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Abstract 

 

Advances in medicine and biotechnology rely on the further understanding of biological 

processes. Despite the increasingly available types and amounts of omics data, significant 

biochemical knowledge gaps remain uncharacterized. Several approaches have been 

developed during the past years to identify missing metabolic annotations in genome-scale. 

However, these approaches suggest missing metabolic reactions within a limited set of 

already characterized metabolic capabilities. In this study, we introduce NICEgame (Network 

Integrated Computational Explorer for Gap Annotation of Metabolism), a workflow to 

characterize missing metabolic capabilities in genome-scale metabolic models using the 

ATLAS of Biochemistry. NICEgame suggests alternative sets of known and hypothetical 

reactions to resolve gaps in metabolic networks, assesses their thermodynamic feasibility, 

and suggests candidate genes and proteins to catalyze the introduced reactions. We use gene 

essentiality data use to identify metabolic gaps in the latest genome-scale model of 

Escherichia coli, iML1515. We apply our gap-filling approach and further enhance its genome 

annotation, by suggesting reactions and putative genes to resolve 46 % of the false negative 

gene essentiality predictions.  
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Hypothetical biochemistry, gap-filling, metabolic gap, missing annotation, uncharacterized 
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1. Introduction 

 

Fully defined metabolic networks and annotated genomes can provide a holistic picture of 

the cell function and enable the design of more robust and effective bioengineering and drug 

targeting strategies. However, all known replicating genomes miss functional annotations for 

a fraction of the open reading frames. For example, the best characterized organism, i.e., 

Escherichia coli, lacks annotation for approximately 1600 genes, which represents 35% of its 

total number of genes1. A limited knowledge of the cell function is especially troublesome in 

infectious pathogens and organisms that could be used as a chassis in the industry to produce 

valuable compounds. Systematically identifying missing knowledge of metabolic capabilities 

of the cell and accelerating the functional annotation of genomes can save lives, time, and 

costs involved in the design of medical therapies and biotechnology projects. 

 

Systematic analysis of metabolic functions and identification of knowledge gaps relies on the 

gold standard of computational models of metabolism. Genome-scale models are organism-

specific databases of all known metabolic functions. They have been widely used to study the 

metabolism of model organisms, such as E. coli2 and yeast3, and pathogens such as  S. 

typhimurium4 and P. falciparum5, to identify host-pathogen interactions6, drug targets7, and 

metabolic engineering strategies8, among others9. Genome-scale models rely on the 

functional annotation of genes for their reconstruction. High-quality gene annotation leads 

to a proper prediction of the cellular physiology. Genome-scale models, hence, represent a 

powerful framework to identify missing knowledge through false predictions.  

 

Approaches to perform functional annotation of genomes involve experimental10 (e.g. in vitro 

assays) and bioinformatics11 (e.g. blasting) methods. However, experiments require specific 

hypotheses and are time-consuming and blasting and other computational approaches have 

been limited to the space of known annotated proteins and biochemistry. 

 

Exploring the space on unknown biochemistry is required to accelerate our understanding of 

the cell function and include in cells novel chemistry. The strategies to explore such unknown 

biochemical space are primarily based on machine learning (ML) or mechanistic 

approaches12,13. 
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Recently, an ATLAS of Biochemistry was constructed based on a mechanistic understanding 

of the enzyme function14. The ATLAS of Biochemistry includes over 150,000 putative reactions 

between known metabolites. Hence, it represents the upper limit of the possible biochemical 

space and allows an efficient exploration of the uncharacterized metabolic functions in cells. 

Furthermore, the tool BridgIT15 was developed to identify putative genes and proteins 

catalyzing a reaction. The potential of a combined use of ATLAS of Biochemistry and BridgIT 

to identify unknown metabolic annotations is tremendous but remains unexplored. 

 

In this study, we present a Network Integrated Computational Explorer for Gap Annotation 

of Metabolism (NICEgame). NICEgame combines the analysis of metabolic functions using 

genome-scale models (GEMs), exploration of unknown biochemistry using the ATLAS of 

Biochemistry, and identification of uncharacterized genes using BridgIT. We applied 

NICEgame to suggest novel biochemistry in E. coli’s strain MG1655 and further enhance its 

genome annotation. We identified metabolic gaps in E. coli responsible for 146 false gene 

essentiality predictions in glucose minimal media. We propose 77 biochemical reactions 

linked to 35 candidate genes to fill 46% of these gaps. We integrated this information into a 

thermodynamically curated genome-scale model of E. coli that we name iEcoMG1655. The 

iEcoMG1655 metabolic model increased the essentiality prediction accuracy by 23.5% with 

respect to its predecessor iML15152. Finally, the NICEgame workflow is applicable to any 

organism or cell with a genome-scale model and is available as a GitHub repository 

(https://github.com/EPFL-LCSB/NICEgame), with the combined use of available online 

resources: The ATLAS of Biochemistry14 and BridgIT15. Overall, NICEgame is a workflow for 

rapid and systematic identification of metabolic gaps, missing biochemistry, and candidate 

catalyzing genes. Hence it will accelerate the complete identification of metabolic functions 

and annotation of genomes, and with it enable the design of robust bioengineering and drug 

targeting strategies. 

 

2. Results and Discussion 

 

2.1 A workflow to identify and curate gaps in metabolic networks 
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To identify metabolic gaps in the GEM of E. coli, we developed a Network Integrated 

Computational Explorer of Gap Annotation for Metabolism Expanded (NICEgame). NICEgame 

leverages the potential of the ATLAS of Biochemistry14 as a database of novel biochemistry, 

i.e. not yet observed reactions, and the optimization-based exploration of metabolic models 

to identify missing biochemistry. Moreover, we couple NICEgame with a method to map 

orphan biochemistry to genes called BridgIT15. In this way, NICEgame optimally identifies 

metabolic gaps, finds putative missing biochemistry, evaluates alternative solutions, and 

identifies the top suggested reaction and associated catalyzing enzyme and gene. 

 

NICEgame involves seven main steps (Figure 1). The first step involves the harmonization of 

metabolite annotations with the ATLAS of Biochemistry. This is a necessary step to assure the 

proper connectivity of the metabolites in the GEM and the database. The second step 

comprises a preprocessing of the GEM (e.g., by defining the media). In the third step, 

NICEgame merges the GEM and ATLAS of Biochemistry. Thereafter, we call this merged 

network ATLAS-merged GEM.  This process can follow various strategies as we will discuss 

below. The fourth step includes a comparative essentiality analysis with the isolated and 

ATLAS-merged GEM. At this point, we identify the reactions or genes that are in silico essential 

for a phenotype (by default growth) in the GEM and dispensable in the ATLAS-merged GEM. 

