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More than a dozen excitatory cell types have been identi-
fied in the mouse primary visual cortex (V1) based on tran-
scriptomic, morphological and in vitro electrophysiological
features. However, the functional landscape of excitatory
neurons with respect to their responses to visual stimuli
is currently unknown. Here, we combined large-scale two-
photon imaging and deep learning neural predictive mod-
els to study the functional organization of mouse V1 us-
ing digital twins. Digital twins enable exhaustive in silico
functional characterization providing a bar code summariz-
ing the input-output function of each neuron. Clustering the
bar codes revealed a continuum of function with around 30
modes. Each mode represented a group of neurons that
exhibited a specific combination of stimulus selectivity and
nonlinear response properties such as cross-orientation in-
hibition, size-contrast tuning and surround suppression.
These non-linear properties were expressed independently
spanning all possible combinations across the population.
This combinatorial code provides the first large-scale, data-
driven characterization of the functional organization of V1.
This powerful approach based on digital twins is applicable
to other brain areas and to complex non-linear systems be-
yond the brain.
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Introduction

Understanding the functional organization of the primary
visual cortex (V1) has been a longstanding goal in neuro-
science. It has long been known that V1 extracts informa-
tion about local orientation Hubel & Wiesel (1959), often
in a phase-invariant manner (Hubel & Wiesel, 1962). Re-
searchers have described additional V1 nonlinearities, in-
cluding direction selectivity (Adelson & Bergen, 1985) and
various forms of nonlinear contextual modulation (Blake-
more & Tobin, 1972; Cavanaugh et al., 2002; DeAnge-
lis et al., 1992; Gilbert & Wiesel, 1990; Heeger, 1992;
Lamme, 1995; Morrone et al., 1982). However, although
we know many of the building blocks of V1 function, we do
not know how they are organized at the population level.

First, we do not know whether there exists a distinct num-

ber of functional cell types, each of which implements a
specific computation, or whether there is a continuum of
function, where cells do not fall into discrete types. Sec-
ond, independent of whether V1 functions are discrete or
form a continuum, we currently do not know how the differ-
ent nonlinear effects described previously are organized
at the population level: are they strongly correlated — for
instance because they are caused by a common compu-
tational mechanism — or are they present independently of
each other within the population?

A major roadblock in revealing the functional organiza-
tion of V1 has been that traditional experiments probing
the well-known nonlinear mechanisms do not scale well.
Large-scale population recordings are inefficient, because
stimuli need to be optimized to an individual neuron’s re-
ceptive field location, preferred orientation and spatial fre-
quency. In addition, probing all nonlinear mechanisms in
the same neurons is difficult because only a limited num-
ber of stimuli can be shown in an experiment.

We have overcome these limitations by combining large-
scale population recordings with natural stimuli and train-
ing high-performance predictive models based on deep
neural networks (Antolik et al., 2016; Batty et al., 2016; Ca-
dena et al., 2019; Cotton et al., 2020; Klindt et al., 2017;
Lurz et al., 2020; Sinz et al., 2018; Walker et al., 2019).
These models are capable of jointly modeling thousands of
neurons in a completely data-driven way providing a dig-
ital twin: an in silico approximation of the function of pri-
mary visual cortex (Fig. 1A). First, this approach allows us
to quantify the similarity of neurons’ response properties
on the set of natural stimuli by computing a compact, low-
dimensional vector representation of each neuron’s func-
tion (its bar code). This representation is independent of
the neuron’s receptive field location and its preferred ori-
entation and provides an unbiased metric to measure the
similarity of two neurons’ functions. It therefore provides
a principled way to study the functional organization of
V1. Second, the digital twin allows us to carry out ex-
periments with arbitrary stimuli in silico, essentially with-
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out limitations of experimental time to generate hypothesis
which can then verified back in vivo using the inception
loop paradigm (Bashivan et al., 2019; Walker et al., 2019).
This systematic functional analysis allows us to gain inter-
pretable insights from the model and link to existing litera-
ture.

We found that the functional organization is not entirely
uniform, revealing a number of high-density modes. We
therefore used the bar codes to cluster functionally similar
neurons, which allowed us to analyze the neurons’ func-
tional properties at the cluster level.

Crucially, our analysis revealed that classical non-linear
properties of neurons in V1 are expressed independently
of each other. For instance, knowing the extent of a
neuron’s non-linearity along the simple-complex cell axis
does not provide much information about its degree of sur-
round suppression or cross-orientation inhibition. More-
over, there exist functional clusters expressing all combi-
nations of nonlinear properties (including none or all), sug-
gesting that V1 neurons might be described with a combi-
natorial code in the space of basic nonlinear computations.

Overall, our results suggest the following answers to the
two questions posed above. The functional organization
of V1 appears to form a continuum; however, it is not uni-
form and there are high-density modes in the space of V1
neurons’ functions. This organization is consistent with re-
cent work using transcriptomic, morphological, and elec-
trophysiolocal properties, which showed that cortical neu-
rons are organized in families with a continuum of proper-
ties within them rather than distinct cell types Gouwens
et al. (2020); Network (2021); Scala et al. (2021). With
respect to classical nonlinearities, V1 neurons can be
described by a combinatorial code where each nonlin-
ear computation is expressed along an independent axis
across the population. Such factorized codes have compu-
tational advantages such as higher coding capacity (Fusi
et al., 2016).

Results

Large-scale recording and predictive modeling. We
recorded the activity of more than 45,000 excitatory neu-
rons in layer 2/3 of the primary visual cortex of seven
mice using a wide-field two-photon microscope (Sofroniew
et al., 2016, Fig. 1A). While we imaged, the mice were
head-fixed on a linear treadmill and were viewing natu-
ral images, which covered roughly 120° x 90° of their vi-
sual field (Fahey et al., 2019; Walker et al., 2019). Next,
we selected up to 2,000 neurons from each mouse and
fitted a single predictive model for all mice (Lurz et al.,
2020). The model is based on a convolutional neural net-
work (CNN). It takes as input the image on the screen
and outputs a prediction of the response of each neuron
(Fig. 1C). The model achieved single trial test correlation
of 0.42, and oracle correlation of 0.69. From this model, we
obtained a 128-dimensional vector representation of each
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neuron’s function. These vectors can be thought of as “bar
codes” summarizing the neuron’s stimulus-response func-
tion (Fig. 1D).

