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Abstract

Advances in medicine and biotechnology rely on the further understanding of biological
processes. Despite the increasingly available types and amounts of omics data, significant
biochemical knowledge gaps remain uncharacterized. Several approaches have been
developed during the past years to identify missing metabolic annotations in genome-scale.
However, these approaches suggest missing metabolic reactions within a limited set of
already characterized metabolic capabilities. In this study, we introduce NICEgame (Network
Integrated Computational Explorer for Gap Annotation of Metabolism), a workflow to
characterize missing metabolic capabilities in genome-scale metabolic models using the
ATLAS of Biochemistry. NICEgame suggests alternative sets of known and hypothetical
reactions to resolve gaps in metabolic networks, assesses their thermodynamic feasibility,
and suggests candidate genes and proteins to catalyze the introduced reactions. We use gene
essentiality data use to identify metabolic gaps in the latest genome-scale model of
Escherichia coli, iML1515. We apply our gap-filling approach and further enhance its genome
annotation, by suggesting reactions and putative genes to resolve 46 % of the false negative

gene essentiality predictions.
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1. Introduction

Fully defined metabolic networks and annotated genomes can provide a holistic picture of
the cell function and enable the design of more robust and effective bioengineering and drug
targeting strategies. However, all known replicating genomes miss functional annotations for
a fraction of the open reading frames. For example, the best characterized organism, i.e.,
Escherichia coli, lacks annotation for approximately 1600 genes, which represents 35% of its
total number of genes?. A limited knowledge of the cell function is especially troublesome in
infectious pathogens and organisms that could be used as a chassis in the industry to produce
valuable compounds. Systematically identifying missing knowledge of metabolic capabilities
of the cell and accelerating the functional annotation of genomes can save lives, time, and

costs involved in the design of medical therapies and biotechnology projects.

Systematic analysis of metabolic functions and identification of knowledge gaps relies on the
gold standard of computational models of metabolism. Genome-scale models are organism-
specific databases of all known metabolic functions. They have been widely used to study the
metabolism of model organisms, such as E. coli* and yeast?, and pathogens such as .
typhimurium* and P. falciparum®, to identify host-pathogen interactions®, drug targets’, and
metabolic engineering strategies®, among others’. Genome-scale models rely on the
functional annotation of genes for their reconstruction. High-quality gene annotation leads
to a proper prediction of the cellular physiology. Genome-scale models, hence, represent a

powerful framework to identify missing knowledge through false predictions.

Approaches to perform functional annotation of genomes involve experimental' (e.g. in vitro
assays) and bioinformatics!! (e.g. blasting) methods. However, experiments require specific
hypotheses and are time-consuming and blasting and other computational approaches have

been limited to the space of known annotated proteins and biochemistry.

Exploring the space on unknown biochemistry is required to accelerate our understanding of
the cell function and include in cells novel chemistry. The strategies to explore such unknown
biochemical space are primarily based on machine learning (ML) or mechanistic

approaches'®13,
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Recently, an ATLAS of Biochemistry was constructed based on a mechanistic understanding
of the enzyme function!4. The ATLAS of Biochemistry includes over 150,000 putative reactions
between known metabolites. Hence, it represents the upper limit of the possible biochemical
space and allows an efficient exploration of the uncharacterized metabolic functions in cells.
Furthermore, the tool BridgIT* was developed to identify putative genes and proteins
catalyzing a reaction. The potential of a combined use of ATLAS of Biochemistry and BridgIT

to identify unknown metabolic annotations is tremendous but remains unexplored.

In this study, we present a Network Integrated Computational Explorer for Gap Annotation
of Metabolism (NICEgame). NICEgame combines the analysis of metabolic functions using
genome-scale models (GEMs), exploration of unknown biochemistry using the ATLAS of
Biochemistry, and identification of uncharacterized genes using BridglT. We applied
NICEgame to suggest novel biochemistry in E. coli’s strain MG1655 and further enhance its
genome annotation. We identified metabolic gaps in E. coli responsible for 146 false gene
essentiality predictions in glucose minimal media. We propose 77 biochemical reactions
linked to 35 candidate genes to fill 46% of these gaps. We integrated this information into a
thermodynamically curated genome-scale model of E. coli that we name iEcOMG1655. The
iEcoMG1655 metabolic model increased the essentiality prediction accuracy by 23.5% with
respect to its predecessor iML15152. Finally, the NICEgame workflow is applicable to any
organism or cell with a genome-scale model and is available as a GitHub repository
(https://github.com/EPFL-LCSB/NICEgame), with the combined use of available online
resources: The ATLAS of Biochemistry'* and BridgIT*>. Overall, NICEgame is a workflow for
rapid and systematic identification of metabolic gaps, missing biochemistry, and candidate
catalyzing genes. Hence it will accelerate the complete identification of metabolic functions
and annotation of genomes, and with it enable the design of robust bioengineering and drug

targeting strategies.

2. Results and Discussion

2.1 A workflow to identify and curate gaps in metabolic networks
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To identify metabolic gaps in the GEM of E. coli, we developed a Network Integrated
Computational Explorer of Gap Annotation for Metabolism Expanded (NICEgame). NICEgame
leverages the potential of the ATLAS of Biochemistry!* as a database of novel biochemistry,
i.e. not yet observed reactions, and the optimization-based exploration of metabolic models
to identify missing biochemistry. Moreover, we couple NICEgame with a method to map
orphan biochemistry to genes called BridgIT*>. In this way, NICEgame optimally identifies
metabolic gaps, finds putative missing biochemistry, evaluates alternative solutions, and

identifies the top suggested reaction and associated catalyzing enzyme and gene.

