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Abstract

Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for
understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from
one cross-sectional and two longitudinal datasets totaling in 1184 subjects and 2236 sessions of people aged 50-97 years. Data was
drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging dataset, Cambridge Centre for Ageing
Neuroscience dataset, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time,
11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect
modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter.
Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for
diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway
shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A
particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features,
macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural
tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide
a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more
sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging
and could have widespread implications for a variety of neurodegenerative disorders.

Keywords: white matter, aging, tractography, volume, diffusion MRI

Introduction cross-sectional datasets. For example, diffusion tensor
imaging (DTI) shows fractional anisotropy (FA) is
negatively associated with age, and mean diffusivity (MD)
positively associated with age across white matter pathways
(14-17), and have shown that advanced multicompartment
diffusion modeling also provides sensitive measures of age-
related microstructural changes (18-21). Microstructural
features of these fiber pathways are biologically relevant in
aging research as demyelination is thought to occur in a
heterogeneous manner, whereby late-myelinating fiber
pathways exhibit neurodegeneration prior to other fiber
pathways. This idea, known as the myelodegeneration
hypothesis, has recently been supported by a large-scale
diffusion MRI study leveraging data from the UK Biobank

To better understand changes related to normal aging, and
differences due to disease, it is necessary to characterize how
and where the brain changes with age. Studies using
magnetic resonance imaging (MRI) have shown that the
brain undergoes significant changes with age. Most studies
focus on gray matter of the brain, where correlations
between cortical volumes and age have been consistently
described. These findings provide evidence of heterogenous
patterns of normal age-related changes (3-8), with detectable
differences in neurological diseases and disorders (9-13).

While white matter appears relatively homogenous on . . X
conventional structural MRI, diffusion MRI and subsequent (n=7,167) (22). Specifically, they found disproportional age-
fiber tractography enables investigation of individual fiber related differences in fiber pathways projecting to/from the
pathways of the brain. To date, most diffusion MRI studies prefrontal cortex.

of aging characterize features of tissue microstructure using
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While diffusion-based microstructure has been widely
studied in aging, the macrostructural features of these fiber
pathways play a pivotal role along the aging continuum;
however, they have yet to be studied. As recently
described(2), these macrostructural properties — descriptions
of lengths, areas, and volumes - can be used to describe the
geometrical and connectivity features of fiber bundles. The
incorporation of these features into the study of aging and
aging-related disorders could provide an additional avenue
to elucidate the mechanisms driving white matter
neurodegeneration. Given our prior knowledge, our
hypothesis is that microstructural and macrostructural
features will be disproportionately affected in fiber tracts
projecting to/from the prefrontal cortex along the aging
continuum.

To address our hypothesis, we will leverage three well-
established cohorts of aging, including two longitudinal
cohorts [Baltimore Longitudinal Study of Aging
(BLSA)(23), Vanderbilt Memory & Aging Project
(VMAP)(24)] and one cross-sectional cohort [Cambridge
Centre for Ageing and Neuroscience (Cam-CAN)(25)].
Within these cohorts, automated tractography segmentation
will be conducted within 120 white matter tracts, including
association, limbic, projection (including thalamic and
striatal), and commissural tracts. We will then quantify 4
microstructural and 11 macrostructural features within these
tracts to determine if these metrics exhibit disproportionate
age-related decline.

Methods

Data

This study used data from three datasets, summarized in
Table 1, and contained a total of 1184 subjects and 2236
sessions of healthy subjects aged 50-97 years. All datasets
were filtered to exclude subjects with diagnoses of mild
cognitive impairment, Alzheimer’s disease, or dementia at
baseline, or if they developed these conditions during the
follow-up interval. Finally, datasets were filtered in order to
focus on subjects aged 50+, due to limited samples sizes of
each dataset with subjects below 50 years old.

First, was the Baltimore Longitudinal Study of Aging
(BLSA) dataset, with 641 subjects scanned multiple times
ranging from 1 and 8 sessions, and time between scans
ranging from 1 to 10 years, yielding a total of 1322 diffusion
datasets. Diffusion MRI data was acquired on a 3T Philips
Achieva  scanner (32  gradient  directions, b-
value=700s/mm2, TR/TE=7454/75ms, reconstructed voxel
size=0.81x0.81x2.2mm, reconstruction matrix=320x320,
acquisition matrix=115x 115, field of view=260%260mm).
Second, was data from the Vanderbilt Memory & Aging
Project (VMAP), with 187 subjects, scanned between 1-4
sessions, with a total of 558 diffusion datasets. Diffusion
MRI data was acquired on a 3T Philips Achieva scanner (32
gradient directions, b-value=1000s/mm2, reconstructed
voxel size=2x2x2mm). Third, was data from the Cambridge
Centre for Ageing and Neuroscience (Cam-CAN) data
repository (25) with 356 subjects, each scanned once using
a 3T Siemens TIM Trio scanner with a 32-channel head coil
(30 directions at b-value=1000s/mm2, 30 directions at b-

value=2000s/mm2, reconstructed voxel size=2x2x2mm).
All human datasets from Vanderbilt University were
acquired after informed consent under supervision of the
appropriate Institutional Review Board. All additional
datasets are freely available and unrestricted for non-
commercial research purposes. This study accessed only de-
identified patient information.