We define such reactions or genes as rescued.  The rescued reactions and genes will be the 

targets for gap-filling. In the fifth step, NICEgame systematically identifies alternative 

biochemistry to the rescued reactions or genes. By default, NICEgame suggests a minimal 

number of reactions to be added to the GEM. In the sixth step, we evaluate and rank all 

alternative biochemistry. Last, NICEgame identifies a gene that can catalyze the top-ranked 

suggested biochemistry using the BridgIT tool. 

 

The alternatives are evaluated based on the impact they have on the metabolic network and 

the performance of the model (Figure 2). Solution sets, i.e., sets of reactions that are added 

to the network to reconcile a gap, that result in a higher yield or do not affect the yield are 

preferred to solutions that reduce the flexibility of the model, whereas solutions that expand 

the metabolome or the enzymatic capabilities of the original model are ranked lower. 

Another criterion is the number of reactions that are used to complement each rescued 

reaction. Usually, organisms do not favor larger pathways since they normally require more 
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protein production, which is a highly energetically demanding process. We assumed that 

short pathways would be preferred to perform a metabolic function. Lastly, the alternatives 

that increase the ability of the model to correctly reproduce knockout phenotypes and do not 

add redundancy are ranked higher. These criteria are converted into scores (See Methods). A 

positive value for any of the scores penalizes the alternative solution set in our ranking 

system. 

 

2.2 Identification of metabolic gaps in Escherichia coli with NICEgame 

Our analysis identified 146 False Negative gene essentiality model predictions (Figure 3A) 

that translate into 152 false negative essential reactions (Supplementary Table S1). As a 

case study, we used two different subsets of ATLAS to gap-fill the metabolic network of 

iML1515. The first subset, Ecoli_mets_ATLAS DB, expands the reaction space of the model, 

by adding reactions involving only metabolites from the iML1515 reconstruction. The 

second subset, Ecoli_Yeast_mets_ATLAS DB, expands the reaction and metabolite space of 

the model, by adding reactions involving only metabolites from the iML1515 and Yeast8 

metabolic reconstructions. In total, we could suggest at least one thermodynamically 

feasible solution set for 93 out of the 152 false negative reactions (Figure 3B). However, 

gaps, that cannot be resolved by our approach, still remain in the model. The falsely 

negative gene pabA (b3360) regulates the synthesis of 4-amino-4-deoxychorismate, a 

precursor of Folate, from Chorismate (Figure 3C), constitutes such an unresolved metabolic 

gap.  

  

2.3 Known and novel biotransformations among E. coli metabolites to reconcile model 

predictions with experimental evidence. 

The first subset, Ecoli_mets_ATLAS DB, allowed us to suggest at least one thermodynamically 

feasible solution set for 86 out of 152 false negative cases (Supplementary Table S2). As an 

example, the enzyme Adenosylmethionine-8-amino-7-oxononanoate transaminase (EC 

2.6.1.62) catalyzes the production of 7,8-Diaminononanoate, a precursor of Biotin, from 8-

Amino-7-oxononanoate and then encoding gene, bioA, is not essential in vivo but it is 

essential in silico. Our approach suggested 116 thermodynamically feasible solution sets that 

can serve as alternatives to achieve the biosynthesis of Biotin. Figure 4A depicts the original 

reaction and two alternative reaction sets. In the first alternative, a single reaction can fill the 
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gap. The reaction is novel and follows the same mechanism (EC 2.6.1.-) as the original 

reaction, however in this case L-Ornithine serves as the donor of the amino-group and L-

Glutamate 5-semialdehyde is the byproduct of the reaction. The reaction does not affect the 

predicted growth rate, does not require any additional enzymatic capability and it improves 

the overall accuracy of the model with respect to gene essentiality prediction. BridgIT could 

identify 12 candidate genes with adequate BridgIT score to regulate this reaction. The second 

alternative requires the addition of two novel reactions to fill the gap; the first reaction 

converts 8-Amino-7-oxononanoate to 7,8-Diaminononanoate by transferring the amino 

group from L-Cysteine (EC 2.6.1.-), while Mercaptopyruvate is produced. BridgIT suggests 19 

candidate genes. The second reaction is required to balance the production of 

Mercaptopyruvate by converting it into Hydroxypyruvate (EC 3.3.1.-), following a reaction 

mechanism that is not part of the original network. However, we could identify one putative 

sequence to catalyze this reaction.  

 

The enzyme 3-methyl-2-oxobutanoate hydroxymethyltransferase catalyzes the production 

of 2-Dehydropantoate, a precursor of Coenzyme A, from 3-Methyl-2-oxobutanoate (EC 

2.1.2.11). This enzyme is the product of the falsely negative gene panB (b0134). The 

heuristic suggests 29 thermodynamically feasible solution sets. All of the solutions involve 

the production 2-Dehydropantoate from 3-Methyl-2-oxobutanoate and Formaldehyde (EC 

4.1.2.-), which is the orphan KEGG reaction R01216. Our method suggests 26 candidate 

genes to encode for this biotransformation. Figure 4B depicts the original reaction and two 

alternative reaction sets. In the first alternative, the side reaction is novel and describes 

the reduction of Formate to Formaldehyde (EC 1.2.1.-). BridgIT could not identify any 

candidate sequence to encode for this reaction. In the second alternative, Formaldehyde is 

produced from 3-Hydroxypropanoate through an acyltransferase (EC 2.3.3.-). However, this 

novel reaction is not thermodynamically feasible in the desired directionality.  

 

The gene luxS (b2687) is another case of false negative that can be reconciled by gap-filling 

with the Ecoli_mets_ATLAS DB. The S-ribosylhomocysteine cleavage enzyme, encoded by 

b2687, is responsible for the production of L-Homocysteine, a precursor of L-Methionine, 

from S-Ribosyl-L-homocysteine (EC 4.4.1.21). Our workflow suggests 11 

thermodynamically feasible solution sets. The first alternative, depicted in Figure 4C, 
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suggests that L-Homocysteine is the product of an amylase acting on S-

adenosylhomocysteine (EC 3.3.1.-), that is the KEGG reaction R00192. This enzymatic 

capability is not part of the original network, however, using BridgIT we could identify one 

candidate gene to encode for this enzyme. The second alternative requires the same 

reaction mechanism to produce L-Homocysteine from L-Methionine and a second reaction 

to balance the bioproduct, Methane. This solution set is thermodynamically infeasible since 

these reactions form a cycle, L-Methionine  L-Homocysteine  L-Methionine. According 

to the first law of thermodynamics, the overall thermodynamic driving force through these 

cycles must be zero, meaning that no net flux is possible through these cycles, making the 

system infeasible. 

