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Abstract 

Quantifying the microstructural and macrostructural geometrical features of the human brain9s connections is necessary for 

understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from 
one cross-sectional and two longitudinal datasets totaling in 1184 subjects and 2236 sessions of people aged 50-97 years. Data was 
drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging dataset, Cambridge Centre for Ageing 
Neuroscience dataset, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 
11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect 
modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. 
Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for 
diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway 

shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A 
particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, 
macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural 
tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide 
a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more 
sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging 
and could have widespread implications for a variety of neurodegenerative disorders.  
 

Keywords: white matter, aging, tractography, volume, diffusion MRI  

Introduction 

 

To better understand changes related to normal aging, and 
differences due to disease, it is necessary to characterize how 
and where the brain changes with age. Studies using 

magnetic resonance imaging (MRI) have shown that the 
brain undergoes significant changes with age. Most studies 
focus on gray matter of the brain, where correlations 
between cortical volumes and age have been consistently 
described. These findings provide evidence of heterogenous 
patterns of normal age-related changes (3-8), with detectable 
differences in neurological diseases and disorders (9-13).  
 

While white matter appears relatively homogenous on 
conventional structural MRI, diffusion MRI and subsequent 
fiber tractography enables investigation of individual fiber 
pathways of the brain. To date, most diffusion MRI studies 
of aging characterize features of tissue microstructure using 

cross-sectional datasets. For example, diffusion tensor 

imaging (DTI) shows fractional anisotropy (FA) is 
negatively associated with age, and mean diffusivity (MD) 
positively associated with age across white matter pathways 
(14-17), and have shown that advanced multicompartment 
diffusion modeling also provides sensitive measures of age-
related microstructural changes (18-21). Microstructural 
features of these fiber pathways are biologically relevant in 
aging research as demyelination is thought to occur in a 

heterogeneous manner, whereby late-myelinating fiber 
pathways exhibit neurodegeneration prior to other fiber 
pathways. This idea, known as the myelodegeneration 
hypothesis, has recently been supported by a large-scale 
diffusion MRI study leveraging data from the UK Biobank 
(n=7,167) (22). Specifically, they found disproportional age-
related differences in fiber pathways projecting to/from the 
prefrontal cortex.  
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While diffusion-based microstructure has been widely 
studied in aging, the macrostructural features of these fiber 
pathways play a pivotal role along the aging continuum; 
however, they have yet to be studied. As recently 
described(2), these macrostructural properties 3 descriptions 

of lengths, areas, and volumes - can be used to describe the 
geometrical and connectivity features of fiber bundles. The 
incorporation of these features into the study of aging and 
aging-related disorders could provide an additional avenue 
to elucidate the mechanisms driving white matter 
neurodegeneration. Given our prior knowledge, our 
hypothesis is that microstructural and macrostructural 
features will be disproportionately affected in fiber tracts 

projecting to/from the prefrontal cortex along the aging 
continuum.  
 
To address our hypothesis, we will leverage three well-
established cohorts of aging, including two longitudinal 
cohorts [Baltimore Longitudinal Study of Aging 
(BLSA)(23), Vanderbilt Memory & Aging Project 
(VMAP)(24)] and one cross-sectional cohort [Cambridge 

Centre for Ageing and Neuroscience (Cam-CAN)(25)]. 
Within these cohorts, automated tractography segmentation 
will be conducted within 120 white matter tracts, including 
association, limbic, projection (including thalamic and 
striatal), and commissural tracts. We will then quantify 4 
microstructural and 11 macrostructural features within these 
tracts to determine if these metrics exhibit disproportionate 
age-related decline.  

Methods 

Data 

This study used data from three datasets, summarized in 
Table 1, and contained a total of 1184 subjects and 2236 

sessions of healthy subjects aged 50-97 years. All datasets 
were filtered to exclude subjects with diagnoses of mild 
cognitive impairment, Alzheimer9s disease, or dementia at 
baseline, or if they developed these conditions during the 
follow-up interval. Finally, datasets were filtered in order to 
focus on subjects aged 50+, due to limited samples sizes of 
each dataset with subjects below 50 years old.  
 
First, was the Baltimore Longitudinal Study of Aging 

(BLSA) dataset, with 641 subjects scanned multiple times 
ranging from 1 and 8 sessions, and time between scans 
ranging from 1 to 10 years, yielding a total of 1322 diffusion 
datasets. Diffusion MRI data was acquired on a 3T Philips 
Achieva scanner (32 gradient directions, b-
value=700s/mm2, TR/TE=7454/75ms, reconstructed voxel 
size=0.81×0.81×2.2mm, reconstruction matrix=320×320, 
acquisition matrix=115× 115, field of view=260×260mm). 