NICEgame involves seven main steps (Figure 1). The first step involves the harmonization of
metabolite annotations with the ATLAS of Biochemistry. This is a necessary step to assure the
proper connectivity of the metabolites in the GEM and the database. The second step
comprises a preprocessing of the GEM (e.g., by defining the media). In the third step,
NICEgame merges the GEM and ATLAS of Biochemistry. Thereafter, we call this merged
network ATLAS-merged GEM. This process can follow various strategies as we will discuss
below. The fourth step includes a comparative essentiality analysis with the isolated and
ATLAS-merged GEM. At this point, we identify the reactions or genes that are in silico essential
for a phenotype (by default growth) in the GEM and dispensable in the ATLAS-merged GEM.
We define such reactions or genes as rescued. The rescued reactions and genes will be the
targets for gap-filling. In the fifth step, NICEgame systematically identifies alternative
biochemistry to the rescued reactions or genes. By default, NICEgame suggests a minimal
number of reactions to be added to the GEM. In the sixth step, we evaluate and rank all
alternative biochemistry. Last, NICEgame identifies a gene that can catalyze the top-ranked

suggested biochemistry using the BridgIT tool.

The alternatives are evaluated based on the impact they have on the metabolic network and
the performance of the model (Figure 2). Solution sets, i.e., sets of reactions that are added
to the network to reconcile a gap, that result in a higher yield or do not affect the yield are
preferred to solutions that reduce the flexibility of the model, whereas solutions that expand
the metabolome or the enzymatic capabilities of the original model are ranked lower.
Another criterion is the number of reactions that are used to complement each rescued

reaction. Usually, organisms do not favor larger pathways since they normally require more
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protein production, which is a highly energetically demanding process. We assumed that
short pathways would be preferred to perform a metabolic function. Lastly, the alternatives
that increase the ability of the model to correctly reproduce knockout phenotypes and do not
add redundancy are ranked higher. These criteria are converted into scores (See Methods). A
positive value for any of the scores penalizes the alternative solution set in our ranking

system.

2.2 Identification of metabolic gaps in Escherichia coli with NICEgame

Our analysis identified 146 False Negative gene essentiality model predictions (Figure 3A)
that translate into 152 false negative essential reactions (Supplementary Table S1). As a
case study, we used two different subsets of ATLAS to gap-fill the metabolic network of
iML1515. The first subset, Ecoli_mets_ATLAS DB, expands the reaction space of the model,
by adding reactions involving only metabolites from the iML1515 reconstruction. The
second subset, Ecoli_Yeast_mets_ATLAS DB, expands the reaction and metabolite space of
the model, by adding reactions involving only metabolites from the iML1515 and Yeast8
metabolic reconstructions. In total, we could suggest at least one thermodynamically
feasible solution set for 93 out of the 152 false negative reactions (Figure 3B). However,
gaps, that cannot be resolved by our approach, still remain in the model. The falsely
negative gene pabA (b3360) regulates the synthesis of 4-amino-4-deoxychorismate, a

precursor of Folate, from Chorismate (Figure 3C), constitutes such an unresolved metabolic

gap.

2.3 Known and novel biotransformations among E. coli metabolites to reconcile model
predictions with experimental evidence.

The first subset, Ecoli_mets_ATLAS DB, allowed us to suggest at least one thermodynamically
feasible solution set for 86 out of 152 false negative cases (Supplementary Table S2). As an
example, the enzyme Adenosylmethionine-8-amino-7-oxononanoate transaminase (EC
2.6.1.62) catalyzes the production of 7,8-Diaminononanoate, a precursor of Biotin, from 8-
Amino-7-oxononanoate and then encoding gene, bioA, is not essential in vivo but it is
essential in silico. Our approach suggested 116 thermodynamically feasible solution sets that
can serve as alternatives to achieve the biosynthesis of Biotin. Figure 4A depicts the original

reaction and two alternative reaction sets. In the first alternative, a single reaction can fill the
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gap. The reaction is novel and follows the same mechanism (EC 2.6.1.-) as the original
reaction, however in this case L-Ornithine serves as the donor of the amino-group and L-
Glutamate 5-semialdehyde is the byproduct of the reaction. The reaction does not affect the
predicted growth rate, does not require any additional enzymatic capability and it improves
the overall accuracy of the model with respect to gene essentiality prediction. BridgIT could
identify 12 candidate genes with adequate BridgIT score to regulate this reaction. The second
alternative requires the addition of two novel reactions to fill the gap; the first reaction
converts 8-Amino-7-oxononanoate to 7,8-Diaminononanoate by transferring the amino
group from L-Cysteine (EC 2.6.1.-), while Mercaptopyruvate is produced. BridgIT suggests 19
candidate genes. The second reaction is required to balance the production of
Mercaptopyruvate by converting it into Hydroxypyruvate (EC 3.3.1.-), following a reaction
mechanism that is not part of the original network. However, we could identify one putative

sequence to catalyze this reaction.

