PNA and 5.09% (P=9x10278) of the variance in IDK is attributable to unique genetic factors not 

explained by household income and educational attainment, corresponding to 65% and 75% of the 

total SNP heritability for PNA and IDK, respectively. We then estimated genetic correlations 

between PNA, IDK, and the remaining 654 heritable phenotypes with the same control for income 

and educational attainment with Genomic SEM. Overall, we observed a decrease in the number of 

traits significantly correlated with PNA and IDK factors after performing this analysis (Suppl. 

Fig. 8, Suppl. Tab. 7, Suppl. Tab. 8). However, both the PNA and IDK factors remained 

associated with poor self-reported health (rg=0.22 [0.14,0.30] and rg=0.27 [0.22,0.32], 

respectively) (Suppl. Fig. 8, Suppl. Fig. 8, Suppl. Tab. 7, Suppl. Tab. 8). SES-adjusted PNA 

also continued to be associated with the UKB measure for <having seen a psychiatrist for mental 

disorders'' (rg=0.23 [0.15,0.31]). These results suggest that even after accounting for the genetic 

associations with socioeconomic factors, genetic associates with nonresponse were shared with 

genetic associations for poor overall health. Overall, these results highlight the utility of studying 

the genetics of item nonresponse, since these analyses help to assess which questionnaire items 

are likely to be affected by bias from nonrandom missingness, beyond what we can learn from 

using phenotypic information alone. 

 

Independent effect of PNA and IDK 

 

In addition to the genetic correlation of the PNA and IDK factors with other traits, we observe 

substantial genetic correlation between these two factors (rg=0.73, [0.70, 0.76]), reflecting partial 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.480140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.11.480140
http://creativecommons.org/licenses/by-nd/4.0/


- but not complete (rg <1) - genetic overlap between these two factors. Notably, genetic correlation 

facilitates this comparison between forms of item nonresponse by using genetics to overcome the 

limitation that UK Biobank participants could only respond with one of PNA or IDK on a given 

item, not both.  

 

To help understand which genetic signals are unique to PNA and IDK, we estimated the 

conditional genetic correlation between PNA and other heritable phenotypes controlling for the 

genetic effects of IDK, and vice versa for correlations with IDK conditional on PNA, using 

Genomic SEM40. After accounting for the shared genetic associations between PNA and IDK, 

much of the genetic correlation observed between IDK and SES-related traits was reduced. 

Conversely, after accounting for the shared genetic associations between PNA and IDK, PNA 

preserved a more independent effect (Suppl. Fig. 9). The PNA-adjusted IDK factor was no longer 

associated with lower educational attainment (EA, rg=-0.01 [-0.07,0.05]) and the association with 

lower total household income (rg=-0.13 [-0.20,-0.06]) and poorer self-rated general health (rg=0.20 

[0.13,0.27]) was attenuated. Conversely, IDK-adjusted PNA maintained a significant association 

with lower EA (rg=-0.37 [-0.31,-0.43]), low income (rg=-0.37 [-0.31,-0.43]) and poorer general 

health (rg=0.26 [0.21,0.31]). Moreover, IDK-adjusted PNA became associated with bipolar 

disorder (rg=0.25 [0.13,0.37]) and schizophrenia (rg=0.30 [0.23,0.37]). These results highlight that 

the genetic associations between PNA and IDK partially overlap, for instance in effects that are 

correlated with SES-related measures, suggesting shared influences across forms of item 

nonresponse. These results also highlight that the genetic associations between PNA and IDK are 

partially distinct, with PNA showing a unique overlap with psychiatric diseases that is not observed 

for IDK. 

 

Polygenic risk score analysis in Add Health 

 

Finally, in order to test the generalizability of our genetic findings we constructed polygenic scores 

for the PNA and IDK factors in Wave 4 of the National Longitudinal Study of Adolescent to Adult 

Health (Add Health) data. Item nonresponse in Add Health was identified based on 163 questions 

with a possible response of <I don9t know= and 217 questions with a possible response of <refused 

to answer= (Suppl. Tab. 9). The IDK and PNA polygenic scores showed significant 

association with whether individuals a corresponding IDK or PNA response to at least one 

question. Specifically, we estimate that a one-standard-deviation increase in the PNA polygenic 

score is associated with a 2% increase in the probability of an individual ever answering with 