Second, was data from the Vanderbilt Memory & Aging 
Project (VMAP), with 187 subjects, scanned between 1-4 
sessions, with a total of 558 diffusion datasets. Diffusion 
MRI data was acquired on a 3T Philips Achieva scanner (32 
gradient directions, b-value=1000s/mm2, reconstructed 
voxel size=2x2x2mm). Third, was data from the Cambridge 
Centre for Ageing and Neuroscience (Cam-CAN) data 
repository (25) with 356 subjects, each scanned once using 

a 3T Siemens TIM Trio scanner with a 32-channel head coil 
(30 directions at b-value=1000s/mm2, 30 directions at b-

value=2000s/mm2, reconstructed voxel size=2x2x2mm). 
All human datasets from Vanderbilt University were 
acquired after informed consent under supervision of the 
appropriate Institutional Review Board. All additional 
datasets are freely available and unrestricted for non-

commercial research purposes. This study accessed only de-
identified patient information. 

Processing 

For every session, sets of white matter pathways were 

virtually dissected using two automated fiber tractography 
pipelines, TractSeg(1) and Automatic Track Recognition 
(ATR) (26). Two methods, based on different technological 
and anatomical principles of tractography segmentation 
were selected to emphasize generalizability of results across 
choices of different workflow(27).  
 
Throughout the manuscript, TractSeg analysis is presented 

as primary results, and ATR as supplementary. 
 
Briefly, TractSeg was based on convolutional neural 
networks and performed bundle-specific tractography based 
on a field of estimated fiber orientations (1). We 
implemented the dockerized version at 
(https://github.com/MIC-DKFZ/TractSeg), which generated 
fiber orientations using constrained spherical deconvolution 

with the MRtrix3 software (28). TractSeg resulted in 72 
bundles, visualized in Figure 1, including association, 
limbic, commissural, thalamic, striatal, and projection and 
cerebellar pathways.  
 
ATR was performed in DSI Studio software using batch 
automated fiber tracking (26). Data were reconstructed using 
generalized q-sampling imaging(29) with a diffusion 

sampling length ratio of 1.25. A deterministic fiber tracking 
algorithm (30) was used in combination with anatomical 
priors from a tractography atlas (26) to map all pathways 
using inclusion and exclusion regions of interest. Topology-
informed pruning (31) was applied to the tractography with 
16 iterations to remove false connections. The Dockerized 
source code is available at http://dsi-studio.labsolver.org. 
ATR resulted. In 49 bundles, visualized in. Supplementary 

Figure 1, including association, limbic, commissural, 

thalamic, and projection pathways.  
  
For each session, and every pathway, several features were 
extracted. Four microstructural features included DTI 
metrics of FA, MD, radial diffusivity (RD), and axial 
diffusivity (AD). The 11 macrostructure-based features 

Table 1. Datasets. This study used 3 longitudinal and cross-sectional 

datasets, with a total of 1184 subjects and 2236 sessions of healthy 

subjects aged 50-97 years. 

Dataset Number Subjects Number of Sessions Age

Baltimore Longitudinal 

Study of Aging

641

280 M

1322

Range [1  8]

[50 97]

73.3 ± 9.8

Cambridge Centre for 

Ageing Neuroscience 

356

179 M

356

Range [1]

[50 88]

67.9 ± 10.3

Vanderbilt Memory & 

Aging Project

187

113 M

558

Range [1  4]

[60 95]

74.2 ± 7.0

1184

572 M

2236

Range [1  8]

[50 97]

72.6 ± 9.5
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extracted from each pathway (details described in (2)) are 
based on length (mean length, span, diameter; units of mm), 
area (total surface area, total area of end regions; units of 
mm2), volume (total volume, trunk volume, branch volume; 
units of mm3), and shape (curl, elongation, irregularity; 
unitless). Summary descriptions and equations for all 
macrostructural features are shown in Table 2.  
  

Quality control (QC) was performed to minimize possible 

false results due to acquisition issues or failure of 
tractography. For acquisition related QC, sessions were 
removed from analysis if the diffusion weighted correlation 
was less than 3 standard deviations away from the mean 
correlation (for each dataset), or if signal slice dropout 
occurred in >10% of slices (~3 slices). Individual bundles 
were removed from the analysis if the number of segmented 
streamlines was less than 3 standard deviations away from 

the mean number (for each pathway), or if the total number 
of streamlines was below 200 (indicating failure of 
tractography), and subjects were removed from analysis if 
>20% of pathways failed QC. We note that this stringent QC 

still resulted in N>2000 samples for all but 7 pathways. The 
total number of samples per dataset is given in 
supplementary data (Supplementary Table 1), and a list of 
abbreviations for all 120 (71 + 49) pathways is given in the 
appendix.  

