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Patterns of item nonresponse behavior to survey questionnaires
are systematic and have a genetic basis
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ABSTRACT

Response to survey questionnaires is vital for social and behavioral research, and most analyses
assume full and accurate response by survey participants. However, nonresponse is common and
impedes proper interpretation and generalizability of results. We examined item nonresponse
behavior across 109 questionnaire items from the UK Biobank (UKB) (N=360,628). Phenotypic
factor scores for two participant-selected nonresponse answers, “Prefer not to answer” (PNA) and
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“I don’t know” (IDK), each predicted participant nonresponse in follow-up surveys, controlling
for education and self-reported general health. We performed genome-wide association studies on
these factors and identified 39 genome-wide significant loci, and further validated these effects
with polygenic scores in an independent study (N=3,414), gaining information that we could not
have had from phenotypic data alone. PNA and IDK were highly genetically correlated with one
another and with education, health, and income, although unique genetic effects were also
observed for both PNA and IDK. We discuss how these effects may bias studies of traits correlated
with nonresponse and how genetic analyses can further enhance our understanding of nonresponse

behaviors in survey research, for instance by helping to correct for nonresponse bias.

INTRODUCTION

Item nonresponse occurs when no substantive answer is recorded for a study participant on a given
questionnaire item, such as when the participant doesn’t provide an answer or responds “I do not
know™!. Nonresponse is interesting both as a behavioral choice by a survey participant and as a
statistical concern due to missing data. Much social and behavioral research relies on surveys, and
data analysis of survey data usually assumes full and accurate response by survey participants, or
at least that any nonresponse is independent of the outcomes that a researcher is interested in. In
reality, nonresponse is common and the independence assumption often unjustified, impeding
proper interpretation and generalizability of results. Therefore understanding the causes of
nonresponse has long been a concern for survey-based research?. The current study aims to
evaluate item nonresponse patterns in a large prospective epidemiological cohort (the UK Biobank,
or UKB) and clarify the contribution of genetics to differences in item nonresponse behaviors

between individuals.

As an observable behavior, nonresponse represents a complex interplay between survey design for
questionnaires and a respondent's cognitive processes, i.e. in understanding a question and
choosing a response!’. Nonresponse at the item level may be thought of as an intermediate
behavior on the spectrum between providing complete data and complete nonparticipation, i.e. unit
nonresponse?, and nonresponse is predictive of future study dropout’. Further, nonresponse is
unlikely to be captured by a single construct, since individuals may differ in their likelihood to
select different nonresponse choices in a questionnaire, e.g. “I don’t know”, “I’'m not sure”, or “I

don’t want to answer”, both overall and when responding to questions in certain categories®.

Nonresponse behavior is also related to many other heritable traits. For example, higher rates of
item nonresponse are correlated with lower educational attainment and poorer health status’.
Increased item nonresponse has also been observed for individuals with more depressive

symptoms!'® and lower self-confidence, among other psychological and personality traits!!.
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However, these individual differences in item nonresponse rates can be sensitive to the content of

712 and the characteristics of the study population®!3. Still, similar patterns

the questionnaire items
are often observed for unit nonresponse and study attrition, e.g., participants with lower
educational levels are more likely to drop out of a study!#. Similarly, those with heavy alcohol
consumption or higher levels of mental distress tend to be underrepresented in studies due to their

higher attrition rates'>!7.

Understanding item nonresponse may address concerns about the generalizability of statistical
analyses of observed data by helping to understand bias due to missingness. Item nonresponse
reduces the effective sample size and can introduce bias'®. Broadly, data may be either missing
completely at random (MCAR), missing randomly conditional on the remaining observed data
(missing at random, or MAR), or missing dependent on unobserved data (missing not at random,
or MNAR)%!?. Thus if there are unobserved individual differences influencing the likelihood of
item nonresponse, then the resulting missingness is considered MNAR. Nonrandom missingness
is of particular concern because common statistical methods like full information maximum
likelihood estimation or multiple imputation are only sufficient to address MAR data. MNAR
requires more direct modeling that includes assumptions about the type of missingness®22,
Therefore, identifying a genetic component of item nonresponse behavior may assist with

modeling MNAR mechanisms in genotyped samples?>.

While other studies have focused on the genetic underpinnings of sex-differential participation or
participation in optional study components!’24-2%, the genetics of item nonresponse remain largely
unknown. We first explore the phenotypic structure of the nonresponse options provided by the
UK Biobank in the initial cohort assessment, and we estimate latent factors for a person’s general
propensity to respond to questionnaires with “Prefer not to answer” (PNA) or “I don’t know”
(IDK). We then perform GWAS of these two factors, identifying significantly associated loci and
modeling genetic correlations with other heritable traits. We validate these genetic findings
through out-of-sample polygenic prediction of nonresponse behavior. Throughout this
investigation we avoid any analysis that would violate any participant’s stated desire to avoid
answering a question (Box 1). We anticipate that these findings will provide insight into genetic
influences on the cognitive processes involved in item nonresponse and also provide a basis for

evaluating the impact of nonresponse bias on GWAS of other traits and disorders.