 

2.4 Biotransformations among E. coli and yeast metabolites allows the reconciliation of 

more gaps 

A gap-filling reaction pool of biotransformations between E. coli and yeast metabolites 

suggests more alternative solution sets for the already rescued false negative reactions and 

suggests biochemistry for seven more false negative cases (Supplementary Table S2). One 

of the additionally rescued reactions is 3-isopropylmalate dehydratase and it accounts for 

interconversion of 2-Isopropylmaleate to 3-Carboxy-2-hydroxy-4-methylpentanoate (EC 

4.2.1.33). The reaction is part of the Leucine Biosynthesis pathway, and it is regulated by 

two genes, leuD (b0071) and leuC (b0072). Figure 5A shows the original reaction and two 

alternative pathways. The first set of reactions describes the production of 4-Methyl-2-

oxopentanoate, a precursor of Leucine, from Butanoyl-CoA via a 4-step path. Three of the 

reactions are novel and BridgIT can identify candidate genes for two of them, while the 

solution includes also the KEGG reaction R01176.  The second set of reactions accounts for 

the synthesis of 4-Methyl-2-oxopentanoate again from Butanoyl-CoA, via a 3-step path of 

novel reactions, however, it is thermodynamically unfavorable. Both solution sets involve 

the metabolite 3-Methylbutanal that is not part of the original iML1515 metabolic network. 

The compound has been characterized16 as an alternative substrate of the enzyme 3-

hydroxypropionaldehyde dehydrogenase (b1300) but has not been detected as part of the 

metabolome of E. coli to our knowledge. 
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Pimeloyl-ACP methyl ester esterase (EC 3.1.1.85) is an enzyme encoded by the false 

negative gene bioH (b3412). The enzyme is part of the Biotin Biosynthesis pathway, and it 

is responsible for the hydrolysis of Pimeloyl-ACP methyl ester to Pimeloyl-ACP, a precursor 

of Biotin. This reaction is rescued by the Ecoli_mets_ATLAS DB, which provides three 

alternative solution sets of one reaction each to fill this gap. One of them, (Figure 5B, 

alternative 2), suggests that Pimeloyl-ACP is produced by the transfer of the methyl group 

from Pimeloyl-ACP methyl ester to S-Adenosylhomocysteine forming S-

Adenosylmethionine (EC 2.1.1.-). BridgIT provides 11 genes to regulate this novel reaction. 

The Ecoli_Yeast_mets_ATLAS DB provides one additional solution set, (Figure 5B, 

alternative 1), of two steps, a novel reaction, and the KEGG reaction R03210, describing 

the synthesis of 8-Amino-7-oxononanoate, a successor metabolite of Pimeloyl-ACP in the 

Biotin Biosynthesis pathway, from Hexanoyl-CoA and Pimeloyl-CoA as an intermediate 

metabolite. Pimeloyl-CoA is not part of the original reconstruction but has been recently 

shown17 that it can serve as the acyl chain donor of the 8-amino-7-oxononanoate synthase 

(bioF). BridgIT suggests 21 candidate genes to encode for this function with bioF being 

among them. In the original reconstruction bioF, which uses Pimenoyl-ACP as substrate, is 

essential but the gene is not essential in vivo. Interestingly, this solution set provides an 

alternative precursor for Biotin and thus can resolve the false negative case of bioC (b0777) 

that is responsible for the synthesis of Malonyl-CoA methyl ester, a precursor of Pimenoyl-

ACP and thus Biotin. However, this solution is rejected since it adds redundancy to the 

model, having an MCC (Matthews Correlation Coefficient) score equal to 0.0108 since the 

genes fabZ (b0180) and fabH (b1091) and are falsely positive after the addition of this 

solution set to the network. 

 

The gene gshA (b2688), which regulates the synthesis of γ-Glutamylcysteine from L-Cysteine 

and L-Glutamate (EC 6.3.2.2), is not essential in vivo but it is essential in silico. This gap can be 

resolved by the Ecoli_mets_ATLAS DB. The heuristic provides 12 alternative 

thermodynamically feasible solution sets to fill in this gap. The solution that is ranked higher 

according to our criteria is depicted in Figure 5C. γ-Glutamylcysteine is produced by L-Cysteine 

and L-Glutamyl 5-phosphate, while Orthophosphate is released (EC 2.1.3.-). The 

Ecoli_Yeast_mets_ATLAS DB provides 3 additional thermodynamically favorable solution sets. 

All the 3 solutions involve the metabolite 5-Oxoproline as an intermediate. 5-Oxoproline is 
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not part of the metabolome of the original reconstruction, it was, however, has been 

detected18 in E. coli. The most well performing solution is shown in Figure 5C. The first 

reaction, which describes the degradation of γ-L-Glutamylputrescine to Putrescine and 5-

Oxoproline, is novel, whereas the second reaction is a KEGG reaction (R02743) reconstructed 

in ATLAS.  BridgIT identifies the gene chaC as a candidate to encode for this metabolic function. 

 

2.5 Gene annotation of metabolic gaps identifies new functions in E. coli. 

The heuristic suggests over 7,000 reactions, known and novel, to gap-fill the metabolic 

network of E. coli, and over 6,600 among them are part of thermodynamically feasible 

solution sets. We used BridgIT to identify candidate sequences in the genome of E. coli to 

catalyze these reactions. 6,319 reactions had an adequate BridgIT score (see Methods) and 

are assigned to 2,165 EC numbers. Finally, we suggest 590 candidate promiscuous genes in 

the genome of E. coli to catalyze 6,118 reactions.  An example is shown in Figure 6. BridgIT 

could assign adequate similarity scores between the ATLAS novel reaction and five KEGG 

reference reactions and identifies the gene chaC as promising to catalyze this novel reaction. 

 

2.6 An updated genome-scale model and database of E. coli metabolism shows increase 

essentiality prediction accuracy. 

Our approach allows to expand the original metabolic network by 77 reactions and 9 

metabolites. We suggest 35 genes to associate with these 77 reactions, 2 of them are not part 

of the original reconstruction (Supplementary Table S3). These 35 genes include only the top-

rated hits provided by BridgIT. Using the criteria and the ranking method mentioned above 

we extracted an updated version of E. coli’s strain MG1655 metabolism, iEcoMG1655 (Figure 

7). The updated reconstruction includes 2,450 network reactions, 1,176 metabolites, and 

1,517 genes, while it has an enhanced accuracy in gene essentiality prediction. iEcoMG1655 

achieves a MCC equal to 0.6025 and an ACC (accuracy) equal to 0.9190, while iML1515’s 

performance is 0.4879 and 0.8722, respectively, for the conditions examined in this study.  

 

ArcA and LacA are the 2 added genes. ArcA (b4401) is part of the ArcAB (aerobic respiratory 

control) regulatory system19. ArcA and ArcB have been shown to regulate the expression of 

oxygen-requiring pathways19. ArcAB has been also known to participate in the proper 

expression of catabolic genes for pyruvate utilization and sugar fermentation pathways19. In 
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the expanded reconstruction the gene regulates the hydrolysis of N2-succinyl-L-arginine to 

Urea and N2-Succinyl-L-ornithine (EC 3.5.3.-), providing an alternative pathway to 

compensate for the knockout of argG (b3172). 