To describe the neurons’ functional diversity, we removed
two well-known factors of variation across V1 neurons: re-
ceptive field position and preferred orientation. The bar
codes we obtained from our model were independent of re-
ceptive field position and preferred orientation of the neu-
ron: if the responses of two neurons could be made identi-
cal by applying a constant shift and rotation to all images,
these two neurons would obtain the same bar code. We
achieved this property by using a rotation-equivariant CNN
(Ecker et al., 2019; Ustyuzhaninov et al., 2020). Having
bar codes that are independent of receptive field location
and preferred orientation is extremely useful, because it
removes two “trivial” axes of variation and allows us to fo-
cus on and visualize more subtle aspects of the neurons’
selectivity or nonlinear processing.

Predictive modeling reveals functional clusters. We
first asked whether V1 neurons are organized into discrete
functional types or rather form a continuum. A 2D t-SNE
embedding (van der Maaten & Hinton, 2008) of the bar
codes (Fig. 1E) revealed several modes — or regions of
high density. These modes correspond to groups of func-
tionally similar neurons. While there is no strong evidence
for discrete functional types, it is not a uniform distribu-
tion either. We performed k-means clustering (MacQueen
et al., 1967) (using 50 clusters) to identify the modes of the
distribution and simplify downstream analysis.

Neurons within functional clusters have similar MEls.
Given that V1 neurons can be organized into functional
clusters, we aim at characterizing these clusters. We
start by computing the preferred stimulus of each neu-
ron, sometimes referred to as the most exciting image
(MEI), which is optimized, using the model, to maximize
the neuron’s predicted activity (Fig. 2A). They have been
shown to provide a faithful snapshot of neural computa-
tions (Bashivan et al., 2019; Walker et al., 2019), and
therefore provide convenient single-image visualizations
of a neuron’s selectivity. Neurons within the same clus-
ter had similar MEls (up to location and rotation), while
MEls of neurons in different clusters tended to be differ-
ent (Fig. 1F). This result provides a first piece of evidence
that the clusters are a meaningful way of describing the
functional organization of V1.

Note that our data does reproduce the large degree of het-
erogeneity of MEIs and their frequent striking deviations
from Gabor filters (Fig. 1F) that have been reported previ-
ously for mouse V1 (Walker et al., 2019).

Cluster MEls visualize functional similarities between
the neurons. To focus more on commonalities of function-
ally similar neurons, we next computed optimal stimuli at
the cluster level. To do so, we computed cluster MEls: im-
age templates that maximize average activity of neurons in
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Fig. 1. A. Overview of our method. We presented natural images to a mouse and recorded corresponding responses of a large population of neurons in the primary visual
cortex. This dataset allowed us to build a “digital twin” model of the mouse primary visual cortex which provided a functional similarity metric between the neurons, as well as
enabled us to perform in silico experiments. B. Data recording paradigm. We presented an alternating sequence of 4692 natural and blank images to seven different mice.
We showed natural images for 0.5s and blank ones for a random duration between 0.3s and 0.5s. We presented an additional test set of 100 images 10 times each. We
recorded responses of 5 to 8 thousand V1 L2/3 neurons depending on the scan using a wide-range two-photon microscope. Processed calcium traces for three randomly
chosen neurons are shown in the top, and raw scans at three different depths are shown in the bottom. C. Model fitting paradigm. We pooled the data from all 7 mice in
a single dataset and fitted a rotation-equivariant CNN model to predict the recorded neural activity. The model consists of a rotation-equivariant convolutional core shared
across neurons and neuron-specific linear readouts. For each neuron the readout is decomposed into a spatial mask encoding the spatial location of its receptive field
and a vector of feature weights encoding predictive CNN features for this neuron. Feature weights can be thought of as “bar codes” summarizing a neuron’s function. D.
Functional clustering. We collected the feature weights for all neurons into a single matrix (row-wise) and aligned its rows by cycling shifts to remove the differences due to
different preferred orientations of the neurons. We then clustered the rows of the aligned feature weights matrix into 50 clusters using the k-Means algorithm. The aligned
feature weights and the clusters are visualized using a 2D t-SNE embedding. E. A 2D t-SNE functional emedding of the recorded neurons colored according to the cluster
assignment. F. Examples of MEls of 16 best predicted neurons in 4 different clusters alongside examples of MEls of other neurons on top of a t-SNE embedding. G. Examples
of cluster MEls of other neurons on top of a t-SNE embedding.
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Fig. 2. A. Optimal stimuli. We maximize activity of a neuron or average activity of a cluster with respect to an input stimulus which is constrained to belong to a certain image
space. An illustration shows a response surface of a neuron of a cluster and maximum values on the this surface while restricting ourselves to a specific image space shown
in the XY plane. The space of possible MEls contains all images, while the spaces of possible Gabors and DoGs are subsets of all images. B. Average cluster activity for a
given stimulus is computed by averaging the responses of neurons in the cluster to the stimuli shifted and rotated to match the location of the receptive field and preferred
orientation of each neuron in that cluster. C-D. Examples of orientation and phase tuning curves for a single neuron. We vary orientation and phase of an optimal Gabor
while keeping all other parameters fixed to generate stimuli for orientation and phase tuning experiments. The numerical tuning indices for these tuning curves are computed
by fitting a sine curve and taking the ratio of its amplitude to the mean of the tuning curve. E. Example of a size-contrast tuning curve for a single neuron. The stimuli for
the size-tuning experiment are constructed by varying size and contrast of an optimal Gabor while keeping all other parameters fixed. The suppression tuning strength is
computed for a tuning curve corresponding to the highest contrast as a relative decrease of activity when increasing the size of the Gabor beyond the size corresponding to
the maximum value of the curve. The contrast tuning strength is computed analogously by transposing size and contrast, i.e. by considering a tuning curve corresponding
to the largest size as a function of the contrast. F. Example of a cross-orientation inhibition (COI) tuning curve for a single neuron. The stimuli for this experiment are called
plaids and constructed by overlaying the optimal Gabor and the Gabor orthogonal to it in different contrasts. The COI tuning strength index is computed using a tuning curve
corresponding to the highest preferred contrast analogously to the suppression index for the size-contrast experiment.

each cluster when accounting for each neuron’s receptive
field location and preferred orientation (Fig. 2B). Cluster
MElIs show a systematic variation along the different axes
of the +-SNE embedding (Fig. 1G): Neighboring clusters
tend to have visually similar cluster MEls. There appears

60% of activity of their individual MEls.

In silico experiments provide an interpretable char-
acterization of functional clusters. While MEIs provide

to be a global pattern in the t-SNE space with clusters on
the right having oriented, Gabor-like MEls with higher fre-
quencies and multiple cycles within the envelope, while
those in the middle having lower frequencies and fewer
cycles and those towards the bottom left having more sym-
metric and circular MEls.