Processing

For every session, sets of white matter pathways were
virtually dissected using two automated fiber tractography
pipelines, TractSeg(1l) and Automatic Track Recognition
(ATR) (26). Two methods, based on different technological
and anatomical principles of tractography segmentation
were selected to emphasize generalizability of results across
choices of different workflow(27).

Throughout the manuscript, TractSeg analysis is presented
as primary results, and ATR as supplementary.

Briefly, TractSeg was based on convolutional neural
networks and performed bundle-specific tractography based
on a field of estimated fiber orientations (1). We
implemented the dockerized version at
(https://github.com/MIC-DKFZ/TractSeg), which generated
fiber orientations using constrained spherical deconvolution
with the MRtrix3 software (28). TractSeg resulted in 72
bundles, visualized in Figure 1, including association,
limbic, commissural, thalamic, striatal, and projection and
cerebellar pathways.

ATR was performed in DSI Studio software using batch
automated fiber tracking (26). Data were reconstructed using
generalized g-sampling imaging(29) with a diffusion
sampling length ratio of 1.25. A deterministic fiber tracking
algorithm (30) was used in combination with anatomical
priors from a tractography atlas (26) to map all pathways
using inclusion and exclusion regions of interest. Topology-
informed pruning (31) was applied to the tractography with
16 iterations to remove false connections. The Dockerized
source code is available at http://dsi-studio.labsolver.org.
ATR resulted. In 49 bundles, visualized in. Supplementary
Figure 1, including association, limbic, commissural,
thalamic, and projection pathways.

For each session, and every pathway, several features were
extracted. Four microstructural features included DTI
metrics of FA, MD, radial diffusivity (RD), and axial
diffusivity (AD). The 11 macrostructure-based features

Dataset Number Subjects [ Number of Sessions Age
Baltimore Longitudinal 641 1322 [50 97]
Study of Aging 280 M Range [1 8] 73.3+9.8
Cambridge Centre for 356 356 [50 88]
Ageing Neuroscience 179 M Range [1] 67.9+10.3
Vanderbilt Memory & 187 558 [60 95]
Aging Project 113 M Range [1 4] 742+7.0
1184 2236 [50 97]
572 M Range [1 8] 72.6 9.5

Table 1. Datasets. This study used 3 longitudinal and cross-sectional
datasets, with a total of 1184 subjects and 2236 sessions of healthy
subjects aged 50-97 years.
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Figure 1. We investigated microstructure and macrostructure features of 71 pathways virtually dissected using TractSeg(1), visualized
and organized into association, limbic, commissural, thalamic, striatal, and projection and cerebellar pathways.

extracted from each pathway (details described in (2)) are
based on length (mean length, span, diameter; units of mm),
area (total surface area, total area of end regions; units of
mm?), volume (total volume, trunk volume, branch volume;
units of mm?), and shape (curl, elongation, irregularity;
unitless). Summary descriptions and equations for all
macrostructural features are shown in Table 2.

Quality control (QC) was performed to minimize possible
false results due to acquisition issues or failure of
tractography. For acquisition related QC, sessions were
removed from analysis if the diffusion weighted correlation
was less than 3 standard deviations away from the mean
correlation (for each dataset), or if signal slice dropout
occurred in >10% of slices (~3 slices). Individual bundles
were removed from the analysis if the number of segmented
streamlines was less than 3 standard deviations away from
the mean number (for each pathway), or if the total number
of streamlines was below 200 (indicating failure of
tractography), and subjects were removed from analysis if
>20% of pathways failed QC. We note that this stringent QC

still resulted in N>2000 samples for all but 7 pathways. The
total number of samples per dataset is given in
supplementary data (Supplementary Table 1), and a list of
abbreviations for all 120 (71 + 49) pathways is given in the
appendix.