 

LacA (b0342) encodes the enzyme Galactoside O-acetyltransferase that catalyzes the transfer 

of an acetyl group from acetyl-CoA to the 6-hydroxyl of some galactopyranosides20. The 

enzyme is known to act on a broad range of substrates and can acetylate galactosides, 

thiogalactosides, glucosides, and lactosides20. In the expanded reconstruction it is part of the 

Lipopolysaccharide Biosynthesis / Recycling and catalyzes the degradation of Dodecanoyl-

KDO2-lipid IV(A) to KDO2-lipid A, compensating for the knockout of lpxM (b1855). 

 

The 33 genes that already are part of the model show substrate or mechanism promiscuity. 

In the original reconstruction galK (b0757) encodes for the enzyme Galactokinase, responsible 

for the phosphorylation of D-Galactose (EC 2.7.1.6). galK shows substrate promiscuity since 

BridgIT suggests it can phosphorylate ADP-D-glycero-D-manno-heptose, 5-Methylthio-D-

ribose, D-glycero-beta-D-manno-Heptose 7-phosphate, 6-(Hydroxymethyl)-7,8-

dihydropterin, and D-Ribose 5-phosphate. On the other hand, xapA (b2407), acts as a 

glycosyltransferase (EC 2.4.2.-) in the original reconstruction whereas BridgIT suggests it can 

encode for phosphotransferases (EC 2.7.4.-) and ydfG (b1539), acts as dehydrogenase (EC 

1.1.1.-) in the iML1515 network, but we suggest it can act as a carbon-carbon lyase (EC 4.1.1.-

, 4.1.2.-). 

 

Although NICEgame suggests thermodynamically feasible alternatives to rescue 92 reactions, 

solutions were not added in the updated reconstruction for 14 reactions for two reasons. The 

first reason not to include a gap-filling solution in the updated reconstruction is that all the 

solution sets identified by our approach add redundancy in the metabolic network, resulting 

in an increase of the false positive gene essentiality predictions. The second reason not to 

include any solution set for a rescued reaction was that we had an indication that an essential 

or a falsely negative gene catalyzes the suggested biochemistry. 

 

The newly included biochemistry allows the reconciliation of 78 false negative essential 

reactions and 68 false negative essential gene cases. The biochemistry added to form the 
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iEcoMG1655 is the top-rated among the alternatives, based on the knowledge that it is 

available to this day. Our approach allows users to revisit and reevaluate the suggested 

solution sets for each rescued reaction, in case new quantitative and qualitative data are 

released, by suggesting alternative solution sets.  

 

The amended metabolic network iEcoMG1655 can serve as a tool to explore the undiscovered 

metabolic capabilities of E. coli. The library of alternative gap-filling solutions can be used to 

postulate experimentally testable hypotheses to shed light on the underground metabolism 

of E. coli.  Our method and the library of alternative solution sets can also be used as a 

recourse in metabolic engineering, to design strains with improved performance, i.e., higher 

biomass or product yield. Our workflow is applicable to any genome-scale metabolic model 

of prokaryotic organisms. NICEgame allows the characterization and curation of metabolic 

gaps at the reaction and enzyme level leading towards fully annotated genomes. 

 

2.7 The NICEgame workflow offers improved gap-filling performance 

To evaluate the performance of NICEgame against existing gap-filling approaches we 

performed three comparative studies. In the first study, we repeated the generation of gap-

filling alternative solutions using our in-house algorithm but only known biochemical 

reactions, i.e., the Ecoli_Yeast_mets_KEGG DB, a subset of the KEGG database, as a pool for 

the gap-filling. The second study compares our gap-fling algorithm to published algorithms, 

i.e., the algorithms included the RAVEN and COBRA toolboxes, using the 

Ecoli_Yeast_mets_ATLAS DB. Last, we compared NICEgame against the CarveMe gap-filling 

approach. 

 

The Ecoli_Yeast_mets_KEGG DB allows the identification of thermodynamically feasible gap-

filling solutions for 53 out of the 152 target reactions (Supplementary Table S4), contrary to 

93 rescued false negative reactions by the Ecoli_Yeast_mets_ATLAS DB. The average number 

of solutions per rescued reaction is 2.3 for the Ecoli_Yeast_mets_KEGG DB and 252.2 for the 

Ecoli_Yeast_mets_ATLAS DB. However, the Ecoli_Yeast_mets_KEGG DB suggests solutions for 

8 reactions that the Ecoli_Yeast_mets_ATLAS DB cannot rescue. Further analysis of the KEGG 

reactions that can substitute for the 8 E. coli reactions was performed to understand why the 

ATLAS database could not capture these solutions (Supplementary Table S5).  
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The gap-filling approach implemented in the RAVEN toolbox also uses a MILP (Mixed-Integer 

Linear Programming) algorithm. We used the input parameters so that is the problem is to 

include as few reactions as possible from the database in order to satisfy the model 

constraints, i.e., the mass balances and the basal growth rate under the defined media. The 

problem is very similar to the one defined by the NICEgame, however the RAVEN approach 

does not account for the generation of alternative solutions. This results in obtaining 

thermodynamically feasible solutions for 67 out of the 152 target reactions (Supplementary 

Table S6). The gap-filling package that is included in the COBRA toolbox is also a MILP 

algorithm, that minimizes the number of added reactions from the database to the model, in 

order to achieve a given metabolic task. The COBRA toolbox algorithm gives different weights 

to the reactions of the database, penalizing the uptakes and transporters in comparison to 

metabolic reactions. The algorithm can account for alternative solutions, by assigning a bigger 

weight to reactions that have already appeared in previous solutions. To test the method, we 

demanded 10 alternatives per target reaction. However, the same solution can reappear and 

there is no systematic enumeration of all minimal solution sets. (Supplementary Table S7). 

The reaction ANPRT is such an example. The algorithm identifies the ATLAS reaction 

‘rat45874’ as a solution four times, alternatives 1, 2,7, and 10. The size of the remaining six 

solutions ranges between two and three reactions per solution set. 

 

The CarveMe gap-filling approach is another gap-filling method based on a MILP formulation, 

that aims to add the minimal number of reactions from the Universal Bacterial model21 to the 

genome-scale model under curation. The method does not generate alternative solutions 

sets. The usage of a different database leads to the identification of different gap-filling 

alternatives. For example, the Ecoli_Yeast_mets_ATLAS DB can gap-fill for the target reaction 

AICART with solution sets of one reaction, whereas the Universal Bacterial model provides a 

solution of 20 reactions. Using the CarveMe gap-filling we identified thermodynamically 

feasible solutions for 33 target reactions and reconcile 24 gaps that are not curated by the 

NICEgame. However, the method suggests transporter, e.g., CAt6, CITt13, Cuabc, and pseudo-

reactions, e.g., sink_4hba_c, as part of the solutions.  
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Overall, NICEgame outcompetes existing gap-filling approaches since it achieves an 

exhaustive and systematic enumeration of gap-filling solutions of the minimal or bigger size. 