Cluster MEls visualize common patterns of cluster com-
putations, and since they are designed to capture simi-
larities rather than differences between the neurons, they
exhibit less variability than individual MEls. Quantitatively
this amounts to cluster MEls driving the neurons to around
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convenient visualizations of a neuron’s or a cluster’s com-
putations, they capture only a single point — the maximum
— of the tuning function (Fig. 2A). Our predictive model,
however, provides a prediction for arbitrary stimuli. We
used the model as an in silico replica of V1 to perform
experiments. Unlike with experiments in the real brain, in
the model we are not limited in terms of experimental time.
This allowed us to replicate a number of classical experi-
ments in silico and compute tuning curves with respect to
a variety of different non-linear properties. Specifically, we
used Gabor stimuli whose parameters were optimized for
each cluster to quantify strength of orientation selectivity
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(Fig. 2C), phase invariance (Fig. 2D), size-contrast tuning
(Fig. 2E) and cross-orientation inhibition (Fig. 2F). Opti-
mizing Gabors for clusters rather than individual neurons
prevented the possibility of a few neurons within a cluster
having very stimuli in comparison to the rest of the neu-
rons in the cluster due to optimization instability. Further-
more, the cluster optimal Gabors drive the neurons to 87%
of their individual optimal Gabor activity thus these stimuli
are only mildly suboptimal for individual neurons.

Size-contrast tuning curves reveal non-linear surround
suppression effects (Born & Tootell, 1991; DeAngelis et al.,
1992), while cross-orientation inhibition is a nonlinear in-
teraction that arises when two orthogonal Gabor patterns
are superimposed (Morrone et al.,, 1982). In addition,
we computed the optimal center-surround stimulus (dif-
ference of Gaussian; Fig. 2A) and quantified the degree
of response nonlinearity using a generalized linear model
baseline (see methods). From these in silico experiments,
we obtain a sample from the joint tuning distribution for
more than 10,000 neurons. This enables us to study the
statistical dependencies between the different nonlinear
effects, overcoming the limitations of previous in vivo ex-
periments that could only study each effect in isolation.

In silico experiments reveal shared tuning proper-
ties within functional clusters. The results from the set
of in silico experiments support the functional clustering
(Fig. 3). Many of the modes in the t-SNE embedding
are distinguishable based on one or more of the tuning
properties. In contrast, neurons within most of the clus-
ters exhibit similar tuning strengths to the different types
of non-linarities: all 50 clusters were significantly differ-
ent from the overall population tuning distribution based
on at least one tuning property in Fig.3 and 15 clusters
were significantly different based on all properties (two-
sided Kolmogorov-Smirnov test at « = 0.01; in the case
of random cluster assignments these values are 0 and 1
respectively).

Non-linear tuning properties are independent of each
other. Next, we investigated how different non-linear prop-
erties relate to each other. Qualitatively, it appears that
different non-linear properties have different distributions
(Fig. 3; compare the color patterns in the t-SNE plots).
This qualitative impression is also confirmed by quantita-
tive metrics (Fig. 4A). As expected, non-linearity is corre-
lated with specific nonlinear properties like phase invari-
ance, surround suppression and cross-orientation inhibi-
tion, but not with orientation selectivity. In addition, orien-
tation selectivity is correlated with phase invariance and
cross-orientation inhibition. Importantly, there is no cor-
relation between the three non-linear properties phase in-
variance, surround suppression and cross-orientation inhi-
bition, suggesting that these properties are independently
exhibited from each other. This result is surprising, since
cross-orientation inhibition and surround suppression have
both been hypothesized to arise from a common mecha-
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nism: divisive normalization (Carandini & Heeger, 2012).

Because phase invariance, cross-orientation inhibition and
surround suppression are tested using oriented Gabors as
stimuli, we restricted our subsequent analyses to those
clusters for which optimal Gabors are decent stimuli in
comparison to MEIs (i.e. clusters with above average val-
ues of the Gabor vs MEI index). We binarized the tuning in-
dices for these non-linear properties assigning each clus-
ter to either high or low tuning category (Fig. 4B) by setting
a threshold at the average population tuning strength and
examined the combinations of these three tuning proper-
ties (Fig. 4C). We can see there are clusters exhibiting ev-
ery possible combination of the three binary tuning proper-
ties, suggesting that these properties indeed appear to be
independent from each other, and that V1 neurons might
employ a combinatorial code with respect to these non-
linearities.

For the analysis of remaining clusters (i.e. clusters with
below average values of the Gabor vs MEI index, Fig. 4D)
we considered orientation, non-linearity, and DoG vs MEI
tuning. These clusters are mostly linear tuned and unori-
ented with their cluster MEls ranging from mostly center-
surround shapes in the bottom-right and central parts of
the t-SNE space to various complex shapes in the left part
of the t-SNE space.

In silico tuning curves are good approximations of in
vivo tuning. Since our analysis is based on in silico tun-
ing curves, one concern could be that although the CNN
model predicts neural activities with high accuracy, the cor-
responding in silico tuning curves might be different from
the in vivo tuning curves we are aiming to approximate.
We verified that it is not the case by directly comparing
the in silico and in vivo tuning curves for the same neu-
rons. Specifically, we recorded a dataset containing two
V1 scans of the same neurons in the same mouse. We
used natural images as stimuli for the first scan which al-
lowed us to fit a rotation-equivariant CNN model. For the
second scan we used Gabor stimuli allowing us to com-
pute size tuning curves in vivo and compare them to the
in silico tuning curves obtained from the model fitted to the
first scan (Fig. 5A).

The stimuli for the size tuning experiment should ideally
be constructed based on optimal Gabors for every neuron,
however, that is infeasible in vivo for a sufficiently large
population of neurons. To overcome this limitation, we
investigated to what extent optimal Gabors could be re-
placed with suboptimal ones. We found that tuning curves
obtained using Gabors driving neurons to at least 50% of
their optimal Gabor activities are very similar to the tun-
ing curves obtained with optimal Gabors (Fig. 5C), and
that only 20 different Gabors can be chosen to drive 75%
of the population to at least 50% of optimal Gabor activi-
ties (Fig. 5D-E). This observation allowed us to use these
20 different Gabors as stimuli for the Gabor scan, which
revealed that the correlation between in vivo and in sil-
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Fig. 3. Results of the in silico experiments. A-D: The scatter plots show t-SNE embeddings colored according to the tuning strengths of cross-orientation inhibition, phase
invariance, orientation tuning and surround suppression experiments. In the bottom left corners of +-SNE embeddings we show histograms of distributions of the tuning
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curves of high and low tuning strengths alongside the colorbar. E-G: t-SNE embeddings colored according to the tuning strength of Gabor vs MEI, Gabor vs DoG and

non-linearity experiments along with histograms of tuning strengths.

ico tuning curves is about 70% of the oracle correlation
(Fig. 5B), which is similar to the performance of the CNN
model trained and tested on natural images.