RESULTS

Distribution of item nonresponse across questions
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To investigate item nonresponse bias we considered two possible answer choices across 109
questions from the UK Biobank touchscreen questionnaire: “Prefer not to answer” and “I don’t
know” (PNA and IDK, respectively). The final study population included 360,628 unrelated
participants of European genetic ancestry with available genetic data. The PNA option was
available for all questions, while only 83 questions allowed the IDK option. Participants selected
PNA less frequently (8.82% at least once) than IDK (67.02% at least once) (Tab. 1, Suppl. Fig.
1). For each question, on average, 0.16% of participants chose PNA and 2.17% chose IDK (Suppl.
Tab. 1, Suppl. Tab. 2). Importantly, individuals could only select one nonresponse answer per
question, so a response of IDK necessarily precluded a response of PNA, and vice versa. Females
answered PNA more often than males (57.15% females vs. 42.85% males, P<5x107), while
females were only slightly more likely to answer IDK than males (52.90% females vs. 47.10%
males, P<5x107) (Tab. 1). Nonresponders had markedly lower educational attainment (18.73% of
nonresponders had college or university degrees vs. 33.45% for responders for PNA; 29.41% of
nonresponders had college or university degrees vs. 37.75% for responders for IDK). (Tab. 1).
PNA was the more common response among questions capturing potential illegal behavior or
social stigma (e.g., “How often do you drive faster than the speed limit on the motorway?” or
“Does your partner or a close relative or friend complain about your snoring?””) (Suppl. Fig. 2,
panel a). Unsurprisingly, participants selected IDK more frequently in questions about their distant
past such as “Were you breastfed when you were a baby?” or “During your childhood, how many
times did you suffer painful sunburn?” (Suppl. Fig. 2, panel b). We hypothesized that the
frequency of PNA or IDK answers might increase as a function of the order in which the questions
were asked because of fatigue experienced by the participant as time spent taking a survey
increases. We fit a negative binomial regression to explore this hypothesis and found no evidence
of a positive trend for IDK or PNA.

Correlation patterns of item nonresponse and factor analyses

We used phenotypic (tetrachoric) correlations to measure the degree to which item nonresponse
behavior is shared across survey questions (Fig. 1). PNA answers showed an overall higher
correlation than IDK (mean r’>=0.66 [interquartile range, or IQR=0.17] for PNA and mean r?>=0.28
[IQR=0.13] for IDK), indicating that individuals who responded to questions with PNA tended to
do so more consistently across questions that individuals who responded to questions with IDK.
Indeed, we identified a small number of individuals who responded to all survey questions with
PNA (N=11).

Item nonresponse behavior was also more similar among survey questions from similar phenotype
domains. In other words, item nonresponse behavior was not independent of answering patterns

across questions. For example, the average correlation of PNA answers among questions within


https://doi.org/10.1101/2022.02.11.480140
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.11.480140; this version posted February 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

the food intake and the mental health domains (mean r’=0.85 [IQR=0.08], and mean r?>=0.76
[IQR=0.12], respectively) was higher than the correlations between food intake and mental health
questions (mean r?=0.14 [IQR=0.05]).

Based on the observed structure across survey domains, we next estimated latent (unmeasured)
factors for overall IDK and PNA item nonresponse behavior, respectively, conditional on the
correlated substructure. To do so, for each response type we first assessed the survey substructure
by performing factor analysis (FA) with the full set of questions and examining cluster analyses
of the residual correlations from a single factor model (Suppl. Fig. 3, Suppl. Fig. 4, respectively).
These residuals provided us with the magnitude of the correlation not explained by a single general
factor model, allowing us to identify bi-factor FA model as an appropriate model for the survey
substructure. The chosen bi-factor FA models the observed correlation matrix for item
nonresponse as a function of one general factor affecting nonresponse for all items and possibly
two or more additional domain-specific factors affecting subsets of items identified by the model.
Since this model may not fully address nested substructure within groups of items we also
evaluated fitting the bi-factor FA model on a reduced set of survey questions pruned for high
pairwise correlations observed in the residual cluster analysis of the single factor model. From
exploratory factor analysis we selected a 5 factor solution for the pruned PNA responses and a 4
factor solution for the pruned IDK responses - both with oblique (“biquartimin’) rotations — as our
final models based on standard fit metrics (Suppl. Tab. 3).

We find that the common general latent factor, representing the underlying general item
nonresponse behavior across questions, explained 51.26% and 25.61% of the total variance for
PNA and IDK, respectively, based on the selected models. Our approach also identified substantial
variance in item nonresponse behavior (11.63% and 11.20% for PNA and IDK, respectively) that
was accounted for by additional domain-specific factors rather than a general factor (Fig. 2, for
EFA: Suppl. Fig. 6 and Suppl. Fig. 7 for PNA and IDK, respectively). Two of these factors
(influencing items we might think of as affecting “Health” and “Psychiatric” domains) partially
overlap between PNA and IDK. The domain-specific factor with items related to “Ethnicity” was
specific to PNA and was present when respondents did not answer question about ethnic
background and skin color, with loadings of 0.69 and 0.51, respectively.

We then estimated each individual’s latent factor scores these general latent factors for PNA and
IDK, respectively, in order to evaluate their relationship with other phenotypic and genetic
measures. The density plots of the factor scores from the confirmatory factor analysis for both
PNA and IDK can be seen in Suppl. Fig. 5.
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PNA and IDK factors predict response to follow-up questionnaires

We hypothesized that the common latent factors for PNA and IDK might capture a broader
nonparticipation tendency beyond simply not answering specific survey questions. Therefore, we
evaluated if the PNA and IDK latent factors were able to predict whether participants did or did
not complete the online follow-up dietary questionnaires distributed by UK Biobank. We
considered separately the completion of the follow-up online questionnaire only in the first wave
of the invitation (N=69,735 and N=146,712 for PNA and IDK analyses, respectively) or in all the
4 waves of the invitation (N=19,097 and N=99,151 for PNA and IDK analyses, respectively). We
quantified the improved prediction after controlling for age, sex, the top 20 principal components
of the variance-covariance matrix of the genetic data, as well as education and self-rated health
status since these have been shown to be proxies for survey nonresponse behaviors!#?*, PNA and
IDK factors slightly improved prediction of participation for all four waves of survey invitation,
on top of education and self-rated health status, both when each factor was considered
independently (incremental psuedo-R?=0.0027, P<2x107!¢ and incremental pseudo-R?=0.0012,
P=3x10"!!, respectively for PNA and IDK), and when the two factors were combined (incremental
pseudo-R?=0.0034, P<2x107!%). Combing PNA and IDK resulted in a better prediction of not
responding to all four waves of follow-up survey invitations compared to predicting just one wave
(incremental pseudo-R?=0.0012, P<2x107!) (Suppl. Tab. 4). In summary, the general factors for
item nonresponse are associated with whether participants will continue to engage in future,
follow-up research, and our estimated scores for those factors are able to provide prediction beyond
established proxies for nonresponse like education and self-rated health status.