Analytical Plan  

To investigate the relationship between age and each WM 
feature, linear mixed effects modeling was performed, with 
each (z-normalized) feature, Y, modeled as a linear function 

of age, � = �! + �"��� + �#��� +	�$���� + 	�$(1 +

���	|	�������) +	�%(���)	 ,where subjects (SUB) 

were entered as a random effect (i.e., subject-specific 
random intercept), and subject sex (Sex)  and total 
intracranial volume (TICV) as a fixed effects. Additionally, 
we modelled the association between age and outcome 
variable as dataset (DATASET) specific due to expected 

differences in MR protocols (32-36), and included a dataset 
specific random slope and intercept. We note that the TICV 
utilized was calculated from the T1-weighted image from the 
baseline scan, and is scaled appropriately depending on units 

Figure 1. We investigated microstructure and macrostructure features of 71 pathways virtually dissected using TractSeg(1), visualized 
and organized into association, limbic, commissural, thalamic, striatal, and projection and cerebellar pathways.   
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of the feature, Y (scaled by TICV/4pi)^(1/2) for area, and 
scaled by (3*TICV/4pi)^(1/3 for length). 
 
Due to multiple comparisons, all statistical tests were 
controlled by the false discovery rate at 0.05 to determine 
significance. All results are presented as the beta coefficient 
of estimate 8B19, or in other words <the association of the 

feature 8y9 with Age=, which (due to normalization) 
represents the standard deviation change in feature per year. 
These measures are derived for each pathway and each 
feature. Supplementary results additionally show the results 

as a percent change per year, derived from the slope 
normalized by the average value across the aging population 
(from 50-97), and multiplied by 100, which represents the 
percent change in feature per year.  

Results 

Total Intracranial Volume, White Matter, Gray Matter, 

and CSF 

Supplementary Figure 2 shows results of global changes in 
tissue volume. Total GM and WM tissue volumes decrease, 

Table 2. Macrostructural features, and their definitions. See (2) for complete descriptions and justifications. Following (2), a fiber bundle 

is a set of streamline trajectories that is represented as 3D coordinate sequences: vi(t) | i = 1,2,3,&n, where n is the total number of 
tracks, vi(t) is a sequence of 3D coordinates representing the trajectory of a track. t is a discrete variable from 1 to mi, where mi is the 
number of the coordinates.  

Feature Units Type Equation Definition 

Length mm Length  

 

Length of bundle trajectory 

Span mm Length  

 

Distance between two ends of the bundle 

Diameter mm Length  

 

Average bundle diameter (when approximated 

using cylinder model) 

Radius of End 

Regions 

mm Length  

 

Coverage of end areas (when approximated using 

circular model) 

Surface Area mm2 Area  

 

Total surface area of bundle 

Area of End Regions mm2 Area  

NE x voxel spacing2 

Total surface area of both end regions 

Volume mm3 Volume  

 

Total tract volume 

Trunk Volume mm3 Volume  

 

Portion of bundle connecting the two largest 

components of the end regions 

Branch Volume mm3 Volume  

NB x voxel volume 

Portion of bundle connecting areas that 8branch9 

from largest end region 

Curl N/A Shape 

 

 	
"#$%&/

()*$
 

Range from 1 to infinity, with larger curl 

indicating greater curvature 

Elongation N/A Shape 

 

 

 

"#$%&/

+,*-#&#.
 

Ratio of length to diameter 

Irregularity N/A Shape  

(/.0*1#	*.#*

2	3	+,*-#&#.	3	"#$%&/
 

Irregularity based on cylinder model (surface area 

larger than expected cylinder surface suggests 

higher irregularity) 

 

Figure 2. What and where changes occur during aging. The beta coefficient from linear mixed effects modeling is shown as a 
matrix for all features across all pathways, and also shown as boxplots for both microstructural features (left) and macrostructural 
features (right). Boxplots are shown separated by pathway types. Results are shown for TractSeg-derived pathways.  
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along with increases in CSF volumes, in agreement with the 
literature. While GM, CSF, and global tissue volume are not 
the primary aims of this study, we did find significant age 
associations with these measures.  

What changes and where? 

To summarize association with age for all features and all 
pathways, we show the beta coefficient associations with age 
for all features in matrix form in Figure 2, along with 
boxplots highlighting the percent change for all 

microstructure and all macrostructure features. Similar 
results, but shown as the percent-change-per-year from 
linear mixed effects models, are shown in Supplementary 

Figure 3.  
 