Discussion

We built a functional description of the mouse primary vi-
sual cortex based on neural representations in a high per-
forming CNN model predicting responses of a large popu-
lation of neurons on arbitrary natural images. Such an ap-
proach allows us to account for all aspects of the neuronal
stimulus-response function captured by the model, instead
of only a few nonlinear effects as in classical in vivo exper-
iments with parametric stimuli. Thus, our analysis is not
constrained by specific hypotheses of neural functions or
the choice of parametric stimuli. An important limitation
of our study is that we focus on the bottom-up aspects of
stimulus processing; we did not consider how top-down,
behavioral modulation of neural responses affects the re-
sponses of different neurons.

Our examination revealed that the V1 functional landscape
can be described by around 30 modes of functionally sim-
ilar neurons which, however, do not appear to be discrete
cell types but rather high density areas in the continuous
functional space. This finding is in agreement with vari-
ous recent studies. For example, Scala et al. (2021) stud-
ied mouse primary motor cortex neurons based on tran-
scriptomic and morpho-electric properties. They found
that this brain area is organized into a few broad tran-
scriptomic families with continuum of morpho-electric fea-
tures in each family, making the authors question the exis-
tence of discrete transcriptomic cell types. Gouwens et al.
(2020) conducted a similar study of interneurons in mouse
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primary visual cortex discovering both discrete and con-
tinuous variation of morpho-electric properties within the
transcriptomic types. Overall, a growing body of literature
suggests that mouse neocortex is organized in a complex
way and cannot be adequately described by either discrete
cell types or a uniform continuum of neurons. This no-
tion of mouse neocortex organization is qualitatively dif-
ferent from the mouse retina, which exhibits discrete cell
types (Baden et al., 2016), raising interesting directions for
future research: how are other areas of neocortex orga-
nized based on various neural properties? and how do
they relate to lower level brain areas projecting into the
corresponding neocortical areas?

As we investigated the variability of individual neurons
within the functional modes, we found visual differences
between cluster and single neuron MEls. We believe this
is an expected consequence of clustering, which abstracts
away individual neurons’ differences and reduces the com-
plexity of the V1 functional space by focusing on similari-
ties between neurons. To better understand the proper-
ties of functional modes, their correspondence to cluster
MEls and relate them to previous work, we performed in
silico experiments, which revealed that neurons belong-
ing to the same mode exhibit common response patterns.
This observation suggests that neurons in the same func-
tional cluster may form computational cliques important for
downstream processing, offering an interesting direction
for future research. For example, integrated approaches
combining functional characterization using digital twins
and connectomics data can determine the connectivity of
neurons within and across functional clusters and com-
monalties of their inputs and projection targets (Bae et al.,
2021).
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Fig. 4. A. Pairwise distributions of the in silico tuning properties. Dots in each of the plots correspond to clusters (50 dots in total) showing average tuning strength of neurons
in the cluster. Red dots correspond to clusters with the above average value of the Gabor vs MEI tuning strength (i.e. those clusters for which optimal Gabors are good stimuli
relative to MEls; in the following called Gabor-like clusters), gray dots correspond to all other clusters. Correlation coefficients and the p-values (in brackets) under the null
hypothesis that the correlation is zero are shown above the plots for Gabor-like clusters (red) and for all clusters (black). B. Subsets of t-SNE embeddings corresponding
to Gabor-like clusters colored according to the binarized strengths of orientation, phase, suppression and plaids tuning. Grey clusters correspond to low tuning strength
(average cluster tuning strength is less than entire population tuning strength average value), clusters of the other color correspond to high tuning strength. C. Subsets of
t-SNE embeddings corresponding to Gabor-like clusters showing 8 possible combinations of low/high values of phase, suppression and plaids tuning. The color code is
illustrated with a color triangle; clusters colored with the colors in the vertices of the triangle exhibit high value of the corresponding tuning property and low values of other
two properties. Clusters colored with the colors in the edges of the triangle exhibit high values of the tuning properties in the adjacent vertices and low value of the other
tuning property. D. Subsets of t-SNE embeddings corresponding to non Gabor-like clusters colored according to the binarized strengths of orientation, non-linearity and DoG
vs MEI tuning.
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Fig. 5. A. In vivo verification experiment paradigm. We compare in vivo Gabor size tuning curves to their in silico counterparts computed for the same population of neurons.
B. Correlations between in vivo and in silico Gabor size tuning curves measured as percentage of oracle correlation (error bars shows the standard deviation). We measure
correlation between two types of tuning curves. The “mouse - model” one corresponds to the in vivo and in silico tuning curves obtained using the same experimental stimuli,
which are based on suboptimal Gabors (see main text for more details). In the “mouse - optimal” case, in vivo curves are computed using suboptimal Gabors, but the in
silico curves are computed using optimal Gabors for the corresponding neurons. Moreover, these correlations are computed for different subsets of neurons (x-axis) chosen
such that there exists an experimental stimulus for every neruon in the subset driving this neuron to a certain percentage of the optimal Gabor activity. C. Examples of Gabor
size-contrast in silico tuning curves for 5 randomly chosen neruons (rows) computed using suboptimal Gabors activating the neuron to a certain percentage of the optimal
Gabor activity (first 5 columns; numbers above the first row show the suboptimal Gabor activity as percentage of the optimal Gabor activity) and using the optimal Gabors
(last column). D. Percentages of neurons in the population (x-axis) that can be driven to a certain percentage of the optimal Gabor activity (y-axis) using at least one of the
Gabors in the sets of 1, 10 and 20 Gabors (different curves) chosen to maximize the number of neurons activated by these stimuli. E. 20 Gabor stimuli corresponding the 20
Gabors curve in panel D and used to construct size-tuning stimuli for the in vivo experiment.