Genome-wide association study (GWAS) of item nonresponse

To assess potential genetic components of item nonresponse behavior we conducted a GWAS on
the estimated factor scores for the general PNA and IDK behavior across survey questions. We
identified 4 genome-wide significant (P<5x107®) loci for PNA and 35 loci for IDK. (Fig. 3 panel
a and b, respectively).

Many of these genome-wide significant loci have been previously associated with traits related to
poor health or lower socioeconomic status (SES). For example, allele T in rs79994730 is
associated with an increased chance of answering PNA and IDK for survey questions, but also
with lower educational attainment?’ and intelligence?®?’. Lead SNPs from 4 independent genomic
loci overlapped with loci formerly associated with mental disorders®*3! and with gastrointestinal

diseases’?33

. For example, allele A in rs240764 is associated with more frequent neurotic
behavior’®3234, Similarly, allele A inrs13126505 is associated with an increased risk of developing

Crohn's disease®> and Inflammatory Bowel Disease™.
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The general factors for PNA and IDK were both significantly heritable, with higher estimated
SNP-heritability for IDK (h%e=.0675, P= 4x107"'!?) than for PNA (4%,=.0204, P=3x10"!%). We also
observed a significant heritability enrichment for brain tissue’® (Suppl. Tab. 5, Suppl. Tab. 6);
the top two annotations were for Brain Cerebellum (P=3x10"3 for both PNA and IDK) and
cerebellar hemisphere (P=5x103 and P=8x1073 for PNA and IDK, respectively). Importantly, the
SNP heritability for the factor scores shows substantially stronger genetic signal than GWAS using
a simple sum of the number of nonresponses over all survey items. As comparison, the SNP
heritability of the simple sum score for PNA responses was 13 times lower and nonsignificant
(h?¢=.0015, P=0.5). This is consistent with an expectation that the factor analysis provides
improved power reducing measurement error across items and clarifying the signal in the context

of correlated residual structure.

Shared vs. question-specific item nonresponse behavior

One concern in our analysis is that the GWAS results for the item nonresponse phenotypes may
be driven by questions with the highest number of PNA and IDK responses (Suppl. Fig. 2), rather
than capturing an underlying behavior shared across survey questions. This is a concern both
because it affects the interpretation of the results and because it could expose undesired
information about nonresponse to individual items (Box 1). To explore this concern, we performed
a GWAS of not knowing the answer to the question with the largest number of IDK responses,
which was “During your childhood, how many times did you suffer painful sunburn?” We
observed only a modest genetic correlation with the IDK factor (r;=0.39 [0.33,0.46]), and we
identified 4 genome-wide significant loci for this GWAS. None of these 4 loci were genome-wide
significant in the GWAS of either the PNA or IDK factors. As an example, rs35407-G allele, a 3
Prime UTR Variant in SLC45A2, is associated with a higher risk of not knowing how many times
someone was sunburned as a child, and it also increases the risk for melanoma’’ and cutaneous
squamous cell carcinoma’®. This result suggests that our factor score GWAS successfully
highlights shared components affecting item nonresponse generally (r; > 0) while avoiding
capturing more question-specific nonresponse behavior that is less related to overall nonresponse

and therefore not the focus of our analyses.

Genetic correlations with heritable traits

To better understand which traits and behaviors share genetic overlap with item nonresponse
behavior, we calculated genetic correlations between the PNA and IDK factors with 655 different
heritable phenotypes using LD score regression (Fig. 4 and Fig. 5 for PNA and IDK, respectively
and Suppl. Tab. 7 and Suppl. Tab. 8 for PNA and IDK, respectively).


https://doi.org/10.1101/2022.02.11.480140
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.11.480140; this version posted February 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Overall, we observed a positive genetic correlation between the PNA and IDK factors and
psychiatric disorders, poorer general health, lower educational attainment, and lower total
household income before tax. These results are consistent with work from Adams and colleagues'
suggesting that nonresponse behaviors are strongly linked with socioeconomic status (SES). We
highlight that only 109 out of 655 (16.64%) traits tested were included in the set of questions used
to derive the item nonresponse phenotypes. For example, PNA and IDK factors had a high genetic
correlation with opting to skip the sexual history section in the UKB survey (rg=0.58, [0.50,0.66],
1,=0.50 [0.44,0.56] for PNA and IDK, respectively). This question was not used for deriving PNA
and IDK factors, and it provides orthogonal evidence that the derived phenotypes are indeed
capturing item nonresponse behavior in the UK Biobank.