<refused to answer= in the Wave 4 Add Health data (incremental pseudo-R2 = 0.1%). We also 

estimate that a one-standard-deviation increase in the IDK polygenic score is associated with a 2% 

increase in the probability of an individual ever answering with <I don9t know= in the Wave 4 Add 

Health data (incremental pseudo-R2 = 0.5%). 
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We used a recently developed polygenic score for educational attainment (continuous years of 

completed education)27 derived from a very large sample size (N=1,131,881) to predict our two 

nonresponse outcomes in Add Health (Suppl. Tab. 10). We found that the educational attainment 

polygenic score is significantly associated with a 1% increase in the probability of an individual 

ever answering <refused to answer= in the Wave 4 Add Health data. The associated incremental 

pseudo-R2 is 0.08%. However, the educational attainment polygenic score was not significantly 

associated with the <I don9t know= outcome in the Wave 4 Add Health data. Taken together, these 

results suggest that our findings in UK Biobank replicate in an external US-based study of younger 

individuals. 

 

DISCUSSION 

 

Nonresponse can impact the generalizability and reliability of survey-based research43,44. We show 

that item-level nonresponse is not random in the UK Biobank. Study participants vary in their 

degree and type of nonresponse, with observed differences between response patterns for PNA 

and IDK nonresponse options; the latter is more commonly chosen by study participants. 

Conversely, PNA responses are less common, but individuals who select PNA on at least one 

question are more consistent in their nonresponse patterns across questions. In characterizing these 

patterns of item nonresponse it is critically important to respect the ethical boundaries presented 

by the individual9s stated decision not to respond to a given item (Box 1). The current analysis 

evaluates overall item nonresponse behavior to identify genetic associations that are informative 

about nonrandom missingness in UK Biobank without implicating item-specific reasons for 

nonresponse. 

 

Item nonresponse shows distinct correlation across questions, both broadly and within clusters that 

reflect the survey9s content and structure. Based on that observation, we9ve successfully 

characterized a <general= factor for each response pattern (i.e., PNA and IDK) that describes a 

broader nonresponse tendency across survey questions, while accounting for the presence of 

additional domain-specific correlations. Consistent with prior observations that item nonresponse 

is correlated with educational attainment, socioeconomic status, and overall health of participants 

who initially participated in a study25 or who continue to participate in follow-up waves of a 

study26, our PNA and IDK factors were associated with reduced educational attainment and 

predictive of response to follow-up surveys. 

 

We also identified a significant genetic signal underlying our general nonresponse factors. We 

were able to use these results to study broad, group-level characteristics of individuals that did not 

respond to questions in the UK Biobank. The genetic correlation between PNA and IDK was high, 
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but not 1, indicating that there are both shared and unique genetic associations for PNA and IDK. 

By using genetic structural equation models, we showed that the PNA-specific genetic signal was 

positively associated with psychiatric disorders, while this was not the case for the IDK-specific 

signal. Future work should focus on identifying both shared and unique genetic signals across 

different measures of nonresponse behaviors. Whether these results from UK Biobank are 

generalizable to other studies remains a matter for future investigation. However, our polygenic 

prediction results in Add Health suggest that at least part of the genetic signal underlying item-

level nonresponse might be shared with other studies, and some of the signal is independent of 

other outcomes like educational attainment. 

 

While such characterization is traditionally done by examining phenotypic correlations45, genetic 

analyses of our nonresponse outcomes provide some additional advantages beyond phenotypic 

data. For example, these analyses allowed us to characterize what individuals may be 

underrepresented in the study results beyond the phenotypic information that was collected in the 

survey questionnaires. While national registries or other administrative sources can sometimes be 

informative about nonresponse, either by comparing study participants to expected population 

descriptive statistics or by linkage to individual registry data46, these resources are not always 

available to researchers. Our analyses, in contrast, allowed us to leverage genetic information to 

characterize behavioral patterns of nonresponse. For instance, we were able to measure genetic 

correlations between survey nonresponse and GWAS summary statistics for hundreds of traits. 

Perhaps more importantly, these genetic correlations may highlight phenotypes that are likely to 

be affected by nonresponse bias in analyses that have not considered potential nonrandom 

missingness. Many genetic studies simply exclude participants who do not respond to surveys. 

Future work should consider opportunities for leveraging genetic information about item 

nonresponse to reduce nonresponse bias in analyses at the group level23. 