Large-scale in-silico experiments allowed us to study sta-
tistical dependencies between various nonlinear phenom-
ena known from single-neuron in-vivo experiments. We
found these effects to be independent of each other, sug-
gesting that V1 might employ a combinatorial code be-
tween modes of functionally similar cells. The mecha-
nisms leading to such a code in V1 and their implications
for downstream processing remain unclear. A speculation
that lies at hand is that there might be a basis of indepen-
dent non-linear computations serving different purposes in
downstream processing, thereby building a foundation for
specializations in higher visual areas. As a potential verifi-
cation of this hypothesis and as a question in itself, future
experimental work could investigate if neurons of the same
functional cluster project to the same downstream area.

Finally, we verified that in silico experiments in a high-
performing CNN model provide a good approximation of
the in vivo tuning curves, thus substantiating our results
based on the analysis of in silico tuning curves. Our in vivo
verification is consistent with the findings of Walker et al.
(2019) who report that in silico model MEls also highly ac-
tivate actual neurons. Overall, these observations suggest
that high-perfroming CNN models can be considered “dig-
ital twins” of real neurons, a paradigm that has started be-
ing explored relatively recently but already provided signifi-
cant insights into the brain and has a potential of becoming
the main tool for future research.

ACKNOWLEDGEMENTS

8 | bioRyiv

The research was supported by the German Federal Ministry of Education
and Research (BMBF) via the Competence Center for Machine Learning (FKZ
011S18039A); the German Research Foundation (DFG) grant EC 479/1-1 (A.S.E.),
the Collaborative Research Center (SFB 1233, Robust Vision) and the Cluster
of Excellence “Machine Learning — New Perspectives for Science” (EXC 2064/1,
project number 390727645); the Bernstein Center for Computational Neuroscience
(FKZ 01GQ1002); the National Eye Institute of the National Institutes of Health un-
der Award Numbers U19MH114830 (A.S.T.) R0OTMH109556 (AST), P30EY002520,
and the Intelligence Advanced Research Projects Activity (IARPA) via Department
of Interior/Interior Business Center (Dol/IBC) contract number D16PC00003. The
U.S. Government is authorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of IARPA, Dol/IBC, or the U.S. Government. The funders
had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

AUTHOR CONTRIBUTIONS

.U, M.B., A.S.T and A.S.E. designed the study; J.F., TM., K.P,, E.F. and Z.D. per-
formed imaging experiments and pre-processing of raw data; I.U., A.S.E. developed
the in silico analysis framework; .U., M.F.B., S.A.C. and A.S.E analyzed the data;
I.U., M.E.B. and S.A.C. wrote the original draft; I.U., M.F.B, S.A.C. and A.S.E. re-
viewed and edited the manuscript with the input from M.B. and A.S.T.

Bibliography

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of
motion. J. Opt. Soc. Am. A, 2(2), 284—299.

URL http://www.osapublishing.org/josaa/abstract.cfm?URI=
josaa-2-2-284

Antolik, J., Hofer, S. B., Bednar, J. A., & Mrsic-Flogel, T. D. (2016). Model constrained by visual
hierarchy improves prediction of neural responses to natural scenes. PLOS Computational
Biology, 12(6), 1-22.

URL https://doi.org/10.1371/journal.pcbi.1004927

Baden, T., Berens, P, Franke, K., Roson, M. R., Bethge, M., & Euler, T. (2016). The functional
diversity of retinal ganglion cells in the mouse. Nature, 529(7586), 345-350.

Bae, J. A., Baptiste, M., Bodor, A. L., Brittain, D., Buchanan, J., Bumbarger, D. J., Castro, M. A.,
Celii, B., Cobos, E., Collman, F, et al. (2021). Functional connectomics spanning multiple
areas of mouse visual cortex. bioRxiv.

Bashivan, P, Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep image synthesis.
Science, 364(6439).

Ustyuzhaninov etal. | Digital twin of the mouse primary visual cortex


http://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-2-2-284
http://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-2-2-284
https://doi.org/10.1371/journal.pcbi.1004927
https://doi.org/10.1101/2022.02.10.479884
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.10.479884; this version posted February 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Batty, E., Merel, J., Brackbill, N., Heitman, A., Sher, A., Litke, A., Chichilnisky, E., & Paninski,
L. (2016). Multilayer recurrent network models of primate retinal ganglion cell responses. In
International Conference on Learning Representations.

Blakemore, C., & Tobin, E. A. (1972). Lateral inhibition between orientation detectors in the cat’s
visual cortex. Experimental brain research, 15(4), 439—-440.

Born, R. T., & Tootell, R. (1991). Single-unit and 2-deoxyglucose studies of side inhibition in
macaque striate cortex. Proceedings of the National Academy of Sciences, 88(16), 7071—
7075.

Cadena, S. A, Denfield, G. H., Walker, E. Y., Gatys, L. A., Tolias, A. S., Bethge, M., & Ecker, A. S.
(2019). Deep convolutional models improve predictions of macaque v1 responses to natural
images. PLoS computational biology, 15(4), e1006897.

Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature
Reviews Neuroscience, 13(1), 51-62.

Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the
receptive field center and surround in macaque v1 neurons. Journal of Neurophysiology,
88(5), 2530-2546. PMID: 12424292.

URL https://doi.org/10.1152/9n.00692.2001

Cotton, R. J., Sinz, F. H., & Tolias, A. S. (2020). Factorized neural processes for neural processes:
k-shot prediction of neural responses. arXiv preprint arXiv:2010.11810.

DeAngelis, G. C., Robson, J. G., Ohzawa, |., & Freeman, R. D. (1992). Organization of suppres-
sion in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology, 68(1),
144-163. PMID: 1517820.

URL https://doi.org/10.1152/3n.1992.68.1.144

Ecker, A. S., Sinz, F. H., Froudarakis, E., Fahey, P. G., Cadena, S. A., Walker, E. Y., Cobos, E.,
Reimer, J., Tolias, A. S., & Bethge, M. (2019). A rotation-equivariant convolutional neural
network model of primary visual cortex. In International Conference on Learning Represen-
tations.

URL https://openreview.net/forum?id=H1fU8iAgKX

Fahey, P. G., Muhammad, T., Smith, C., Froudarakis, E., Cobos, E., Fu, J., Walker, E. Y., Yatsenko,
D., Sinz, F. H., Reimer, J., et al. (2019). A global map of orientation tuning in mouse visual
cortex. bioRxiv, (p. 745323).

Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for higher
cognition. Current opinion in neurobiology, 37, 66—74.

Gilbert, C. D., & Wiesel, T. N. (1990). The influence of contextual stimuli on the orientation
selectivity of cells in primary visual cortex of the cat. Vision Research, 30(11), 1689-1701.
Optics Physiology and Vision.