Most notably, microstructure measures show fairly 
homogenous changes across all pathways, with negative 
associations for FA, and again positive associations for 

diffusivities, with median association coefficients with age 
of -0.02, and approximately +0.02 to +0.03, respectively 
(changes of -0.2% per year, and +0.3-0.5% per year, 
respectively). In general, features of length, area, and 
volumes decrease with age, however, changes are 
heterogenous across pathways. Measures of volume (total 
volume, trunk volume, branch volume) show median 
associations across pathways of -0.4, -0.4, and -0.4 (changes 

of -0.9%, -0.9%, and -0.6% per year). Elongation show 
positive trends with age, while irregularity decreases with 
age.  
 
Large commissural pathways (the body, splenium, and genu 
of the corpus callosum), as well as thalamic and striatal 
projections show the strongest negative trends of all features 
of size with age. Additionally, a number of association fibers 

and fasciculi, including the SLF sub-components, ILF, FAT, 
MLF, and PAT of both hemispheres show trends with age 
for all shape features, with greater changes in volumes and 
area of end regions than mean lengths and spans.  
 

Supplementary Figure 4 and Supplementary Figure 5 
show results from the ATR fiber tractography (for fit 
coefficients and percent-change per year, respectively), 
which indicate similar changes with age and in similar 
locations, with fit coefficients and percent-change per year 
of similar magnitudes. FA shows negative associations with 
age, diffusivities show positive associations, with 
microstructure measures associations similar across all 

pathways. Measures of volume show the greatest negative 
associations with age, with larger changes in the 
commissural and thalamic pathways.  
 

Visualizing change 

To visualize where these changes occur, Figure 3 shows 
example streamlines, separated into association, limbic, 
commissural, thalamic, projection, and striatal pathways, 
with bundles colored using the previous colormaps, and only 
showing bundles with statistically significant changes 
(Figure 3 shows the Beta coefficients from linear mixed-
effects models, Supplementary Figure 6 shows results 

interpreted as percent-change per year). Notably, the 
changes in FA and MD are similar, with the CST changing 
the least (yet still statistically significant) with age, and the 
forceps major and anterior thalamic and striatal radiations, 
which occupy a majority of frontal lobe white matter space, 
changing the most. Other pathways show relatively 
homogenous change across age. Volumes and End Region 
Areas show similar trends, with large changes in the frontal 

Figure 3. Bundle-based visualization of associations with age. Bundles that have significant associations with age are colored 
based on Beta-association coefficient from linear mixed-effects models, for 5 selected features. Only those with statistically 

significant change with age are displayed. Results are shown for TractSeg-derived pathways.   
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lobe pathways, large changes in white matter of the occipital 
lobe, and small (but statistically significant) changes in the 
pathways associated with motor and pre-motor regions. The 
mean length decreases at a much smaller rate per year, 
remaining statistically significant, with visual exceptions of 
AC (a small commissural pathway), and projection 

pathways (including striatal and thalamic) to the occipital 
lobe. Similarly, the left and right OR show increased length 
with age, which would be an intuitive result of increased 
CSF (i.e., larger ventricles), and thus a more tortuous path 
from occipital lobe to thalamus. Similar results, in similar 
locations, are confirmed using pathways segmented using 
ATR, and are shown in Supplementary Figure 7 (as Beta 
coefficients) and Supplementary Figure 8 (as percent-

change per year).  

Pathways of interest 

To provide even more insight into the microstructural and 
macrostructural associations shown in this study, we have 

provided illustrations for a projection tract (i.e., anterior 
thalamic radiation, Figure 4) and commissural tract (i.e., 
forceps minor, Figure 5). For the anterior thalamic radiation 
(3D illustration in Figure 4A), we found significant age-
related decline in all four microstructural measures (Figure 

4B), in which there was a positive age-related association 

with MD (p=3E-5), RD (p=5E-5), and AD (p=6E-4), and a 
negative association with FA (p=3E-4). There were also 
several significant associations with macrostructural 
features for this tract. Figure 4C illustrates 4 of these 
associations, including volume (p=1E-6), branch volume 
(p=3E-3), surface area (p=1E-7), and area of end regions 

(p=0.02). Figure 5 illustrates the associations for the forceps 
minor tract, again demonstrating significant positive age-
related associations with diffusivities, negative age-related 
associations with FA, and negative age-related associations 
with volume, surface area, and area of end regions.  