 

In conclusion, we use phenotypic and genetic data to provide an extensive investigation of overall 

item-level nonresponse across items in the UK Biobank. These results should be considered when 

analyzing the UK Biobank, among other biobank-scale survey efforts, and when developing novel 

methods aimed at correcting and leveraging nonresponse in genetic analyses. 
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BOX 1 

 

Participant consent is critical for the ethical conduct of research. Nonresponse, including at the 

item level, in some instances will reflect a participant exercising their (entirely justified) right to 

voluntarily not participate in some aspect of a study. This is especially true in the case of item 

nonresponse in the form of actively responding <prefer not to answer=. As a result, it requires 

careful ethical consideration to evaluate how to study nonresponse without breaching the 

participant9s consent as reflected in both the item-level nonresponse and the study-level informed 

consent and participation. 

 

There can be ethical harms to ignoring the source of missing data in research. Consideration of 

missingness is necessary to identify the ways in which a study or a particular analysis may not be 

representative of the population, otherwise researchers risk the myriad impacts of uncritically 

producing biased or ungeneralizable results. Decades of social science research on mechanisms 

of missing data and its influence on research results reflect recognition of the imperative to 

wrestle with this challenge. 

 

With these considerations in mind, this paper endeavors to characterize broad, group level trends 

in overall amounts of item nonresponse while intentionally avoiding exploring nonresponse 

behavior (especially with regards to the <prefer not to answer= option) to single questions. We 

make one exception, in an analysis of responding <I don9t know= to the question <During your 

childhood, how many times did you suffer painful sunburn?=, where we empirically check that our 

analysis is meeting the stated goal of avoiding revealing item-specific factors. We intentionally 

rely on the IDK response (i.e., item nonresponse that doesn9t imply a desire to avoid participation 

in the item) and use an item that is less socially sensitive to minimize ethical concerns while doing 

this check.  

 

The factors generated for our analyses can be thought of as reflecting a general behavioral tendency 

for someone to choose not to respond to one or more survey items; they are not reflective of 

nonresponse to any single, specific item. Perhaps most crucially, no attempts were made to infer 

individual item-level values of nonresponders, nor would such attempts be fruitful given the low 

predictive power of overall nonresponse behavior at the individual-person, individual-item level.  

 

We stress that these ethical considerations apply not only within this study, but in future 

applications and extensions of this work. We encourage our colleagues to continue to remain 

vigilant to the challenges surrounding genetics and voluntary nonresponse in all domains. 

 

 

METHODS 

 

UK Biobank and inclusion criteria 

 

The UK Biobank is a health resource which has the purpose of improving the prevention, 

diagnosis, and treatment of a wide range of illnesses. It consists of a prospective cohort of 502,620 

men and women aged 40-69 recruited in the years 2006-2010 throughout the United Kingdom. 

The touchscreen questionnaire is a collection of self-reported information regarding general health, 
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dietary habits, physical activity, psychological and cognitive states, sociodemographic factors, etc. 

We began our inclusion criteria with 361,194 unrelated individuals of European genetic ancestry 

who passed quality control measures47. We excluded individuals who were enrolled only in the 

UKB pilot study (N=335). Participants who decided to terminate the touch screen questionnaire 

were asked to select PNA to all subsequent questions, and they were kept in our analyses. 

Conversely, individuals who withdrew from the study without filling out the touchscreen survey 

excluded from the analysis (N=231). As a result, a total of N=360,628 participants took part in the 

survey and answered every question of interest in the study; this is the final analytic sample size. 

 

National Longitudinal Study of Adolescent to Adult Health (Add Health) cohort 

 

Add Health originated as an in-school survey of a nationally representative sample of US 

adolescents enrolled in grades 7 through 12 during the 1994-1995 school year48. Respondents were 

born between 1974 and 1983, and a subset of the original Add Health respondents has been 

followed up with in-home interviews, which allows researchers to assess correlates of outcomes 

in the transition to early adulthood. In Add Health, the mean birth year of respondents is 1979 (SD 

= 1.8), and the mean age at the time of assessment (Wave 4) is 29.0 years (SD = 1.8). All 

phenotypes included in this study come from Wave 4, the latest wave of Add Health data collection 

(2007-2009). 