URL https://www.sciencedirect.com/science/article/pii/
004269899090153C

Gouwens, N. W., Sorensen, S. A., Baftizadeh, F., Budzillo, A., Lee, B. R., Jarsky, T., Alfiler, L.,
Baker, K., Barkan, E., Berry, K., et al. (2020). Integrated morphoelectric and transcriptomic
classification of cortical gabaergic cells. Cell, 183(4), 935-953.

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual neuroscience,
9(2), 181-197.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex.
The Journal of Physiology, 148(3), 574-591.

URL https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/
jphysiol.1959.sp006308

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106—154.

URL https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/
jphysiol.1962.sp006837

Klindt, D., Ecker, A. S., Euler, T., & Bethge, M. (2017). Neural system identification for large
populations separating “what"and “where”. In |. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, & R. Garnett (Eds.) Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc.

URL https://proceedings.neurips.cc/paper/2017/file/
8c249675aeabc3cbd91661lbbae767ffl-Paper.pdf

Lamme, V. (1995). The neurophysiology of figure-ground segregation in primary visual cortex.
Journal of Neuroscience, 15(2), 1605-1615.

URL https://www. jneurosci.org/content/15/2/1605

Lurz, K.-K., Bashiri, M., Willeke, K. F., Jagadish, A. K., Wang, E., Walker, E. Y., Cadena, S.,
Muhammad, T., Cobos, E., Tolias, A., et al. (2020). Generalization in data-driven models of
primary visual cortex. bioRxiv.

MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, vol. 1, (pp. 281-297). Oakland, CA, USA.

McCullagh, P, & Nelder, J. A. (2019). Generalized linear models. Routledge.

Morrone, M. C., Burr, D., & Maffei, L. (1982). Functional implications of cross-orientation inhibition
of cortical visual cells. i. neurophysiological evidence. Proceedings of the Royal Society of
London. Series B. Biological Sciences, 216(1204), 335-354.

Network, B. I. C. C. (2021). A multimodal cell census and atlas of the mammalian primary motor
cortex. Nature, 598(7879), 86.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3), 211-252.

Scala, F., Kobak, D., Bernabucci, M., Bernaerts, Y., Cadwell, C. R., Castro, J. R., Hartmanis, L.,
Jiang, X., Laturnus, S., Miranda, E., et al. (2021). Phenotypic variation of transcriptomic cell
types in mouse motor cortex. Nature, 598(7879), 144—150.

Sinz, F. H., Ecker, A. S., Fahey, P. G., Walker, E. Y., Cobos, E., Froudarakis, E., Yatsenko, D.,
Pitkow, Z., Reimer, J., & Tolias, A. S. (2018). Stimulus domain transfer in recurrent models for
large scale cortical population prediction on video. In Neur/PS.

Sofroniew, N. J., Flickinger, D., King, J., & Svoboda, K. (2016). A large field of view two-photon
mesoscope with subcellular resolution for in vivo imaging. Elife, 5, e14472.

Ustyuzhaninoy, I., Cadena, S. A., Froudarakis, E., Fahey, P. G., Walker, E. Y., Cobos, E., Reimer,
J., Sinz, F. H., Tolias, A. S., Bethge, M., & Ecker, A. S. (2020). Rotation-invariant clustering
of neuronal responses in primary visual cortex. In International Conference on Learning

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

Representations.
URL https://openreview.net/forum?id=rklr9kHFDB

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning
Research, 9(86), 2579-2605.
URL http://jmlr.org/papers/v9/vandermaaten08a.html

Walker, E. Y., Sinz, F. H., Cobos, E., Muhammad, T., Froudarakis, E., Fahey, P. G., Ecker, A. S.,
Reimer, J., Pitkow, X., & Tolias, A. S. (2019). Inception loops discover what excites neurons
most using deep predictive models. Nature neuroscience, 22(12), 2060-2065.

bioRxiv | 9


https://doi.org/10.1152/jn.00692.2001
https://doi.org/10.1152/jn.1992.68.1.144
https://openreview.net/forum?id=H1fU8iAqKX
https://www.sciencedirect.com/science/article/pii/004269899090153C
https://www.sciencedirect.com/science/article/pii/004269899090153C
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1959.sp006308
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1962.sp006837
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1962.sp006837
https://proceedings.neurips.cc/paper/2017/file/8c249675aea6c3cbd91661bbae767ff1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8c249675aea6c3cbd91661bbae767ff1-Paper.pdf
https://www.jneurosci.org/content/15/2/1605
https://openreview.net/forum?id=rklr9kHFDB
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1101/2022.02.10.479884
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.10.479884; this version posted February 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods

Visual stimuli. We used gray-scale ImageNet images
(Russakovsky et al., 2015) as visual stimuli in the data col-
lection experiment. The number of images varied across
the scans (Tab. 1) with 4692 images in the intersection,
i.e. presented to a mouse in each of the scans. For the
test set we used 100 images each repeated 10 times; for
some scans and some images there were fewer repeats, in
which case we resampled the recording to have 10 repeats
in every scan. The screen was 55 x 31 cm at a distance
of 15 cm, covering roughly 120° x 90°. Each image was
presented for 500 ms followed by a blank screen lasting
between 300 ms and 500 ms. The response of a neuron
to a given stimulus is represented as a number of spikes
in the time interval between 50 ms to 350 ms following the
stimulus onset.

CNN model and rotation-invariant clustering. We used
the same architecture and training of the rotation-
equivariant CNN model as in Ustyuzhaninov et al. (2020).
For the clustering of aligned feature vectors (rotation-
invariant clustering) we used the k-Means algorithm (Mac-
Queen et al., 1967) with 50 clusters, which we empirically
found to provide a good balance between clusters being
small enough to contain similar neurons and the total num-
ber of clusters being relatively small.

GLM model. We also fitted a GLM model (McCullagh &
Nelder, 2019) to every neuron in the recorded dataset to
evaluate the non-linearity of neurons or clusters (as mea-
sured by the non-linearity index, see below). We used
Poisson likelihood as the noise model and log link function
to ensure the predicted neural activities are non-negative.
We cross-validated the Lo regularization coefficient for ev-
ery neuron separately by considering 48 log-spaced val-
ues in [0.1,5].

Optimal stimuli. Classical experiments that we aim at
replicating in silico measure changes in neural activity in
response to a certain type of transformations of an input
stimulus (e.g. an orientation tuning experiment might use
Gabor stimuli in different orientations). Ideally the input
stimuli should be optimized for every neuron separately
which is infeasible in vivo, but can be achieved in silico
using a CNN model. In this section we describe the stimuli
we use in the in silico experiments and how we optimize
them for individual neurons or clusters.