Discussion 

Using a large, cross sectional and longitudinal dataset, we 
analyze microstructural features and, for the first time, 
shape-based features, of WM pathways across age. While 
prior studies have evaluated how WM microstructure 
changes with age, few studies have determined if these 
patterns differ across different types of WM tracts. The 

novelty of this study is that we evaluated the heterogeneous 
age-related decline in microstructural and macrostructural 
features in four types of WM tracts: association, limbic, 
projection, and commissural. We found that while 
microstructural features were globally sensitive to age-
related decline, these measures were largely homogeneous 

Figure 4. Example microstructural and macrostructural associations for a projection white matter tract. A 3D illustration of the 
anterior thalamic radiation (ThA) is shown (A), as it exhibited significant microstructural (B) and microstructural decline (C). For 

each microstructural and macrostructural plot, colored datapoints and lines represent individual cohorts. 
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in their decline across the association, limbic, projection, and 
commissural fibers. In contrast, we found that 
macrostructural features were non-uniform in their trends in 
age-related decline. Specifically, we found that, overall, the 
projection and commissural fibers demonstrated more age-

related decline than the association and limbic fibers. Thus, 
macrostructural features may be more specific in identifying 
age-related WM decline, and could a more sensitive marker 
for neurodegenerative disorders compared to microstructural 
features. 

Age-Related Microstructural Decline 

Trends seen in diffusion microstructure indices mirror that 
from existing literature, which we have confirmed generalize 
to larger datasets, and across datasets with different 
scanners, vendors, and acquisitions. Diffusivities increase 
with age, with the largest change shown for radial, and mean 
diffusivities, and to a lesser extent, axial diffusivities. 

Consequently, this leads to a decrease in fractional 
anisotropy. This has traditionally been attributed to myelin 
loss and/or decreased axonal volume fractions and densities 
(17, 21, 37, 38), with supplemental evidence provided 
through advanced multicompartment modeling (18, 21). 
However, care must be taken when interpreting these indices 
as highly specific markers of tissue microstructure, as 

diffusion (and DTI in particular) is sensitive to a number of 
potential biophysical changes (39).  
 
As expected, the datasets showed large effects on quantified 
measures (36, 40) due to differences in acquisition 

conditions (33, 34, 41), although the same trends were seen 
across datasets, with only small differences in associations 
with age. Combination of datasets in analysis requires either 
accounting for these effects in modeling (as performed here) 
or harmonizing data across scanners and sites, which is an 
active area of interest (36, 42, 43). Harmonization studies 
can utilize these well-characterized effects of age as 
validation of techniques and algorithms.  

Age-Related Macrostructural Decline 

While tractography has been used to study the human brain 
in aging, it is often used to simply extract pathway-specific 
indices of microstructure (or quantitative) measures. Here, 

we study shape-based features of tractography-defined 
bundles, quantifying basic features (e.g., length, diameter, 
volume) and more comprehensive features (e.g., curl, 
irregularity, elongation). We find that, indeed, the shape of 
white matter features changes with age. Notably, basic 
macrostructural features like volume and total surface areas 
exhibit age-related decline, in agreement with the observed 

Figure 5. Example microstructural and macrostructural associations for a commissural white matter tract. A 3D illustration of the 
forceps minor (CCfmin) is shown (A), as it exhibited significant microstructural (B) and microstructural decline (C). For each 

microstructural and macrostructural plot, colored datapoints and lines represent individual cohorts. 
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trend of a decrease in total white matter volume. Further, 
more comprehensive measures, such as irregularity and 
elongation, age-related decline. In our subsequent analysis 
to determine if there was heterogeneous age-related decline 
between the association, limbic, association, and 

commissural tracts, we found widespread significant 
differences (see Figure 2). For example, age-related changes 
in elongation (length ÷ diameter) were relatively low in the 
association and limbic tracts but higher in the projection and 
commissural tracts. Furthermore, age-related changes were 
similar for irregularity [surface area ÷ (Ã x diameter x 
length)], in which age-related decline was lower in the 
projection and commissural tracts compared to the 

association and limbic tracts.  
 
Our findings therefore indicate that specific white matter 
features can be used to identify age-related decline, and these 
features can also be incorporated into clinical populations to 
identify abnormal aging patterns. Future work should 
investigate different trends in disease cohorts, where this 
analysis facilitates asking <what changes?= and <where?=. 

This also results in the creation of a large feature space (109s 
of pathways x 109s of features) for each subject, which may 
facilitate machine learning, deep learning, and 
dimensionality reduction techniques to identify 
abnormalities in an individual subject or cohort. Similar 
analysis may also be used in an unsupervised fashion 3 rather 
than utilizing predefined bundles, a connectome-style 
approach can be used to extract every fiber bundle in a large 

connectome matrix followed by subsequent feature-based 
analysis of every edge in the connectome.  