Using the ATLAS of Biochemistry as a reaction pool for gap-filling allows the reconciliation of 

more gaps. The thermodynamic evaluation of the alternatives in combination with our scoring 

system allows us to choose biologically relevant solutions. The integration of the BridgIT tool 

in the NICEgame workflow offers the users an inclusive genome-scale model gap-filling, from 

the metabolite to the enzyme level. 

 

3. Methods 

 

In this study, we present our gap-filling approach, which comprises seven main steps. The 

workflow produces a merged metabolic network by connecting the metabolism of the 

organism with a reaction database, i.e., the ATLAS of Biochemistry. Then, it attempts to create 

a functional network by substituting essential reactions, to the original metabolic network, 

for biomass production with reactions coming from the reaction database. Candidate 

annotated and non-annotated genes in the organism that can catalyze the suggested 

biochemistry are identified. The alternative solutions are then evaluated and ranked.  

 

3.1 Reconciliation of annotation 

The suggested workflow was implemented on the most recently published E. coli model, 

iML15152. The model is derived from 1,515 genes, associated with 2,266 reactions. It 

integrates 1,569 metabolic reactions and 1,169 unique metabolites across two compartments, 

the cytosol and the periplasm, and the extracellular space. Since the ATLAS of Biochemistry is 

KEGG22-based, both compound and reaction IDs of the wild-type E. coli model needed to be 

translated to KEGG notation. The whole process required manual search in BiGG23 and KEGG 

databases. The most suitable KEGG ID was matched to the metabolites in the model, based 

on the BiGG ID and the name of each metabolite. Every metabolite must have its unique ID 

so that the stoichiometric matrix of the model is properly generated. Thus, in order to avoid 

conflicts, in the case of different compounds with the same KEGG ID, such as lipids and 

stereoisomers, the KEGG ID was assigned only once. 909 out of the 1,169 metabolites were 

mapped to a KEGG ID. Apart from the KEGG database, the metabolites of the iML1515 were 
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also mapped to the SEED24 database, so that thermodynamic constraints can be imposed on 

the model. 1,106 out of the 1,169 metabolites are mapped to a unique SEED ID. 

 

3.2 Databases used for gap-filling 

In this project, we examined the performance of the ATLAS of Biochemistry as a reaction pool 

for gap-filling. For this project, the updated version of ATLAS14 was used. It includes 10,935 

KEGG metabolites integrated into 149,052 novel and already known enzymatic reactions. 

5,764 of the ATLAS reactions are exact reconstructions of KEGG reactions. 

 

Due to the vast amount of information integrated into ATLAS, in this project we used two 

subsets of ATLAS. More specifically, the Ecoli_mets_ATLAS DB is a subset of the ATLAS 

database that contains only reactions that integrate compounds, from the intracellular and 

the extracellular space of the cell, that are already part of the iML1515 genome-scale model. 

To this end, the ATLAS database was converted in a pseudo-GEM format and any reactions 

that integrated compounds that do not belong in the E. coli metabolic network were removed. 

We thus examined whether the gaps in the model can be reconciled by expanding only the 

reaction space while not increasing the metabolite space. Likewise, the the 

Ecoli_Yeast_mets_ATLAS DB contains only ATLAS reactions that integrate compounds that 

are already part of the iML1515 and the Yeast83 genome-scale models. In this case, more 

information was extracted from ATLAS in a controlled way, expanding both the reaction and 

metabolite space of the original metabolic network. Likewise, the Ecoli_Yeast_mets_KEGG DB 

contains only KEGG (2018 version) reactions among metabolites included in the iML1515 and 

the Yeast83 genome-scale models. The metabolic network of yeast was chosen since E. coli is 

often cultivated in yeast extract, and it is thus probable that parts of the missing metabolome 

exist in the yeast metabolic reconstruction. For the gap-filling with the CarveMe approach, 

the universal bacterial model21, a compartmentalized model contains transporters and 

pseudo-reactions, was used as a database. The size of the databases is shown in Table 1. 

 

3.3 Gap-filling formulation 

The gap-filling algorithm generates binary use variables for each reaction in the database. 

These variables indicate whether flux is allowed through a reaction or not. The gap-filling 

algorithm is in reality a parsimonious algorithm whose objective is to minimize the number 
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of active reactions in the metabolic network, demanding at the same time a basal flux through 

the biomass reaction in the wild-type model. The mathematical formulation of the MILP 

problem is: 

max끫毎 �끫毎끫殬  끫毀. 끫毂.  

1 ∗ 끫歲끫殬 + 1 ∗ 끫殊끫殬 + 끫殀 ∗ 끫毎끫殬 ≤ 끫殀 (끫殬) (1) 

1 ∗ 끫歲끫殬 + 1 ∗ 끫殊끫殬 + 1 ∗ 끫毎끫殬 > 0 (끫殬끫殬)  끫歲끫殞끫殬끫殞끫殞끫殞끫殞끫殞 ≥ 0.1 ∗ (끫殔끫殔 끫殨끫殨끫殨끫殨끫毂ℎ 끫殨끫殾끫毂끫殾)  

 

, where Fi stands for the flux variables of the irreversible forward reactions, Ri are the flux 

variables of the irreversible backward component reactions of the reversible reaction i, 

Fbiomass is the flux variable of the irreversible forward biomass reaction, WT growth rate is 

the growth rate of the wild-type model, M is a big-M value, m is a small value and zi are the 

binary use variables. 

 

Every time the solver identifies a solution, the solution is integrated as a cut constraint to the 

MILP problem, so the solver cannot identify the same solution more than once: 

 �끫毎끫殰 > 0 (2) 

 

We generated solutions of the minimum and the subsequent size. To avoid the generation of 

long pathways we demanded that the minimum solution size is less than 10 and the 

subsequent solution can be at most 5 reactions bigger than the minimum size solution. 

 

3.4 Identification of metabolic gaps 

Gene essentiality data25 were used to identify putative false negative reactions. We 

considered M9 glucose minimal media and aerobic conditions and the wildtype biomass 

reaction as an objective function. We performed a single gene deletion analysis, where a gene 

was considered essential in silico if the growth rate of the knock-out mutant was less than 

10 % of the growth rate of the wildtype. This analysis revealed 258 genes essential in silico 

with 105 of them being essential in vivo, while 7 of them are not part of the experimental 
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data. We identified all reactions associated with the 146 remaining genes, 200 in total, and 

after a single reaction deletion analysis, we concluded that 152 of them are essential in silico. 