Analytical Plan

To investigate the relationship between age and each WM
feature, linear mixed effects modeling was performed, with
each (z-normalized) feature, Y, modeled as a linear function
of age, y=p,+ B14ge + B,Sex + BTICV + B5(1 +
AGE | DATASET) + B4,(SUB) ,where subjects (SUB)
were entered as a random effect (i.e., subject-specific
random intercept), and subject sex (Sex) and total
intracranial volume (TICV) as a fixed effects. Additionally,
we modelled the association between age and outcome
variable as dataset (DATASET) specific due to expected
differences in MR protocols (32-36), and included a dataset
specific random slope and intercept. We note that the TICV
utilized was calculated from the T1-weighted image from the
baseline scan, and is scaled appropriately depending on units
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Feature Units | Type Equation Definition
Length mm | Length Length of bundle trajectory
LT T e () — v ¢+ 1)l
Span mm | Length Distance between two ends of the bundle
LYt o (1) — v ()l
Diameter mm | Length Average bundle diameter (when approximated

using cylinder model)

Radius of End mm | Length Coverage of end areas (when approximated using
Regions LyeN s _E|, circular model)
Surface Area mm? | Area Total surface area of bundle

N, x voxel spacing’

Area of End Regions [ mm? Area Total surface area of both end regions
N x voxel spacing?
Volume mm’ | Volume Total tract volume

N x voxel volume

Trunk Volume mm?® | Volume Portion of bundle connecting the two largest

Ny x voxel volume components of the end regions

Branch Volume mm?* | Volume Portion of bundle connecting areas that ‘branch’
Ny x voxel volume from largest end region
Curl N/A | Shape Range from 1 to infinity, with larger curl
length indicating greater curvature
span
Elongation N/A | Shape Ratio of length to diameter
length
diameter
Irregularity N/A | Shape Irregularity based on cylinder model (surface area
surface area larger than expected cylinder surface suggests
n x diameter x length higher ir i

Table 2. Macrostructural features, and their definitions. See (2) for complete descriptions and justifications. Following (2), a fiber bundle
is a set of streamline trajectories that is represented as 3D coordinate sequences: vi(t) | i = 1,2,3,...n, where n is the total number of
tracks, vi(t) is a sequence of 3D coordinates representing the trajectory of a track. tis a discrete variable from 1 to m;, where m; is the
number of the coordinates.

of the feature, Y (scaled by TICV/4pi)"(1/2) for area, and as a percent change per year, derived from the slope

scaled by (3*TICV/4pi)"(1/3 for length). normalized by the average value across the aging population
(from 50-97), and multiplied by 100, which represents the

Due to multiple comparisons, all statistical tests were percent change in feature per year.

controlled by the false discovery rate at 0.05 to determine

significance. All results are presented as the beta coefficient Results

of estimate ‘B;’, or in other words “the association of the

feature %y’ with Age”, which (due to normalization) Total Intracranial Volume, White Matter, Gray Matter,
represents the standard deviation change in feature per year. and CSF

These measures are derived for each pathway and each

feature. Supplementary results additionally show the results Supplementary Figure 2 shows results of global changes in

tissue volume. Total GM and WM tissue volumes decrease,
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Figure 2. What and where changes occur during aging. The beta coefficient from linear mixed effects modeling is shown as a
matrix for all features across all pathways, and also shown as boxplots for both microstructural features (left) and macrostructural
features (right). Boxplots are shown separated by pathway types. Results are shown for TractSeg-derived pathways.
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along with increases in CSF volumes, in agreement with the
literature. While GM, CSF, and global tissue volume are not
the primary aims of this study, we did find significant age
associations with these measures.

What changes and where?

To summarize association with age for all features and all
pathways, we show the beta coefficient associations with age
for all features in matrix form in Figure 2, along with
boxplots highlighting the percent change for all
microstructure and all macrostructure features. Similar
results, but shown as the percent-change-per-year from
linear mixed effects models, are shown in Supplementary
Figure 3.

Most notably, microstructure measures show fairly
homogenous changes across all pathways, with negative
associations for FA, and again positive associations for
diffusivities, with median association coefficients with age
of -0.02, and approximately +0.02 to +0.03, respectively
(changes of -0.2% per year, and +0.3-0.5% per year,
respectively). In general, features of length, area, and
volumes decrease with age, however, changes are
heterogenous across pathways. Measures of volume (total
volume, trunk volume, branch volume) show median
associations across pathways of -0.4, -0.4, and -0.4 (changes
of -0.9%, -0.9%, and -0.6% per year). Elongation show
positive trends with age, while irregularity decreases with
age.

Large commissural pathways (the body, splenium, and genu
of the corpus callosum), as well as thalamic and striatal
projections show the strongest negative trends of all features
of size with age. Additionally, a number of association fibers
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and fasciculi, including the SLF sub-components, ILF, FAT,
MLF, and PAT of both hemispheres show trends with age
for all shape features, with greater changes in volumes and
area of end regions than mean lengths and spans.