Global and local changes 

In general, all pathways show consistent changes in tissue 

microstructure with age, indicating a largely global change 
in microstructure. In contrast, shape features of pathways 
show very different effect sizes and relative changes per year 
across the brain, which indicates local changes, and 
pathway-specific differences image. Overall, this suggests 
that microstructure features of pathways change together, 
and at relatively the same rates, whereas macrostructural 
features do not and indicate location-specific indices of 
change, whereby projection and commissural fibers exhibit 

more significant age-related decline. Thus, pathway features 
might be a more sensitive biomarker for differences due to 
disease or disorders.   

Limitations 

This study has several limitations. While we utilized large 
samples sizes and showed generalizability to very different 
aging datasets, results were tested on just one bundle 
segmentation algorithm. Additionally, many pathways were 
investigated, significantly more than is typical for many 
studies on aging, and many of these pathways are smaller 
association pathways that may be harder or more variable to 
track. Nevertheless, the large sample size facilitated 

statistical analysis and findings with small effect sizes. The 
use of different datasets with different acquisitions is known 
to result in very different quantitative indices, and in the 
current study, very different tractography results. However, 
we consider this an advantage to the current study where 

results generalized across all data, and effect of dataset was 
included in modeling. 
 
Future studies should investigate and characterize shape 
changes across the lifespan. This may be particularly 

relevant in childhood where large changes in brain structure 
and microstructure are expected. Second, the combination of 
shape and microstructure features in disease should be 
investigated. There is a significant body of research on DTI 
changes in disease, and it is intuitive that the shape, location, 
and geometry of pathways may also experience significant 
alterations in such states. Finally, the relationship between 
GM regions and WM structure should be investigated. The 

full feature space of GM volume, thickness, and surface area, 
in combination with WM macrostructure and microstructure 
features, will facilitate a complete description of changes in 
the brain during aging.  

Conclusion 

We provide a comprehensive characterization of WM 
changes in aging. Using large cross-sectional and 
longitudinal diffusion datasets, we have shown that both 
microstructural and macrostructural geometrical features of 
the human brain change during normal healthy aging. 
Microstructural indices of anisotropy and diffusivity show 
the largest effects with age, with global trends apparent 

across all pathways. Macrostructural features of volume, 
surfaces areas, and lengths also change with age, with trends 
that are not uniform across all pathways. Thus, tract-specific 
changes in geometry occur in normal aging. Results from 
this study may be useful in understanding biophysical and 
structural changes occurring during normal aging and will 
facilitate comparisons in a variety of diseases or abnormal 
conditions.  
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Appendix 

 
The bundles resulting from each segmentation pipeline are 
given as a list below, with acronyms used in the text. 

TractSeg:  

Arcuate fascicle left (AF_L); Arcuate fascicle right (AF_R); 
Anterior Thalamic Radiation left (ATR_L); Thalamic 
Radiation right; (ATR_R); Commissure Anterior (CA); 

Rostrum (CC_1; Genu (CC_2); Rostral body (Premotor) 
(CC_3); Anterior midbody (Primary Motor) (CC_4); 
Posterior midbody (Primary Somatosensory) (CC_5); 
Isthmus (CC_6); Splenium (CC_7); Corpus Callosum 3all 
(CC); Cingulum left (CG_L); Cingulum right (CG_R); 
Corticospinal tract left (CST_L); Corticospinal tract right 
(CST_R); Fronto-pontine tract left (FPT_L); Fronto-pontine 
tract right (FPT_R); Fornix left (FX_L); Fornix right 
(FX_R); Inferior cerebellar peduncle left (ICP_L); Inferior 

cerebellar peduncle right (ICP_R); In- ferior occipito-frontal 
fascicle left (IFO_L); Inferior occipito-frontal fascicle right 
(IFO_R); Inferior longitudinal fascicle left (ILF_L); Inferior 
longitudinal fascicle right (ILF_R); Middle cerebellar 
peduncle (MCP); Middle longitudinal fascicle left 
(MLF_L); Middle longitudinal fascicle right (MLF_R); 
Optic radiation left (OR_L); Optic radiation right (OR_R); 
Parieto-occipital pontine left (POPT_L); Parieto-occipital 

pontine right (POPT_R); Superior cerebellar peduncle left 
(SCP_L); Superior cerebellar peduncle right (SCP_R); 
Superior longitudinal fascicle III left SLF_III_L); Superior 
longitudinal fascicle III right (SLF_III_R); Superior longitu- 
dinal fascicle II left (SLF_II_L); Superior longitudinal 
fascicle II right (SLF_II_R); Superior longitudinal fascicle I 
left (SLF_I_L); Superior lon- gitudinal fascicle I right 
(SLF_I_R); Striato-fronto-orbital left (ST_FO_L); Striato-