We consider that these 152 are falsely essential and thus constitute the target reactions for 

gap-filling.  

 

3.5 Scoring the alternatives 

The output of the framework, for each gap-filled model, is a set of ranked alternatives for 

each rescued reaction. The main criteria for ranking the different alternatives are the 

thermodynamic feasibility of the solution, which means the system cannot violate the second 

law of thermodynamics, and minimum impact on the model, that means that the more a 

solution alters the biochemistry and the predictive capability of the model the lower it is 

ranked. 

 

Thermodynamics-based Flux Balance Analysis (TFA)26 is carried out for each alternative in 

order to examine the maximum biomass yield under thermodynamic constraints. In order to 

examine the maximum biomass yield for each alternative the rescued reaction is blocked, and 

flux is allowed through a set of the reactions of the alternative. Then a TFA is carried out. 

These values are compared with the performance of the wildtype GEM and the ratios of the 

wildtype GEM to the gap-filled GEM are calculated. Then, 1 is subtracted from the ratio of the 

maximum biomass yield of the two models. If the result of the subtraction is greater than 0, 

the addition of the alternative to the GEM leads to a lower performance compared to the 

original model, whereas, in the case that the result of the subtraction is less than 0, the 

addition of the alternative to the GEM leads to higher performance compared to the original 

model. If a gap-filled GEM does not predict growth when it is thermodynamically restricted, 

the alternative is rejected. The performance of the gap-filled models without thermodynamic 

constraints is also tested. FBA is carried out for each alternative in order to examine the 

maximum biomass yield. The results are analyzed similarly to the TFA test.  

 

The number of reactions of each alternative is also tested. Since the set of reactions of each 

alternative replaces one reaction in the model, 1 is subtracted from the number of reactions 

in the solution set. Since usually organisms favor shorter paths, the alternatives that integrate 

fewer reactions are ranked higher than those that integrate more reactions. 
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Furthermore, the metabolites integrated into each reaction are examined. For every unique 

non-native metabolite, 1 point is added. An extra point is added for every reaction that is 

linked to a 3rd level EC number that is not included in the original GEM. The integration of 

such reactions also entails the integration of new enzymatic capabilities into the model.  

 

Lastly, we test the ability of the models to properly predict gene essentiality. To this end, the 

overall accuracy (ACC) and Matthews Correlation Coefficient (MCC) are calculated for each 

gap-filled model and are compared to the WT.  

 

 끫殀끫殀끫殀 =
끫殔끫殎 ∗ 끫殔끫殎 − 끫歲끫殎 ∗ 끫歲끫殎�(끫殔끫殎 + 끫歲끫殎) ∗ (끫殔끫殎 + 끫歲끫殎) ∗ (끫殔끫殎 + 끫歲끫殎) ∗ (끫殔끫殎 + 끫歲끫殎)

 

 

(3) 

 끫歨끫殀끫殀 =
끫殔끫殎 + 끫殔끫殎끫殔끫殎 + 끫殔끫殎 + 끫歲끫殎 + 끫歲끫殎 

(4) 

 

, where TP stands for True Positive, TN for True Negative, FP for False Positive, and FN false 

negative gene essentiality model predictions. 

 

The values of all the scores are added, and the alternatives are ranked. The closer the absolute 

value of the score is to 0, the more similar the performance and the biochemistry of the gap-

filled model is to the original model. 

 

3.6 Enzyme annotation with BridgIT method 

In this study, for the annotation of ATLAS reactions, we used the online version of the BridgIT 

method with default parameters as discussed in the original paper15. BridgIT method is 

inspired by the theory of lock and key, assuming two similar reactions will be catalyzed by the 

same enzyme. More precisely, BridgIT takes into account the reactive site and its 

neighborhood in similarity calculations, since the rest of the structure doesn’t interact with 

the enzymatic binding pocket.  
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BridgIT method compares the similarity of each input reaction with all the non-orphan 

characterized metabolic reactions cataloged in the KEGG database (reference reactions) and 

proposes the enzymes associated with the most similar reference reactions as the best 

candidate for the input reaction. Therefore, BridgIT systematically screens for the best 

promiscuous candidate enzymes that might be able to catalyze the input reaction. The degree 

of similarity or probability of catalyzation is quantified in the BridgIT score, ranging from 0 (no 

similarity) to 1 (identical).  The optimal threshold value for the BridgIT score is 0.3, meaning 

predictions with a score higher than 0.3 are considered promising15.  

 

The output of BridgIT for each input reaction is a list of ranked enzymes ordered descending 

based on BridgIT score along with their EC number. Then, EC number is used to query the 

Uniport27 database for the corresponding protein sequences in the organism of interest, in 

this study Escherichia coli K12. Finally, the BridgIT output annotated with protein sequences 

in Escherichia coli K12 is used for gap-filling. 

 

Software 

This work was supported by EPFL through the use of the facilities of its Scientific IT and 

Application Support Center. We performed gap-filling using the defined MILP formulation in 

MATLAB (2016a and 2018a) and IBM ILOG Cplex 12.7.1 as a solver. The simulations were run 

on a High-Performance Computing Cluster of 408 nodes. We used 2 CPUs per simulation and 

3875 MB per CPU. One simulation was defined for a unique combination of parameters. The 

analysis of the gap-filling solutions was performed on mac info in MATLAB 2017a and IBM 

ILOG Cplex 12.7.1 as a solver. The gap-filling with RAVEN was performed with Gurobi 

Optimizer Version 9.3 as a solver. The gap-filling with COBRA and CarveMe approaches were 

performed in python 3.6 and IBM ILOG Cplex 12.8.0 as a solver. 
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Tables 

Table 1: Size of the databases that were used for gap-filling. 