The enzyme 3-methyl-2-oxobutanoate hydroxymethyltransferase catalyzes the production
of 2-Dehydropantoate, a precursor of Coenzyme A, from 3-Methyl-2-oxobutanoate (EC
2.1.2.11). This enzyme is the product of the falsely negative gene panB (b0134). The
heuristic suggests 29 thermodynamically feasible solution sets. All of the solutions involve
the production 2-Dehydropantoate from 3-Methyl-2-oxobutanoate and Formaldehyde (EC
4.1.2.-), which is the orphan KEGG reaction R01216. Our method suggests 26 candidate
genes to encode for this biotransformation. Figure 4B depicts the original reaction and two
alternative reaction sets. In the first alternative, the side reaction is novel and describes
the reduction of Formate to Formaldehyde (EC 1.2.1.-). BridgIT could not identify any
candidate sequence to encode for this reaction. In the second alternative, Formaldehyde is
produced from 3-Hydroxypropanoate through an acyltransferase (EC 2.3.3.-). However, this

novel reaction is not thermodynamically feasible in the desired directionality.

The gene luxS (b2687) is another case of false negative that can be reconciled by gap-filling
with the Ecoli_mets_ATLAS DB. The S-ribosylhomocysteine cleavage enzyme, encoded by
b2687, is responsible for the production of L-Homocysteine, a precursor of L-Methionine,
from  S-Ribosyl-L-homocysteine (EC  4.4.1.21). Our workflow suggests 11

thermodynamically feasible solution sets. The first alternative, depicted in Figure 4C,
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suggests that L-Homocysteine is the product of an amylase acting on S-
adenosylhomocysteine (EC 3.3.1.-), that is the KEGG reaction R00192. This enzymatic
capability is not part of the original network, however, using BridgIT we could identify one
candidate gene to encode for this enzyme. The second alternative requires the same
reaction mechanism to produce L-Homocysteine from L-Methionine and a second reaction
to balance the bioproduct, Methane. This solution set is thermodynamically infeasible since
these reactions form a cycle, L-Methionine = L-Homocysteine = L-Methionine. According
to the first law of thermodynamics, the overall thermodynamic driving force through these
cycles must be zero, meaning that no net flux is possible through these cycles, making the

system infeasible.

2.4 Biotransformations among E. coli and yeast metabolites allows the reconciliation of
more gaps

A gap-filling reaction pool of biotransformations between E. coli and yeast metabolites
suggests more alternative solution sets for the already rescued false negative reactions and
suggests biochemistry for seven more false negative cases (Supplementary Table S2). One
of the additionally rescued reactions is 3-isopropylmalate dehydratase and it accounts for
interconversion of 2-Isopropylmaleate to 3-Carboxy-2-hydroxy-4-methylpentanoate (EC
4.2.1.33). The reaction is part of the Leucine Biosynthesis pathway, and it is regulated by
two genes, leuD (b0071) and leuC (b0072). Figure 5A shows the original reaction and two
alternative pathways. The first set of reactions describes the production of 4-Methyl-2-
oxopentanoate, a precursor of Leucine, from Butanoyl-CoA via a 4-step path. Three of the
reactions are novel and BridglT can identify candidate genes for two of them, while the
solution includes also the KEGG reaction R01176. The second set of reactions accounts for
the synthesis of 4-Methyl-2-oxopentanoate again from Butanoyl-CoA, via a 3-step path of
novel reactions, however, it is thermodynamically unfavorable. Both solution sets involve
the metabolite 3-Methylbutanal that is not part of the original iML1515 metabolic network.
The compound has been characterized!® as an alternative substrate of the enzyme 3-
hydroxypropionaldehyde dehydrogenase (b1300) but has not been detected as part of the

metabolome of E. coli to our knowledge.
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Pimeloyl-ACP methyl ester esterase (EC 3.1.1.85) is an enzyme encoded by the false
negative gene bioH (b3412). The enzyme is part of the Biotin Biosynthesis pathway, and it
is responsible for the hydrolysis of Pimeloyl-ACP methyl ester to Pimeloyl-ACP, a precursor
of Biotin. This reaction is rescued by the Ecoli_mets_ATLAS DB, which provides three
alternative solution sets of one reaction each to fill this gap. One of them, (Figure 5B,
alternative 2), suggests that Pimeloyl-ACP is produced by the transfer of the methyl group
from  Pimeloyl-ACP  methyl ester to S-Adenosylhomocysteine forming S-
Adenosylmethionine (EC 2.1.1.-). BridgIT provides 11 genes to regulate this novel reaction.
The Ecoli_Yeast_mets_ATLAS DB provides one additional solution set, (Figure 5B,
alternative 1), of two steps, a novel reaction, and the KEGG reaction R03210, describing
the synthesis of 8-Amino-7-oxononanoate, a successor metabolite of Pimeloyl-ACP in the
Biotin Biosynthesis pathway, from Hexanoyl-CoA and Pimeloyl-CoA as an intermediate
metabolite. Pimeloyl-CoA is not part of the original reconstruction but has been recently
shown?’ that it can serve as the acyl chain donor of the 8-amino-7-oxononanoate synthase
(bioF). BridglT suggests 21 candidate genes to encode for this function with bioF being
among them. In the original reconstruction bioF, which uses Pimenoyl-ACP as substrate, is
essential but the gene is not essential in vivo. Interestingly, this solution set provides an
alternative precursor for Biotin and thus can resolve the false negative case of bioC (b0777)
that is responsible for the synthesis of Malonyl-CoA methyl ester, a precursor of Pimenoyl-
ACP and thus Biotin. However, this solution is rejected since it adds redundancy to the
model, having an MCC (Matthews Correlation Coefficient) score equal to 0.0108 since the
genes fabZ (b0180) and fabH (b1091) and are falsely positive after the addition of this

solution set to the network.