We evaluated the degree to which the overall pattern of genetic correlations was driven by SES,
we using Genomic Structural Equation Modeling**° (Genomic SEM). First, we calculated
residual heritability of PNA and IDK conditional on genetic effects for total household income
and educational attainment, since these are major elements of SES*!42, We estimate that resulting
genetic variance unique to PNA and IDK was 1.33% (P=2x107'®) of the phenotypic variance in
PNA and 5.09% (P=9x107"®) of the variance in IDK is attributable to unique genetic factors not
explained by household income and educational attainment, corresponding to 65% and 75% of the
total SNP heritability for PNA and IDK, respectively. We then estimated genetic correlations
between PNA, IDK, and the remaining 654 heritable phenotypes with the same control for income
and educational attainment with Genomic SEM. Overall, we observed a decrease in the number of
traits significantly correlated with PNA and IDK factors after performing this analysis (Suppl.
Fig. 8, Suppl. Tab. 7, Suppl. Tab. 8). However, both the PNA and IDK factors remained
associated with poor self-reported health (r,=0.22 [0.14,0.30] and r=0.27 [0.22,0.32],
respectively) (Suppl. Fig. 8, Suppl. Fig. 8, Suppl. Tab. 7, Suppl. Tab. 8). SES-adjusted PNA
also continued to be associated with the UKB measure for “having seen a psychiatrist for mental
disorders" (r,=0.23 [0.15,0.31]). These results suggest that even after accounting for the genetic
associations with socioeconomic factors, genetic associates with nonresponse were shared with
genetic associations for poor overall health. Overall, these results highlight the utility of studying
the genetics of item nonresponse, since these analyses help to assess which questionnaire items
are likely to be affected by bias from nonrandom missingness, beyond what we can learn from

using phenotypic information alone.

Independent effect of PNA and IDK

In addition to the genetic correlation of the PNA and IDK factors with other traits, we observe
substantial genetic correlation between these two factors (r,=0.73, [0.70, 0.76]), reflecting partial
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- but not complete (1 <1) - genetic overlap between these two factors. Notably, genetic correlation
facilitates this comparison between forms of item nonresponse by using genetics to overcome the
limitation that UK Biobank participants could only respond with one of PNA or IDK on a given
item, not both.

To help understand which genetic signals are unique to PNA and IDK, we estimated the
conditional genetic correlation between PNA and other heritable phenotypes controlling for the
genetic effects of IDK, and vice versa for correlations with IDK conditional on PNA, using
Genomic SEM*, After accounting for the shared genetic associations between PNA and IDK,
much of the genetic correlation observed between IDK and SES-related traits was reduced.
Conversely, after accounting for the shared genetic associations between PNA and IDK, PNA
preserved a more independent effect (Suppl. Fig. 9). The PNA-adjusted IDK factor was no longer
associated with lower educational attainment (EA, r,=-0.01 [-0.07,0.05]) and the association with
lower total household income (rg=-0.13 [-0.20,-0.06]) and poorer self-rated general health (r;=0.20
[0.13,0.27]) was attenuated. Conversely, IDK-adjusted PNA maintained a significant association
with lower EA (1r,=-0.37 [-0.31,-0.43]), low income (rg=-0.37 [-0.31,-0.43]) and poorer general
health (r,=0.26 [0.21,0.31]). Moreover, IDK-adjusted PNA became associated with bipolar
disorder (r;=0.25 [0.13,0.37]) and schizophrenia (rz=0.30 [0.23,0.37]). These results highlight that
the genetic associations between PNA and IDK partially overlap, for instance in effects that are
correlated with SES-related measures, suggesting shared influences across forms of item
nonresponse. These results also highlight that the genetic associations between PNA and IDK are
partially distinct, with PNA showing a unique overlap with psychiatric diseases that is not observed
for IDK.

Polygenic risk score analysis in Add Health

Finally, in order to test the generalizability of our genetic findings we constructed polygenic scores
for the PNA and IDK factors in Wave 4 of the National Longitudinal Study of Adolescent to Adult
Health (Add Health) data. Item nonresponse in Add Health was identified based on 163 questions
with a possible response of “I don’t know” and 217 questions with a possible response of “refused
to answer” (Suppl. Tab. 9). The IDK and PNA polygenic scores showed significant
association with whether individuals a corresponding IDK or PNA response to at least one
question. Specifically, we estimate that a one-standard-deviation increase in the PNA polygenic
score is associated with a 2% increase in the probability of an individual ever answering with
“refused to answer” in the Wave 4 Add Health data (incremental pseudo-R? = 0.1%). We also
estimate that a one-standard-deviation increase in the IDK polygenic score is associated with a 2%
increase in the probability of an individual ever answering with “I don’t know” in the Wave 4 Add
Health data (incremental pseudo-R? = 0.5%).
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We used a recently developed polygenic score for educational attainment (continuous years of
completed education)?’ derived from a very large sample size (N=1,131,881) to predict our two
nonresponse outcomes in Add Health (Suppl. Tab. 10). We found that the educational attainment
polygenic score is significantly associated with a 1% increase in the probability of an individual
ever answering “refused to answer” in the Wave 4 Add Health data. The associated incremental
pseudo-R? is 0.08%. However, the educational attainment polygenic score was not significantly
associated with the “I don’t know” outcome in the Wave 4 Add Health data. Taken together, these
results suggest that our findings in UK Biobank replicate in an external US-based study of younger
individuals.

DISCUSSION

Nonresponse can impact the generalizability and reliability of survey-based research*#*, We show
that item-level nonresponse is not random in the UK Biobank. Study participants vary in their
degree and type of nonresponse, with observed differences between response patterns for PNA
and IDK nonresponse options; the latter is more commonly chosen by study participants.
Conversely, PNA responses are less common, but individuals who select PNA on at least one
question are more consistent in their nonresponse patterns across questions. In characterizing these
patterns of item nonresponse it is critically important to respect the ethical boundaries presented
by the individual’s stated decision not to respond to a given item (Box 1). The current analysis
evaluates overall item nonresponse behavior to identify genetic associations that are informative
about nonrandom missingness in UK Biobank without implicating item-specific reasons for

nonresponse.