Supplementary Figure 4 and Supplementary Figure 5
show results from the ATR fiber tractography (for fit
coefficients and percent-change per year, respectively),
which indicate similar changes with age and in similar
locations, with fit coefficients and percent-change per year
of similar magnitudes. FA shows negative associations with
age, diffusivities show positive associations, with
microstructure measures associations similar across all
pathways. Measures of volume show the greatest negative
associations with age, with larger changes in the
commissural and thalamic pathways.

Visualizing change

To visualize where these changes occur, Figure 3 shows
example streamlines, separated into association, limbic,
commissural, thalamic, projection, and striatal pathways,
with bundles colored using the previous colormaps, and only
showing bundles with statistically significant changes
(Figure 3 shows the Beta coefficients from linear mixed-
effects models, Supplementary Figure 6 shows results
interpreted as percent-change per year). Notably, the
changes in FA and MD are similar, with the CST changing
the least (yet still statistically significant) with age, and the
forceps major and anterior thalamic and striatal radiations,
which occupy a majority of frontal lobe white matter space,
changing the most. Other pathways show relatively
homogenous change across age. Volumes and End Region
Areas show similar trends, with large changes in the frontal

Thalamic

i, -
.

Projection Striatal

Figure 3. Bundle-based visualization of associations with age. Bundles that have significant associations with age are colored
based on Beta-association coefficient from linear mixed-effects models, for 5 selected features. Only those with statistically
significant change with age are displayed. Results are shown for TractSeg-derived pathways.
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A. Projection Tract lllustration

Anterior Thalamic Radiation (ThA)

B. Projection Tract Age-Related
Microstructural Decline

Fractional Anisotropy (FA)

Axial Diffusivity (AD

Mean Diffusivity (MD!

10

C. Projection Tract Age-Related
Macrostructural Decline

Volume Branch Volume

BLSA VMAP

Figure 4. Example microstructural and macrostructural associations for a projection white matter tract. A 3D illustration of the
anterior thalamic radiation (ThA) is shown (A), as it exhibited significant microstructural (B) and microstructural decline (C). For
each microstructural and macrostructural plot, colored datapoints and lines represent individual cohorts.

lobe pathways, large changes in white matter of the occipital
lobe, and small (but statistically significant) changes in the
pathways associated with motor and pre-motor regions. The
mean length decreases at a much smaller rate per year,
remaining statistically significant, with visual exceptions of
AC (a small commissural pathway), and projection
pathways (including striatal and thalamic) to the occipital
lobe. Similarly, the left and right OR show increased length
with age, which would be an intuitive result of increased
CSF (i.e., larger ventricles), and thus a more tortuous path
from occipital lobe to thalamus. Similar results, in similar
locations, are confirmed using pathways segmented using
ATR, and are shown in Supplementary Figure 7 (as Beta
coefficients) and Supplementary Figure 8 (as percent-
change per year).

Pathways of interest

To provide even more insight into the microstructural and
macrostructural associations shown in this study, we have
provided illustrations for a projection tract (i.e., anterior
thalamic radiation, Figure 4) and commissural tract (i.e.,
forceps minor, Figure 5). For the anterior thalamic radiation
(3D illustration in Figure 4A), we found significant age-
related decline in all four microstructural measures (Figure
4B), in which there was a positive age-related association

with MD (p=3E-5), RD (p=5E-5), and AD (p=6E-4), and a
negative association with FA (p=3E-4). There were also
several significant associations with macrostructural
features for this tract. Figure 4C illustrates 4 of these
associations, including volume (p=1E-6), branch volume
(p=3E-3), surface area (p=1E-7), and area of end regions
(p=0.02). Figure 5 illustrates the associations for the forceps
minor tract, again demonstrating significant positive age-
related associations with diffusivities, negative age-related
associations with FA, and negative age-related associations
with volume, surface area, and area of end regions.

Discussion

Using a large, cross sectional and longitudinal dataset, we
analyze microstructural features and, for the first time,
shape-based features, of WM pathways across age. While
prior studies have evaluated how WM microstructure
changes with age, few studies have determined if these
patterns differ across different types of WM tracts. The
novelty of this study is that we evaluated the heterogeneous
age-related decline in microstructural and macrostructural
features in four types of WM tracts: association, limbic,
projection, and commissural. We found that while
microstructural features were globally sensitive to age-
related decline, these measures were largely homogeneous
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in their decline across the association, limbic, projection, and
commissural fibers. In contrast, we found that
macrostructural features were non-uniform in their trends in
age-related decline. Specifically, we found that, overall, the
projection and commissural fibers demonstrated more age-
related decline than the association and limbic fibers. Thus,
macrostructural features may be more specific in identifying
age-related WM decline, and could a more sensitive marker
for neurodegenerative disorders compared to microstructural
features.