The gene gshA (b2688), which regulates the synthesis of y-Glutamylcysteine from L-Cysteine
and L-Glutamate (EC 6.3.2.2), is not essential in vivo but it is essential in silico. This gap can be
resolved by the Ecoli_mets ATLAS DB. The heuristic provides 12 alternative
thermodynamically feasible solution sets to fill in this gap. The solution that is ranked higher
according to our criteria is depicted in Figure 5C. y-Glutamylcysteine is produced by L-Cysteine
and L-Glutamyl 5-phosphate, while Orthophosphate is released (EC 2.1.3.-). The
Ecoli_Yeast_mets_ATLAS DB provides 3 additional thermodynamically favorable solution sets.

All the 3 solutions involve the metabolite 5-Oxoproline as an intermediate. 5-Oxoproline is
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not part of the metabolome of the original reconstruction, it was, however, has been
detected®® in E. coli. The most well performing solution is shown in Figure 5C. The first
reaction, which describes the degradation of y-L-Glutamylputrescine to Putrescine and 5-
Oxoproline, is novel, whereas the second reaction is a KEGG reaction (R02743) reconstructed

in ATLAS. BridglT identifies the gene chaC as a candidate to encode for this metabolic function.

2.5 Gene annotation of metabolic gaps identifies new functions in E. coli.

The heuristic suggests over 7,000 reactions, known and novel, to gap-fill the metabolic
network of E. coli, and over 6,600 among them are part of thermodynamically feasible
solution sets. We used BridgIT to identify candidate sequences in the genome of E. coli to
catalyze these reactions. 6,319 reactions had an adequate BridgIT score (see Methods) and
are assigned to 2,165 EC numbers. Finally, we suggest 590 candidate promiscuous genes in
the genome of E. coli to catalyze 6,118 reactions. An example is shown in Figure 6. BridgIT
could assign adequate similarity scores between the ATLAS novel reaction and five KEGG

reference reactions and identifies the gene chaC as promising to catalyze this novel reaction.

2.6 An updated genome-scale model and database of E. coli metabolism shows increase
essentiality prediction accuracy.

Our approach allows to expand the original metabolic network by 77 reactions and 9
metabolites. We suggest 35 genes to associate with these 77 reactions, 2 of them are not part
of the original reconstruction (Supplementary Table S3). These 35 genes include only the top-
rated hits provided by BridgIT. Using the criteria and the ranking method mentioned above
we extracted an updated version of E. coli’s strain MG1655 metabolism, iEcoMG1655 (Figure
7). The updated reconstruction includes 2,450 network reactions, 1,176 metabolites, and
1,517 genes, while it has an enhanced accuracy in gene essentiality prediction. iEcoMG1655
achieves a MCC equal to 0.6025 and an ACC (accuracy) equal to 0.9190, while iML1515’s

performance is 0.4879 and 0.8722, respectively, for the conditions examined in this study.

ArcA and LacA are the 2 added genes. ArcA (b4401) is part of the ArcAB (aerobic respiratory
control) regulatory system?®. ArcA and ArcB have been shown to regulate the expression of
oxygen-requiring pathways!®. ArcAB has been also known to participate in the proper

expression of catabolic genes for pyruvate utilization and sugar fermentation pathways*®. In

10
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the expanded reconstruction the gene regulates the hydrolysis of N2-succinyl-L-arginine to
Urea and N2-Succinyl-L-ornithine (EC 3.5.3.-), providing an alternative pathway to

compensate for the knockout of argG (b3172).

LacA (b0342) encodes the enzyme Galactoside O-acetyltransferase that catalyzes the transfer
of an acetyl group from acetyl-CoA to the 6-hydroxyl of some galactopyranosides?®. The
enzyme is known to act on a broad range of substrates and can acetylate galactosides,
thiogalactosides, glucosides, and lactosides?®. In the expanded reconstruction it is part of the
Lipopolysaccharide Biosynthesis / Recycling and catalyzes the degradation of Dodecanoyl-

KDO2-lipid IV(A) to KDO2-lipid A, compensating for the knockout of lpxM (b1855).

The 33 genes that already are part of the model show substrate or mechanism promiscuity.
In the original reconstruction galK (b0757) encodes for the enzyme Galactokinase, responsible
for the phosphorylation of D-Galactose (EC 2.7.1.6). galK shows substrate promiscuity since
BridgIT suggests it can phosphorylate ADP-D-glycero-D-manno-heptose, 5-Methylthio-D-
ribose, D-glycero-beta-D-manno-Heptose 7-phosphate, 6-(Hydroxymethyl)-7,8-
dihydropterin, and D-Ribose 5-phosphate. On the other hand, xapA (b2407), acts as a
glycosyltransferase (EC 2.4.2.-) in the original reconstruction whereas BridgIT suggests it can
encode for phosphotransferases (EC 2.7.4.-) and ydfG (b1539), acts as dehydrogenase (EC
1.1.1.-) in the iML1515 network, but we suggest it can act as a carbon-carbon lyase (EC 4.1.1.-
,4.1.2.).