fronto-orbital right (ST_FO_R); Striato-occipital left 
(ST_OCC_L); Striato-occipital right (ST_OCC_R); Striato-
parietal left (ST_PAR_L); Striato-parietal right 
(ST_PAR_R); Striato-postcentral left (ST_POSTC_L); 
Striato-postcentral right (ST_POSTC_R); Striato-precentral 
left (ST_PREC_L); Striato-precentral right (ST_PREC_R); 
Striato-prefrontal left (ST_PREF_L); Striato-prefrontal right 
(ST_PREF_R); Striato- premotor left (ST_PREM_L); 

Striato-premotor right (ST_PREM_R); Thalamo-occipital 
left (T_OCC_L); Thalamo-occipital right (T_OCC_R); 
Thalamo-parietal left (T_PAR_L); Thalamo-parietal right 
(T_PAR_R); Thalamo-postcentral left (T_POSTC_L); 

Thalamo-postcentral right (T_POSTC_R); Thalamo-
precentral left (T_PREC_L); Thalamo-precentral right 
(T_PREC_R); Thalamo-prefrontal left (T_PREF_L); 
Thalamo- prefrontal right (T_PREF_R); Thalamo-premotor 
left (T_PREM_L); Thalamo-premotor right (T_PREM_R); 

Uncinate fascicle left (UF_L); Uncinate fascicle right 
(UF_R). 

ATR:  

Arcuate_Fasciculus_L (AF_L); Arcuate Fasciculus R 

(AF_R); Cortico Spinal Tract L (CST_L); Cortico Spinal 
Tract R (CST_R); Cortico Stri- atal Pathway L (CS_L); 
Cortico Striatal Pathway R (CS_R); Corticobulbar Tract L 
(CBT_L); Corticobulbar Tract R (CBT_R); Corticopontine 
Tract L (CPT_L); Corticopontine Tract R (CPT_R); 
Corticothalamic Pathway L (CTP_L); Corticothalamic 
Pathway R (CTP_R); Inferior Cerebellar Pe- duncle L 
(ICP_L); Inferior Cerebellar Peduncle R (ICP_R); Inferior 

Fronto Occipital Fasciculus L (IFOF_L); Inferior Fronto 
Occipital Fasciculus R (IFOF_R); Inferior Longitudinal 
Fasciculus L (ILF_L); Inferior Longitu- dinal Fasciculus R 
(ILF_R); Optic Radiation L (OR_L); Optic Radiation R 
(OR_R); Middle Longitudinal Fasciculus L (MdLF_L); 
Middle Longi- tudinal Fasciculus R (MdLF_R); Uncinate 
Fasciculus L (UF_L); Uncinate Fasciculus R (UF_R). 
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Supplementary Material 

  

Supplementary Figure 1. We investigated microstructure and macrostructure features of 49 pathways virtually segmented using 
DSI Studio, visualized and organized into association, limbic, projection, and commissural fibers.   