Age-Related Microstructural Decline

Trends seen in diffusion microstructure indices mirror that
from existing literature, which we have confirmed generalize
to larger datasets, and across datasets with different
scanners, vendors, and acquisitions. Diffusivities increase
with age, with the largest change shown for radial, and mean
diffusivities, and to a lesser extent, axial diffusivities.
Consequently, this leads to a decrease in fractional
anisotropy. This has traditionally been attributed to myelin
loss and/or decreased axonal volume fractions and densities
(17, 21, 37, 38), with supplemental evidence provided
through advanced multicompartment modeling (18, 21).
However, care must be taken when interpreting these indices
as highly specific markers of tissue microstructure, as

A. Commissural Tract lllustration

Forceps Minor (CCfmin)

B. Commissural Tract Age-Related
Microstructural Decline

Eractional Anisotropy (FA;

Axial Diffusivity (AD
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diffusion (and DTI in particular) is sensitive to a number of
potential biophysical changes (39).

As expected, the datasets showed large effects on quantified
measures (36, 40) due to differences in acquisition
conditions (33, 34, 41), although the same trends were seen
across datasets, with only small differences in associations
with age. Combination of datasets in analysis requires either
accounting for these effects in modeling (as performed here)
or harmonizing data across scanners and sites, which is an
active area of interest (36, 42, 43). Harmonization studies
can utilize these well-characterized effects of age as
validation of techniques and algorithms.

Age-Related Macrostructural Decline

While tractography has been used to study the human brain
in aging, it is often used to simply extract pathway-specific
indices of microstructure (or quantitative) measures. Here,
we study shape-based features of tractography-defined
bundles, quantifying basic features (e.g., length, diameter,
volume) and more comprehensive features (e.g., curl,
irregularity, elongation). We find that, indeed, the shape of
white matter features changes with age. Notably, basic
macrostructural features like volume and total surface areas
exhibit age-related decline, in agreement with the observed

C. Commissural Tract Age-Related
Macrostructural Decline

Volume Branch Volume

Surface Area

Figure 5. Example microstructural and macrostructural associations for a commissural white matter tract. A 3D illustration of the
forceps minor (CCfmin) is shown (A), as it exhibited significant microstructural (B) and microstructural decline (C). For each
microstructural and macrostructural plot, colored datapoints and lines represent individual cohorts.
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trend of a decrease in total white matter volume. Further,
more comprehensive measures, such as irregularity and
elongation, age-related decline. In our subsequent analysis
to determine if there was heterogeneous age-related decline
between the association, limbic, association, and
commissural tracts, we found widespread significant
differences (see Figure 2). For example, age-related changes
in elongation (length + diameter) were relatively low in the
association and limbic tracts but higher in the projection and
commissural tracts. Furthermore, age-related changes were
similar for irregularity [surface area + (m x diameter x
length)], in which age-related decline was lower in the
projection and commissural tracts compared to the
association and limbic tracts.

Our findings therefore indicate that specific white matter
features can be used to identify age-related decline, and these
features can also be incorporated into clinical populations to
identify abnormal aging patterns. Future work should
investigate different trends in disease cohorts, where this
analysis facilitates asking “what changes?” and “where?”.
This also results in the creation of a large feature space (10’s
of pathways x 10’s of features) for each subject, which may
facilitate machine learning, deep learning, and
dimensionality  reduction  techniques to identify
abnormalities in an individual subject or cohort. Similar
analysis may also be used in an unsupervised fashion — rather
than utilizing predefined bundles, a connectome-style
approach can be used to extract every fiber bundle in a large
connectome matrix followed by subsequent feature-based
analysis of every edge in the connectome.

Global and local changes

In general, all pathways show consistent changes in tissue
microstructure with age, indicating a largely global change
in microstructure. In contrast, shape features of pathways
show very different effect sizes and relative changes per year
across the brain, which indicates local changes, and
pathway-specific differences image. Overall, this suggests
that microstructure features of pathways change together,
and at relatively the same rates, whereas macrostructural
features do not and indicate location-specific indices of
change, whereby projection and commissural fibers exhibit
more significant age-related decline. Thus, pathway features
might be a more sensitive biomarker for differences due to
disease or disorders.

Limitations

This study has several limitations. While we utilized large
samples sizes and showed generalizability to very different
aging datasets, results were tested on just one bundle
segmentation algorithm. Additionally, many pathways were
investigated, significantly more than is typical for many
studies on aging, and many of these pathways are smaller
association pathways that may be harder or more variable to
track. Nevertheless, the large sample size facilitated
statistical analysis and findings with small effect sizes. The
use of different datasets with different acquisitions is known
to result in very different quantitative indices, and in the
current study, very different tractography results. However,
we consider this an advantage to the current study where

results generalized across all data, and effect of dataset was
included in modeling.