 Reactions Metabolites 

Ecoli_mets_ATLAS 9,810 778 

Ecoli_Yeast_mets_ATLAS 13,298 1,050 

Ecoli_Yeast_mets_KEGG 1,756 1,128 

Universal Bacterial model 5,532 2,861 
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Figure 1. Pipeline to construct and use the NICEgame workflow to annotate missing 

metabolic functions. The NICEgame workflow uses a genome-scale metabolic model (GEM) 

as input. (1) We first harmonize the annotations of the GEM metabolites to map them to 

compounds in the ATLAS of Biochemistry. (2) We define the conditions for subsequent 

essentiality analyses, i.e., the media composition. (3) The original GEM is merged with ATLAS 

and (4) an essentiality analysis is performed in the original and the expanded network to 

identify which gaps can be rescued. (5) Alternative sets of biochemistry are generated to fill 
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in the gaps and (6) are then evaluated. (7) At the last step, we use BridgIT to identify catalyzing 

for the suggested biochemistry. 
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Figure 2. Rating of the alternative reaction sets. Two alternatives to reconcile the false 

negative prediction for the gene panD are shown. The second alternative is rejected because 

it is thermodynamically infeasible. This alternative is penalized in all scores (i.e., all scores are 

positive) since it adds two reactions, one non-native metabolite and one non-native 

enzymatic capability to the network. Regarding yield, the first alternative is also penalized 

(i.e., positive score) since it constrains the model both with and without thermodynamic 
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constraints. However, it performs well at the reaction, metabolite and enzyme scores (i.e., 

they are all equal to 0) and it increases the accuracy of the model (i.e., MCC score is negative).  
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Figure 3. (A) Comparison of essentiality between iML1515 and the extended networks. The 

146 false negative gene essentiality predictions are linked to 152 (orange) reactions in the 

model. Using the Ecoli_mets_ATLAS as a reaction pool for gap-filling 86 of these gaps could 

be characterized (blue) while 92 reactions could be rescued when the 

Ecoli_Yeast_mets_ATLAS was used as a reaction pool (green). (B) Contingency matrix for 

gene essentiality prediction accuracy of iML1515. The accuracy of the model is equal to 0.872 

and MCC equal to 0.488. (C) Remaining gaps. The subsets of ATLAS used in this study could 

not rescue 59 falsely negative reactions. The enzyme 4-amino-4-deoxychorismate synthase 

(EC 2.6.1.85) remains falsely negative.  
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Figure 4. Cases of incorrectly predicted as essential reactions and alternative gap-filling 

reactions identified using the Ecoli_mets_ATLAS DB. (A) The reaction regulated by bioC in 

the original network, two gap-filling solutions and their scores. (B) The reactions catalyzed by 

luxS in iML1515, one thermodynamically favorable and one thermodynamically infeasible 
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solution. (C) The false negative reaction linked with the gene panB and two gap-filling 

solutions with their scores. 
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Figure 5. Cases of incorrectly predicted as essential reactions and alternative gap-filling 

reactions identified using the Ecoli_Yeast_mets_ATLAS DB. (A) The false negative reaction 

regulated by leuCD in the original network, one thermodynamically favorable and one 

thermodynamically infeasible gap-filling solution and their scores. (B) The reactions catalyzed 

by bioH in iML1515, one lowly ranked and one highly ranked gap-filling solution. (C) The false 

negative reaction linked with the gene gshA and two gap-filling solutions with their scores. 
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The first alternative is generated by the Ecoli_mets_ATLAS DB whereas the second one is 

generated by the Ecoli_Yeast_mets_ATLAS DB.  
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Figure 6. Suggesting catalyzing genes using BridgIT. BridgIT could identify 5 reactions that 

are similar to the novel reaction that accounts for the degradation of γ-L-Glutamylputrescine 

to 5-Oxoproline and Putrescine. Out of these five reactions only R11861 is linked to a 

sequence in the genome of E. coli.  
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Figure 7. (A) The iEcoMG1655 network statistics. The gap-filled network contains 77 novel 

reactions, two additional genes and nine new metabolites. (B) Contingency matrix for gene 

essentiality prediction accuracy of iEcoMG1655. Our approach could reconcile 58 out of the 

146 FN gene essentiality predictions leading to an increased accuracy, i.e., MCC = 0.6025. 
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Supplementary Table title and legends 

Supplementary Table S1.  

False negative gene essentiality model predictions and the reactions that constitute the 

targets of the gap-filling algorithm.  

Supplementary Table S2.  

All gap-filling solutions identified by the heuristic along with the corresponding scores with 

the Ecoli _mets_ATLAS and the Ecoli_Yeast_mets_ATLAS databases. 

Supplementary Table S3.  

The top-rated solutions and the suggested catalyzing enzymes used to update the 

reconstructions. 

Supplementary Table S4.  

All gap-filling solutions identified by the heuristic with the Ecoli_Yeast_mets_KEGG DB. 

Supplementary Table S5.  

Rescued reactions by the Ecoli_Yeast_mets_KEGG DB and not the Ecoli_Yeast_mets_ATLAS 

DB. 

Supplementary Table S6.  

All gap-filling solutions identified by the RAVEN gap-filling approach. 

Supplementary Table S7.  

All gap-filling solutions identified by the COBRA gap-filling approach. 

Supplementary Table S8.  

All gap-filling solutions identified by the CarveMe gap-filling approach. 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.10.479881doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479881
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

References 

1.  Ghatak S, King ZA, Sastry A, Palsson BO. The y-ome defines the 35% of Escherichia coli 

genes that lack experimental evidence of function. Nucleic Acids Res. 

2019;47(5):2446-2454. doi:10.1093/nar/gkz030 

2.  Monk JM, Lloyd CJ, Brunk E, et al. iML1515, a knowledgebase that computes 

Escherichia coli traits. Nat Biotechnol. 2017;35(10):904-908. doi:10.1038/nbt.3956 

3.  Lu H, Li F, Sánchez BJ, et al. A consensus S. cerevisiae metabolic model Yeast8 and its 

ecosystem for comprehensively probing cellular metabolism. Nat Commun. 

2019;10(1):1-13. doi:10.1038/s41467-019-11581-3 

4.  Thiele I, Hyduke DR, Steeb B, et al. A community effort towards a knowledge-base 

and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC 

Syst Biol. 2011;5. doi:10.1186/1752-0509-5-8 

5.  Chiappino-Pepe A, Tymoshenko S, Ataman M, Soldati-Favre D, Hatzimanikatis V. 

Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its 

essential genes, nutritional requirements, and thermodynamic bottlenecks. Maranas 

CD, ed. PLOS Comput Biol. 2017;13(3):e1005397. doi:10.1371/journal.pcbi.1005397 

6.  Jansma J, El Aidy S. Understanding the host-microbe interactions using metabolic 

modeling. Microbiome. 2021;9(1):16. doi:10.1186/s40168-020-00955-1 

7.  Stanway RR, Bushell E, Chiappino-Pepe A, et al. Genome-Scale Identification of 

Essential Metabolic Processes for Targeting the Plasmodium Liver Stage. Cell. 