Although NICEgame suggests thermodynamically feasible alternatives to rescue 92 reactions,
solutions were not added in the updated reconstruction for 14 reactions for two reasons. The
first reason not to include a gap-filling solution in the updated reconstruction is that all the
solution sets identified by our approach add redundancy in the metabolic network, resulting
in an increase of the false positive gene essentiality predictions. The second reason not to
include any solution set for a rescued reaction was that we had an indication that an essential

or a falsely negative gene catalyzes the suggested biochemistry.

The newly included biochemistry allows the reconciliation of 78 false negative essential

reactions and 68 false negative essential gene cases. The biochemistry added to form the

11
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iEcoMG1655 is the top-rated among the alternatives, based on the knowledge that it is
available to this day. Our approach allows users to revisit and reevaluate the suggested
solution sets for each rescued reaction, in case new quantitative and qualitative data are

released, by suggesting alternative solution sets.

The amended metabolic network iECOMG1655 can serve as a tool to explore the undiscovered
metabolic capabilities of E. coli. The library of alternative gap-filling solutions can be used to
postulate experimentally testable hypotheses to shed light on the underground metabolism
of E. coli. Our method and the library of alternative solution sets can also be used as a
recourse in metabolic engineering, to design strains with improved performance, i.e., higher
biomass or product yield. Our workflow is applicable to any genome-scale metabolic model
of prokaryotic organisms. NICEgame allows the characterization and curation of metabolic

gaps at the reaction and enzyme level leading towards fully annotated genomes.

2.7 The NICEgame workflow offers improved gap-filling performance

To evaluate the performance of NICEgame against existing gap-filling approaches we
performed three comparative studies. In the first study, we repeated the generation of gap-
filling alternative solutions using our in-house algorithm but only known biochemical
reactions, i.e., the Ecoli_Yeast_mets_KEGG DB, a subset of the KEGG database, as a pool for
the gap-filling. The second study compares our gap-fling algorithm to published algorithms,
i.e.,, the algorithms included the RAVEN and COBRA toolboxes, using the
Ecoli_Yeast_mets_ATLAS DB. Last, we compared NICEgame against the CarveMe gap-filling

approach.

The Ecoli_Yeast_mets_KEGG DB allows the identification of thermodynamically feasible gap-
filling solutions for 53 out of the 152 target reactions (Supplementary Table S4), contrary to
93 rescued false negative reactions by the Ecoli_Yeast_mets_ATLAS DB. The average number
of solutions per rescued reaction is 2.3 for the Ecoli_Yeast_mets_KEGG DB and 252.2 for the
Ecoli_Yeast_mets_ATLAS DB. However, the Ecoli_Yeast_mets_KEGG DB suggests solutions for
8 reactions that the Ecoli_Yeast_mets_ATLAS DB cannot rescue. Further analysis of the KEGG
reactions that can substitute for the 8 E. coli reactions was performed to understand why the

ATLAS database could not capture these solutions (Supplementary Table S5).
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The gap-filling approach implemented in the RAVEN toolbox also uses a MILP (Mixed-Integer
Linear Programming) algorithm. We used the input parameters so that is the problem is to
include as few reactions as possible from the database in order to satisfy the model
constraints, i.e., the mass balances and the basal growth rate under the defined media. The
problem is very similar to the one defined by the NICEgame, however the RAVEN approach
does not account for the generation of alternative solutions. This results in obtaining
thermodynamically feasible solutions for 67 out of the 152 target reactions (Supplementary
Table S6). The gap-filling package that is included in the COBRA toolbox is also a MILP
algorithm, that minimizes the number of added reactions from the database to the model, in
order to achieve a given metabolic task. The COBRA toolbox algorithm gives different weights
to the reactions of the database, penalizing the uptakes and transporters in comparison to
metabolic reactions. The algorithm can account for alternative solutions, by assigning a bigger
weight to reactions that have already appeared in previous solutions. To test the method, we
demanded 10 alternatives per target reaction. However, the same solution can reappear and
there is no systematic enumeration of all minimal solution sets. (Supplementary Table S7).
The reaction ANPRT is such an example. The algorithm identifies the ATLAS reaction
‘rat45874’ as a solution four times, alternatives 1, 2,7, and 10. The size of the remaining six

solutions ranges between two and three reactions per solution set.

The CarveMe gap-filling approach is another gap-filling method based on a MILP formulation,
that aims to add the minimal number of reactions from the Universal Bacterial model?! to the
genome-scale model under curation. The method does not generate alternative solutions
sets. The usage of a different database leads to the identification of different gap-filling
alternatives. For example, the Ecoli_Yeast_mets_ATLAS DB can gap-fill for the target reaction
AICART with solution sets of one reaction, whereas the Universal Bacterial model provides a
solution of 20 reactions. Using the CarveMe gap-filling we identified thermodynamically
feasible solutions for 33 target reactions and reconcile 24 gaps that are not curated by the
NICEgame. However, the method suggests transporter, e.g., CAt6, CITt13, Cuabc, and pseudo-

reactions, e.g., sink_4hba_c, as part of the solutions.
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Overall, NICEgame outcompetes existing gap-filling approaches since it achieves an
exhaustive and systematic enumeration of gap-filling solutions of the minimal or bigger size.
Using the ATLAS of Biochemistry as a reaction pool for gap-filling allows the reconciliation of
more gaps. The thermodynamic evaluation of the alternatives in combination with our scoring
system allows us to choose biologically relevant solutions. The integration of the BridgIT tool
in the NICEgame workflow offers the users an inclusive genome-scale model gap-filling, from

the metabolite to the enzyme level.