PATHWAY ABBREVIATION BLSA CAMCAN VMAP TOTAL

Arcuate_Fasciculus_L AF_L 1312 839 354 2505

Arcuate_Fasciculus_R AF_R 1184 743 301 2228

Cingulum_Frontal_Parahippocampal_L CgFPH_L 1036 728 329 2093

Cingulum_Frontal_Parahippocampal_R CgFPH_R 1077 734 340 2151

Cingulum_Frontal_Parietal_L CgFP_L 1310 842 355 2507

Cingulum_Frontal_Parietal_R CgFPl_R 1319 843 354 2516

Cingulum_Parahippocampal_L CgP_L 1313 841 353 2507

Cingulum_Parahippocampal_R CgP_R 1318 839 352 2509

Cingulum_Parahippocampal_Parietal_L CgPP_L 850 643 240 1733

Cingulum_Parahippocampal_Parietal_R CgPP_R 1112 771 319 2202

Cingulum_Rarolfactory_L CgR_L 431 198 200 829

Cingulum_Rarolfactory_R CgR_R 1230 757 352 2339

Corpus_Callosum_Body CCbody 1266 775 335 2376

Corpus_Callosum_Forceps_Major CCfmaj 1321 836 353 2510

Corpus_Callosum_Forceps_Minor CCfmin 1322 845 351 2518

Corticospinal_Tract_L CST_L 1275 843 356 2474

Corticospinal_Tract_R CST_R 1259 845 351 2455

Fornix_L Fx_L 859 763 274 1896

Fornix_R Fx_R 629 642 258 1529

Frontal_Aslant_Tract_L FAT_L 1303 835 355 2493

Frontal_Aslant_Tract_R FAT_R 1311 843 356 2510

Inferior_Fronto_Occipital_Fasciculus_L IFOF_L 1298 822 355 2475

Inferior_Fronto_Occipital_Fasciculus_R IFOFs_R 1316 827 354 2497

Inferior_Longitudinal_Fasciculus_L ILF_L 1309 842 355 2506

Inferior_Longitudinal_Fasciculus_R ILF_R 1321 834 355 2510

Middle_Longitudinal_Fasciculus_L MLF_L 1211 738 335 2284

Middle_Longitudinal_Fasciculus_R MLF_R 1249 722 328 2299

Optic_Radiation_L OR_L 1140 783 354 2277

Optic_Radiation_R OR_R 930 592 355 1877

Parietal_Aslant_Tract_L PAT_L 1319 840 354 2513

Parietal_Aslant_Tract_R PAT_R 1322 843 355 2520

Superior_Longitudinal_Fasciculus1_L SLF1_L 1317 841 355 2513

Superior_Longitudinal_Fasciculus1_R SLF1_R 1313 833 351 2497

Superior_Longitudinal_Fasciculus2_L SLF2_L 1319 844 355 2518

Superior_Longitudinal_Fasciculus2_R SLF2_R 1243 799 345 2387

Superior_Longitudinal_Fasciculus3_L SLF3_L 1319 841 354 2514

Superior_Longitudinal_Fasciculus3_R SLF3_R 1310 843 355 2508

Thalamic_Radiation_Anterior_L ThA_L 964 759 346 2069

Thalamic_Radiation_Anterior_R ThA_R 1069 764 352 2185

Thalamic_Radiation_Inferior_L ThI_L 1303 831 353 2487

Thalamic_Radiation_Inferior_R ThI_R 1155 788 353 2296

Thalamic_Radiation_Posterior_L ThP_L 1184 788 353 2325

Thalamic_Radiation_Posterior_R ThP_R 1088 592 344 2024

Thalamic_Radiation_Superior_L ThS_L 633 397 348 1378

Thalamic_Radiation_Superior_R ThS_R 453 183 353 989

Uncinate_Fasciculus_L UF_L 1320 839 352 2511

Uncinate_Fasciculus_R UF_R 1250 768 352 2370

Vertical_Occipital_Fasciculus_L VOF_L 1321 839 353 2513

Vertical_Occipital_Fasciculus_R VOF_R 1316 833 356 2505

Supplementary Table 1. Abbreviations and sample size for studied pathways.   
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Supplementary Figure 2. Global changes in tissue volume occur in aging, including decreases in GM volume, and WM volume, 
and increase in CSF volume. Colors of datapoints and lines represent 3 different datasets utilized.   

   

Supplementary Figure 3. What and where changes occur during aging. The percent-change per year is shown as a matrix for 
all features across all pathways, and also shown as boxplots for both microstructural features (left) and macrostructural features 
(right). Boxplots are shown separated by pathway types. Results are shown for TractSeg-derived Pathways.  
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Supplementary Figure 4. What and where changes occur during aging. The beta coefficient from linear mixed effects modeling 

is shown as a matrix for all features across all pathways, and also shown as boxplots for both microstructural features (left) and 
macrostructural features (right). Boxplots are shown separated by pathway types. Results are shown for ATR-derived pathways.  
      

Supplementary Figure 5. What and where changes occur during aging. The percent-change per year is shown as a matrix for 

all features across all pathways, and also shown as boxplots for both microstructural features (left) and macrostructural features 
(right). Boxplots are shown separated by pathway types. Results are shown for ATR-derived Pathways.  
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Supplementary Figure 6. Bundle-based visualization of changes during aging. Bundles that have significant associations with 
age are colored based on percent-change per year, for 5 selected features. Only those with statistically significant change with 
age are displayed. Results are shown for TractSeg-derived pathways. 

           

Supplementary Figure 7. Bundle-based visualization of associations with age. Bundles that have significant associations with 
age are colored based on Beta-association coefficient from linear mixed-effects models, for 5 selected features. Only those with 
statistically significant change with age are displayed. Results are shown for ATR-derived pathways. 
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Supplementary Figure 8. Bundle-based visualization of changes during aging. Bundles that have significant associations with 
age are colored based on percent-change per year, for 5 selected features. Only those with statistically significant change with 
age are displayed. Results are shown for ATR-derived pathways. 
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