 

PNA/IDK definitions 

 

We considered only the Touchscreen questionnaire phenotypes with the PNA and IDK options (-

3 and -1, respectively). We first studied the questionnaire protocol 

(https://www.ukbiobank.ac.uk/wp-content/uploads/2019/09/Touchscreen-questionnaire-for-

website_Copyright.pdf) and kept only those questions asked to every study participants (N 

questions=109 and N=83 for PNA and IDK, respectively.). Questions asked to a subset of 

participants conditional on their answer to other questions were excluded.  

 

Phenotype definitions in Add Health 

 

To investigate item nonresponse bias phenotypes in Add Health we considered two possible 

answer choices across hundreds of questions from the Wave 4 Add Health In-Home Interview 

questionnaire: <Refused to answer= and <I don9t know=. The final study population included 3,414 

unrelated participants of European ancestry with available genetic data. The <refused to answer= 

option was available for 217 questions while only 163 questions allowed the <I don9t know= option. 

Our final outcomes were whether respondents ever answered at least once with <refused to answer= 

or <I don9t know=, respectively. We also predicted the two nonresponse outcomes in Add Health 
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using a recently developed polygenic score for educational attainment27 (completed years of 

education). 

 

Factor Model Construction 

 

Single-Factor Model 

Exploratory Factor Analysis (EFA) with a single latent factor was performed separately on 

tetrachoric correlation matrices between each of the dichotomized PNA and IDK responses, 

respectively, and was implemented using the fa function from the <psych= package in R software 

version 3.4.4 with the oblique rotation "biquartimin" and the <Ordinary Least Square= extraction 

method. 

 

Residuals from the initial EFA revealed a correlation structure indicative of further clustering 

unaccounted for by the general factor, with both broad correlations across item domains as well as 

some highly specific pairwise structure at the item level. Given that we were interested in 

modelling overall nonresponse behavior, not behavior specific to or driven by single item 

groupings or domains, we sought to reduce this additional structure first through the pruning of 

items with highly-correlated nonresponse patterns and then through the fitting of a bi-factor model. 

To further reduce the correlation structure between individual pairs and groups of variables, we 

considered different exploratory cut points in the dendrogram constructed on residuals from the 

single-factor EFA (Suppl. Fig. 3, Suppl. Fig. 4). We cut the dendrograms at height 0.500 and 

0.775 in PNA and IDK, respectively, in order to minimize the number of branches (i.e., clusters 

of variables grouped together), but also maintain homogeneity within these branches (e.g., 

questions belonging to the same field). This led to 37 and 56 branches in PNA and IDK, 

respectively. In the IDK analysis, summing the IDK for each participant across questions inside 

each branch was sufficient to reduce the number of questions. We applied the same thresholds for 

PNA, but we noticed that in the four largest branches (i.e., person-specific information, food 

intake, overall health status, and mental health) the distribution of PNA per participant was J-

shaped, with a continuously decreasing number of participants who chose PNA in more than 1 

question and a small <peak= number of individuals who chose PNA in every question in the branch. 

For this reason, we scored each participant as follows: <0= if a participant answered all questions, 

<1= if a participant chose only PNA only once, <3= if a participant preferred not to answer all the 

items that fell in the same node, and <2= for participants who did not fit into the previous three 

categories. These scores were ordinal values used as input for bi-factor analysis that allowed for 

minimal item nonresponse information loss. 

 

Bi-Factor Analysis  
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To run bi-factor analysis49,50 on the pruned set of UKB questions we first split the dataset between 

80% of participants (N=288,502) for Exploratory Factor Analysis51 (EFA) and 20% of participants 

(N=72,126) for Confirmatory Factor Analysis (CFA). For EFA we used the fa function, with 

"biquartimin" and <OLS= as the rotation and factoring method, respectively. We implemented 

CFA using the cfa function from the <lavaan= package52 in R software version 3.4.4, and also using 

the weighted least square mean and variance adjusted (WLSMV) estimator. We selected the initial 

factor structure from the EFA, first fitting models with different number of domain factors (Suppl. 

Tab. 3), then confirmed the fit of the model in the hold-out sample using the Root Mean Square 

Error of Approximation (RMSEA) and Tucker-Lewis Index (TLI). Upon selecting the optimal 

model and confirming fit, we re-ran the CFA in the full combined dataset; the final PNA and IDK 

phenotypes used in all downstream analyses were obtained as factor scores of the CFA-derived 

general factor in the full dataset. We extracted the factor scores using the <Empirical Bayes Modal= 

method as implemented in the lavPredict function. 