3. Methods

In this study, we present our gap-filling approach, which comprises seven main steps. The
workflow produces a merged metabolic network by connecting the metabolism of the
organism with a reaction database, i.e., the ATLAS of Biochemistry. Then, it attempts to create
a functional network by substituting essential reactions, to the original metabolic network,
for biomass production with reactions coming from the reaction database. Candidate
annotated and non-annotated genes in the organism that can catalyze the suggested

biochemistry are identified. The alternative solutions are then evaluated and ranked.

3.1 Reconciliation of annotation

The suggested workflow was implemented on the most recently published E. coli model,
iML15152. The model is derived from 1,515 genes, associated with 2,266 reactions. It
integrates 1,569 metabolic reactions and 1,169 unique metabolites across two compartments,
the cytosol and the periplasm, and the extracellular space. Since the ATLAS of Biochemistry is
KEGG?%-based, both compound and reaction IDs of the wild-type E. coli model needed to be
translated to KEGG notation. The whole process required manual search in BiGG?3 and KEGG
databases. The most suitable KEGG ID was matched to the metabolites in the model, based
on the BiGG ID and the name of each metabolite. Every metabolite must have its unique ID
so that the stoichiometric matrix of the model is properly generated. Thus, in order to avoid
conflicts, in the case of different compounds with the same KEGG ID, such as lipids and
stereoisomers, the KEGG ID was assigned only once. 909 out of the 1,169 metabolites were

mapped to a KEGG ID. Apart from the KEGG database, the metabolites of the iML1515 were
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also mapped to the SEED?* database, so that thermodynamic constraints can be imposed on

the model. 1,106 out of the 1,169 metabolites are mapped to a unique SEED ID.

3.2 Databases used for gap-filling

In this project, we examined the performance of the ATLAS of Biochemistry as a reaction pool
for gap-filling. For this project, the updated version of ATLAS'* was used. It includes 10,935
KEGG metabolites integrated into 149,052 novel and already known enzymatic reactions.

5,764 of the ATLAS reactions are exact reconstructions of KEGG reactions.

Due to the vast amount of information integrated into ATLAS, in this project we used two
subsets of ATLAS. More specifically, the Ecoli_mets_ATLAS DB is a subset of the ATLAS
database that contains only reactions that integrate compounds, from the intracellular and
the extracellular space of the cell, that are already part of the iML1515 genome-scale model.
To this end, the ATLAS database was converted in a pseudo-GEM format and any reactions
that integrated compounds that do not belong in the E. coli metabolic network were removed.
We thus examined whether the gaps in the model can be reconciled by expanding only the
reaction space while not increasing the metabolite space. Likewise, the the
Ecoli_Yeast_mets_ATLAS DB contains only ATLAS reactions that integrate compounds that
are already part of the iML1515 and the Yeast8® genome-scale models. In this case, more
information was extracted from ATLAS in a controlled way, expanding both the reaction and
metabolite space of the original metabolic network. Likewise, the Ecoli_Yeast_mets KEGG DB
contains only KEGG (2018 version) reactions among metabolites included in the iML1515 and
the Yeast83® genome-scale models. The metabolic network of yeast was chosen since E. coli is
often cultivated in yeast extract, and it is thus probable that parts of the missing metabolome
exist in the yeast metabolic reconstruction. For the gap-filling with the CarveMe approach,
the universal bacterial model?!, a compartmentalized model contains transporters and

pseudo-reactions, was used as a database. The size of the databases is shown in Table 1.

3.3 Gap-filling formulation
The gap-filling algorithm generates binary use variables for each reaction in the database.
These variables indicate whether flux is allowed through a reaction or not. The gap-filling

algorithm is in reality a parsimonious algorithm whose objective is to minimize the number
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of active reactions in the metabolic network, demanding at the same time a basal flux through

the biomass reaction in the wild-type model. The mathematical formulation of the MILP

max E Z;
z

s.t.

problem is:

1*xF;+1xR;+M=xz; <M (i) (1)
Fpiomass = 0.1 * (WT growth rate)

, Where Fi stands for the flux variables of the irreversible forward reactions, Ri are the flux
variables of the irreversible backward component reactions of the reversible reaction i,
Fbiomass is the flux variable of the irreversible forward biomass reaction, WT growth rate is
the growth rate of the wild-type model, M is a big-M value, m is a small value and zi are the

binary use variables.

Every time the solver identifies a solution, the solution is integrated as a cut constraint to the

MILP problem, so the solver cannot identify the same solution more than once:

sz >0 (2)

We generated solutions of the minimum and the subsequent size. To avoid the generation of
long pathways we demanded that the minimum solution size is less than 10 and the

subsequent solution can be at most 5 reactions bigger than the minimum size solution.