2019;179(5):1112-1128.e26. doi:10.1016/j.cell.2019.10.030 

8.  Kim B, Kim WJ, Kim DI, Lee SY. Applications of genome-scale metabolic network 

model in metabolic engineering. J Ind Microbiol Biotechnol. 2015;42(3):339-348. 

doi:10.1007/s10295-014-1554-9 

9.  Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. Current status and applications of genome-

scale metabolic models. Genome Biol. 2019;20(1):1-18. doi:10.1186/s13059-019-

1730-3 

10.  Gasperskaja E, Kučinskas V. The most common technologies and tools for functional 

genome analysis. Acta medica Litu. 2017;24(1):1-11. 

doi:10.6001/actamedica.v24i1.3457 

11.  Ejigu GF, Jung J. Review on the computational genome annotation of sequences 

obtained by next-generation sequencing. Biology (Basel). 2020;9(9):1-27. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.10.479881doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479881
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

doi:10.3390/biology9090295 

12.  Hadadi N, Hatzimanikatis V. Design of computational retrobiosynthesis tools for the 

design of de novo synthetic pathways. Curr Opin Chem Biol. 2015;28:99-104. 

doi:10.1016/j.cbpa.2015.06.025 

13.  Lawson CE, Martí JM, Radivojevic T, et al. Machine learning for metabolic 

engineering: A review. Metab Eng. Published online November 19, 2020. 

doi:10.1016/j.ymben.2020.10.005 

14.  Hafner J, Mohammadipeyhani H, Sveshnikova A, Scheidegger A, Hatzimanikatis V. 

Updated ATLAS of Biochemistry with New Metabolites and Improved Enzyme 

Prediction Power. ACS Synth Biol. 2020;9(6):1479-1482. 

doi:10.1021/acssynbio.0c00052 

15.  Hadadi N, MohammadiPeyhani H, Miskovic L, Seijo M, Hatzimanikatis V. Enzyme 

annotation for orphan and novel reactions using knowledge of substrate reactive 

sites. Proc Natl Acad Sci U S A. 2019;116(15):7298-7307. 

doi:10.1073/pnas.1818877116 

16.  Falkenberg P, Strøm AR. Purification and characterization of osmoregulatory betaine 

aldehyde dehydrogenase of Escherichia coli. BBA - Gen Subj. 1990;1034(3):253-259. 

doi:10.1016/0304-4165(90)90046-Y 

17.  Manandhar M, Cronan JE. A canonical biotin synthesis enzyme, 8-amino-7- 

oxononanoate synthase (BioF), utilizes different acyl chain donors in Bacillus subtilis 

and Escherichia coli. Appl Environ Microbiol. 2018;84(1). doi:10.1128/AEM.02084-17 

18.  Ishii N, Nakahigashi K, Baba T, et al. Multiple high-throughput analyses monitor the 

response of E. coli to perturbations. Science (80- ). 2007;316(5824):593-597. 

doi:10.1126/science.1132067 

19.  Salmon KA, Hung SP, Steffen NR, et al. Global gene expression profiling in Escherichia 

coli K12: Effects of oxygen availability and ArcA. J Biol Chem. 2005;280(15):15084-

15096. doi:10.1074/jbc.M414030200 

20.  Andrews KJ, Lin ECC. Thiogalactoside transacetylase of the lactose operon as an 

enzyme for detoxification. J Bacteriol. 1976;128(1):510-513. 

doi:10.1128/jb.128.1.510-513.1976 

21.  Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of 

genome-scale metabolic models for microbial species and communities. Nucleic Acids 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.10.479881doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479881
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Res. 2018;46(15):7542-7553. doi:10.1093/nar/gky537 

22.  Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 

Res. 2000;28(1):27-30. doi:10.1093/nar/28.1.27 

23.  King ZA, Lu J, Dräger A, et al. BiGG Models: A platform for integrating, standardizing 

and sharing genome-scale models. Nucleic Acids Res. 2016;44(D1):D515-D522. 

doi:10.1093/nar/gkv1049 

24.  Henry CS, Dejongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput 

generation, optimization and analysis of genome-scale metabolic models. Nat 

Biotechnol. 2010;28(9):977-982. doi:10.1038/nbt.1672 

25.  Goodall ECA, Robinson A, Johnston IG, et al. The essential genome of Escherichia coli 

K-12. MBio. 2018;9(1). doi:10.1128/mBio.02096-17 

26.  Salvy P, Fengos G, Ataman M, Pathier T, Soh KC, Hatzimanikatis V. pyTFA and matTFA: 

a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis. 

Berger B, ed. Bioinformatics. 2018;35(1):167-169. doi:10.1093/bioinformatics/bty499 

27.  Consortium TU, Bateman A, Martin M-J, et al. UniProt: the universal protein 

knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480-D489. 

doi:10.1093/NAR/GKAA1100 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.10.479881doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479881
http://creativecommons.org/licenses/by-nc-nd/4.0/

	NICEgame: A workflow for annotating the knowledge gaps in metabolic reconstructions, using known and hypothetical reactions
	Author List
	Keywords
	1. Introduction
	2.1 A workflow to identify and curate gaps in metabolic networks
	2.2 Identification of metabolic gaps in Escherichia coli with NICEgame
	2.3 Known and novel biotransformations among E. coli metabolites to reconcile model predictions with experimental evidence.
	2.4 Biotransformations among E. coli and yeast metabolites allows the reconciliation of more gaps
	2.5 Gene annotation of metabolic gaps identifies new functions in E. coli.

	3. Methods
	Acknowledgments
	Author Contributions
	Corresponding author and material availability
	Declaration of interests
	The authors declare no competing interests.
	Figures
	Figure 1. Pipeline to construct and use the NICEgame workflow to annotate missing metabolic functions. The NICEgame workflow uses a genome-scale metabolic model (GEM) as input. (1) We first harmonize the annotations of the GEM metabolites to map them ...
	Figure 3. (A) Comparison of essentiality between iML1515 and the extended networks. The 146 false negative gene essentiality predictions are linked to 152 (orange) reactions in the model. Using the Ecoli_mets_ATLAS as a reaction pool for gap-filling 8...
	Figure 4. Cases of incorrectly predicted as essential reactions and alternative gap-filling reactions identified using the Ecoli_mets_ATLAS DB. (A) The reaction regulated by bioC in the original network, two gap-filling solutions and their scores. (B)...
	Figure 5. Cases of incorrectly predicted as essential reactions and alternative gap-filling reactions identified using the Ecoli_Yeast_mets_ATLAS DB. (A) The false negative reaction regulated by leuCD in the original network, one thermodynamically fav...
	㈸㤠〠潢樊㰼 呩瑬攨䙩杵牥‷⸠⡁⤠周攠楅捯䵇ㄶ㔵⁮整睯牫⁳瑡瑩獴楣献⁔桥⁧慰ⵦ楬汥搠湥瑷潲欠捯湴慩湳‷㜠湯癥氠牥慣瑩潮猬⁴睯⁡摤楴楯湡氠来湥猠慮搠湩湥⁮敷⁭整慢潬楴敳⸠⡂⤠䍯湴楮来湣礠浡瑲楸⁦潲⁧敮攠敳獥湴楡汩瑹⁰牥摩捴楯渠慣捵牡捹⁯映楅捯䵇ㄶ㔵⸠併爠慰灲潡捨⁣潵汤⁲散漮⸮
	References