 

Predicting participation in follow-up questionnaires 

 

We ran logistic regression to predict completion of an online follow-up 24-hour recall dietary 

questionnaire (field 110001 in the UKB) by using our PNA and IDK factors as predictor variable. 

To measure the variance explained by the model we computed the Pseudo-R2 using the McKelvey 

& Zavoina statistical method53. Completion of the first wave of a dietary questionnaire was coded 

as 1 if a participant completed this wave, and 0 if a participant did not (N=69,735 and N=146,712, 

respectively). Missing values (NA) were removed from the analysis (N=144,181). Similarly, 

completion of all 4 waves of the dietary questionnaire was coded as 1 if someone completed all 4 

wave, 0 if someone didn9t complete all 4 waves of the questionnaire (N=19,097 and N=99,151, 

respectively). Other participants were not considered in this analysis (N=242,380). We examined 

the association of our standardized factors with sex, age, age2, sex-x-age2, the first 20 principal 

components of the variance-covariance matrix of the genetic data, self-reported health (field 2178 

in the UKB), years of education. The years of education was created by recoding the Qualifications 

field (field 6138 in UKB) as follows27: 

1: College or University degree (ISCED) = 20 years of education 

2: A levels/AS levels or equivalent (ISCED 3) = 15 years of education 

3: O levels/GCSEs or equivalent (ISCED 2) = 13 years of education 

4: CSEs or equivalent (ISCED 2) = 12 years of education 

5: NVQ or HND or HNC or equivalent (ISCED 5) = 19 years of education 

6: Other prof. qual. (e.g., nursing, teaching) (ISCED 4) = 17 years of education 

-7: None of the above (ISCED 1) = 6 years of education 

Participants who chose PNA or IDK for either years of education or self-reported health were 

excluded. 
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Genotyping and Imputation 

 

Genotyping and imputation procedures for the UK Biobank are detailed in Bycroft et al. 201854. 

Genotyping in Add Health was performed at the Institute for Behavioral Genetics in Boulder, CO, 

using Illumina9s Human Omni1-Quad-BeadChip55. After imputing the genetic data to the 

Haplotype Reference Consortium (HRC)56 using the Michigan Imputation Server57, only 

HapMap3 variants were included, which are well imputed and provide good coverage of common 

variation across the genome. Analyses were limited to individuals of European-ancestry, and 

cryptically related individuals and ancestry outliers were dropped from analyses. Finally, only 

HapMap3 variants with a call rate above 98% and a minor allele frequency > 1% were used. 

 

GWAS 

 

We performed genome-wide association studies using a linear model implemented in Hail58, 

including sex, age, age2, sex-x-age2, and the first 20 principal components of the variance-

covariance matrix of the genetic data. We included only variants with imputation INFO score > 

0.8 and MAF > 0.01, resulting in N=1,089,173 total SNPs in our GWAS. 

Results from FUMA GWAS catalogue 

 

We used the FUMA59 pipeline to identify independent genomic loci. We considered an 

independent locus as the region including all SNPs in pairwise Linkage Disequilibrium (r2 > 0.6), 

with the lead SNPs in a range of 250 kb and independent from other loci at r2 < 0.1. We used the 

1000 Genomes Phase3 Northern Europeans LD reference panel. 

 

Heritability and tissue-specific heritability 

 

We used GWAS summary statistics with LD Score regression60 to estimate the proportion of 

variation in a trait that is explained by inherited genetic single nucleotide polymorphisms (SNPs). 

The rationale behind this method is that, for a polygenic trait, the higher the Linkage 

Disequilibrium of a variant with other variants, the more likely the index variant will tag a causal 

variant, and therefore its resulting LD Score will be higher. We included the SNPs in the HapMap3 

reference panel (N=1,217,312) as a reference set.  

 

Stratified LD Score regression61 proceeds with the rational that the Ç2 association test for an index 

SNP includes the effects of all the SNPs tagged by that index SNP. For a polygenic trait, the Ç2 

association test will be higher for SNPs in LD with the index SNP, which can occur either when 

SNPs in LD tag an individual large effect SNP or when they tag several weak SNP effects. By 

partitioning SNPs into functional categories, SNPs in LD with the index SNP will increase the Ç2 
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association test more so than SNPs in LD with a given SNP that belongs to a different functional 

category. 