3.4 Identification of metabolic gaps

Gene essentiality data®® were used to identify putative false negative reactions. We
considered M9 glucose minimal media and aerobic conditions and the wildtype biomass
reaction as an objective function. We performed a single gene deletion analysis, where a gene
was considered essential in silico if the growth rate of the knock-out mutant was less than
10 % of the growth rate of the wildtype. This analysis revealed 258 genes essential in silico

with 105 of them being essential in vivo, while 7 of them are not part of the experimental
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data. We identified all reactions associated with the 146 remaining genes, 200 in total, and
after a single reaction deletion analysis, we concluded that 152 of them are essential in silico.

We consider that these 152 are falsely essential and thus constitute the target reactions for

gap-filling.

3.5 Scoring the alternatives

The output of the framework, for each gap-filled model, is a set of ranked alternatives for
each rescued reaction. The main criteria for ranking the different alternatives are the
thermodynamic feasibility of the solution, which means the system cannot violate the second
law of thermodynamics, and minimum impact on the model, that means that the more a
solution alters the biochemistry and the predictive capability of the model the lower it is

ranked.

Thermodynamics-based Flux Balance Analysis (TFA)?® is carried out for each alternative in
order to examine the maximum biomass yield under thermodynamic constraints. In order to
examine the maximum biomass yield for each alternative the rescued reaction is blocked, and
flux is allowed through a set of the reactions of the alternative. Then a TFA is carried out.
These values are compared with the performance of the wildtype GEM and the ratios of the
wildtype GEM to the gap-filled GEM are calculated. Then, 1 is subtracted from the ratio of the
maximum biomass yield of the two models. If the result of the subtraction is greater than 0O,
the addition of the alternative to the GEM leads to a lower performance compared to the
original model, whereas, in the case that the result of the subtraction is less than 0, the
addition of the alternative to the GEM leads to higher performance compared to the original
model. If a gap-filled GEM does not predict growth when it is thermodynamically restricted,
the alternative is rejected. The performance of the gap-filled models without thermodynamic
constraints is also tested. FBA is carried out for each alternative in order to examine the

maximum biomass yield. The results are analyzed similarly to the TFA test.

The number of reactions of each alternative is also tested. Since the set of reactions of each
alternative replaces one reaction in the model, 1 is subtracted from the number of reactions
in the solution set. Since usually organisms favor shorter paths, the alternatives that integrate

fewer reactions are ranked higher than those that integrate more reactions.
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Furthermore, the metabolites integrated into each reaction are examined. For every unique
non-native metabolite, 1 point is added. An extra point is added for every reaction that is
linked to a 3rd level EC number that is not included in the original GEM. The integration of

such reactions also entails the integration of new enzymatic capabilities into the model.

Lastly, we test the ability of the models to properly predict gene essentiality. To this end, the
overall accuracy (ACC) and Matthews Correlation Coefficient (MCC) are calculated for each

gap-filled model and are compared to the WT.

TP xTN — FP « FN

MCC =
J(TP + FP) (TP + FN) * (TN + FP) = (TN + FN) (3)

TP + TN (4)

ACC = b TN T FP T FN

, Where TP stands for True Positive, TN for True Negative, FP for False Positive, and FN false

negative gene essentiality model predictions.

The values of all the scores are added, and the alternatives are ranked. The closer the absolute
value of the score is to 0, the more similar the performance and the biochemistry of the gap-

filled model is to the original model.

3.6 Enzyme annotation with BridgIT method

In this study, for the annotation of ATLAS reactions, we used the online version of the BridgIT
method with default parameters as discussed in the original paper!®. BridgIT method is
inspired by the theory of lock and key, assuming two similar reactions will be catalyzed by the
same enzyme. More precisely, BridglT takes into account the reactive site and its
neighborhood in similarity calculations, since the rest of the structure doesn’t interact with

the enzymatic binding pocket.
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BridglT method compares the similarity of each input reaction with all the non-orphan
characterized metabolic reactions cataloged in the KEGG database (reference reactions) and
proposes the enzymes associated with the most similar reference reactions as the best
candidate for the input reaction. Therefore, BridglT systematically screens for the best
promiscuous candidate enzymes that might be able to catalyze the input reaction. The degree
of similarity or probability of catalyzation is quantified in the BridgIT score, ranging from 0 (no
similarity) to 1 (identical). The optimal threshold value for the BridgIT score is 0.3, meaning

predictions with a score higher than 0.3 are considered promising*°.

The output of BridgIT for each input reaction is a list of ranked enzymes ordered descending
based on BridgIT score along with their EC number. Then, EC number is used to query the
Uniport?” database for the corresponding protein sequences in the organism of interest, in
this study Escherichia coli K12. Finally, the BridgIT output annotated with protein sequences

in Escherichia coli K12 is used for gap-filling.

Software

This work was supported by EPFL through the use of the facilities of its Scientific IT and
Application Support Center. We performed gap-filling using the defined MILP formulation in
MATLAB (2016a and 2018a) and IBM ILOG Cplex 12.7.1 as a solver. The simulations were run
on a High-Performance Computing Cluster of 408 nodes. We used 2 CPUs per simulation and
3875 MB per CPU. One simulation was defined for a unique combination of parameters. The
analysis of the gap-filling solutions was performed on mac info in MATLAB 2017a and IBM
ILOG Cplex 12.7.1 as a solver. The gap-filling with RAVEN was performed with Gurobi
Optimizer Version 9.3 as a solver. The gap-filling with COBRA and CarveMe approaches were

performed in python 3.6 and IBM ILOG Cplex 12.8.0 as a solver.
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Tables

Table 1: Size of the databases that were used for gap-filling.