Per neuron optimal Gabors. For every neuron we compute
a Gabor stimulus which maximizes the predicted activity
of this neuron. We parametrize such stimuli in terms of a
spatial location (r*,rY), size o, spatial frequency v, con-
trast a, orientation ¢ and phase 7. Specifically the value of
the pixel in the i-th row and j-th column of an input image
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is defined using the following expression

a i 2 1\2
) = Sexp (-1 LD

2 2 o2/4 )COS(QW"'"V“)’

(1)
where (i',j') = (i —r®,j —rY) [R(©)]" (2)

with R(p) being a 2D rotation matrix by an angle .

For each neuron we iterate over a large set of Gabor stim-
uli parameterized according to (2) and record the param-
eter set corresponding to a stimulus with the highest CNN
predicted activity. This process is illustrated in Fig. 2A.

Per cluster optimal Gabors. In addition to optimising Gabors
for each neuron separately, we also find optimal Gabors for
the entire clusters. The idea is to find a single Gabor stim-
ulus that maximizes the average activity of neurons in the
cluster and hence servres as a single image representa-
tions of a cluster computation. However, since we the clus-
ters are explicitly constructed to contain neurons with dif-
ferent receptive field locations and preferred orientations,
we constrain the stimuli to be identical for all neurons in
the cluster apart from having neuron-specific spatial loca-
tions (i.e. receptive field centers) and orientations (see an
illustration in Fig. 2A).

To find such an optimal Gabor for a specific cluster, we
iterate over a large set of Gabors with locations and orien-
tations set to a fixed value and all other parameters vary-
ing, generate stimuli for individual neurons by shifting and
rotating the Gabor at the current iteration (Fig. 2A), and
compute the average predicted activity of the neurons in
the cluster. We call the Gabor stimulus (or rather the set
of stimuli up to a spatial location and orientation) corre-
sponding to the maximal average predicted cluster activity
the cluster optimal Gabor.

Per neuron MEIs. An MEI is an input stimulus that activates
the neuron the most, and as such serves as a useful visu-
alization of the computation implemented by the neuron.
It is important to keep in mind that an MEI is only a lo-
cal maximum of a function mapping the input stimuli to the
neural activity. While we aim at describing the entire func-
tion rather than only its maximum, MEIls nevertheless pro-
vide convenient and insightful summaries of computations
performed by each of the neurons.

We compute MEI for every neuron separately by stating
with a noise stimulus and iteratively optimising it to max-
imise the predicted activity of the neuron. Specifically, if
the CNN prediction of activity of the n-th neuron when pre-
sented with a stimulus x is f,,(x), we compute an MEI| as
a solution of the following optimisation problem:
MEI _
Xn = arg)r{nax [f(X) -7 a(x)] ) (3)
where a(x) is a regularisation function (e.g. a(x) = ||x/||?)
enforcing smoothness of the resulting MEI.
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Fig. 6. Functional modes

in the t-SNE space.

Animal # of neurons in the scan Sampled neurons  # of train images  # of test images

1 5043 1047 5998 1999
2 5984 2000 5973 1090
3 7312 2000 4926 985
4 5335 2000 4994 999
5 8367 2000 4818 964
6 6045 2000 4982 995
7 8316 2000 4991 997

Total 13047 4692 1000

Table 1. Summary of the individual mouse scans comprising the dataset used for the cell types analysis.

Per cluster MEls. Such MEls are computed jointly for all
neurons in the entire cluster to maximise the average pre-
dicted activity of all neurons in the cluster. Similarly to
cluster optimal Gabors, these stimuli are constrained to be
identical for all neurons in the cluster apart from having
neuron-specific spatial locations (i.e. receptive field cen-
ters) and orientations (Fig. 2A). To implement these con-
straints in practice, we decompose cluster MEls in a steer-
able basis and iteratively optimise the coefficients in this
basis to maximize the predicted average activity of neu-
rons in the cluster. Therefore we use a parametric model

Ustyuzhaninov et al. | Digital twin of the mouse primary visual cortex

of cluster MEls rather than a non-parametric representa-
tion of single-neuron MEIls, which reduces the spaces of
possible stimuli (for single-neurons MEls this space con-
sists of all possible images, while in this case it consists
only of the span of the steerable basis), but allows us to
compute stimuli rotations as linear transformations of the
coefficients.

We consider the following parametrization of the stimuli

x=p1 P +...+ B P, =B, (4)

where ¥ = (v,,...,7,)7 is a vector of the first k basis
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functions in some steerable basis (we use Hermite polyno-
mials). Rotations of images in such a parametrization cor-
respond to linear transformations of coefficients 3, specif-
ically, a stimulus rotated by an angle ¢ can be written as

rotate(x, ) = (R(¢) )" ¥ (5)
for a corresponding rotation matrix R(y).

We denote a translation of an image x by r* pixels along
the first axis and by r¥ pixels along the second axis as
shift(x,r*,r¥). Using center locations of optimal Gabors
(rZ,ry) as receptive fields centers for corresponding neu-
rons, we compute the cluster MEI xME! for a cluster ¢ con-
taining m neurons with indices cy,...,c,, as a solution of
the following problem

X(’\:/IEI _ (IB*)T‘I],
1 m

B* =argmax max |— ZACZ.
ﬂ Plse-0Pm | TN i—1

A, = f., (shift[rotate(x, ;),rL 72 ]) (8)

1t cpr ey

where (6)

: (7)

Examples of cluster MEI are shown in Fig. 3.

Optimal differences of Gaussians (DoG). Another class of
stimuli we consider are differences of Gaussians, which
allow us to probe to what extent the receptive of a neu-
ron has a center-surround structure. We parametrize such
stimuli in terms of their spatial locations r = (r1,72), sizes
ocen and ogyr Of the center and surround Gaussians, as
well as their relative contrasts acen and agyr according to
the following equation:

X = Qcen (1 +asur> g(rcemUcen) - asurg(rsur,asur)7 9)
a2 a2
with - g(r,0)[i, j] = exp <(Tl J 222(7’2 j) ) (10)

Similarly to optimal Gabors and MEls, we find optimal DoG
stimuli both for every neuron and cluster by iterating over a
large set of parameter values and recording the parameter
combination corresponding to the highest predicted activ-
ity of an individual neuron or average activity of all neurons
in the cluster. In the case of per cluster stimuli, we con-
strain every neuron in the cluster to have exactly the same
optimal stimulus apart from differences in spatial locations
(Fig. 3A).