 

Genetic Correlation 

 

The genetic correlation between traits using GWAS summary statistics was computed using  LD 

Score regression62, using the same reference set of SNPs as was used to estimate heritability. Under 

a polygenic model, LD Score Regression posits that the GWAS effect size for each variant includes 

the effect of all the variants that the index variant tags. Therefore, the genetic covariance can be 

estimated using the slope from the regression of the product of the z-score of the same variant from 

different GWA studies. We ran genetic correlations for PNA and IDK with a total of 654 traits, 

616 which were from the UK Biobank and publicly available63. Traits used for genetic correlation 

analyses were chosen before conducting the analyses, with the agreement of the coauthors. 

 

Genomic SEM 

 

Genomic Structural Equation modeling (Genomic SEM)39 is a two-stage structural equal modeling 

approach. In the first stage, the genetic and sampling covariance matrices are estimated using the 

Diagonally Weighted Least Squares (DWLS) estimation procedure. In the second stage, a 

multivariate system of covariance associations involving the genetic components of phenotypes 

are specified, and their corresponding parameters are estimated by minimizing the discrepancy 

between the model-implied covariance matrix and the empirical covariance matrix. We used 

Genomic SEM to run genetic correlations between PNA and IDK and other traits that influence 

nonresponse, while adjusting for other correlated phenotypes40. In particular, we adjusted for 

educational attainment27, self-rated health64, and total household income before tax. Moreover, we 

computed genetic correlations with Genomic SEM between PNA and other traits, adjusting for 

IDK, and vice versa. 

 

Polygenic risk scoring 

 

A polygenic score for an individual is a weighted sum of a person9s genotypes at J loci, 

 

�"! =	%�'"�!".

$

"%&

 

 

where �"" denotes the polygenic score of individual �, �'" is the estimated additive effect size of the 

effect-coded allele at variant �, and �!" is the genotype of individual � at variant � (coded as having 
0, 1, or 2 instances of the effect-coded allele). The polygenic scores were constructed with 
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LDpred65, a method shown to have greater prediction accuracy than the conventional risk 

prediction approach involving LD pruning followed by p-value thresholding. LDpred considers 

the genetic architecture by accounting for LD among the SNPs in creating the polygenic scores. 

We used a Wald test to evaluate the significance of the polygenic scores on the outcomes. 

 

For the Add Health sample, we used the genotyped data from the Add Health prediction cohort to 

create the LD reference file. After imputing the genetic data to the Haplotype Reference 

Consortium (HRC)56 using the Michigan Imputation Server57, we used only HapMap3 variants 

with a call rate > 98% and a minor allele frequency > 1% to construct the polygenic scores. We 

limited the analyses to European-ancestry individuals. Polygenic scores were calculated with an 

expected fraction of causal genetic markers set at 100%. In total, we used 1,168,025 HapMap3 

variants to construct the polygenic scores in Add Health. We then used Plink66 to multiply the 

genotype probability of each variant by the corresponding LDpred posterior mean over all variants. 

In total, we created two polygenic risk scores, using the summary statistics of our two main 

phenotypes: 1) Prefer not to Answer (PNA) and 2) I Don9t Know (IDK). We then determined the 

association of the polygenic score for the related Refused to Answer and I Don9t Know Phenotypes 

in Add Health. Prediction accuracy was based on an ordinary least squares regression of the 

outcome phenotype on the polygenic score and a set of standard controls, which include birth year, 

sex, an interaction between birth year and sex, and the first 10 genetic principal components of the 

variance-covariance matrix of the genetic data. Variance explained by the polygenic risk scores 

was calculated in regression analyses as the R2 change (or Nagelkerke9s pseudo-R2 change for the 

dichotomous variables), i.e. the R2 of the model including polygenic risk scores and covariates 

minus the R2 of the model including only covariates. 95% confidence intervals around all R2 values 

are bootstrapped with 1000 repetitions each. We also used a recently developed score for 

educational attainment to predict both of our nonresponse outcomes in Add Health25. 
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Tab. 1. Baseline demographics about PNA and IDK nonresponders. PNA and IDK columns 

refer to those participants who chose these options at least once throughout the questionnaire. 