Reactions Metabolites
Ecoli_mets_ATLAS 9,810 778
Ecoli_Yeast_mets_ATLAS 13,298 1,050
Ecoli_Yeast_mets_KEGG 1,756 1,128
Universal Bacterial model 5,532 2,861
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Figure 1. Pipeline to construct and use the NICEgame workflow to annotate missing
metabolic functions. The NICEgame workflow uses a genome-scale metabolic model (GEM)
as input. (1) We first harmonize the annotations of the GEM metabolites to map them to
compounds in the ATLAS of Biochemistry. (2) We define the conditions for subsequent
essentiality analyses, i.e., the media composition. (3) The original GEM is merged with ATLAS
and (4) an essentiality analysis is performed in the original and the expanded network to

identify which gaps can be rescued. (5) Alternative sets of biochemistry are generated to fill
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in the gaps and (6) are then evaluated. (7) At the last step, we use BridgIT to identify catalyzing

for the suggested biochemistry.
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Figure 2. Rating of the alternative reaction sets. Two alternatives to reconcile the false
negative prediction for the gene panD are shown. The second alternative is rejected because
it is thermodynamically infeasible. This alternative is penalized in all scores (i.e., all scores are
positive) since it adds two reactions, one non-native metabolite and one non-native
enzymatic capability to the network. Regarding yield, the first alternative is also penalized

(i.e., positive score) since it constrains the model both with and without thermodynamic
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constraints. However, it performs well at the reaction, metabolite and enzyme scores (i.e.,

they are all equal to 0) and it increases the accuracy of the model (i.e., MCC score is negative).
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Figure 3. (A) Comparison of essentiality between iML1515 and the extended networks. The
146 false negative gene essentiality predictions are linked to 152 (orange) reactions in the
model. Using the Ecoli_mets_ATLAS as a reaction pool for gap-filling 86 of these gaps could
be characterized (blue) while 92 reactions could be rescued when the
Ecoli_Yeast_mets_ATLAS was used as a reaction pool (green). (B) Contingency matrix for
gene essentiality prediction accuracy of iML1515. The accuracy of the model is equal to 0.872
and MCC equal to 0.488. (C) Remaining gaps. The subsets of ATLAS used in this study could
not rescue 59 falsely negative reactions. The enzyme 4-amino-4-deoxychorismate synthase

(EC 2.6.1.85) remains falsely negative.
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Figure 4. Cases of incorrectly predicted as essential reactions and alternative gap-filling

reactions identified using the Ecoli_mets_ATLAS DB. (A) The reaction regulated by bioC in

the original network, two gap-filling solutions and their scores. (B) The reactions catalyzed by

luxS in iIML1515, one thermodynamically favorable and one thermodynamically infeasible
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solution. (C) The false negative reaction linked with the gene panB and two gap-filling

solutions with their scores.
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Figure 5. Cases of incorrectly predicted as essential reactions and alternative gap-filling
reactions identified using the Ecoli_Yeast_mets_ATLAS DB. (A) The false negative reaction
regulated by leuCD in the original network, one thermodynamically favorable and one
thermodynamically infeasible gap-filling solution and their scores. (B) The reactions catalyzed
by bioH in iML1515, one lowly ranked and one highly ranked gap-filling solution. (C) The false

negative reaction linked with the gene gshA and two gap-filling solutions with their scores.
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The first alternative is generated by the Ecoli_mets_ATLAS DB whereas the second one is

generated by the Ecoli_Yeast_mets_ATLAS DB.
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Figure 6. Suggesting catalyzing genes using BridgIT. BridgIT could identify 5 reactions that
are similar to the novel reaction that accounts for the degradation of y-L-Glutamylputrescine
to 5-Oxoproline and Putrescine. Out of these five reactions only R11861 is linked to a

sequence in the genome of E. coli.
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Figure 7. (A) The iEcoMG1655 network statistics. The gap-filled network contains 77 novel
reactions, two additional genes and nine new metabolites. (B) Contingency matrix for gene
essentiality prediction accuracy of iEcoMG1655. Our approach could reconcile 58 out of the

146 FN gene essentiality predictions leading to an increased accuracy, i.e., MCC = 0.6025.
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Supplementary Table title and legends

Supplementary Table S1.

False negative gene essentiality model predictions and the reactions that constitute the
targets of the gap-filling algorithm.

Supplementary Table S2.

All gap-filling solutions identified by the heuristic along with the corresponding scores with
the Ecoli _mets_ATLAS and the Ecoli_Yeast_mets_ATLAS databases.

Supplementary Table S3.

The top-rated solutions and the suggested catalyzing enzymes used to update the
reconstructions.

Supplementary Table S4.

All gap-filling solutions identified by the heuristic with the Ecoli_Yeast_mets KEGG DB.
Supplementary Table S5.

Rescued reactions by the Ecoli_Yeast_mets_KEGG DB and not the Ecoli_Yeast_mets_ATLAS
DB.

Supplementary Table S6.

All gap-filling solutions identified by the RAVEN gap-filling approach.

Supplementary Table S7.

All gap-filling solutions identified by the COBRA gap-filling approach.

Supplementary Table S8.

All gap-filling solutions identified by the CarveMe gap-filling approach.
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