Item nonresponse shows distinct correlation across questions, both broadly and within clusters that
reflect the survey’s content and structure. Based on that observation, we’ve successfully
characterized a “general” factor for each response pattern (i.e., PNA and IDK) that describes a
broader nonresponse tendency across survey questions, while accounting for the presence of
additional domain-specific correlations. Consistent with prior observations that item nonresponse
is correlated with educational attainment, socioeconomic status, and overall health of participants
who initially participated in a study?> or who continue to participate in follow-up waves of a
study?®, our PNA and IDK factors were associated with reduced educational attainment and
predictive of response to follow-up surveys.

We also identified a significant genetic signal underlying our general nonresponse factors. We
were able to use these results to study broad, group-level characteristics of individuals that did not
respond to questions in the UK Biobank. The genetic correlation between PNA and IDK was high,
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but not 1, indicating that there are both shared and unique genetic associations for PNA and IDK.
By using genetic structural equation models, we showed that the PNA-specific genetic signal was
positively associated with psychiatric disorders, while this was not the case for the IDK-specific
signal. Future work should focus on identifying both shared and unique genetic signals across
different measures of nonresponse behaviors. Whether these results from UK Biobank are
generalizable to other studies remains a matter for future investigation. However, our polygenic
prediction results in Add Health suggest that at least part of the genetic signal underlying item-
level nonresponse might be shared with other studies, and some of the signal is independent of
other outcomes like educational attainment.

While such characterization is traditionally done by examining phenotypic correlations®, genetic
analyses of our nonresponse outcomes provide some additional advantages beyond phenotypic
data. For example, these analyses allowed us to characterize what individuals may be
underrepresented in the study results beyond the phenotypic information that was collected in the
survey questionnaires. While national registries or other administrative sources can sometimes be
informative about nonresponse, either by comparing study participants to expected population
descriptive statistics or by linkage to individual registry data*, these resources are not always
available to researchers. Our analyses, in contrast, allowed us to leverage genetic information to
characterize behavioral patterns of nonresponse. For instance, we were able to measure genetic
correlations between survey nonresponse and GWAS summary statistics for hundreds of traits.
Perhaps more importantly, these genetic correlations may highlight phenotypes that are likely to
be affected by nonresponse bias in analyses that have not considered potential nonrandom
missingness. Many genetic studies simply exclude participants who do not respond to surveys.
Future work should consider opportunities for leveraging genetic information about item

nonresponse to reduce nonresponse bias in analyses at the group level®.

In conclusion, we use phenotypic and genetic data to provide an extensive investigation of overall
item-level nonresponse across items in the UK Biobank. These results should be considered when
analyzing the UK Biobank, among other biobank-scale survey efforts, and when developing novel

methods aimed at correcting and leveraging nonresponse in genetic analyses.
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BOX 1

Participant consent is critical for the ethical conduct of research. Nonresponse, including at the
item level, in some instances will reflect a participant exercising their (entirely justified) right to
voluntarily not participate in some aspect of a study. This is especially true in the case of item
nonresponse in the form of actively responding “prefer not to answer”. As a result, it requires
careful ethical consideration to evaluate how to study nonresponse without breaching the
participant’s consent as reflected in both the item-level nonresponse and the study-level informed
consent and participation.

There can be ethical harms to ignoring the source of missing data in research. Consideration of
missingness is necessary to identify the ways in which a study or a particular analysis may not be
representative of the population, otherwise researchers risk the myriad impacts of uncritically
producing biased or ungeneralizable results. Decades of social science research on mechanisms
of missing data and its influence on research results reflect recognition of the imperative to
wrestle with this challenge.

With these considerations in mind, this paper endeavors to characterize broad, group level trends
in overall amounts of item nonresponse while intentionally avoiding exploring nonresponse
behavior (especially with regards to the “prefer not to answer” option) to single questions. We
make one exception, in an analysis of responding “I don’t know” to the question “During your
childhood, how many times did you suffer painful sunburn?”, where we empirically check that our
analysis is meeting the stated goal of avoiding revealing item-specific factors. We intentionally
rely on the IDK response (i.e., item nonresponse that doesn’t imply a desire to avoid participation

in the item) and use an item that is less socially sensitive to minimize ethical concerns while doing
this check.

The factors generated for our analyses can be thought of as reflecting a general behavioral tendency
for someone to choose not to respond to one or more survey items; they are not reflective of
nonresponse to any single, specific item. Perhaps most crucially, no attempts were made to infer
individual item-level values of nonresponders, nor would such attempts be fruitful given the low
predictive power of overall nonresponse behavior at the individual-person, individual-item level.

We stress that these ethical considerations apply not only within this study, but in future
applications and extensions of this work. We encourage our colleagues to continue to remain
vigilant to the challenges surrounding genetics and voluntary nonresponse in all domains.

METHODS
UK Biobank and inclusion criteria

The UK Biobank is a health resource which has the purpose of improving the prevention,
diagnosis, and treatment of a wide range of illnesses. It consists of a prospective cohort of 502,620
men and women aged 40-69 recruited in the years 2006-2010 throughout the United Kingdom.
The touchscreen questionnaire is a collection of self-reported information regarding general health,
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dietary habits, physical activity, psychological and cognitive states, sociodemographic factors, etc.
We began our inclusion criteria with 361,194 unrelated individuals of European genetic ancestry
who passed quality control measures*’. We excluded individuals who were enrolled only in the
UKB pilot study (N=335). Participants who decided to terminate the touch screen questionnaire
were asked to select PNA to all subsequent questions, and they were kept in our analyses.
Conversely, individuals who withdrew from the study without filling out the touchscreen survey
excluded from the analysis (N=231). As a result, a total of N=360,628 participants took part in the
survey and answered every question of interest in the study; this is the final analytic sample size.