Future studies should investigate and characterize shape
changes across the lifespan. This may be particularly
relevant in childhood where large changes in brain structure
and microstructure are expected. Second, the combination of
shape and microstructure features in disease should be
investigated. There is a significant body of research on DTI
changes in disease, and it is intuitive that the shape, location,
and geometry of pathways may also experience significant
alterations in such states. Finally, the relationship between
GM regions and WM structure should be investigated. The
full feature space of GM volume, thickness, and surface area,
in combination with WM macrostructure and microstructure
features, will facilitate a complete description of changes in
the brain during aging.

Conclusion

We provide a comprehensive characterization of WM
changes in aging. Using large cross-sectional and
longitudinal diffusion datasets, we have shown that both
microstructural and macrostructural geometrical features of
the human brain change during normal healthy aging.
Microstructural indices of anisotropy and diffusivity show
the largest effects with age, with global trends apparent
across all pathways. Macrostructural features of volume,
surfaces areas, and lengths also change with age, with trends
that are not uniform across all pathways. Thus, tract-specific
changes in geometry occur in normal aging. Results from
this study may be useful in understanding biophysical and
structural changes occurring during normal aging and will
facilitate comparisons in a variety of diseases or abnormal
conditions.
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Appendix

The bundles resulting from each segmentation pipeline are
given as a list below, with acronyms used in the text.

TractSeg:

Arcuate fascicle left (AF_L); Arcuate fascicle right (AF_R);
Anterior Thalamic Radiation left (ATR L); Thalamic
Radiation right; (ATR_R); Commissure Anterior (CA);
Rostrum (CC_1; Genu (CC_2); Rostral body (Premotor)
(CC_3); Anterior midbody (Primary Motor) (CC_4);
Posterior midbody (Primary Somatosensory) (CC_5);
Isthmus (CC_6); Splenium (CC_7); Corpus Callosum —all
(CC); Cingulum left (CG_L); Cingulum right (CG_R);
Corticospinal tract left (CST_L); Corticospinal tract right
(CST_R); Fronto-pontine tract left (FPT_L); Fronto-pontine
tract right (FPT R); Fornix left (FX L); Fornix right
(FX_R); Inferior cerebellar peduncle left (ICP_L); Inferior
cerebellar peduncle right (ICP_R); In- ferior occipito-frontal
fascicle left (IFO_L); Inferior occipito-frontal fascicle right
(IFO_R); Inferior longitudinal fascicle left (ILF_L); Inferior
longitudinal fascicle right (ILF_R); Middle cerebellar
peduncle (MCP); Middle longitudinal fascicle left
(MLF_L); Middle longitudinal fascicle right (MLF_R);
Optic radiation left (OR_L); Optic radiation right (OR_R);
Parieto-occipital pontine left (POPT L); Parieto-occipital
pontine right (POPT_R); Superior cerebellar peduncle left
(SCP_L); Superior cerebellar peduncle right (SCP_R);
Superior longitudinal fascicle III left SLF III L); Superior
longitudinal fascicle Il right (SLF_III R); Superior longitu-
dinal fascicle II left (SLF _II L); Superior longitudinal
fascicle II right (SLF_II R); Superior longitudinal fascicle I
left (SLF I L); Superior lon- gitudinal fascicle I right
(SLF_I R); Striato-fronto-orbital left (ST FO L); Striato-
fronto-orbital right (ST _FO_R); Striato-occipital left
(ST_OCC_L); Striato-occipital right (ST_OCC_R); Striato-
parietal left (ST _PAR L); Striato-parietal  right
(ST_PAR R); Striato-postcentral left (ST_POSTC L);
Striato-postcentral right (ST_POSTC_R); Striato-precentral
left (ST PREC_L); Striato-precentral right (ST _PREC_R);
Striato-prefrontal left (ST_PREF_L); Striato-prefrontal right
(ST_PREF R); Striato- premotor left (ST _PREM L);
Striato-premotor right (ST_PREM R); Thalamo-occipital
left (T_OCC_L); Thalamo-occipital right (T _OCC_R);
Thalamo-parietal left (T_PAR _L); Thalamo-parietal right
(T_PAR_R); Thalamo-postcentral left (T_POSTC L);

Schilling et al., 12 February 2022 — preprint copy - BioRxiv

Thalamo-postcentral  right (T _POSTC R); Thalamo-
precentral left (T _PREC_L); Thalamo-precentral right
(T_PREC _R); Thalamo-prefrontal left (T PREF L);
Thalamo- prefrontal right (T_PREF R); Thalamo-premotor
left (T_PREM _L); Thalamo-premotor right (T_PREM_R);
Uncinate fascicle left (UF_L); Uncinate fascicle right
(UF_R).