In silico experiments. In this section we describe spe-
cific in silico experiments that we perform using the optimal
stimuli discussed in the previous section.

Orientation and phase tuning. Optimal Gabors enable us
to compute standard orientation and phase tuning curves.
We use both per neuron and per cluster optimal Gabors to
obtain stimuli for this experiment by varying the orientation
and phase parameters and keeping all other parameters
fixed. Examples of such stimuli are shown in Fig. 2B.
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For every neuron we compute numerical indices reflecting
the tuning strength of the neuron. Specifically, we com-
pute the Fy/F, summary statistics for phase tuning and
F»/F) statistics. These statistics are ratios of the abso-
lute values of the first and second (reflecting periods of
2m for phase tuning and = for orientation tuning) Fourier
coefficients to the mean value of the tuning curve, or al-
ternatively the ratios of amplitudes of the est fitting sine
curves to the means of the tuning curves as illustrated in
Fig. 2B. If r(s) = (r1(s1),...,7m(sm)) are responses of a
neuron to Gabors with a parameter of interest (orientation
of phase) taking values s = (s1,...,sm), these indices are

defined as
m
> rjexp(iks;)
Jj=1
Fy/Fo= - (11)
2T
j=1

Gabor size-contrast tuning curves. We construct stimuli for
this experiment by using per neuron or per cluster opti-
mal Gabors with all parameters fixed except for the size
and contrast as illustrated in Fig. 2B. The resulting size-
contrast tuning curves allow us to characterize neural com-
putations in terms of surround or contrast suppression ef-
fects, which have been widely studied in the existing liter-
ature.

Denoting predicted activity of n-th neuron when presented
a stimulus at the contrast level c € {1,...,C} and size level
sef{l,...,5} as g¢ s» We compute the following suppres-
sion and contrast indices to numerically evaluate the tun-
ing strength:

: H _ gg _ggas n __ n .
Suppression index = ———=, g4 =maxg, o; (12)
gdc s ’
gn 7gn
Contrast index = sinc,s, g% =maxg%,. (13)
dg ¢ ’

These two indices are highly correlated (p = 0.95, p <
0.001) which is why we use only the suppression index for
the analysis. This correlation apparently stems from using
Gabors as stimuli for this experiment. Indeed, increasing
the size of a Gabor also increases the range of each pixel
value, which is a similar effect to increasing the contrast.

Plaid stimuli. Another experiment we do with optimal Gabor
stimuli is the one aimed at probing neurons or clusters for a
potential effect of cross-orientation inhibition. To do some
we construct plaid stimuli by superimposing two Gabors
on each other, the optimal one and the one orthogonal
to the optimal one, while varying the contrasts of both of
these stimuli. Examples of such stimuli are shown in Fig. 2.
The corresponding tuning curves allow us to see potential
non-linear suppressing effect of increasing contrast of the
orthogonal stimulus known as cross-orientation inhibition.
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Denoting predicted activity of n-th neuron when presented
a plaid stimulus with an optimal Gabor at the contrast level
p € {1,...,P} and an orthogonal Gabor at the contrast
level o € {1,...,0} as g, ,, we compute the following nu-
merical index to quantify the tuning strength:

o 9579P0 n
Plaids index = ———=, ¢4 =maxg, ¢ (14)
90 p '

Comparison of optimal Gabor, DoG, and MEI stimuli. Opti-
mal MEls capture a wide variety of patterns in the recep-
tive field, while optimal Gabors and DoGs are explicitly de-
signed to represent a particular pattern. Comparing the
responses to these stimuli allows us to quantify to what
extent the receptive field captured by the MEI can be mod-
elled by oriented gratings (Gabors) or center surround pat-
terns (DoG).

For every neuron we normalize all three (Gabor, DoG,
MEI) optimal stimuli to have same energy (L2 norm) at
E different energy levels; such a normalization ensures
that the stimuli have approximately the same contrast. De-
noting predicted activity of n-th neuron when presented a
Gabor, DoG or MEI at the energy level e as g2, d}, m2
respectively, we compute the following summary statistics
for comparing the responses to these stimuli:

E

1 e

Gabor vs DoG = 5 PR (15)
e=1 ¢
1. gn

Gabor vs MEl = — =, (16)
FE mn
e=1 €
1 & dr

DoG vs MEl = — < (17)
E Z mb

e=1

Non-linearity index. For every neuron we quantify the non-
linearity computations implemented by this neuron by
comparing the predictions of the GLM and the CNN mod-
els. Specifically, for the n-th neuron we denote the GLM
predictive correlation on the test set as C®M, and the
same quantity computed for the CNN model as CSNN,
Then we compute the non-linearity index as follows:

CNN

V- (18)
n

Non-linearity index =

In vivo verfification.

Experimental details. The experimental setting for the Im-
ageNet scan in vivo verification was the same as in the
main experiment (see above). The Gabor stimuli were
presented in maximum contrast in 5 different sizes (o €
[8,13.2,21.8,35.9,59.3)).

Selection of suboptimal stimuli. We find a small number of
Gabor stimuli activating many neurons to a certain per-
centage of their optimal Gabor activities (Fig.5D-E) using
the following procedure:
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» We compute predicted activities for every neuron for
a large selection of Gabors located in the center of
the image (the same set of stimuli that we used for
finding the optimal Gabor apart from the differences
in spatial locations; see above),

» We greedily choose the Gabor that activated most
of the neurons to a given percentage of their optimal
Gabor activity until we selected the required number
of stimuli (we use 20 for the experiment).

Data availability. All figures were generated from raw or
processed data. The data generated and/or analyzed dur-
ing the current study are available from the corresponding
author upon request. No publicly available data was used
in this study. All code and data will be available online upon
the publication.

Code availability. Experiments and analyses were per-
formed using custom software developed using the fol-
lowing tools: Scanlmage 2018a (Pologruto et al., 2003),
CalmAn v.1.0 (Giovannucci et al.,, 2019), DataJoint
v.0.11.0 (Yatsenko et al., 2015, 2018), TensorFlow v.1.15.0
(Abadi et al., 2015), NumPy v.1.17.3 (Van Der Walt
et al., 2011), SciPy v.1.5.4 (Virtanen et al., 2020), Docker
v.19.03.12 (Merkel et al., 2014), Matplotlib v.3.1.1 (Hunter,
2007), seaborn v.0.11.1 (Waskom, 2021), pandas v.1.1.5
(McKinney et al., 2010) and Jupyter Notebook v 6.0.1
(Kluyver et al., 2016). The code will be publicly available
upon the publication.
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