National Longitudinal Study of Adolescent to Adult Health (Add Health) cohort

Add Health originated as an in-school survey of a nationally representative sample of US
adolescents enrolled in grades 7 through 12 during the 1994-1995 school year*®. Respondents were
born between 1974 and 1983, and a subset of the original Add Health respondents has been
followed up with in-home interviews, which allows researchers to assess correlates of outcomes
in the transition to early adulthood. In Add Health, the mean birth year of respondents is 1979 (SD
= 1.8), and the mean age at the time of assessment (Wave 4) is 29.0 years (SD = 1.8). All
phenotypes included in this study come from Wave 4, the latest wave of Add Health data collection
(2007-2009).

PNA/IDK definitions

We considered only the Touchscreen questionnaire phenotypes with the PNA and IDK options (-
3 and -1, respectively). We  first studied the  questionnaire  protocol

(https://www.ukbiobank.ac.uk/wp-content/uploads/2019/09/Touchscreen-questionnaire-for-

website Copyright.pdf) and kept only those questions asked to every study participants (N
questions=109 and N=83 for PNA and IDK, respectively.). Questions asked to a subset of

participants conditional on their answer to other questions were excluded.

Phenotype definitions in Add Health

To investigate item nonresponse bias phenotypes in Add Health we considered two possible
answer choices across hundreds of questions from the Wave 4 Add Health In-Home Interview
questionnaire: “Refused to answer” and “I don’t know”. The final study population included 3,414
unrelated participants of European ancestry with available genetic data. The “refused to answer”
option was available for 217 questions while only 163 questions allowed the “I don’t know” option.
Our final outcomes were whether respondents ever answered at least once with “refused to answer”

or “I don’t know”, respectively. We also predicted the two nonresponse outcomes in Add Health
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using a recently developed polygenic score for educational attainment?’ (completed years of
education).

Factor Model Construction

Single-Factor Model

Exploratory Factor Analysis (EFA) with a single latent factor was performed separately on
tetrachoric correlation matrices between each of the dichotomized PNA and IDK responses,
respectively, and was implemented using the fa function from the “psych” package in R software
version 3.4.4 with the oblique rotation "biquartimin" and the “Ordinary Least Square” extraction
method.

Residuals from the initial EFA revealed a correlation structure indicative of further clustering
unaccounted for by the general factor, with both broad correlations across item domains as well as
some highly specific pairwise structure at the item level. Given that we were interested in
modelling overall nonresponse behavior, not behavior specific to or driven by single item
groupings or domains, we sought to reduce this additional structure first through the pruning of
items with highly-correlated nonresponse patterns and then through the fitting of a bi-factor model.
To further reduce the correlation structure between individual pairs and groups of variables, we
considered different exploratory cut points in the dendrogram constructed on residuals from the
single-factor EFA (Suppl. Fig. 3, Suppl. Fig. 4). We cut the dendrograms at height 0.500 and
0.775 in PNA and IDK, respectively, in order to minimize the number of branches (i.e., clusters
of variables grouped together), but also maintain homogeneity within these branches (e.g.,
questions belonging to the same field). This led to 37 and 56 branches in PNA and IDK,
respectively. In the IDK analysis, summing the IDK for each participant across questions inside
each branch was sufficient to reduce the number of questions. We applied the same thresholds for
PNA, but we noticed that in the four largest branches (i.e., person-specific information, food
intake, overall health status, and mental health) the distribution of PNA per participant was J-
shaped, with a continuously decreasing number of participants who chose PNA in more than 1
question and a small “peak” number of individuals who chose PNA in every question in the branch.
For this reason, we scored each participant as follows: “0” if a participant answered all questions,
“1” if a participant chose only PNA only once, “3” if a participant preferred not to answer all the
items that fell in the same node, and “2” for participants who did not fit into the previous three
categories. These scores were ordinal values used as input for bi-factor analysis that allowed for
minimal item nonresponse information loss.

Bi-Factor Analysis
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To run bi-factor analysis*-*° on the pruned set of UKB questions we first split the dataset between
80% of participants (N=288,502) for Exploratory Factor Analysis®! (EFA) and 20% of participants
(N=72,126) for Confirmatory Factor Analysis (CFA). For EFA we used the fa function, with
"biquartimin" and “OLS” as the rotation and factoring method, respectively. We implemented
CFA using the cfa function from the “lavaan” package>? in R software version 3.4.4, and also using
the weighted least square mean and variance adjusted (WLSMV) estimator. We selected the initial
factor structure from the EFA, first fitting models with different number of domain factors (Suppl.
Tab. 3), then confirmed the fit of the model in the hold-out sample using the Root Mean Square
Error of Approximation (RMSEA) and Tucker-Lewis Index (TLI). Upon selecting the optimal
model and confirming fit, we re-ran the CFA in the full combined dataset; the final PNA and IDK
phenotypes used in all downstream analyses were obtained as factor scores of the CFA-derived
general factor in the full dataset. We extracted the factor scores using the “Empirical Bayes Modal”
method as implemented in the /avPredict function.

Predicting participation in follow-up questionnaires

We ran logistic regression to predict completion of an online follow-up 24-hour recall dietary
questionnaire (field 110001 in the UKB) by using our PNA and IDK factors as predictor variable.
To measure the variance explained by the model we computed the Pseudo-R? using the McKelvey
& Zavoina statistical method>?. Completion of the first wave of a dietary questionnaire was coded
as 1 if a participant completed this wave, and 0 if a participant did not (N=69,735 and N=146,712,
respectively). Missing values (NA) were removed from the analysis (N=144,181). Similarly,
completion of all 4 waves of the dietary questionnaire was coded as 1 if someone completed all 4
wave, 0 if someone didn’t complete all 4 waves of the questionnaire (N=19,097 and N=99,151,
respectively). Other participants were not considered in this analysis (N=242,380). We examined
the association of our standardized factors with sex, age, age?, sex-x-age?, the first 20 principal
components of the variance-covariance matrix of the genetic data, self-reported health (field 2178
in the UKB), years of education. The years of education was created by recoding the Qualifications
field (field 6138 in UKB) as follows?’:

1: College or University degree (ISCED) = 20 years of education

2: A levels/AS levels or equivalent (ISCED 3) = 15 years of education

3: O levels/GCSEs or equivalent (ISCED 2) = 13 years of education

4: CSEs or equivalent (ISCED 2) = 12 years of education

5: NVQ or HND or HNC or equivalent (ISCED 5) = 19 years of education

6: Other prof. qual. (e.g., nursing, teaching) (ISCED 4) = 17 years of education

-7: None of the above (ISCED 1) = 6 years of education

Participants who chose PNA or IDK for either years of education or self-reported health were
excluded.
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Genotyping and Imputation

Genotyping and imputation procedures for the UK Biobank are detailed in Bycroft et al. 2018%%,
Genotyping in Add Health was performed at the Institute for Behavioral Genetics in Boulder, CO,
using Illumina’s Human Omnil-Quad-BeadChip®. After imputing the genetic data to the
Haplotype Reference Consortium (HRC)® using the Michigan Imputation Server’’, only
HapMap3 variants were included, which are well imputed and provide good coverage of common
variation across the genome. Analyses were limited to individuals of European-ancestry, and
cryptically related individuals and ancestry outliers were dropped from analyses. Finally, only
HapMap3 variants with a call rate above 98% and a minor allele frequency > 1% were used.

GWAS

We performed genome-wide association studies using a linear model implemented in Hail®,
including sex, age, age?, sex-x-age?, and the first 20 principal components of the variance-
covariance matrix of the genetic data. We included only variants with imputation INFO score >
0.8 and MAF > 0.01, resulting in N=1,089,173 total SNPs in our GWAS.

Results from FUMA GWAS catalogue

We used the FUMA®® pipeline to identify independent genomic loci. We considered an
independent locus as the region including all SNPs in pairwise Linkage Disequilibrium (r? > 0.6),
with the lead SNPs in a range of 250 kb and independent from other loci at r? < 0.1. We used the
1000 Genomes Phase3 Northern Europeans LD reference panel.

Heritability and tissue-specific heritability

We used GWAS summary statistics with LD Score regression®® to estimate the proportion of
variation in a trait that is explained by inherited genetic single nucleotide polymorphisms (SNPs).
The rationale behind this method is that, for a polygenic trait, the higher the Linkage
Disequilibrium of a variant with other variants, the more likely the index variant will tag a causal
variant, and therefore its resulting LD Score will be higher. We included the SNPs in the HapMap3
reference panel (N=1,217,312) as a reference set.

Stratified LD Score regression®! proceeds with the rational that the y? association test for an index
SNP includes the effects of all the SNPs tagged by that index SNP. For a polygenic trait, the ¥*
association test will be higher for SNPs in LD with the index SNP, which can occur either when
SNPs in LD tag an individual large effect SNP or when they tag several weak SNP effects. By
partitioning SNPs into functional categories, SNPs in LD with the index SNP will increase the >


https://doi.org/10.1101/2022.02.11.480140
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.11.480140; this version posted February 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

association test more so than SNPs in LD with a given SNP that belongs to a different functional
category.

Genetic Correlation

The genetic correlation between traits using GWAS summary statistics was computed using LD
Score regression®?, using the same reference set of SNPs as was used to estimate heritability. Under
a polygenic model, LD Score Regression posits that the GWAS effect size for each variant includes
the effect of all the variants that the index variant tags. Therefore, the genetic covariance can be
estimated using the slope from the regression of the product of the z-score of the same variant from
different GWA studies. We ran genetic correlations for PNA and IDK with a total of 654 traits,
616 which were from the UK Biobank and publicly available®. Traits used for genetic correlation
analyses were chosen before conducting the analyses, with the agreement of the coauthors.

Genomic SEM

Genomic Structural Equation modeling (Genomic SEM)*” is a two-stage structural equal modeling
approach. In the first stage, the genetic and sampling covariance matrices are estimated using the
Diagonally Weighted Least Squares (DWLS) estimation procedure. In the second stage, a
multivariate system of covariance associations involving the genetic components of phenotypes
are specified, and their corresponding parameters are estimated by minimizing the discrepancy
between the model-implied covariance matrix and the empirical covariance matrix. We used
Genomic SEM to run genetic correlations between PNA and IDK and other traits that influence
nonresponse, while adjusting for other correlated phenotypes®. In particular, we adjusted for
educational attainment?®’, self-rated health®, and total household income before tax. Moreover, we
computed genetic correlations with Genomic SEM between PNA and other traits, adjusting for

IDK, and vice versa.

Polygenic risk scoring

A polygenic score for an individual is a weighted sum of a person’s genotypes at J loci,

]
gi = Z ngij.
j=1

where g; denotes the polygenic score of individual i, ¢ ; 1s the estimated additive effect size of the
effect-coded allele at variant j, and g;; is the genotype of individual i at variant j (coded as having

0, 1, or 2 instances of the effect-coded allele). The polygenic scores were constructed with
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LDpred®, a method shown to have greater prediction accuracy than the conventional risk
prediction approach involving LD pruning followed by p-value thresholding. LDpred considers
the genetic architecture by accounting for LD among the SNPs in creating the polygenic scores.
We used a Wald test to evaluate the significance of the polygenic scores on the outcomes.