ATR:

Arcuate Fasciculus L (AF_L); Arcuate Fasciculus R
(AF_R); Cortico Spinal Tract L (CST_L); Cortico Spinal
Tract R (CST_R); Cortico Stri- atal Pathway L (CS_L);
Cortico Striatal Pathway R (CS_R); Corticobulbar Tract L
(CBT_L); Corticobulbar Tract R (CBT_R); Corticopontine
Tract L (CPT_L); Corticopontine Tract R (CPT_R);
Corticothalamic Pathway L (CTP_L); Corticothalamic
Pathway R (CTP_R); Inferior Cerebellar Pe- duncle L
(ICP_L); Inferior Cerebellar Peduncle R (ICP_R); Inferior
Fronto Occipital Fasciculus L (IFOF_L); Inferior Fronto
Occipital Fasciculus R (IFOF_R); Inferior Longitudinal
Fasciculus L (ILF_L); Inferior Longitu- dinal Fasciculus R
(ILF_R); Optic Radiation L (OR_L); Optic Radiation R
(OR_R); Middle Longitudinal Fasciculus L (MdLF L);
Middle Longi- tudinal Fasciculus R (MdLF_R); Uncinate
Fasciculus L (UF_L); Uncinate Fasciculus R (UF_R).
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Supplementary Material

Association Projection + Commissural

i

Arcuate Fasciculus (L/R) Frontal Aslant Tract (L/R Fornix (L/R) v Thalamic Radiation Anterior (L/R)
Superior Longitudinal Fasciculusi Inferior Fronto Occipital Fasciculus  Cingulum Frontal Parahippocampal (L/R) R Thalamic Radiation Inferior (L/R)
(Y/R) (L/R) lum Frontal Parietal (L/R) c Thalamic Radiation Posterior (L/R)
Superior Longitudinal ingulum Parahippocampal (L/R) Corpus Callosum Forceps Major Thalamic Radiation Superior (L/R)
Fasciculus2 (L/R) Middle Longitudinal Fasciculus (L/R) Cingulum Parahippocampal Parietal  Corpus Callosum Forceps Minor
Superior Longitudinal Vertical Occipital Fasciculus (L/R) (YR)
Fasciculus3 (L/R) Cingulum Rarolfa
Parietal Aslant Tract (L/R) Uncinate Fasciculus

Supplementary Figure 1. We investigated microstructure and macrostructure features of 49 pathways virtually segmented using
DSI Studio, visualized and organized into association, limbic, projection, and commissural fibers.

PATHWAY ABBREVIATION | BLSA | CAMCAN | VMAP | TOTAL
Arcuate_Fasciculus_L AF_L 1312| 839 [ 354 [ 2505
Arcuate_Fasciculus_R AF_R 1184 743 301 | 2228

Cingulum_Frontal_Parahippocampal_L CgFPH_L 1036 728 329 | 2093
Cingulum_Frontal_Parahippocampal R | CgFPH R [1077] 734 | 340 [ 2151
Cingulum_Frontal_Parietal_L CgFP_L 1310] 842 [ 355 [ 2507
Cingulum_Frontal_Parietal R CgFPL_R 1319] 843 [ 354 [ 2516
Cingulum_Parahippocampal_L CgP_L 1313 841 353 | 2507
Cingulum_Parahippocampal_R CgP R 1318] 839 | 352 | 2509
Cingulum_Parahippocampal_Parietal_L CgPP_L 850 | 643 | 240 | 1733
Cingulum_Parahippocampal_Parietal_R CgPP_R 1112 771 319 | 2202
Cingulum_Rarolfactory_L CgR_L 431 198 | 200 | 829
Cingulum_Rarolfactory R CgR_R 1230] 757 [ 352 [ 2339
Corpus_Callosum_Body CChody 1266 775 | 335 | 2376
Corpus_Callosum_Forceps_Major CCfmaj 1321 836 353 | 2510
Corpus_Callosum_Forceps_Minor CCfmin 1322] 845 [ 351 [ 2518
Corticospinal_Tract_L CST_L 1275| 843 356 | 2474
Corticospinal_Tract_R CST_R 1259 845 351 | 2455

Fornix_L Fx_L 859 763 274 | 1896

Fornix_R Fx_R 629 | 642 | 258 [ 1529
Frontal_Aslant_Tract_L FAT_L 1303] 835 | 355 | 2493
Frontal_Aslant_Tract_R FAT_R 1311 843 356 | 2510