 

Characteristic NO PNA 

(N=328,843) 

PNA 

(N=31,785) 

NO IDK 

(N=118,928) 

IDK 

(N=241,700) 

Mean age (SD) 3 year 56.64 (8.00) 58.55 (7.84) 55.49 (8.08) 57.46 (7.89) 

 

Age group - no. (%) 

f51yr 93,859 (28.54) 6678 (21.01) 40,217 (33.82) 60,320 (24.96) 

51<yrf58 77,607 (23.60) 6517 (20.50) 29,220 (24.57) 54,904 (22.72) 

58<yrf63 80,082 (24.35) 8151 (25.64) 26,638 (22.40) 61,595 (25.48) 

yr>63 77,295 (23.51) 10439 (32.84) 22,853 (19.22) 64,881 (26.84) 

Female sex - no. (%) 175,701 (53.43) 18,166 (57.15) 66,000 (55.50) 127,867 (52.90) 

 

 
 

 

 

 

 

 

Participants in UK 

Regions - no. (%) 

East Midlands 23,476 (7.14) 2419 (7.61) 8,336 (7.01) 17,559 (7.26) 

London 21,953 (6.68) 2139 (6.73) 8,340 (7.01) 15,752 (6.52) 

North East  38,720 (11.77) 3990 (12.55) 13,859 (11.65) 28,851 (11.94) 

North West  50,212 (15.27) 5276 (16.60) 17,009 (14.30) 38,479 (15.92) 

Scotland 25,216 (7.67) 2416 (7.60) 9,293 (7.81) 18,339 (7.59) 

South East  30,905 (9.39) 2603 (8.19) 11,762 (9.89) 21,746 (9.00) 

South West  45,626 (13.87) 3659 (11.51) 17,246 (14.50) 32,039 (13.26) 

Wales  13,804 (4.20) 1311 (4.12) 4,981 (4.19) 10,134 (4.19) 

West Midlands 28,499 (8.67) 3186 (10.02) 10,051 (8.45) 21,634 (8.95) 

Yorkshire 50,432 (15.34) 4786 (15.06) 18,051 (15.18) 37,167 (15.38) 

College/University degree - no. (%) 110,011 (33.45) 5,924 (18.73)  44,890 (37.75) 71 ,075 (29.41) 
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Fig. 1. Phenotypic (tetrachoric) correlation of item nonresponse among questions. Each 

question has been recoded as dichotomous (1 = PNA or IDK, 0 otherwise). Each row and column 

represent the same question. We considered only questions which allow both the "Prefer not to 

answer" and the "I don't know" options. The upper triangle = <I don9t know=, the lower triangle = 

<prefer not to answer=. 
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Fig. 2. Bar graph of factor loadings of the questions in the PNA and IDK Confirmatory 

Factor Analyses. Panel a represents the loading strength of each question on the latent factors in 

the Exploratory Factor Analysis with a Bi-factor model for the <Prefer not to answer= analysis. 

Panel b represents the loading strength of each question on the latent factors in the Exploratory 

Factor Analysis with a Bi-factor model for the <I Don9t Know= analysis.  

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.480140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.11.480140
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 3. Miami Plot for GWAS of the <Prefer not to answer= and <I don9t know= 

factors. Miami plot of the resulting P-values from a GWAS of the PNA factor (on top) and the 

IDK factor (on bottom) for the 360,628 UK Biobank participants included in this study. The x axis 

is the chromosomal position, and the y axis represents the 3log10 of the corresponding p-value for 

each location measured in the genome. The dashed line marks the threshold for genome-wide 

significance (P = 5×10-8). 
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Fig. 4. Volcano plots of the genetic correlation between the PNA factor and other heritable 

traits. The values on the x-axis represent the genetic correlation between the "Prefer Not to 

Answer" factor and 655 other heritable traits. The values on the y-axis represent the 3log10 of the 

p-value of the associated statistical test. Only traits with a genetic correlation (in absolute value) 

greater than 0.45 and with P<10-45 are labeled.  
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Fig. 5. Volcano plots of the genetic correlation between the IDK factor and other heritable 

traits. The values on the x-axis represent the genetic correlation between the "I Don9t Know" 

factor and 655 other heritable traits. The values on the y-axis represent the 3log10 of the p-value of 

the associated statistical test. Only traits with a genetic correlation (in absolute value) greater than 

0.45 and with P<10-45 are labeled.  
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