For the Add Health sample, we used the genotyped data from the Add Health prediction cohort to
create the LD reference file. After imputing the genetic data to the Haplotype Reference
Consortium (HRC)*¢ using the Michigan Imputation Server’’, we used only HapMap3 variants
with a call rate > 98% and a minor allele frequency > 1% to construct the polygenic scores. We
limited the analyses to European-ancestry individuals. Polygenic scores were calculated with an
expected fraction of causal genetic markers set at 100%. In total, we used 1,168,025 HapMap3
variants to construct the polygenic scores in Add Health. We then used Plink® to multiply the
genotype probability of each variant by the corresponding LDpred posterior mean over all variants.
In total, we created two polygenic risk scores, using the summary statistics of our two main
phenotypes: 1) Prefer not to Answer (PNA) and 2) I Don’t Know (IDK). We then determined the
association of the polygenic score for the related Refused to Answer and I Don’t Know Phenotypes
in Add Health. Prediction accuracy was based on an ordinary least squares regression of the
outcome phenotype on the polygenic score and a set of standard controls, which include birth year,
sex, an interaction between birth year and sex, and the first 10 genetic principal components of the
variance-covariance matrix of the genetic data. Variance explained by the polygenic risk scores
was calculated in regression analyses as the R? change (or Nagelkerke’s pseudo-R? change for the
dichotomous variables), i.e. the R? of the model including polygenic risk scores and covariates
minus the R? of the model including only covariates. 95% confidence intervals around all R? values
are bootstrapped with 1000 repetitions each. We also used a recently developed score for
educational attainment to predict both of our nonresponse outcomes in Add Health?.
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Tab. 1. Baseline demographics about PNA and IDK nonresponders. PNA and IDK columns
refer to those participants who chose these options at least once throughout the questionnaire.

Characteristic NO PNA PNA NO IDK IDK
(N=328,843) | (N=31,785) | (N=118,928) | (N=241,700)

Mean age (SD) — year 56.64 (8.00) | 58.55(7.84) | 55.49 (8.08) | 57.46 (7.89)
<Slyr 93,859 (28.54) | 6678 (21.01) | 40,217 (33.82) | 60,320 (24.96)

Age group - no. (%)
51<yr<s8 77,607 (23.60) | 6517 (20.50) | 29,220 (24.57) | 54,904 (22.72)
58<yr<63 80,082 (24.35) | 8151 (25.64) | 26,638 (22.40) | 61,595 (25.48)
yr>63 77,295 (23.51) | 10439 (32.84) | 22,853 (19.22) | 64,881 (26.84)

Female sex - no. (%) 175,701 (53.43) | 18,166 (57.15) | 66,000 (55.50) | 127,867 (52.90)
East Midlands | 23,476 (7.14) | 2419 (7.61) | 8,336 (7.01) | 17,559 (7.26)
London 21,953 (6.68) | 2139 (6.73) | 8,340(7.01) | 15,752 (6.52)
North East | 38,720 (11.77) | 3990 (12.55) | 13,859 (11.65) | 28,851 (11.94)
North West | 50,212 (15.27) | 5276 (16.60) | 17,009 (14.30) | 38,479 (15.92)

Participants in UK

Regions -no. (%) | g¢otland 25216 (7.67) | 2416 (7.60) | 9,293 (7.81) | 18,339 (7.59)
South East | 30,905 (9.39) | 2603 (8.19) | 11,762 (9.89) | 21,746 (9.00)
South West | 45,626 (13.87) | 3659 (11.51) | 17,246 (14.50) | 32,039 (13.26)
Wales 13,804 (4.20) | 1311 (4.12) | 4,981 (4.19) | 10,134 (4.19)
West Midlands | 28,499 (8.67) | 3186 (10.02) | 10,051 (8.45) | 21,634 (8.95)
Yorkshire 50,432 (15.34) | 4786 (15.06) | 18,051 (15.18) | 37,167 (15.38)

College/University degree - no. (%)

110,011 (33.45)

5,924 (18.73)

44,890 (37.75)

71,075 (29.41)
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Fig. 1. Phenotypic (tetrachoric) correlation of item nonresponse among questions. Each
question has been recoded as dichotomous (1 = PNA or IDK, 0 otherwise). Each row and column
represent the same question. We considered only questions which allow both the "Prefer not to
answer" and the "I don't know" options. The upper triangle = “I don’t know”, the lower triangle =
“prefer not to answer”.
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Fig. 2. Bar graph of factor loadings of the questions in the PNA and IDK Confirmatory
Factor Analyses. Panel a represents the loading strength of each question on the latent factors in
the Exploratory Factor Analysis with a Bi-factor model for the “Prefer not to answer” analysis.
Panel b represents the loading strength of each question on the latent factors in the Exploratory
Factor Analysis with a Bi-factor model for the “I Don’t Know” analysis.
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Fig. 3. Miami Plot for GWAS of the “Prefer not to answer” and “lI don’t know”
factors. Miami plot of the resulting P-values from a GWAS of the PNA factor (on top) and the
IDK factor (on bottom) for the 360,628 UK Biobank participants included in this study. The x axis
is the chromosomal position, and the y axis represents the —logio of the corresponding p-value for
each location measured in the genome. The dashed line marks the threshold for genome-wide
significance (P = 5x10%).
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Fig. 4. Volcano plots of the genetic correlation between the PNA factor and other heritable

traits. The values on the x-axis represent the genetic correlation between the "Prefer Not to

Answer" factor and 655 other heritable traits. The values on the y-axis represent the —logio of the

p-value of the associated statistical test. Only traits with a genetic correlation (in absolute value)
greater than 0.45 and with P<10* are labeled.
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Fig. 5. Volcano plots of the genetic correlation between the IDK factor and other heritable

traits. The values on the x-axis represent the genetic correlation between the "I Don’t Know"

factor and 655 other heritable traits. The values on the y-axis represent the —logio of the p-value of

the associated statistical test. Only traits with a genetic correlation (in absolute value) greater than
0.45 and with P<10 are labeled.
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