Inferior_Fronto_Occipital_Fasciculus_L IFOF_L 1298] 822 | 355 | 2475
Inferior_Fronto_Occipital_Fasciculus_R IFOFs_ R |1316] 827 [ 354 | 2497
Inferior_Longitudinal_Fasciculus_L ILF_L 1309 842 355 | 2506
Inferior_Longitudinal_Fasciculus_R ILF_R 1321 834 355 | 2510
Middle_Longitudinal_Fasciculus_L MLF_L 1211 738 [ 335 | 2284
Middle_Longitudinal_Fasciculus_R MLF_R 1249 722 328 | 2299
Optic_Radiation_L OR_L 1140] 783 | 354 [ 2277
Optic_Radiation_R OR_R 930 | 592 | 355 [ 1877
Parietal_Aslant_Tract_L PAT_L 1319] 840 [ 354 [ 2513
Parietal_Aslant_Tract_R PAT_R 1322 843 355 | 2520
Superior_Longitudinal_Fasciculus1_L SLF1_L 1317 841 355 | 2513
Superior_Longitudinal_Fasciculus1_R SLF1 R 1313| 833 | 351 | 2497
Superior_Longitudinal_Fasciculus2_L SLF2_L 1319 844 | 355 | 2518
Superior_Longitudinal_Fasciculus2_R SLF2_R 1243 799 345 | 2387
Superior_Longitudinal_Fasciculus3_L SLF3_L 1319 841 354 | 2514
Superior_Longitudinal_Fasciculus3_R SLF3_R 1310] 843 355 | 2508
Thalamic_Radiation_Anterior_L ThA_L 964 | 759 | 346 | 2069
Thalamic_Radiation_Anterior_R ThA_R 1069 764 352 | 2185
Thalamic_Radiation_Inferior_L Thi_L 1303| 831 | 353 | 2487
Thalamic_Radiation_Inferior_R Thi_R 1155|788 | 353 | 229
Thalamic_Radiation_Posterior_L ThP_L 1184 788 353 | 2325
Thalamic_Radiation_Posterior_R ThP_R 1088 592 344 | 2024
Thalamic_Radiation_Superior_L Ths_L 633 | 397 [ 348 [ 1378
Thalamic_Radiation_Superior R Ths_R 453 | 183 [ 353 | 989
Uncinate_Fasciculus_L UF_L 1320 839 352 | 2511
Uncinate_Fasciculus_R UF_R 1250] 768 [ 352 | 2370
Vertical_Occipital_Fasciculus_L VOF_L 1321 839 | 353 | 2513
Vertical_Occipital_Fasciculus_R VOF_R 1316 833 356 | 2505

Supplementary Table 1. Abbreviations and sample size for studied pathways.
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Supplementary Figure 2. Global changes in tissue volume occur in aging, including decreases in GM volume, and WM volume,
and increase in CSF volume. Colors of datapoints and lines represent 3 different datasets utilized.
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Supplementary Figure 3. What and where changes occur during aging. The percent-change per year is shown as a matrix for
all features across all pathways, and also shown as boxplots for both microstructural features (left) and macrostructural features
(right). Boxplots are shown separated by pathway types. Results are shown for TractSeg-derived Pathways.

11


https://doi.org/10.1101/2022.02.10.479977
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.10.479977; this version posted February 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Schilling et al., 12 February 2022 — preprint copy - BioRxiv

Association Limbic Commissural Thalamic Projection

TotalSurfaceArea -

m |
TotalAreaOfEndRegions == i
Volume
TrunkVolume

BranchVolume —

u

Curl - i [ |
sorgaton . [l e v
) Ly B )

0.05

;
-0.05 g ¢ 0
X QO Q Q N o & > o @ e @ S
CYV VS FFFS ST TS
z'bé’ o o{&o & ¥ <$\ é$ ‘<>°° \“QJ(b
& F L T
«C‘)\' @"b
0\?’
<8

Supplementary Figure 4. What and where changes occur during aging. The beta coefficient from linear mixed effects modeling
is shown as a matrix for all features across all pathways, and also shown as boxplots for both microstructural features (left) and
macrostructural features (right). Boxplots are shown separated by pathway types. Results are shown for ATR-derived pathways.
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Supplementary Figure 5. What and where changes occur during aging. The percent-change per year is shown as a matrix for
all features across all pathways, and also shown as boxplots for both microstructural features (left) and macrostructural features
(right). Boxplots are shown separated by pathway types. Results are shown for ATR-derived Pathways.
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Supplementary Figure 6. Bundle-based visualization of changes during aging. Bundles that have significant associations with
age are colored based on percent-change per year, for 5 selected features. Only those with statistically significant change with
age are displayed. Results are shown for TractSeg-derived pathways.
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Supplementary Figure 7. Bundle-based visualization of associations with age. Bundles that have significant associations with
age are colored based on Beta-association coefficient from linear mixed-effects models, for 5 selected features. Only those with
statistically significant change with age are displayed. Results are shown for ATR-derived pathways.
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Supplementary Figure 8. Bundle-based visualization of changes during aging. Bundles that have significant associations with
age are colored based on percent-change per year, for 5 selected features. Only those with statistically significant change with
age are displayed. Results are shown for ATR-derived pathways.
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